WO2020238827A1 - 图像采集装置和图像采集的方法 - Google Patents

图像采集装置和图像采集的方法 Download PDF

Info

Publication number
WO2020238827A1
WO2020238827A1 PCT/CN2020/091994 CN2020091994W WO2020238827A1 WO 2020238827 A1 WO2020238827 A1 WO 2020238827A1 CN 2020091994 W CN2020091994 W CN 2020091994W WO 2020238827 A1 WO2020238827 A1 WO 2020238827A1
Authority
WO
WIPO (PCT)
Prior art keywords
exposure
light
time
image signal
infrared
Prior art date
Application number
PCT/CN2020/091994
Other languages
English (en)
French (fr)
Inventor
於敏杰
聂鑫鑫
罗丽红
Original Assignee
杭州海康威视数字技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州海康威视数字技术股份有限公司 filed Critical 杭州海康威视数字技术股份有限公司
Publication of WO2020238827A1 publication Critical patent/WO2020238827A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/73Circuitry for compensating brightness variation in the scene by influencing the exposure time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/74Circuitry for compensating brightness variation in the scene by influencing the scene brightness using illuminating means

Definitions

  • the present disclosure relates to the field of video technology, and in particular to an image acquisition device and an image acquisition method.
  • the face detection device is connected to a binocular camera.
  • the binocular camera includes a visible light camera and an infrared camera.
  • the detection device obtains the visible light image taken by the visible light camera and the infrared image taken by the infrared camera at the same time, determines whether it is a living human face through the infrared image, and determines whether it is a legitimate user through the visible light image.
  • embodiments of the present disclosure provide an image acquisition device and an image acquisition method.
  • the technical solution is as follows:
  • an image acquisition device in a first aspect, includes:
  • An image acquisition component and a light supplement component including a filter component and an image sensor;
  • the image sensor is configured to sense and output a first image signal and a second image signal through multiple rolling shutter exposures, wherein the first image signal is an image signal generated according to the first exposure, and the second The image signal is an image signal generated according to a second exposure, and the first exposure and the second exposure are two of the multiple rolling shutter exposures;
  • the filter component includes a first filter device for passing visible light and part of near-infrared light;
  • the light-filling component includes a first light-filling device, and the first light-filling device is used for not performing near-infrared lighting during the first exposure, and performing near-infrared lighting during the second exposure.
  • Fill light, and the start time of near-infrared fill light during the second exposure is determined at least according to the first time, and the end time of near-infrared fill light during the second exposure is determined at least according to the second time;
  • the first image signal includes multiple lines of effective image signals
  • the second image signal includes multiple lines of effective image signals
  • the first moment is the second generated by the current exposure.
  • the start exposure time of the first line of the effective image signal of the image signal, and the second time is the end exposure time of the last line of the effective image signal of the second image signal generated by the current exposure.
  • the start time of near-infrared supplementary light during the second exposure is no later than the first time
  • the end time of near-infrared supplementary light during the second exposure is no earlier than the The second moment.
  • the start time of the near-infrared fill light during the second exposure is determined according to the first time and the third time, where the third time is before the current exposure
  • the end exposure time of the last line of the effective image signal of the first image signal generated by the most recent first exposure, and the first time is not earlier than the third time.
  • the start time of the near-infrared supplemental light during the second exposure is not earlier than the third time, and no later than the first time.
  • the end time of the near-infrared fill light during the second exposure is determined according to the second time and the fourth time, and the fourth time is the most recent time after the current exposure.
  • the start exposure time of the first line of the effective image signal of the first image signal generated by the first exposure, and the second time is not later than the fourth time.
  • the end time of the near-infrared supplemental light during the second exposure is not earlier than the second time, and not later than the fourth time.
  • the duration of the near-infrared supplement light performed by the first light supplement device is not less than the exposure duration of any line of the effective image signal of the current exposure and the current exposure.
  • the fill light duration of each line of the effective image signal of the second image signal generated by the current exposure is the same.
  • the multiple rolling shutter exposures include multiple exposure periods, and each exposure period includes at least one first exposure and at least one second exposure.
  • the image acquisition component further includes a lens
  • the filter component is located between the lens and the image sensor, and the image sensor is located on the light exit side of the filter component; or,
  • the lens is located between the filter component and the image sensor, and the image sensor is located on the light exit side of the lens.
  • the image sensor includes a plurality of photosensitive channels, and the plurality of photosensitive channels includes at least one of R photosensitive channels, G photosensitive channels, B photosensitive channels, and W photosensitive channels.
  • the photosensitive channel generates and outputs the first image signal and the second image signal through the multiple rolling shutter exposure;
  • the R photosensitive channel is used to sense red light and near-infrared light
  • the G photosensitive channel is used to sense green light and near-infrared light
  • the B photosensitive channel is used to sense blue light and near-infrared light.
  • Light in the light band, W photosensitive channel is used to sense light in the whole band.
  • the image sensor is any one of a red-green-blue-white RGBW sensor, a red-white-white-blue RCCB sensor, a red-green-blue RGB sensor, or a red-yellow-yellow-blue RYYB sensor;
  • R stands for R photosensitive channel
  • G stands for G photosensitive channel
  • B stands for B photosensitive channel
  • W stands for W photosensitive channel.
  • At least one exposure parameter of the first exposure and the second exposure is different, and the at least one exposure parameter is one or more of exposure time, exposure gain, and aperture size, so
  • the exposure gain includes analog gain, and/or, digital gain.
  • the exposure gain of the second exposure is smaller than the exposure gain of the first exposure.
  • At least one exposure parameter of the first exposure and the second exposure is the same, and the at least one exposure parameter includes one or more of exposure time, exposure gain, and aperture size, so
  • the exposure gain includes analog gain, and/or, digital gain.
  • the exposure time of the first exposure is equal to the exposure time of the second exposure.
  • the filter component further includes a second filter device and a switching component, and both the first filter device and the second filter device are connected to the switching component;
  • the switching component is used to switch the second filter device to the light incident side of the image sensor
  • the second filter device After the second filter device is switched to the light incident side of the image sensor, the second filter device allows light in the visible light band to pass and blocks light in the near-infrared light band.
  • the image sensor is used to pass Exposure generates and outputs a third image signal.
  • the light supplement component further includes a second light supplement device
  • the second light supplement device is used to perform visible light supplement light in a constant light mode; or,
  • the second light supplement device is used to perform visible light supplement light in a stroboscopic manner, wherein there is visible light supplement light at least during a part of the exposure time period of the second exposure, and during the entire exposure time period of the first exposure There is no visible light fill light; or,
  • the second light supplement device is used to perform visible light supplement light in a stroboscopic manner, wherein at least there is no visible light supplement light during the entire exposure time period of the second exposure, and during a partial exposure time period of the first exposure There is a visible light fill light inside.
  • the center wavelength of the near-infrared supplement light performed by the first light-filling device is the set characteristic wavelength or falls within the set characteristic wavelength range
  • the near-infrared light passing through the first filter device The center wavelength and/or the band width of the band meet the constraint conditions.
  • the center wavelength of the near-infrared supplement light performed by the first light supplement device is any wavelength within the wavelength range of 750 ⁇ 10 nanometers;
  • the center wavelength of the near-infrared supplement light performed by the first light supplement device is any wavelength within the wavelength range of 780 ⁇ 10 nanometers; or
  • the center wavelength of the first light supplement device for near-infrared supplement light is any wavelength within the wavelength range of 940 ⁇ 10 nanometers.
  • the constraint condition includes: the difference between the center wavelength of the near-infrared light passing through the first filter device and the center wavelength of the near-infrared supplement light performed by the first light-filling device Located within the wavelength fluctuation range, the wavelength fluctuation range is 0-20 nanometers; or,
  • the half bandwidth of the near-infrared light passing through the first filter device is less than or equal to 50 nanometers; or,
  • the first waveband width is smaller than the second waveband width; wherein, the first waveband width refers to the waveband width of the near-infrared light passing through the first filter device, and the second waveband width refers to the wavelength The band width of the near-infrared light blocked by the optical device; or,
  • the third waveband width is smaller than the reference waveband width.
  • the third waveband width refers to the waveband width of near-infrared light whose pass rate of the first filter device is greater than a set ratio, and the reference waveband width is 50 nanometers to 150 nanometers. Any band width within the nanometer band.
  • an image acquisition method which is applied to an image acquisition device, the image acquisition device includes: an image sensor, a light supplement component and a filter component, the supplement light component includes a first light supplement device, The filter component includes a first filter device, and the method includes:
  • the near-infrared supplementary light is performed by the first light-filling device, wherein the near-infrared supplementary light is not performed during the first exposure, the near-infrared supplementary light is performed during the second exposure, and the near-infrared supplementary light is performed during the second exposure.
  • the start time of is determined at least according to the first time, and the end time of the near-infrared supplementary light during the second exposure is determined at least according to the second time;
  • the image sensor performs multiple rolling shutter exposure sensing and outputs a first image signal and a second image signal, wherein the first image signal is an image signal generated according to the first exposure, and the second The image signal is an image signal generated according to the second exposure;
  • the first image signal includes multiple lines of effective image signals
  • the second image signal includes multiple lines of effective image signals
  • the first moment is the second generated by the current exposure.
  • the start exposure time of the first line of the effective image signal of the image signal, and the second time is the end exposure time of the last line of the effective image signal of the second image signal generated by the current exposure
  • the start time of near-infrared supplementary light during the second exposure is no later than the first time
  • the end time of near-infrared supplementary light during the second exposure is no earlier than the The second moment.
  • the start time of the near-infrared fill light during the second exposure is determined according to the first time and the third time, where the third time is before the current exposure
  • the end exposure time of the last line of the effective image signal of the first image signal generated by the most recent first exposure, and the first time is not earlier than the third time.
  • the start time of the near-infrared supplemental light during the second exposure is not earlier than the third time, and no later than the first time.
  • the end time of the near-infrared fill light during the second exposure is determined according to the second time and the fourth time, and the fourth time is the most recent time after the current exposure.
  • the start exposure time of the first line of the effective image signal of the first image signal generated by the first exposure, and the second time is not later than the fourth time.
  • the end time of the near-infrared supplemental light during the second exposure is not earlier than the second time, and not later than the fourth time.
  • the exposure timing of the image sensor is used to control the near-infrared supplementary light timing of the supplementary light component, so that the second image signal is generated through the second exposure when the near-infrared supplementary light exists, and the second image signal is generated when there is no near-infrared supplementary light.
  • One exposure generates the first image signal.
  • This data acquisition method can directly collect the first image signal and the second image signal while reducing the cost and the structure is simple, that is, two different images can be acquired through one image sensor The signal makes the image acquisition device more convenient and reduces the difficulty of implementation.
  • the first image signal and the second image signal are both generated and output by the same image sensor.
  • the viewpoint corresponding to the first image signal is the same as the viewpoint corresponding to the second image signal. Therefore, the first image signal and the second image signal
  • the signals can collectively obtain information of the external scene, and there is no misalignment of the images generated according to the first image signal and the second image signal due to the different viewpoints corresponding to the first image signal and the second image signal.
  • FIG. 1 is a schematic diagram of a rolling shutter exposure provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a rolling shutter exposure provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of an image acquisition device provided by an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of a rolling shutter exposure provided by an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of a rolling shutter exposure provided by an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of a rolling shutter exposure provided by an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of a rolling shutter exposure provided by an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of a rolling shutter exposure provided by an embodiment of the present disclosure.
  • Fig. 9 is a schematic structural diagram of an image acquisition device provided by an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of a light transmission rate provided by an embodiment of the present disclosure.
  • Figure 11 is a schematic structural diagram of an image acquisition device provided by an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of an image acquisition device provided by an embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram of a channel structure of an RGBW sensor provided by an embodiment of the present disclosure.
  • FIG. 14 is a schematic diagram of the channel structure of an RCCB sensor provided by an embodiment of the present disclosure.
  • FIG. 15 is a schematic diagram of a channel structure of an RGB sensor provided by an embodiment of the present disclosure.
  • 16 is a schematic diagram of the channel structure of a RYYB sensor provided by an embodiment of the present disclosure.
  • FIG. 17 is a schematic diagram of a spectral response curve provided by an embodiment of the present disclosure.
  • FIG. 18 is a schematic diagram of an exposure sequence provided by an embodiment of the present disclosure.
  • 19 is a schematic diagram of an exposure sequence provided by an embodiment of the present disclosure.
  • 20 is a schematic diagram of an exposure sequence provided by an embodiment of the present disclosure.
  • FIG. 21 is a schematic flowchart of an image acquisition method provided by an embodiment of the present disclosure.
  • Image acquisition component 1 Replenishing light component 2
  • Second filter device 112 Switching component 113
  • the first supplementary light device 21 The second supplementary light device 22
  • Visible light is an electromagnetic wave that human eyes can perceive.
  • the spectrum of visible light does not have a precise range.
  • the wavelength of electromagnetic waves that can be perceived by ordinary human eyes is between 400nm (nanometers) and 760nm.
  • Visible light image refers to a color image that only perceives visible light signals, and the color image is only sensitive to visible light wavelengths.
  • Infrared image refers to the brightness image that perceives near-infrared light signals.
  • Rolling shutter exposure means that the exposure time of different rows of the image sensor does not completely overlap, and the exposure start time and the exposure end time of each row move backward for a period of time row by row.
  • the horizontal axis represents the time
  • the vertical axis represents the pixel row number of the image sensor.
  • a hollow dot represents the start time of exposure
  • a solid dot represents the end time of exposure.
  • the first row of the image sensor Pixels start exposure at time T1, and end exposure at time T3.
  • the second row of pixels starts exposure at time T2 and ends at time T4.
  • T2 has moved backward compared to T1 for a period of time
  • T4 has moved backward compared to T3.
  • other lines can be deduced by analogy.
  • each row of pixels can be considered as the photosensitive channel of each row.
  • the first row of pixels ends exposure at time T3 and begins to output data, and ends output data at time T5.
  • the last row of pixels ends exposure at time T6 and ends output data at time T7.
  • the time from T3 to T7 is Read the time, as shown by the rectangle in Figure 1.
  • FIG 2 it is a simplified schematic diagram of multiple rolling shutter exposures, where the horizontal direction represents the time, and the dotted line represents the start time of each exposure (because the start exposure time of each row of pixels is different, the exposure start time will be formed One oblique line), the solid line represents the end time of each exposure (because the end exposure time of each row of pixels is different, an oblique line is formed at the end of the exposure), and the rectangle represents the readout time.
  • the present disclosure provides an image acquisition device with the following structure.
  • FIG. 3 is a schematic structural diagram of an image acquisition device provided by an embodiment of the present disclosure.
  • the image acquisition device includes an image acquisition component 1 and a supplementary light component 2.
  • the image acquisition component 1 includes a filter component 11, an image sensor 12, and a lens 13 ( The lens 13 is not shown in FIG. 3).
  • the image sensor 12 is used for generating and outputting a first image signal and a second image signal through multiple rolling shutter exposures, the first image signal is an image signal generated according to the first exposure, and the second image signal is generated according to the second exposure The first exposure and the second exposure are two of the multiple rolling shutter exposures.
  • the filter component 11 includes a first filter device 111 for passing visible light and part of near-infrared light (may be referred to as near-infrared for short).
  • the light-filling component 2 includes a first light-filling device 21, and the first light-filling device 21 is used for not performing near-infrared light-filling during the first exposure (it can be understood as not performing near-infrared light-filling), and performing the first light-filling During the second exposure, perform near-infrared fill light (which can be understood as near-infrared fill light), and the start time of near-infrared fill light in the second exposure is determined at least according to the first moment, and near-infrared light is performed during the second exposure The end time of the fill light is determined at least according to the second time.
  • near-infrared fill light which can be understood as near-infrared fill light
  • the end time of the fill light is determined at least according to the second time.
  • the first image signal includes multiple lines of effective image signals
  • the second image signal includes multiple lines of effective image signals
  • the first moment is the first line of effective images of the second image signal generated by the current exposure
  • the start exposure time of the signal, the second time is the end exposure time of the last line of the effective image signal of the second image signal generated by the current exposure
  • the first image signal and the second image signal both include multiple lines of effective image signals, and the effective image signal refers to the image signal finally read out.
  • the effective image signal refers to the image signal finally read out.
  • the effective image signal is the image signal output by 800 of the 1000 lines of photosensitive channels.
  • the image acquisition device may include an image acquisition component 1 and a light supplement component 2, and the image acquisition component 1 may include a filter component 11, an image sensor 12 and a lens 13.
  • the light-filling component 2 includes a first light-filling device 21, which is used for near-infrared light-filling, and the filter component 11 includes a first filter device 111, which is used to make visible light and Near infrared light passes through.
  • the filter component 11 can be composed of a filter using coating technology, and can be used to pass visible light and near-infrared light, or pass visible light and part of near-infrared light, that is, the first filter device 111 passes visible light and near-infrared light. , Or pass visible light and part of near-infrared light.
  • the image sensor 12 can be used for multiple rolling shutter exposure sensing and outputting a first image signal and a second image signal.
  • the first image signal is an image signal generated according to the first exposure
  • the second image signal is generated according to the second exposure.
  • the first exposure and the second exposure are two exposures in multiple rolling shutter exposures.
  • the light-filling component 2 may not perform near-infrared light-filling (for example, the light-filling component 2 is a near-infrared light-filling lamp, which can be turned off, etc.), so that the light-filling part 2 is in the exposure time period of the first exposure.
  • the light reflected by the photographed object and entering the filter component 11 is ambient light.
  • the image sensor 12 may perform a rolling shutter exposure with the exposure parameters of the first exposure, and output a first image signal.
  • the light-filling component 2 can perform infrared light-filling (for example, the light-filling component 2 is a near-infrared light-filling lamp, which can be turned on), and the second exposure is the current exposure (referring to the current moment During the ongoing exposure), the start time of the near-infrared fill light can be determined according to the first time, which can be the start exposure time of the first line of the effective image signal of the second image signal generated by the current exposure, The end time of performing the near-infrared supplementary light may be determined according to the second time, and the second time may be the end exposure time of the last line of the effective image signal of the second image signal generated by the current exposure. Between the start time and the end time, the light-filling component 2 can perform near-infrared light-filling, and the image sensor 12 can perform a rolling shutter exposure with the exposure parameters of the second exposure, and output a second image signal.
  • the start time of the near-infrared fill light can be determined according to the first time,
  • multiple rolling shutter exposures include multiple first exposures and multiple second exposures.
  • multiple first exposures and multiple second exposures are required in one second.
  • the sequence of the first exposure and the second exposure can be configured in advance. For example, if the first exposure is performed 10 times and the second exposure is performed 10 times within one second, the first exposure and the second exposure can be performed alternately (that is, the first exposure, the second exposure, the first exposure,... , The second exposure).
  • the light-filling component 2 may include a first light-filling device 21, and the first light-filling device 21 may be located in the image acquisition device or outside the image acquisition device.
  • the first supplementary light device 21 may be a part of the image acquisition device, or may be a device independent of the image acquisition device.
  • the first supplementary light device 21 can communicate with the image acquisition device, thereby ensuring that the exposure timing of the image sensor 12 in the image acquisition device is consistent with that of the first supplementary light device. There is a certain relationship in the timing of the near-infrared fill light of 21.
  • the near-infrared supplemental light during the second exposure is performed according to a preset period, and the image acquisition device may notify the first supplementary light device 21 of the preset period.
  • the first supplementary light device 21 After receiving the preset period, the first supplementary light device 21 performs near-infrared supplementary light according to the preset period.
  • the first line of effective image signal in the second exposure is close to the start of the exposure time.
  • Infrared fill light, and near-infrared fill light at the end of the last line of the effective image signal during the second exposure that is, the start time of the near-infrared fill light in the second exposure cannot be later than the first moment, and The end time of the near-infrared fill light during the second exposure cannot be earlier than the second time.
  • the first exposure and the second exposure of the image sensor 12 are performed alternately, the first light supplement device 21 corresponds to the first light supplement state during the first exposure, and the first light supplement state during the second exposure
  • the light device 21 corresponds to the second fill light state, the first fill light state is off, the first fill light device 21 does not perform near-infrared fill light, the second fill light state is on, and the first fill light device 21 performs near infrared fill light
  • the image signal of the previous frame is the first image signal
  • the image signal of the current frame ie the image signal generated by the current exposure
  • the second image signal is generated
  • the second image signal corresponds to
  • the near-infrared light is turned on in the second light-filling state
  • the time when the first light-filling device 21 starts the near-infrared light is no later than the start exposure time of the first line of the effective image signal of the current frame image signal. Further, the time when the first light-filling device 21 starts the near-infrared light is no later
  • the start time of the near-infrared fill light during the second exposure is determined according to the first time and the third time.
  • the third time is the end exposure time of the last line of the effective image signal of the first image signal generated by the most recent first exposure before the current exposure.
  • the first time is no earlier than the third time.
  • the current exposure when the current exposure is the second exposure, in order not to affect the first exposure, and to enable the first line of effective image signals of the second exposure to be filled with near-infrared light, it must be in the previous frame
  • the last line of the effective image signal of the first exposure will not have near-infrared fill light before the end of the exposure, and there will be near-infrared fill light when the first line of the effective image signal of the current exposure begins to be exposed, so the near-infrared fill light is performed during the second exposure
  • the start time of the fill light is no earlier than the third moment, and no later than the first moment.
