WO2020239133A1 - 激光切割设备及激光切割方法 - Google Patents

激光切割设备及激光切割方法 Download PDF

Info

Publication number
WO2020239133A1
WO2020239133A1 PCT/CN2020/097477 CN2020097477W WO2020239133A1 WO 2020239133 A1 WO2020239133 A1 WO 2020239133A1 CN 2020097477 W CN2020097477 W CN 2020097477W WO 2020239133 A1 WO2020239133 A1 WO 2020239133A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
light
lens group
laser
laser cutting
Prior art date
Application number
PCT/CN2020/097477
Other languages
English (en)
French (fr)
Inventor
辛焕寅
李忠乾
陈红
卢建刚
张红江
尹建刚
高云峰
Original Assignee
大族激光科技产业集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大族激光科技产业集团股份有限公司 filed Critical 大族激光科技产业集团股份有限公司
Priority to US17/263,304 priority Critical patent/US11931827B2/en
Publication of WO2020239133A1 publication Critical patent/WO2020239133A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/046Automatically focusing the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0608Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams in the same heat affected zone [HAZ]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0613Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams having a common axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0626Energy control of the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • B23K26/0673Dividing the beam into multiple beams, e.g. multifocusing into independently operating sub-beams, e.g. beam multiplexing to provide laser beams for several stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • B23K26/0676Dividing the beam into multiple beams, e.g. multifocusing into dependently operating sub-beams, e.g. an array of spots with fixed spatial relationship or for performing simultaneously identical operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • B23K26/0734Shaping the laser spot into an annular shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0009Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only
    • G02B19/0014Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only at least one surface having optical power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0916Adapting the beam shape of a semiconductor light source such as a laser diode or an LED, e.g. for efficiently coupling into optical fibers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0927Systems for changing the beam intensity distribution, e.g. Gaussian to top-hat
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/42Printed circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/56Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26 semiconducting

