WO2020238978A1 - 一种电场装置及减少电场耦合方法 - Google Patents

一种电场装置及减少电场耦合方法 Download PDF

Info

Publication number
WO2020238978A1
WO2020238978A1 PCT/CN2020/092677 CN2020092677W WO2020238978A1 WO 2020238978 A1 WO2020238978 A1 WO 2020238978A1 CN 2020092677 W CN2020092677 W CN 2020092677W WO 2020238978 A1 WO2020238978 A1 WO 2020238978A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric field
anode
cathode
present
field anode
Prior art date
Application number
PCT/CN2020/092677
Other languages
English (en)
French (fr)
Inventor
唐万福
王大祥
段志军
邹永安
奚勇
Original Assignee
上海必修福企业管理有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/CN2019/111813 external-priority patent/WO2020083096A1/zh
Application filed by 上海必修福企业管理有限公司 filed Critical 上海必修福企业管理有限公司
Priority to CN202080039542.3A priority Critical patent/CN114761135A/zh
Publication of WO2020238978A1 publication Critical patent/WO2020238978A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/01Pretreatment of the gases prior to electrostatic precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/38Particle charging or ionising stations, e.g. using electric discharge, radioactive radiation or flames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/41Ionising-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/49Collecting-electrodes tubular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/01Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust by means of electric or electrostatic separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/02Air cleaners

Abstract

本发明提供一种电场装置及减少电场耦合方法,包括电场装置入口、电场装置出口、电场阴极和电场阳极,所述电场阴极和所述电场阳极用于产生电离电场;所述电场阳极长度为10-180mm。本发明还提供一种减少电场耦合的方法,包括选择电场阳极长度,使电场耦合次数≤3,能够减少电场的耦合消耗。