  • the near-infrared fill light starts within the range of two vertical dotted lines (between the third moment and the first moment), the dotted line close to the left is the 5th millisecond, and the dotted line close to the right is the 5th millisecond. It is the 8th millisecond, and the near-infrared fill light can be started at the 6th millisecond.
  • the second exposure in order not to affect the first exposure, and to make the last line of the effective image signal of the second exposure can be used for near-infrared fill light, the second exposure can be used at the end of the near-infrared fill light.
  • the time and the fourth time are determined, and the fourth time is the start exposure time of the first line of the effective image signal of the first image signal generated by the first exposure of the next frame.
  • the current exposure when the current exposure is the second exposure, in order not to affect the first exposure, and to make the last line of the effective image signal of the second exposure can be filled with near-infrared light, it must be in the first frame of the next frame. There will be no near-infrared fill light after the first line of effective image signal of one exposure begins to be exposed, and near-infrared fill light is also available when the last line of effective image signal of the current exposure ends.
  • the start of light is no earlier than the second moment, and no later than the fourth moment.
  • the near-infrared fill light is ended within the range of two vertical dashed lines (between the second moment and the fourth moment), the dashed line close to the left is the 25th millisecond, and the dashed line close to the right is the 25th millisecond It is the 28th millisecond, and the near-infrared fill light can be ended at the 26th millisecond.
  • the effective image signal of each line is completely filled with near-infrared light during the exposure time. Is the near-infrared fill light of the first line of effective image signal currently exposed), then the start time of the near-infrared fill light is not later than the start time of the first line of effective image signal of the current exposure (if it is later than the first line At the beginning of the exposure time of the line effective image signal, the first line of effective image signal is not completely filled with near-infrared light within the exposure time), if you want to not affect the most recent first exposure before the current exposure, perform near-infrared fill light
  • the start time of the previous frame may not be earlier than the end exposure time of the last line of the effective image signal of the first exposure of the previous frame (if it is earlier than the end exposure time of the last line of the effective image signal, the first exposure of the previous frame will be close to Infrared fill light).
  • the start time of the near-infrared fill light during the second exposure is no earlier than the third time, and no later than the first time.
  • each line of effective image signal is completely filled with near-infrared light within the exposure time (here the effect is the near-infrared fill light of the last line of effective image signal currently exposed), then perform near-infrared compensation
  • the end time of the light may not be earlier than the end exposure time of the last line of effective image signal of the current exposure (if it is earlier than the end exposure time of the last line of effective image signal, the last line of effective image signal is not complete during the exposure time.
  • the end time of the near-infrared fill light is no later than the start exposure time of the first line of the effective image signal of the first exposure of the next frame (If it is later than the start exposure time of the first line of effective image signals, there will be near-infrared fill light during the first exposure of the next frame). Therefore, the end time of the near-infrared fill light during the second exposure is not earlier than the second moment, and not later than the fourth moment. In this way, the near-infrared fill light is completely performed for each line of the effective image signal currently exposed within the exposure time, so the fill light time of the near-infrared light can be made longer.
  • the fill light duration of each row of the effective image signal of the second image signal generated by the current exposure is the same.
  • the supplementary light duration refers to the duration of near-infrared supplementary light.
  • the first light supplement device 21 performs near-infrared supplement light. If the first exposure and the second exposure are performed alternately, the current exposure is the second exposure, and the near-infrared supplement light starts at no earlier than the previous frame The end exposure time of the last line of effective image signals, and not later than the start exposure time of the first line of effective image signals currently exposed. The end time of the near-infrared supplemental light is not earlier than the end exposure time of the last line of the effective image signal of the current exposure, and no later than the start exposure time of the first line of the effective image signal of the following frame.
  • the start exposure time of each line of the effective image signal of the current exposure is different, and it is turned on at the latest exposure time of the first line of the effective image signal of the current exposure, and the earliest is the current exposure.
  • the end exposure time of the last line of the effective image signal ends, and the near-infrared fill light lasts for the entire second exposure of the effective image signal exposure time period, so the near-infrared fill light must start from the first line of effective image signal exposure time To the end of the exposure time of the last line of the effective image signal, it is necessary to make the first fill light device 21 perform near-infrared fill light not less than the exposure time of any line of the effective image signal currently exposed and the second image signal generated by the current exposure.
  • the sum of the read-out time of valid images This is because the next exposure will only be performed after the effective image signal of the second image signal is read out, so the first light supplement device 21 performs near-infrared light supplementation for a minimum period of time equal to the exposure of any line of the effective image signal currently exposed The sum of the time and the readout duration of the effective image of the second image signal generated by the current exposure.
  • the image sensor performs exposure in a staggered manner under two exposures of A exposure and B exposure.
  • the first light supplement device 21 is turned off, and the output does not perform near-infrared supplement light.
  • the first light supplement device 21 is turned on to output the image signal (ie, the second image signal) of the near-infrared supplement light of the light supplement lamp.
  • the first light supplement device 21 is turned on no earlier than the end exposure time of the last line of the effective image signal of the previous frame A, and no later than the start exposure time of the first line of the effective image signal of the current frame B, the first light supplement device 21 is closed not earlier than the end exposure time of the last line of effective image signal of the current frame B, and no later than the start exposure time of the first line of effective image signal of the next frame A.
  • the exposure time of A exposure and B exposure are both 8ms, and the readout time is both 10ms.
  • the first line of effective image signal starts to be exposed when A exposure is 22ms, and the last line of effective image signal is 40ms. The exposure ends.
  • the first line of effective image signals begin to be exposed when B exposure is 42ms, and the last line of effective image signals ends at 60ms.
  • the first light supplement device 21 turns on the near-infrared supplement light at 41 ms, and turns off the near-infrared supplement light at 61 ms, and the light supplement time is 20 ms. In this way, A exposure without near-infrared supplement light can be obtained, which can truly reflect the color information of the environment, and B exposure with near-infrared supplement light has better brightness, clarity and signal-to-noise ratio.
  • the exposure time of A exposure can be appropriately extended to obtain better color information and signal-to-noise ratio.
  • the first light supplement device 21 is turned on at the beginning of the exposure time of the first line of the effective image signal of B exposure, and the effective image is in the last line of exposure.
  • the signal is closed at the end of the exposure time, which can reduce the near-infrared fill light time and reduce the power.
  • the exposure time for exposure A is 10ms
  • the exposure time for exposure B is 8ms
  • the readout time is both 10ms.
  • the effective image signal of the first line starts to be exposed and the last line is 40ms.
  • the effective image signal ends the exposure, the first line of the effective image signal starts to be exposed when the B exposure is 42ms, and the last line of the effective image signal ends when the B exposure is 60ms.
  • the first light supplement device 21 can turn on the near-infrared supplement light at 42 ms, and turn off the near-infrared supplement light at 60 ms, and the light supplement time is 18 ms.
  • the above-mentioned staggered sequence of AB exposure is only an implementation of the present disclosure, and other sequences may also be adopted.
  • the exposure conditions of the two types of AB exposure may also be different.
  • the above-mentioned exposure conditions include but are not limited to exposure time, digital gain, Analog gain, etc. (described later).
  • the above-mentioned linkage control relationship between the exposure and the light supplement component 2 is only an implementation manner of the present disclosure, and other linkage control manners satisfying the present disclosure may also be adopted. It should be noted here that the A exposure is the first exposure, and the B exposure is the second exposure.
  • the image acquisition component 1 may also include a lens 13, which may be composed of multiple lenses, which is used to focus the light and help the object to be imaged on the image sensor 12. .
  • the filter component 11 may be located between the lens 13 and the image sensor 12, and the image sensor 12 may be located on the light exit side of the filter component 11.
  • the filter component 11 may be a filter film. When the filter component 11 is located between the lens 13 and the image sensor 12, the filter component 11 may be attached to the surface of the lens 13 on the light exit side.
  • the image capturing component 1 may further include a lens 13, and the lens 13 may be composed of multiple lenses, which are used to focus light and help the object to be imaged on the image sensor 12.
  • the lens 13 may be located between the filter component 11 and the image sensor 12, and the image sensor 12 may be located on the light exit side of the lens 13.
  • the filter component 11 may be a filter film. When the lens 13 is located between the filter component 11 and the image sensor 12, the filter component 11 may be attached to the surface of the lens 13 on the light incident side.
  • the filter component 11 can be located between the lens 13 and the image sensor 12, and the image sensor 12 is located on the light-emitting side of the filter component 11.
  • the process of collecting the first image signal and the second image signal by the device is as follows: when the image sensor 12 performs the first exposure, the first light supplement device 21 does not have near-infrared supplement light. At this time, the ambient light in the shooting scene passes through the lens 13, After the filter component 11, the image sensor 12 generates a first image signal through the first exposure. When the image sensor 12 performs the second exposure, the first light supplement device 21 has near-infrared supplement light.
  • the environment in the shooting scene The near-infrared light reflected by objects in the scene when the light and the first light-filling device 21 performs near-infrared light-filling, after passing through the lens 13 and the filter element 11, the image sensor 12 generates a second image signal through the second exposure.
  • M first exposures and N second exposures in a unit time period of acquisition, and there can be multiple sorts of combinations between the first exposure and the second exposure.
  • M and The value of N and the size relationship between M and N can be set according to actual requirements. For example, the values of M and N can be equal or different.
  • the first supplementary light device 21 is a device that can emit near-infrared light, for example, a near-infrared supplementary light, etc.
  • the first supplementary light device 21 can perform near-infrared supplementary light in a stroboscopic manner, or in other ways similar to stroboscopic
  • the near-infrared supplementary light is performed, which is not limited in the embodiment of the present disclosure.
  • the first light supplement device 21 when the first light supplement device 21 performs near-infrared supplement light in a stroboscopic manner, the first light supplement device 21 can be manually controlled to perform near-infrared supplement light in a stroboscopic manner, or through a software program Or a specific device controls the first light supplement device 21 to perform near-infrared supplement light in a strobe mode, which is not limited in the embodiment of the present disclosure.
  • the time period for the first light supplement device 21 to perform near-infrared light supplementation may coincide with the exposure time period of the second exposure, or it may be greater than the exposure time period of the second exposure or less than the exposure time period of the second exposure, as long as it is in the first
  • the near-infrared supplementary light is performed during the entire exposure time period or part of the exposure time period of the second exposure, and the near-infrared supplementary light is not performed during the exposure time period of the first exposure. It should be noted here that if the near-infrared supplementary light is performed during the partial exposure time period of the second exposure, the near-infrared supplementary light must be performed within the effective image signal exposure time period of the second exposure.
  • the effective image signal of the second exposure is the image signal output by the photosensitive channel of 800 rows among the photosensitive channels of 1000 rows, and then the near-infrared supplementary light is performed when the image signal of the photosensitive channel of 800 rows of the second exposure is output.
  • the first light-filling device 21 performs near-infrared light-filling during the second exposure.
  • the exposure time period of the second exposure may be that of the effective image signal of the first line of the second image signal.
  • the time period between the start of exposure and the end of the exposure of the last line of effective image signals is not limited to this.
  • the exposure time period of the second exposure may also be the exposure time period corresponding to the target image signal in the second image signal, and the target image signal is several lines of effective image signals corresponding to the target object or target area in the second image signal.
  • the time period between the start exposure time and the end exposure time of the several rows of effective image signals can be regarded as the exposure time period of the second exposure.
  • the target object and target area can be a preset number of lines of photosensitive channels.
  • the near-infrared light incident on the surface of the object may be reflected by the object and enter the first filter device 111.
  • the ambient light may include visible light and near-infrared light, and near-infrared light in the ambient light is also reflected by the object when it is incident on the surface of the object, thereby entering the first filter device 111.
  • the near-infrared light that passes through the first filter device 111 when performing near-infrared light supplementation may include the near-infrared light that enters the first filter device 111 when reflected by an object when the first light-filling device 21 performs near-infrared light supplementation.
  • the near-infrared light passing through the first filter device 111 when the near-infrared light supplement is not performed may include the near-infrared light reflected by the object into the first filter device 111 when the first light supplement device 21 is not performing the near-infrared light supplement.
  • the near-infrared light that passes through the first filter device 111 when performing near-infrared supplementary light includes the near-infrared light emitted by the first supplementary light device 21 and reflected by the object, and the ambient light reflected by the object Near-infrared light
  • the near-infrared light that passes through the first filter device 111 when the near-infrared supplementary light is not performed includes near-infrared light reflected by an object in the ambient light.
  • the first light supplement device 21 since the intensity of the near-infrared light in the ambient light is lower than the intensity of the near-infrared light emitted by the first light supplement device 21, the first light supplement device 21 passes through the first filter device 111 when performing near-infrared supplement light.
  • the intensity of the near-infrared light is higher than the intensity of the near-infrared light passing through the first filter device 111 when the first light supplement device 21 does not perform the near-infrared light supplement.
  • the near-infrared light passing through the first filter device 111 may include the near-infrared light reflected by the object into the first filter device 111 when the first supplementary light device 21 performs near-infrared supplementary light, and Near-infrared light reflected by objects in ambient light. Therefore, at this time, the intensity of the near-infrared light entering the first filter device 111 is relatively strong. However, when there is no near-infrared supplementary light, the near-infrared light passing through the first filter device 111 only includes the near-infrared light reflected by the object into the first filter device 111 in the ambient light.
  • the intensity of the near-infrared light passing through the first filter device 111 at this time is relatively weak. Therefore, the intensity of the near infrared light included in the second image signal generated and output according to the second exposure is higher than the intensity of the near infrared light included in the first image signal generated and output according to the first exposure.
  • the wavelength range of the first light supplement device 21 for near-infrared supplement light may be the second reference wavelength range, and the second reference wavelength range may be 700 nanometers to 800 nanometers, or 900 nanometers to 1000 nanometers, etc.
  • the embodiments of this application This is not limited.
  • the wavelength range of the near-infrared supplement light performed by the first light supplement device 21 may also be the first reference wavelength range, and the wavelength range of the near-infrared light incident on the first filter device 111 may be the first reference wavelength range.
  • a reference wave band ranges from 650 nm to 1100 nm.
  • the center wavelength and/or wavelength range of the first supplementary light device 21 for near-infrared supplementary light there are multiple choices for the center wavelength and/or wavelength range of the first supplementary light device 21 for near-infrared supplementary light.
  • the center wavelength of the near-infrared supplement light of the first light supplement device 21 can be designed, and the characteristics of the first filter device 111 can be selected, so that the center of the first light supplement device 21 for the near-infrared light supplement
  • the wavelength is the set characteristic wavelength or falls within the set characteristic wavelength range
  • the center wavelength and/or the band width of the near-infrared light passing through the first filter device 111 can meet the constraint conditions.
  • the constraint conditions are mainly used to restrict the center wavelength of the near-infrared light passing through the first filter device 111 as accurate as possible, and the band width of the near-infrared light passing through the first filter device 111 as narrow as possible, so as to avoid The infrared light band width is too wide and introduces wavelength interference.
  • the center wavelength of the near-infrared light supplemented by the first light-filling device 21 may be the average value within the wavelength range of the highest energy in the spectrum of the near-infrared light emitted by the first light-filling device 21, or it may be understood as the first light-filling
  • the set characteristic wavelength or the set characteristic wavelength range can be preset.
  • the center wavelength of the first light supplement device 21 for near-infrared supplement light may be any wavelength within the wavelength range of 750 ⁇ 10 nanometers; or, the center wavelength of the first light supplement device 21 for near-infrared supplement light It is any wavelength within the wavelength range of 780 ⁇ 10 nanometers; or, the center wavelength of the near-infrared supplement light performed by the first light supplement device 21 is any wavelength within the wavelength range of 940 ⁇ 10 nanometers.
  • the set characteristic wavelength range may be a wavelength range of 750 ⁇ 10 nanometers, or a wavelength range of 780 ⁇ 10 nanometers, or a wavelength range of 940 ⁇ 10 nanometers.
  • the center wavelength of the first light supplement device 21 for near-infrared supplement light is 940 nanometers
  • the wavelength range of the first light supplement device 21 for near-infrared supplement light is 900 nanometers to 1000 nanometers.
  • the relative intensity of the near-infrared light is the highest at 940 nanometers.
  • the relative intensity refers to the intensity of the near-infrared light after passing through the first filter device 111.
  • the above-mentioned constraint conditions may include: the difference between the center wavelength of the near-infrared light passing through the first filter device 111 and the center wavelength of the near-infrared light supplemented by the first light-filling device 21 lies in the wavelength fluctuation Within the range, as an example, the wavelength fluctuation range may be 0-20 nanometers.
  • the center wavelength of the near-infrared supplement light passing through the first filter device 111 can be the wavelength at the peak position in the near-infrared light band in the near-infrared light pass rate curve of the first filter device 111, or it can be understood as The wavelength at the middle position in the near-infrared light pass-through rate curve of the first filter device 111 whose pass rate exceeds a certain threshold value.
  • the above constraint conditions may include: the first band width may be smaller than the second band width.
  • the first waveband width refers to the waveband width of the near-infrared light passing through the first filter device 111
  • the second waveband width refers to the waveband width of the near-infrared light blocked by the first filter device 111.
  • the wavelength band width refers to the width of the wavelength range in which the wavelength of light lies.
  • the first wavelength band width is 800 nanometers minus 700 nanometers, that is, 100 nanometers.
  • the wavelength band width of the near infrared light passing through the first filter device 111 is smaller than the wavelength band width of the near infrared light blocked by the first filter device 111.
  • FIG. 10 is a schematic diagram of the relationship between the wavelength and the pass rate of light that the first filter device 111 can pass.
  • the wavelength band of the near-infrared light incident on the first filter device 111 is 650 nanometers to 1100 nanometers.
  • the first filter device 111 can pass visible light with a wavelength of 380 nanometers to 650 nanometers, and a wavelength of near 900 nanometers to 1000 nanometers.
  • Infrared light passes through and blocks near-infrared light with a wavelength between 650 nanometers and 900 nanometers. That is, the width of the first band is 1000 nanometers minus 900 nanometers, that is, 100 nanometers.
  • the second band width is 900 nm minus 650 nm, plus 1100 nm minus 1000 nm, or 350 nm. 100 nanometers are smaller than 350 nanometers, that is, the wavelength band width of the near-infrared light passing through the first filter device 111 is smaller than the wavelength band width of the near-infrared light blocked by the first filter device 111.
  • the above relationship curve is just an example.
  • the wavelength range of the near-red light that can pass through the filter component can be different, and the wavelength range of the near-infrared light blocked by the filter component can also vary. different.
  • the above-mentioned constraint conditions may include: passing the first filter
  • the half bandwidth of the near-infrared light of the optical device 111 is less than or equal to 50 nanometers.
  • the half bandwidth refers to the band width of near-infrared light with a pass rate greater than 50%.
  • the above constraint condition may include: the third band width may be smaller than the reference band width.
  • the third waveband width refers to the waveband width of near-infrared light with a pass rate greater than a set ratio.
  • the reference waveband width may be any waveband width in the range of 50 nm to 150 nm.
  • the reference waveband width may be any waveband width in the range of 50 nanometers to 100 nanometers.
  • the set ratio can be any ratio from 30% to 50%.
  • the set ratio can also be set to other ratios according to usage requirements, which is not limited in the embodiment of the present application.
  • the band width of the near-infrared light whose pass rate is greater than the set ratio may be smaller than the reference band width.
  • the pass rate refers to the pass rate of near-infrared light passing through the first filter device 111.
  • the wavelength band of the near-infrared light incident on the first filter device 111 is 650 nanometers to 1100 nanometers, the setting ratio is 30%, and the reference wavelength band width is 100 nanometers. It can be seen from FIG. 10 that in the wavelength band of near-infrared light from 650 nanometers to 1100 nanometers, the band width of near-infrared light with a pass rate greater than 30% is significantly less than 100 nanometers.
  • the light-filling component 2 may also include The second light supplement device 22, and the second light supplement device 22 are used for visible light supplement light. In this way, if the second light supplement device 22 provides visible light supplement light at least during the partial exposure time of the second exposure, that is, at least the near-infrared supplement light and visible light supplement light exist during the partial exposure time of the second exposure.
  • the mixed color of the seed light can be distinguished from the color of the red light in the traffic light, thereby avoiding the human eye from confusing the color of the near-infrared light of the light supplement component 2 with the color of the red light in the traffic light.
  • the second light supplement device 22 provides visible light supplement light during the exposure time period of the first exposure, since the intensity of visible light is not particularly high during the exposure time period of the first exposure, therefore, during the exposure time period of the first exposure When the visible light supplement is performed, the brightness of the visible light in the first image signal can also be increased, thereby ensuring the quality of image collection.
  • the second light supplement device 22 may be used to perform visible light supplement light in a constant light mode; or, the second light supplement device 22 may be used to perform visible light supplement light in a stroboscopic manner, wherein, at least in the second Visible light supplementary light exists in part of the exposure time period of the exposure, and there is no visible light supplementary light during the entire exposure time period of the first exposure; alternatively, the second light supplement device 22 can be used to perform visible light supplementary light in a strobe mode, where: At least during the entire exposure time period of the second exposure, there is no visible light supplementary light, and there is visible light supplementary light during the partial exposure time period of the first exposure.
  • the second light supplement device 22 When the second light supplement device 22 performs visible light supplement light in a constant light mode, it can not only prevent human eyes from confusing the color of the first light supplement device 21 for near-infrared supplement light with the color of the red light in the traffic light, but also can improve The brightness of the visible light in the first image signal ensures the quality of image collection.
  • the second light supplement device 22 When the second light supplement device 22 performs visible light supplement light in a stroboscopic manner, it can prevent human eyes from confusing the color of the near-infrared supplement light of the first light supplement device 21 with the color of the red light in the traffic light, or it can improve
  • the brightness of the visible light in the first image signal in turn ensures the quality of image collection, and can also reduce the number of times of supplementary light of the second supplementary light device 22, thereby extending the service life of the second supplementary light device 22.
