WO2020238770A1 - 一种接收波束调整方法及装置 - Google Patents

一种接收波束调整方法及装置 Download PDF

Info

Publication number
WO2020238770A1
WO2020238770A1 PCT/CN2020/091677 CN2020091677W WO2020238770A1 WO 2020238770 A1 WO2020238770 A1 WO 2020238770A1 CN 2020091677 W CN2020091677 W CN 2020091677W WO 2020238770 A1 WO2020238770 A1 WO 2020238770A1
Authority
WO
WIPO (PCT)
Prior art keywords
user equipment
receiving beam
csi
receiving
processor
Prior art date
Application number
PCT/CN2020/091677
Other languages
English (en)
French (fr)
Inventor
秦城
曾勇波
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020238770A1 publication Critical patent/WO2020238770A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • This application relates to the field of wireless communication technologies, and in particular to a method and device for adjusting a receiving beam.
  • the FR2 frequency band (above 6 GHz) of the new radio (NR) of the fifth generation mobile communication technology (5th generation mobile networks, 5G) has a higher data throughput capacity and has a broad application prospect.
  • the FR2 frequency band due to the high frequency of radio waves and severe signal attenuation, in order to improve communication quality, base stations and user equipment (UE) communicate with directional beams generated by beamforming technology.
  • the radio beam of the base station will be concentrated in a direction with a small coverage area, and the UE will also use the directional receiving beam to receive the signal from the base station.
  • the UE uses a directional beam to receive the signal from the base station, the UE can only receive interference in a fixed direction, which results in the low accuracy of the UE's interference measurement and cannot accurately reflect the actual situation of the UE being interfered. As a result, the UE and the base station cannot make timely adjustments according to the actual interference situation, which reduces the robustness of the entire communication system.
  • the present application provides a receiving beam adjustment method and device, which can improve the accuracy and robustness of interference measurement by user equipment.
  • this application provides a receiving beam adjustment method.
  • This method is applied to user equipment.
  • the user equipment uses the first receiving beam generated by the first antenna panel to receive the channel state information reference signal (CSI-RS) of the base station.
  • the method includes: the user equipment obtains beam adjustment reference information;
  • the reference information is adjusted to determine whether the second receiving beam needs to be used.
  • the second receiving beam is used to receive the channel state information interference measurement resource CSI-IM, and the parameters of the second receiving beam are different from those of the first receiving beam.
  • the parameters include the beam At least one of the direction and the width; when the user equipment determines that the second receiving beam needs to be used, the second receiving beam is generated according to the adjustment rule of the second receiving beam and the time domain configuration of CSI-IM and CSI-RS; wherein, beam adjustment
  • the reference information includes one or more of the path loss between the user equipment and the base station, the signal-to-interference plus noise ratio SINR value obtained by the user equipment receiving the base station data, and the device posture parameter of the user equipment.
  • the user equipment is used to receive the CSI-RS of the base station using the first receiving beam, the user equipment can obtain beam adjustment reference information, and the beam adjustment reference information includes one or more of path loss, SINR value, and device attitude parameter Then, the user equipment determines whether it is necessary to use the second receiving beam to receive CSI-IM according to the beam adjustment reference information, where the direction and/or width of the second receiving beam is different from the first receiving beam; when the user equipment determines that the second receiving beam needs to be used Second, when receiving the beam, the second receiving beam is generated according to the adjustment rule of the second receiving beam and the time domain configuration of CSI-IM and CSI-RS.
  • the user equipment can determine whether it is likely to be subjected to interference with a large intensity and not measured according to the beam adjustment reference information, and use the second receiving beam when it may be subjected to interference with a large intensity and not measured.
  • the interference measurement is performed outside the range of the first receiving beam, thereby expanding the interference measurement range and improving the accuracy and robustness of the interference measurement.
  • the user equipment determines whether the path loss is greater than the first threshold; when the path loss is greater than the first threshold, the user equipment determines that the second receiving beam needs to be used. Therefore, the user equipment can determine whether it is located at the edge of the cell according to the path loss, and if it is located at the edge of the cell, the user equipment determines to use the second receiving beam. Therefore, when the user equipment is located at the edge of the cell, interference from other cell base stations is avoided, but the interference is not measured, the accuracy and robustness of interference measurement are improved, and the communication quality of the user equipment is improved.
  • the user equipment determines whether the SINR value is less than the second threshold; when the SINR value is less than the second threshold, the user equipment determines that the second receiving beam needs to be used; wherein, the second threshold is based on the user equipment's The average value of the channel quality indicator CQI reported to the base station within a preset time is determined. Therefore, the user equipment can judge whether the interference measurement is accurate according to the SINR value. If the SINR value is lower than the second threshold, it means that the interference measurement is inaccurate and there may be unmeasured interference. Therefore, it is determined to use the second receive beam to increase the interference. The accuracy and robustness of measurement improves the communication quality of user equipment.