Definitions

  • the invention relates to the field of laser cutting, in particular to a laser cutting equipment and a laser cutting method.
  • the laser beam is often converged into a focal point to cut wafers and other materials.
  • This cutting method generally requires the laser beam to be concentrated at a certain depth of the processed material for cutting. Since the energy at the convergent point of the beam is relatively high, when the focal point moves at this depth position, a modified layer can be formed on the moving path. Subsequently, by forming multiple modified layers inside the processed material, the processed material can be easily cleaved along these modified layers.
  • this single-focus cutting method needs to change the depth of the focus inside the material to cut again after completing the cutting at a certain depth of the processed material. After the modified layer is formed at multiple depths, the processed material is easily removed. Splitting greatly affects cutting efficiency.
  • a laser cutting equipment including:
  • a beam expander element is provided with a plurality of lens groups, the optical axes of the plurality of lens groups are all on the same straight line, each lens group includes at least one lens, and the beam expander element converts the incident light beam into a first light beam ;
  • the light splitting element is arranged on the light exiting light path of the beam expanding element, and the light splitting element converts the first light beam into a plurality of second light beams that are ring-shaped and spaced apart from each other.
  • the beam splitting element is provided to convert the first light beam into a plurality of second light beams, thereby achieving the effect of adjusting the light beam.
  • the multiple second beams can form the same number of multiple focal points to cut the processed material, so that multiple modified layers can be formed in the processed material at one time, and the cutting efficiency is improved.
  • the beam expanding element can adjust the spot area of the first light beam, and the number of the second light beams has a positive correlation with the spot area of the first light beam.
  • the spot area of the first light beam can be adjusted by adjusting the beam expander element, thereby adjusting the quantity of the second light beam.
  • the beam expanding element can be adjusted to adjust the number of focal points finally formed.
  • the plurality of lens groups include at least two movable lens groups, and the movable lens groups can move along the optical axis direction of the beam expander element.
  • the movable lens groups can move along the optical axis direction of the beam expander element.
  • the side of the beam expander element close to the beam splitting element is the image side
  • the side of the beam expander element away from the beam splitter element is the object side
  • the lens group closest to the image side There are a first lens group and a second lens group in turn, the first lens group and the second lens group are both movable lens groups, and the movable lens group can move along the optical axis direction of the beam expander element;
  • Both the first lens group and the second lens group provide positive refractive power, and the focal point of the first lens group on the object side coincides with the beam converging point of the second lens group on the image side;
  • the first lens group provides negative refractive power
  • the second lens group provides positive refractive power
  • the virtual focus of the first lens group on the image side coincides with the beam converging point of the second lens group on the image side.
  • it further includes a picosecond laser.
  • the light beam emitted by the picosecond laser passes through the beam expanding element and the beam splitting element in sequence.
  • the output power of the picosecond laser is 10W and the pulse width is 2ps- 6ps, the wavelength is 1040nm.
  • the laser cutting device further includes a focusing lens, the focusing lens is arranged on the light exit path of the light splitting element, and the focusing lens focuses the plurality of second light beams into the same number of light beams. Multiple focal points are arranged at intervals on the optical axis of the focusing lens, and the distance between adjacent focal points in the air is less than or equal to 20 ⁇ m.
  • a first lens and a second lens for eliminating aberrations are sequentially arranged between the beam splitting element and the focusing lens, wherein the beam splitting element is arranged on the object of the first lens.
  • the object focal point of the second lens coincides with the image focal point of the first lens
  • the focusing lens is arranged on the image focal plane of the second lens.
  • the first lens and the second lens are provided to eliminate the aberration of the light beam emitted by the beam splitting element.
  • a laser cutting method in which the spot of the laser beam emitted by the laser is adjusted to an appropriate size by a beam expanding element, so that the adjusted laser beam can pass through the beam splitting element completely;
  • the adjusted laser beam passes through the beam splitting element to form multiple ring beams
  • Multiple annular beams pass through the focusing lens and form multiple focal points arranged at intervals on the optical axis of the focusing lens.
  • the number of focal points is greater than or equal to two, and the distance between adjacent focal points in the air is less than or equal to 20 ⁇ m;
  • the multiple focal points formed by the focusing lens are distributed inside the processed material, and the multiple focal points can form multiple modified layers inside the processed material.
  • the laser cutting method can better cut materials with small thickness such as MINI LED.
  • the ring beam emitted by the light splitting element will also pass through the first lens, and the first lens adjusts the ring beam into a convergent beam;
  • the condensed beam is reflected by the second mirror to the second lens, and the second lens will readjust the condensed beam into multiple circular beams.
  • the beam splitter is arranged on the object focal plane of the first lens, and the object focal plane of the second lens Coincide with the image side focal plane of the first lens, and the focusing lens is arranged on the image side focal plane of the second lens;
  • the multiple circular beams formed by the second lens readjustment are then reflected by the third mirror to the focusing lens.
  • the first lens and the second lens can be used as an optical 4F system to eliminate the aberration of the beam emitted by the beam splitter, increase the quality of the focus formed by the focusing lens, and improve the cutting accuracy.
  • the number of ring beams is positively correlated with the spot size of the laser beam incident on the beam splitting element, and the number of focal points is the same as the number of ring beams, and the beam expander is adjusted to obtain the required number of focal points.
  • FIG. 1 is a schematic diagram of a laser cutting device provided by an embodiment of the application
  • FIG. 2 is a schematic diagram of a beam expanding element and a beam splitting element in a laser cutting device provided by an embodiment of the application;
  • FIG. 3 is a schematic diagram of the cooperation of the lens group in the laser cutting equipment provided by an embodiment of the application;
  • FIG. 4 is a schematic diagram of optical path adjustment of a beam splitting element in a laser cutting device provided by an embodiment of the application;
  • FIG. 5 is a schematic diagram of optical path adjustment of a beam splitting element in a laser cutting device provided by another embodiment of the application.
  • Fig. 6 is a schematic diagram of an application scenario of a laser cutting device provided by an embodiment of the application.
  • the laser cutting device 10 in the present application is provided with an optical device 100.
  • the optical device 100 includes a beam expander element 110 and a beam splitter element 120.
  • the beam splitter element 120 is provided on the beam expander element 110.
  • the laser beam passes through the beam expanding element 110 and the beam splitting element 120 in sequence.
  • the beam expanding element 110 can adjust the spot size of the incident light beam to form the first light beam.
  • the first light beam with the adjusted spot size can pass through the light splitting element 120 completely, that is, the first light beam will not be blocked by the fixing member holding the light splitting element 120.
  • the first light beam is adjusted by the light splitting element 120 and converted into a plurality of (at least two) circular second light beams spaced apart from each other.
  • the first light beam is a parallel light beam. It should be noted that the above definition of mutual interval should be understood as the interval between the multiple second light beams emitted by the light splitting element 120, and it is not limited to the second light beams being kept mutually apart during propagation.
  • the beam expanding element 110 includes a plurality of (at least two) lens groups 112, and each lens group 112 is provided with at least one lens 1120.
  • the beam splitting element 120 is provided to convert the emitted light beam (the first light beam 1101) of the beam expanding element 110 into multiple second light beams 1201, thereby achieving the effect of adjusting the beam shaping.
  • the multiple second beams 1201 can form multiple (at least two) focal points of the same number to cut the processed material, so that multiple modified layers can be formed in the processed material at one time. Improve cutting efficiency.
  • the replaced diffractive optical element has the problem that its center is difficult to align with the optical axis of the incident beam, which affects the symmetry of the outgoing beam, and ultimately makes it difficult to cut the material.
  • the converged beam is difficult to converge at one point, which affects the cutting effect.
  • the optical device 100 in the laser cutting device can adjust the number of the second beam 1201.
  • the beam expander 110 can adjust the spot size of the beam so that the spot area of the outgoing beam (first beam 1101) is larger or smaller than the spot area of the incident beam.
  • the first light beam 1101 propagates parallel to the optical axis A of the beam expanding element 110.
  • the beam expanding element 110 has a magnification of 2 times to 8 times.