  • the filter component 11 further includes a second filter device 112 and a switching component 113 (not shown in the figure), the first filter device 111 and the second filter device 112 are connected to the switching component 113, and the switching component 113 is used to switch the second filter device 112 to the light incident side of the image sensor 12; after the second filter device 112 is switched to the light incident side of the image sensor 12, the first The second filter device 112 allows light in the visible light band to pass and blocks light in the near-infrared light band.
  • the image sensor 12 is used for generating and outputting a third image signal through exposure. In this way, the second filter device 112 can block near-infrared light from passing through.
  • the second filter device 112 is switched to the light-incident side of the image sensor 12 by the switching component 113, which can avoid entering the near-infrared light during the first exposure. Light.
  • the first light supplement device 21 can be used for stroboscopic light supplementation, and the first filter device 111 can pass part of the near-infrared light and visible light to make the image sensor 12 Generates and outputs a second image signal containing near-infrared brightness information and a first image signal containing visible light brightness information, and since both the first image signal and the second image signal are acquired by the same image sensor 12, the first image signal The viewpoint of is the same as the viewpoint of the second image signal, so that complete information of the external scene can be obtained through the first image signal and the second image signal.
  • the second filter device 112 can prevent the near-infrared light from passing through, and the image sensor 12 can generate and The output of the third image signal containing visible light brightness information, so that even in the daytime, images with better color reproduction can be collected, and it can be efficient and simple regardless of the intensity of visible light, or whether it is day or night Obtain real color information of the external scene.
  • the first image signal is generated and output by the first exposure
  • the second image signal may be generated and output by the second exposure.
  • the second image signal and the first image signal can be processed.
  • the purposes of the second image signal and the first image signal may be different, so in some embodiments, at least one exposure parameter of the second exposure and the first exposure may be different.
  • the at least one exposure parameter may include but is not limited to one or more of exposure time, analog gain, digital gain, and aperture size. Wherein, the exposure gain includes analog gain and/or digital gain.
  • the intensity of the near-infrared light sensed by the image sensor 12 is stronger, and the second image signal is generated and output accordingly.
  • the brightness of the included near-infrared light will also be higher.
  • near-infrared light with higher brightness is not conducive to the acquisition of external scene information.
  • the exposure gain of the second exposure may be less than the exposure gain of the first exposure.
  • the supplementary light component 2 performs near-infrared supplementary light, the brightness of the near-infrared light included in the second image signal generated and output by the image sensor 12 will not be too high due to the near-infrared supplementary light performed by the supplementary component 2.
  • the longer the exposure time the higher the brightness included in the image signal obtained by the image sensor 12, and the longer the motion trailing of the moving objects in the external scene in the image signal; the shorter the exposure time, the longer the image
  • the image signal obtained by the sensor 12 includes a lower brightness, and a moving object in an external scene has a shorter motion trail in the image signal. Therefore, in order to ensure that the brightness of the near-infrared light contained in the second image signal is within an appropriate range, and the moving objects in the external scene have a shorter motion trail in the second image signal.
  • the exposure time of the second exposure may be less than the exposure time of the first exposure.
  • the light supplement component 2 performs near-infrared supplement light
  • the brightness of the near-infrared light contained in the second image signal generated and output by the image sensor 12 will not be too high due to the near-infrared supplement light performed by the light supplement component 2.
  • the shorter exposure time makes the motion trailing of the moving object in the external scene shorter in the second image signal, thereby facilitating the recognition of the moving object.
  • the exposure time of the second exposure is 40 milliseconds
  • the exposure time of the first exposure is 60 milliseconds, and so on.
  • the exposure time of the second exposure may not only be less than the exposure time of the first exposure, but may also be equal to the exposure time of the first exposure. Exposure time. Similarly, when the exposure time of the second exposure is less than the exposure time of the first exposure, the exposure gain of the second exposure may be less than the exposure gain of the first exposure, or may be equal to the exposure gain of the first exposure.
  • the purpose of the second image signal and the first image signal may be the same.
  • the exposure time of the second exposure may be equal to the exposure time of the first exposure. If the exposure time of the second exposure is different from the exposure time of the first exposure, there will be motion smearing in the image signal with a longer exposure time. , Resulting in different definitions of the two image signals.
  • the exposure gain of the second exposure may be equal to the exposure gain of the first exposure.
  • the exposure gain of the second exposure may be less than the exposure gain of the first exposure, or may be equal to the exposure time of the first exposure.
  • Gain when the exposure gain of the second exposure is equal to the exposure gain of the first exposure, the exposure time of the second exposure may be less than the exposure time of the first exposure, or may be equal to the exposure time of the first exposure.
  • the image acquisition device may be a camera, a capture machine, a face recognition camera, a code reading camera, a vehicle-mounted camera, a panoramic detail camera, etc.
  • the image sensor 12 includes a plurality of photosensitive channels, the plurality of photosensitive channels including R (Red) photosensitive channels, G (Green, green) photosensitive channels, B (Blue, blue) photosensitive channels, W (White, white) photosensitive channels At least one of the multiple photosensitive channels through multiple rolling shutter exposures to generate and output the first image signal and the second image signal.
  • the R photosensitive channel is used to sense red light and near-infrared light
  • the G photosensitive channel is used to sense green light and near-infrared light
  • the B photosensitive channel is used to sense blue light and near-infrared light.
  • Light in the light band, W photosensitive channel is used to sense light in the whole band.
  • the R photosensitive channel, the G photosensitive channel, the B photosensitive channel, and the W photosensitive channel can all sense light in the near-infrared light band, it is sufficient to have at least one of the above photosensitive channels.
  • Full band refers to the entire visible light band.
  • the image sensor 12 is any one of a red, green, blue, and white RGBW sensor, a red, white, white, and blue RCCB sensor, a red, green, and blue RGB sensor, or a red, yellow, yellow, and blue RYYB sensor; where R represents R Photosensitive channel, G indicates G photosensitive channel, B indicates B photosensitive channel, and W indicates W photosensitive channel.
  • the image sensor 12 may be an RGBW sensor, or, as shown in FIG. 14, the image sensor 12 may be an RCCB sensor, or, as shown in FIG. 15, the image sensor 12 may be an RGB sensor, or, as shown in FIG.
  • the image sensor 16 may be a RYYB sensor.
  • the Y in RYYB represents yellow (Yellow)
  • the C in RCCB represents clear (Clear), which can sense light in the visible light waveband and near-infrared light waveband.
  • each photosensitive channel in the channel array can be used to sense light of one color.
  • the channel array of the RGBW sensor includes four color photosensitive channels of red, green, blue, and white.
  • the R photosensitive channel has a higher quantum efficiency for sensing red light in the red light band
  • the G photosensitive channel has a higher quantum efficiency for green light in the green light band.
  • the sensing quantum efficiency is relatively high.
  • the sensing quantum efficiency of the B photosensitive channel to blue light in the blue light band is relatively high, and the sensing quantum efficiency of the W photosensitive channel W to white light in the full wavelength band is relatively high.
  • some photosensitive channels may only sense light in the near-infrared light waveband, but not light in the visible light waveband.
  • the plurality of photosensitive channels may include at least two of R photosensitive channels, G photosensitive channels, B photosensitive channels, and IR (Infrared) photosensitive channels.
  • the R photosensitive channel is used to sense light in the red and near infrared light bands
  • the G photosensitive channel is used to sense light in the green and near infrared light bands
  • the B photosensitive channel is used to sense blue light and near infrared light.
  • the IR photosensitive channel is used to sense light in the near-infrared light band.
  • the image sensor 12 may be an RGBIR sensor, where each IR photosensitive channel in the RGBIR sensor can sense light in the near-infrared light waveband, but not light in the visible light waveband.
  • the image sensor 12 is an RGB sensor
  • other image sensors such as RGBIR sensors
  • the RGB information collected by the RGB sensor is more complete.
  • Some of the photosensitive channels of the RGBIR sensor cannot collect visible light, so the image collected by the RGB sensor The color details are more accurate.
  • the multiple photosensitive channels included in the image sensor 01 may correspond to multiple sensing curves.
  • the R curve in FIG. 17 represents the sensing curve of the image sensor 12 to light in the red light band
  • the G curve represents the sensing curve of the image sensor 01 to light in the green light band
  • the B curve represents the image sensor 12
  • the W (or C) curve represents the sensing curve of the image sensor 12 sensing light in the full band
  • the NIR (Near infrared) curve represents the light sensing curve of the image sensor 12 in the near infrared light band.
  • Induction curve is the sensing curve of the image sensor 12 to light in the red light band
  • the G curve represents the sensing curve of the image sensor 01 to light in the green light band
  • the B curve represents the image sensor 12
  • the W (or C) curve represents the sensing curve of the image sensor 12 sensing light in the full band
  • the NIR (Near infrared) curve represents the light sensing curve of the image sensor 12 in the near infrared light band.
  • the multiple rolling shutter exposures include multiple exposure periods, and each exposure period includes at least one first exposure and at least one second exposure, that is, the first exposure and the second exposure It can be performed alternately, or it can be multiple consecutive first exposures and then second exposure, or multiple consecutive second exposures and then first exposure.
  • the exposure period is 1 second
  • the image sensor 12 performs multiple exposures in each exposure period, thereby generating at least one frame of the first image signal and at least one frame of the second image signal, and combining the first image generated in one exposure period
  • the signal and the second image signal are called a set of image signals, so that 25 sets of image signals are generated within 25 exposure periods.
  • each exposure period includes a first exposure and a second exposure
  • the sequence of the first exposure and the second exposure in the multiple rolling shutter exposures includes at least the following:
  • each exposure period includes one first exposure and one second exposure
  • the arrangement sequence is first exposure and second exposure.
  • the odd-numbered exposures such as the first exposure, the third exposure, and the fifth exposure among the multiple rolling shutter exposures are all the first exposure, the second exposure and the fourth exposure
  • the even number of exposures such as the 6th exposure are the second exposures.
  • each exposure period includes one first exposure and one second exposure
  • the arrangement sequence is second exposure and first exposure.
  • the odd-numbered exposures such as the first exposure, the third exposure, and the fifth exposure in the multiple rolling shutter exposures are all the second exposures
  • the second exposure and the fourth exposure The even number of exposures such as the sixth exposure are the first exposures.
  • each exposure cycle includes two first exposures and one second exposure, and the sequence is first exposure, first exposure, second exposure, and the first exposure in multiple rolling shutter exposures.
  • the order of arrangement with the second exposure may be first exposure, first exposure, second exposure, first exposure, first exposure, second exposure, and so on.
  • each exposure cycle includes two second exposures and one first exposure.
  • the sequence is second exposure, second exposure, first exposure, and the first exposure and second exposure in multiple rolling shutter exposures.
  • the sequence may be second exposure, second exposure, first exposure, second exposure, second exposure, first exposure, and so on.
  • the exposure time can be adjusted based on the ambient light, and the corresponding processing can be as follows:
  • the exposure time in the exposure parameter used in the first exposure is controlled to update to the second value , If the exposure time in the exposure parameter used in the second exposure is not the third value, the exposure time in the exposure parameter used in the second exposure is controlled to be updated to the third value; when the brightness of the ambient light is greater than or equal to the first
  • the exposure time in the exposure parameter used in the first exposure is controlled to be updated to the fourth value, if the second exposure is performed. If the exposure time in the used exposure parameter is not the fifth value, then the exposure time in the exposure parameter used when controlling the second exposure is updated to the fifth value, where the second value is greater than the fourth value, and the third value is less than the fifth value.
  • the first value, the second value, the third value, the fourth value, and the fifth value can all be set in advance and stored in the image acquisition device.
  • the second value is greater than the fourth value
  • the third value is less than the fifth value.
  • the image sensor 12 can determine the current brightness of the ambient light, which can be detected by a light sensor, and determine the brightness of the ambient light and the first value.
  • the exposure time used in the first exposure is not the second value
  • the exposure time used in the first exposure is controlled to be updated to the second value
  • the exposure time used later is that Is the second value
  • the exposure time used in the second exposure is not the third value
  • the exposure time used in the second exposure is controlled to be updated to the third value.
  • the exposure time of the first exposure is generally 10 milliseconds
  • the exposure time of the second exposure is 15 milliseconds.
  • the exposure time of the first exposure can be updated to 15 milliseconds.
  • the exposure time can be updated to 10 milliseconds.
  • the exposure time of the first exposure can be appropriately extended, and the exposure time of the second exposure can be appropriately shortened, so that the color and clarity of the first image signal can be made Both the degree and the signal-to-noise ratio increase.
  • the above-mentioned update is the second value and the third value, generally to make the total exposure time of multiple rolling shutter exposure unchanged.
  • the exposure time used in the first exposure is controlled to be updated to the fourth value, and if the second exposure is performed
  • the exposure time used during exposure is not the fifth value, and the exposure time used during the second exposure is controlled to be updated to the fifth value.
  • the above update is the fourth value and the fifth value, which generally keeps the total exposure time of multiple rolling shutter exposures unchanged.
  • the exposure time can be appropriately extended to make the acquired first image signal brightness relatively high, and when the light is relatively bright, the exposure time can be appropriately shortened to avoid overexposure.
  • the image sensor 12 and the light-filling component 2 have been respectively configured when to perform the first exposure and when to perform the second exposure, and configure the compensation for each exposure.
  • the optical component 2 and the image sensor 12 are processed separately, so that the image sensor 12 and the supplementary light component 2 can perform their own processing respectively during the first exposure. For example, at 10 milliseconds, the supplementary light component 2 is turned off, and the image sensor 12 collects the first image signal.
  • the image acquisition device in the embodiment of the present disclosure may also include a controller, which is electrically connected to the image acquisition component 1 and the light supplement component 2, that is, the controller can be connected to the The image acquisition component 1 and the light supplement component 2 are electrically connected.
  • the controller can control when the image sensor 12 starts the first exposure and when the second exposure starts to realize the first exposure and the second exposure.
  • image sensor is only an example, and any one that can be used to sense at least one of red, green, and blue visible light as well as near-infrared light can be applied to the embodiments of the present disclosure.
  • the exposure time mentioned in the implementation of the present disclosure refers to the exposure time of each line during each exposure, that is, when the exposure time of the second exposure is 10 milliseconds, the second image signal generated by the second exposure The effective image signal exposure time for each line is 10 milliseconds.
  • the stroboscopic light refers to the flicker formed when the fill light is turned on during the second exposure for near-infrared fill light and turned off during the first exposure.
  • the exposure timing of the image sensor is used to control the near-infrared supplementary light timing of the supplementary light component, so that the second image signal is generated through the second exposure when the near-infrared supplementary light exists, and the second image signal is generated when there is no near-infrared supplementary light.
  • One exposure generates the first image signal.
  • This data collection method can directly collect the first image signal and the second image signal while reducing the cost with a simple structure, that is, two different images can be acquired through one image sensor The signal makes the image acquisition device more convenient and reduces the difficulty of implementation.
  • the first image signal and the second image signal are both generated and output by the same image sensor.
  • the viewpoint corresponding to the first image signal is the same as the viewpoint corresponding to the second image signal. Therefore, the first image signal and the second image signal
  • the signals can collectively obtain information of the external scene, and there is no misalignment of the images generated according to the first image signal and the second image signal due to the different viewpoints corresponding to the first image signal and the second image signal.
  • the above-mentioned image acquisition device can be applied to any scene in which the first image signal and the second image signal are determined, which is not limited in the embodiment of the present disclosure.
  • an image acquisition method is also provided, which is applied to the above-mentioned image acquisition device.
  • the image acquisition device includes: an image sensor, a light supplementary component and a filter component, and the supplementary light component includes a first supplementary light device,
  • the filter component includes a first filter device, as shown in FIG. 21, the execution flow of the method may be as follows:
  • Step 2101 Perform near-infrared light supplementation through the first light supplement device.
  • the near-infrared supplementary light is not performed during the first exposure, and the near-infrared supplementary light is performed during the second exposure.
  • the start time of the near-infrared supplementary light during the second exposure is determined at least according to the first time.
  • the end time of the near-infrared supplementary light is determined at least according to the second time.
  • Step 2102 Pass only visible light and part of near-infrared light through the first filter device.
  • Step 2103 Perform multiple rolling shutter exposure sensing by the image sensor and output the first image signal and the second image signal.
  • the first image signal is an image signal generated according to the first exposure
  • the second image signal is an image signal generated according to the second exposure
  • the first image signal includes multiple rows of effective image signals
  • the second image signal includes multiple rows of effective images.
  • the first time is the start exposure time of the first line of the second image signal generated by the current exposure
  • the second time is the last line of the second image signal generated by the current exposure. The end of the exposure time of the image signal.
  • the start time of the near-infrared supplement light during the second exposure is no later than the first time
  • the end time of the near-infrared supplement light during the second exposure is no earlier than the second time
  • the start time of the near-infrared fill light during the second exposure is determined according to the first time and the third time, where the third time is the first exposure generated by the most recent first exposure before the current exposure.
  • the end exposure time of the effective image signal of the last line of an image signal, the first time is not earlier than the third time.
  • the start time of the near-infrared fill light during the second exposure is not earlier than the third time, and not later than the first time.
  • the end time of the near-infrared fill light during the second exposure is determined according to the second time and the fourth time, and the fourth time is the first image produced by the most recent first exposure after the current exposure
  • the first line of the signal starts the exposure time of the effective image signal, and the second time is no later than the fourth time.
  • the end time of the near-infrared supplementary light during the second exposure is not earlier than the second moment, and not later than the fourth moment.
  • the time period for the first light supplement device to perform near-infrared light supplementation is not less than the exposure duration of any line of the effective image signal of the current exposure and the readout duration of the effective image signal of the second image signal generated by the current exposure Sum.
  • the fill light duration of each line of the effective image signal of the second image signal generated by the current exposure is the same.
  • the multiple rolling shutter exposures include multiple exposure periods, and each exposure period includes at least one first exposure and at least one second exposure.
  • the image acquisition component also includes a lens
  • the filter component is located between the lens and the image sensor, and the image sensor is located on the light exit side of the filter component; or,
  • the lens is located between the filter component and the image sensor, and the image sensor is located on the light exit side of the lens.
  • the image sensor includes multiple photosensitive channels.
  • the multiple photosensitive channels include at least one of R photosensitive channels, G photosensitive channels, B photosensitive channels, and W photosensitive channels.
  • Curtain shutter exposure generates and outputs a first image signal and a second image signal;
  • the R photosensitive channel is used to sense red light and near-infrared light
  • the G photosensitive channel is used to sense green light and near-infrared light
  • the B photosensitive channel is used to sense blue light and near-infrared light.
  • the light in the light band, W photosensitive channel is used to sense the light in the whole band.
  • the image sensor is any one of red, green, blue, and white RGBW sensors, red, white, white, and blue RCCB sensors, red, green, and blue RGB sensors, or red, yellow, yellow, and blue RYYB sensors;
  • R represents the R photosensitive channel
  • G represents the G photosensitive channel
  • B represents the B photosensitive channel
  • W represents the W photosensitive channel
  • At least one exposure parameter of the first exposure and the second exposure is different, the at least one exposure parameter is one or more of exposure time, exposure gain, and aperture size, and the exposure gain includes analog gain, and /Or, digital gain.
  • the exposure gain of the second exposure is smaller than the exposure gain of the first exposure.
  • At least one exposure parameter of the first exposure and the second exposure is the same, the at least one exposure parameter includes one or more of exposure time, exposure gain, and aperture size, and the exposure gain includes analog gain, and / Or, digital gain.
  • the exposure time of the first exposure is equal to the exposure time of the second exposure.
  • the filter component further includes a second filter device and a switching component, and both the first filter device and the second filter device are connected to the switching component;
  • the second filter device After the second filter device is switched to the light incident side of the image sensor, the second filter device passes light in the visible light band and blocks light in the near-infrared light band.
  • the image sensor is used to generate and output a third image signal through exposure .
  • the light supplement component further includes a second light supplement device
  • the second light supplement device is used to perform visible light supplement light in a constant light mode; or,
  • the second light supplement device is used to perform visible light supplement light in a stroboscopic manner, wherein visible light supplement light exists at least during a part of the exposure time period of the second exposure, and there is no visible light supplement light during the entire exposure time period of the first exposure; or,
  • the second light supplement device is used to perform visible light supplement light in a stroboscopic manner, wherein at least there is no visible light supplement light during the entire exposure time period of the second exposure, and visible light supplement light exists during a partial exposure time period of the first exposure.
  • the center wavelength of the near-infrared supplement light performed by the first light supplement device is the set characteristic wavelength or falls within the set characteristic wavelength range, the center wavelength of the near-infrared light passing through the first filter device and / Or the band width reaches the constraint condition.
  • the center wavelength of the near-infrared supplement light performed by the first light supplement device is any wavelength within the wavelength range of 750 ⁇ 10 nanometers;
  • the center wavelength of the first light supplement device for near-infrared supplement light is any wavelength within the wavelength range of 780 ⁇ 10 nanometers; or
  • the center wavelength of the first light supplement device for near-infrared supplement light is any wavelength within the wavelength range of 940 ⁇ 10 nanometers.
  • the constraint conditions include: the difference between the center wavelength of the near-infrared light passing through the first filter device and the center wavelength of the near-infrared light supplemented by the first light-filling device is within the wavelength fluctuation range,
  • the wavelength fluctuation range is 0-20 nanometers; or,
  • the half bandwidth of the near-infrared light passing through the first filter device is less than or equal to 50 nanometers; or,
  • the first waveband width is smaller than the second waveband width; where the first waveband width refers to the waveband width of the near-infrared light passing through the first filter device, and the second waveband width refers to the near-infrared light that is blocked by the first filter device.
  • Band width or,
  • the third waveband width is smaller than the reference waveband width.
  • the third waveband width refers to the waveband width of near-infrared light whose pass rate is greater than a set ratio.
  • the reference waveband width is any waveband width in the range of 50 nm to 150 nm.
  • processing in the image acquisition method is the same as the exposure processing in the image acquisition device shown in FIG. 3 and will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

