WO2020238859A1 - 信号传输方法、装置及终端 - Google Patents

信号传输方法、装置及终端 Download PDF

Info

Publication number
WO2020238859A1
WO2020238859A1 PCT/CN2020/092131 CN2020092131W WO2020238859A1 WO 2020238859 A1 WO2020238859 A1 WO 2020238859A1 CN 2020092131 W CN2020092131 W CN 2020092131W WO 2020238859 A1 WO2020238859 A1 WO 2020238859A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
wifi
air interface
terminal
connection path
Prior art date
Application number
PCT/CN2020/092131
Other languages
English (en)
French (fr)
Inventor
李景
林景球
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2020238859A1 publication Critical patent/WO2020238859A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference

Definitions

  • the embodiments of the present disclosure relate to the field of communication technologies, and in particular, to a signal transmission method, device, and terminal.
  • 5G NR a global 5G (fifth generation mobile communication) communication standard based on a new OFDM-based air interface design
  • the 5G spectrum has been expanded and multiple frequency bands between 3.3G and 5G have been added, and it is based on IEEE 802.11
  • This wireless LAN communication standard WIFI 5G the commonly used frequency range includes 5170-5835MHz (actually planned but not yet used also includes 4910-5170Mhz), it can be seen that the N79 frequency band (4.4-5.0Ghz) in 5G NR and WIFI 5G
  • the first channel of the 5.1G frequency band is very close. In the scenario where 5G NR and WIFI 5G coexist, there will be more mutual interference between the two.
  • the WIFI antenna supporting WIFI signal transmission and the air interface antenna supporting 4G/5G signal transmission in the terminal are usually placed in relatively close positions. , Even the design of antenna multiplexing will occur, resulting in small antenna isolation between the WIFI antenna and the air interface antenna. It is difficult to avoid the large mutual interference that occurs when WIFI 5G and 5G NR coexist through antenna isolation.
  • the N79 in 5G NR The frequency band is very close to the first channel of the 5.1G frequency band of WIFI 5G. Based on the current frequency device manufacturing technology, it is difficult to manufacture filter components that filter such similar frequency bands to eliminate near-band interference.
  • the embodiments of the present disclosure provide a signal transmission method to solve the problem that the transmission of WIFI 5G signals in the 5G NR and WIFI 5G coexistence scenarios in related technologies will generate reception noise on the transmission frequency band of the 5G NR signals, which affects the reception of 5G NR signals Performance and transmission reliability issues.
  • the embodiments of the present disclosure provide a signal transmission method, which is implemented in a terminal, and the terminal includes a first WIFI antenna for transmitting WIFI 5G signals, a second WIFI antenna, and an air interface for transmitting 5G NR signals. Antenna; the antenna isolation between the second WIFI antenna and the air interface antenna is greater than a preset communication isolation threshold; the method includes:
  • the air interface environment channel includes the N79 channel supporting the N79 frequency band in 5G NR
  • the 5G NR signal is transmitted through the air interface antenna
  • the WIFI 5G signal is transmitted through the second WIFI antenna
  • the 5G NR signal is transmitted through the air interface antenna, and the WIFI 5G signal is transmitted through the first WIFI antenna.
  • the embodiments of the present disclosure also provide a signal transmission device, which is provided on the terminal side.
  • the terminal is provided with a first WIFI antenna and a second WIFI antenna for transmitting WIFI 5G signals, and a signal transmission device for transmitting 5G NR signals.
  • the signal transmission device includes:
  • a channel determining unit configured to determine an air interface environment channel through which the terminal is currently transmitting signals
  • the first processing unit is configured to transmit 5G NR signals through the air interface antenna, and transmit WIFI 5G through the second WIFI antenna when the air interface environment channel includes the N79 channel supporting the N79 frequency band in 5G NR signal;
  • the second processing unit is configured to transmit 5G NR signals through the air interface antenna, and transmit WIFI 5G signals through the first WIFI antenna when the air interface environment channel does not include the N79 channel.
  • embodiments of the present disclosure also provide a terminal, including:
  • the first WIFI antenna is connected to the processor through a first connection path, and is used to transmit WIFI 5G signals;
  • the second WIFI antenna is connected to the processor through a second connection path, and is used to transmit WIFI 5G signals;
  • the air interface antenna is connected to the processor through a third connection path, and is used to transmit 5G NR signals;
  • the antenna isolation between the second WIFI antenna and the air interface antenna meets a preset communication isolation threshold
  • the memory is connected to the processor and used to store a computer program
  • the processor is configured to run the computer program stored in the memory, and when the computer program is executed by the processor, it passes through the first WIFI antenna, the second WIFI antenna, and the air interface antenna, The steps of the signal transmission method according to any one of the first aspect of the present disclosure are implemented.
  • the terminal including the first WIFI antenna for transmitting WIFI 5G signals, the second WIFI antenna, and the air interface antenna for transmitting 5G NR signals is used to determine the air interface environment channel currently used by the terminal for signal transmission
  • the air interface environment channel includes the N79 channel that supports the N79 frequency band in 5G NR
  • the 5G NR signal is transmitted through the air interface antenna
  • the antenna transmits WIFI 5G signals, and when the air interface environment channel does not include the N79 channel, the 5G NR signal is transmitted through the air interface antenna, and the WIFI 5G signal is transmitted through the first WIFI antenna; on the one hand, it is transmitted through the N79 channel in 5G NR It can effectively avoid the influence of noise caused by WIFI 5G signal transmission on 5G NR signal transmission, and at the same time avoid the risk of damage caused by high noise caused by WIFI 5G signal transmission entering 5G NR-related receiving devices in extreme cases.
  • Fig. 1 shows a schematic diagram of an example of setting a first WIFI antenna, a second WIFI antenna, and an air interface antenna in a mobile terminal in an embodiment of the present disclosure.
  • Fig. 2 shows a flowchart of a signal transmission method according to an embodiment of the present disclosure.
  • Fig. 3 shows a structural block diagram of an example of a mobile terminal in an embodiment of the present disclosure.
  • Fig. 4 shows a schematic block diagram of a signal transmission device according to an embodiment of the present disclosure.
  • Fig. 5 is a schematic diagram of the hardware structure of a mobile terminal for implementing various embodiments of the present disclosure.
  • a signal transmission method is provided, mainly for signal transmission in a scenario where 5G NR and WIFI 5G coexist.
  • 5G NR refers to a global 5G communication standard based on a new OFDM air interface design
  • WIFI 5G is a WIFI communication protocol designed for 5G hotspots in the IEEE 802.11 wireless local area network communication standard.
  • the signal transmission method is implemented in the terminal.
  • the terminal includes a first WIFI antenna for transmitting WIFI 5G signals, a second WIFI antenna, and an air interface antenna for transmitting 5G NR signals.
  • the antenna isolation between the second WIFI antenna and the air interface antenna is greater than a preset communication isolation threshold.
  • the communication isolation threshold is the lower limit of the antenna isolation between antennas that do not cause mutual interference in signal transmission between antennas. In this embodiment, it can be based on the engineering experience or experimental simulation data in the 5G NR and WIFI 5G coexistence scenarios It is set in advance, no specific numerical limit is set here.
  • the first WIFI antenna and the air interface antenna are arranged at the first end of the terminal, the second WIFI antenna is arranged at the second end of the terminal, and the spatial distance between the first end and the second end of the terminal
  • the corresponding antenna isolation is greater than the preset communication isolation threshold.
  • the first end and the second end of the terminal can be selected and set according to the specific size or shape of the terminal.
  • the first end of the terminal may be the upper part of the terminal
  • the second end of the terminal may be the lower part of the terminal.
  • the air interface antenna and the first WIIF antenna are arranged on the upper part of the terminal, and the second WIFI antenna is arranged on the lower part of the terminal.
  • the spatial distance between the air interface antenna and the second WIFI antenna is relatively long, and a larger antenna isolation can be obtained, which is greater than a preset communication isolation threshold.
  • the signal transmission method in this embodiment includes: step 201 to step 203.
  • Step 201 Determine the air interface environment channel through which the terminal currently transmits signals.
  • the air interface environment channel is the air interface channel involved in the network environment where the terminal currently works.
  • the terminal in the air interface paging and access procedures designed in the 5G NR air interface standard, after the terminal initiates the random access procedure according to the received air interface paging message, it is possible to determine where the air interface channel for establishing communication is located.
  • Frequency band which determines the air interface environment channel currently used by the terminal for signal transmission.
  • the air interface antenna is not only used to transmit 5G NR signals, but also used to transmit 4G signals.
  • 4G signals refer to communication signals transmitted based on the fourth-generation mobile communication standard.
  • the air interface antenna supports the transmission of 4G signals and 5G NR signals at the same time, enabling the terminal to support multiple communication standards, and the equipment has a wider range of applications.
  • step 201 it is possible to first detect whether the current terminal is registered in the 4G frequency band or the 5G NR frequency band. When it is determined that the terminal is registered in the 4G frequency band, it can be determined that the air interface environment channel does not include the N79 channel that supports the N79 frequency band in 5G NR.
  • Step 202 When the air interface environment channel includes the N79 channel supporting the N79 frequency band in 5G NR, the 5G NR signal is transmitted through the air interface antenna, and the WIFI 5G signal is transmitted through the second WIFI antenna.
  • the N79 frequency band (4.4-5.0Ghz) of 5G NR is very close to the first channel of WIFI 5G 5.1G frequency band (WIFI 5G frequency band includes 5170-5835MHz and 4910-5170Mhz). When transmitting signals through N79 channel, it is compatible with WIFI 5G signal. Larger mutual interference occurs between the transmissions.
  • the 5G NR signal is transmitted through the air interface antenna and the WIFI 5G signal is transmitted through the second WIFI antenna.
  • the distance between the air interface antenna and the second WIFI antenna can be greater than the preset value
  • the antenna isolation of the communication isolation threshold ensures that the 5G NR signal transmitted through the air interface antenna will not be interfered by the WIFI 5G signal sent by the second WIFI antenna, which effectively guarantees the reception performance of the 5G NR signal while avoiding extreme situations.
  • the greater noise intensity brought by the WIFI 5G signal is connected to the 5G NR signal receiving module, which damages related components and ensures the reliability of 5G NR communication.