Description

一种电场装置及减少电场耦合方法 技术领域
本发明属于电场技术领域,具体涉及一种电场装置及减少电场耦合方法。
背景技术
通常电场装置包括电场阳极和电场阴极,电场阳极为中空的管,电场阴极穿设于电场阳极,电场阳极和电场阴极的两端均齐平,电场方向基本是从电场阴极到电场阳极,但这种电场结构的放电效率、处理效率通常较低,且能耗较高。现有电场中还存在耦合现象即带电物质会在电场两电极之间反复循环运动形成电场耦合消耗,导致电场处理效率降低、能耗增大。现有电场仅存在一种带电方式,使得容易带电的低比电阻物质荷电后,很快失电,对这部分物质的处理效率较低。而且当温度过高时,电场会出现击穿、出现间歇性失效,导致处理效率降低。
因此,现有电场装置存在体积大、耗能高、处理效率低等缺陷。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种电场装置及减少电场耦合方法,用于解决现有电场装置耗电量大、体积大、成本高、处理效率低等中的至少一个技术问题。
为实现上述目的及其他相关目的,本发明提供以下示例:
1.本发明提供的示例1:一种电场装置,包括电场装置入口、电场装置出口、电场阴极和电场阳极,所述电场阴极和所述电场阳极用于产生电离电场。
2.本发明提供的示例2:包括上述示例1,其中,所述电场装置还包括电场装置入口、电场装置出口;所述电场阳极包括第一阳极部和第二阳极部,所述第一阳极部靠近所述电场装置入口,第二阳极部靠近所述电场装置出口,所述第一阳极部和所述第二阳极部之间设置有至少一个阴极支撑板。
3.本发明提供的示例3:包括上述示例1或2,其中,所述电场装置还包括绝缘机构,用于实现所述阴极支撑板和所述电场阳极之间的绝缘。
4.本发明提供的示例4:包括上述示例3,其中,所述电场阳极和所述电场阴极之间形成电场流道,所述绝缘机构设置在所述电场流道外。
5.本发明提供的示例5:包括上述示例3或4,其中,所述绝缘机构包括绝缘部和隔热部;所述绝缘部的材料采用陶瓷材料或玻璃材料。
6.本发明提供的示例6:包括上述示例5,其中,所述绝缘部为伞状串陶瓷柱、伞状串 玻璃柱、柱状串陶瓷柱或柱状玻璃柱,伞内外或柱内外挂釉。
7.本发明提供的示例7:包括上述示例6,其中,伞状串陶瓷柱或伞状串玻璃柱的外缘与所述电场阳极的距离是电场距离的1.4倍以上,伞状串陶瓷柱或伞状串玻璃柱的伞突边间距总和是伞状串陶瓷柱或伞状串玻璃柱的绝缘间距1.4倍以上,伞状串陶瓷柱或伞状串玻璃柱的伞边内深总长是伞状串陶瓷柱或伞状串玻璃柱的绝缘距离1.4倍以上。
8.本发明提供的示例8:包括上述示例2至7中的任一项,其中,所述第一阳极部的长度是所述电场阳极长度的1/10至1/4、1/4至1/3、1/3至1/2、1/2至2/3、2/3至3/4,或3/4至9/10。
9.本发明提供的示例9:包括上述示例2至8中的任一项,其中,所述第一阳极部的长度是足够的长,以清除部分灰尘,减少积累在所述绝缘机构和所述阴极支撑板上的灰尘,减少灰尘造成的电击穿。
10.本发明提供的示例10:包括上述示例1至9中的任一项,其中,所述电场阴极包括至少一根电极棒。
11.本发明提供的示例11:包括上述示例10,其中,所述电极棒的直径不大于3mm。
12.本发明提供的示例12:包括上述示例10或11,其中,所述电极棒的形状呈针状、多角状、毛刺状、螺纹杆状或柱状。
13.本发明提供的示例13:包括上述示例1至12中的任一项,其中,所述电场阳极由中空的管束组成。
14.本发明提供的示例14:包括上述示例13中的任一项,其中,所述中空的管束的管内切圆直径取值范围为5mm-400mm。
15.本发明提供的示例15:包括上述示例13或14,其中,所述电场阳极管束的中空的截面采用圆形或多边形。
16.本发明提供的示例16:包括上述示例15,其中,所述多边形为六边形。
17.本发明提供的示例17:包括上述示例13至16中的任一项,其中,所述电场阳极的管束呈蜂窝状。
18.本发明提供的示例18:包括上述示例1至17中的任一项,其中,所述电场阴极穿射于所述电场阳极内。
19.本发明提供的示例19:包括上述示例1至18中的任一项,其中,所述电场装置还包括辅助电场单元,用于产生与所述电离电场不平行的辅助电场。
20.本发明提供的示例20:包括上述示例1至18中的任一项,其中,所述电场装置还包括辅助电场单元,所述电离电场包括流道,所述辅助电场单元用于产生与所述流道不垂直的辅助电场。
21.本发明提供的示例21:包括上述示例19或20,其中,所述辅助电场单元包括第一电极,所述辅助电场单元的第一电极设置在或靠近所述电离电场的进口。
22.本发明提供的示例22:包括上述示例21,其中,所述第一电极为阴极。
23.本发明提供的示例23:包括上述示例21或22,其中,所述辅助电场单元的第一电极是所述电场阴极的延伸。
24.本发明提供的示例24:包括上述示例21至23中的任一项,其中,所述辅助电场单元的第一电极与所述电场阳极具有夹角α,且0°<α≤125°、或45°≤α≤125°、或60°≤α≤100°、或α=90°。
25.本发明提供的示例25:包括上述示例19至24中的任一项,其中,所述辅助电场单元包括第二电极,所述辅助电场单元的第二电极设置在或靠近所述电离电场的出口。
26.本发明提供的示例26:包括上述示例25,其中,所述第二电极为阳极。
27.本发明提供的示例27:包括上述示例25或26,其中,所述辅助电场单元的第二电极是所述电场阳极的延伸。
28.本发明提供的示例28:包括上述示例25至27中的任一项,其中,所述辅助电场单元的第二电极与所述电场阴极具有夹角α,且0°<α≤125°、或45°≤α≤125°、或60°≤α≤100°、或α=90°。
29.本发明提供的示例29:包括上述示例19至22中的任一项,其中,所述辅助电场单元的第一电极与所述电离电场的电场阳极、电场阴极独立设置。
30.本发明提供的示例30:包括上述示例19至20、25和26中的任一项,其中,所述辅助电场单元的第二电极与所述电离电场的电场阳极、电场阴极独立设置。
31.本发明提供的示例31:包括上述示例1至30中的任一项,其中,所述电场阳极的工作面积与所述电场阴极的放电面积的比为1.667:1-1680:1。
32.本发明提供的示例32:包括上述示例1至31中的任一项,其中,所述电场阳极的工作面积与所述电场阴极的放电面积的比为6.67:1-56.67:1。
33.本发明提供的示例33:包括上述示例1至32中的任一项,其中,所述电场阴极直径为1-3毫米,所述电场阳极与所述电场阴极的极间距为2.5-139.9毫米;所述电场阳极的工作面积与所述电场阴极的放电面积的比为1.667:1-1680:1。
34.本发明提供的示例34:包括上述示例1至33中的任一项,其中,所述电场阳极和所述电场阴极的极间距小于150mm。
35.本发明提供的示例35:包括上述示例1至34中的任一项,其中,所述电场阳极与所述电场阴极的极间距为2.5-139.9mm。
36.本发明提供的示例36:包括上述示例1至35中的任一项,其中,所述电场阳极与 所述电场阴极的极间距为5-100mm。
37.本发明提供的示例37:包括上述示例1至36中的任一项,其中,所述电场阳极长度为10-180mm。
38.本发明提供的示例38:包括上述示例1至37中的任一项,其中,所述电场阳极长度为60-180mm。
39.本发明提供的示例39:包括上述示例1至36中的任一项,其中,所述电场阳极长度为10-90mm。
40.本发明提供的示例40:包括上述示例1至39中的任一项,其中,所述电场阴极长度为30-180mm。
41.本发明提供的示例41:包括上述示例1至40中的任一项,其中,所述电场阴极长度为54-176mm。
42.本发明提供的示例42:包括上述示例1至39中的任一项,其中,所述电场阴极长度为10-90mm。
43.本发明提供的示例43:包括上述示例31至41中的任一项,其中,当运行时,所述电离电场的耦合次数≤3。
44.本发明提供的示例44:包括上述示例19至41中的任一项,其中,当运行时,所述电离电场的耦合次数≤3。
45.本发明提供的示例45:包括上述示例1至41中的任一项,其中,所述电场阳极的工作面积与所述电场阴极的放电面积的比、所述电场阳极与所述电场阴极之间的极间距、所述电场阳极长度以及所述电场阴极长度使所述电离电场的耦合次数≤3。
46.本发明提供的示例46:包括上述示例1至45中的任一项,其中,所述电离电场电压的取值范围为1kv-50kv。
47.本发明提供的示例47:包括上述示例1至46中的任一项,其中,所述电场装置包括若干个电场级,各所述电场级包括若干个电场发生单元,所述电场发生单元可以有一个或多个;所述电场发生单元包括所述电场阳极和所述电场阴极。
48.本发明提供的示例48:包括上述示例47,其中,所述电场级为两个以上时,各电场级之间串联。
49.本发明提供的示例49:包括上述示例1至48中的任一项,其中,所述电场装置还包括若干连接壳体,串联电场级通过所述连接壳体连接。
50.本发明提供的示例50:包括上述示例49,其中,相邻的电场级的距离是所述电场阳极与所述电场阴极之间的极间距的1.4倍以上。
51.本发明提供的示例51:包括上述示例1至50中的任一项,其中,所述电场装置还 包括前置电极,所述前置电极在所述电场装置入口与所述电场阳极和所述电场阴极形成的电离电场之间。
52.本发明提供的示例52:包括上述示例51,其中,所述前置电极呈面状、网状、孔板状、或板状。
53.本发明提供的示例53:包括上述示例51或52,其中,所述前置电极上设有至少一个通孔。
54.本发明提供的示例54:包括上述示例53,其中,所述通孔呈多角形、圆形、椭圆形、正方形、长方形、梯形、或菱形。
55.本发明提供的示例55:包括上述示例53或54,其中,所述通孔的孔径为0.1-3毫米。
56.本发明提供的示例56:包括上述示例51至55中的任一项,其中,所述前置电极为固体、液体、气体分子团、或等离子体中的一种或多种形态的组合。
57.本发明提供的示例57:包括上述示例51至56中的任一项,其中,所述前置电极为导电混合态物质、生物体自然混合导电物质、或物体人工加工形成导电物质。
58.本发明提供的示例58:包括上述示例51至57中的任一项,其中,所述前置电极为304钢或石墨。
59.本发明提供的示例59:包括上述示例51至57中的任一项,其中,所述前置电极为含离子导电液体。
60.本发明提供的示例60:包括上述示例51至59中的任一项,其中,所述前置电极垂直于所述电场阳极。
61.本发明提供的示例61:包括上述示例51至60中的任一项,其中,所述前置电极与所述电场阳极相平行。
62.本发明提供的示例62:包括上述示例51至61中的任一项,其中,所述前置电极采用金属丝网。
63.本发明提供的示例63:包括上述示例51至62中的任一项,其中,所述前置电极与所述电场阳极之间的电压不同于所述电场阴极与所述电场阳极之间的电压。
64.本发明提供的示例64:包括上述示例51至63中的任一项,其中,所述前置电极与所述电场阳极之间的电压小于起始起晕电压。
65.本发明提供的示例65:包括上述示例51至64中的任一项,其中,所述前置电极与所述电场阳极之间的电压为0.1-2kv/mm。
66.本发明提供的示例66:包括上述示例51至65中的任一项,其中,所述电场装置包括流道,所述前置电极位于所述流道中;所述前置电极的截面面积与流道的截面面积比 为99%-10%、或90-10%、或80-20%、或70-30%、或60-40%、或50%。
67.本发明提供的示例67:一种减少除尘电场耦合的方法,包括以下步骤:
选择电场阳极参数或/和电场阴极参数以减少电场耦合次数。
68.本发明提供的示例68:包括示例67,其中,包括选择所述电场阳极的工作面积与电场阴极的放电面积的比。
69.本发明提供的示例69:包括示例68,其中,包括选择所述电场阳极的工作面积与所述电场阴极的放电面积的比为1.667:1-1680:1。
70.本发明提供的示例70:包括示例68,其中,包括选择所述电场阳极的工作面积与所述电场阴极的放电面积的比为6.67:1-56.67:1。
71.本发明提供的示例71:包括示例67至70任一项,其中,包括选择所述电场阴极直径为1-3毫米,所述电场阳极与所述电场阴极的极间距为2.5-139.9毫米;所述电场阳极的工作面积与所述电场阴极的放电面积的比为1.667:1-1680:1。
72.本发明提供的示例72:包括示例67至71任一项,其中,包括选择所述电场阳极和所述电场阴极的极间距小于150mm。
73.本发明提供的示例73:包括示例67至71任一项,其中,包括选择所述电场阳极与所述电场阴极的极间距为2.5-139.9mm。
74.本发明提供的示例74:包括示例67至71任一项,其中,包括选择所述电场阳极与所述电场阴极的极间距为5-100mm。
75.本发明提供的示例75:包括示例67至74任一项,其中,包括选择所述电场阳极长度为10-180mm。
76.本发明提供的示例76:包括示例67至74任一项,其中,包括选择所述电场阳极长度为60-180mm。
77.本发明提供的示例77:包括示例67至76任一项,其中,包括选择所述电场阴极长度为30-180mm。
78.本发明提供的示例78:包括示例67至76任一项,其中,包括选择所述电场阴极长度为54-176mm。
79.本发明提供的示例79:包括示例67至78任一项,其中,包括选择所述电场阴极包括至少一根电极棒。
80.本发明提供的示例80:包括示例79,其中,包括选择所述电极棒的直径不大于3mm。
81.本发明提供的示例81:包括示例79或80,其中,包括选择所述电极棒的形状呈针状、多角状、毛刺状、螺纹杆状或柱状。
82.本发明提供的示例82:包括示例67至81任一项,其中,包括选择所述电场阳极 由中空的管束组成。
83.本发明提供的示例83:包括示例82,其中,包括选择所述中空的管束的管内切圆直径取值范围为5mm-400mm。
84.本发明提供的示例84:包括示例83,其中,包括选择所述阳极管束的中空的截面采用圆形或多边形。
85.本发明提供的示例85:包括示例84,其中,包括选择所述多边形为六边形。
86.本发明提供的示例86:包括示例82至85任一项,其中,包括选择所述电场阳极的管束呈蜂窝状。
87.本发明提供的示例87:包括示例67至86任一项,其中,包括选择所述电场阴极穿射于所述电场阳极内。
88.本发明提供的示例88:包括示例67至87任一项,其中,包括选择的所述电场阳极或/和电场阴极尺寸使电场耦合次数≤3。
本发明具有如下有益效果:
采用本发明提供的电场装置可应用于气体除尘技术领域,可有效脱除空气中纳米颗粒。
附图说明
图1为本发明实施例1中电场装置的结构示意图。
图2为本发明实施例2-11、实施例24-27中电场发生单元结构示意图。
图3为本发明实施例2、实施例5、实施例27中图2电场发生单元的A-A视图。
图4为本发明实施例2和实施例5中标注长度和角度的图2电场发生单元的A-A视图。
图5为本发明实施例2、实施例5、实施例27中两个电场级的电场装置结构示意图。
图6为本发明实施例12中电场装置的结构示意图。
图7为本发明实施例14中电场装置的结构示意图。
图8为本发明实施例15中电场装置的结构示意图。
图9为本发明实施例16中电场装置的结构示意图。
具体实施方式
以下由特定的具体实施例说明本发明的实施方式,熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本发明的其他优点及功效。
须知,本说明书所附图式所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本发明可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应仍落在本发明所揭示的技术内容得能涵盖的范围内。同时,本说明书中所引用的如“上”、“下”、“左”、“右”、“中间”及“一”等的用语, 亦仅为便于叙述的明了,而非用以限定本发明可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当亦视为本发明可实施的范畴。
本发明一实施例中,提供一种电场装置,包括电场装置入口、电场装置出口、电场阴极和电场阳极,所述电场阴极和所述电场阳极用于产生电离电场。
于本发明一实施例中,所述电场阴极包括若干根阴极丝。阴极丝的直径可为0.1mm-20mm,该尺寸参数根据应用场合及处理要求做调整。于本发明一实施例中阴极丝的直径不大于3mm。于本发明一实施例中阴极丝使用容易放电的金属丝或合金丝,耐温且能支撑自身重量,电化学稳定。于本发明一实施例中阴极丝的材质选用钛。阴极丝的具体形状根据电场阳极的形状调整,例如,若电场阳极的工作面是平面,则阴极丝的截面呈圆形;若电场阳极的工作面是圆弧面,阴极丝需要设计成多面形。阴极丝的长度根据电场阳极进行调整。
于本发明一实施例中,所述电场阴极包括若干阴极棒。于本发明一实施例中,所述阴极棒的直径不大于3mm。于本发明一实施例中阴极棒使用容易放电的金属棒或合金棒。阴极棒的形状可以为针状、多角状、毛刺状、螺纹杆状或柱状等。阴极棒的形状可以根据电场阳极的形状进行调整,例如,若电场阳极的工作面是平面,则阴极棒的截面需要设计成圆形;若电场阳极的工作面是圆弧面,则阴极棒需要设计成多面形。
于本发明一实施例中,电场阴极穿设于电场阳极内。