本公开提供了一种图像采集装置和图像采集的方法,属于视频技术领域。所述图像采集装置包括图像采集部件和补光部件,图像采集部件包括滤光部件和图像传感器,图像传感器,用于通过多次卷帘式快门曝光感应并输出第一图像信号和第二图像信号,第一图像信号是根据第一曝光产生的图像信号,第二图像信号是根据第二曝光产生的图像信号,滤光部件包括第一滤光装置,用于使可见光和部分近红外光通过,补光部件包括第一补光装置,用于在第一曝光时不进行近红外补光,并在第二曝光时进行近红外补光,第二曝光时进行近红外补光的开始时刻是根据第一时刻确定的,第二曝光时进行近红外补光的结束时刻是根据第二时刻确定的。采用本公开,可以降低实现难度。

Description

图像采集装置和图像采集的方法
本申请要求于2019年05月31日提交的申请号为201910472706.0、发明名称为“图像采集装置和图像采集的方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及视频技术领域,特别涉及一种图像采集装置和图像采集的方法。
背景技术
随着计算机技术的发展,相对于指纹、虹膜等体貌特征,人脸更直观,所以人脸检测技术逐渐被应用于门禁等安防系统中。
在相关技术中,为了防止非法用户使用合法用户的人脸照片通过门禁等系统,一般是将人脸检测设备与双目摄像机连接,双目摄像机包括一个可见光摄像机和一个红外摄像机。进行人脸检测时,检测设备获取同一时刻可见光摄像机拍摄的可见光图像和红外摄像机拍摄的红外图像,通过红外图像确定是否是活体人脸,并通过可见光图像确定是否是合法用户。
这样,获得红外图像和可见光图像,需要两个摄像机,然而两个摄像机的安装需要较高的加工精度,所以导致实现难度较高。
发明内容
为了解决相关技术中实现难度较高的问题,本公开实施例提供了一种图像采集装置和图像采集的方法。所述技术方案如下:
第一方面,提供了一种图像采集装置,所述图像采集装置包括:
图像采集部件和补光部件,所述图像采集部件包括滤光部件和图像传感器;
所述图像传感器,用于通过多次卷帘式快门曝光感应并输出第一图像信号和第二图像信号,其中,所述第一图像信号是根据第一曝光产生的图像信号,所述第二图像信号是根据第二曝光产生的图像信号,所述第一曝光和所述第二曝光为所述多次卷帘式快门曝光中的其中两次曝光;
所述滤光部件,包括第一滤光装置,使可见光和部分近红外光通过;
所述补光部件,包括第一补光装置,所述第一补光装置用于在所述第一曝光时,不进行近红外补光,并在进行所述第二曝光时,进行近红外补光,且所述第二曝光时进行近红外补光的开始时刻是至少根据第一时刻确定的,所述第二曝光时进行近红外补光的结束时刻是至少根据第二时刻确定的;
所述第一图像信号包括多行有效图像信号,所述第二图像信号包括多行有效图像信号,所述第二曝光为当前曝光时,所述第一时刻是所述当前曝光产生的第二图像信号的第一行有效图像信号的开始曝光时刻,所述第二时刻是所述当前曝光产生的第二图像信号的最后一行有效图像信号的结束曝光时刻。
作为一种可能的实现方式,所述第二曝光时进行近红外补光的开始时刻不晚于所述第一时刻,所述第二曝光时进行近红外补光的结束时刻不早于所述第二时刻。
作为一种可能的实现方式,所述第二曝光时进行近红外补光的开始时刻是根据所述第一时刻和第三时刻确定的,其中,所述第三时刻是所述当前曝光之前的最近一次所述第一曝光产生的第一图像信号的最后一行有效图像信号的结束曝光时刻,所述第一时刻不早于所述第三时刻。
作为一种可能的实现方式,所述第二曝光时进行近红外补光的开始时刻不早于所述第三时刻,且不晚于所述第一时刻。
作为一种可能的实现方式,所述第二曝光时进行近红外补光的结束时刻是根据所述第二时刻和第四时刻确定的,所述第四时刻是所述当前曝光之后的最近一次所述第一曝光产生的第一图像信号的第一行有效图像信号的开始曝光时刻,所述第二时刻不晚于所述第四时刻。
作为一种可能的实现方式,所述第二曝光时进行近红外补光的结束时刻不早于所述第二时刻,且不晚于所述第四时刻。
作为一种可能的实现方式,在所述当前曝光中,所述第一补光装置进行近红外补光的时长不小于所述当前曝光的任一行有效图像信号的曝光时长与所述当前曝光产生的第二图像信号的有效图像信号的读出时长之和。
作为一种可能的实现方式,所述当前曝光产生的第二图像信号的每一行有效图像信号的补光时长相同。
作为一种可能的实现方式,所述多次卷帘式快门曝光中包括多个曝光周期,每个曝光周期中包括至少一次所述第一曝光和至少一次所述第二曝光。
作为一种可能的实现方式,所述图像采集部件还包括镜头;
所述滤光部件位于所述镜头与所述图像传感器之间,且所述图像传感器位于所述滤光部件的出光侧;或者,
所述镜头位于所述滤光部件与图像传感器之间,且所述图像传感器位于所述镜头的出光侧。
作为一种可能的实现方式,所述图像传感器包括多个感光通道,所述多个感光通道包括R感光通道、G感光通道、B感光通道、W感光通道中的至少一种,所述多个感光通道通过所述多次卷帘式快门曝光产生并输出所述第一图像信号和所述第二图像信号;
其中,R感光通道,用于感应红光波段和近红外光波段的光,G感光通道,用于感应绿光波段和近红外光波段的光,B感光通道,用于感应蓝光波段和近红外光波段的光,W感光通道,用于感应全波段的光。
作为一种可能的实现方式,所述图像传感器为红绿蓝白RGBW传感器、红白白蓝RCCB传感器、红绿蓝RGB传感器、或红黄黄蓝RYYB传感器中的任一种传感器;
其中,R表示R感光通道,G表示G感光通道,B表示B感光通道,W表示W感光通道。
作为一种可能的实现方式,所述第一曝光与所述第二曝光的至少一个曝光参数不同,所述至少一个曝光参数为曝光时间、曝光增益、光圈大小中的一种或多种,所述曝光增益包括模拟增益,和/或,数字增益。
作为一种可能的实现方式,所述第二曝光的曝光增益小于所述第一曝光的曝光增益。
作为一种可能的实现方式,所述第一曝光和所述第二曝光的至少一个曝光参数相同,所述至少一个曝光参数包括曝光时间、曝光增益、光圈大小中的一种或多种,所述曝光增益包括模拟增益,和/或,数字增益。
作为一种可能的实现方式,所述第一曝光的曝光时间等于所述第二曝光的曝光时间。
作为一种可能的实现方式,所述滤光部件还包括第二滤光装置和切换部件,所述第一滤光装置和所述第二滤光装置均与所述切换部件连接;
所述切换部件,用于将所述第二滤光装置切换到所述图像传感器的入光侧;
在所述第二滤光装置切换到所述图像传感器的入光侧之后,所述第二滤光装置使可见光波段的光通过,阻挡近红外光波段的光,所述图像传感器,用于 通过曝光产生并输出第三图像信号。
作为一种可能的实现方式,所述补光部件还包括第二补光装置;
所述第二补光装置用于以常亮方式进行可见光补光;或者,
所述第二补光装置用于以频闪方式进行可见光补光,其中,至少在所述第二曝光的部分曝光时间段内存在可见光补光,在所述第一曝光的整个曝光时间段内不存在可见光补光;或者,
所述第二补光装置用于以频闪方式进行可见光补光,其中,至少在所述第二曝光的整个曝光时间段内不存在可见光补光,在所述第一曝光的部分曝光时间段内存在可见光补光。
作为一种可能的实现方式,所述第一补光装置进行近红外补光的中心波长为设定特征波长或者落在设定特征波长范围时,通过所述第一滤光装置的近红外光的中心波长和/或波段宽度达到约束条件。
作为一种可能的实现方式,所述第一补光装置进行近红外补光的中心波长为750±10纳米的波长范围内的任一波长;或者
所述第一补光装置进行近红外补光的中心波长为780±10纳米的波长范围内的任一波长;或者
所述第一补光装置进行近红外补光的中心波长为940±10纳米的波长范围内的任一波长。
作为一种可能的实现方式,所述约束条件包括:通过所述第一滤光装置的近红外光的中心波长与所述第一补光装置进行近红外补光的中心波长之间的差值位于波长波动范围内,所述波长波动范围为0~20纳米;或者,
通过所述第一滤光装置的近红外光的半带宽小于或等于50纳米;或者,
第一波段宽度小于第二波段宽度;其中,所述第一波段宽度是指通过所述第一滤光装置的近红外光的波段宽度,所述第二波段宽度是指被所述第一滤光装置阻挡的近红外光的波段宽度;或者,
第三波段宽度小于参考波段宽度,所述第三波段宽度是指在所述第一滤光装置的通过率大于设定比例的近红外光的波段宽度,所述参考波段宽度为50纳米~150纳米的波段范围内的任一波段宽度。
第二方面,提供了一种图像采集的方法,应用于图像采集装置,所述图像采集装置包括:图像传感器、补光器部件和滤光部件,所述补光部件包括第一补光装置,所述滤光部件包括第一滤光装置,所述方法包括:
通过所述第一补光装置进行近红外补光,其中,在第一曝光时不进行近红外补光,在第二曝光时进行近红外补光,所述第二曝光时进行近红外补光的开始时刻是至少根据第一时刻确定的,所述第二曝光时进行近红外补光的结束时刻是至少根据第二时刻确定的;
通过所述第一滤光装置,使可见光和部分近红外光通过;
通过所述图像传感器进行多次卷帘式快门曝光感应并输出第一图像信号和第二图像信号,其中,所述第一图像信号是根据所述第一曝光产生的图像信号,所述第二图像信号是根据所述第二曝光产生的图像信号;
所述第一图像信号包括多行有效图像信号,所述第二图像信号包括多行有效图像信号,所述第二曝光为当前曝光时,所述第一时刻是所述当前曝光产生的第二图像信号的第一行有效图像信号的开始曝光时刻,所述第二时刻是所述当前曝光产生的第二图像信号的最后一行有效图像信号的结束曝光时刻
作为一种可能的实现方式,所述第二曝光时进行近红外补光的开始时刻不晚于所述第一时刻,所述第二曝光时进行近红外补光的结束时刻不早于所述第二时刻。
作为一种可能的实现方式,所述第二曝光时进行近红外补光的开始时刻是根据所述第一时刻和第三时刻确定的,其中,所述第三时刻是所述当前曝光之前的最近一次所述第一曝光产生的第一图像信号的最后一行有效图像信号的结束曝光时刻,所述第一时刻不早于所述第三时刻。
作为一种可能的实现方式,所述第二曝光时进行近红外补光的开始时刻不早于所述第三时刻,且不晚于所述第一时刻。
作为一种可能的实现方式,所述第二曝光时进行近红外补光的结束时刻是根据所述第二时刻和第四时刻确定的,所述第四时刻是所述当前曝光之后的最近一次所述第一曝光产生的第一图像信号的第一行有效图像信号的开始曝光时刻,所述第二时刻不晚于所述第四时刻。
作为一种可能的实现方式,所述第二曝光时进行近红外补光的结束时刻不早于所述第二时刻,且不晚于所述第四时刻。
本公开实施例提供的技术方案带来的有益效果至少包括:
本公开实施例中,利用图像传感器的曝光时序来控制补光部件的近红外补光时序,以便存在近红外补光时通过第二曝光产生第二图像信号,不存在近红外补光时通过第一曝光产生第一图像信号,这样的数据采集方式,可以在结构 简单、降低成本的同时直接采集到第一图像信号和第二图像信号,也即通过一个图像传感器就可以获取两种不同的图像信号,使得该图像采集装置更加简便,降低实现难度。并且,第一图像信号和第二图像信号均由同一个图像传感器产生并输出,所以第一图像信号对应的视点与第二图像信号对应的视点相同,因此,通过第一图像信号和第二图像信号可以共同获取外部场景的信息,且不会存在因第一图像信号对应的视点与第二图像信号对应的视点不相同,而导致根据第一图像信号和第二图像信号生成的图像不对齐。
附图说明
图1是本公开实施例提供的一种卷帘式快门曝光的示意图;
图2是本公开实施例提供的一种卷帘式快门曝光的示意图;
图3是本公开实施例提供的一种图像采集装置的结构示意图;
图4是本公开实施例提供的一种卷帘式快门曝光的示意图;
图5是本公开实施例提供的一种卷帘式快门曝光的示意图图;
图6是本公开实施例提供的一种卷帘式快门曝光的示意图;
图7是本公开实施例提供的一种卷帘式快门曝光的示意图;
图8是本公开实施例提供的一种卷帘式快门曝光的示意图;
图9是本公开实施例提供的一种图像采集装置的结构示意图;
图10是本公开实施例提供的一种光线通过率的示意图;
图11是本公开实施例提供的一种图像采集装置的结构示意图;
图12是本公开实施例提供的一种图像采集装置的结构示意图;
图13是本公开实施例提供的一种RGBW传感器的通道结构示意图;
图14是本公开实施例提供的一种RCCB传感器的通道结构示意图;
图15是本公开实施例提供的一种RGB传感器的通道结构示意图;
图16是本公开实施例提供的一种RYYB传感器的通道结构示意图;
图17是本公开实施例提供的一种光谱响应曲线示意图;
图18是本公开实施例提供的一种曝光顺序的示意图;
图19是本公开实施例提供的一种曝光顺序的示意图;
图20是本公开实施例提供的一种曝光顺序的示意图;
图21是本公开实施例提供的一种图像采集的方法的流程示意图。
图例说明
图像采集部件1                补光部件2
滤光部件11                   图像传感器12
镜头13                       第一滤光装置111
第二滤光装置112              切换部件113
第一补光装置21               第二补光装置22
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开实施方式作进一步地详细描述。
下面首先对本公开实施例中涉及的技术术语进行简单介绍。
可见光,是人眼可以感知的电磁波,可见光的光谱没有精确的范围,一般人的眼睛可以感知的电磁波的波长在400nm(纳米)~760nm之间。
可见光图像,是指仅感知可见光信号的色彩图像,该色彩图像仅对可见光波段感光。
红外图像,是指感知近红外光信号的亮度图像。
卷帘式快门曝光,是指图像传感器不同行的曝光时间不完全重合,每一行的曝光开始时刻和曝光结束时刻逐行向后推移一段时间。
如图1所示,水平坐标轴表示时间,垂直坐标轴表示图像传感器的像素行序号,对于每一行像素,空心圆点表示曝光开始时刻,实心圆点表示曝光结束时刻,图像传感器的第一行像素在T1时刻开始曝光,在T3时刻结束曝光,第二行像素在T2时刻开始曝光,在T4时刻结束曝光,T2相比于T1向后推移了一段时间,T4相比于T3向后推移了一段时间,其他行以此类推。
读出时间,卷帘式快门曝光每一行像素结束曝光后会进行数据输出,因此,从第一行像素数据结束曝光,到最后一行像素结束曝光并输出数据的时间,表示读出时间。在本公开实施例中,每一行像素可以认为是每一行的感光通道。
如图1所示,第一行像素在T3时刻结束曝光,开始输出数据,在T5时刻结束输出数据,最后一行像素在T6时刻结束曝光,T7时刻结束输出数据,则T3~T7的时间即为读出时间,如图1中矩形所示。
如图2所示,为多次卷帘式快门曝光简化示意图,其中,水平方向表示时间,虚线表示每次曝光的开始时刻(由于每一行像素的开始曝光时刻不相同, 所以曝光开始时刻会形成一条斜线),实线表示每次曝光的结束时刻(由于每一行像素的结束曝光时刻不相同,所以曝光结束时刻会形成一条斜线),矩形表示读出时间。
相关技术中,获得一个物体的红外图像和可见光图像,需要使用双目摄像机,导致实现难度高,为了降低实现难度,本公开提供了如下结构的图像采集装置。
图3是本公开实施例提供的一种图像采集装置的结构示意图,该图像采集装置包括图像采集部件1和补光部件2,图像采集部件1包括滤光部件11、图像传感器12和镜头13(镜头13在图3中未示出)。图像传感器12用于通过多次卷帘式快门曝光产生并输出第一图像信号和第二图像信号,第一图像信号是根据第一曝光产生的图像信号,第二图像信号是根据第二曝光产生的图像信号,第一曝光和第二曝光为多次卷帘式快门曝光中的其中两次曝光。滤光部件11,包括第一滤光装置111,用于使可见光和部分近红外光(可以简称为近红外)通过。补光部件2,包括第一补光装置21,第一补光装置21用于在第一曝光时,不进行近红外补光(可以理解为不进行近红外光补光),并在进行第二曝光时,进行近红外补光(可以理解为进行近红外光补光),且第二曝光时进行近红外补光的开始时刻是至少根据第一时刻确定的,第二曝光时进行近红外补光的结束时刻是至少根据第二时刻确定的。其中,第一图像信号包括多行有效图像信号,第二图像信号包括多行有效图像信号,第二曝光为当前曝光时,第一时刻是当前曝光产生的第二图像信号的第一行有效图像信号的开始曝光时刻,第二时刻是当前曝光产生的第二图像信号的最后一行有效图像信号的结束曝光时刻
其中,第一图像信号和第二图像信号均包括多行有效图像信号,有效图像信号指最终读出的图像信号。例如,一个卷帘式快门曝光有1000行的感光通道,最终输出的图像的像素点的行数为800行,那么有效图像信号就是1000行的感光通道中其中800行的感光通道输出的图像信号,可以是从第1行至第800行,也可以是从第100行至第900行,本公开实施例不作限定。
在实施中,图像采集装置可以包括图像采集部件1和补光部件2,图像采集部件1可以包括滤光部件11、图像传感器12和镜头13。补光部件2包括第一补光装置21,第一补光装置21用于进行近红外补光,滤光部件11包括第一滤光装置111,第一滤光装置111用于仅使可见光和近红外光通过。
滤光部件11可以由采用镀膜技术的滤光片组成,可以用于使可见光和近红外光通过,或者使可见光和部分近红外光通过,即第一滤光装置111使可见光和近红外光通过,或者使可见光和部分近红外光通过。
图像传感器12可以用于多次卷帘式快门曝光感应并输出第一图像信号和第二图像信号,第一图像信号是根据第一曝光产生的图像信号,第二图像信号是根据第二曝光产生的图像信号,第一曝光和第二曝光为多次卷帘式快门曝光中的两次曝光。
在进行第一曝光时,补光部件2可以不进行近红外补光(如补光部件2为近红外补光灯,可以关闭近红外补光灯等),使在第一曝光的曝光时间段经过被拍摄物体反射进入滤光部件11的光为环境光,这时图像传感器12可以以第一曝光的曝光参数,进行卷帘式快门曝光,输出第一图像信号。
在进行第二曝光时,补光部件2可以进行红外补光(如补光部件2为近红外补光灯,可以开启近红外补光灯等),在第二曝光为当前曝光(指当前时刻正在进行的曝光)时,在进行近红外补光的开始时刻可以是根据第一时刻确定的,第一时刻可以是当前曝光产生的第二图像信号的第一行有效图像信号的开始曝光时刻,在进行近红外补光的结束时刻可以是根据第二时刻确定,第二时刻可以是当前曝光产生的第二图像信号的最后一行有效图像信号的结束曝光时刻。在这开始时刻和结束时刻之间,补光部件2可以进行近红外补光,图像传感器12可以以第二曝光的曝光参数,进行卷帘式快门曝光,输出第二图像信号。
需要说明的是,多次卷帘式快门曝光包括多次第一曝光和多次第二曝光,例如,在一秒钟内既要进行多次第一曝光,也要进行多次第二曝光,第一曝光和第二曝光的顺序可以提前配置。例如,一秒钟内进行10次第一曝光,进行10次第二曝光,第一曝光和第二曝光可以是交替进行(即曝光时依次是第一曝光、第二曝光、第一曝光、…、第二曝光)。
补光部件2可以包括第一补光装置21,第一补光装置21可以位于图像采集装置内,也可以位于图像采集装置的外部。第一补光装置21可以为图像采集装置的一部分,也可以为独立于图像采集装置的一个器件。当第一补光装置21位于图像采集装置的外部时,第一补光装置21可以与图像采集装置进行通信连接,从而可以保证图像采集装置中的图像传感器12的曝光时序与第一补光装置21的近红外补光时序存在一定的关系。例如,第二曝光时进行近红外补光是按照预设周期进行的,图像采集装置可以将该预设周期通知给第一补光装置21。第 一补光装置21接收到该预设周期后,按照该预设周期进行近红外补光。
作为一种可能的实现方式,为了使在第二曝光时的有效图像信号的曝光时间内均进行近红外补光,所以在第二曝光时第一行有效图像信号的开始曝光时刻时就有近红外补光,并在第二曝光时最后一行有效图像信号的结束曝光时刻时还有近红外补光,也即第二曝光时进行近红外补光的开始时刻不能晚于第一时刻,且第二曝光时进行近红外补光的结束时刻不能早于第二时刻。
例如,如图4中(a)所示,图像传感器12的第一曝光和第二曝光交替进行,第一曝光时第一补光装置21对应第一补光状态,第二曝光时第一补光装置21对应第二补光状态,第一补光状态为关闭,第一补光装置21不进行近红外补光,第二补光状态为开启,第一补光装置21进行近红外补光,前一帧图像信号为第一图像信号,当前帧图像信号(即当前曝光产生的图像信号)为第二图像信号,则当前曝光为第二曝光并产生第二图像信号,第二图像信号对应的第二补光状态开启了近红红外光时,第一补光装置21开始近红外补光的时刻不晚于当前帧图像信号的第一行有效图像信号的开始曝光时刻。进一步地,第一补光装置21结束近红外补光的时刻不早于当前帧图像信号的最后一行有效图像信号的结束曝光时刻。
作为一种可能的实现方式,当前曝光为第二曝光时,为了不影响第一曝光,第二曝光时进行近红外补光的开始时刻是根据第一时刻和第三时刻确定的,其中,第三时刻是当前曝光之前的最近一次第一曝光产生的第一图像信号的最后一行有效图像信号的结束曝光时刻。另外,为了使近红外补光不影响第一曝光,第一时刻不早于第三时刻。