  • 5G NR and WIFI 5G coexist the normal operation of 5G NR is effectively guaranteed, and 5G NR meets the high-speed transmission rate in megabits per second (Gbps), providing users with a better network communication experience.
  • the air interface environment signal includes the N79 channel that supports the N79 frequency band in 5G NR
  • the antenna transmits 5G NR signals, and transmits WIFI 5G signals through the second WIFI antenna located at the bottom of the terminal.
  • the air interface antenna and the second WIFI antenna can be spaced far away to obtain antenna isolation greater than the preset communication isolation threshold. In order to prevent the noise brought by WIFI 5G signal transmission from affecting the reception performance of 5G NR signal.
  • the 5G NR signal is transmitted through the air interface antenna in the form of the upper antenna on the upper part of the terminal, which can avoid the impact of the use environment on the antenna transmission performance when the user generally uses the terminal to hold the lower part of the terminal.
  • 5G NR and WIFI 5G coexistence Give priority to ensuring the normal operation of 5G NR, through 5G NR to meet the high-speed transmission rate in gigabits per second (Gbps), compared to WIFI 5G can only provide theoretical transmission speed in megabits per second (Mbps), Provide users with a better network communication experience.
  • Step 203 When the air interface environment channel does not include the N79 channel, configure the terminal to transmit the 5G NR signal through the air interface antenna and transmit the WIFI 5G signal through the first WIFI antenna.
  • the air interface environment signal may include channels that support other frequency bands in 5G NR except for N79 or 4G channels that support 4G frequency bands.
  • the frequency bands of these channels are relatively far apart from the frequency bands of WIFI 5G signals. When the signals of these channels are transmitted, there will be no significant mutual interference with WIFI 5G signal transmission.
  • the terminal When the air interface environment signal does not include the N79 channel, configure the terminal to transmit 5G NR signals through the air interface antenna and transmit WIFI 5G signals through the first WIFI antenna, which can pass the first WIFI antenna that does not need to form a high antenna isolation with the air interface antenna
  • the transmission of WIFI 5G signals enables the transmission of WIFI 5G signals to obtain an antenna transmission environment similar to that of 5G NR signal transmission. On the basis of effectively ensuring the transmission performance of 5G NR signals, the transmission performance of WIFI 5G signals is also guaranteed.
  • the air interface antenna is set on the upper part of the terminal.
  • the transmission of 5G NR signals and the transmission of WIFI 5G signals through the first WIFI antenna set on the upper part of the terminal can enable the transmission of 5G NR signals and WIFI 5G signals, which can avoid the problems caused by users generally holding the lower part of the terminal.
  • FIG. 2 The embodiment shown in FIG. 2 has been described above.
  • the first WIFI antenna and the air interface antenna are arranged at the first end of the terminal, and the second WIFI antenna is arranged at the second end of the terminal.
  • the spatial distance between the first end and the second end of the terminal corresponds to The antenna isolation is greater than the preset communication isolation threshold.
  • the implemented signal transmission method may also include:
  • the 5G NR signal is transmitted through the air interface antenna, and the WIFI 5G signal is transmitted through the first WIFI antenna.
  • the specific settings of the first WIFI antenna, the second WIFI antenna, and the air interface antenna may be as shown in FIG. 1.
  • the 5G NR signal is transmitted through the air interface antenna set on the upper part of the terminal and the WIFI 5G signal is transmitted through the first WIFI antenna set on the upper part of the terminal.
  • the antenna performance will not be affected by the user holding the lower part of the terminal.
  • the transmission of 5G NR signals and WIFI 5G signals will not be affected by the use environment of the terminal, and better signal transmission performance can be obtained.
  • the signal transmission method when the air interface environment channel does not include the N79 channel, after transmitting the WIFI 5G signal through the first WIFI antenna, the signal transmission method further includes:
  • the switch is switched to transmit the WIFI 5G signal through the second WIFI antenna.
  • the implemented signal transmission method further includes: in the case that the air interface environment channel includes the N79 channel, after the WIFI 5G signal is transmitted through the second WIFI antenna, the implemented signal transmission method further includes:
  • the air interface environment channel does not include the N79 channel, it is switched to transmit the WIFI 5G signal through the first WIFI antenna.
  • the WIFI 5G signal After the WIFI 5G signal is transmitted through the first WIFI antenna or the second WIFI antenna, continue to determine the air interface environment channel used by the terminal for signal transmission, and switch the antenna used to transmit the WIFI 5G signal according to the actual state change of the air interface environment channel. Detect changes in the air interface environment of the terminal, and dynamically adjust the antenna transmission path of the WIFI 5G signal in real time, which can effectively avoid the impact of the transmission of the WIFI 5G signal on the transmission performance of the 5G NR signal in real time, and ensure the safe acquisition of 5G NR signals by the 5G NR device Transmission reliability, and can dynamically ensure the WIFI 5G signal transmission performance in real time without affecting the transmission performance of the 5G NR signal.
  • the terminal includes a controller.
  • the controller is used to control the opening or closing of the first connection path and the opening or closing of the second connection path.
  • the first connection path is used to connect to the first WIFI antenna
  • the second connection path is used to connect to the second WIFI antenna.
  • implementing step 202 shown in FIG. 2 to transmit WIFI 5G signals through the second WIFI antenna includes:
  • Step 2021 Control the first connection path to be disconnected and connect the second connection path through the controller
  • Step 2031 Control the first connection path to be disconnected and connect the second connection path through the controller.
  • the controller in the terminal By setting the controller in the terminal to control the connection path between the terminal and the first WIFI antenna and the second WIFI antenna, it is possible to realize changes in the air interface environment where the terminal works, and quickly and efficiently configure the terminal on the first WIFI antenna and Switching between the second Wi-Fi antennas to transmit Wi-Fi 5G signals effectively avoids the impact of Wi-Fi 5G signal transmission on the transmission performance of 5G NR signals, and further improves configuration efficiency.
  • the terminal in addition to the controller in the above embodiment, also includes a single pole double throw switch.
  • the single pole double throw switch is used to turn on or The first connection path is disconnected, and the second connection path is connected or disconnected.
  • the single pole double throw switch (SPDT, Single Pole Double Throw) can be set as shown in Figure 3, connecting the controller, the first WIFI antenna, and the second WIFI antenna, and the controller controls whether it is connected to the first WIFI antenna.
  • the first connection path is still connected to the second connection path of the second WIFI antenna.
  • the SPDT switch connects the first connection path, the second connection path will be disconnected accordingly, and the SPDT switch is connected.
  • the connection path with the second WIFI antenna is connected, the connection path with the first WIFI antenna will be disconnected accordingly.
  • the implemented step 2021 specifically includes:
  • step 2031 implemented specifically includes:
  • the single-pole double-throw switch is controlled by the controller to connect to the first connection path and disconnect the second connection path.
  • the single-pole double-throw switch is controlled by the controller for a single time, so that one of the two connection paths between the terminal and the first WIFI antenna and the second WIFI antenna can be connected and the other disconnected. Control to further improve control efficiency.
  • connection paths of the terminal and the first WIFI antenna and the second WIFI antenna are independent of each other. Based on the disclosure of this embodiment, those skilled in the art may consider the design simplicity or the cost of installation. For example, a simple modification without creativity is required. For example, two connection paths between the terminal and the first WIFI antenna and the second WIFI antenna are respectively provided with independent switches for control.
  • the terminal also includes a low-pass filter for processing signals in the N78 band of 5G NR.
  • the low-pass filter can be set up as shown in Figure 3, between the transceiver module for N78 band signals and the air interface antenna.
  • the air interface environment channel does not include the N79 channel and the air interface environment channel includes the N78 channel supporting the N78 frequency band in 5G NR
  • a low-pass filter is used to process the 5G NR signal transmitted through the air interface antenna.
  • the N78 frequency band range is 3300Mhz-3800Mhz. Although it is not very close to the WIFI 5G frequency range (5170-5835MHz and 4910-5170Mhz), the WIFI 5G signal is still strong when the signal strength of WIFI 5G is high. It will raise the noise floor and cause noise to affect the signal transmission of the N78 channel supporting the N78 frequency band. When the air interface environment channel does not include the N79 channel but includes the N78 frequency band, there is no need to switch the second WIFI antenna and continue to use the first WIFI antenna for transmission. The WIFI 5G signal can ensure that the WIFI 5G signal can obtain the antenna transmission environment similar to the 5G NR signal transmission.
  • the transmission performance of the WIFI 5G signal can be guaranteed; at the same time, a low-pass filter is used. Processing the 5G NR signal transmitted through the air interface antenna can suppress the interference caused by the WIFI 5G signal transmission to the 5G NR signal, and ensure that the transmission of the 5G NR signal is not affected by the WIF 5G signal.
  • a terminal including a first WIFI antenna for transmitting WIFI 5G signals, a second WIFI antenna, and an air interface antenna for transmitting 5G NR signals Determine the air interface environment channel that the terminal is currently transmitting signals.
  • the air interface environment channel includes the N79 channel that supports the N79 frequency band in 5G NR
  • the 5G NR signal is transmitted through the air interface antenna, and the antenna isolation with the air interface antenna is greater than the preset
  • the second WIFI antenna of the communication isolation threshold of the communication isolation threshold transmits WIFI 5G signals, and when the air interface environment channel does not include the N79 channel, the 5G NR signal is transmitted through the air interface antenna and the WIFI 5G signal is transmitted through the first WIFI antenna;
  • the signal is transmitted through the N79 channel in 5G NR, it can effectively avoid the influence of the noise caused by WIFI 5G signal transmission on the 5G NR signal transmission, and at the same time avoid the high noise caused by WIFI 5G signal transmission from entering the 5G NR related
  • the risk of damage caused by the receiving device ensures the safety of 5G NR-related receiving devices, thereby ensuring the reliability of 5G NR signal transmission; on the other hand, when transmitting signals through channels of other frequency bands in 5G NR except for the N79
  • FIG. 4 shows a block diagram of a signal transmission device 3000 that can implement the above-implemented signal transmission method.