于本发明一实施例中,电场阳极包括一个或多个并行设置的中空阳极管。当中空阳极管有多个时,全部中空阳极管构成蜂窝状的电场阳极。于本发明一实施例中,中空阳极管的截面可呈圆形或多边形。于本发明一实施例中,中空阳极管的截面为多边形,所述多边形为六边形。若中空阳极管的截面呈圆形,电场阳极和电场阴极之间能形成均匀电场。于本发明一实施例中,中空阳极管的管内切圆直径取值范围为5mm-400mm。
于本发明一实施例中,电场阴极安装在阴极支撑板上,阴极支撑板与电场阳极通过绝缘机构相连接。所述绝缘机构用于实现所述阴极支撑板和所述电场阳极之间的绝缘。于本发明一实施例中,电场阳极包括第一阳极部和第二阳极部,即所述第一阳极部靠近电场装置入口,第二阳极部靠近电场装置出口。阴极支撑板和绝缘机构在第一阳极部和第二阳极部之间,即绝缘机构安装在电离电场中间、或电场阴极中间,可以对电场阴极起到良好的支撑作用,并对电场阴极起到相对于电场阳极的固定作用,使电场阴极和电场阳极之间保持设定的距离。而现有技术中,阴极的支撑点在阴极的端点,难以保持阴极和阳极之间的距离。于本发明一实施例中绝缘机构设置在电场流道外、即电场流道外,以防止或减少气体中的灰尘等聚集在绝缘机构上,导致绝缘机构击穿或导电。
于本发明一实施例中,绝缘机构采用耐高压陶瓷绝缘子,对电场阴极和电场阳极之间 进行绝缘。电场阳极也称作一种外壳。
于本发明一实施例中绝缘机构包括绝缘瓷柱。于本发明一实施例中第一阳极部长度占电场阳极总长度的1/10至1/4、1/4至1/3、1/3至1/2、1/2至2/3、2/3至3/4,或3/4至9/10。
于本发明一实施例中,第二阳极部在气体流动方向上位于阴极支撑板和绝缘机构之后。于本发明一实施例中,第一阳极部和第二阳极部可使用不同的电源。
于本发明一实施例中,由于电场阴极和电场阳极之间存在极高电位差,为了防止电场阴极和电场阳极导通,绝缘机构设置在电场阴极和电场阳极之间的电场流道之外。因此,绝缘机构外悬于电场阳极的外侧。于本发明一实施例中绝缘机构可采用非导体耐温材料,比如陶瓷、玻璃等。于本发明一实施例中,完全密闭无空气的材料绝缘要求绝缘隔离厚度>0.3mm/kv;空气绝缘要求>1.4mm/kv。可根据电场阴极和电场阳极之间的极间距的1.4倍以上设置绝缘距离。于本发明一实施例中绝缘机构使用陶瓷,表面上釉;不能使用胶粘或有机材料填充连接,耐温大于350摄氏度。
于本发明一实施例中,绝缘机构包括绝缘部和隔热部。为了使绝缘机构具有抗污功能,绝缘部的材料采用陶瓷材料或玻璃材料。于本发明一实施例中,绝缘部可为伞状串陶瓷柱或玻璃柱,伞内外挂釉。伞状串陶瓷柱或玻璃柱的外缘与电场阳极的距离大于或等于电场距离的1.4倍、即大于或等于极间距的1.4倍。伞状串陶瓷柱或玻璃柱的伞突边间距总和大于或等于伞状串陶瓷柱的绝缘间距的1.4倍。伞状串陶瓷柱或玻璃柱的伞边内深总长大于或等于伞状串陶瓷柱的绝缘距离1.4倍。绝缘部还可为柱状串陶瓷柱或玻璃柱,柱内外挂釉。于本发明一实施例中绝缘部还可呈塔状。
于本发明一实施例中,绝缘部内设置加热棒,当绝缘部周围温度接近露点时,加热棒启动并进行加热。由于使用中绝缘部的内外存在温差,绝缘部的内外、外部容易产生凝露。绝缘部的外表面可能自发或被气体加热产生高温,需要必要的隔离防护,防烫伤。隔热部包括位于绝缘部外部的防护围挡板。于本发明一实施例中绝缘部的尾部需要凝露位置同样需要隔热,防止环境以及散热高温加热凝露组件。
于本发明一实施例中电场装置的电源的引出线使用伞状串陶瓷柱或玻璃柱过墙式连接,墙内使用弹性碰头连接阴极支撑板,墙外使用密闭绝缘防护接线帽插拔连接,引出线过墙导体与墙绝缘距离大于伞状串陶瓷柱或玻璃柱的陶瓷绝缘距离。于本发明一实施例中高压部分取消引线,直接安装在端头上,确保安全,高压模块整体外绝缘使用ip68防护,使用介质换热散热。
于本发明一实施例中电场阳极和电场阴极分别与电源的两个电极电性连接。加载在电场阳极和电场阴极上的电压需选择适当的电压等级,具体选择何种电压等级取决于电场装置的体积、耐温、容尘率等。例如,电压从1kv至50kv;设计时首先考虑耐温条件,极间 距与温度的参数:1MM<30度,工作面积大于0.1平方/千立方米/小时,电场长度大于单管内切圆的5倍,控制电场气流流速小于9米/秒。于本发明一实施例中电场阳极由中空阳极管构成、并呈蜂窝状。中空阳极管端口的形状可以为圆形或多边形。于本发明一实施例中中空阳极管的管内切圆取值范围在5-400mm,对应电压在0.1-120kv之间,中空阳极管对应电流在0.1-30A之间;不同的内切圆对应不同的电晕电压,约为1KV/1MM。
于本发明一实施例中电场装置包括电场级,该电场级包括若干个电场发生单元,电场发生单元可以有一个或多个。电场发生单元包括上述电场阳极和电场阴极,电场发生单元有一个或多个。电场级有多个时,能有效提高电场装置的电离效率。同一电场级中,各电场阳极为相同极性,各电场阴极为相同极性。且电场级有多个时,各电场级之间串联。于本发明一实施例中电场装置还包括若干个连接壳体,串联电场级通过连接壳体连接;相邻两级的电场级的距离是极间距的1.4倍以上。
本发明的发明人研究发现,现有电场装置电离效率差、能耗高的缺点是由上述电场耦合现象引起的。本发明某些实施例通过减小电场耦合次数,可以显著减小电场装置的尺寸(即体积)。
由于发明人发现了电场耦合的作用,并且找到了减少电场耦合次数的方法,本发明获得了预料不到的结果。
本发明提供的减少电场耦合次数的方案如下:
于本发明一实施例中电场阴极和电场阳极之间采用非对称结构。在对称电场中极性粒子受到一个相同大小而方向相反的作用力,极性粒子在电场中往复运动;在非对称电场中,极性粒子受到两个大小不同的作用力,极性粒子向作用力大的方向移动,可以避免产生耦合。
于本发明一实施例中,提供一种电场装置,包括电场装置入口、电场装置出口、电场阴极和电场阳极,所述电场阴极和所述电场阳极用于产生电离电场;
所述电场阳极的工作面积与所述电场阴极的放电面积的比为1.667:1-1680:1。
于本发明一实施例中,所述电场阳极的工作面积与所述电场阴极的放电面积的比为6.67:1-56.67:1。
于本发明一实施例中,所述电场阳极的工作面积与所述电场阴极的放电面积的比使所述电离电场的耦合次数≤3。
于本发明一实施例中,所述电场阳极的工作面积与所述电场阴极的放电面积的比、所述电场阳极与所述电场阴极之间的极间距、所述电场阳极长度以及所述电场阴极长度使所述电离电场的耦合次数≤3。
本发明的电场装置的电场阴极和电场阳极之间形成电离电场。为了减少电离电场发生 电场耦合,于本发明一实施例中,减少电场耦合的方法包括如下步骤:选择电场阳极的工作面积与电场阴极的放电面积的比,使电场耦合次数≤3。于本发明一实施例中电场阳极的工作面积与电场阴极的放电面积的比可以为:1.667:1-1680:1;3.334:1-113.34:1;6.67:1-56.67:1;13.34:1-28.33:1。该实施例选择相对大面积的电场阳极的工作面积和相对极小的电场阴极的放电面积,具体选择上述面积比,可以减少电场阴极的放电面积,减小吸力,扩大电场阳极的面积,扩大吸力,即电场阴极和电场阳极间产生不对称的电极吸力,使负离子或带负离子的物质落入电场阳极的表面,虽极性改变但无法再被电场阴极吸走,并减少电场耦合,实现电场耦合次数≤3。即在电场极间距小于150mm时电场耦合次数≤3,电场能耗低,能够减少电场对负离子或带负离子的物质的耦合消耗,节省电场电能30-50%。工作面积是指电场阳极工作面的面积,比如,若电场阳极呈中空的正六边形管状,工作面积即为中空的正六边形管状的内表面积。放电面积指电场阴极工作面的面积,比如,若电场阴极呈棒状,放电面积即为棒状的外表面积。负离子包括氧气被电离子后得到的氧离子、氮气被电离后得到的氮离子等任何负离子或荷负离子的物质。
于本发明一实施例中,提供一种电场装置,包括电场装置入口、电场装置出口、电场阴极和电场阳极,所述电场阴极和所述电场阳极用于产生电离电场;所述电场阳极长度为10-180mm。
于本发明一实施例中,所述电场阳极长度为60-180mm。
于本发明一实施例中,所述电场阳极长度使所述电离电场的耦合次数≤3。
于本发明一实施例中,提供一种电场装置,包括电场装置入口、电场装置出口、电场阴极和电场阳极,所述电场阴极和所述电场阳极用于产生电离电场;所述电场阴极长度为30-180mm。
于本发明一实施例中,所述电场阴极长度为54-176mm。
于本发明一实施例中,所述电场阳极长度使所述电离电场的耦合次数≤3。
于本发明一实施例中,提供一种电场装置,包括电场装置入口、电场装置出口、电场阴极和电场阳极,所述电场阴极和所述电场阳极用于产生电离电场;所述电场阳极和所述电场阴极的极间距小于150mm。
于本发明一实施例中,所述电场阳极和所述电场阴极的极间距为2.5-139.9mm。
于本发明一实施例中,所述电场阳极和所述电场阴极的极间距为5-100mm。
于本发明一实施例中,所述电场阳极和所述电场阴极的极间距使所述电离电场的耦合次数≤3。
于本发明一实施例中电场阳极的长度可以为10-180mm、10-20mm、20-30mm、60-180mm、30-40mm、40-50mm、50-60mm、60-70mm、70-80mm、80-90mm、90-100mm、 100-110mm、110-120mm、120-130mm、130-140mm、140-150mm、150-160mm、160-170mm、170-180mm、60mm、180mm、10mm或30mm。电场阳极的长度是指电场阳极工作面的一端至另一端的最小长度。电场阳极选择此种长度,可以有效减少电场耦合。
于本发明一实施例中电场阳极的长度可以为10-90mm、15-20mm、20-25mm、25-30mm、30-35mm、35-40mm、40-45mm、45-50mm、50-55mm、55-60mm、60-65mm、65-70mm、70-75mm、75-80mm、80-85mm或85-90mm,此种长度的设计可以使电场阳极及电场装置具有耐高温特性,并使得电场装置在高温冲击下具有高效率的处理能力。
于本发明一实施例中电场阴极的长度可以为30-180mm、54-176mm、30-40mm、40-50mm、50-54mm、54-60mm、60-70mm、70-80mm、80-90mm、90-100mm、100-110mm、110-120mm、120-130mm、130-140mm、140-150mm、150-160mm、160-170mm、170-176mm、170-180mm、54mm、180mm、或30mm。电场阴极的长度是指电场阴极工作面的一端至另一端的最小长度。电场阴极选择此种长度,可以有效减少电场耦合。
于本发明一实施例中电场阴极的长度可以为10-90mm、15-20mm、20-25mm、25-30mm、30-35mm、35-40mm、40-45mm、45-50mm、50-55mm、55-60mm、60-65mm、65-70mm、70-75mm、75-80mm、80-85mm或85-90mm,此种长度的设计可以使电场阴极及电场装置具有耐高温特性,并使得电场装置在高温冲击下具有高效率的处理能力。
于本发明一实施例中电场阳极和电场阴极之间的距离可以为5-30mm、2.5-139.9mm、9.9-139.9mm、2.5-9.9mm、9.9-20mm、20-30mm、30-40mm、40-50mm、50-60mm、60-70mm、70-80mm、80-90mm、90-100mm、100-110mm、110-120mm、120-130mm、130-139.9mm、9.9mm、139.9mm、或2.5mm。电场阳极和电场阴极之间的距离也称作极间距。极间距具体是指电场阳极、电场阴极工作面之间的最小垂直距离。此种极间距的选择可以有效减少电场耦合,并使电场装置具有耐高温特性。
于本发明一实施例中,所述电场阴极直径为1-3毫米,所述电场阳极与所述电场阴极的极间距为2.5-139.9毫米;所述电场阳极的工作面积与所述电场阴极的放电面积的比为1.667:1-1680:1。
于一实施例中,本发明提供一种减少电场耦合的方法,包括以下步骤:
使空气通过电场阳极和电场阴极产生的电离电场;
选择所述电场阳极或/和电场阴极。
于本发明一实施例中,选择的所述电场阳极或/和电场阴极尺寸使电场耦合次数≤3。
具体地,选择所述电场阳极的工作面积与电场阴极的放电面积的比。优选地,选择所述电场阳极的工作面积与所述电场阴极的放电面积的比为1.667:1-1680:1。
更为优选地,选择所述电场阳极的工作面积与所述电场阴极的放电面积的比为 6.67-56.67:1。
于本发明一实施例中,所述电场阴极直径为1-3毫米,所述电场阳极与所述电场阴极的极间距为2.5-139.9毫米;所述电场阳极的工作面积与所述电场阴极的放电面积的比为1.667:1-1680:1。
优选地,选择所述电场阳极和所述电场阴极的极间距小于150mm。
优选地,选择所述电场阳极与所述电场阴极的极间距为2.5-139.9mm。更为优选地,选择所述电场阳极与所述电场阴极的极间距为5.0-100mm。
优选地,选择所述电场阳极长度为10-180mm。更为优选地,选择所述电场阳极长度为60-180mm。
优选地,选择所述电场阴极长度为30-180mm。更为优选地,选择所述电场阴极长度为54-176mm。
于本发明一实施例中,所述电场装置还包括辅助电场单元,用于产生与所述电离电场不平行的辅助电场。
于本发明一实施例中,所述电场装置还包括辅助电场单元,所述电离电场包括流道,所述辅助电场单元用于产生与所述流道不垂直的辅助电场。
于本发明一实施例中,所述辅助电场单元包括第一电极,所述辅助电场单元的第一电极设置在或靠近所述电离电场的进口。
于本发明一实施例中,所述第一电极为阴极。
于本发明一实施例中,所述辅助电场单元的第一电极是所述电场阴极的延伸。
于本发明一实施例中,所述辅助电场单元的第一电极与所述电场阳极具有夹角α,且0°<α≤125°、或45°≤α≤125°、或60°≤α≤100°、或α=90°。
于本发明一实施例中,所述辅助电场单元包括第二电极,所述辅助电场单元的第二电极设置在或靠近所述电离电场的出口。
于本发明一实施例中,所述第二电极为阳极。
于本发明一实施例中,所述辅助电场单元的第二电极是所述电场阳极的延伸。
于本发明一实施例中,所述辅助电场单元的第二电极与所述电场阴极具有夹角α,且0°<α≤125°、或45°≤α≤125°、或60°≤α≤100°、或α=90°。
于本发明一实施例中,所述辅助电场的电极与所述电离电场的电极独立设置。
电场阳极和电场阴极之间的电离电场也称作第一电场。于本发明一实施例中电场阳极和电场阴极之间还形成有与第一电场不平行的第二电场。于本发明另一实施例中,所述第二电场与所述电离电场的流道不垂直。第二电场也称作辅助电场,可以通过一个或两个辅助电极形成当第二电场由一个辅助电极形成时,该辅助电极可以放在电离电场的进口或出 口,该辅助电极可以带负电势、或正电势。其中,当所述辅助电极为阴极时,设置在或靠近所述电离电场的进口;所述辅助电极与所述电场阳极具有夹角α,且0°<α≤125°、或45°≤α≤125°、或60°≤α≤100°、或α=90°。当所述辅助电极为阳极时,设置在或靠近所述电离电场的出口;所述辅助电极与所述电场阴极具有夹角α,且0°<α≤125°、或45°≤α≤125°、或60°≤α≤100°、或α=90°。当第二电场由两个辅助电极形成时,其中一个辅助电极可以带负电势,另一个辅助电极可以带正电势;一个辅助电极可以放在电离电场的进口,另一个辅助电极放在电离电场的出口。另外,辅助电极可以是电场阴极或电场阳极的一部分,即辅助电极可以是由电场阴极或电场阳极的延伸段构成,此时电场阴极和电场阳极的长度不一样。辅助电极也可以是一个单独的电极,也就是说辅助电极可以不是电场阴极或电场阳极的一部分,此时,第二电场的电压和第一电场的电压不一样,可以根据工作状况单独地控制。所述辅助电极包括所述辅助电场单元中第一电极和/或第二电极。
于本发明一实施例中电场装置包括前置电极,该前置电极在电场装置入口与电场阳极和电场阴极形成的电离电场之间。当气体由电场装置入口流经前置电极时,气体中的颗粒物等将带电。
于本发明一实施例中前置电极的形状可以为面状、网状、孔板状、板状、针棒状、球笼状、盒状、管状、物质自然形态、或物质加工形态。本发明中网状为包括任何有孔结构的形状。当前置电极呈板状、球笼状、盒状或管状时,前置电极可以是无孔结构,也可以是有孔结构。当前置电极为有孔结构时,前置电极上设有一个或多个通孔。于本发明一实施例中通孔的形状可以为多角形、圆形、椭圆形、正方形、长方形、梯形、或菱形。于本发明一实施例中通孔的轮廓大小可以为0.1-3mm、0.1-0.2mm、0.2-0.5mm、0.5-1mm、1-1.2mm、1.2-1.5mm、1.5-2mm、2-2.5mm、2.5-2.8mm、或2.8-3mm。
于本发明一实施例中前置电极的形态可以为固体、液体、气体分子团、等离子体、导电混合态物质、生物体自然混合导电物质、或物体人工加工形成导电物质中的一种或多种形态的组合。当前置电极为固体时,可采用固态金属,比如304钢,或其它固态的导体、比如石墨等。当前置电极为液体时,可以是含离子导电液体。
于本发明一实施例中前置电极垂直于电场阳极。于本发明一实施例中前置电极与电场阳极相平行。于本发明一实施例中前置电极采用金属丝网。于本发明一实施例中前置电极与电场阳极之间的电压不同于电场阴极和电场阳极之间的电压。于本发明一实施例中前置电极与电场阳极之间的电压小于起始起晕电压。起始起晕电压为电场阴极和电场阳极之间的电压的最小值。于本发明一实施例中前置电极与电场阳极之间的电压可以为0.1-2kv/mm。