作为一种可能的实现方式,当前曝光为第二曝光时,为了不影响第一曝光,而且使第二曝光的第一行有效图像信号均可以进行近红外补光,既要在前一帧的第一曝光的最后一行有效图像信号结束曝光前不会有近红外补光,也要在当前曝光的第一行有效图像信号开始曝光时就有近红外补光,所以第二曝光时进行近红外补光的开始时刻不早于第三时刻,且不晚于第一时刻。
例如,如图4中(b)所示,在两条竖直虚线范围内(第三时刻与第一时刻之间)开始近红外补光,靠近左边的虚线为第5毫秒,靠近右边的虚线为第8毫秒,可以在第6毫秒时开始近红外补光。
作为一种可能的实现方式,为了不影响第一曝光,而且使第二曝光的最后一行有效图像信号均可以进行近红外补光,可以将第二曝光进行近红外补光的 结束时刻使用第二时刻和第四时刻确定,第四时刻是后一帧的第一曝光产生的第一图像信号的第一行有效图像信号的开始曝光时刻。
作为一种可能的实现方式,当前曝光为第二曝光时,为了不影响第一曝光,而且使第二曝光的最后一行有效图像信号均可以进行近红外补光,既要在后一帧的第一曝光的第一行有效图像信号开始曝光后不会有近红外补光,也要在当前曝光的最后一行有效图像信号结束曝光时还有近红外补光,所以第二曝光时进行近红外补光的开始时刻不早于第二时刻,且不晚于第四时刻。
例如,如图4中(c)所示,在两条竖直虚线范围内(第二时刻和第四时刻之间)结束近红外补光,靠近左边的虚线为第25毫秒,靠近右边的虚线为第28毫秒,可以在第26毫秒时结束近红外补光。
作为一种可能的实现方式,如图5所示,当前曝光为第二曝光时,为了使第二曝光时,每一行有效图像信号在曝光时间内均完整的进行近红外补光(此处影响的是当前曝光的第一行有效图像信号的近红外补光),那么进行近红外补光的开始时刻不晚于当前曝光的第一行有效图像信号的开始曝光时刻(如果晚于该第一行有效图像信号的开始曝光时刻,第一行有效图像信号在曝光时间内不是完整的进行近红外补光),如果想要不影响当前曝光之前的最近的一次第一曝光,进行近红外补光的开始时刻可以不早于其前一帧第一曝光的最后一行有效图像信号的结束曝光时刻(如果早于该最后一行有效图像信号的结束曝光时刻,会使前一帧的第一曝光有近红外补光)。所以第二曝光时进行近红外补光的开始时刻不早于第三时刻,且不晚于第一时刻。为了使第二曝光时,每一行有效图像信号在曝光时间内均完整的进行近红外补光(此处影响的是当前曝光的最后一行有效图像信号的近红外补光),那么进行近红外补光的结束时刻可以不早于当前曝光的最后一行有效图像信号的结束曝光时刻(如果早于该最后一行有效图像信号的结束曝光时刻,最后一行有效图像信号在曝光时间内不是完整的进行近红外补光),如果想要不影响当前曝光之后的最近的一次第一曝光,那么进行近红外补光的结束时刻不晚于其后一帧第一曝光的第一行有效图像信号的开始曝光时刻(如果晚于该第一行有效图像信号的开始曝光时刻,会使后一帧的第一曝光时有近红外补光)。所以第二曝光时进行近红外补光的结束时刻不早于第二时刻,且不晚于第四时刻。这样,对于当前曝光的每一行有效图像信号在曝光时间内均是完整的进行近红外补光,所以可以使近红外光的补光时间比较长。
而且由于任一行有效图像信号的曝光时间相同,所以当前曝光产生的第二图像信号的每一行有效图像信号的补光时长相同。此处该补光时长指进行近红外补光的时长。
需要说明的是,为了更清楚的描述补光与曝光的关系,还可以认为是曝光时间与补光时间满足一定约束:
在第二曝光时,第一补光装置21进行近红外补光,如果第一曝光和第二曝光交替进行,当前曝光为第二曝光,进行近红外补光的开始时刻不早于前一帧最后一行有效图像信号的结束曝光时刻,且不晚于当前曝光的第一行有效图像信号的开始曝光时刻。进行近红外补光的结束时刻不早于当前曝光的最后一行有效图像信号的结束曝光时刻,且不晚于其后一帧的第一行有效图像信号的开始曝光时刻。
需要说明的是,上述第一和第二仅是相对概念,可以相互交换。
作为一种可能的实现方式,在当前曝光中,当前曝光的每一行有效图像信号的开始曝光时刻不相同,最晚在当前曝光的第一行有效图像信号的开始曝光时刻开启,最早在当前曝光的最后一行有效图像信号的结束曝光时刻结束,进行近红外补光持续了整个第二曝光的有效图像信号的曝光时间段,所以进行近红外补光要从第一行有效图像信号的开始曝光时刻至最后一行有效图像信号的结束曝光时刻,所以要使第一补光装置21进行近红外补光的时长不小于当前曝光的任一行有效图像信号的曝光时间与当前曝光产生的第二图像信号的有效图像的读出时长之和。这是由于在读出第二图像信号的有效图像信号后,才会进行下一次曝光,所以第一补光装置21进行近红外补光的时长最小也等于当前曝光的任一行有效图像信号的曝光时间与当前曝光产生的第二图像信号的有效图像的读出时长之和。
在一种示例中,如图6所示,图像传感器在A曝光、B曝光两种曝光下,交错进行曝光,在A曝光时间内,第一补光装置21关闭,输出未进行近红外补光的图像信号(即第一图像信号),在B曝光时间内,第一补光装置21打开,输出补光灯近红外补光的图像信号(即第二图像信号)。第一补光装置21在不早于前一帧A曝光最后一行有效图像信号的结束曝光时刻,且不晚于当前帧B曝光第一行有效图像信号的开始曝光时刻打开,第一补光装置21在不早于当前帧B曝光最后一行有效图像信号的结束曝光时刻,且不晚于下一帧A曝光第一行有效图像信号的开始曝光时刻关闭。
进一步的,如图7所示,A曝光与B曝光的曝光时间均为8ms,读出时间均为10ms,A曝光在22ms时第一行有效图像信号开始曝光,在40ms时最后一行有效图像信号结束曝光,B曝光在42ms时第一行有效图像信号开始曝光,在60ms时最后一行有效图像信号结束曝光。第一补光装置21在41ms时打开近红外补光,在61ms时关闭近红外补光,补光时间20ms。从而获得没有近红外补光的A曝光,能够真实反映环境的色彩信息,有近红外补光的B曝光拥有更好的亮度、清晰度和信噪比。
进一步,可以适当延长A曝光的曝光时间,能够获得更好的色彩信息和信噪比,第一补光装置21在B曝光的第一行有效图像信号的开始曝光时刻打开,在最后一行有效图像信号的结束曝光时刻关闭,能够减少近红外补光时间,降低功率。例如,如图8所示,A曝光的曝光时间为10ms,B曝光的曝光时间为8ms,读出时间均为10ms,A曝光在20ms时第一行有效图像信号开始曝光,在40ms时最后一行有效图像信号结束曝光,B曝光在42ms时第一行有效图像信号开始曝光,在60ms时最后一行有效图像信号结束曝光。第一补光装置21可以在42ms时打开近红外补光,在60ms时关闭近红外补光,补光时间18ms。
需要说明的是,上述AB曝光的交错顺序只是本公开的一种实现方式,也可以采用其他顺序,AB两种曝光的曝光条件也可以不同,上述曝光条件包括且不限于曝光时间、数字增益、模拟增益等(在后面进行说明)。此外,上述曝光与补光部件2的联动控制关系也只是本公开的一种实现方式,也可以采用满足本公开的其他联动控制方式。此处需要说明的是,上述A曝光为第一曝光,B曝光为第二曝光。
作为一种可能的实现方式,如图9所示,图像采集部件1还可以包括镜头13,镜头13可以由多片镜片组成,用于对光线起到聚焦作用,帮助物体在图像传感器12上成像。在图9的(a)中,滤光部件11可以位于镜头13与图像传感器12之间,且图像传感器12可以位于滤光部件11的出光侧。作为一种示例,滤光部件11可以是滤光薄膜,当滤光部件11位于镜头13与图像传感器12之间时,滤光部件11可以贴在镜头13的出光侧的表面。
或者,如图9所示,图像采集部件1还可以包括镜头13,镜头13可以由多片镜片组成,用于对光线起到聚焦作用,帮助物体在图像传感器12上成像。在图9的(b)中,镜头13可以位于滤光部件11与图像传感器12之间,图像传感器12可以位于镜头13的出光侧。作为一种示例,滤光部件11可以是滤光薄 膜,当镜头13位于滤光部件11与图像传感器12之间时,滤光部件11可以贴在镜头13的入光侧的表面。
以上述图9中(a)的图像采集装置的结构为例,滤光部件11可以位于镜头13和图像传感器12之间,且图像传感器12位于滤光部件11的出光侧的结构特征,图像采集装置采集第一图像信号和第二图像信号的过程为:在图像传感器12进行第一曝光时,第一补光装置21不存在近红外补光,此时拍摄场景中的环境光经由镜头13、滤光部件11之后,由图像传感器12通过第一曝光产生第一图像信号,在图像传感器12进行第二曝光时,第一补光装置21存在近红外补光,此时,拍摄场景中的环境光和第一补光装置21进行近红外补光时被场景中物体反射的近红外光,经由镜头13、滤光部件11之后,由图像传感器12通过第二曝光产生第二图像信号,在图像采集的一个单位时间段内可以有M个第一曝光和N个第二曝光,第一曝光和第二曝光之间可以有多种组合的排序,在图像采集的一个单位时间段中,M和N的取值以及M和N的大小关系可以根据实际需求设置,例如,M和N的取值可相等,也可不相同。
第一补光装置21为可以发出近红外光的装置,例如,近红外补光灯等,第一补光装置21可以以频闪方式进行近红外补光,也可以以类似频闪的其他方式进行近红外补光,本公开实施例对此不做限定。在一些示例中,当第一补光装置21以频闪方式进行近红外补光时,可以通过手动方式来控制第一补光装置21以频闪方式进行近红外补光,也可以通过软件程序或特定设备来控制第一补光装置21以频闪方式进行近红外补光,本公开实施例对此不做限定。
其中,第一补光装置21进行近红外补光的时间段可以与第二曝光的曝光时间段重合,也可以大于第二曝光的曝光时间段或者小于第二曝光的曝光时间段,只要在第二曝光的整个曝光时间段或者部分曝光时间段内进行近红外补光,而在第一曝光的曝光时间段内不进行近红外补光即可。此处需要说明的是,如果是在第二曝光的部分曝光时间段进行近红外补光,必须满足第二曝光的有效图像信号曝光时间段内进行近红外补光。例如,第二曝光的有效图像信号是1000行的感光通道中其中800行的感光通道输出的图像信号,那么在第二曝光的该800行感光通道输出图像信号时,进行近红外补光。
作为一种示例,第一补光装置21在第二曝光时进行近红外补光,对于卷帘曝光方式来说,第二曝光的曝光时间段可以是第二图像信号第一行有效图像信号的开始曝光时刻与最后一行有效图像信号的结束曝光时刻之间的时间段,但 并不局限于此。例如,第二曝光的曝光时间段也可以是第二图像信号中目标图像信号对应的曝光时间段,目标图像信号为第二图像信号中与目标对象或目标区域所对应的若干行有效图像信号,这若干行有效图像信号的开始曝光时刻与结束曝光时刻之间的时间段可以看作第二曝光的曝光时间段。此处目标对象和目标区域可以为预设数目行感光通道。
需要说明的是,由于第一补光装置21在对外部场景进行近红外补光时,入射到物体表面的近红外光可能会被物体反射,从而进入到第一滤光装置111中。并且由于通常情况下,环境光可以包括可见光和近红外光,且环境光中的近红外光入射到物体表面时也会被物体反射,从而进入到第一滤光装置111中。因此,在进行近红外补光时通过第一滤光装置111的近红外光可以包括第一补光装置21进行近红外补光时经物体反射进入第一滤光装置111的近红外光,在不进行近红外补光时通过第一滤光装置111的近红外光可以包括第一补光装置21未进行近红外补光时经物体反射进入第一滤光装置111的近红外光。也即是,在进行近红外补光时通过第一滤光装置111的近红外光包括第一补光装置21发出的且经物体反射后的近红外光,以及环境光中经物体反射后的近红外光,在不进行近红外补光时通过第一滤光装置111的近红外光包括环境光中经物体反射后的近红外光。
另外,由于环境光中的近红外光的强度低于第一补光装置21发出的近红外光的强度,因此,第一补光装置21进行近红外补光时通过第一滤光装置111的近红外光的强度高于第一补光装置21未进行近红外补光时通过第一滤光装置111的近红外光的强度。
由于在存在近红外补光时,通过第一滤光装置111的近红外光可以包括第一补光装置21进行近红外补光时经物体反射进入第一滤光装置111的近红外光,以及环境光中的经物体反射后的近红外光。所以此时进入第一滤光装置111的近红外光的强度较强。但是,在不存在近红外补光时,通过第一滤光装置111的近红外光仅包括环境光中经物体反射进入第一滤光装置111的近红外光。由于没有第一补光装置21进行补光的近红外光,所以此时通过第一滤光装置111的近红外光的强度较弱。因此,根据第二曝光产生并输出的第二图像信号包括的近红外光的强度,要高于根据第一曝光产生并输出的第一图像信号包括的近红外光的强度。
其中,第一补光装置21进行近红外补光的波段范围可以为第二参考波段范 围,第二参考波段范围可以为700纳米~800纳米,或者900纳米~1000纳米等,本申请实施例对此不做限定。另外,第一补光装置21进行近红外补光的波段范围也可以是第一参考波段范围,进而入射到第一滤光装置111的近红外光的波段范围可以为第一参考波段范围,第一参考波段范围为650纳米~1100纳米。
第一补光装置21进行近红外补光的中心波长和/或波段范围可以有多种选择,本申请实施例中,为了使第一补光装置21和第一滤光装置111有更好的配合,可以对第一补光装置21进行近红外补光的中心波长进行设计,以及对第一滤光装置111的特性进行选择,从而使得在第一补光装置21进行近红外补光的中心波长为设定特征波长或者落在设定特征波长范围时,通过第一滤光装置111的近红外光的中心波长和/或波段宽度可以达到约束条件。该约束条件主要是用来约束通过第一滤光装置111的近红外光的中心波长尽可能准确,以及通过第一滤光装置111的近红外光的波段宽度尽可能窄,从而避免出现因近红外光波段宽度过宽而引入波长干扰。
其中,第一补光装置21进行近红外补光的中心波长可以为第一补光装置21发出的近红外光的光谱中能量最大的波长范围内的平均值,也可以理解为第一补光装置21发出的近红外光的光谱中能量超过一定阈值的波长范围内的中间位置处的波长。
其中,设定特征波长或者设定特征波长范围可以预先设置。作为一种示例,第一补光装置21进行近红外补光的中心波长可以为750±10纳米的波长范围内的任一波长;或者,第一补光装置21进行近红外补光的中心波长为780±10纳米的波长范围内的任一波长;或者,第一补光装置21进行近红外补光的中心波长为940±10纳米的波长范围内的任一波长。也即是,设定特征波长范围可以为750±10纳米的波长范围、或者780±10纳米的波长范围、或者940±10纳米的波长范围。示例性地,第一补光装置21进行近红外补光的中心波长为940纳米,第一补光装置21进行近红外补光的波段范围为900纳米~1000纳米,其中,在第一补光装置21进行近红外补光的波长和相对强度之间的关系中,在940纳米处,近红外光的相对强度最高。其中,相对强度指近红外光经过第一滤光装置111后的强度。
由于在存在近红外补光时,通过第一滤光装置111的近红外光大部分为第一补光装置21进行近红外补光时经物体反射进入第一滤光装置111的近红外光,因此,在一些实施例中,上述约束条件可以包括:通过第一滤光装置111 的近红外光的中心波长与第一补光装置21进行近红外补光的中心波长之间的差值位于波长波动范围内,作为一种示例,波长波动范围可以为0~20纳米。
其中,通过第一滤光装置111的近红外补光的中心波长可以为第一滤光装置111的近红外光通过率曲线中的近红外光波段范围内波峰位置处的波长,也可以理解为第一滤光装置111的近红外光通过率曲线中通过率超过一定阈值的近红外光波段范围内的中间位置处的波长。
为了避免通过第一滤光装置111的近红外光的波段宽度过宽而引入波长干扰,在一些实施例中,上述约束条件可以包括:第一波段宽度可以小于第二波段宽度。其中,第一波段宽度是指通过第一滤光装置111的近红外光的波段宽度,第二波段宽度是指被第一滤光装置111阻挡的近红外光的波段宽度。应当理解的是,波段宽度是指光线的波长所处的波长范围的宽度。例如,通过第一滤光装置111的近红外光的波长所处的波长范围为700纳米~800纳米,那么第一波段宽度为800纳米减去700纳米,即100纳米。换句话说,通过第一滤光装置111的近红外光的波段宽度小于第一滤光装置111阻挡的近红外光的波段宽度。
例如,参见图10,图10为第一滤光装置111可以通过的光的波长与通过率之间的关系的一种示意图。入射到第一滤光装置111的近红外光的波段为650纳米~1100纳米,第一滤光装置111可以使波长位于380纳米~650纳米的可见光通过,以及波长位于900纳米~1000纳米的近红外光通过,阻挡波长位于650纳米~900纳米的近红外光。也即是,第一波段宽度为1000纳米减去900纳米,即100纳米。第二波段宽度为900纳米减去650纳米,加上1100纳米减去1000纳米,即350纳米。100纳米小于350纳米,即通过第一滤光装置111的近红外光的波段宽度小于第一滤光装置111阻挡的近红外光的波段宽度。以上关系曲线仅是一种示例,对于不同的滤光部件,能够通过滤光部件的近红光波段的波段范围可以有所不同,被滤光部件阻挡的近红外光的波段范围也可以有所不同。
为了避免在非近红外补光的时间段内,通过第一滤光装置111的近红外光的波段宽度过宽而引入波长干扰,在一些实施例中,上述约束条件可以包括:通过第一滤光装置111的近红外光的半带宽小于或等于50纳米。其中,半带宽是指通过率大于50%的近红外光的波段宽度。
为了避免通过第一滤光装置111的近红外光的波段宽度过宽而引入波长干扰,在一些实施例中,上述约束条件可以包括:第三波段宽度可以小于参考波 段宽度。其中,第三波段宽度是指通过率大于设定比例的近红外光的波段宽度,作为一种示例,参考波段宽度可以为50纳米~150纳米的波段范围内的任一波段宽度。作为一种示例,参考波段宽度可以为50纳米~100纳米的波段范围内的任一波段宽度。设定比例可以为30%~50%中的任一比例,当然设定比例还可以根据使用需求设置为其他比例,本申请实施例对此不做限定。换句话说,通过率大于设定比例的近红外光的波段宽度可以小于参考波段宽度。其中,通过率指近红外光通过第一滤光装置111的通过率。
例如,参见图10,入射到第一滤光装置111的近红外光的波段为650纳米~1100纳米,设定比例为30%,参考波段宽度为100纳米。从图10可以看出,在650纳米~1100纳米的近红外光的波段中,通过率大于30%的近红外光的波段宽度明显小于100纳米。
作为一种可能的实现方式,由于人眼容易将补光部件2进行近红外补光的颜色与交通灯中的红灯的颜色混淆,所以,如图11所示,补光部件2还可以包括第二补光装置22,第二补光装置22用于进行可见光补光。这样,如果第二补光装置22至少在第二曝光的部分曝光时间提供可见光补光,也即是,至少在第二曝光的部分曝光时间段内存在近红外补光和可见光补光,这两种光的混合颜色可以区别于交通灯中的红灯的颜色,从而避免了人眼将补光部件2进行近红外补光的颜色与交通灯中的红灯的颜色混淆。另外,如果第二补光装置22在第一曝光的曝光时间段内提供可见光补光,由于第一曝光的曝光时间段内可见光的强度不是特别高,因此,在第一曝光的曝光时间段内进行可见光补光时,还可以提高第一图像信号中的可见光的亮度,进而保证图像采集的质量。
在一些实施例中,第二补光装置22可以用于以常亮方式进行可见光补光;或者,第二补光装置22可以用于以频闪方式进行可见光补光,其中,至少在第二曝光的部分曝光时间段内存在可见光补光,在第一曝光的整个曝光时间段内不存在可见光补光;或者,第二补光装置22可以用于以频闪方式进行可见光补光,其中,至少在第二曝光的整个曝光时间段内不存在可见光补光,在第一曝光的部分曝光时间段内存在可见光补光。当第二补光装置22以常亮方式进行可见光补光时,不仅可以避免人眼将第一补光装置21进行近红外补光的颜色与交通灯中的红灯的颜色混淆,还可以提高第一图像信号中的可见光的亮度,进而保证图像采集的质量。当第二补光装置22以频闪方式进行可见光补光时,可以避免人眼将第一补光装置21进行近红外补光的颜色与交通灯中的红灯的颜色混 淆,或者,可以提高第一图像信号中的可见光的亮度,进而保证图像采集的质量,而且还可以减少第二补光装置22的补光次数,从而延长第二补光装置22的使用寿命。
作为一种可能的实现方式,如图12所示,滤光部件11还包括第二滤光装置112和切换部件113(图中未示出),第一滤光装置111和第二滤光装置112均与切换部件113连接,切换部件113,用于将第二滤光装置112切换到图像传感器12的入光侧;在第二滤光装置112切换到图像传感器12的入光侧之后,第二滤光装置112使可见光波段的光通过,阻挡近红外光波段的光,图像传感器12,用于通过曝光产生并输出第三图像信号。这样,第二滤光装置112可以阻挡近红外光通过,第一曝光时,通过切换部件113将第二滤光装置112切换至图像传感器12的入光侧,可以避免第一曝光时进入近红外光。