  • the signal transmission device 3000 is installed on the terminal side.
  • the signal transmission device 3000 may be a functional module installed inside the terminal, or installed in the terminal in the form of plug-ins, inserts, patches, etc., or established through wired or wireless communication. Terminal connection.
  • the terminal includes a first WIFI antenna for transmitting WIFI 5G signals, a second WIFI antenna, and an air interface antenna for transmitting 5G NR signals; the antenna isolation between the second WIFI antenna and the air interface antenna is greater than a preset Communication isolation threshold.
  • the signal transmission device 3000 includes: a channel determination unit 3100, a first processing unit 3200, and a second processing unit 3300.
  • the channel determining unit 3100 is configured to determine the air interface environment channel through which the terminal is currently transmitting signals
  • the first processing unit 3200 is configured to transmit 5G NR signals through the air interface antenna and transmit WIFI 5G signals through the second WIFI antenna when the air interface environment channel includes the N79 channel supporting the N79 frequency band in 5G NR ;
  • the second processing unit 3300 is configured to transmit 5G NR signals through the air interface antenna and transmit WIFI 5G signals through the first WIFI antenna when the air interface environment channel does not include the N79 channel.
  • the first WIFI antenna and the air interface antenna are provided at the first end of the terminal; the second WIFI antenna is provided at the second end of the terminal; the first end of the terminal is connected to the The antenna isolation corresponding to the spatial distance between the second ends is greater than the preset communication isolation threshold; the signal transmission device 3000 further includes:
  • a device for transmitting 5G NR signals through the air interface antenna and transmitting WIFI 5G signals through the first WIFI antenna during each startup process of the terminal is a device for transmitting 5G NR signals through the air interface antenna and transmitting WIFI 5G signals through the first WIFI antenna during each startup process of the terminal.
  • the signal transmission device 3000 further includes:
  • the terminal includes a controller for controlling the connection or disconnection of the first connection path and the connection or disconnection of the second connection path; the first connection path is used for connecting The first WIFI antenna; the second connection path is used to connect the second WIFI antenna;
  • the first processing unit 3200 in the signal transmission device 3000 is further configured to: control the first connection path to be disconnected and connect the second connection path through the controller; and, the second connection path in the signal transmission device 3000
  • the processing unit 3300 is further configured to control the disconnection of the first connection path and connect the second connection path through the controller.
  • the terminal further includes a single-pole double-throw switch, and the single-pole double-throw switch is used to turn on or off the first pole according to the control of the controller.
  • Connection path and connecting or disconnecting the second connection path;
  • the first processing unit 3200 in the signal transmission device 3000 is further configured to: control the single-pole double-throw switch to connect the second connection through the controller And disconnect the first connection path;
  • the second processing unit 3300 in the signal transmission device 3000 is further configured to: control the single-pole double-throw switch to connect to the first connection path through the controller, and Disconnect the second connection path.
  • the terminal further includes a low-pass filter for processing N78 band signals in 5G NR; the signal transmission device 3000 is also used for:
  • the low-pass filter is used to process the 5G NR signal transmitted through the air interface antenna.
  • the air interface antenna included in the terminal in the foregoing embodiment is also used to transmit 4G signals.
  • the signal transmission device 3000 can be implemented in various ways.
  • the signal transmission device 3000 can be implemented by configuring the processor through instructions.
  • the instruction may be stored in the ROM, and when the device is started, the instruction is read from the ROM into the programmable device to realize the signal transmission device 3000.
  • the signal transmission device 3000 can be solidified into a dedicated device (for example, ASIC).
  • the signal transmission device 3000 can be divided into mutually independent units, or they can be combined together for implementation.
  • the signal transmission device 3000 may be implemented by one of the foregoing various implementation manners, or may be implemented by a combination of two or more of the foregoing various implementation manners.
  • the signal transmission device 3000 provided in the embodiments of the present disclosure can implement the various processes implemented by the signal transmission methods provided in the foregoing embodiments, and in order to avoid repetition, details are not described herein again.
  • the air interface environment channel currently used by the terminal for signal transmission is determined, and the air interface environment channel includes support
  • the 5G NR signal is transmitted through the air interface antenna and the WIFI 5G signal is transmitted through the second WIFI antenna whose antenna isolation with the air interface antenna is greater than the preset communication isolation threshold.
  • the 5G NR signal is transmitted through the air interface antenna and the WIFI 5G signal is transmitted through the first WIFI antenna; on the one hand, when the signal is transmitted through the N79 channel in the 5G NR, it can effectively avoid the WIFI 5G signal transmission
  • the impact of the noise brought on 5G NR signal transmission while avoiding the risk of damage caused by the high noise brought by WIFI 5G signal transmission into 5G NR-related receiving devices in extreme cases, and ensuring the safety of 5G NR-related receiving devices ,
  • ensuring the reliability of 5G NR signal transmission when transmitting signals through channels of other frequency bands in 5G NR except for the N79 channel, it can effectively ensure the WIFI 5G signal on the basis of ensuring the transmission performance of 5G NR signals
  • the 5G NR and WIFI 5G coexistence scenarios can effectively guarantee the signal transmission performance of 5G NR, and the high-speed transmission rate of 5G NR can provide users with a better network signal
  • Fig. 5 is a schematic diagram of the hardware structure of a terminal for implementing various embodiments of the present disclosure.
  • the terminal 100 includes but is not limited to: a radio frequency unit 101, a network module 102, an audio output unit 103, an input unit 104, a sensor 105, a display unit 106, a user input unit 107, an interface unit 108, a memory 109, a processor 110, and a power supply 111 and other components.
  • a radio frequency unit 101 includes but is not limited to: a radio frequency unit 101, a network module 102, an audio output unit 103, an input unit 104, a sensor 105, a display unit 106, a user input unit 107, an interface unit 108, a memory 109, a processor 110, and a power supply 111 and other components.
  • terminal structure shown in FIG. 5 does not constitute a limitation on the terminal, and the terminal may include more or less components than shown in the figure, or combine certain components, or arrange different components.
  • terminals include, but are not limited to, mobile phones, tablet computers, notebook computers, palmtop computers, vehicle-mounted terminals, wearable
  • the radio frequency unit 101 includes a first WIFI antenna 1011 for transmitting WIFI 5G signals, a second WIFI antenna 1012, and an air interface antenna 1013 for transmitting 5G NR signals; between the second WIFI antenna 1012 and the air interface antenna 1013
  • the antenna isolation is greater than the preset communication isolation threshold; the radio frequency unit 101 is used to transmit WIFI 5G signals and transmit 5G NR signals.
  • the processor 110 is used for:
  • the air interface environment channel includes the N79 channel supporting the N79 frequency band in 5G NR
  • the 5G NR signal is transmitted through the air interface antenna
  • the WIFI 5G signal is transmitted through the second WIFI antenna
  • the 5G NR signal is transmitted through the air interface antenna, and the WIFI 5G signal is transmitted through the first WIFI antenna.
  • the terminal including the first WIFI antenna for transmitting WIFI 5G signals, the second WIFI antenna, and the air interface antenna for transmitting 5G NR signals, determine the air interface environment channel of the terminal's current signal transmission, and the air interface environment channel includes support for 5G NR
  • the 5G NR signal is transmitted through the air interface antenna and the WIFI 5G signal is transmitted through the second WIFI antenna whose antenna isolation with the air interface antenna meets the preset communication isolation threshold, while in the air interface environment
  • the 5G NR signal is transmitted through the air interface antenna and the WIFI 5G signal is transmitted through the first WIFI antenna.
  • the signal when the signal is transmitted through the N79 channel in 5G NR, it can effectively avoid the WIFI 5G signal transmission.
  • the impact of noise on 5G NR signal transmission while avoiding the risk of damage caused by high noise caused by WIFI 5G signal transmission entering 5G NR-related receiving devices in extreme cases, and ensuring the safety of 5G NR-related receiving devices, and then Ensure the reliability of 5G NR signal transmission;
  • when transmitting signals through channels of other frequency bands in 5G NR except for the N79 channel it can effectively ensure the transmission of WIFI 5G signals on the basis of ensuring 5G NR signal transmission performance performance.
  • the 5G NR and WIFI 5G coexistence scenarios can effectively guarantee the signal transmission performance of 5G NR, and the high-speed transmission rate of 5G NR can provide users with a better network experience.
  • the radio frequency unit 101 can be used for receiving and sending signals in the process of sending and receiving information or talking. Specifically, the downlink data from the base station is received and processed by the processor 110; Uplink data is sent to the base station.
  • the radio frequency unit 101 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 101 can also communicate with the network and other devices through a wireless communication system.
  • the terminal provides users with wireless broadband Internet access through the network module 102, such as helping users to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 103 can convert the audio data received by the radio frequency unit 101 or the network module 102 or stored in the memory 109 into audio signals and output them as sounds. Moreover, the audio output unit 103 may also provide audio output related to a specific function performed by the terminal 100 (for example, call signal reception sound, message reception sound, etc.).
  • the audio output unit 103 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 104 is used to receive audio or video signals.
  • the input unit 104 may include a graphics processing unit (GPU) 1041 and a microphone 1042.
  • the graphics processor 1041 is configured to monitor images of still pictures or videos obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode. Data is processed.
  • the processed image frame can be displayed on the display unit 106.
  • the image frame processed by the graphics processor 1041 may be stored in the memory 109 (or other storage medium) or sent via the radio frequency unit 101 or the network module 102.
  • the microphone 1042 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be sent to a mobile communication base station via the radio frequency unit 101 for output in the case of a telephone call mode.
  • the terminal 100 also includes at least one sensor 105, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 1061 according to the brightness of the ambient light.