于本发明一实施例中电场装置包括流道,前置电极位于流道中。于本发明一实施例中前置电极的截面面积与流道的截面面积比为99%-10%、或90-10%、或80-20%、或70-30%、 或60-40%、或50%。前置电极的截面面积是指前置电极沿截面上实体部分的面积之和。于本发明一实施例中前置电极带负电势。
本发明提供的电场装置可应用于气体除尘技术领域例如静电除尘装置,还可作为等离子发生器(日光灯)、臭氧发生器等任何需要电场参与的装置。
下面以本发明提供的电场装置作为静电除尘装置为例进行实施说明,该静电除尘装置的结构与上述电场装置结构相同:
目前还采用电场装置对含尘气体所包含的颗粒进行除尘净化,其基本原理为,利用高压放电产生等离子,使颗粒带电,然后将带电的颗粒吸附至集尘电极上,实现电场除尘。但是现有静电除尘装置存在占用空间较大、耗能高、处理效率低等问题,
本发明提供的电场装置体积小、能耗低,可应用于气体除尘技术领域,某些实施例可有效脱除气体中颗粒物。
于本发明一实施例中电场装置可包括电场阴极和电场阳极,电场阴极与电场阳极之间形成电离电场。气体进入电离电场,气体中的氧气将被电离,并形成大量带有电荷的氧离子,氧离子与气体中粉尘等颗粒物结合,使得颗粒物荷电,电场阳极给带负电荷的颗粒物施加吸附力,使得颗粒物被吸附在电场阳极上,以清除掉气体中的颗粒物。
于本发明一实施例中,电场阳极可包括一个或多个并行设置的中空阳极管。当中空阳极管有多个时,全部中空阳极管构成蜂窝状的电场阳极。于本发明一实施例中,中空阳极管的截面可呈圆形或多边形。若中空阳极管的截面呈圆形,电场阳极和电场阴极之间能形成均匀电场,中空阳极管的内壁不容易积尘。若中空阳极管的截面为三边形时,中空阳极管的内壁上可以形成3个积尘面,3个远角容尘角,此种结构的中空阳极管的容尘率最高。若中空阳极管的截面为四边形,可以获得4个积尘面,4个容尘角,但拼组结构不稳定。若中空阳极管的截面为六边形,可以形成6个积尘面,6个容尘角,积尘面和容尘率达到平衡。若中空阳极管的截面呈更多边形时,可以获得更多的积尘边,但损失容尘率。
于本发明一实施例中绝缘机构设置在电场流道外、即电场流道外,以防止或减少气体中的灰尘等聚集在绝缘机构上,导致绝缘机构击穿或导电。
于本发明一实施例中,第一阳极部在气体流动方向上位于阴极支撑板和绝缘机构之前,第一阳极部能够除去气体中的水,防止水进入绝缘机构,造成绝缘机构短路、打火。另外,第一阳级部能够除去气体中相当一部分的灰尘,当气体通过绝缘机构时,相当一部分的灰尘已被消除,减少灰尘造成绝缘机构短路的可能性。于本发明一实施例中绝缘机构包括绝缘瓷柱。第一阳极部的设计主要是为了保护绝缘瓷柱不被气体中颗粒物等污染,一旦气体污染绝缘瓷柱将会造成电场阳极和电场阴极导通,从而使电场阳极的积尘功能失效,故第一阳极部的设计,能有效减少绝缘瓷柱被污染,提高产品的使用时间。在气体流经电场流 道过程中,第一阳极部和电场阴极先接触具有污染性的气体,绝缘机构后接触气体,达到先除尘后经过绝缘机构的目的,减少对绝缘机构造成的污染,延长清洁维护周期,对应电极使用后绝缘支撑。所述第一阳极部的长度是足够的长,以清除部分灰尘,减少积累在所述绝缘机构和所述阴极支撑板上的灰尘,减少灰尘造成的电击穿。
现有工业静电集尘电场由集尘极、放电极组成,电场各极由极板组成,平行排列为电场各极,电极对荷电粉尘有异性吸附力。但荷电为负极性就被正极吸附,荷电为正极性就被负极板吸附。但吸附后,荷电性就出现反转,趋于和极板同性,即正极板上粉尘会再次趋向负极、负极板上粉尘会趋向正极,这种运动和力是反复无休止产生,就形成电场耦合消耗。电场耦合消耗致使静电吸附粘附力弱的颗粒、液雾等出现效率下滑或失效。从而集尘效率低,且能耗较高。
本发明的发明人研究发现,现有电场装置去除效率差、能耗高的缺点是由电场耦合引起的。本发明通过减小电场耦合次数,可以显著减小电场除尘装置的尺寸(即体积)。比如,将本发明提供的电场装置应用于静电除尘的情况下,本发明的电场除尘装置的尺寸约为现有电离除尘装置尺寸的五分之一。原因是,为了获得可接受的颗粒去除率,现有电场除尘装置中将气体流速设为1m/s左右,而本发明在将气体流速提高到6m/s的情况下,仍能获得较高的颗粒去除率。当处理一给定流量的气体时,随着气体速度的提高,电场除尘装置的尺寸可以减小。
另外,本发明可以显著提高颗粒去除效率。例如,在气体流速为1m/s左右时,现有技术电场除尘装置可以去除发动机排气中大约70%的颗粒物,但是本发明可以去除大约99%的颗粒物,即使在气体流速为6m/s时。
由于发明人发现了电场耦合的作用,并且找到了减少电场耦合次数的方法,本发明获得了上述预料不到的结果。
通常静电集尘电场的除尘效率通常较低,且能耗较高。为解决除尘效率低下等问题,现有技术中集尘电场往往选择多段串联,以提高整体集尘效率。此种多电场串联的方式又会导致集尘装置整体占用空间较大,能耗更高,且单电场的除尘效率实质上仍然很低。
于本发明一实施例中,所述电场装置包括与电场阳极和电场阴极之间不平行的辅助电场。
于本发明一实施例中,所述电场装置还包括辅助电场,所述电离电场包括流道,所述辅助电场与所述流道不垂直。
于本发明一实施例中,辅助电场给电场阳极和电场阴极之间带负电荷的氧离子流施加向后的力,使得电场阳极和电场阴极间带负电荷的氧离子流具有向后的移动速度。当含有待处理物质的气体由前向后流入电离电场的流道,带负电荷的氧离子在向电场阳极且向后 移动过程中将与待处理物质相结合,由于氧离子具有向后的移动速度,氧离子在与待处理物质相结合时,两者间不会产生较强的碰撞,从而避免因较强碰撞而造成较大的能量消耗,使得氧离子易于与待处理物质相结合,并使得气体中待处理物质的荷电效率更高,进而在电场阳极作用下,能将更多的待处理物质收集起来,保证本发明提供的电场装置的除尘效率更高。
电场在应用中,往往会遇到因为氧气含量低而使粉尘荷电不充分,以及粉尘为容易导电物质,荷电后容易失去电子等现象。这些现象直接导致电场集尘失效。为避免这类事情发生,人们普遍认为除尘电场不能应用于氧气稀薄的尾气以及不能荷电成功的低电阻粉尘。比如氧气耗尽的汽车尾气中氧含量极低,最低只有0.3%,几乎无氧可电离,就无法产生氧离子,不能传递电子,粉尘就不能带电。另外对于水雾以及金属粉尘,由于容易带电,也容易失电,使用氧电离后荷电,很快就失效,电场也不能收集这类粉尘。另外,现有技术中静电集尘电场对粉尘等待处理物质的收集效率也较低。
于本发明一实施例中电场装置包括前置电极,该前置电极在电场装置入口与电场阳极和电场阴极形成的电离电场之间。当气体由电场装置入口流经前置电极时,气体中的颗粒物等将带电。
于本发明一实施例中前置电极上设有一个或多个通孔,气体通过所述前置电极上的通孔时,使气体中的颗粒物带电。本发明中当带颗粒物的气体通过前置电极上的通孔时,带颗粒物的气体穿过所述前置电极,提高带颗粒物的气体与前置电极的接触面积,增加带电效率。本发明中前置电极上的通孔为任何允许物质流过前置电极的孔。
于本发明一实施例中,在工作时,在带污染物的气体进入电场阳极和电场阴极形成的电离电场之前,且带颗粒物的气体通过前置电极时,前置电极使气体中的颗粒物带电。当带颗粒物的气体进入电离电场时,电场阳极给带电颗粒物施加吸引力,使所述带电颗粒物向电场阳极移动,直至带电颗粒物附着在电场阳极上。
于本发明一实施例中,所述前置电极将电子导入气体中的颗粒物,电子在位于前置电极和电场阳极之间进行传递,使更多气体中的颗粒物带电。
于本发明一实施例中,所述前置电极和电场阳极之间通过带电颗粒物传导电子、并形成电流。
于本发明一实施例中,所述前置电极通过与气体中的颗粒物接触的方式使气体中颗粒物带电。于本发明一实施例中前置电极通过与气体中的颗粒物接触的方式将电子转移到气体中的颗粒物上,并使气体中的颗粒物带电。
通常静电场耐受气体温度为200℃,超过200℃会引发电场击穿,特别是小型化高效电场,电场长度400毫米、通径300毫米蜂窝管束电场耐受温度为90℃。在90℃以下, 这个电场集尘效率达到99%,但温度上升到120℃,电场会出现击穿、出现间歇性失效,引发集尘效率明显下降至50%以下。现有技术解决电场耐高温的方法通常为增大电场阳极和电场阴极的极间距、增大电场阳极和电场阴极的长度,防止电场击穿,而本发明提出减小电场阳极和电场阴极的长度即缩短电场阳极和电场阴极的长度:电场阳极长度为1-9cm,电场阴极长度为1-9cm,解决电场发生单元及电场装置耐高温的问题,显然,现有技术给出相反的技术启示,本发明克服了技术偏见(增大电场阳极和电场阴极的极间距、增大电场阳极和电场阴极的长度),采用了人们由于技术偏见而舍弃的技术手段,从而解决了本发明要解决的技术问题。
进一步,本发明提出减小电场阳极和电场阴极的长度即缩短电场阳极和电场阴极的长度:电场阳极长度为1-9cm,电场阴极长度为1-9cm,当200℃烟尘进入后,由于停留时间短,活跃分子串联机会少,不能形成击穿电流,同时电场热变形引发极间短路变形量由于短而减小,更不容易引发击穿,电场装置耐受温度能达到500℃甚至大于500℃,且集尘效率高,高达50%,即本申请的电场发生单元和电场装置兼具高的耐受温度和高的集尘效率,与现有技术相比,本申请的技术效果产生“量”的变化,对于本领域技术人员来说,事先无法预测或推理出来,本申请取得了预料不到的技术效果,当发明产生了预料不到的技术效果时,一方面说明发明具有显著的进步,同时也反映出发明的技术方案是非显而易见的。
本发明一些实施例中,当电场温度为200℃时,对应的集尘效率为99.9%;电场温度为400℃时,对应的集尘效率为90%;当电场温度为500℃时,对应的集尘效率为50%。
下面通过具体实施例来进一步阐述本发明的电场装置及其减少耦合的方法。
实施例1
请参阅图1,显示为本实施例中电场装置的结构示意图。所述电场装置包括电场装置入口1011、前置电极1013、绝缘机构1015。
所述电场装置包括电场阳极10141和设置于电场阳极10141内的电场阴极10142,电场阳极10141与电场阴极10142之间形成电场。所述前置电极1013设置于所述电场装置入口1011处,所述前置电极1013为一导电网板。
具体地,所述电场阳极10141的内部由呈蜂窝状、且中空的阳极管束组组成,阳极管束的端口的形状为六边形。
所述电场阴极10142包括若干根电极棒,其一一对应地穿设所述阳极管束组中的每一阳极管束,其中,所述电极棒的形状呈针状、多角状、毛刺状、螺纹杆状或柱状。所述电场阳极10141的工作面积与电场阴极10142的放电面积的比为1680:1,所述电场阳极10141和电场阴极10142的极间距为9.9mm,电场阳极10141长度为60mm,电场阴极10142长 度为54mm。
在本实施例中,所述电场阴极10142的出气端低于所述电场阳极10141的出气端,且所述电场阴极10142的进气端与所述电场阳极10141的进气端齐平,电场阳极10141的出口端与电场阴极10142的近出口端之间具有夹角α,且α=90°。
如图1所示,于本发明一实施例中,电场阴极10142安装在阴极支撑板10143上,阴极支撑板10143与电场阳极10141通过绝缘机构1015相连接。所述绝缘机构1015用于实现所述阴极支撑板10143和所述电场阳极10141之间的绝缘。于本发明一实施例中,电场阳极10141包括第一阳极部101412和第二阳极部101411,即所述第一阳极部101412靠近电场装置入口,第二阳极部101411靠近电场装置出口。阴极支撑板和绝缘机构在第一阳极部101412和第二阳极部101411之间,即绝缘机构1015安装在电离电场中间、或电场阴极10142中间,可以对电场阴极10142起到良好的支撑作用,并对电场阴极10142起到相对于电场阳极10141的固定作用,使电场阴极10142和电场阳极10141之间保持设定的距离。
所述绝缘机构1015包括绝缘部和隔热部。所述绝缘部的材料采用陶瓷材料或玻璃材料。所述绝缘部为伞状串陶瓷柱或玻璃柱,或柱状串陶瓷柱或玻璃柱,伞内外或柱内外挂釉。
实施例2
本实施例中电场发生单元可应用于本发明的电场装置,本实施例的电场发生单元结构示意图参见图2,本实施例电场发生单元的A-A视图参见图3,本实施例电场发生单元标注长度和角度的电场发生单元的A-A视图参见图4。
如图2所示,包括用于发生电场的电场阳极4051和电场阴极4052,所述电场阳极4051和电场阴极4052分别与电源的两个电极电性连接,所述电源为直流电源,所述电场阳极4051和电场阴极4052分别与直流电源的阳极和阴极电性连接。本实施例中电场阳极4051具有正电势,电场阴极4052具有负电势。
本实施例中直流电源具体可为直流高压电源。上述电场阳极4051和电场阴极4052之间形成放电电场,该放电电场是一种静电场。
如图2、图3和图4所示,本实施例中电场阳极4051呈中空的正六边形管状,电场阴极4052呈棒状,电场阴极4052穿设在电场阳极4051中。
本实施例还提供一种减少电场耦合的方法,包括如下步骤:选择电场阳极4051的工作面积与电场阴极4052的放电面积的比为6.67:1,电场阳极4051和电场阴极4052的极间距L3为9.9mm,电场阳极4051长度L1为60mm,电场阴极4052长度L2为54mm,所述电场阳极4051包括流体通道,所述流体通道包括进口端与出口端,所述电场阴极4052 置于所述流体通道中,所述电场阴极4052沿流体通道的方向延伸,电场阳极4051的进口端与电场阴极4052的近进口端齐平,电场阳极4051的出口端与电场阴极4052的近出口端之间具有夹角α,且α=118°,进而在电场阳极4051和电场阴极4052的作用下,实现电场耦合次数≤3,能够减少电场的耦合消耗,节省电场电能30-50%。
本实施例中电场装置包括由多个上述电场发生单元构成的电场级,所述电场级有多个,以利用多个电场发生单元有效提高本电场装置的处理效率。同一电场级中,各电场阳极为相同极性,各电场阴极为相同极性。
多个电场级中各电场级之间串联,串联电场级通过连接壳体连接,相邻两级的电场级的距离大于极间距的1.4倍。本实施例中两个电场级的电场装置结构示意图参见图5,如图5所示,所述电场级为两级即第一级电场4053和第二级电场4054,第一级电场4053和第二级电场4054通过连接壳体4055串联连接。
本实施例采用现有电场耦合次数的检测方法,具体如下:
将红色标记的水雾通入电场中,水雾浓度200毫克/m 3,风速<1.5m/s,从电场阴极运动至电场阳极再运动至电场阴极为一次折返,记为一次耦合,视觉观察水雾折返次数,即为耦合次数。
本实施例提供的电场装置可用来脱除空气中的颗粒物,本实施例在电场阳极4051和电场阴极4052的作用下,能将更多的颗粒物收集起来,实现电场耦合次数≤3,能够减少电场对空气中气溶胶、水雾、油雾、松散光滑颗粒物的耦合消耗,节省电场电能30-50%。本实施例中利用多个电场发生单元科有效提高本电场装置的除尘效率。
实施例3
本实施例中电场发生单元可应用于本发明的电场装置,如图2所示,包括用于发生电场的电场阳极4051和电场阴极4052,所述电场阳极4051和电场阴极4052分别与电源的两个电极电性连接,所述电源为直流电源,所述电场阳极4051和电场阴极4052分别与直流电源的阳极和阴极电性连接。本实施例中电场阳极4051具有正电势,电场阴极4052具有负电势。
本实施例中直流电源具体可为直流高压电源。上述电场阳极4051和电场阴极4052之间形成放电电场,该放电电场是一种静电场。
本实施例中电场阳极4051呈中空的正六边形管状,电场阴极4052呈棒状,电场阴极4052穿设在电场阳极4051中。
本实施例还提供一种减少电场耦合的方法,包括如下步骤:选择电场阳极4051的工作面积与电场阴极4052的放电面积的比为1680:1,电场阳极4051和电场阴极4052的极间距为139.9mm,电场阳极4051长度为180mm,电场阴极4052长度为180mm,所述电 场阳极4051包括流体通道,所述流体通道包括进口端与出口端,所述电场阴极4052置于所述流体通道中,所述电场阴极4052沿流体通道的方向延伸,电场阳极4051的进口端与电场阴极4052的近进口端齐平,电场阳极4051的出口端与电场阴极4052的近出口端齐平,进而在电场阳极4051和电场阴极4052的作用下,实现电场耦合次数≤3,能够减少电场的耦合消耗,节省电场电能20-40%。
本实施例提供的电场装置可用来脱除空气中的颗粒物,本实施例在电场阳极4051和电场阴极4052的作用下,能将更多的颗粒物收集起来,实现电场耦合次数≤3,能够减少电场对空气中气溶胶、水雾、油雾、松散光滑颗粒物的耦合消耗,节省电场电能20-40%。
实施例4
本实施例中电场发生单元可应用于本发明的电场装置,如图2所示,包括用于发生电场的电场阳极4051和电场阴极4052,所述电场阳极4051和电场阴极4052分别与电源的两个电极电性连接,所述电源为直流电源,所述电场阳极4051和电场阴极4052分别与直流电源的阳极和阴极电性连接。本实施例中电场阳极4051具有正电势,电场阴极4052具有负电势。
本实施例中直流电源具体可为直流高压电源。上述电场阳极4051和电场阴极4052之间形成放电电场,该放电电场是一种静电场。
本实施例中电场阳极4051呈中空的正六边形管状,电场阴极4052呈棒状,电场阴极4052穿设在电场阳极4051中。