  • the beam expander element 110 further includes a housing 111, the lens group 112 is disposed inside the housing 111, and the housing 111 is provided with a light entrance 1111 and a light exit 1112 that are arranged oppositely, a light entrance 1111 and a light exit
  • the center of the port 1112 and the optical axis A are on the same straight line.
  • the light beam can enter the inside of the housing 111 from the light entrance 1111, and exit from the light exit 1112 after being adjusted by a plurality of lens groups 112 to form a first light beam 1101.
  • the light splitting element 120 can convert the incident light beam (the first light beam 1101) into a plurality of second light beams 1201, and there are intervals when adjacent second light beams 1201 exit from the light splitting element 120.
  • the number of the second light beams 1201 depends on the size of the spot area of the first light beam 1101. Specifically, the number of the second light beams 1201 has a positive correlation with the spot area of the first light beam 1101.
  • the spot diameter of the first light beam 1101 is about 10 mm.
  • At least one lens group 112 is a fixed lens group, at least one lens is provided in the fixed lens group, and the fixed lens group is relatively fixed to the housing 111, that is, each lens 1120 in the fixed lens group is in the housing 111. The position in the direction of the optical axis remains fixed.
  • the fixed lens group can be connected to the housing 111 through a fixing member, or directly clamped in the housing 111.
  • the side of the beam expanding element 110 away from the beam splitting element 120 is the object side
  • the lens group 112 closest to the object side is a fixed lens group
  • the position of the fixed lens group in the beam expanding element 110 is relatively fixed, and the one closest to the object side
  • the lens group 112 can diverge and transmit the incident light beam to the adjacent lens group 112.
  • the spot area of the divergent light beam is increased, which facilitates the adjustment of the divergent light beam by the adjacent lens group 112 and makes full use of the edge area of the lens 1120 in the adjacent lens group 112 for refraction.
  • the movable lens group includes a driving part 1121.
  • the driving part 1121 can drive the lens 1120 in the movable lens group to move back and forth along the optical axis A relative to the housing 111.
  • the driving member 1121 may be a voice coil motor or a manual adjustment member.
  • the manual adjustment member may be a sliding structure in which the slider and the sliding groove are matched. For example, a sliding groove is provided on the housing 111, and the sliding groove is inserted through the sliding groove.
  • the housing 111 can slidably extend from the sliding part of the housing 111 to drive the lens in the movable lens group to move.
  • the manual adjustment member can also be a knob structure.
  • the knob has a ring structure.
  • the outer side of the knob extends out of the housing 111.
  • the inner side of the knob is rotatably connected with the lens 1120 in the movable lens group.
  • the movable lens group can be driven by rotating the outer side of the knob
  • the lens 1120 in is moved along the optical axis A direction.
  • the relative distance between the movable lens groups can be adjusted, so that the divergence or convergence angle of the light beam in the housing 111 can be adjusted through a part of the movable lens group, and then the other part can be adjusted
  • the movable lens group is used to collimate the above-mentioned beam with a specific divergence angle or focusing, and at the same time obtain an outgoing beam (first beam 1101) with a corresponding spot size.
  • three lens groups 112 are provided inside the housing 111, of which two lens groups 112 close to the light exit 1112 are movable lens groups, and one lens group 112 close to the light entrance 1111 is a fixed lens group.
  • the beam expander 110 is provided with three lens groups 112, of which, from the image side to the object side, there are a first movable lens group L1 that provides positive refractive power, and a second movable lens that provides positive refractive power. Group L2 and a third fixed lens group L3 providing negative refractive power.
  • the third fixed lens group L3 can diverge the incident light and increase the area of the light beam irradiating the second movable lens group L2, thereby facilitating the second movable lens group L2 to adjust the light beam.
  • the second movable lens group L2 can be driven to keep the second movable lens group L2 away from the third fixed lens group L3. At this time, the second movable lens group L2 The convergence angle of the outgoing light beam will increase.
  • the first movable lens group L1 is driven so that the focal point of the first movable lens group L1 on the object side coincides with the converging point of the light beam after being condensed by the second movable lens group L2. F.
  • the first light beam 1101 emitted by the first movable lens group L1 will be emitted in parallel and have a larger spot area.
  • the second movable lens group L2 can be driven so that the second movable lens group L2 is close to the third fixed lens group L3. At this time, the second movable lens group L2 The convergence angle of the outgoing light beam will be reduced.
  • the first movable lens group L1 is driven so that the focal point of the first movable lens group L1 on the object side coincides with the converging point of the light beam after the second movable lens group L2 is condensed. F.
  • the first light beam 1101 emitted by the first movable lens group L1 will emerge in parallel and have a smaller spot area.
  • the first lens group L1 can also provide negative refractive power
  • the second lens group L2 deliberately provides positive refractive power
  • the virtual focus of the first lens group L1 on the image side and the second lens group L2 on the image side The convergence points of the beams coincide.
  • the third fixed lens group L3 can actually be replaced with a movable lens group; or, the third fixed lens group L3 may not be provided, but only two movable lens groups are provided in the beam expander element. In addition, more movable lens groups or fixed lens groups can be provided in the beam expander element.
  • the arrangement sequence of the fixed lens group and the movable lens group can be arbitrarily provided that the outgoing light beam (first light beam 1101) is a parallel light beam. arrangement.
  • At least one lens group 112 is designed as a compound lens group, and the compound lens group includes at least one positive lens and at least one negative lens, so as to correct spherical aberration.
  • the light beam has a better convergence or divergence effect after passing through the compound lens group, and the parallelism of the light beam (the first light beam 1101) finally emitted from the beam expanding element 110 is improved.
  • optical glue can be provided in the compound lens group to cement the lenses.
  • the spectroscopic element 120 is an optical diffractive element.
  • the light splitting element 120 is provided with multiple concentric annular belts. According to the light transmission properties of the annular belts, the annular belts can be divided into light-transmitting annular belts and opaque annular belts. The light-transmitting properties between adjacent annular belts Therefore, the incident light beams form multiple second light beams 1201 after passing through multiple light-transmitting rings. At this time, the multiple second light beams 1201 have a higher contrast ratio.
  • the area illuminated by the incident light beam of the beam splitting element 120 can be light-transmissive.
  • areas with different thicknesses can be provided on the beam splitting element 120 to cause the incident beam to pass through the areas with different thicknesses. , And form multiple concentric annular beams through diffraction. At this time, the incident beam can be converted into multiple second beams 1201 with less energy loss.
  • the beam splitter element 120 After the first light beam 1101 with different spot areas enters the beam splitter element 120, the beam will be shaped and emitted. The incident beams with different spot areas will determine the second beam emitted from the beam splitter element 120. The number of 1201.
  • the beam splitting element 120 can shape the first light beam 1101 into multiple circular light beams propagating along the optical axis A.
  • the multiple second beams 1201 propagating parallel to each other can be respectively focused on the same straight line parallel to the propagation direction of the optical path under the action of the focusing lens, thereby forming multiple focal points, that is, multiple focal points on the optical axis of the focusing lens Arranged at intervals.
  • Using multiple laser beam focus to cut the chip can cut multiple layers in the chip section at one time, can suppress the diagonal crack of the crystal lattice in the chip, and generate a vertical guiding force for the pre-crack, so as to achieve the purpose of reducing the diagonal crack.
  • the beam splitting element 120 can not only shape the first beam 1101 into multiple circular beams (second beam 1201), but can also focus multiple second beams 1201 on the optical axis A.
  • multiple focal points of the same number as the second light beam 1201 are formed on the optical axis of the beam splitting element 120.
  • the second beam 1201 focused into multiple focal points can be directly used to cut the processed material.
  • a focusing lens may be arranged between the beam splitter element 120 and the processing material to further focus the light beam emitted from the beam splitter element 120, thereby shortening the focal length and saving working space.
  • the laser cutting device 10 includes a laser 130, and the light beam emitted by the laser 130 can enter the beam expanding element 110 and the beam splitting element 120 in sequence.
  • the laser cutting device 10 can be used to cut wafers and LED chips with sapphire as the substrate, and especially can be used to cut MINI LEDs.
  • the laser 130 is a picosecond laser
  • the output power of the picosecond laser is 10W
  • the pulse width is 2ps-6ps
  • the wavelength is 1040nm.
  • the beam emitted from the laser 130 is not an ideal parallel light. Therefore, in some embodiments, a zone plate 140 is also provided between the laser 130 and the optical device 100, and the zone plate 140 is capable of reflecting the beam emitted from the laser 130. The collimation is performed, and the laser beam is converted into a more ideal parallel light and then transmitted to the optical device 100.