  • the proximity sensor can close the display panel 1061 and/or when the terminal 100 is moved to the ear. Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three-axis), and can detect the magnitude and direction of gravity when stationary, and can be used to identify terminal posture (such as horizontal and vertical screen switching, related games, Magnetometer attitude calibration), vibration recognition related functions (such as pedometer, percussion), etc.; sensor 105 can also include fingerprint sensors, pressure sensors, iris sensors, molecular sensors, gyroscopes, barometers, hygrometers, thermometers, infrared Sensors, etc., will not be repeated here.
  • the display unit 106 is used to display information input by the user or information provided to the user.
  • the display unit 106 may include a display panel 1061, and the display panel 1061 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), etc.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the user input unit 107 may be used to receive inputted numeric or character information, and generate key signal input related to user settings and function control of the terminal.
  • the user input unit 107 includes a touch panel 1071 and other input devices 1072.
  • the touch panel 1071 also called a touch screen, can collect user touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc.) on the touch panel 1071 or near the touch panel 1071. operating).
  • the touch panel 1071 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it To the processor 110, the command sent by the processor 110 is received and executed.
  • the touch panel 1071 can be realized by various types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the user input unit 107 may also include other input devices 1072.
  • other input devices 1072 may include, but are not limited to, a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackball, mouse, and joystick, which will not be repeated here.
  • the touch panel 1071 can be overlaid on the display panel 1061.
  • the touch panel 1071 detects a touch operation on or near it, it is transmitted to the processor 110 to determine the type of the touch event.
  • the type of event provides corresponding visual output on the display panel 1061.
  • the touch panel 1071 and the display panel 1061 are used as two independent components to realize the input and output functions of the terminal, in some embodiments, the touch panel 1071 and the display panel 1061 can be integrated. Realize the input and output functions of the terminal, which are not limited here.
  • the interface unit 108 is an interface for connecting an external device with the terminal 100.
  • the external device may include a wired or wireless headset port, an external power source (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input/output (I/O) port, video I/O port, headphone port, etc.
  • the interface unit 108 may be used to receive input (for example, data information, power, etc.) from an external device and transmit the received input to one or more elements in the terminal 100 or may be used to communicate between the terminal 100 and the external device. Transfer data between.
  • the memory 109 can be used to store software programs and various data.
  • the memory 109 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system, an application program required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; Data (such as audio data, phone book, etc.) created by the use of mobile phones.
  • the memory 109 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 110 is the control center of the terminal. It uses various interfaces and lines to connect the various parts of the entire terminal. It executes by running or executing software programs and/or modules stored in the memory 109, and calling data stored in the memory 109. Various functions of the terminal and processing data, so as to monitor the terminal as a whole.
  • the processor 110 may include one or more processing units; optionally, the processor 110 may integrate an application processor and a modem processor, where the application processor mainly processes the operating system, user interface, and application programs, etc.
  • the adjustment processor mainly deals with wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 110.
  • the terminal 100 may also include a power source 111 (such as a battery) for supplying power to various components.
  • a power source 111 such as a battery
  • the power source 111 may be logically connected to the processor 110 through a power management system, so as to manage charging, discharging, and power consumption management through the power management system. And other functions.
  • the terminal 100 includes some functional modules not shown, which will not be repeated here.
  • an embodiment of the present disclosure also provides a terminal 100, including: a first WIFI antenna 1011, a second WIFI antenna 1012, an air interface antenna 1013, a memory 109, and a processor 110;
  • the first WIFI antenna 1011 is connected to the processor 110 through a first connection path, and is used to transmit WIFI 5G signals;
  • the second WIFI antenna 1012 is connected to the processor 110 through a second connection path, and is used to transmit WIFI 5G signals;
  • the air interface antenna 1013 is connected to the processor 110 through a third connection path, and is used to transmit 5G NR signals;
  • the antenna isolation between the second WIFI antenna and the air interface antenna is greater than a preset communication isolation threshold
  • the memory 109 is connected to the processor 110 and is used to store computer programs
  • the processor 110 is configured to run the computer program stored in the memory 109.
  • the computer program is executed by the processor 110, the above is achieved through the first WIFI antenna 1011, the second WIFI antenna 1012, and the air interface antenna 1013.
  • Each process of the embodiment of the signal transmission method can achieve the same technical effect. In order to avoid repetition, it will not be repeated here.
  • the first WIFI antenna 1011 and the air interface antenna 1013 are provided at the first end of the terminal 100; the second WIFI antenna 1012 is provided at the second end of the terminal 100,
  • the antenna isolation corresponding to the spatial distance between the first end and the second end of the terminal 100 is greater than a preset communication isolation threshold.
  • the terminal 100 further includes a controller 1015.
  • the processor 110 is connected to the first WiFI antenna 1011 through a first connection path via the controller 1015; the processor 110 is connected via a control
  • the device 1015 is connected to the second WIFI 1012 antenna through the second connection path; the controller 1015 is used to control the connection or disconnection of the first connection path and the connection or disconnection of the second connection path.
  • the terminal further includes a low-pass filter 202, and the processor 110 is connected to the air interface antenna 1013 through a third connection path via the low-pass filter 202; To process N78 band signals in 5G NR.
  • the terminal 100 further includes a controller 1015 and a single-pole double-throw switch 1016.
  • the processor 110 sequentially passes through the controller 1015, the single-pole double-throw switch 1016, and the first WiFI antenna 1011 is connected through the first connection path; the processor 110 is connected to the second WIFI antenna 1012 through the second connection path via the controller 1015 and the SPDT switch 1016 in turn; the controller 1015 is used to control the SPDT switch 1016, which is turned on Or disconnect the first connection path, and connect or disconnect the second connection path.
  • the air interface antenna 1013 is also used to transmit 4G signals.
  • FIG. 3 shows a structural block diagram of an example of the terminal 100 in the embodiment of the present disclosure.
  • the terminal 100 includes a memory 109, a processor 110, a first WIFI antenna 1011, a second WIFI antenna 1012, an air interface antenna 1013, a controller 1015, a single-pole double-throw switch 1016, and the terminal also includes a 5G NR combination Router 201, N78 signal low-pass filter 202, N78 signal transceiver module 203, N79 signal transceiver module 204, 5G NR modem 205, WIFI 5G combiner 206, WIFI 5G sending module 207, WIFI 5G receiving module 208, WIFI 5G Modem 209.
  • the processor 110 executes the computer program stored in the memory 109 while running, executes the steps required in each process of the signal transmission method in the above method embodiment, and provides the control signal to the single pole double throw switch 106 to the controller 1015 , Connect the first connection path with the first WIFI antenna 1011, or connect the second connection path with the second WIFI antenna 1012, to realize the switching of the first WIFI antenna or the second WIFI antenna to transmit WIFI according to the control signal
  • the 5G signal is also used for data exchange processing with the 5G NR modem 205 and the WIFI 5G modem 209.
  • the 5G NR combiner 201 is used to integrate the 5G NR transmit signal and the received signal for transmission through the air interface antenna 1013.
  • the N78 signal low-pass filter 202 is used to suppress the interference of the N78 band signal during the WIFI 5G signal transmission. Due to the large gap between the N78 band and the WIFI 5G band, the N78 signal low-pass filter is made based on frequency devices in related technologies Craftsmanship can be made.
  • the N78 signal transceiver module 203 is used to receive and transmit N78 frequency band signals in 5G NR.
  • the N79 signal transceiver module 204 is used to receive and transmit signals in the N79 frequency band in 5G NR.
  • the 5G NR modem 205 is used to determine the transmission, reception and corresponding power of the 5G NR signal.
  • the WIFI 5G combiner 206 is used to integrate the transmitted and received signals of the WIFI 5G for transmission through the first WIFI antenna 1011 or the second WIFI antenna 1012.
  • the WIFI 5G sending module 207 is used to transmit WIFI 5G signals.
  • the WIFI 5G receiving module 208 is used to receive WIFI 5G signals.
  • the WIFI 5G modem 209 is used to modulate and demodulate the WIFI 5G and detect the corresponding transmission power.
  • the first WIFI antenna 1011 and the second WIFI antenna 1012 are shown arranged side by side, forming a relatively long spatial distance from the air interface antenna 1013, the actual first WIFI antenna 1011, the second WIFI antenna 1012 and the air interface
  • the antenna 1013 can be arranged in the terminal as shown in FIG. 1, the first WIFI antenna 1011 and the air interface antenna 1013 are arranged on the upper part of the terminal; the second WIFI antenna 1012 is arranged on the lower part of the terminal.
  • the terminal 100 shown in FIG. 3 can support 5G NR signal and WIFI 5G signal transmission at the same time.
  • the processor 110 runs the computer program stored in the memory 109 for implementing the signal transmission method provided by the foregoing various embodiments, it is determined The air interface environment channel that the terminal 100 is currently transmitting signals.
  • the processor 110 issues a control command to the controller 1015, and the controller 1015 controls the SPDT switch 1016 to connect to it.
  • the 5G NR signal is transmitted through the air interface antenna 1013, and through the second WIFI antenna 1012 whose antenna isolation with the air interface antenna is greater than the preset communication isolation threshold WIFI 5G signal;
  • the processor 110 issues a control command to the controller 1015, and the controller 1015 controls the single-pole double-throw switch 1016 to turn on the second connection between the first WIFI antenna 1012 Connect the channel, transmit 5G NR signals through the air interface antenna 1013, and transmit WIFI 5G signals through the first WIFI antenna 1011; on the one hand, when transmitting signals through the N79 channel in 5G NR, it can effectively avoid the noise caused by WIFI 5G signal transmission.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开公开了一种信号传输方法、装置及终端。该方法实施于终端,终端中包括用于传输WIFI 5G信号的第一WIFI天线、第二WIFI天线以及用于传输5G NR信号的空口天线;该方法包括:确定终端当前传输信号的空口环境信道;在空口环境信道包括支持5G NR中N79频段的N79信道的情况下,通过空口天线传输5G NR信号,并通过第二WIFI天线传输WIFI 5G信号;在空口环境信道不包括N79信道的情况下,通过空口天线传输5G NR信号,并通过第一WIFI天线传输WIFI 5G信号。