本实施例还提供一种减少电场耦合的方法,包括如下步骤:选择电场阳极4051的工作面积与电场阴极4052的放电面积的比为1.667:1,电场阳极4051和电场阴极4052的极间距为2.4mm,电场阳极4051长度为30mm,电场阴极4052长度为30mm,所述电场阳极4051包括流体通道,所述流体通道包括进口端与出口端,所述电场阴极4052置于所述流体通道中,所述电场阴极4052沿流体通道的方向延伸,电场阳极4051的进口端与电场阴极4052的近进口端齐平,电场阳极4051的出口端与电场阴极4052的近出口端齐平,进而在电场阳极4051和电场阴极4052的作用下,实现电场耦合次数≤3,能够减少电场的耦合消耗,节省电场电能10-30%。
本实施例提供的电场装置可用来脱除空气中的颗粒物,本实施例在电场阳极4051和电场阴极4052的作用下,能将更多的颗粒物收集起来,实现电场耦合次数≤3,能够减少电场对空气中气溶胶、水雾、油雾、松散光滑颗粒物的耦合消耗,节省电场电能10-30%。
实施例5
本实施例中电场发生单元可应用于本发明半导体制造洁净室系统的电场除尘系统中的电场装置,如图2所示,包括用于发生电场的电场阳极4051和电场阴极4052,所述电 场阳极4051和电场阴极4052分别与电源的两个电极电性连接,所述电源为直流电源,所述电场阳极4051和电场阴极4052分别与直流电源的阳极和阴极电性连接。本实施例中电场阳极4051具有正电势,电场阴极4052具有负电势。
本实施例中直流电源具体可为直流高压电源。上述电场阳极4051和电场阴极4052之间形成放电电场,该放电电场是一种静电场。
如图2、图3和图4所示,本实施例中电场阳极4051呈中空的正六边形管状,电场阴极4052呈棒状,电场阴极4052穿设在电场阳极4051中,电场阳极4051的工作面积与电场阴极4052的放电面积的比为6.67:1,所述电场阳极4051和电场阴极4052的极间距L3为9.9mm,电场阳极4051长度L1为60mm,电场阴极4052长度L2为54mm,所述电场阳极4051包括流体通道,所述流体通道包括进口端与出口端,所述电场阴极4052置于所述流体通道中,所述电场阴极4052沿流体通道的方向延伸,电场阳极4051的进口端与电场阴极4052的近进口端齐平,电场阳极4051的出口端与电场阴极4052的近出口端之间具有夹角α,且α=118°。
本实施例中电场装置包括由多个上述电场发生单元构成的电场级,所述电场级有多个,以利用多个集尘单元有效提高本电场装置的集尘效率。同一电场级中,各电场阳极为相同极性,各电场阴极为相同极性。
多个电场级中各电场级之间串联,串联电场级通过连接壳体连接,相邻两级的电场级的距离大于极间距的1.4倍。如图5示,所述电场级为两级即第一级电场4053和第二级电场4054,第一级电场4053和第二级电场4054通过连接壳体4055串联连接。
本实施例提供的电场装置可用来脱除空气中的颗粒物,在电场阳极4051和电场阴极4052的作用下,能将更多的待处理物质收集起来,保证本电场发生单元的集尘效率更高,典型颗粒pm0.23集尘效率为99.99%以上。
实施例6
本实施例中电场发生单元可应用于本发明的电场装置,如图2所示,包括用于发生电场的电场阳极4051和电场阴极4052,所述电场阳极4051和电场阴极4052分别与电源的两个电极电性连接,所述电源为直流电源,所述电场阳极4051和电场阴极4052分别与直流电源的阳极和阴极电性连接。本实施例中电场阳极4051具有正电势,电场阴极4052具有负电势。
本实施例中直流电源具体可为直流高压电源。上述电场阳极4051和电场阴极4052之间形成放电电场,该放电电场是一种静电场。
本实施例中电场阳极4051呈中空的正六边形管状,电场阴极4052呈棒状,电场阴极4052穿设在电场阳极4051中,电场阳极4051的工作面积与电场阴极4052的放电面积的 比为1680:1,所述电场阳极4051和电场阴极4052的极间距为139.9mm,电场阳极4051长度为180mm,电场阴极4052长度为180mm,所述电场阳极4051包括流体通道,所述流体通道包括进口端与出口端,所述电场阴极4052置于所述流体通道中,所述电场阴极4052沿流体通道的方向延伸,电场阳极4051的进口端与电场阴极4052的近进口端齐平,电场阳极4051的出口端与电场阴极4052的近出口端齐平。
本实施例中电场装置包括由多个上述电场发生单元构成的电场级,所述电场级有多个,以利用多个电场发生单元有效提高本电场装置的集尘效率。同一电场级中,各电场阳极为相同极性,各电场阴极为相同极性。
本实施例提供的电场装置可用来脱除空气中的颗粒物,在电场阳极4051和电场阴极4052的作用下,能将更多的待处理物质收集起来,保证本电场发生单元的集尘效率更高,典型颗粒pm0.23集尘效率为99.99%以上。
实施例7
本实施例中电场发生单元可应用于本发明的电场装置,如图2所示,包括用于发生电场的电场阳极4051和电场阴极4052,所述电场阳极4051和电场阴极4052分别与电源的两个电极电性连接,所述电源为直流电源,所述电场阳极4051和电场阴极4052分别与直流电源的阳极和阴极电性连接。本实施例中电场阳极4051具有正电势,电场阴极4052具有负电势。
本实施例中直流电源具体可为直流高压电源。上述电场阳极4051和电场阴极4052之间形成放电电场,该放电电场是一种静电场。
本实施例中电场阳极4051呈中空的正六边形管状,电场阴极4052呈棒状,电场阴极4052穿设在电场阳极4051中,电场阳极4051的工作面积与电场阴极4052的放电面积的比为1.667:1,所述电场阳极4051和电场阴极4052的极间距为2.4mm。电场阳极4051长度为30mm,电场阴极4052长度为30mm,所述电场阳极4051包括流体通道,所述流体通道包括进口端与出口端,所述电场阴极4052置于所述流体通道中,所述电场阴极4052沿流体通道的方向延伸,电场阳极4051的进口端与电场阴极4052的近进口端齐平,电场阳极4051的出口端与电场阴极4052的近出口端齐平。
本实施例中电场阳极4051及电场阴极4052构成电场发生单元,且该电场发生单元有多个,以利用多个电场发生单元有效提高本电场装置的集尘效率。
本实施例提供的电场装置可用来脱除空气中的颗粒物,在电场阳极4051和电场阴极4052的作用下,能将更多的待处理物质收集起来,保证本电场发生单元的集尘效率更高,典型颗粒pm0.23集尘效率为99.99%以上。
实施例8
本实施例中电场发生单元可应用于本发明的电场装置,如图2所示,包括用于发生电场的电场阳极4051和电场阴极4052,所述电场阳极4051和电场阴极4052分别与电源的两个电极电性连接,所述电源为直流电源,所述电场阳极4051和电场阴极4052分别与直流电源的阳极和阴极电性连接。本实施例中电场阳极4051具有正电势,电场阴极4052具有负电势。
本实施例中直流电源具体可为直流高压电源。上述电场阳极4051和电场阴极4052之间形成放电电场,该放电电场是一种静电场。
本实施例中电场阳极4051呈中空的正六边形管状,电场阴极4052呈棒状,电场阴极4052穿设在电场阳极4051中。
减少电场耦合的方法,包括如下步骤:选择电场阳极4051的工作面积与电场阴极4052的放电面积的比为27.566:1,电场阳极4051和电场阴极4052的极间距为2.3mm,电场阳极4051长度为5mm,电场阴极4052长度为4mm,所述电场阳极4051包括流体通道,所述流体通道包括进口端与出口端,所述电场阴极4052置于所述流体通道中,所述电场阴极4052沿流体通道的方向延伸,电场阳极4051的进口端与电场阴极4052的近进口端齐平,电场阳极4051的出口端与电场阴极4052的近出口端齐平,进而在电场阳极4051和电场阴极4052的作用下,实现电场耦合次数≤3,能够减少电场的耦合消耗。
本实施例提供的电场装置可用来脱除空气中的颗粒物,在电场阳极4051和电场阴极4052的作用下,能将更多的待处理物质收集起来,保证本电场发生单元的集尘效率更高。
实施例9
本实施例中电场发生单元可应用于本发明的电场装置,如图2所示,包括用于发生电场的电场阳极4051和电场阴极4052,所述电场阳极4051和电场阴极4052分别与电源的两个电极电性连接,所述电源为直流电源,所述电场阳极4051和电场阴极4052分别与直流电源的阳极和阴极电性连接。本实施例中电场阳极4051具有正电势,电场阴极4052具有负电势。
本实施例中直流电源具体可为直流高压电源。上述电场阳极4051和电场阴极4052之间形成放电电场,该放电电场是一种静电场。
本实施例中电场阳极4051呈中空的正六边形管状,电场阴极4052呈棒状,电场阴极4052穿设在电场阳极4051中。
减少电场耦合的方法,包括如下步骤:选择电场阳极4051的工作面积与电场阴极4052的放电面积的比为1.108:1,电场阳极4051和电场阴极4052的极间距为2.3mm,电场阳极051长度为60mm,电场阴极4052长度为200mm,所述电场阳极4051包括流体通道,所述流体通道包括进口端与出口端,所述电场阴极4052置于所述流体通道中,所述电场阴 极4052沿流体通道的方向延伸,电场阳极4051的进口端与电场阴极4052的近进口端齐平,电场阳极4051的出口端与电场阴极4052的近出口端齐平,进而在电场阳极4051和电场阴极4052的作用下,实现电场耦合次数≤3,能够减少电场的耦合消耗。
本实施例提供的电场装置可用来脱除空气中的颗粒物,在电场阳极4051和电场阴极4052的作用下,能将更多的待处理物质收集起来,保证本电场发生单元的集尘效率更高。
实施例10
本实施例中电场发生单元可应用于本发明的电场装置,如图2所示,包括用于发生电场的电场阳极4051和电场阴极4052,所述电场阳极4051和电场阴极4052分别与电源的两个电极电性连接,所述电源为直流电源,所述电场阳极4051和电场阴极4052分别与直流电源的阳极和阴极电性连接。本实施例中电场阳极4051具有正电势,电场阴极4052具有负电势。
本实施例中直流电源具体可为直流高压电源。上述电场阳极4051和电场阴极4052之间形成放电电场,该放电电场是一种静电场。
本实施例中电场阳极4051呈中空的正六边形管状,电场阴极4052呈棒状,电场阴极4052穿设在电场阳极4051中。
减少电场耦合的方法,包括如下步骤:选择电场阳极4051的工作面积与电场阴极4052的放电面积的比为3065:1,电场阳极4051和电场阴极4052的极间距为249mm,电场阳极4051长度为2000mm,电场阴极4052长度为180mm,所述电场阳极4051包括流体通道,所述流体通道包括进口端与出口端,所述电场阴极4052置于所述流体通道中,所述电场阴极4052沿流体通道的方向延伸,电场阳极4051的进口端与电场阴极4052的近进口端齐平,电场阳极4051的出口端与电场阴极4052的近出口端齐平,进而在电场阳极4051和电场阴极4052的作用下,实现电场耦合次数≤3。
本实施例提供的电场装置可用来脱除空气中的颗粒物,在电场阳极4051和电场阴极4052的作用下,能将更多的待处理物质收集起来,保证本电场发生单元的集尘效率更高。
实施例11
本实施例中电场发生单元可应用于本发明的电场装置,如图2所示,包括用于发生电场的电场阳极4051和电场阴极4052,所述电场阳极4051和电场阴极4052分别与电源的两个电极电性连接,所述电源为直流电源,所述电场阳极4051和电场阴极4052分别与直流电源的阳极和阴极电性连接。本实施例中电场阳极4051具有正电势,电场阴极4052具有负电势。
本实施例中直流电源具体可为直流高压电源。上述电场阳极4051和电场阴极4052之间形成放电电场,该放电电场是一种静电场。
本实施例中电场阳极4051呈中空的正六边形管状,电场阴极4052呈棒状,电场阴极4052穿设在电场阳极4051中。
减少电场耦合的方法,包括如下步骤:选择电场阳极4051的工作面积与电场阴极4052的放电面积的比为1.338:1,电场阳极4051和电场阴极4052的极间距为5mm,电场阳极4051长度为2mm,电场阴极4052长度为10mm,所述电场阳极4051包括流体通道,所述流体通道包括进口端与出口端,所述电场阴极4052置于所述流体通道中,所述电场阴极4052沿流体通道的方向延伸,电场阳极4051的进口端与电场阴极4052的近进口端齐平,电场阳极4051的出口端与电场阴极4052的近出口端齐平,进而在电场阳极4051和电场阴极4052的作用下,实现电场耦合次数≤3。
本实施例提供的电场装置可用来脱除空气中的颗粒物,在电场阳极4051和电场阴极4052的作用下,能将更多的待处理物质收集起来,保证本电场发生单元的集尘效率更高。
实施例12
本实施例提供的电场装置的结构示意图参见图6。如图6所示,所述电场装置包括电场阴极5081和电场阳极5082分别与直流电源的阴极和阳极电性连接,辅助电极5083与直流电源的阳极电性连接。本实施例中电场阴极5081具有负电势,电场阳极5082和辅助电极5083均具有正电势。
同时,如图6所示,本实施例中辅助电极5083与电场阳极5082固接。在电场阳极5082与直流电源的阳极电性连接后,也实现了辅助电极5083与直流电源的阳极电性连接,且辅助电极5083与电场阳极5082具有相同的正电势。
如图6所示,本实施例中辅助电极5083可沿前后方向延伸,即辅助电极5083的长度方向可与电场阳极5082的长度方向相同。
如图6所示,本实施例中电场阳极5082呈管状,电场阴极5081呈棒状,电场阴极5081穿设在电场阳极5082中。同时本实施例中上述辅助电极5083也呈管状,辅助电极5083与电场阳极5082构成阳极管5084。阳极管5084的前端与电场阴极5081齐平,阳极管5084的后端向后超出了电场阴极5081的后端,该阳极管5084相比于电场阴极5081向后超出的部分为上述辅助电极5083。即本实施例中电场阳极5082和电场阴极5081的长度相同,电场阳极5082和电场阴极5081在前后方向上位置相对;辅助电极5083位于电场阳极5082和电场阴极5081的后方。这样,辅助电极5083与电场阴极5081之间形成辅助电场。
本实施例提供的电场装置可用于脱除空气中的颗粒物,上述辅助电场给电场阳极5082和电场阴极5081之间带负电荷的氧离子流施加向后的力。当含有待处理物质的气体由前向后流入阳极管5084,带负电荷的氧离子在向电场阳极5082且向后移动过程中将与待处理物质相结合,由于氧离子具有向后的移动速度,氧离子在与待处理物质相结合时,两者 间不会产生较强的碰撞,从而避免因较强碰撞而造成较大的能量消耗,使得氧离子易于与待处理物质相结合,并使得气体中待处理物质的荷电效率更高,进而在电场阳极5082及阳极管5084的作用下,能将更多的待处理物质收集起来,保证本电场装置的除尘效率更高。
另外,如图6所示,本实施例中阳极管5084的后端与电场阴极5081的后端之间具有夹角α,且0°<α≤125°、或45°≤α≤125°、或60°≤α≤100°、或α=90°。
本实施例中电场阳极5082、辅助电极5083、及电场阴极5081构成除尘单元,且该除尘单元有多个,以利用多个除尘单元有效提高本电场装置的除尘效率。
本实施例中直流电源具体可为直流高压电源。上述电场阴极5081和电场阳极5082之间形成放电电场,该放电电场是一种静电场。在无上述辅助电极5083的情况下,电场阴极5081和电场阳极5082之间电场中离子流沿垂直于电极方向,且在两电极间折返流动,并导致离子在电极间来回折返消耗。为此,本实施例利用辅助电极5083使电极相对位置错开,形成电场阳极5082和电场阴极5081间相对不平衡,这个不平衡会使电场中离子流发生偏转。本电场装置利用辅助电极5083形成能使离子流具有方向性的电场。本电场装置对顺离子流方向进入电场的颗粒物的收集率比对逆离子流方向进入电场的颗粒物的收集率提高近一倍,从而提高电场积尘效率,减少电场电耗。另外,现有技术中集尘电场的除尘效率较低的主要原因也是粉尘进入电场方向与电场内离子流方向相反或垂直交叉,从而导致粉尘与离子流相互冲撞剧烈并产生较大能量消耗,同时也影响荷电效率,进而使现有技术中电场集尘效率下降,且能耗增加。
本实施例中电场装置在用于收集气体中的粉尘时,气体及粉尘顺离子流方向进入电场,粉尘荷电充分,电场消耗小;单极电场集尘效率会达到99.99%以上。当气体及粉尘逆离子流方向进入电场,粉尘荷电不充分,电场电耗也会增加,集尘效率会在40%-75%。另外,本实施例中电场装置形成的离子流有利于无动力风扇流体输送、增氧、热量交换等。
实施例13
本实施例提供的电场装置,包括电场阴极和电场阳极分别与直流电源的阴极和阳极电性连接,辅助电极与直流电源的阴极电性连接。本实施例中辅助电极和电场阴极均具有负电势,电场阳极具有正电势。
本实施例中辅助电极可与电场阴极固接。这样,在实现电场阴极与直流电源的阴极电性连接后,也实现了辅助电极与直流电源的阴极电性连接。同时,本实施例中辅助电极沿前后方向延伸。
本实施例中电场阳极呈管状,电场阴极呈棒状,电场阴极穿设在电场阳极中。同时本实施例中上述辅助电极也棒状,且辅助电极和电场阴极构成阴极棒。该阴极棒的前端向前 超出电场阳极的前端,该阴极棒与电场阳极相比向前超出的部分为上述辅助电极。即本实施例中电场阳极和电场阴极的长度相同,电场阳极和电场阴极在前后方向上位置相对;辅助电极位于电场阳极和电场阴极的前方。这样,辅助电极与电场阳极之间形成辅助电场,该辅助电场给电场阳极和电场阴极之间带负电荷的氧离子流施加向后的力,使得电场阳极和电场阴极间带负电荷的氧离子流具有向后的移动速度。