  • the laser cutting device 10 when the beam splitter 120 converts the first light beam 1101 into multiple second light beams 1201 propagating parallel to the optical axis A, the laser cutting device 10 also needs to be provided with a focusing lens 150 for the multiple second beams
  • the light beam 1201 is focused to form a plurality of focal points with the same number as the second light beam 1201 and arranged at intervals on the optical axis of the focusing lens 150, so as to cut the processing material.
  • the focal length of the focusing lens 150 is 4 mm.
  • the spacing distance in the air between adjacent focal points is less than or equal to 20 ⁇ m, preferably 4 ⁇ m-8 ⁇ m. When the distance between adjacent focal points satisfies the above range, it can be advantageous for cutting thinner processed materials.
  • the number of focal points is greater than or equal to two and less than or equal to fifteen.
  • the beam expander element 110 can be directly adjusted to change the number of the second light beams 1201, thereby changing the number of focal points.
  • the laser cutting device 10 can better cut MINI LEDs.
  • the general laser cutting equipment has the problem of too large focus distance, and the MINI LED chip has a small thickness, so that the general laser cutting equipment cannot accurately cut the mini LED chip.
  • the laser cutting device 10 can efficiently and accurately cut the MINI LED chip.
  • the beam splitter 120 can convert the first light beam 1101 into multiple second light beams 1201, and focus the multiple second light beams 1201 onto the same straight line parallel to the beam propagation direction to form the same number and spaced apart Multiple focal points.
  • the multiple second beams 1201 can be directly used to cut the processed material, that is, multiple focal points arranged at intervals are distributed inside the processed material.
  • the beam expanding element 110 can be directly adjusted to change the number of the second beams 1201.
  • a first lens 161 and a second lens 162 for eliminating aberrations are sequentially arranged between the optical device 100 and the focusing lens 150.
  • the first lens 161, the second lens 162, the first lens 161, the second lens 162, and the dichroic element 120 are arranged on the object focal plane of the first lens 161, and the object focal point of the second lens 162 coincides with the image focal point of the first lens 161.
  • the focusing lens 150 is arranged on the image-side focal plane of the second lens 162.
  • the first lens 161 and the second lens 162 are both independent positive lenses (focus lenses) and have the same focal length.
  • the second beam emitted by the beam splitter 120 will have serious aberrations after a certain distance, it is impossible to accurately cut the processed material.
  • the light entrance of the general focusing lens 150 is small, and the second beam cannot be received completely. .
  • the aberration of the second light beam can be better eliminated, and the second light beam can pass through the focusing lens 150 completely.
  • the first lens 161 can converge the second light beam 1201, and then the second lens 162 will converge and diverge the second light beam 1201 again. It is converted into a parallel light beam or a focused light beam and transmitted to the focusing lens 150. Then, the focusing lens 150 condenses the multiple second light beams 1201 on multiple focal points.
  • the object focal length and the image focal length of the first lens 161 are both 250 mm, and the object focal length of the second lens 162 is 250 mm.
  • the laser cutting device 10 is also provided with a reflector to adjust the direction of the light path.
  • some laser cutting devices 10 further include a first mirror 171, a second mirror 172, and a third mirror 173.
  • the propagation direction of the outgoing beam of the laser 130 and the optical device 100 is perpendicular to the propagation direction of the beam when the material is finally cut. In this case, the propagation direction of the outgoing beam in the optical device 100 can be changed by setting a mirror.
  • the laser cutting device 10 is provided with a first lens 161, a second lens 162, a first mirror 171, a second mirror 172 and a third mirror 173.
  • the first reflecting mirror 171 is disposed between the laser 130 and the beam expanding element 110 to reflect the output beam of the laser 130 into the beam expanding element 110.
  • the first lens 161, the second mirror 172, the second lens 162, and the third mirror 173 are arranged in order along the exit light path of the light splitting element 120.
  • the second mirror 172 can change the exit light path of the light splitting element 120.
  • the third mirror 173 can also change the reflection light path of the second mirror 172 to 90°, and the exit light path of the beam splitter 120, the reflection light path of the second mirror 172 and the reflection of the third mirror 173
  • the light paths are perpendicular to each other.
  • the light beams reflected by the third mirror 173 will pass through the focusing lens 150 to converge into multiple focal points.
  • the distance between the first lens 161 and the beam splitting element 120 on the optical path is 250 mm
  • the distance between the first lens 161 and the second reflector 172 on the optical path is 70 mm
  • the second reflector 172 is on the optical path from the second lens 162.
  • the distance is 430mm.
  • the laser cutting device 10 will work with an imaging device 310.
  • the imaging device 310 can acquire the surface information of the processed material 400, thereby monitoring whether the direction of the cutting beam is correct.
  • the imaging device 310 is a CCD (Charge Coupled Device).
  • the processing material 400 is placed on the adhesive film 340, and the edge of the adhesive film 340 is connected with the iron ring 330, and the iron ring 330, the adhesive film 340 and the processing material 400 are all arranged above the transparent carrier 320.
  • the adhesive film 340 may be made of a transparent or translucent material. After laser processing, the chip is split by mechanical means such as a wedge.
  • this application also provides a laser cutting method to efficiently cut materials with a small thickness (such as a thickness of less than 100 ⁇ m) such as mini LEDs.
  • the spot of the laser beam emitted by the laser is adjusted to an appropriate size by the beam expander element, so that the adjusted laser beam can pass through the beam splitting element completely, and the laser beam adjusted by the beam expander element is the first beam .
  • the first light beam is adjusted into a plurality of mutually spaced second light beams (ring beams) by the light splitting element.
  • the multiple second light beams are focused by the focusing lens to form N (at least two) spaced apart on the optical axis of the focusing lens. A) focus.
  • the number of focal points is greater than or equal to two and less than or equal to fifteen.
  • the distance between adjacent focal points in the air is less than or equal to 20 ⁇ m, preferably 4 ⁇ m-8 ⁇ m.
  • the multiple focal points formed by the focusing lens are distributed inside the processed material, and the multiple focal points can form multiple modified layers inside the processed material.
  • the laser cutting method can cut materials with small thickness such as mini LEDs.
  • the first light beam can propagate parallel to the optical axis direction of the beam expander element.
  • multiple second light beams can also propagate along the optical axis direction of the light splitting element.
  • the ring beam emitted by the beam splitting element will also pass through the first lens, which adjusts the ring beam into a convergent beam; the convergent beam is reflected by the second mirror to the second lens, and the second lens will converge the beam Re-adjust to multiple ring beams, where the beam splitting element is set on the object focal plane of the first lens, the object focal plane of the second lens coincides with the image focal plane of the first lens, and the focusing lens is set on the second lens. Image square focal plane; the multiple circular beams formed by the second lens re-adjustment are then reflected by the third mirror to the focusing lens.
  • the first lens can converge the ring beam to convert the ring beam into a convergent beam.
  • the converged beam will be re-magnified after converging.
  • the converged beam will be re-adjusted into a multi-beam ring Light beams
  • the number of re-formed multiple circular beams is the same as the number of second light beams formed by the beam splitter.
  • the ring beam formed by the adjustment of the second lens is emitted parallel to the optical axis direction of the second lens.
  • the first lens and the second lens can be used as an optical 4F system to eliminate the aberration of the second beam, improve the quality of the focus formed by the focusing lens, and thereby improve the accuracy of multi-focus cutting.
  • the beam expander element and the beam splitter element can only form a fixed number of second beams after being matched. Since the number of second light beams determines the number of focal points obtained by focusing by the focusing lens, at this time, the number of second light beams can be changed by replacing the light splitting element, thereby changing the number of focal points formed by the focusing lens.
  • the first mirror, the second mirror, and the third mirror can be selected according to the actual light path trend requirements (such as reducing the size of the actual device in a certain direction), and no laser is required. The beam passes through all mirrors.
  • the first mirror and the second mirror can be omitted, so that the light beam emitted by the laser can pass through the beam expander element, the beam splitter element, the first lens, the second lens, and the third mirror in a fixed direction, and then pass through the first mirror.
  • the three mirrors reflect to the focusing lens.
  • the beam expander element and the beam splitter element cooperate to adjust the number of second light beams, so that the number of focal points formed by the focusing lens can be changed by adjusting the beam expander element.
  • the number of ring beams has a positive correlation with the spot size of the first beam incident on the beam splitting element, and the number of focal points is the same as the number of second beams.
  • the beam expander is adjusted to change the spot size of the first beam. Then the number of second light beams reaching the focusing lens is controlled to obtain the required number of focal points to cut the processing material.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Laser Beam Processing (AREA)