这样,当环境光中的可见光强度较弱时,例如夜晚,可以通过第一补光装置21频闪式的补光,第一滤波装置111可以使部分近红外光和可见光通过,使图像传感器12产生并输出包含近红外亮度信息的第二图像信号,以及包含可见光亮度信息的第一图像信号,且由于第一图像信号和第二图像信号均由同一个图像传感器12获取,所以第一图像信号的视点与第二图像信号的视点相同,从而通过第一图像信号和第二图像信号可以获取完整的外部场景的信息。在可见光强度较强时,例如白天,白天近红外光的占比比较高,采集的图像的色彩还原度不佳,可以通过第二滤光装置112阻止近红外光通过,图像传感器12可以产生并输出的包含可见光亮度信息的第三图像信号,这样即使白天,也可以采集到色彩还原度比较好的图像,也可达到不论可见光强度的强弱,或者说不论白天还是夜晚,均能高效、简便地获取外部场景的真实色彩信息。
作为一种可能的实现方式,第一图像信号是第一曝光产生并输出的,第二图像信号可以是第二曝光产生并输出的,在产生并输出第二图像信号和第一图像信号之后,可以对第二图像信号和第一图像信号进行处理。在某些情况下,第二图像信号和第一图像信号的用途可能不同,所以在一些实施例中,第二曝光与第一曝光的至少一个曝光参数可以不同。作为一种示例,该至少一个曝光参数可以包括但不限于曝光时间、模拟增益、数字增益、光圈大小中的一种或多种。其中,曝光增益包括模拟增益和/或数字增益。
在一些实施例中,可以理解的是,与第一曝光相比,在存在近红外补光时,图像传感器12感应到的近红外光的强度较强,相应地产生并输出的第二图像信 号包括的近红外光的亮度也会较高。但是较高亮度的近红外光不利于外部场景信息的获取。而且在一些实施例中,曝光增益越大,图像传感器12输出的图像信号的亮度越高,曝光增益越小,图像传感器12输出的图像信号的亮度越低,因此,为了保证第二图像信号包含的近红外光的亮度在合适的范围内,在第二曝光和第一曝光的至少一个曝光参数不同的情况下,作为一种示例,第二曝光的曝光增益可以小于第一曝光的曝光增益。这样,在补光部件2进行近红外补光时,图像传感器12产生并输出的第二图像信号包含的近红外光的亮度,不会因补光部件2进行近红外补光而过高。
在另一些实施例中,曝光时间越长,图像传感器12得到的图像信号包括的亮度越高,并且外部场景中的运动的对象在图像信号中的运动拖尾越长;曝光时间越短,图像传感器12得到的图像信号包括的亮度越低,并且外部场景中的运动的对象在图像信号中的运动拖尾越短。因此,为了保证第二图像信号包含的近红外光的亮度在合适的范围内,且外部场景中的运动的对象在第二图像信号中的运动拖尾较短。在第二曝光和第一曝光的至少一个曝光参数不同的情况下,作为一种示例,第二曝光的曝光时间可以小于第一曝光的曝光时间。这样,在补光部件2进行近红外补光时,图像传感器12产生并输出的第二图像信号包含的近红外光的亮度,不会因补光部件2进行近红外补光而过高。并且较短的曝光时间使外部场景中的运动的对象在第二图像信号中出现的运动拖尾较短,从而有利于对运动对象的识别。示例性地,第二曝光的曝光时间为40毫秒,第一曝光的曝光时间为60毫秒等。
值得注意的是,在一些实施例中,当第二曝光的曝光增益小于第一曝光的曝光增益时,第二曝光的曝光时间不仅可以小于第一曝光的曝光时间,还可以等于第一曝光的曝光时间。同理,当第二曝光的曝光时间小于第一曝光的曝光时间时,第二曝光的曝光增益可以小于第一曝光的曝光增益,也可以等于第一曝光的曝光增益。
在另一些实施例中,第二图像信号和第一图像信号的用途可以相同,例如第二图像信号和第一图像信号都用于智能分析时,为了能使进行智能分析的人脸或目标在运动时能够有同样的清晰度,第二曝光与第一曝光的至少一个曝光参数可以相同。作为一种示例,第二曝光的曝光时间可以等于第一曝光的曝光时间,如果第二曝光的曝光时间和第一曝光的曝光时间不同,会出现曝光时间较长的一路图像信号存在运动拖尾,导致两路图像信号的清晰度不同。同理, 作为另一种示例,第二曝光的曝光增益可以等于第一曝光的曝光增益。
值得注意的是,在一些实施例中,当第二曝光的曝光时间等于第一曝光的曝光时间时,第二曝光的曝光增益可以小于第一曝光的曝光增益,也可以等于第一曝光的曝光增益。同理,当第二曝光的曝光增益等于第一曝光的曝光增益时,第二曝光的曝光时间可以小于第一曝光的曝光时间,也可以等于第一曝光的曝光时间。
作为一种可能的实现方式,图像采集装置可以是摄像机、抓拍机、人脸识别相机、读码相机、车载相机、全景细节相机等。
作为一种可能的实现方式,本公开实施例中,提供了图像传感器12的通道的描述:
图像传感器12包括多个感光通道,多个感光通道包括R(Red,红色)感光通道、G(Green,绿色)感光通道、B(Blue,蓝色)感光通道、W(White,白色)感光通道中的至少一种,多个感光通道通过多次卷帘式快门曝光产生并输出第一图像信号和第二图像信号。其中,R感光通道,用于感应红光波段和近红外光波段的光,G感光通道,用于感应绿光波段和近红外光波段的光,B感光通道,用于感应蓝光波段和近红外光波段的光,W感光通道,用于感应全波段的光。这样,由于R感光通道、G感光通道、B感光通道、W感光通道均可以感应近红外光波段的光,所以只要有上述感光通道中的至少一种即可。全波段指整个可见光波段。
作为一种可能的实现方式,图像传感器12为红绿蓝白RGBW传感器、红白白蓝RCCB传感器、红绿蓝RGB传感器、或红黄黄蓝RYYB传感器中的任一种传感器;其中,R表示R感光通道,G表示G感光通道,B表示B感光通道,W表示W感光通道。如图13所示,图像传感器12可以为RGBW传感器,或者,如图14所示,图像传感器12可以为RCCB传感器,或者,如图15所示,图像传感器12可以为RGB传感器,或者,如图16所示,图像传感器16可以为RYYB传感器。其中,RYYB中的Y表示黄色(Yellow),RCCB中的C表示全透(Clear),可以感应可见光波段和近红外光波段的光。
在进行第一曝光或进行第二曝光时,通道阵列中的每个感光通道可用于感应一种颜色的光。对于RGBW传感器的通道阵列包括红、绿、蓝、白四种颜色感光通道,R感光通道对红色光波段内的红色光的感应量子效率较高,G感光通道对绿色光波段内的绿色光的感应量子效率较高,B感光通道对蓝色光波段内的 蓝色光的感应量子效率较高,W感光通道W对全波段内的白色光的感应量子效率较高。
在另一些实施例中,有些感光通道也可以仅感应近红外光波段的光,而不感应可见光波段的光。作为一种示例,该多个感光通道可以包括R感光通道、G感光通道、B感光通道、IR(Infrared,红外)感光通道中的至少两种。其中,R感光通道用于感应红光波段和近红外光波段的光,G感光通道用于感应绿光波段和近红外光波段的光,B感光通道用于感应蓝光波段和近红外光波段的光,IR感光通道用于感应近红外光波段的光。
示例地,图像传感器12可以为RGBIR传感器,其中,RGBIR传感器中的每个IR感光通道都可以感应近红外光波段的光,而不感应可见光波段的光。
其中,当图像传感器12为RGB传感器时,相比于其他图像传感器,如RGBIR传感器等,RGB传感器采集的RGB信息更完整,RGBIR传感器有一部分的感光通道采集不到可见光,所以RGB传感器采集的图像的色彩细节更准确。
值得注意的是,图像传感器01包括的多个感光通道可以对应多条感应曲线。示例性地,参见图17,图17中的R曲线代表图像传感器12对红光波段的光的感应曲线,G曲线代表图像传感器01对绿光波段的光的感应曲线,B曲线代表图像传感器12对蓝光波段的光的感应曲线,W(或者C)曲线代表图像传感器12感应全波段的光的感应曲线,NIR(Near infrared,近红外光)曲线代表图像传感器12感应近红外光波段的光的感应曲线。
作为一种可能的实现方式,多次卷帘式快门曝光中包括多个曝光周期,每个曝光周期中包括至少一次第一曝光和至少一次第二曝光,也就是说第一曝光与第二曝光可以交替进行,也可以是连续多次第一曝光,再进行第二曝光,或者连续多次第二曝光,再进行第一曝光。例如,曝光周期为1秒,图像传感器12在每个曝光周期内进行多次曝光,从而产生至少一帧第一图像信号和至少一帧第二图像信号,将一个曝光周期内产生的第一图像信号和第二图像信号称为一组图像信号,这样,25个曝光周期内就会产生25组图像信号。
其中,每个曝光周期包括一次第一曝光和一次第二曝光时,多次卷帘式快门曝光中第一曝光和第二曝光的排列顺序至少包括以下几种:
第一种可能的实现方式,每个曝光周期中包括一次第一曝光和一次第二曝光,排列顺序为第一曝光、第二曝光。例如,如图18所示,多次卷帘式快门曝光中的第1次曝光、第3次曝光、第5次曝光等奇数次曝光均为第一曝光,第2 次曝光、第4次曝光、第6次曝光等偶数次曝光均为第二曝光。
第二种可能的实现方式,每个曝光周期中包括一次第一曝光和一次第二曝光,排列顺序为第二曝光、第一曝光。例如,如图19所示,多次卷帘式快门曝光中的第1次曝光、第3次曝光、第5次曝光等奇数次曝光均为第二曝光,第2次曝光、第4次曝光、第6次曝光等偶数次曝光均为第一曝光。
其中,如图20所示,每个曝光周期包括两次第一曝光和一次第二曝光,排列顺序为第一曝光、第一曝光、第二曝光,多次卷帘式快门曝光中第一曝光和第二曝光的排列顺序可以为第一曝光、第一曝光、第二曝光、第一曝光、第一曝光、第二曝光等。
另外,每个曝光周期包括两次第二曝光和一次第一曝光,排列顺序为第二曝光、第二曝光、第一曝光,多次卷帘式快门曝光中第一曝光和第二曝光的排列顺序可以为第二曝光、第二曝光、第一曝光、第二曝光、第二曝光、第一曝光等。
需要说明的是,上述仅提供了几种第一曝光和第二曝光的可能的实现方式,实际应用中,不限于上述几种可能的实现方式,本公开实施例对此不做限定。
作为一种可能的实现方式,可以基于环境光,调整曝光时间,相应的处理可以如下:
当环境光的亮度小于第一数值时,如果进行第一曝光时采用的曝光参数中的曝光时间不是第二数值,则控制进行第一曝光时采用的曝光参数中的曝光时间更新为第二数值,如果进行第二曝光时采用的曝光参数中的曝光时间不是第三数值,则控制进行第二曝光时采用的曝光参数中的曝光时间更新为第三数值;当环境光的亮度大于或等于第一数值时,如果进行第一曝光时采用的曝光参数中的曝光时间不是第四数值,则控制进行第一曝光时采用的曝光参数中的曝光时间更新为第四数值,如果进行第二曝光时采用的曝光参数中的曝光时间不是第五数值,则控制进行第二曝光时采用的曝光参数中的曝光时间更新为第五数值,其中,第二数值大于第四数值,第三数值小于第五数值。
其中,第一数值、第二数值、第三数值、第四数值和第五数值均可以提前设置,存储在图像采集装置中。第二数值大于第四数值,第三数值小于第五数值。
在实施中,在进行曝光时,图像传感器12可以确定当前环境光的亮度,可以是通过光线传感器检测得到,判断环境光的亮度与第一数值的大小。在环境 光的亮度小于第一数值时,如果进行第一曝光时采用的曝光时间不是第二数值,则控制进行第一曝光时采用的曝光时间更新为第二数值,以后就使用的曝光时间即为第二数值,并且如果进行第二曝光时采用的曝光时间不是第三数值,则控制进行第二曝光时采用的曝光时间更新为第三数值。例如,一般第一曝光的曝光时间为10毫秒,第二曝光的曝光时间为15毫秒,在环境光的亮度小于第一数值时,第一曝光的曝光时间可以更新为15毫秒,第二曝光的曝光时间可以更新为10毫秒,这样,在环境光亮度较低时,可以适当的延长第一曝光的曝光时间,并且适当的缩短第二曝光的曝光时间,可以使第一图像信号的色彩、清晰度和信噪比均增加。上述更新为第二数值和第三数值,一般是使多次卷帘式快门曝光的总曝光时间不变。
在环境光的亮度大于或等于第一数值时,如果进行第一曝光时采用的曝光时间不是第四数值,则控制进行第一曝光时采用的曝光时间更新为第四数值,并且如果进行第二曝光时采用的曝光时间不是第五数值,则控制进行第二曝光时采用的曝光时间更新为第五数值。这样,在环境光亮度较强时,可以适当的缩短第一曝光的曝光时间,并且适当的延长第二曝光的曝光时间,可以避免第一曝光时过度曝光。上述更新为第四数值和第五数值,一般是使多次卷帘式快门曝光的总曝光时间不变。
这样,在光线比较暗时,适当的延长曝光时间,可以使获取的第一图像信号亮度比较高,在光线比较亮时,适当的缩短曝光时间,可以避免过度曝光。
作为一种可能的实现方式,在进行图像拍摄之前,图像传感器12、补光部件2中分别已经配置好何时进行第一曝光,何时进行第二曝光,并配置好每次曝光时,补光部件2和图像传感器12分别的处理方式,这样,图像传感器12和补光部件2可以分别在第一曝光时,各自执行自己的处理。例如,在10毫秒时,补光部件2关闭,并且图像传感器12采集第一图像信号。
作为一种可能的实现方式,本公开实施例中的图像采集装置中,还可以包括一个控制器,控制器分别与图像采集部件1、补光部件2电性连接,也即控制器可以分别与图像采集部件1、补光部件2电性连接。控制器可以控制图像传感器12何时开始第一曝光,何时开始第二曝光,以实现第一曝光和第二曝光。
作为一种可能的实现方式,本公开实施例中可以通过手动的方式来控制何时开启补光部件2,何时关闭补光部件2。
需要说明的是,上述图像传感器仅为举例,凡是可以用于感应至少一种感 应红、绿、蓝中一种可见光、以及用于感应近红外光,均可以应用于本公开实施例。
需要说明的是,本公开实施中提到的曝光时间均是指每次曝光时每行的曝光时间,也即第二曝光的曝光时间为10毫秒时,第二曝光产生的第二图像信号的每一行有效图像信号的曝光时间均为10毫秒。
还需要说明的是,频闪指补光灯在第二曝光进行近红外补光时开启,在第一曝光时关闭,形成的闪烁。
本公开实施例中,利用图像传感器的曝光时序来控制补光部件的近红外补光时序,以便存在近红外补光时通过第二曝光产生第二图像信号,不存在近红外补光时通过第一曝光产生第一图像信号,这样的数据采集方式,可以在结构简单、降低成本的同时直接采集到第一图像信号和第二图像信号,也即通过一个图像传感器就可以获取两种不同的图像信号,使得该图像采集装置更加简便,降低实现难度。并且,第一图像信号和第二图像信号均由同一个图像传感器产生并输出,所以第一图像信号对应的视点与第二图像信号对应的视点相同,因此,通过第一图像信号和第二图像信号可以共同获取外部场景的信息,且不会存在因第一图像信号对应的视点与第二图像信号对应的视点不相同,而导致根据第一图像信号和第二图像信号生成的图像不对齐。
需要说明的是,上述图像采集装置可以应用于任何确定第一图像信号和第二图像信号的场景中,本公开实施例不做限定。
本公开实施例中,还提供了一种图像采集的方法,应用于上述图像采集装置,图像采集装置包括:图像传感器、补光器部件和滤光部件,补光部件包括第一补光装置,滤光部件包括第一滤光装置,如图21所示,该方法的执行流程可以如下:
步骤2101,通过第一补光装置进行近红外补光。
其中,在第一曝光时不进行近红外补光,在第二曝光时进行近红外补光,第二曝光时进行近红外补光的开始时刻是至少根据第一时刻确定的,第二曝光时进行近红外补光的结束时刻是至少根据第二时刻确定的。
步骤2102,通过第一滤光装置仅使可见光和部分近红外光通过。
步骤2103,通过图像传感器进行多次卷帘式快门曝光感应并输出第一图像信号和第二图像信号。其中,第一图像信号是根据第一曝光产生的图像信号, 第二图像信号是根据第二曝光产生的图像信号,第一图像信号包括多行有效图像信号,第二图像信号包括多行有效图像信号,第二曝光为当前曝光时,第一时刻是当前曝光产生的第二图像信号的第一行有效图像信号的开始曝光时刻,第二时刻是当前曝光产生的第二图像信号的最后一行有效图像信号的结束曝光时刻。
作为一种可能的实现方式,第二曝光时进行近红外补光的开始时刻不晚于第一时刻,第二曝光时进行近红外补光的结束时刻不早于第二时刻。
作为一种可能的实现方式,第二曝光时进行近红外补光的开始时刻是根据第一时刻和第三时刻确定的,其中,第三时刻是当前曝光之前的最近一次第一曝光产生的第一图像信号的最后一行有效图像信号的结束曝光时刻,第一时刻不早于第三时刻。
作为一种可能的实现方式,第二曝光时进行近红外补光的开始时刻不早于第三时刻,且不晚于第一时刻。
作为一种可能的实现方式,第二曝光时进行近红外补光的结束时刻是根据第二时刻和第四时刻确定的,第四时刻是当前曝光之后的最近一次第一曝光产生的第一图像信号的第一行有效图像信号的开始曝光时刻,第二时刻不晚于第四时刻。
作为一种可能的实现方式,第二曝光时进行近红外补光的结束时刻不早于第二时刻,且不晚于第四时刻。
作为一种可能的实现方式,第一补光装置进行近红外补光的时长不小于当前曝光的任一行有效图像信号的曝光时长与当前曝光产生的第二图像信号的有效图像信号的读出时长之和。
作为一种可能的实现方式,当前曝光产生的第二图像信号的每一行有效图像信号的补光时长相同。
作为一种可能的实现方式,多次卷帘式快门曝光中包括多个曝光周期,每个曝光周期中包括至少一次第一曝光和至少一次第二曝光。
作为一种可能的实现方式,图像采集部件还包括镜头;
滤光部件位于镜头与图像传感器之间,且图像传感器位于滤光部件的出光侧;或者,
镜头位于滤光部件与图像传感器之间,且图像传感器位于镜头的出光侧。
作为一种可能的实现方式,图像传感器包括多个感光通道,多个感光通道 包括R感光通道、G感光通道、B感光通道、W感光通道中的至少一种,多个感光通道通过多次卷帘式快门曝光产生并输出第一图像信号和第二图像信号;
其中,R感光通道,用于感应红光波段和近红外光波段的光,G感光通道,用于感应绿光波段和近红外光波段的光,B感光通道,用于感应蓝光波段和近红外光波段的光,W感光通道,用于感应全波段的光。
作为一种可能的实现方式,图像传感器为红绿蓝白RGBW传感器、红白白蓝RCCB传感器、红绿蓝RGB传感器、或红黄黄蓝RYYB传感器中的任一种传感器;
其中,R表示R感光通道,G表示G感光通道,B表示B感光通道,W表示W感光通道。
作为一种可能的实现方式,第一曝光与第二曝光的至少一个曝光参数不同,至少一个曝光参数为曝光时间、曝光增益、光圈大小中的一种或多种,曝光增益包括模拟增益,和/或,数字增益。
作为一种可能的实现方式,第二曝光的曝光增益小于第一曝光的曝光增益。
作为一种可能的实现方式,第一曝光和第二曝光的至少一个曝光参数相同,至少一个曝光参数包括曝光时间、曝光增益、光圈大小中的一种或多种,曝光增益包括模拟增益,和/或,数字增益。
作为一种可能的实现方式,第一曝光的曝光时间等于第二曝光的曝光时间。
作为一种可能的实现方式,滤光部件还包括第二滤光装置和切换部件,第一滤光装置和第二滤光装置均与切换部件连接;
切换部件,用于将第二滤光装置切换到图像传感器的入光侧;
在第二滤光装置切换到图像传感器的入光侧之后,第二滤光装置使可见光波段的光通过,阻挡近红外光波段的光,图像传感器,用于通过曝光产生并输出第三图像信号。
作为一种可能的实现方式,补光部件还包括第二补光装置;
第二补光装置用于以常亮方式进行可见光补光;或者,
第二补光装置用于以频闪方式进行可见光补光,其中,至少在第二曝光的部分曝光时间段内存在可见光补光,在第一曝光的整个曝光时间段内不存在可见光补光;或者,
第二补光装置用于以频闪方式进行可见光补光,其中,至少在第二曝光的整个曝光时间段内不存在可见光补光,在第一曝光的部分曝光时间段内存在可 见光补光。
作为一种可能的实现方式,第一补光装置进行近红外补光的中心波长为设定特征波长或者落在设定特征波长范围时,通过第一滤光装置的近红外光的中心波长和/或波段宽度达到约束条件。
作为一种可能的实现方式,第一补光装置进行近红外补光的中心波长为750±10纳米的波长范围内的任一波长;或者
第一补光装置进行近红外补光的中心波长为780±10纳米的波长范围内的任一波长;或者
第一补光装置进行近红外补光的中心波长为940±10纳米的波长范围内的任一波长。
作为一种可能的实现方式,约束条件包括:通过第一滤光装置的近红外光的中心波长与第一补光装置进行近红外补光的中心波长之间的差值位于波长波动范围内,波长波动范围为0~20纳米;或者,
通过第一滤光装置的近红外光的半带宽小于或等于50纳米;或者,
第一波段宽度小于第二波段宽度;其中,第一波段宽度是指通过第一滤光装置的近红外光的波段宽度,第二波段宽度是指被第一滤光装置阻挡的近红外光的波段宽度;或者,
第三波段宽度小于参考波段宽度,第三波段宽度是指通过率大于设定比例的近红外光的波段宽度,参考波段宽度为50纳米~150纳米的波段范围内的任一波段宽度。
需要说明的是,图像采集的方法中的处理与前面图3所示的图像采集装置中的进行曝光的处理相同,此处不再赘述。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本公开的较佳实施例,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (27)