本实施例提供的电场装置可用于脱除空气中的颗粒物,当含有待处理物质的气体由前向后流入管状的电场阳极,带负电荷的氧离子在向电场阳极且向后移动过程中将与待处理物质相结合,由于氧离子具有向后的移动速度,氧离子在与待处理物质相结合时,两者间不会产生较强的碰撞,从而避免因较强碰撞而造成较大的能量消耗,使得氧离子易于与待处理物质相结合,并使得气体中待处理物质的荷电效率更高,进而在电场阳极作用下,能将更多的待处理物质收集起来,保证本电场装置的除尘效率更高。
本实施例中电场阳极、辅助电极、及电场阴极构成除尘单元,且该除尘单元有多个,以利用多个除尘单元有效提高本电场装置的除尘效率。
实施例14
本实施例中电场装置的结构示意图参见图7。如图7所示,辅助电极5083沿左右方向延伸。本实施例中辅助电极5083的长度方向与电场阳极5082和电场阴极5081的长度方向不同。且辅助电极5083具体可与电场阳极5082相垂直。
本实施例中电场阴极5081和电场阳极5082分别与直流电源的阴极和阳极电性连接,辅助电极5083与直流电源的阳极电性连接。本实施例中电场阴极5081具有负电势,电场阳极5082和辅助电极5083均具有正电势。
如图7所示,本实施例中电场阴极5081和电场阳极5082在前后方向上位置相对,辅助电极5083位于电场阳极5082和电场阴极5081的后方。这样,辅助电极5083与电场阴极5081之间形成辅助电场,该辅助电场给电场阳极5082和电场阴极5081之间带负电荷的氧离子流施加向后的力。
本实施例提供的电场装置可用于用来脱除空气中的颗粒物,当含有待处理物质的气体由前向后流入电场阳极5082和电场阴极5081之间的电场,带负电荷的氧离子在向电场阳极5082且向后移动过程中将与待处理物质相结合,由于氧离子具有向后的移动速度,氧离子在与待处理物质相结合时,两者间不会产生较强的碰撞,从而避免因较强碰撞而造成较大的能量消耗,使得氧离子易于与待处理物质相结合,并使得气体中待处理物质的荷电效率更高,进而在电场阳极5082的作用下,能将更多的待处理物质收集起来,保证本电场装置的除尘效率更高。
实施例15
本实施例中电场装置的结构示意图参见图8。如图8所示,辅助电极5083沿左右方向延伸。本实施例中辅助电极5083的长度方向与电场阳极5082和电场阴极5081的长度方向不同。且辅助电极5083具体可与电场阴极5081相垂直。
本实施例中电场阴极5081和电场阳极5082分别与直流电源的阴极和阳极电性连接,辅助电极5083与直流电源的阴极电性连接。本实施例中电场阴极5081和辅助电极5083均具有负电势,电场阳极5082具有正电势。
如图8所示,本实施例中电场阴极5081和电场阳极5082在前后方向上位置相对,辅助电极5083位于电场阳极5082和电场阴极5081的前方。这样,辅助电极5083与电场阳极5082之间形成辅助电场,该辅助电场给电场阳极5082和电场阴极5081之间带负电荷的氧离子流施加向后的力,使得电场阳极5082和电场阴极5081间带负电荷的氧离子流具有向后的移动速度。当含有待处理物质的气体由前向后流入电场阳极5082和电场阴极5081之间的电场,带负电荷的氧离子在向电场阳极5082且向后移动过程中将与待处理物质相结合,由于氧离子具有向后的移动速度,氧离子在与待处理物质相结合时,两者间不会产生较强的碰撞,从而避免因较强碰撞而造成较大的能量消耗,使得氧离子易于与待处理物质相结合,并使得气体中待处理物质的荷电效率更高,进而在电场阳极5082的作用下,能将更多的待处理物质收集起来,保证本电场装置的除尘效率更高。
实施例16
本实施例中电场装置的结构示意图参见图9。如图9所示,该电场装置包括依次相通的电场装置入口3085、流道3086、电场流道3087、及电场装置出口3088,流道3086中安装有前置电极3083,前置电极3083的截面面积与流道3086的截面面积比为99%-10%,电场装置还包括电场阴极3081和电场阳极3082,电场流道3087位于电场阴极3081和电场阳极3082之间。
本实施例提供的电场装置可用于脱除空气中的颗粒物,含颗粒物的气体通过电场装置入口3085进入流道3086,安装在流道3086中的前置电极3083将电子传导给部分颗粒物,部分颗粒物带电,当颗粒物由流道3086进入电场流道3087后,电场阳极3082给已带电的颗粒物施加吸引力,带电的颗粒物向电场阳极3082移动,直至该部分带电颗粒物附着在电场阳极3082上,同时,电场流道3087中电场阴极3081和电场阳极3082之间形成电离电场,该电离电场将使另一部分未带电的颗粒物带电,这样另一部分颗粒物在带电后同样会受到电场阳极3082施加的吸引力,并最终附着在电场阳极3082,从而利用上述电场装置使颗粒物带电效率更高,带电更充分,进而保证电场阳极3082能收集更多的颗粒物,并保证本发明电场装置对气体中颗粒物的收集效率更高。
前置电极3083的截面面积是指前置电极3083沿截面上实体部分的面积之和。另外, 前置电极3083的截面面积与流道3086的截面面积比可以为99%-10%、或90-10%、或80-20%、或70-30%、或60-40%、或50%。
如图9所示,本实施例中前置电极3083和电场阴极3081均与直流电源的阴极电性连接,电场阳极3082与直流电源的阳极电性连接。本实施例中前置电极3083和电场阴极3081均具有负电势,电场阳极3082具有正电势。
如图9所示,本实施例中前置电极3083具体可呈网状,即设有若干通孔。这样,当气体流经流道3086时,利用前置电极3083设有通孔的结构特点,便于气体及颗粒物流过前置电极3083,并使气体中颗粒物与前置电极3083接触更加充分,从而使前置电极3083能将电子传导给更多的颗粒物,并使颗粒物的带电效率更高。
如图9所示,本实施例中电场阳极3082呈管状,电场阴极3081呈棒状,电场阴极3081穿设在电场阳极3082中。本实施例中电场阳极3082和电场阴极3081呈非对称结构。当气体流入电场阴极3081和电场阳极3082之间形成的电离电场将使颗粒物带电,且在电场阳极3082施加的吸引力作用下,将带电的颗粒物收集在电场阳极3082的内壁上。
另外,如图9所示,本实施例中电场阳极3082和电场阴极3081均沿前后方向延伸,电场阳极3082的前端沿前后方向上位于电场阴极3081的前端的前方。且如图9所示,电场阳极3082的后端沿前后方向上位于电场阴极3081的后端的后方。本实施例中电场阳极3082沿前后方向上的长度更长,使得位于电场阳极3082内壁上的吸附面面积更大,从而对带有负电势的颗粒物的吸引力更大,并能收集更多的颗粒物。
如图9所示,本实施例中电场阴极3081和电场阳极3082构成电离单元,电离单元有多个,以利用多个电离单元收集更多的颗粒物,并使得本电场装置对颗粒物的收集能力更强,且收集效率更高。
本实施例中上述污染物包括导电性较弱的普通粉尘等、及导电性较强的金属粉尘、雾滴、气溶胶等。本实施例中电场装置,对气体中导电性较弱的普通粉尘,及导电性较强的污染物的收集过程为:当气体通过电场装置入口3085流入流道3086中,气体中导电性较强的金属粉尘、雾滴、或气溶胶等污染物在与前置电极3083相接触时,或与前置电极3083的距离达到一定范围时会直接带负电,随后,全部污染物随气流进入电场流道3087,除尘电场阳极3082给已带负电的金属粉尘、雾滴、或气溶胶等施加吸引力,并将该部分污染物收集起来,同时,除尘电场阳极3082与除尘电场阴极3081形成电离电场,该电离电场通过电离气体中的氧获得氧离子,且带负电荷的氧离子在与普通粉尘结合后,使普通粉尘带负电荷,除尘电场阳极3082给该部分带负电荷的粉尘施加吸引力,并将该部分污染物收集起来,从而将气体中导电性较强和导电性较弱的污染物均收集起来,并使得本电场装置所能收集物质的种类更广泛,且收集能力更强。
本实施例中上述电场阴极3081也称作电晕荷电电极。上述直流电源具体为直流高压电源。前置电极3083和电场阳极3082之间通入直流高压,形成导电回路;电场阴极3081和电场阳极3082之间通入直流高压,形成电离放电电晕电场。本实施例中前置电极3083为密集分布的导体。当容易带电的粉尘等颗粒物经过前置电极3083时,前置电极3083直接将电子给颗粒物,颗粒物带电,随后被异极的电场阳极3082吸附;同时未带电的颗粒物经过电场阴极3081和电场阳极3082形成的电离区,电离区形成的电离氧会把电子荷电给颗粒物,这样颗粒物继续带电,并被异极的电场阳极3082吸附。
本实施例中电场装置能形成两种及两种以上的上电方式。比如,在气体中氧气充足情况下,可利用电场阴极3081和电场阳极3082之间形成的电离放电电晕电场,电离氧,来使气体中的颗粒物荷电,再利用电场阳极3082收集颗粒物;而在气体中氧气含量过低、或无氧状态、或颗粒物为导电尘雾等时,利用前置电极3083直接使气体中的颗粒物上电,让气体中的颗粒物充分带电后被电场阳极3082吸附。本电场装置让电场可以收集各类粉尘同时,也可以应用在各种含氧量低的环境中,扩大了集尘电场治理粉尘应用范围,提高了集尘效率。本实施例采用上述两种带电方式的电场,可以同时收集容易荷电的高阻值粉尘以及容易上电的低阻值金属粉尘、气溶胶、液雾等。两种上电方式同时使用,电场适用范围扩大。
实施例24
本实施例中电场发生单元,结构示意图如图2所示,包括用于发生电场的除尘电场阳极4051和除尘电场阴极4052,所述除尘电场阳极4051和除尘电场阴极4052分别与电源的两个电极电性连接,所述电源为直流电源,所述除尘电场阳极4051和除尘电场阴极4052分别与直流电源的阳极和阴极电性连接。本实施例中除尘电场阳极4051具有正电势,除尘电场阴极4052具有负电势。
本实施例中直流电源具体可为直流高压电源。上述除尘电场阳极4051和除尘电场阴极4052之间形成放电电场,该放电电场是一种静电场。
本实施例中除尘电场阳极4051呈中空的正六边形管状,除尘电场阴极4052呈棒状,除尘电场阴极4052穿设在除尘电场阳极4051中,除尘电场阳极4051长度为5cm,除尘电场阴极4052长度为5cm,所述除尘电场阳极4051包括流体通道,所述流体通道包括进口端与出口端,所述除尘电场阴极4052置于所述流体通道中,所述除尘电场阴极4052沿流体通道的方向延伸,除尘电场阳极4051的进口端与除尘电场阴极4052的近进口端齐平,除尘电场阳极4051的出口端与除尘电场阴极4052的近出口端齐平,所述除尘电场阳极4051和除尘电场阴极4052的极间距为9.9mm,进而在除尘电场阳极4051和除尘电场阴极4052的作用下,使得其耐高温冲击。
本实施例提供的电场装置可用于用来脱除空气中的颗粒物,耐高温冲击,而且能将更多的呈颗粒状的粉尘收集起来,保证本电场发生单元的集尘效率更高。电场温度为200℃对应的集尘效率为99.9%;电场温度为400℃对应的集尘效率为90%;电场温度为500℃对应的集尘效率为50%。
本实施例中电场装置包括由多个上述电场发生单元构成的电场级,所述电场级有多个,以利用多个集尘单元有效提高本电场装置的集尘效率。同一电场级中,各除尘电场阳极为相同极性,各除尘电场阴极为相同极性。
实施例25
本实施例中电场发生单元可应用于电场装置,如图2所示,包括用于发生电场的除尘电场阳极4051和除尘电场阴极4052,所述除尘电场阳极4051和除尘电场阴极4052分别与电源的两个电极电性连接,所述电源为直流电源,所述除尘电场阳极4051和除尘电场阴极4052分别与直流电源的阳极和阴极电性连接。本实施例中除尘电场阳极4051具有正电势,除尘电场阴极4052具有负电势。
本实施例中直流电源具体可为直流高压电源。上述除尘电场阳极4051和除尘电场阴极4052之间形成放电电场,该放电电场是一种静电场。
本实施例中除尘电场阳极4051呈中空的正六边形管状,除尘电场阴极4052呈棒状,除尘电场阴极4052穿设在除尘电场阳极4051中,除尘电场阳极4051长度为9cm,除尘电场阴极4052长度为9cm,所述除尘电场阳极4051包括流体通道,所述流体通道包括进口端与出口端,所述除尘电场阴极4052置于所述流体通道中,所述除尘电场阴极4052沿流体通道的方向延伸,除尘电场阳极4051的进口端与除尘电场阴极4052的近进口端齐平,除尘电场阳极4051的出口端与除尘电场阴极4052的近出口端齐平,所述除尘电场阳极4051和除尘电场阴极4052的极间距为139.9mm,进而在除尘电场阳极4051和除尘电场阴极4052的作用下,使得其耐高温冲击。
本实施例提供的电场装置可用于用来脱除空气中的颗粒物,耐高温冲击,而且能将更多的呈颗粒状的粉尘收集起来,保证本电场发生单元的集尘效率更高。电场温度为200℃对应的集尘效率为99.9%;电场温度为400℃对应的集尘效率为90%;电场温度为500℃对应的集尘效率为50%。
本实施例中电场装置包括由多个上述电场发生单元构成的电场级,所述电场级有多个,以利用多个集尘单元有效提高本电场装置的集尘效率。同一电场级中,各存储电场阳极为相同极性,各除尘电场阴极为相同极性。
实施例26
本实施例中电场发生单元可应用于电场装置,如图2所示,包括用于发生电场的除尘 电场阳极4051和除尘电场阴极4052,所述除尘电场阳极4051和除尘电场阴极4052分别与电源的两个电极电性连接,所述电源为直流电源,所述除尘电场阳极4051和除尘电场阴极4052分别与直流电源的阳极和阴极电性连接。本实施例中除尘电场阳极4051具有正电势,除尘电场阴极4052具有负电势。
本实施例中直流电源具体可为直流高压电源。上述除尘电场阳极4051和除尘电场阴极4052之间形成放电电场,该放电电场是一种静电场。
本实施例中除尘电场阳极4051呈中空的正六边形管状,除尘电场阴极4052呈棒状,除尘电场阴极4052穿设在除尘电场阳极4051中,除尘电场阳极4051长度为1cm,除尘电场阴极4052长度为1cm,所述除尘电场阳极4051包括流体通道,所述流体通道包括进口端与出口端,所述除尘电场阴极4052置于所述流体通道中,所述除尘电场阴极4052沿流体通道的方向延伸,除尘电场阳极4051的进口端与除尘电场阴极4052的近进口端齐平,除尘电场阳极4051的出口端与除尘电场阴极4052的近出口端齐平,所述除尘电场阳极4051和除尘电场阴极4052的极间距为2.4mm,进而在除尘电场阳极4051和除尘电场阴极4052的作用下,使得其耐高温冲击。
本实施例提供的电场装置可用于用来脱除空气中的颗粒物,耐高温冲击,而且能将更多的呈颗粒状的粉尘收集起来,保证本电场发生单元的集尘效率更高。电场温度为200℃对应的集尘效率为99.9%;电场温度为400℃对应的集尘效率为90%;电场温度为500℃对应的集尘效率为50%。
本实施例中电场装置包括由多个上述电场发生单元构成的电场级,所述电场级有多个,以利用多个集尘单元有效提高本电场装置的集尘效率。同一电场级中,各除尘电场阳极为相同极性,各除尘电场阴极为相同极性。
多个电场级中各电场级之间串联,串联电场级通过连接壳体连接,相邻两级的电场级的距离大于极间距的1.4倍。所述电场级为两级即第一级电场和第二级电场,第一级电场和第二级电场通过连接壳体串联连接。
本实施例中上述气体可以是欲进入发动机的气体,或发动机排出的气体。
实施例27
本实施例中电场发生单元可应用于电场装置,如图2所示,包括用于发生电场的除尘电场阳极4051和除尘电场阴极4052,所述除尘电场阳极4051和除尘电场阴极4052分别与电源的两个电极电性连接,所述电源为直流电源,所述除尘电场阳极4051和除尘电场阴极4052分别与直流电源的阳极和阴极电性连接。本实施例中除尘电场阳极4051具有正电势,除尘电场阴极4052具有负电势。
本实施例中直流电源具体可为直流高压电源。上述除尘电场阳极4051和除尘电场阴 极4052之间形成放电电场,该放电电场是一种静电场。
如图2和图3所示,本实施例中除尘电场阳极4051呈中空的正六边形管状,除尘电场阴极4052呈棒状,除尘电场阴极4052穿设在除尘电场阳极4051中,除尘电场阳极4051长度为3cm,除尘电场阴极4052长度为2cm,所述除尘电场阳极4051包括流体通道,所述流体通道包括进口端与出口端,所述除尘电场阴极4052置于所述流体通道中,所述除尘电场阴极4052沿流体通道的方向延伸,除尘电场阳极4051的进口端与除尘电场阴极4052的近进口端齐平,除尘电场阳极4051的出口端与除尘电场阴极4052的近出口端之间具有夹角α,且α=90°,所述除尘电场阳极4051和除尘电场阴极4052的极间距为20mm,进而在除尘电场阳极4051和除尘电场阴极4052的作用下,使得其耐高温冲击。
本实施例提供的电场装置可用于用来脱除空气中的颗粒物,耐高温冲击,而且能将更多的呈颗粒状的粉尘收集起来,保证本电场发生单元的集尘效率更高。电场温度为200℃对应的集尘效率为99.9%;电场温度为400℃对应的集尘效率为90%;电场温度为500℃对应的集尘效率为50%。
本实施例中电场装置包括由多个上述电场发生单元构成的电场级,所述电场级有多个,以利用多个集尘单元有效提高本电场装置的集尘效率。同一电场级中,各电场阳极为相同极性,各电场阴极为相同极性。
多个电场级中各电场级之间串联,串联电场级通过连接壳体连接,相邻两级的电场级的距离大于极间距的1.4倍。如图5所示,所述电场级为两级即第一级电场和第二级电场,第一级电场和第二级电场通过连接壳体串联连接。综上所述,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (8)