Abstract

一种激光切割设备及激光切割方法。激光切割设备包括扩束元件(110),设置有多个透镜组(112),多个透镜组的光轴均处于同一直线上,每个透镜组包括至少一个透镜(1120),扩束元件将入射光束转化为第一光束(1101);分光元件(120),第一光束设置于扩束元件的出光光路上,分光元件将第一光束转化为多束相互间隔的第二光束(1201)。在该激光切割设备中,通过设置分光元件以将第一光束转化为多束第二光束,从而起到调节光束的效果。在进行激光切割时,多束第二光束能够形成数量相同的多个焦点以对加工材料进行切割,从而能够在加工材料内部一次性形成多层改质层,提高切割效率。

Description

激光切割设备及激光切割方法 技术领域
本发明涉及激光切割领域,特别是涉及一种激光切割设备及激光切割方法。
背景技术
一般的激光切割技术中,常将激光束会聚成一个焦点以切割晶圆等材料,这种切割方式一般需要将激光束会聚于加工材料的某一深度位置上进行切割。由于光束会聚点处的能量较高,从而,当焦点在该深度位置上移动时,能够在移动路径上形成改质层。随后,通过在加工材料内部形成多层改质层,加工材料能够沿着这些改质层被轻易劈开。但这种单焦点切割方式在对加工材料某一深度位置完成切割后,还要再改变焦点于材料内部的深度以再次切割,在多个深度位置上形成改质层后才使得加工材料容易被劈开,十分影响切割效率。
发明内容
基于此,有必要针对如何提高激光切割效率的问题,提供一种激光切割设备及激光切割方法。
一种激光切割设备,包括:
扩束元件,设置有多个透镜组,所述多个透镜组的光轴均处于同一直线上,每个所述透镜组包括至少一个透镜,所述扩束元件将入射光束转化为第一光束;
分光元件,设置于所述扩束元件的出光光路上,所述分光元件将所述第一光束转化为多束呈环形且相互间隔的第二光束。
在所述激光切割设备中,通过设置所述分光元件以将所述第一光束转化为 多束所述第二光束,从而起到调节光束的效果。在进行激光切割时,多束所述第二光束能够形成数量相同的多个焦点以对加工材料进行切割,从而能够在加工材料内部一次性形成多层改质层,提高切割效率。
在其中一个实施例中,所述扩束元件能够调节所述第一光束的光斑面积,所述第二光束的数量与所述第一光束的光斑面积呈正相关关系。
在所述激光切割设备中,通过调节所述扩束元件可调节所述第一光束的光斑面积,进而调节所述第二光束的数量。当增大所述第一光束的光斑面积时,所述第二光束的数量增加;当减小所述第一光束的光斑面积时,所述第二光束的数量增少。在应用于激光切割设备中时,可通过调节所述扩束元件以调节最终形成的焦点数量。
在其中一个实施例中,所述多个透镜组包括至少两个活动透镜组,所述活动透镜组能够沿所述扩束元件的光轴方向移动。通过改变所述透镜组之间的距离,以起到改变光束光斑大小的效果,同时,使由所述扩束元件出射的光束以平行于所述扩束元件的光轴出射。
在其中一个实施例中,所述扩束元件靠近所述分光元件的一侧为像侧,所述扩束元件远离所述分光元件的一侧为物侧,最靠近像侧的所述透镜组依次为第一透镜组和第二透镜组,所述第一透镜组和所述第二透镜组均为活动透镜组,所述活动透镜组能够沿所述扩束元件的光轴方向移动;其中
所述第一透镜组和所述第二透镜组均提供正屈折力,所述第一透镜组于物侧的焦点与所述第二透镜组于像侧的光束会聚点重合;或者
所述第一透镜组提供负屈折力,所述第二透镜组提供正屈折力,所述第一透镜组于像侧的虚焦点与所述第二透镜组于像侧的光束会聚点重合。满足上述设置时,由所述第二透镜组出射的光束在经过所述第一透镜组后可转化为平行 光束。
在其中一个实施例中,还包括皮秒激光器,所述皮秒激光器发出的光束依次经过所述扩束元件及所述分光元件,所述皮秒激光器的输出功率为10W,脉宽为2ps-6ps,波长为1040nm。通过设置所述皮秒激光器,所述激光切割设备能够高效地切割MINI LED芯片。
在其中一个实施例中,所述激光切割设备还包括聚焦镜头,所述聚焦镜头设置于所述分光元件的出光光路上,所述聚焦镜头将多束所述第二光束聚焦形成数量相同的多个焦点,多个焦点于所述聚焦镜头的光轴上间隔排布,相邻所述焦点于空气中的间距小于等于20μm。通过设置所述聚焦镜头以聚焦第二光束,从而能够对加工材料进行多焦点切割,且焦点间距满足上述关系时将有利于对较薄的加工材料进行切割。
在其中一个实施例中,所述分光元件与所述聚焦镜头之间还依次设置有用于消除像差的第一透镜和第二透镜,其中,所述分光元件设置于所述第一透镜的物方焦面,所述第二透镜的物方焦点与所述第一透镜的像方焦点重合,所述聚焦镜头设置于所述第二透镜的像方焦面。通过设置所述第一透镜和所述第二透镜以消除由所述分光元件出射的光束的像差。
一种激光切割方法,激光器所发出的激光束的光斑被扩束元件调节成合适的大小,以使调节后的激光束能够完整通过分光元件;
调节后的激光束经过分光元件后形成多束环形光束;
多束环形光束通过聚焦镜头,并于聚焦镜头的光轴上形成间隔排布的多个焦点,焦点的数量大于等于两个,相邻焦点于空气中的间距小于等于20μm;
将通过聚焦镜头形成的多个焦点分布于加工材料内部,多个焦点能够于加工材料内部形成多层改质层。满足上述焦点数量以及焦点间距的范围时,激光 切割方法能够较好地针对MINI LED等厚度较小的材料进行切割。
在其中一个实施例中,由分光元件出射的环形光束还将经过第一透镜,第一透镜将环形光束调节成会聚光束;
会聚光束被第二反射镜反射至第二透镜,第二透镜将会聚光束重新调节成多束环形光束,其中,分光元件设置于第一透镜的物方焦面,第二透镜的物方焦面与第一透镜的像方焦面重合,聚焦镜头设置于第二透镜的像方焦面;
经第二透镜重新调节形成的多束环形光束随后被第三反射镜反射至聚焦镜头。第一透镜和第二透镜能够作为光学4F系统,以消除由分光元件出射的光束的像差,增加经过聚焦镜头所形成的焦点质量,提升切割精确度。
在其中一个实施例中,环形光束的数量与入射至分光元件的激光束的光斑大小呈正相关关系,焦点的数量与环形光束的数量相同,调节扩束元件以获得所需数量的焦点。
附图说明
图1为本申请一实施例提供的激光切割设备的示意图;
图2为本申请一实施例提供的激光切割设备中的扩束元件及分光元件的示意图;
图3为本申请一实施例提供的激光切割设备中的透镜组的配合示意图;
图4为本申请一实施例提供的激光切割设备中的分光元件的光路调节示意图;
图5为本申请另一实施例提供的激光切割设备中的分光元件的光路调节示意图;
图6为本申请一实施例提供的激光切割设备的应用场景示意图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的首选实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使本发明的公开内容更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个原件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个原件,它可以是直接连接到另一个元件或者可能同时存在居中元件。相反,当元件被称作“直接在”另一原件“上”时,不存在中间元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
参考图1,为提高激光切割的效率,本申请中的激光切割设备10设置有光学装置100,光学装置100包括扩束元件110及分光元件120,其中,分光元件120设置于扩束元件110的出光光路上,激光光束依次经过扩束元件110及分光元件120。扩束元件110扩束元件110能够调节入射光束的光斑大小以形成第一光束。优选地,经调节光斑大小后的第一光束能够完整通过分光元件120,即第一光束不会被夹持分光元件120的固定件所遮挡。随后,第一光束经分光元件120调节后转化为多束(至少两束)呈环形且相互间隔的第二光束。优选地,第一光束为平行光束。且需要注意的是,上述相互间隔的定义应理解为由分光元 件120出射时的多束第二光束之间存在间隔,并不限定于第二光束在传播时一直保持相互间隔。
具体地,参考图2,扩束元件110包括多个(至少两个)透镜组112,每个透镜组112中设置有至少一个透镜1120。通过设置分光元件120以将扩束元件110的出射光束(第一光束1101)转化为多束第二光束1201,从而起到调节光束整形的效果。在应用于激光切割设备中时,多束第二光束1201能够形成数量相同的多个(至少两个)焦点以对加工材料进行切割,从而能够在加工材料内部一次性形成多层改质层,提高切割效率。
另外,对于一般的激光多焦点切割技术而言,在切割厚度较小的加工材料时,需要更换光学衍射元件以减少环形光束的数量,进而减少焦点数量,以此使激光光束所形成的焦点能够均位于加工材料内;在切割厚度较大的加工材料时,需要增加环形光束的数量以增加焦点数量,使激光光束所形成的焦点均位于加工材料内的同时,增加在加工材料内部形成改质层。但通过更换光学衍射元件以改变光束焦点数量的方式过于低效,且更换后的衍射光学元件存在自身中心难以对齐入射光束的光轴的问题,从而影响出射光束的对称性,最终使切割材料时所会聚的光束难以会聚于一点,影响切割效果。
为避免更换衍射光学元件,同时使激光光束所形成焦点数量可被直接且简易地调节,在一些实施例中,激光切割设备中的光学装置100可调节第二光束1201的数量。
参考图2所示,在一些实施例中,扩束元件110能够调节光束的光斑大小,使出射光束(第一光束1101)的光斑面积大于或小于入射光束的光斑的面积。优选地,第一光束1101平行于扩束元件110的光轴A传播。在一些实施例中,扩束元件110具有2倍至8倍的放大倍率。
在一些实施例中,扩束元件110还包括壳体111,透镜组112设置于壳体111内部,壳体111上开设有相对设置的入光口1111及出光口1112,入光口1111和出光口1112的中心与光轴A均处于同一直线上。光束能够从入光口1111进入壳体111内部,经多个透镜组112调节后从出光口1112出射,并形成第一光束1101。