Description

信号传输方法、装置及终端
相关申请的交叉引用
本申请主张在2019年5月31日在中国提交的中国专利申请号No.201910468191.7的优先权,其全部内容通过引用包含于此。
技术领域
本公开实施例涉及通信技术领域,尤其涉及一种信号传输方法、装置及终端。
背景技术
随着通信技术的快速发展,移动通信进入5G时代。在5G NR这一基于OFDM的全新空口设计的全球性5G(第五代移动通信)通信标准中,对5G频谱进行了扩展,新增了3.3G到5G之间多个频段,而基于IEEE 802.11这一无线局域网通信标准的WIFI 5G,常用频段范围包括5170-5835MHz(实际规划但暂未使用的还包括4910-5170Mhz),可见,5G NR中的N79频段(4.4-5.0Ghz)与WIFI 5G的5.1G频段的首信道十分接近,在5G NR与WIFI 5G共存的场景下两者之间将会产生较多互干扰。
而受制于目前终端(例如手机)的便携性设计带来的有限外观尺寸,在终端中支持WIFI信号传输的WIFI天线与支持4G/5G信号传输的空口天线通常被布局设置在相对较近的位置,甚至会出现天线复用的设计,导致WIFI天线与空口天线之间天线隔离度较小,难以通过天线隔离避免在WIFI 5G以及5G NR共存时出现的较大互干扰,而5G NR中的N79频段与WIFI 5G的5.1G频段的首信道十分接近,基于目前的频率器件制造技术,难以制造出针对如此相近频带进行滤波去近频带干扰的滤波器件,所以,目前在进行5G WIFI信号发射时,通常会抬高底噪,会有较大噪声进入对基于5G NR中的N79频段通信时的接收信号中,影响5G NR的接收性能。特别是在5G WIFI信号发射带来噪声信号强度较大的情况,会有较大的功率进入5G NR的接收模块,会导致相应的器件损毁,极大地影响5G NR的通信可靠性。
发明内容
本公开实施例提供一种信号传输方法,以解决相关技术中在5G NR与WIFI 5G共存场景下WIFI 5G信号的发射,会在5G NR信号的传输频段上产生接收噪声,影响5G NR信号的接收性能以及传输可靠性的问题。
为了解决上述技术问题,本公开是这样实现的:
第一方面,本公开实施例提供了一种信号传输方法,实施于终端,所述终端中包括用于传输WIFI 5G信号的第一WIFI天线、第二WIFI天线以及用于传输5G NR信号的空口天线;所述第二WIFI天线与所述空口天线之间的天线隔离度大于预设的通信隔离度阈值;所述方法包括:
确定所述移动终端当前用于信号传输的空口环境信道;
在所述空口环境信道包括支持5G NR中N79频段的N79信道的情况下,通过所述空口天线,传输5G NR信号,并通过所述第二WIFI天线,传输WIFI 5G信号;
在所述空口环境信道不包括所述N79信道的情况下,通过所述空口天线,传输5G NR信号,并通过所述第一WIFI天线,传输WIFI 5G信号。
第二方面,本公开实施例还提供一种信号传输装置,设置在终端侧,所述终端中设置有用于传输WIFI 5G信号的第一WIFI天线、第二WIFI天线以及用于传输5G NR信号的空口天线;所述第二WIFI天线与所述空口天线之间的天线隔离度满足预设的通信隔离度阈值;
所述信号传输装置包括:
信道确定单元,用于确定所述终端当前传输信号的空口环境信道;
第一处理单元,用于在所述空口环境信道包括支持5G NR中N79频段的N79信道的情况下,通过所述空口天线,传输5G NR信号,并通过所述第二WIFI天线,传输WIFI 5G信号;
第二处理单元,用于在所述空口环境信道不包括所述N79信道的情况下,通过所述空口天线,传输5G NR信号,并通过所述第一WIFI天线,传输WIFI 5G信号。
第三方面,本公开实施例还提供一种终端,包括:
第一WIFI天线、第二WIFI天线、空口天线、存储器以及处理器;
所述第一WIFI天线,与所述处理器通过第一连接通路连接,用于传输WIFI 5G信号;
所述第二WIFI天线,与所述处理器通过第二连接通路连接,用于传输WIFI 5G信号;
所述空口天线,与所述处理器通过第三连接通路连接,用于传输5G NR信号;
所述第二WIFI天线与所述空口天线之间的天线隔离度满足预设的通信隔离度阈值;
所述存储器,与所述处理器连接,用于存储计算机程序;
所述处理器,用于运行所述存储器存储的所述计算机程序,所述计算机程序被所述处理器执行时,通过所述第一WIFI天线、所述第二WIFI天线以及所述空口天线,实现如本公开的第一方面任一项所述的信号传输方法的步骤。
在本公开实施例中,通过对包括用于传输WIFI 5G信号的第一WIFI天线、第二WIFI天线以及用于传输5G NR信号的空口天线的终端,确定终端当前用于信号传输的空口环境信道,在空口环境信道包括支持5G NR中N79频段的N79信道的情况下,通过空口天线传输5G NR信号,并通过与空口天线之间的天线隔离度大于预设的通信隔离度阈值的第二WIFI天线,传输WIFI 5G信号,而在空口环境信道不包括N79信道的情况下,通过空口天线传输5G NR信号,并通过第一WIFI天线传输WIFI 5G信号;一方面在通过5G NR中的N79信道传输信号时,可以有效避免WIFI 5G信号传输带来的噪声对5G NR信号传输的影响,同时避免极端情况下WIFI 5G信号传输带来的较高噪声进入5G NR相关的接收器件带来的损毁风险,保证5G NR相关的接收器件的安全性,进而保证5G NR信号传输的可靠性;另一方面在通过5G NR中除了N79信道之外的其他频段的信道传输信号时,可以在保证5G NR信号传输性能的基础上,有效保证WIFI 5G信号的传输性能。以此实现5G NR与WIFI 5G共存场景下有效保证5G NR的信号传输性能,通过5G NR的高速传输速率提供用户更好的网络信号传输体验。
附图说明
图1示出了本公开实施例中在移动终端中设置第一WIFI天线、第二WIFI天线以及空口天线的例子的示意图。
图2示出了本公开实施例的信号传输方法的流程图。
图3示出了本公开实施例中移动终端的一个示例的结构框图。
图4示出了本公开实施例的信号传输装置的示意框图。
图5为实现本公开各个实施例的一种移动终端的硬件结构示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
在一个实施例中,提供一种信号传输方法,主要针对5G NR与WIFI 5G共存场景下的信号传输。其中,5G NR是指基于OFDM的全新空口设计的全球性5G通信标准,WIFI 5G是IEEE 802.11这一无线局域网通信标准中设计的针对5G热点的WIFI通信协议。
该信号传输方法实施于终端。终端中包括用于传输WIFI 5G信号的第一WIFI天线、第二WIFI天线以及用于传输5G NR信号的空口天线。
第二WIFI天线与空口天线之间的天线隔离度大于预设的通信隔离度阈值。通信隔离度阈值是天线之间信号传输不会产生互干扰的天线之间的天线隔离度下限值,在本实施例中,可以针对5G NR与WIFI 5G共存场景下的工程经验或者实验仿真数据预先设置,在此不做具体数值限定。
在更具体的一个实施例中,第一WIFI天线与空口天线设置在终端的第一端,第二WIFI天线设置在终端的第二端,终端的第一端与第二端之间的空间距离所对应的天线隔离度大于预设的通信隔离度阈值。终端的第一端以及第二端可以根据终端的具体尺寸或者形状来选择设置。例如,终端的第一端可以是终端的上部,终端的第二端可以终端的下部,如图1所示,空口天线以 及第一WIIF天线设置在终端上部,第二WIFI天线设置在终端下部,空口天线与第二WIFI天线之间空间距离较远,可以获取较大的天线隔离度,大于预设的通信隔离度阈值。
如图2所示,本实施例中的信号传输方法包括:步骤201-步骤203。
步骤201,确定终端当前传输信号的空口环境信道。
空口环境信道是终端当前工作的网络环境中所涉及的空口信道。在本实施例中,可以在5G NR空口标准中设计的空口寻呼、接入等流程中,在终端根据所接收的空口寻呼消息发起随机接入流程后,确定建立通信的空口信道所在的频段,确定终端当前用于信号传输的空口环境信道。
在更具体的一个实施例中,空口天线不仅用于传输5G NR信号,还用于传输4G信号。4G信号是指基于第四代移动通信标准传输的通信信号。空口天线同时支持传输4G信号以及5G NR信号,可以令终端支持多种通信标准,设备适用范围更广。对应的,在步骤201中可以先通过检测当前终端注册在4G频段还是5G NR频段,在确定终端注册在4G频段时就可以确定空口环境信道不包括支持5G NR中N79频段的N79信道,不再继续检测确定空口环境信道,而当确定终端注册在5G NR频段时,将继续在5G NR通信标准的寻呼、随机接入等流程中,检测确定空口环境信道中是否包括N79信道,以此提高处理效率。
步骤202,在空口环境信道包括支持5G NR中N79频段的N79信道的情况下,通过空口天线,传输5G NR信号,并通过第二WIFI天线,传输WIFI 5G信号。
5G NR中N79频段(4.4-5.0Ghz)与WIFI 5G的5.1G频段的首信道十分接近(WIFI 5G频段包括从5170-5835MHz以及4910-5170Mhz),在通过N79信道传输信号时,与WIFI 5G信号的传输之间产生较大的互干扰。
在空口环境信号包括支持5G NR中N79频段的N79信道的情况下,通过空口天线传输5G NR信号并通过第二WIFI天线传输WIFI 5G信号,可以通过空口天线与第二WIFI天线之间大于预设的通信隔离度阈值的天线隔离度,使得通过空口天线传输的5G NR信号,不会受到第二WIFI天线发送的WIFI 5G信号的干扰,有效保证5G NR信号的接收性能,同时可以避免极端 情况下WIFI 5G信号带来的较大噪声强度接入5G NR信号接收模块,损坏相关器件,保证5G NR通信的可靠性。实现在5G NR与WIFI 5G共存场景下,有效保证5G NR的正常工作,通过5G NR满足以兆比特每秒(Gbps)为单位的高速传输速率,向用户提供更好的网络通信体验。
以如图1所示的第一WIFI天线、第二WIFI天线以及空口天线的具体设置为例,在空口环境信号包括支持5G NR中N79频段的N79信道的情况下,通过设置在终端上部的空口天线传输5G NR信号,并通过设置在终端下部的第二WIFI天线传输WIFI 5G信号,可以通过空口天线与第二WIFI天线在空间上较远距离,获取大于预设的通信隔离度阈值的天线隔离度,避免WIFI 5G信号传输带来的噪声影响5G NR信号的接收性能。同时,通过终端上部的上天线形式的空口天线发送5G NR信号,可以避免用户普遍使用终端时手握终端下部由此带来使用环境对天线传输性能的影响,在5G NR与WIFI 5G共存场景下,优先保证5G NR的正常工作,通过5G NR满足以千兆比特每秒(Gbps)为单位的高速传输速率,相对于WIFI 5G只能提供以兆比特每秒(Mbps)为单位理论传输速度,向用户提供更好的网络通信体验。
步骤203,空口环境信道不包括N79信道时,配置终端通过空口天线传输5G NR信号以及通过第一WIFI天线传输WIFI 5G信号。
空口环境信道中不包括N79信道时,空口环境信号可能包括支持5G NR中除了N79的其他频段的信道或者支持4G频段的4G信道,这些信道的频段与WIFI 5G信号的频段相对间隔较远,在传输这些信道的信号时,与WIFI 5G信号传输不会产生较大的互干扰。
在空口环境信号不包括N79信道时,配置终端通过空口天线传输5G NR信号以及通过第一WIFI天线传输WIFI 5G信号,可以通过无需形成与空口天线之间较高的天线隔离度的第一WIFI天线传输WIFI 5G信号,使得WIFI5G信号的传输可以获取与5G NR信号传输相似的天线传输环境,在有效保证5G NR信号传输性能的基础上,同时保证WIFI 5G信号的传输性能。
以如图1所示的第一WIFI天线、第二WIFI天线以及空口天线的具体设置为例,在空口环境信号不包括支持5G NR中N79频段的N79信道时,通过设置在终端上部的空口天线传输5G NR信号,以及通过设置在终端上部的 第一WIFI天线传输WIFI 5G信号,可以使得5G NR信号以及WIFI 5G信号的传输,能避开用户普遍通过手握终端下部进行使用而导致的、对天线传输性能的影响,在有效保证5G NR信号传输性能的基础上,同时保证WIFI 5G信号的传输性能。
以上已经说明如图2所示的实施例。
在另一个实施例中,第一WIFI天线与空口天线设置在终端的第一端,第二WIFI天线设置在终端的第二端,终端的第一端与第二端之间的空间距离所对应的天线隔离度大于预设的通信隔离度阈值,在这个实施例中,实施的信号传输方法除了如图2所示的步骤之外,还可以包括:
在每次终端开机过程中,通过空口天线,传输5G NR信号,并通过第一WIFI天线,传输WIFI 5G信号。
例如,第一WIFI天线、第二WIFI天线以及空口天线的具体设置可以如图1所示。通常用户在使用终端时,普遍会手握终端下部分使用,会影响设置在终端下部的天线性能。在每次终端开机时,通过设置在终端上部的空口天线传输5G NR信号并通过设置在终端上部的第一WIFI天线传输WIFI 5G信号,天线性能不会因为用户手握终端下部使用而受到影响,使得5G NR信号以及WIFI 5G信号传输不会受终端的使用环境影响,获取较好的信号传输性能。