  1. 一种电场装置,其特征在于,包括电场装置入口、电场装置出口、电场阴极和电场阳极,所述电场阴极和所述电场阳极用于产生电离电场;所述电场阳极长度为10-180mm。
  2. 根据权利要求1所述的电场装置,其特征在于,所述电场阳极长度为60-180mm。
  3. 根据权利要求1或2所述的电场装置,其特征在于,所述电场阳极长度使所述电离电场的耦合次数≤3。
  4. 根据权利要求1-3任一项所述的电场装置,其特征在于,所述电场阳极的工作面积与所述电场阴极的放电面积的比、所述电场阳极与所述电场阴极之间的极间距、所述电场阳极长度以及所述电场阴极长度使所述电离电场的耦合次数≤3。
  5. 一种减少电场耦合的方法,其特征在于,包括如下步骤:
    包括选择电场阳极长度,使电场耦合次数≤3。
  6. 根据权利要求5所述的减少电场耦合的方法,其特征在于,包括选择所述电场阳极长度为10-180mm。
  7. 根据权利要求5或6所述的减少电场耦合的方法,其特征在于,包括选择所述电场阳极长度为60-180mm。
  8. 根据权利要求5-7任一项所述的减少电场耦合的方法,其特征在于,选择所述电场阳极的工作面积与所述电场阴极的放电面积的比、所述电场阳极与所述电场阴极之间的极间距、所述电场阳极长度以及所述电场阴极长度使所述电离电场的耦合次数≤3。
PCT/CN2020/092677 2019-05-27 2020-05-27 一种电场装置及减少电场耦合方法 WO2020238978A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080039542.3A CN114761135A (zh) 2019-06-17 2020-05-27 一种电场装置及减少电场耦合方法