分光元件120可将入射光束(第一光束1101)转化为多束第二光束1201,且相邻的第二光束1201从分光元件120出射时存在间隔。另外,第二光束1201的数量取决于第一光束1101的光斑面积大小,具体地,第二光束1201的数量与第一光束1101的光斑面积呈正相关关系。优选地,第一光束1101的光斑直径约为10mm。
在一些实施例中,至少一个透镜组112为固定透镜组,固定透镜组中设置有至少一个透镜,固定透镜组与壳体111相对固定,即,固定透镜组中的各个透镜1120在壳体111的光轴方向上的位置保持固定。固定透镜组可通过固定件与壳体111连接,或直接被夹持于壳体111中。优选地,扩束元件110远离分光元件120的一侧为物侧,最靠近物侧的透镜组112为固定透镜组,固定透镜组于扩束元件110中的位置相对固定,最靠近物侧的透镜组112能够将入射光束发散并传递至相邻的透镜组112中。发散光束的光斑面积增大,从而有利于相邻的透镜组112对该发散光束进行调节,充分利用相邻透镜组112中的透镜1120的边缘区域进行折射。
在一些实施例中,扩束元件110中的至少两个透镜组112为活动透镜组,每个活动透镜组中设置有至少一个透镜1120。具体地,活动透镜组包括驱动件1121,在同一活动透镜组中,驱动件1121能够带动活动透镜组中的透镜1120沿光轴A相对壳体111往返移动。驱动件1121可以为音圈马达或手动调节件。 其中,手动调节件可以为滑块与滑槽配合的滑动结构,如在壳体111上设置滑槽,滑块穿设于滑槽,滑块的一侧连接透镜1120,另一侧则伸出壳体111,可滑动伸出壳体111的滑块部分以带动活动透镜组中的透镜移动。手动调节件也可以为旋钮结构,旋钮呈环形结构,旋钮的外侧面伸出壳体111,旋钮的内侧面与活动透镜组中的透镜1120转动连接,通过转动旋钮的外侧面可带动活动透镜组中的透镜1120沿光轴A方向移动。
设置至少两个活动透镜组后,活动透镜组之间的相对距离能够得到调节,从而,可通过一部分活动透镜组调节壳体111内的光束的发散角或会聚角,随后,再通过调节另一部分活动透镜组以对上述具有特定发散角或会聚焦的光束进行准直,并同时得到相应光斑大小的出射光束(第一光束1101)。
参考图2,优选地,壳体111内部设置有三个透镜组112,其中两个靠近出光口1112的透镜组112为活动透镜组,一个靠近入光口1111的透镜组112为固定透镜组。
具体参考图3所示,扩束元件110中设置有三个透镜组112,其中,由像侧至物侧依次为提供正屈折力的第一活动透镜组L1、提供正屈折力的第二活动透镜组L2以及提供负屈折力第三固定透镜组L3。第三固定透镜组L3能够将入射光进行发散,增大光束照射到第二活动透镜组L2上的面积,从而便于第二活动透镜组L2对光束进行调节。同时,保持第一活动透镜组L1于物侧的焦点与第二活动透镜组L2于像侧的光束会聚点重合,重合点为F,以此,由第一活动透镜组L1出射的第一光束1101将成为平行光。
具体地,当需要增大第一光束1101的光斑面积时,可驱动第二活动透镜组L2,使第二活动透镜组L2远离第三固定透镜组L3,此时,由第二活动透镜组L2出射的光束的会聚角将会增大,另外,驱动第一活动透镜组L1以使第一活动 透镜组L1于物侧的焦点与光束经第二活动透镜组L2会聚后的会聚点重合于点F。通过上述调节,由第一活动透镜组L1出射的第一光束1101将平行出射且具备较大的光斑面积。
相反地,当需要减小第一光束1101的光斑面积时,可驱动第二活动透镜组L2,使第二活动透镜组L2靠近第三固定透镜组L3,此时,由第二活动透镜组L2出射的光束的会聚角将会减小,另外,驱动第一活动透镜组L1以使第一活动透镜组L1于物侧的焦点与光束经第二活动透镜组L2会聚后的会聚点重合于点F。通过上述调节,由第一活动透镜组L1出射的第一光束1101将平行出射且具备较小的光斑面积。
在另一些实施例中,第一透镜组L1也可以提供负屈折力,第二透镜组L2刻意提供正屈折力,第一透镜组L1于像侧的虚焦点与第二透镜组L2于像侧的光束会聚点重合。
需要注意的是,第三固定透镜组L3实际上也可以被替换为活动透镜组;或者,也可以不设置第三固定透镜组L3,而是只在扩束元件中设置两个活动透镜组。另外,扩束元件中也可以设置更多的活动透镜组或固定透镜组,其中,固定透镜组及活动透镜组的排列顺序在满足出射光束(第一光束1101)为平行光束的前提下可任意排列。
另外需要注意的是,单个正透镜会产生负球差,单个负透镜会产生正球差。即,当每个透镜组112分隔设置且均只有一个透镜时,光束在经过透镜组112后将无法很好地聚焦于一点,或者发散时的光束的反向延长线无法很好地重合于一点,最终导致光束在经过多个透镜组112后无法形成平行光束。为克服这一问题,在一些实施例中,将至少一个透镜组112设计成复合透镜组,且复合透镜组中至少包括一个正透镜及至少一个负透镜,从而起到校正球差的效果, 使光束经复合透镜组后具有更好的会聚或发散效果,提升最终从扩束元件110出射的光束(第一光束1101)的平行度。具体地,复合透镜组中可通过设置光学胶以使透镜胶合。
在一些实施例中,分光元件120为光学衍射元件。具体地,分光元件120上设有多束同心环形带,根据环形带的透光性质可将环形带分为透光环形带和不透光环形带,相邻的环形带之间的透光性质不同,从而,入射光束经过多束透光环带后形成多束第二光束1201,此时,多束第二光束1201之间具有较高的对比度。在另一些实施例中,分光元件120被入射光束照射的区域均可透光,此时,可通过在分光元件120上设置厚度不同的区域以使入射光束经过厚度不同的区域后发生相位的差异,并通过衍射现象形成多束同心环形光束,此时,入射光束可在能量损失较小的情况下转化为多束第二光束1201。
根据上述分光元件120的结构可知,具有不同光斑面积的第一光束1101入射至分光元件120后,光束将被整形并被出射,不同光斑面积的入射光束将决定从分光元件120出射的第二光束1201的数量。
另外,参考图4,在一些实施例中,分光元件120可将第一光束1101整形为沿光轴A传播的多束环形光束。彼此之间平行传播的多束第二光束1201可在聚焦镜头的作用下分别聚焦于平行于光路传播方向的同一条直线上,从而形成多个焦点,即,多个焦点于聚焦镜头的光轴上间隔排布。采用多个激光光束焦点切割芯片可在芯片断面中一次性切割多层,可抑制芯片中晶格的斜裂,给预裂纹产生一种垂直导向力,从而达到减小斜裂度的目的。
参考图5,在另一些实施例中,分光元件120不仅可将第一光束1101整形为多束环形光束(第二光束1201),还可将多束第二光束1201聚焦于光轴A上,从而在分光元件120的光轴上形成与第二光束1201数量相同的多个焦点。此时, 可直接利用上述聚焦成多个焦点的第二光束1201切割加工材料。或者,也可以在分光元件120与加工材料之间再设置一个聚焦镜头以使从分光元件120出射的光束进一步聚焦,从而缩短焦距,节省工作空间。
参考图1所示,在一些实施例中,激光切割设备10激光切割设备10包括激光器130,激光器130所发出光束能够依次进入扩束元件110及分光元件120。激光切割设备10可用于切割以蓝宝石为衬底的晶圆片、LED芯片等,特别是可用于切割MINI LED。
优选地,激光器130为皮秒激光器,皮秒激光器的输出功率为10W,脉宽为2ps-6ps,波长为1040nm。
由于一般从激光器130出射的光束并非理想的平行光,因此,在一些实施例中,在激光器130与光学装置100之间还设置有波带片140,波带片140能够对激光器130出射的光束进行准直,将激光光束转化为较为理想的平行光后再传递至光学装置100中。
参考图4及图1,当分光元件120将第一光束1101转化为平行于光轴A传播的多束第二光束1201时,激光切割设备10还需设置一个聚焦镜头150以对多束第二光束1201聚焦,以形成与第二光束1201数量相同且于聚焦镜头150光轴上间隔排布的多个焦点,从而对加工材料进行切割。在一些实施例中,聚焦镜头150的焦距为4mm。另外,相邻焦点间于空气中的间隔距离小于等于20μm,优选为4μm-8μm。相邻焦点的间距满足上述范围时,可有利于对较薄的加工材料进行切割。
优选地,焦点的数量大于等于两个,小于等于十五个。另外,在一些实施例中,当设置有扩束元件110且需要改变焦点数量时,可直接调节扩束元件110以改变第二光束1201的数量,进而改变焦点数量。通过合理配置焦点数量以及 焦点间距,激光切割设备10可较好地针对MINI LED进行切割。
一般的激光切割设备存在焦点间距过大的问题,而MINI LED芯片的厚度较小,从而导致一般的激光切割设备无法精确地对迷你LED芯片进行切割。而当满足上述激光器130的参数、焦点数量及相邻焦点间距的关系时,激光切割设备10能够高效精确地对MINI LED芯片进行切割。
参考图5,分光元件120能够将第一光束1101转化为多束第二光束1201,并将多束第二光束1201聚焦至平行于光束传播方向的同一直线上以形成数量相同且间隔排布的多个焦点,此时,可直接利用上述多束第二光束1201对加工材料进行切割,即,将多个间隔排布的焦点分布于加工材料的内部。而当需要改变焦点数量时,可直接调节扩束元件110以改变第二光束1201的数量。
参考图1,在一些实施例中,光学装置100与聚焦镜头150之间还依次设置有用于消除像差的第一透镜161和第二透镜162。第一透镜161第二透镜162第一透镜161第二透镜162分光元件120设置于第一透镜161的物方焦面,第二透镜162的物方焦点与第一透镜161的像方焦点重合,聚焦镜头150设置于第二透镜162的像方焦面。在其中一些实施例中,第一透镜161和第二透镜162均为独立的正透镜(聚焦透镜),且焦距相同。
由于分光元件120出射的第二光束在经过一段距离后将出现较为严重的像差,导致无法精确切割加工材料,同时,一般的聚焦镜头150的入光口较小,无法完整地接收第二光束。此时,通过设置第一透镜161和第二透镜162,可较好地消除第二光束的像差,并使第二光束能够完整地通过聚焦镜头150。