在另一个实施例中,在空口环境信道不包括N79信道的情况下,通过所述第一WIFI天线,传输WIFI 5G信号之后,信号传输方法还包括:
在空口环境信道包括N79信道的情况下,切换为通过所述第二WIFI天线,传输WIFI 5G信号。
在这个实施例中,还可以包括:在空口环境信道包括N79信道的情况下,通过所述第二WIFI天线,传输WIFI 5G信号之后,实施的信号传输方法还包括:
在空口环境信道不包括N79信道的情况下,切换为通过所述第一WIFI天线,传输WIFI 5G信号。
通过第一WIFI天线或第二WIFI天线传输WIFI 5G信号后,继续确定终端用于信号传输的空口环境信道,并根据空口环境信道的实际状态变化,切 换用于传输WIFI 5G信号的天线,可以根据检测终端的空口环境的变化,实时动态调整WIFI 5G信号的天线传输通路,可以实时有效地避免WIFI 5G信号的传输对5G NR信号的传输性能的影响,确保5G NR器件的安全获取5G NR信号的传输可靠性,并且能在不影响5G NR信号的传输性能前提下也能实时动态确保WIFI 5G信号传输性能。
在又一个实施例中,终端中包括控制器。该控制器用于控制接通或断开第一连接通路、以及接通或断开第二连接通路。第一连接通路用于连接第一WIFI天线,第二连接通路用于连接第二WIFI天线。在这个实施例中,实施如图2所示的步骤202通过第二WIFI天线传输WIFI 5G信号,包括:
步骤2021,通过控制器控制第一连接通路断开,并接通第二连接通路;
以及实施如图2所示的步骤203中通过第一WIFI天线传输WIFI 5G信号,包括:
步骤2031,通过控制器控制第一连接通路断开,并接通第二连接通路。
通过在终端中设置控制器来控制终端与第一WIFI天线以及第二WIFI天线之间的连接通路,可以实现针对终端所工作的空口环境的变化,快速、高效地配置终端在第一WIFI天线以及第二WIFI天线之间切换来传输WIFI 5G信号,在有效地避免WIFI 5G信号的传输对5G NR信号的传输性能的影响的基础上,进一步提高配置效率。
在基于上述实施例的一个更具体的实施例中,终端中包括上述实施例中的控制器之外,还包括单刀双掷开关,该单刀双掷开关用于根据控制器的控制,接通或断开第一连接通路、以及接通或断开第二连接通路。该单刀双掷开关(SPDT,Single Pole Double Throw)的设置可以如图3所示,连接控制器、第一WIFI天线以及第二WIFI天线,由控制器控制其是接通与第一WIFI天线的第一连接通路还是接通与第二WIFI天线的第二连接通路,在单刀双掷开关接通第一连接通路,相应地就会断开与第二连接通路,而在单刀双掷开关接通与第二WIFI天线的连接通路时,相应地就会断开与第一WIFI天线的连接通路。
在这个实施例中,实施的步骤2021具体包括:
通过所述控制器控制单刀双掷开关接通第二连接通路,并断开第一连接 通路;
以及实施的步骤2031具体包括:
通过所述控制器控制单刀双掷开关接通与所述第一连接通路,并断开第二连接通路。
通过在终端中设置单刀双掷开关,由控制器对单刀双掷开关的单次控制,可以同时实现终端与第一WIFI天线以及第二WIFI天线的两个连接通路的一个接通一个断开的控制,进一步提高控制效率。
应当理解的是,终端与第一WIFI天线以及第二WIFI天线的两个连接通路相互独立,在本实施例公开的基础上,本领域技术人员在处于设计简单或者设置成本的考虑,可以对本实施例进行无需创造性的简单变形,例如对于终端与第一WIFI天线以及第二WIFI天线的两个连接通路分别设置独立的开关进行控制。
在另一个实施例中,终端中还包括用于处理5G NR中N78频段信号的低通滤波器。该低通滤波器的设置可以如图3所示,设置在针对N78频段信号的收发模块与空口天线之间。
在这个实施例中,实施如图2所示的信号传输方法之外,还包括:
在空口环境信道不包括N79信道且空口环境信道包括支持5G NR中N78频段的N78信道的情况下,采用低通滤波器处理通过空口天线传输的5G NR信号。
在5G NR中N78频段范围是3300Mhz-3800Mhz,虽然与WIFI 5G的频段范围(5170-5835MHz以及4910-5170Mhz)并不十分接近,但在WIFI 5G的信号强度较大的情况下,WIFI 5G信号依然会抬高底噪,导致噪声对支持N78频段的N78信道的信号传输带来影响,在空口环境信道不包括N79信道但包括N78频段时,无需切换第二WIFI天线而继续使用第一WIFI天线传输WIFI 5G信号,可以保证WIFI 5G信号可以获取与5G NR信号传输相似的天线传输环境,在有效保证5G NR信号传输性能的基础上,同时保证WIFI 5G信号的传输性能;同时采用低通滤波器来处理通过空口天线传输的5G NR信号,可以抑制WIFI 5G信号传输对5G NR信号带来的干扰,保证5G NR信号的传输不受WIF 5G信号的影响。
上述已经结合附图说明本公开各个实施例中提供的信号传输方法,通过对于包括用于传输WIFI 5G信号的第一WIFI天线、第二WIFI天线以及用于传输5G NR信号的空口天线的终端,确定终端当前传输信号的空口环境信道,在空口环境信道包括支持5G NR中N79频段的N79信道的情况下,通过空口天线传输5G NR信号,并通过与空口天线之间的天线隔离度大于预设的通信隔离度阈值的第二WIFI天线传输WIFI 5G信号,而在空口环境信道不包括N79信道的情况下,通过空口天线传输5G NR信号以并通过第一WIFI天线传输WIFI 5G信号;一方面在通过5G NR中的N79信道传输信号时,可以有效避免WIFI 5G信号传输带来的噪声对5G NR信号传输的影响,同时避免极端情况下WIFI 5G信号传输带来的较高噪声进入5G NR相关的接收器件带来的损毁风险,保证5G NR相关的接收器件的安全性,进而保证5G NR信号传输的可靠性;另一个方面在通过5G NR中除了N79信道之外的其他频段的信道传输信号时,可以在保证5G NR信号传输性能的基础上,有效保证WIFI 5G信号的传输性能。以此实现5G NR与WIFI 5G共存场景下有效保证5G NR的信号传输性能,通过5G NR的高速传输速率提供用户更好的网络信号传输体验。
图4示出了可以实施上述实施的信号传输方法的信号传输装置3000的框图。信号传输装置3000设置在终端侧,例如信号传输装置3000是可以是设置在终端内部的功能模块,或者以插件、嵌入件、补丁等形式安装在终端中,或者是通过有线或者无线通信方式建立与终端的连接。
终端中包括用于传输WIFI 5G信号的第一WIFI天线、第二WIFI天线以及用于传输5G NR信号的空口天线;所述第二WIFI天线与所述空口天线之间的天线隔离度大于预设的通信隔离度阈值。
如图4所示,信号传输装置3000包括:信道确定单元3100、第一处理单元3200以及第二处理单元3300。
信道确定单元3100,用于确定所述终端当前传输信号的空口环境信道;
第一处理单元3200,用于在所述空口环境信道包括支持5G NR中N79频段的N79信道的情况下,通过所述空口天线传输5G NR信号,并通过所述 第二WIFI天线传输WIFI 5G信号;
第二处理单元3300,用于在所述空口环境信道不包括所述N79信道的情况下,通过所述空口天线传输5G NR信号,并通过所述第一WIFI天线传输WIFI 5G信号。
在另一个实施例中第一WIFI天线与所述空口天线以设置在所述终端的第一端;所述第二WIFI天线设置在所述终端的第二端;所述终端的第一端与第二端之间的空间距离所对应的天线隔离度大于所述预设的通信隔离度阈值;信号传输装置3000还包括:
用于在每次终端开机过程中,通过所述空口天线,传输5G NR信号,并通过所述第一WIFI天线,传输WIFI 5G信号的装置。
在另一个实施例中,信号传输装置3000还包括:
用于所述空口环境信道不包括所述N79信道的情况下,所述通过所述第一WIFI天线,传输WIFI 5G信号之后,在所述空口环境信道包括所述N79信道的情况下,切换为通过所述第二WIFI天线,传输WIFI 5G信号的装置。
在另一个实施例中,终端中包括控制器,所述控制器用于控制接通或断开第一连接通路、以及接通或断开第二连接通路;所述第一连接通路用于连接所述第一WIFI天线;所述第二连接通路用于连接所述第二WIFI天线;
信号传输装置3000中的第一处理单元3200还用于:通过所述控制器控制所述第一连接通路断开,并接通所述第二连接通路;以及,信号传输装置3000中的第二处理单元3300还用于:通过所述控制器控制所述第一连接通路断开,并接通所述第二连接通路。
在基于这个实施例的更具体的一个实施例中,所述终端中还包括单刀双掷开关,所述单刀双掷开关用于根据所述控制器的控制,接通或断开所述第一连接通路、以及接通或断开所述第二连接通路;信号传输装置3000中的第一处理单元3200还用于:通过所述控制器控制所述单刀双掷开关接通所述第二连接通路,并断开所述第一连接通路;信号传输装置3000中的第二处理单元3300还用于:通过所述控制器控制所述单刀双掷开关接通与所述第一连接通路,并断开所述第二连接通路。
在另一个实施例中,终端中还包括用于处理5G NR中N78频段信号的低 通滤波器;信号传输装置3000还用于:
在所述空口环境信道不包括所述N79信道、且包括支持5G NR中N78频段的N78信道的情况下,采用所述低通滤波器处理通过所述空口天线传输的所述5G NR信号。
可选地,上述实施例中的终端中包括的空口天线还用于传输4G信号。
本领域技术人员应当明白,可以通过各种方式来实现信号传输装置3000。例如,可以通过指令配置处理器来实现信号传输装置3000。例如,可以将指令存储在ROM中,并且当启动设备时,将指令从ROM读取到可编程器件中来实现信号传输装置3000。例如,可以将信号传输装置3000固化到专用器件(例如ASIC)中。可以将信号传输装置3000分成相互独立的单元,或者可以将它们合并在一起实现。信号传输装置3000可以通过上述各种实现方式中的一种来实现,或者可以通过上述各种实现方式中的两种或更多种方式的组合来实现。
本公开实施例中提供的信号传输装置3000能够实现上述各个实施例中提供的信号传输方法实现的各个过程,为避免重复,这里不再赘述。通过对于包括用于传输WIFI 5G信号的第一WIFI天线、第二WIFI天线以及用于传输5G NR信号的空口天线的终端,确定终端当前用于信号传输的空口环境信道,在空口环境信道包括支持5G NR中N79频段的N79信道的情况下,通过空口天线传输5G NR信号并通过与空口天线之间的天线隔离度大于预设的通信隔离度阈值的第二WIFI天线传输WIFI 5G信号,而在空口环境信道不包括N79信道的情况下,通过空口天线传输5G NR信号并通过第一WIFI天线传输WIFI 5G信号;一方面在通过5G NR中的N79信道传输信号时,可以有效避免WIFI 5G信号传输带来的噪声对5G NR信号传输的影响,同时避免极端情况下WIFI 5G信号传输带来的较高噪声进入5G NR相关的接收器件带来的损毁风险,保证5G NR相关的接收器件的安全性,进而保证5G NR信号传输的可靠性;另一个方面在通过5G NR中除了N79信道之外的其他频段的信道传输信号时,可以在保证5G NR信号传输性能的基础上,有效保证WIFI 5G信号的传输性能,以此实现5G NR与WIFI 5G共存场景下有效保证5G NR的信号传输性能,通过5G NR的高速传输速率提供用户更好的网络信 号传输体验。
图5为实现本公开各个实施例的一种终端的硬件结构示意图。
该终端100包括但不限于:射频单元101、网络模块102、音频输出单元103、输入单元104、传感器105、显示单元106、用户输入单元107、接口单元108、存储器109、处理器110、以及电源111等部件。本领域技术人员可以理解,图5中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本公开实施例中,终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
其中,射频单元101中包括用于传输WIFI 5G信号的第一WIFI天线1011、第二WIFI天线1012以及用于传输5G NR信号的空口天线1013;第二WIFI天线1012与所述空口天线1013之间的天线隔离度大于预设的通信隔离度阈值;射频单元101用于传输WIFI 5G信号以及传输5G NR信号。
处理器110,用于:
确定所述终端当前传输信号的空口环境信道;
在所述空口环境信道包括支持5G NR中N79频段的N79信道的情况下,通过所述空口天线传输5G NR信号,并通过所述第二WIFI天线传输WIFI 5G信号;
在所述空口环境信道不包括所述N79信道的情况下,通过所述空口天线传输5G NR信号,并通过所述第一WIFI天线传输WIFI 5G信号。