  1. 一种图像采集装置,其特征在于,所述图像采集装置包括:
    图像采集部件和补光部件,所述图像采集部件包括滤光部件和图像传感器;
    所述图像传感器,用于通过多次卷帘式快门曝光感应并输出第一图像信号和第二图像信号,其中,所述第一图像信号是根据第一曝光产生的图像信号,所述第二图像信号是根据第二曝光产生的图像信号,所述第一曝光和所述第二曝光为所述多次卷帘式快门曝光中的其中两次曝光;
    所述滤光部件,包括第一滤光装置,使可见光和部分近红外光通过;
    所述补光部件,包括第一补光装置,所述第一补光装置用于在所述第一曝光时,不进行近红外补光,并在进行所述第二曝光时,进行近红外补光,且所述第二曝光时进行近红外补光的开始时刻是至少根据第一时刻确定的,所述第二曝光时进行近红外补光的结束时刻是至少根据第二时刻确定的;
    所述第一图像信号包括多行有效图像信号,所述第二图像信号包括多行有效图像信号,所述第二曝光为当前曝光时,所述第一时刻是所述当前曝光产生的第二图像信号的第一行有效图像信号的开始曝光时刻,所述第二时刻是所述当前曝光产生的第二图像信号的最后一行有效图像信号的结束曝光时刻。
  2. 根据权利要求1所述的图像采集装置,其特征在于,所述第二曝光时进行近红外补光的开始时刻不晚于所述第一时刻,所述第二曝光时进行近红外补光的结束时刻不早于所述第二时刻。
  3. 根据权利要求2所述的图像采集装置,其特征在于,所述第二曝光时进行近红外补光的开始时刻是根据所述第一时刻和第三时刻确定的,其中,所述第三时刻是所述当前曝光之前的最近一次所述第一曝光产生的第一图像信号的最后一行有效图像信号的结束曝光时刻,所述第一时刻不早于所述第三时刻。
  4. 根据权利要求3所述的图像采集装置,其特征在于,所述第二曝光时进行近红外补光的开始时刻不早于所述第三时刻,且不晚于所述第一时刻。
  5. 根据权利要求1所述的图像采集装置,其特征在于,所述第二曝光时进行近红外补光的结束时刻是根据所述第二时刻和第四时刻确定的,所述第四时刻是所述当前曝光之后的最近一次所述第一曝光产生的第一图像信号的第一行有效图像信号的开始曝光时刻,所述第二时刻不晚于所述第四时刻。
  6. 根据权利要求5所述的图像采集装置,其特征在于,所述第二曝光时进 行近红外补光的结束时刻不早于所述第二时刻,且不晚于所述第四时刻。
  7. 根据权利要求1至6任一所述的图像采集装置,其特征在于,在所述当前曝光中,所述第一补光装置进行近红外补光的时长不小于所述当前曝光的任一行有效图像信号的曝光时长与所述当前曝光产生的第二图像信号的有效图像信号的读出时长之和。
  8. 根据权利要求1至6任一所述的图像采集装置,其特征在于,所述当前曝光产生的第二图像信号的每一行有效图像信号的补光时长相同。
  9. 根据权利要求1至6任一所述的图像采集装置,其特征在于,所述多次卷帘式快门曝光中包括多个曝光周期,每个曝光周期中包括至少一次所述第一曝光和至少一次所述第二曝光。
  10. 根据权利要求1至6任一所述的图像采集装置,其特征在于,所述图像采集部件还包括镜头;
    所述滤光部件位于所述镜头与所述图像传感器之间,且所述图像传感器位于所述滤光部件的出光侧;或者,
    所述镜头位于所述滤光部件与所述图像传感器之间,且所述图像传感器位于所述镜头的出光侧。
  11. 根据权利要求1至6任一所述的图像采集装置,其特征在于,所述图像传感器包括多个感光通道,所述多个感光通道包括R感光通道、G感光通道、B感光通道、W感光通道中的至少一种,所述多个感光通道通过所述多次卷帘式快门曝光产生并输出所述第一图像信号和所述第二图像信号;
    其中,R感光通道,用于感应红光波段和近红外光波段的光,G感光通道,用于感应绿光波段和近红外光波段的光,B感光通道,用于感应蓝光波段和近红外光波段的光,W感光通道,用于感应全波段的光。
  12. 根据权利要求11所述的图像采集装置,其特征在于,所述图像传感器为红绿蓝白RGBW传感器、红白白蓝RCCB传感器、红绿蓝RGB传感器、或红黄黄蓝RYYB传感器中的任一种传感器;
    其中,R表示R感光通道,G表示G感光通道,B表示B感光通道,W表示W感光通道。
  13. 根据权利要求1至6任一所述的图像采集装置,其特征在于,所述第一曝光与所述第二曝光的至少一个曝光参数不同,所述至少一个曝光参数为曝 光时间、曝光增益、光圈大小中的一种或多种,所述曝光增益包括模拟增益,和/或,数字增益。
  14. 根据权利要求13所述的图像采集装置,其特征在于,所述第二曝光的曝光增益小于所述第一曝光的曝光增益。
  15. 根据权利要求1至6任一所述的图像采集装置,其特征在于,所述第一曝光和所述第二曝光的至少一个曝光参数相同,所述至少一个曝光参数包括曝光时间、曝光增益、光圈大小中的一种或多种,所述曝光增益包括模拟增益,和/或,数字增益。
  16. 根据权利要求15所述的图像采集装置,其特征在于,所述第一曝光的曝光时间等于所述第二曝光的曝光时间。
  17. 根据权利要求1至6任一所述的图像采集装置,其特征在于,所述滤光部件还包括第二滤光装置和切换部件,所述第一滤光装置和所述第二滤光装置均与所述切换部件连接;
    所述切换部件,用于将所述第二滤光装置切换到所述图像传感器的入光侧;
    在所述第二滤光装置切换到所述图像传感器的入光侧之后,所述第二滤光装置使可见光波段的光通过,阻挡近红外光波段的光,所述图像传感器,用于通过曝光产生并输出第三图像信号。
  18. 根据权利要求1至6任一所述的图像采集装置,其特征在于,所述补光部件还包括第二补光装置;
    所述第二补光装置用于以常亮方式进行可见光补光;或者,
    所述第二补光装置用于以频闪方式进行可见光补光,其中,至少在所述第二曝光的部分曝光时间段内存在可见光补光,在所述第一曝光的整个曝光时间段内不存在可见光补光;或者,
    所述第二补光装置用于以频闪方式进行可见光补光,其中,至少在所述第二曝光的整个曝光时间段内不存在可见光补光,在所述第一曝光的部分曝光时间段内存在可见光补光。
  19. 根据权利要求1至6任一所述的图像采集装置,其特征在于,所述第一补光装置进行近红外补光的中心波长为设定特征波长或者落在设定特征波长范围时,通过所述第一滤光装置的近红外光的中心波长和/或波段宽度达到约束条件。
  20. 根据权利要求19所述的图像采集装置,其特征在于,所述第一补光装置进行近红外补光的中心波长为750±10纳米的波长范围内的任一波长;或者
    所述第一补光装置进行近红外补光的中心波长为780±10纳米的波长范围内的任一波长;或者
    所述第一补光装置进行近红外补光的中心波长为940±10纳米的波长范围内的任一波长。
  21. 根据权利要求19所述的图像采集装置,其特征在于,所述约束条件包括:通过所述第一滤光装置的近红外光的中心波长与所述第一补光装置进行近红外补光的中心波长之间的差值位于波长波动范围内,所述波长波动范围为0~20纳米;或者,
    通过所述第一滤光装置的近红外光的半带宽小于或等于50纳米;或者,
    第一波段宽度小于第二波段宽度;其中,所述第一波段宽度是指通过所述第一滤光装置的近红外光的波段宽度,所述第二波段宽度是指被所述第一滤光装置阻挡的近红外光的波段宽度;或者,
    第三波段宽度小于参考波段宽度,所述第三波段宽度是指在所述第一滤光装置的通过率大于设定比例的近红外光的波段宽度,所述参考波段宽度为50纳米~150纳米的波段范围内的任一波段宽度。
  22. 一种图像采集的方法,应用于图像采集装置,所述图像采集装置包括:图像传感器、补光器部件和滤光部件,所述补光部件包括第一补光装置,所述滤光部件包括第一滤光装置,其特征在于,所述方法包括:
    通过所述第一补光装置进行近红外补光,其中,在第一曝光时不进行近红外补光,在第二曝光时进行近红外补光,所述第二曝光时进行近红外补光的开始时刻是至少根据第一时刻确定的,所述第二曝光时进行近红外补光的结束时刻是至少根据第二时刻确定的;
    通过所述第一滤光装置,使可见光和部分近红外光通过;
    通过所述图像传感器进行多次卷帘式快门曝光感应并输出第一图像信号和第二图像信号,其中,所述第一图像信号是根据所述第一曝光产生的图像信号,所述第二图像信号是根据所述第二曝光产生的图像信号;
    所述第一图像信号包括多行有效图像信号,所述第二图像信号包括多行有 效图像信号,所述第二曝光为当前曝光时,所述第一时刻是所述当前曝光产生的第二图像信号的第一行有效图像信号的开始曝光时刻,所述第二时刻是所述当前曝光产生的第二图像信号的最后一行有效图像信号的结束曝光时刻。
  23. 根据权利要求22所述的方法,其特征在于,所述第二曝光时进行近红外补光的开始时刻不晚于所述第一时刻,所述第二曝光时进行近红外补光的结束时刻不早于所述第二时刻。
  24. 根据权利要求22所述的方法,其特征在于,所述第二曝光时进行近红外补光的开始时刻是根据所述第一时刻和第三时刻确定的,其中,所述第三时刻是所述当前曝光之前的最近一次所述第一曝光产生的第一图像信号的最后一行有效图像信号的结束曝光时刻,所述第一时刻不早于所述第三时刻。
  25. 根据权利要求24所述的方法,其特征在于,所述第二曝光时进行近红外补光的开始时刻不早于所述第三时刻,且不晚于所述第一时刻。
  26. 根据权利要求22所述的方法,其特征在于,所述第二曝光时进行近红外补光的结束时刻是根据所述第二时刻和第四时刻确定的,所述第四时刻是所述当前曝光之后的最近一次所述第一曝光产生的第一图像信号的第一行有效图像信号的开始曝光时刻,所述第二时刻不晚于所述第四时刻。
  27. 根据权利要求26所述的方法,其特征在于,所述第二曝光时进行近红外补光的结束时刻不早于所述第二时刻,且不晚于所述第四时刻。
PCT/CN2020/091994 2019-05-31 2020-05-25 图像采集装置和图像采集的方法 WO2020238827A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910472706.0 2019-05-31
CN201910472706.0A CN110493535B (zh) 2019-05-31 2019-05-31 图像采集装置和图像采集的方法