  • the user equipment determines whether the change value of the device posture parameter is greater than the third threshold; when the change value of the device posture parameter is greater than the third threshold, the user equipment determines that the second receiving beam needs to be used. Therefore, the user equipment can judge whether the position, angle, or height of the user equipment has changed greatly according to the device attitude parameters. If there is a large change, it indicates the interference situation of the user equipment and the accuracy of the interference measurement may occur. Change, so it is determined that the second receive beam needs to be used. Therefore, after the user equipment changes in position, angle, height, etc., interference measurement can still be accurately performed to ensure the communication quality of the user equipment.
  • the user equipment uses the second antenna panel to generate the second receiving beam, and the direction of the second receiving beam is the same as The direction of the first receiving beam is different; the user equipment determines whether the SINR value increases; when the SINR value does not increase, the user equipment changes the direction of the second receiving beam. Therefore, when the CSI-IM and the CSI-RS have at least one symbol overlap in the time domain, the user equipment uses the second antenna panel to generate a second receiving beam with a direction different from the first receiving beam, thereby not affecting the use of the first receiving beam.
  • the receiving beam receives CSI-RS.
  • the user equipment can continuously adjust the direction of the second receiving beam according to the change of the SINR value to find the best direction for interference measurement, thereby improving the accuracy and robustness of interference measurement, and improving the communication quality of the user equipment.
  • the user equipment uses the second antenna panel to generate the second receiving beam, and the width of the second receiving beam is equal to The width of the first receiving beam is different; the user equipment determines whether the SINR value increases; when the SINR value increases, the user equipment reduces the width of the second receiving beam. Therefore, when the CSI-IM and the CSI-RS have at least one symbol overlap in the time domain, the user equipment uses the second antenna panel to generate a second receiving beam with a different width from the first receiving beam, thereby not affecting the use of the first receiving beam.
  • the receiving beam receives CSI-RS.
  • the user equipment can continuously adjust the width of the second receiving beam according to the change of the SINR value to achieve precise positioning of each interference direction, thereby improving the accuracy and robustness of interference measurement, and improving the communication quality of the user equipment.
  • the user equipment determines the number and period of the second receive beam according to the SINR value, and the number and period are negatively correlated with the SINR value,
  • the period is a positive integer multiple of the transmission period of the CSI-IM; the user equipment uses the first antenna panel to generate the second receiving beam according to the number and period. Therefore, when CSI-IM and CSI-RS do not overlap in the time domain, the user equipment uses the first antenna panel to generate the second receive beam without affecting the use of the first receive beam to receive the CSI-RS. Turning on other antenna panels will help save the power consumption of user equipment.
  • the user equipment determines whether the SINR value continues to decrease within the second preset time or is less than the fourth threshold; when the SINR value continues to decrease within the second preset time or is less than the fourth threshold, The user equipment determines whether it is configured to send CSI to the base station within the third preset time; when the user equipment is not configured to send CSI to the base station within the third preset time, the user equipment adjusts according to the first receive beam Regularly adjust the parameters of the first receiving beam.
  • the user equipment determines according to the SINR value and the CSI configuration that when the parameters of the first receive beam are not adjusted in time and are no longer conducive to receiving PDSCH data, adjusting the parameters of the first receive beam is beneficial for the user equipment to find the PDSCH data received from the base station. The best receiving beam.
  • the user equipment changes the direction of the first receiving beam; the user equipment determines whether the SINR value increases; when the SINR value does not increase, the user equipment further changes the direction of the first receiving beam. Therefore, the user equipment determines according to the SINR value and the CSI configuration that when the parameters of the first receive beam are not adjusted in time and are no longer conducive to receiving PDSCH data, adjust the direction of the first receive beam to make the first receive beam try in more directions Improving the reception quality of PDSCH data helps the user equipment find the best receiving beam for receiving PDSCH data from the base station.
  • the user equipment reduces the width of the first receive beam; the user equipment determines whether the SINR value increases; when the SINR value increases, the user equipment further reduces the width of the first receive beam. Therefore, the user equipment determines, according to the SINR value and the CSI configuration, that when the parameters of the first receive beam are not adjusted in time and are no longer conducive to receiving PDSCH data, the width of the first receive beam is adjusted so that the width of the first receive beam is continuously reduced , Reducing the receiving gain of the first receiving beam in the possible interference direction, thereby helping to improve the quality of the PDSCH data received by the user equipment.
  • the user equipment generates the second receiving beam before each time when the base station transmits the CSI-IM according to the time domain configuration of the CSI-IM. Therefore, the user equipment does not need to always turn on the second antenna panel, which is beneficial to save power consumption.
  • the present application also provides a receiving beam adjustment device.
  • the receiving beam adjustment device has the function of realizing the aforementioned user equipment behavior. This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the foregoing receiving beam adjustment device includes a first antenna panel and a processor, and optionally includes a second antenna panel.