通过对于包括用于传输WIFI 5G信号的第一WIFI天线、第二WIFI天线以及用于传输5G NR信号的空口天线的终端,确定终端当前传输信号的空口环境信道,在空口环境信道包括支持5G NR中N79频段的N79信道的情况下,通过空口天线传输5G NR信号并通过与空口天线之间的天线隔离度满足预设的通信隔离度阈值的第二WIFI天线传输WIFI 5G信号,而在空口环境信道不包括N79信道的情况下,通过空口天线传输5G NR信号并通过第一WIFI天线传输WIFI 5G信号,一方面在通过5G NR中的N79信道传输信号时,可以有效避免WIFI 5G信号传输带来的噪声对5G NR信号传输的影响, 同时避免极端情况下WIFI 5G信号传输带来的较高噪声进入5G NR相关的接收器件带来的损毁风险,保证5G NR相关的接收器件的安全性,进而保证5G NR信号传输的可靠性;另一个方面在通过5G NR中除了N79信道之外的其他频段的信道传输信号时,可以在保证5G NR信号传输性能的基础上,有效保证WIFI 5G信号的传输性能。以此实现5G NR与WIFI 5G共存场景下有效保证5G NR的信号传输性能,通过5G NR的高速传输速率提供用户更好的网络体验。
应理解的是,本公开实施例中,射频单元101可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器110处理;另外,将上行的数据发送给基站。通常,射频单元101包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元101还可以通过无线通信系统与网络和其他设备通信。
终端通过网络模块102为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元103可以将射频单元101或网络模块102接收的或者在存储器109中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元103还可以提供与终端100执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元103包括扬声器、蜂鸣器以及受话器等。
输入单元104用于接收音频或视频信号。输入单元104可以包括图形处理器(Graphics Processing Unit,GPU)1041和麦克风1042,图形处理器1041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元106上。经图形处理器1041处理后的图像帧可以存储在存储器109(或其它存储介质)中或者经由射频单元101或网络模块102进行发送。麦克风1042可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元101发送到移动通信基站的格式输出。
终端100还包括至少一种传感器105,比如光传感器、运动传感器以及 其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板1061的亮度,接近传感器可在终端100移动到耳边时,关闭显示面板1061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器105还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元106用于显示由用户输入的信息或提供给用户的信息。显示单元106可包括显示面板1061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板1061。
用户输入单元107可用于接收输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元107包括触控面板1071以及其他输入设备1072。触控面板1071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板1071上或在触控面板1071附近的操作)。触控面板1071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器110,接收处理器110发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板1071。除了触控面板1071,用户输入单元107还可以包括其他输入设备1072。具体地,其他输入设备1072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板1071可覆盖在显示面板1061上,当触控面板1071检测到在其上或附近的触摸操作后,传送给处理器110以确定触摸事件的类型,随后处理器110根据触摸事件的类型在显示面板1061上提供相应的视觉输出。虽然在图5中,触控面板1071与显示面板1061是作为两个独立的部 件来实现终端的输入和输出功能,但是在某些实施例中,可以将触控面板1071与显示面板1061集成而实现终端的输入和输出功能,具体此处不做限定。
接口单元108为外部装置与终端100连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元108可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端100内的一个或多个元件或者可以用于在终端100和外部装置之间传输数据。
存储器109可用于存储软件程序以及各种数据。存储器109可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器109可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器110是终端的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器109内的软件程序和/或模块,以及调用存储在存储器109内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。处理器110可包括一个或多个处理单元;可选的,处理器110可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器110中。
终端100还可以包括给各个部件供电的电源111(比如电池),可选的,电源111可以通过电源管理系统与处理器110逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,终端100包括一些未示出的功能模块,在此不再赘述。
可选的,本公开实施例中还提供一种终端100,包括:第一WIFI天线1011、第二WIFI天线1012、空口天线1013、存储器109以及处理器110;
第一WIFI天线1011,与处理器110通过第一连接通路连接,用于传输 WIFI 5G信号;
第二WIFI天线1012,与处理器110通过第二连接通路连接,用于传输WIFI 5G信号;
空口天线1013,与所述处理器110通过第三连接通路连接,用于传输5G NR信号;
所述第二WIFI天线与所述空口天线之间的天线隔离度大于预设的通信隔离度阈值;
存储器109,与处理器110连接,用于存储计算机程序;
处理器110,用于运行所述存储器109存储的所述计算机程序,所述计算机程序被所述处理器110执行时,通过第一WIFI天线1011、第二WIFI天线1012以及空口天线1013,实现上述信号传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
基于上述可选实施例中的更具体的一个实施例中,第一WIFI天线1011与空口天线1013设置在所述终端100的第一端;第二WIFI天线1012设置在终端100的第二端,终端100的第一端与第二端之间的空间距离所对应的天线隔离度,大于预设的通信隔离度阈值。
基于上述可选实施例中的更具体的一个实施例中,终端100还包括控制器1015,处理器110经由控制器1015,与第一WIIFI天线1011通过第一连接通路连接;处理器110经由控制器1015,与第二WIFI1012天线通过第二连接通路连接;控制器1015用于控制接通或断开第一连接通路、以及接通或断开第二连接通路。
基于上述可选实施例中的更具体的一个实施例中,终端还包括低通滤波器202,处理器110经由低通滤波器202,与空口天线1013通过第三连接通路连接;低通滤波器用于处理5G NR中N78频段信号。
基于上述可选实施例中的更具体的一个实施例中,终端100还包括控制器1015和单刀双掷开关1016,处理器110依次经由控制器1015、单刀双掷开关1016,与第一WIIFI天线1011通过第一连接通路连接;处理器110依次经由控制器1015、单刀双掷开关1016,与第二WIFI天线1012通过第二连接通路连接;控制器1015用于控制单刀双掷开关1016,接通或断开第一连接 通路、以及接通或断开第二连接通路。
基于上述可选实施例中的更具体的一个实施例中,空口天线1013还用于传输4G信号。
在图3示出了本公开实施例中终端100的一个示例的结构框图。如图3所示,终端100中包括存储器109、处理器110、第一WIFI天线1011、第二WIFI天线1012、空口天线1013、控制器1015、单刀双掷开关1016,此外终端还包括5G NR合路器201、N78信号低通滤波器202、N78信号收发模块203、N79信号收发模块204、5G NR调制解调器205、WIFI 5G合路器206、WIFI 5G发送模块207、WIFI 5G接收模块208、WIFI 5G调制解调器209。
在图3中,处理器110运行时执行存储器109中存储的计算机程序,执行上述方法实施例中信号传输方法中各个过程中所需的步骤,向控制器1015向单刀双掷开关106提供控制信号,接通与第一WIFI天线1011之间的第一连接通路,或者接通与第二WIFI天线1012之间的第二连接通路,实现根据控制信号切换第一WIFI天线或者第二WIFI天线传输WIFI 5G信号,还用于与5G NR调制解调器205以及WIFI 5G调制解调器209之间进行数据交换处理。
5G NR合路器201用于对5G NR的发射信号以及接收信号整合以通过空口天线1013传输。
N78信号低通滤波器202用于抑制WIFI 5G信号传输时对于N78频段信号的干扰,由于N78频段与WIFI 5G频段之间间隔较大,N78信号低通滤波器基于相关技术中的频率器件的制作工艺是可以被制作出来的。
N78信号收发模块203用于对5G NR中N78频段信号的接收及发射。
N79信号收发模块204用于对5G NR中N79频段信号的接收及发射。
5G NR调制解调器205用于对5G NR信号的发射、接收及对应的功率判断。
WIFI 5G合路器206用于对WIFI 5G的发射信号以及接收信号整合以通过第一WIFI天线1011或者第二WIFI天线1012传输。
WIFI 5G发送模块207用于发射WIFI 5G信号。
WIFI 5G接收模块208用于接收WIFI 5G信号。
WIFI 5G调制解调器209用于对WIFI 5G进行调制解调以及检测对应的发射功率。
在图3中,虽然示出的第一WIFI天线1011以及第二WIFI天线1012为并列排放,距离空口天线1013形成较远的空间距离,但是实际第一WIFI天线1011、第二WIFI天线1012以及空口天线1013在终端的设置可以如图1所示,第一WIFI天线1011与空口天线1013设置在所述终端的上部;第二WIFI天线1012设置在终端的下部。
如图3所示的终端100,可以同时支持5G NR信号以及WIFI 5G信号传输,在处理器110运行存储器109中存储的、用于实施上述各个实施例提供的信号传输方法的计算机程序时,确定终端100当前传输信号的空口环境信道,在空口环境信道包括支持5G NR中N79频段的N79信道的情况下,处理器110下发控制指令给控制器1015,由控制1015控制单刀双掷开关1016接通与第二WIFI天线1012之间的第二连接通路,通过空口天线1013传输5G NR信号,并通过与空口天线之间的天线隔离度大于预设的通信隔离度阈值的第二WIFI天线1012传输WIFI 5G信号;在空口环境信道不包括N79信道的情况下,处理器110下发控制指令给控制器1015,由控制1015控制单刀双掷开关1016接通与第一WIFI天线1012之间的第二连接通路,通过空口天线1013传输5G NR信号,并通过第一WIFI天线1011传输WIFI 5G信号;一方面在通过5G NR中的N79信道传输信号时,可以有效避免WIFI 5G信号传输带来的噪声对5G NR信号传输的影响,同时避免极端情况下WIFI 5G信号传输带来的较高噪声进入5G NR相关的接收器件带来的损毁风险,保证5G NR相关的接收器件的安全性,进而保证5G NR信号传输的可靠性;另一个方面在通过5G NR中除了N79信道之外的其他频段的信道传输信号时,可以在保证5G NR信号传输性能的基础上,有效保证WIFI 5G信号的传输性能,以此实现5G NR与WIFI 5G共存场景下有效保证5G NR的信号传输性能,通过5G NR的高速传输速率提供用户更好的网络体验。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求 所保护的范围情况下,还可做出很多形式,均属于本公开的保护之内。