结合图1和图4,当分光元件120出射的第二光束1201为平行光束时,第一透镜161能够将第二光束1201会聚,随后,第二透镜162将会聚后再次发散的第二光束1201转化为平行光束或聚焦光束并传递至聚焦镜头150中,随后, 聚焦镜头150将多束第二光束1201会聚于多个焦点上。优选地,第一透镜161的物方焦距及像方焦距均为250mm,第二透镜162的物方焦距为250mm。
继续参考图1,在一些实施例中,由于激光器130和光学装置100在实际应用时的设置位置具有多样性,激光切割设备10中还设置有反射镜以调整光路走向。具体地,一些激光切割设备10还包括第一反射镜171、第二反射镜172及第三反射镜173。在一些实施例中,激光器130和光学装置100的出射光束的传播方向与最终切割材料时的光束传播方向垂直,此时,可通过设置反射镜以改变光学装置100中出射光束的传播方向。
具体地,在图1所示的实施例中,激光切割设备10设置有第一透镜161、第二透镜162、第一反射镜171、第二反射镜172及第三反射镜173。其中,第一反射镜171设置于激光器130与扩束元件110之间,以将激光器130的出射光束反射至扩束元件110中。另外,沿分光元件120的出射光路依次排列着第一透镜161、第二反射镜172、第二透镜162及第三反射镜173,第二反射镜172能够将由分光元件120的出射光路改变90°传播,第三反射镜173同样能够将第二反射镜172的反射光路改变90°传播,且分光元件120的出射光路、第二反射镜172的反射光路和第三反射镜173的反射光路之间互相垂直。经第三反射镜173反射后的光束将经过聚焦镜头150以会聚成多个焦点。优选地,第一透镜161于光路上相距分光元件120的距离为250mm,第一透镜161距第二反射镜172于光路上的距离为70mm,第二反射镜172距第二透镜162于光路上的距离为430mm。
参考图6,在一些实施例中,激光切割设备10将与一取像设备310配合工作。在切割加工材料400时,取像设备310能够获取加工材料400的表面信息,从而监测切割光束的走向是否正确。优选地,取像设备310为CCD(电荷耦合器 件)。加工时,加工材料400放置于粘性膜340上,粘性膜340的边缘与铁环330连接,铁环330、粘性膜340及加工材料400均设置于透明载台320上方。粘性膜340可以由透明或半透明材料制成。经激光加工后,使用劈刀等机械手段将芯片劈开。
另外,本申请还提供一种激光切割方法以对迷你LED等厚度较小(如厚度小于100μm)的材料进行高效切割。在激光切割方法中,激光器所发出的激光束的光斑被扩束元件调节成合适的大小,以使调节后的激光束能够完整通过分光元件,经扩束元件调节后的激光束为第一光束。随后,第一光束经分光元件调节成多束相互间隔的第二光束(环形光束),多束第二光束被聚焦镜头聚焦,以形成在聚焦镜头光轴上间隔排布的N个(至少两个)焦点。优选地,焦点数量大于等于两个,小于等于十五个。相邻焦点于空气中的间距小于等于20μm,优选的为4μm-8μm。具体地,将通过聚焦镜头形成的多个焦点分布于加工材料内部,多个焦点能够于加工材料内部形成多层改质层。满足上述焦点数量以及焦点间距的范围时,激光切割方法能够较好地针对迷你LED等厚度较小的材料进行切割。
在一些实施例中,在扩束元件的调节作用下,第一光束能够平行于扩束元件的光轴方向传播。在一些实施例中,多束第二光束也能够沿分光元件的光轴方向传播。
在一些实施例中,由分光元件出射的环形光束还将经过第一透镜,第一透镜将环形光束调节成会聚光束;会聚光束被第二反射镜反射至第二透镜,第二透镜将会聚光束重新调节成多束环形光束,其中,分光元件设置于第一透镜的物方焦面,第二透镜的物方焦面与第一透镜的像方焦面重合,聚焦镜头设置于第二透镜的像方焦面;经第二透镜重新调节形成的多束环形光束随后被第三反 射镜反射至聚焦镜头。其中,第一透镜能够会聚环形光束以使环形光束转化为会聚光束,由光路的传播原理可知,会聚光束会聚后将重新放大,在重新放大后,会聚光束被第二透镜重新调节成多束环形光束,重新形成的多束环形光束的数量与通过分光镜形成的第二光束的数量相同。优选地,由第二透镜调节形成的环形光束平行于第二透镜的光轴方向出射。另外,第一透镜和第二透镜可作为光学4F系统,以消除第二光束的像差,提高经过聚焦镜头所形成的焦点质量,从而提升多焦点切割的精确度。
需要注意的是,在一些实施例中,扩束元件与分光元件配合后只能形成固定数量的第二光束。由于第二光束的数量决定了经聚焦镜头聚焦得到的焦点数量,此时,可通过更换分光元件来改变第二光束的数量,进而改变经聚焦镜头形成的焦点数量。同时,在一些实施例中,第一反射镜、第二反射镜以及第三反射镜可根据对实际光路走势需求(如缩小实际设备在某个方向上的尺寸)而选择取舍,并不需要激光束经过全部反射镜。例如,可以省略第一反射镜及第二反射镜,使激光器所发出的光束能够沿一个固定方向依次经过扩束元件、分光元件、第一透镜、第二透镜及第三反射镜,随后经第三反射镜反射至聚焦镜头。
在另一些实施例中,扩束元件与分光元件配合可调节第二光束的数量,从而可通过调节扩束元件以改变经聚焦镜头形成的焦点数量。具体地,环形光束的数量与入射至分光元件的第一光束的光斑大小呈正相关关系,焦点的数量与第二光束的数量相同,此时,调节扩束元件以改变第一光束的光斑大小,进而控制到达聚焦镜头的第二光束的数量,以获得所需数量的焦点以对加工材料进行切割。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对 上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种激光切割设备,其特征在于,包括:
    扩束元件,设置有多个透镜组,所述多个透镜组的光轴均处于同一直线上,每个所述透镜组包括至少一个透镜,所述扩束元件将入射光束转化为第一光束;以及
    分光元件,设置于所述扩束元件的出光光路上,所述分光元件将所述第一光束转化为多束呈环形且相互间隔的第二光束。
  2. 根据权利要求1所述的激光切割设备,其特征在于,所述扩束元件能够调节所述第一光束的光斑面积,所述第二光束的数量与所述第一光束的光斑面积呈正相关关系。
  3. 根据权利要求2所述的激光切割设备,其特征在于,所述多个透镜组包括至少两个活动透镜组,所述活动透镜组能够沿所述扩束元件的光轴方向移动。
  4. 根据权利要求2所述的激光切割设备,其特征在于,所述扩束元件靠近所述分光元件的一侧为像侧,所述扩束元件远离所述分光元件的一侧为物侧,最靠近像侧的所述透镜组依次为第一透镜组和第二透镜组,所述第一透镜组和所述第二透镜组均为活动透镜组,所述活动透镜组能够沿所述扩束元件的光轴方向移动;所述第一透镜组和所述第二透镜组均提供正屈折力,所述第一透镜组于物侧的焦点与所述第二透镜组于像侧的光束会聚点重合;或者
    所述第一透镜组提供负屈折力,所述第二透镜组提供正屈折力,所述第一透镜组于像侧的虚焦点与所述第二透镜组于像侧的光束会聚点重合。
  5. 根据权利要求1所述的激光切割设备,其特征在于,还包括皮秒激光器,所述皮秒激光器发出的光束依次经过所述扩束元件及所述分光元件,所述皮秒激光器的输出功率为10W,脉宽为2ps-6ps,波长为1040nm。
  6. 根据权利要求1所述的激光切割设备,其特征在于,还包括聚焦镜头, 所述聚焦镜头设置于所述分光元件的出光光路上,所述聚焦镜头将多束所述第二光束聚焦形成数量相同的多个焦点,多个焦点于所述聚焦镜头的光轴上间隔排布,相邻所述焦点于空气中的间距小于等于20μm。
  7. 根据权利要求6所述的激光切割设备,其特征在于,所述分光元件与所述聚焦镜头之间还依次设置有用于消除像差的第一透镜和第二透镜,其中,所述分光元件设置于所述第一透镜的物方焦面,所述第二透镜的物方焦点与所述第一透镜的像方焦点重合,所述聚焦镜头设置于所述第二透镜的像方焦面。
  8. 一种激光切割方法,其特征在于,激光器所发出的激光束的光斑被扩束元件调节成合适的大小,以使调节后的激光束能够完整通过分光元件;
    调节后的激光束经过分光元件后形成多束环形光束;
    多束环形光束通过聚焦镜头,并于聚焦镜头的光轴上形成间隔排布的多个焦点,焦点的数量大于等于两个,相邻焦点于空气中的间距小于等于20μm;
    将通过聚焦镜头形成的多个焦点分布于加工材料内部,多个焦点能够于加工材料内部形成多层改质层。
  9. 根据权利要求8所述的激光切割方法,其特征在于,由分光元件出射的环形光束还将经过第一透镜,第一透镜将环形光束调节成会聚光束;
    会聚光束被第二反射镜反射至第二透镜,第二透镜将会聚光束重新调节成多束环形光束,其中,分光元件设置于第一透镜的物方焦面,第二透镜的物方焦面与第一透镜的像方焦面重合,聚焦镜头设置于第二透镜的像方焦面;
    经第二透镜重新调节形成的多束环形光束随后被第三反射镜反射至聚焦镜头。
  10. 根据权利要求8所述的激光切割方法,其特征在于,环形光束的数量与入射至分光元件的激光束的光斑大小呈正相关关系,焦点的数量与环形光束 的数量相同,调节扩束元件以获得所需数量的焦点。
PCT/CN2020/097477 2019-05-31 2020-06-22 激光切割设备及激光切割方法 WO2020239133A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/263,304 US11931827B2 (en) 2019-05-31 2020-06-22 Laser cutting device and laser cutting method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910466903.1A CN110181179B (zh) 2019-05-31 2019-05-31 激光切割设备及激光切割方法
CN201910466903.1 2019-05-31