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
CN201910446294 2019-05-27
CN201910446294.3 2019-05-27
CN201910465124.X 2019-05-30
CN201910465124 2019-05-30
CN201910521796 2019-06-17
CN201910521793 2019-06-17
CN201910522488 2019-06-17
CN201910521793.4 2019-06-17
CN201910521796.8 2019-06-17
CN201910522488.7 2019-06-17
CNPCT/CN2019/111813 2019-10-18
PCT/CN2019/111813 WO2020083096A1 (zh) 2018-10-22 2019-10-18 一种发动机排放处理系统和方法

Publications (1)

Publication Number Publication Date
WO2020238978A1 true WO2020238978A1 (zh) 2020-12-03

Family

ID=73552468

Family Applications (7)

Application Number Title Priority Date Filing Date
PCT/CN2020/092675 WO2020238976A1 (zh) 2019-05-27 2020-05-27 一种电场装置及减少电场耦合方法
PCT/CN2020/092677 WO2020238978A1 (zh) 2019-05-27 2020-05-27 一种电场装置及减少电场耦合方法
PCT/CN2020/092678 WO2020238979A1 (zh) 2019-05-27 2020-05-27 一种电场装置及减少电场耦合方法
PCT/CN2020/092673 WO2020238975A1 (zh) 2019-05-27 2020-05-27 一种电场装置
PCT/CN2020/092676 WO2020238977A1 (zh) 2019-05-27 2020-05-27 一种电场装置及减少电场耦合方法
PCT/CN2020/092672 WO2020238974A1 (zh) 2019-05-27 2020-05-27 一种电场装置
PCT/CN2020/092679 WO2020238980A1 (zh) 2019-05-27 2020-05-27 一种电场装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/092675 WO2020238976A1 (zh) 2019-05-27 2020-05-27 一种电场装置及减少电场耦合方法

Family Applications After (5)

Application Number Title Priority Date Filing Date
PCT/CN2020/092678 WO2020238979A1 (zh) 2019-05-27 2020-05-27 一种电场装置及减少电场耦合方法
PCT/CN2020/092673 WO2020238975A1 (zh) 2019-05-27 2020-05-27 一种电场装置
PCT/CN2020/092676 WO2020238977A1 (zh) 2019-05-27 2020-05-27 一种电场装置及减少电场耦合方法
PCT/CN2020/092672 WO2020238974A1 (zh) 2019-05-27 2020-05-27 一种电场装置
PCT/CN2020/092679 WO2020238980A1 (zh) 2019-05-27 2020-05-27 一种电场装置

Country Status (2)

Country Link
CN (6) CN218834819U (zh)
WO (7) WO2020238976A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103817007A (zh) * 2014-03-05 2014-05-28 武汉钢铁(集团)公司 横向极板双极静电凝并除尘装置及其除尘方法
KR101596872B1 (ko) * 2015-05-06 2016-02-23 한국산업기술시험원 전기집진장치
CN107747774A (zh) * 2017-11-10 2018-03-02 苏州甫腾智能科技有限公司 一种室内空气净化装置
CN111068916A (zh) * 2018-10-22 2020-04-28 上海必修福企业管理有限公司 一种气体处理系统及方法
WO2020083254A1 (zh) * 2018-10-22 2020-04-30 上海必修福企业管理有限公司 一种空气除尘系统及方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2205248Y (zh) * 1994-09-13 1995-08-16 郑天安 高效静电除尘器
JP3485729B2 (ja) * 1996-07-31 2004-01-13 アマノ株式会社 電気集塵機用集塵電極部
JP2004167453A (ja) * 2002-11-22 2004-06-17 Mitsubishi Heavy Ind Ltd 除塵装置
US7514047B2 (en) * 2003-01-15 2009-04-07 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying apparatus
US7025806B2 (en) * 2003-11-25 2006-04-11 Stri{dot over (o)}nAir, Inc. Electrically enhanced air filtration with improved efficacy
CN1827223A (zh) * 2005-03-04 2006-09-06 张寅啸 场效应磁约束除尘器
EP2434112A4 (en) * 2009-05-19 2014-10-22 Univ Utsunomiya DEVICE AND METHOD FOR COMBUSING PARTICULAR SUBSTANCES
CN103566753B (zh) * 2013-11-18 2017-01-18 沈阳工业大学 餐饮油烟一体化处理系统及方法
CN104525376A (zh) * 2014-12-22 2015-04-22 上海龙净环保科技工程有限公司 一种湿式电除尘器分区供电系统及分区供电方法
KR101651034B1 (ko) * 2015-02-02 2016-08-24 원효식 전기집진기 및 그 전기집진기를 포함하는 공기청정 시스템
CN204503331U (zh) * 2015-03-25 2015-07-29 郑尔历 消除和控制pm2.5-pm0.5范围颗粒物的装置
CN204974205U (zh) * 2015-07-04 2016-01-20 佛山市南方丽特克能净科技有限公司 多通道片式静电除尘器
CN205146447U (zh) * 2015-11-25 2016-04-13 珠海格力电器股份有限公司 电极结构及空气净化器
CN105689140B (zh) * 2016-04-15 2018-04-10 湖北强达环保科技股份有限公司 一种高效静电除尘器
CN105855056A (zh) * 2016-05-26 2016-08-17 北票市波迪机械制造有限公司 电除尘器微单元横流式阳极装置
CN106269256A (zh) * 2016-08-10 2017-01-04 福建龙净环保股份有限公司 一种用于烟气净化的电除雾器
CN205949064U (zh) * 2016-08-15 2017-02-15 中冶京诚工程技术有限公司 立式湿式电除尘器及其分级冲洗装置
CN106568126A (zh) * 2016-10-25 2017-04-19 珠海格力电器股份有限公司 一种空气净化装置及方法
CN206444733U (zh) * 2016-12-05 2017-08-29 江苏博际环境工程科技有限公司 一种转炉一次烟气湿式静电深度净化装置
CN206492611U (zh) * 2017-01-18 2017-09-15 青岛鲁德邦大气污染控制研究院有限公司 一种带预荷电电场的静电除雾器
CN107198907A (zh) * 2017-06-16 2017-09-26 江苏科行环保科技有限公司 多管旋流耦合除尘除雾设备
CN107309087A (zh) * 2017-08-10 2017-11-03 环球国合(北京)低碳环保科技有限公司 一种电磁清灰式电除尘
CN107486334A (zh) * 2017-08-10 2017-12-19 环球国合(北京)低碳环保科技有限公司 一种离子风式电除尘
WO2020083100A1 (zh) * 2018-10-22 2020-04-30 上海必修福企业管理有限公司 一种发动机排放处理系统和方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103817007A (zh) * 2014-03-05 2014-05-28 武汉钢铁(集团)公司 横向极板双极静电凝并除尘装置及其除尘方法
KR101596872B1 (ko) * 2015-05-06 2016-02-23 한국산업기술시험원 전기집진장치
CN107747774A (zh) * 2017-11-10 2018-03-02 苏州甫腾智能科技有限公司 一种室内空气净化装置
CN111068916A (zh) * 2018-10-22 2020-04-28 上海必修福企业管理有限公司 一种气体处理系统及方法
WO2020083254A1 (zh) * 2018-10-22 2020-04-30 上海必修福企业管理有限公司 一种空气除尘系统及方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PEI YAN ET AL.,: "Characteristics of negative DC corona discharge in a wire-plate configuration at high temperatures,", SEPARATION AND PURIFICATION TECHNOLOGY,, vol. 139, 8 November 2014 (2014-11-08), XP029116092, ISSN: 1383-5866, DOI: 10.1016/j.seppur.2014.10.026 *
PEI YAN ET AL.,: "Characteristics of negative DC corona discharge in a wire-plate configuration at high temperatures,", SEPARATION AND PURIFICATION TECHNOLOGY,, vol. 139, 8 November 2014 (2014-11-08), XP029116092, ISSN: 1383-5866, DOI: 2 *

Also Published As

Publication number Publication date
WO2020238974A1 (zh) 2020-12-03
CN113891763A (zh) 2022-01-04
WO2020238980A1 (zh) 2020-12-03
WO2020238976A1 (zh) 2020-12-03
CN114072237A (zh) 2022-02-18
CN113905826A (zh) 2022-01-07
CN218834819U (zh) 2023-04-11
CN114390949A (zh) 2022-04-22
WO2020238977A1 (zh) 2020-12-03
WO2020238975A1 (zh) 2020-12-03
CN113950376A (zh) 2022-01-18
WO2020238979A1 (zh) 2020-12-03

Similar Documents

Publication Publication Date Title
WO2020083257A1 (zh) 一种空气除尘系统及方法
WO2020083173A1 (zh) 车载尾气和空气除尘系统、车辆及方法
WO2020238978A1 (zh) 一种电场装置及减少电场耦合方法
WO2020216352A1 (zh) 一种用于半导体制造的洁净室系统及半导体制造系统
CN114761135A (zh) 一种电场装置及减少电场耦合方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20815029

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20815029

Country of ref document: EP

Kind code of ref document: A1