Claims (12)

  1. 一种信号传输方法,实施于终端,所述终端中包括用于传输WIFI 5G信号的第一WIFI天线、第二WIFI天线以及用于传输5G NR信号的空口天线;所述第二WIFI天线与所述空口天线之间的天线隔离度大于预设的通信隔离度阈值;
    所述方法包括:
    确定终端当前传输信号的空口环境信道;
    在所述空口环境信道包括支持5G NR中N79频段的N79信道的情况下,通过所述空口天线,传输5G NR信号,并通过所述第二WIFI天线,传输WIFI 5G信号;
    在所述空口环境信道不包括所述N79信道的情况下,通过所述空口天线,传输5G NR信号,并通过所述第一WIFI天线,传输WIFI 5G信号。
  2. 根据权利要求1所述的方法,其中,所述第一WIFI天线与所述空口天线设置在所述终端的第一端;所述第二WIFI天线设置在所述终端的第二端;所述终端的第一端与第二端之间的空间距离所对应的天线隔离度大于所述预设的通信隔离度阈值;
    所述方法还包括:
    在每次终端开机过程中,通过所述空口天线,传输5G NR信号,并通过所述第一WIFI天线,传输WIFI 5G信号。
  3. 根据权利要求1所述的方法,其中,在所述空口环境信道不包括所述N79信道的情况下,所述通过所述第一WIFI天线,传输WIFI 5G信号之后,还包括:
    在所述空口环境信道包括所述N79信道的情况下,切换为通过所述第二WIFI天线,传输WIFI 5G信号。
  4. 根据权利要求1所述的方法,其中,所述终端包括控制器,所述控制器用于控制接通或断开第一连接通路、以及接通或断开第二连接通路;所述第一连接通路用于连接所述第一WIFI天线;所述第二连接通路用于连接所述第二WIFI天线;
    所述通过所述第二WIFI天线,传输WIFI 5G信号,包括:
    通过所述控制器控制所述第一连接通路断开,并接通所述第二连接通路;
    所述通过所述第一WIFI天线,传输WIFI 5G信号,包括:
    通过所述控制器控制所述第一连接通路断开,并接通所述第二连接通路。
  5. 根据权利要求4所述的方法,其中,所述终端中还包括单刀双掷开关,所述单刀双掷开关用于根据所述控制器的控制,接通或断开所述第一连接通路、以及接通或断开所述第二连接通路;
    通过所述控制器控制所述第一连接通路断开,并接通所述第二连接通路,包括:
    通过所述控制器控制所述单刀双掷开关接通所述第二连接通路,并断开所述第一连接通路;
    所述通过所述控制器控制所述第二连接通路断开,并接通所述第一连接通路,包括:
    通过所述控制器控制所述单刀双掷开关接通与所述第一连接通路,并断开所述第二连接通路。
  6. 根据权利要求1所述的方法,其中,所述终端中还包括用于处理5G NR中N78频段信号的低通滤波器;所述方法还包括:
    在所述空口环境信道不包括所述N79信道且所述空口环境信道包括支持5G NR中N78频段的N78信道的情况下,采用所述低通滤波器处理通过所述空口天线传输的所述5G NR信号。
  7. 一种信号传输装置,设置在终端侧,所述终端中包括用于传输WIFI 5G信号的第一WIFI天线、第二WIFI天线以及用于传输5G NR信号的空口天线;所述第二WIFI天线与所述空口天线之间的天线隔离度大于预设的通信隔离度阈值;所述信号传输装置包括:
    信道确定单元,用于确定所述终端当前传输信号的空口环境信道;
    第一处理单元,用于在所述空口环境信道包括支持5G NR中N79频段的N79信道的情况下,通过所述空口天线,传输5G NR信号,并通过所述第二WIFI天线,传输WIFI 5G信号;
    第二处理单元,用于在所述空口环境信道不包括所述N79信道的情况下, 通过所述空口天线,传输5G NR信号,并通过所述第一WIFI天线,传输WIFI 5G信号。
  8. 一种终端,包括:第一WIFI天线、第二WIFI天线、空口天线、存储器以及处理器;
    所述第一WIFI天线,与所述处理器通过第一连接通路连接,用于传输WIFI 5G信号;
    所述第二WIFI天线,与所述处理器通过第二连接通路连接,用于传输WIFI 5G信号;
    所述空口天线,与所述处理器通过第三连接通路连接,用于传输5G NR信号;
    所述第二WIFI天线与所述空口天线之间的天线隔离度满足预设的通信隔离度阈值;
    所述存储器,与所述处理器连接,用于存储计算机程序;
    所述处理器,用于运行所述存储器存储的所述计算机程序,所述计算机程序被所述处理器执行时,通过所述第一WIFI天线、所述第二WIFI天线以及所述空口天线,实现如权利要求1至6中任一项所述的信号传输方法的步骤。
  9. 根据权利要求8所述的终端,其中,所述第一WIFI天线与所述空口天线设置在所述终端的第一端;所述第二WIFI天线设置在所述终端的第二端;所述终端的第一端与第二端之间的空间距离所对应的天线隔离度,大于所述预设的通信隔离度阈值。
  10. 根据权利要求8所述的终端,其中,
    所述终端中还包括低通波器;所述处理器经由所述低通滤波器,与所述空口天线通过所述第三连接通路连接;所述低通滤波器用于处理5G NR中N78频段信号。
  11. 根据权利要求8所述的终端,其中,
    所述终端还包括控制器;所述处理器经由所述控制器,与所述第一WIIFI天线通过所述第一连接通路连接;所述处理器经由所述控制器,与所述第二WIFI天线通过所述第二连接通路连接;所述控制器用于控制接通或断开第一 连接通路、以及接通或断开第二连接通路。
  12. 根据权利要求8所述的终端,其中,
    所述终端还包括控制器和单刀双掷开关;所述处理器依次经由所述控制器、所述单刀双掷开关,与所述第一WIIFI天线通过所述第一连接通路连接;所述处理器依次经由所述控制器、所述单刀双掷开关,与所述第二WIIFI天线通过所述第二连接通路连接;所述控制器,用于控制所述单刀双掷开关,接通或断开所述第一连接通路、以及接通或断开所述第二连接通路。
PCT/CN2020/092131 2019-05-31 2020-05-25 信号传输方法、装置及终端 WO2020238859A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910468191.7 2019-05-31
CN201910468191.7A CN110224709B (zh) 2019-05-31 2019-05-31 信号传输方法、装置及终端

Publications (1)

Publication Number Publication Date
WO2020238859A1 true WO2020238859A1 (zh) 2020-12-03

Family

ID=67819096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/092131 WO2020238859A1 (zh) 2019-05-31 2020-05-25 信号传输方法、装置及终端

Country Status (2)

Country Link
CN (1) CN110224709B (zh)
WO (1) WO2020238859A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110224709B (zh) * 2019-05-31 2021-07-30 维沃移动通信有限公司 信号传输方法、装置及终端
CN110753343A (zh) * 2019-10-30 2020-02-04 北京鲲鹏神通科技有限公司 一种基于5g网及以上微型远程电脑
CN112702079B (zh) * 2020-12-24 2022-09-02 维沃移动通信有限公司 射频系统、信号传输方法和终端设备
CN114158101A (zh) * 2021-12-09 2022-03-08 深圳创维数字技术有限公司 5G与WiFi频段切换方法、装置、设备及存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102307352A (zh) * 2011-08-22 2012-01-04 中兴通讯股份有限公司 相邻频段共存的方法、装置及终端
CN107484195A (zh) * 2017-09-27 2017-12-15 深圳市金立通信设备有限公司 一种选择天线的方法、终端及计算机可读介质
CN107508620A (zh) * 2017-07-21 2017-12-22 北京小米移动软件有限公司 多天线mimo隔离度控制方法、终端设备和计算机存储介质
CN107509210A (zh) * 2017-09-01 2017-12-22 捷开通讯(深圳)有限公司 移动终端、存储器及降低移动终端gps信号的干扰的方法
US20180331714A1 (en) * 2017-05-12 2018-11-15 Qualcomm Incorporated Antenna diversity switching
US20190097715A1 (en) * 2017-09-22 2019-03-28 Qualcomm Incorporated Transmit antenna diversity in radio front end architectures
CN109547058A (zh) * 2019-01-15 2019-03-29 维沃移动通信有限公司 一种射频电路、信号干扰规避方法及终端设备
CN110224709A (zh) * 2019-05-31 2019-09-10 维沃移动通信有限公司 信号传输方法、装置及终端

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103490787B (zh) * 2012-06-13 2017-04-26 华为技术有限公司 处理设备内干扰的方法及控制器
CN104270166B (zh) * 2014-10-17 2016-07-20 中磊电子(苏州)有限公司 收发异质射频信号的无线通讯装置
US9548525B2 (en) * 2015-01-13 2017-01-17 Futurewei Technologies, Inc. Multi-band antenna on the surface of wireless communication devices
CN108282166B (zh) * 2018-01-17 2021-03-02 Oppo广东移动通信有限公司 天线共存互扰处理方法、装置、存储介质及电子设备
CN109257119B (zh) * 2018-11-09 2024-02-27 成都九华圆通科技发展有限公司 一种适用于不同射频信号频段的无线电监测天线系统
CN110247678B (zh) * 2019-04-24 2022-04-26 维沃移动通信有限公司 一种终端控制方法及终端

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102307352A (zh) * 2011-08-22 2012-01-04 中兴通讯股份有限公司 相邻频段共存的方法、装置及终端
US20180331714A1 (en) * 2017-05-12 2018-11-15 Qualcomm Incorporated Antenna diversity switching
CN107508620A (zh) * 2017-07-21 2017-12-22 北京小米移动软件有限公司 多天线mimo隔离度控制方法、终端设备和计算机存储介质
CN107509210A (zh) * 2017-09-01 2017-12-22 捷开通讯(深圳)有限公司 移动终端、存储器及降低移动终端gps信号的干扰的方法
US20190097715A1 (en) * 2017-09-22 2019-03-28 Qualcomm Incorporated Transmit antenna diversity in radio front end architectures
CN107484195A (zh) * 2017-09-27 2017-12-15 深圳市金立通信设备有限公司 一种选择天线的方法、终端及计算机可读介质
CN109547058A (zh) * 2019-01-15 2019-03-29 维沃移动通信有限公司 一种射频电路、信号干扰规避方法及终端设备
CN110224709A (zh) * 2019-05-31 2019-09-10 维沃移动通信有限公司 信号传输方法、装置及终端

Also Published As

Publication number Publication date
CN110224709B (zh) 2021-07-30
CN110224709A (zh) 2019-09-10

Similar Documents

Publication Publication Date Title
WO2020215965A1 (zh) 终端控制方法及终端
WO2020238859A1 (zh) 信号传输方法、装置及终端
WO2020238450A1 (zh) 天线控制方法和折叠屏终端
US11936474B2 (en) Transmission antenna switching method and terminal device
WO2020238635A1 (zh) 移动终端及出音口的切换方法
US11729680B2 (en) Cell management method, trigger condition configuration method, terminal device, and network-side device
CN109819450B (zh) 一种信号接收的方法、装置和终端
WO2021129750A1 (zh) 射频电路、电子设备及srs发送方法
CN110289883B (zh) 一种射频电路、终端设备及电路控制方法
WO2020216209A1 (zh) 指示空间关系信息的方法及装置、通信设备
WO2021147718A1 (zh) 音频传输方法及电子设备
US20230006711A1 (en) Audio transmission method and electronic device
WO2021136141A1 (zh) 播放方法及电子设备
WO2021052419A1 (zh) 无线能力标识传输方法、终端设备和网络节点
US11910235B2 (en) Data processing method, information configuration method, terminal, and network device
WO2019170003A1 (zh) 一种信号传输方法及装置
CN111510534B (zh) 一种电子设备
WO2020147795A1 (zh) 一种无线通信方法及终端设备
US11979204B2 (en) Antenna adjusting method and device, and terminal
US20210204294A1 (en) Communication method for mobile terminal and mobile terminal
WO2019134619A1 (zh) 状态处理方法、终端和基站
CN110557166A (zh) 一种通信电路的调整方法及终端
CN109831225B (zh) 一种天线电路及其控制方法
CN107749763B (zh) 一种wi-fi传输控制方法、移动终端及路由设备
WO2021160026A1 (zh) 波束报告方法、网络节点及终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20813185

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20813185

Country of ref document: EP

Kind code of ref document: A1