Publications (1)

Publication Number Publication Date
WO2020239133A1 true WO2020239133A1 (zh) 2020-12-03

Family

ID=67719303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/097477 WO2020239133A1 (zh) 2019-05-31 2020-06-22 激光切割设备及激光切割方法

Country Status (3)

Country Link
US (1) US11931827B2 (zh)
CN (1) CN110181179B (zh)
WO (1) WO2020239133A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113805329A (zh) * 2021-08-18 2021-12-17 深圳市大族数控科技股份有限公司 变倍扩束镜光束指向性的调试方法
CN114326066A (zh) * 2022-01-14 2022-04-12 苏州迅镭激光科技有限公司 一种双片式非球面镜连续变倍变焦zoom光学系统
CN114700637A (zh) * 2022-04-28 2022-07-05 大族激光科技产业集团股份有限公司 一种激光切割装置、设备以及方法
CN114939733A (zh) * 2022-04-24 2022-08-26 武汉华工激光工程有限责任公司 一种改善生瓷片通孔质量的激光加工方法及装置
CN115533331A (zh) * 2022-09-26 2022-12-30 江西中烟工业有限责任公司 一种烟支激光打孔光路调整装置及调整方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108161250A (zh) * 2018-01-30 2018-06-15 苏州德龙激光股份有限公司 多焦点动态分布激光加工脆性透明材料的方法及装置
CN110181179B (zh) 2019-05-31 2021-12-14 大族激光科技产业集团股份有限公司 激光切割设备及激光切割方法
US12064830B2 (en) * 2020-03-12 2024-08-20 Rohr, Inc. Substrate perforation system and method using beamlets
CN114083144B (zh) * 2020-12-31 2023-01-17 武汉华工激光工程有限责任公司 用于控制透明脆性材料的光学切割宽度的方法及装置
CN112987414A (zh) * 2021-03-05 2021-06-18 深圳市华星光电半导体显示技术有限公司 一种液晶显示面板、其制备方法及光线调节系统
CN114346478B (zh) * 2022-02-17 2024-08-23 苏州科韵激光科技有限公司 一种led晶圆片的切割方法、系统及设备
CN114488555B (zh) * 2022-03-31 2022-08-05 武汉锐科光纤激光技术股份有限公司 光束准直设备、方法、装置、存储介质和电子装置
CN116604197B (zh) * 2023-04-25 2024-06-11 海目星激光科技集团股份有限公司 切割装置和切割方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1691278A (zh) * 2004-03-11 2005-11-02 株式会社液晶先端技术开发中心 激光结晶设备及激光结晶方法
CN1983511A (zh) * 2005-12-15 2007-06-20 株式会社液晶先端技术开发中心 激光结晶装置和结晶方法
US7528079B2 (en) * 1995-01-13 2009-05-05 Semiconductor Energy Laboratory Co., Ltd. Method of changing an energy attenuation factor of a linear light in order to crystallize a semiconductor film
CN101965243A (zh) * 2008-02-29 2011-02-02 丰田自动车株式会社 激光加工装置以及激光加工方法
CN102084282A (zh) * 2008-06-03 2011-06-01 万佳雷射有限公司 控制激光束焦斑尺寸的方法和设备
US20140291308A1 (en) * 2011-02-10 2014-10-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V Device, arrangement, and method for the interference structuring of planar samples
CN108067756A (zh) * 2016-11-07 2018-05-25 三星显示有限公司 激光晶化装置及晶化激光束的控制方法
CN110181179A (zh) * 2019-05-31 2019-08-30 大族激光科技产业集团股份有限公司 激光切割设备及激光切割方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3947093A (en) * 1973-06-28 1976-03-30 Canon Kabushiki Kaisha Optical device for producing a minute light beam
JPS514276A (zh) * 1974-06-29 1976-01-14 Toyo Kogyo Co
JPH05104276A (ja) * 1991-10-16 1993-04-27 Toshiba Corp レーザ加工装置およびレーザによる加工方法
JP4988160B2 (ja) * 2005-02-08 2012-08-01 日産自動車株式会社 レーザ溶接装置、レーザ溶接システム、およびレーザ溶接方法
JP2007142001A (ja) * 2005-11-16 2007-06-07 Denso Corp レーザ加工装置およびレーザ加工方法
JP2008021890A (ja) * 2006-07-14 2008-01-31 Semiconductor Energy Lab Co Ltd レーザー光照射装置およびレーザー光照射方法
CN100582718C (zh) * 2007-05-24 2010-01-20 上海交通大学 眼镜片光学质量测量装置
CN101256233B (zh) * 2008-03-05 2010-12-08 中国科学院上海光学精密机械研究所 合成孔径激光成像雷达的双向环路发射接收望远镜
CN101776790B (zh) * 2009-12-10 2012-07-18 深圳市大族激光科技股份有限公司 激光内雕聚焦光学镜头及其使用方法
KR101217698B1 (ko) * 2010-08-16 2013-01-02 주식회사 이오테크닉스 순차적 멀티 포커싱을 이용한 레이저 가공방법 및 레이저 가공장치
KR101582632B1 (ko) * 2012-08-07 2016-01-05 한국기계연구원 프레넬 영역 소자를 이용한 기판 절단 방법
KR101547806B1 (ko) * 2013-07-29 2015-08-27 에이피시스템 주식회사 멀티 초점을 가지는 비구면 렌즈를 이용한 취성 기판 가공 장치
TWI574767B (zh) * 2014-07-29 2017-03-21 Improved laser structure
CN106199983B (zh) * 2016-08-25 2018-11-13 大族激光科技产业集团股份有限公司 扩束组件及具有该扩束组件的激光加工设备
CN206153760U (zh) * 2016-09-26 2017-05-10 华中科技大学 一种对射式多焦点激光分离脆性透射材料的装置
CN106825943B (zh) * 2017-02-23 2018-10-09 江苏大学 应用于plc晶圆激光切割装置及带有该装置的皮秒激光器
CN207114882U (zh) * 2017-06-16 2018-03-16 浙江大学 一种大视场角多层共轭自适应光学聚焦和显微系统
CN107243690A (zh) * 2017-07-13 2017-10-13 华中科技大学 一种激光多焦点动态加工方法及系统
TWI648524B (zh) * 2017-10-03 2019-01-21 財團法人工業技術研究院 多層材料加工裝置及其方法
CN108161250A (zh) * 2018-01-30 2018-06-15 苏州德龙激光股份有限公司 多焦点动态分布激光加工脆性透明材料的方法及装置
KR102636043B1 (ko) * 2019-01-21 2024-02-14 삼성디스플레이 주식회사 레이저 에칭 장치와 그것을 이용한 레이저 에칭 방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7528079B2 (en) * 1995-01-13 2009-05-05 Semiconductor Energy Laboratory Co., Ltd. Method of changing an energy attenuation factor of a linear light in order to crystallize a semiconductor film
CN1691278A (zh) * 2004-03-11 2005-11-02 株式会社液晶先端技术开发中心 激光结晶设备及激光结晶方法
CN1983511A (zh) * 2005-12-15 2007-06-20 株式会社液晶先端技术开发中心 激光结晶装置和结晶方法
CN101965243A (zh) * 2008-02-29 2011-02-02 丰田自动车株式会社 激光加工装置以及激光加工方法
CN102084282A (zh) * 2008-06-03 2011-06-01 万佳雷射有限公司 控制激光束焦斑尺寸的方法和设备
US20140291308A1 (en) * 2011-02-10 2014-10-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V Device, arrangement, and method for the interference structuring of planar samples
CN108067756A (zh) * 2016-11-07 2018-05-25 三星显示有限公司 激光晶化装置及晶化激光束的控制方法
CN110181179A (zh) * 2019-05-31 2019-08-30 大族激光科技产业集团股份有限公司 激光切割设备及激光切割方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113805329A (zh) * 2021-08-18 2021-12-17 深圳市大族数控科技股份有限公司 变倍扩束镜光束指向性的调试方法
CN113805329B (zh) * 2021-08-18 2023-08-18 深圳市大族数控科技股份有限公司 变倍扩束镜光束指向性的调试方法
CN114326066A (zh) * 2022-01-14 2022-04-12 苏州迅镭激光科技有限公司 一种双片式非球面镜连续变倍变焦zoom光学系统
CN114326066B (zh) * 2022-01-14 2024-05-07 苏州迅镭激光科技有限公司 一种双片式非球面镜连续变倍变焦zoom光学系统
CN114939733A (zh) * 2022-04-24 2022-08-26 武汉华工激光工程有限责任公司 一种改善生瓷片通孔质量的激光加工方法及装置
CN114939733B (zh) * 2022-04-24 2024-05-14 武汉华工激光工程有限责任公司 一种改善生瓷片通孔质量的激光加工方法及装置
CN114700637A (zh) * 2022-04-28 2022-07-05 大族激光科技产业集团股份有限公司 一种激光切割装置、设备以及方法
CN114700637B (zh) * 2022-04-28 2024-03-12 大族激光科技产业集团股份有限公司 一种激光切割装置、设备以及方法
CN115533331A (zh) * 2022-09-26 2022-12-30 江西中烟工业有限责任公司 一种烟支激光打孔光路调整装置及调整方法

Also Published As

Publication number Publication date
US20210162546A1 (en) 2021-06-03
CN110181179A (zh) 2019-08-30
US11931827B2 (en) 2024-03-19
CN110181179B (zh) 2021-12-14

Similar Documents

Publication Publication Date Title
WO2020239133A1 (zh) 激光切割设备及激光切割方法
KR101984759B1 (ko) 레이저 처리 장치를 위한 다중 빔 결합기 및 방사 소스
JP5603992B1 (ja) レーザビーム合成装置
KR101582632B1 (ko) 프레넬 영역 소자를 이용한 기판 절단 방법
JP6971330B2 (ja) レーザスクライビング装置
CN112630984A (zh) 可改变激光焦点位置光斑大小及形貌的激光扫描装置与扫描方法
CN112620930B (zh) 半导体激光加工多焦点光路系统、激光系统及加工方法
KR20160145910A (ko) 라인 빔 형성 장치
KR20180064599A (ko) 레이저 가공 장치
EP3537215B1 (en) Light source system and adjusting method therefor
CN109759722B (zh) 一种双工艺组合的led芯片加工系统及方法
CN217571287U (zh) 一种用于激光切割的贝塞尔光束镜头
WO2007055452A1 (en) Laser processing apparatus using laser beam splitting
JP2017016155A (ja) 光学ユニットおよびこれを用いた光学装置、光源装置、投射型表示装置
CN212761729U (zh) 一种激光裂片装置
CN104526160B (zh) 一种激光加工方法及激光加工系统
TWI792876B (zh) 雷射鑽孔裝置
KR101667792B1 (ko) 간섭 빔을 이용한 절단용 광학기기
JP2021529437A (ja) 多波長光学系及びレーザアニール装置
KR101511670B1 (ko) 유리 절단 장치
KR101733434B1 (ko) 구면수차를 이용한 기판절단방법
CN113305426A (zh) 一种用于激光切割的贝塞尔光束镜头
CN116197558A (zh) 用于激光切割的光学系统、激光加工装置及方法
JPS63108318A (ja) レ−ザ−加工装置
US20230314824A1 (en) Multi-function metasurface beam splitter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20813685

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC - FORM 1205A (21.04.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20813685

Country of ref document: EP

Kind code of ref document: A1