Publications (1)

Publication Number Publication Date
WO2020238827A1 true WO2020238827A1 (zh) 2020-12-03

Family

ID=68545869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/091994 WO2020238827A1 (zh) 2019-05-31 2020-05-25 图像采集装置和图像采集的方法

Country Status (2)

Country Link
CN (1) CN110493535B (zh)
WO (1) WO2020238827A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115474006A (zh) * 2022-02-22 2022-12-13 重庆紫光华山智安科技有限公司 图像抓拍方法、系统、电子设备及可读存储介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110493491B (zh) * 2019-05-31 2021-02-26 杭州海康威视数字技术股份有限公司 一种图像采集装置及摄像方法
CN110493492B (zh) * 2019-05-31 2021-02-26 杭州海康威视数字技术股份有限公司 图像采集装置及图像采集方法
CN110493535B (zh) * 2019-05-31 2021-09-28 杭州海康威视数字技术股份有限公司 图像采集装置和图像采集的方法
CN111107247B (zh) * 2020-02-26 2021-12-03 上海富瀚微电子股份有限公司 一种曝光方法、一种图像系统及图像系统协同工作的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107005639A (zh) * 2014-12-10 2017-08-01 索尼公司 图像拾取设备,图像拾取方法,程序和图像处理设备
US20170237887A1 (en) * 2014-11-13 2017-08-17 Panasonic Intellectual Property Management Co. Ltd. Imaging device and imaging method
CN107071292A (zh) * 2017-03-10 2017-08-18 深圳市金立通信设备有限公司 一种补光方法及终端
CN108401118A (zh) * 2018-03-05 2018-08-14 北京中科虹霸科技有限公司 控制红外灯开灯时间的虹膜采集装置及方法
CN109474788A (zh) * 2017-09-08 2019-03-15 超威半导体公司 用于彩色和ir相机传感器的照明控制技术
CN110493535A (zh) * 2019-05-31 2019-11-22 杭州海康威视数字技术股份有限公司 图像采集装置和图像采集的方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8964083B2 (en) * 2010-06-04 2015-02-24 Shenzhen Taishan Online Technology Co., Ltd. CMOS image sensor, timing control method and exposure method thereof
CN102427509A (zh) * 2011-09-16 2012-04-25 杭州海康威视数字技术股份有限公司 一种控制补光灯同步摄像机的装置及方法
TWI563845B (en) * 2014-11-19 2016-12-21 Method for taking photo with extension flash module of mobile device
JP6019167B1 (ja) * 2015-04-30 2016-11-02 パナソニック株式会社 内視鏡システム及び光源制御方法
US11607110B2 (en) * 2016-08-25 2023-03-21 Hoya Corporation Electronic endoscope processor and electronic endoscope system
CN107040727B (zh) * 2017-05-11 2020-09-04 成都希格玛光电科技有限公司 摄像机曝光方法及装置
CN108173992B (zh) * 2017-12-26 2020-09-25 Oppo广东移动通信有限公司 电子装置
CN109165548A (zh) * 2018-07-06 2019-01-08 深圳虹识技术有限公司 一种补光的方法和设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170237887A1 (en) * 2014-11-13 2017-08-17 Panasonic Intellectual Property Management Co. Ltd. Imaging device and imaging method
CN107005639A (zh) * 2014-12-10 2017-08-01 索尼公司 图像拾取设备,图像拾取方法,程序和图像处理设备
CN107071292A (zh) * 2017-03-10 2017-08-18 深圳市金立通信设备有限公司 一种补光方法及终端
CN109474788A (zh) * 2017-09-08 2019-03-15 超威半导体公司 用于彩色和ir相机传感器的照明控制技术
CN108401118A (zh) * 2018-03-05 2018-08-14 北京中科虹霸科技有限公司 控制红外灯开灯时间的虹膜采集装置及方法
CN110493535A (zh) * 2019-05-31 2019-11-22 杭州海康威视数字技术股份有限公司 图像采集装置和图像采集的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115474006A (zh) * 2022-02-22 2022-12-13 重庆紫光华山智安科技有限公司 图像抓拍方法、系统、电子设备及可读存储介质
CN115474006B (zh) * 2022-02-22 2023-10-24 重庆紫光华山智安科技有限公司 图像抓拍方法、系统、电子设备及可读存储介质

Also Published As

Publication number Publication date
CN110493535A (zh) 2019-11-22
CN110493535B (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
WO2020238826A1 (zh) 图像采集装置和图像采集的方法
WO2020238827A1 (zh) 图像采集装置和图像采集的方法
CN110493491B (zh) 一种图像采集装置及摄像方法
US6853806B2 (en) Camera with an exposure control function
CN110493495B (zh) 图像采集装置和图像采集的方法
CN101889435B (zh) 照相机闪光模块及其控制方法
CN110505377B (zh) 图像融合设备和方法
CN102821249B (zh) 摄像设备和曝光控制方法
CN111064899B (zh) 一种曝光参数的调节方法及装置
JP4542058B2 (ja) 撮像装置および撮像方法
CN102801919B (zh) 摄像设备及其控制方法
CN108124156B (zh) 用于控制摄像机的红外截止滤光片的方法
US8520095B2 (en) Imaging apparatus and imaging method
KR20140026356A (ko) 다중-스펙트럼 이미징을 위한 장치 및 방법
CN110493537B (zh) 图像采集装置及图像采集方法
CN105850112A (zh) 摄像控制装置
WO2020238804A1 (zh) 图像采集装置及图像采集方法
CN111556225B (zh) 图像采集装置及图像采集控制方法
JP2012120132A (ja) 撮像装置およびプログラム
CN110493533B (zh) 图像采集装置及图像采集方法
US8154620B2 (en) Imaging apparatus and imaging method
JP5875307B2 (ja) 撮像装置、及びその制御方法
CN114374776B (zh) 摄像机以及摄像机的控制方法
JP4701122B2 (ja) カメラ
US11470258B2 (en) Image processing apparatus and image processing method to perform image processing on divided areas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20813281

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20813281

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16-09-2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20813281

Country of ref document: EP

Kind code of ref document: A1