  • the first antenna panel is used to generate the first receiving beam to receive the channel state information reference signal CSI-RS of the base station.
  • the processor is used to obtain beam adjustment reference information.
  • the processor is further configured to determine whether a second receiving beam needs to be used according to the beam adjustment reference information, the second receiving beam is used to receive channel state information interference measurement resource CSI-IM, and the parameters of the second receiving beam are the same as those of the first receiving beam The parameters are different, and the parameters include at least one of the direction and width of the beam.
  • the processor is further configured to use the first antenna panel or the second antenna panel to generate the first antenna panel or the second antenna panel according to the adjustment rule of the second receiving beam and the time domain configuration of CSI-IM and CSI-RS when it is determined that the second receiving beam needs to be used. 2.
  • the beam adjustment reference information includes one or more of the path loss between the user equipment and the base station, the signal-to-interference plus noise ratio SINR value obtained by the user equipment receiving the base station data, and the device attitude parameter of the user equipment.
  • the device provided in this application is used to receive the CSI-RS of the base station using the first receiving beam, and the device can obtain beam adjustment reference information, which includes one or more of path loss, SINR value, and device attitude parameter ; Then, determine whether it is necessary to use the second receiving beam to receive CSI-IM according to the beam adjustment reference information, wherein the direction and/or width of the second receiving beam is different from the first receiving beam; when it is determined that the second receiving beam needs to be used, The second receiving beam is generated according to the adjustment rule of the second receiving beam and the time domain configuration of CSI-IM and CSI-RS.
  • the device can determine whether it is likely to be subjected to interference with a large intensity and not measured according to the beam adjustment reference information, and when it may be subjected to interference with a large intensity and not measured, use the second receiving beam in the first Interference measurement is performed outside the range of the receiving beam, thereby expanding the interference measurement range and improving the accuracy and robustness of the interference measurement.
  • this application also provides a communication system.
  • the communication system includes user equipment and base stations.
  • the user equipment uses the first receiving beam generated by the first antenna panel to receive the channel state information reference signal CSI-RS sent by the base station.
  • the user equipment is also used to obtain beam adjustment reference information; and, according to the beam adjustment reference information, determine whether a second receiving beam needs to be used, the second receiving beam is used to receive the channel state information interference measurement resource CSI-IM, and the second receiving beam
  • the parameters of is different from the parameters of the first receiving beam, and the parameters include at least one of the direction and width of the beam; and, when it is determined that the second receiving beam needs to be used, according to the adjustment rule of the second receiving beam, as well as CSI-IM and CSI-
  • the time domain configuration of the RS generates the second receiving beam.
  • the user equipment is used to receive the CSI-RS of the base station using the first receiving beam, the user equipment can obtain beam adjustment reference information, and the beam adjustment reference information includes one of path loss, SINR value, and device attitude parameter or Multiple; then, determine whether it is necessary to use the second receiving beam to receive CSI-IM according to the beam adjustment reference information, where the direction and/or width of the second receiving beam are different from the first receiving beam; when it is determined that the second receiving beam needs to be used At this time, the second receiving beam is generated according to the adjustment rule of the second receiving beam and the time domain configuration of CSI-IM and CSI-RS.
  • the user equipment can determine whether it is likely to receive interference with a greater intensity and not measured according to the beam adjustment reference information, and use the second receiving beam when it may receive interference with greater intensity and not measured. Interference measurement is performed outside the range of the receiving beam, thereby expanding the interference measurement range and improving the accuracy and robustness of the interference measurement.
  • the present application also provides a computer-readable storage medium that stores instructions in the computer-readable storage medium, which when run on a computer, causes the computer to execute the methods of the above aspects.
  • the present application also provides a computer program product containing instructions, which when run on a computer, causes the computer to execute the methods of the above aspects.
  • the present application also provides a chip system that includes a memory and a processor, the memory stores instructions, and the processor is used to execute the instructions to support the foregoing device or system to implement the functions involved in the foregoing aspects, for example To generate or process the information involved in the above methods.
  • Figure 1 is a base station deployment scenario diagram of 5G NR in the FR2 frequency band
  • Figure 2 is a schematic diagram of 5G NR UE adjacent cell interference in the FR2 frequency band
  • Figure 3 is a schematic diagram of beam tracking in 5G NR
  • FIG. 4 shows a schematic structural diagram of the user equipment 100
  • FIG. 5 is a flowchart of a receiving beam adjustment method provided by an embodiment of the application.
  • Figure 6 is a schematic diagram of time domain configuration of CSI-RS and CSI-IM
  • Fig. 7 is a schematic diagram of the width of the receiving beam
  • Fig. 8 is a schematic diagram of the direction of the receiving beam
  • Fig. 9 is the intention of time-domain configuration overlap between CSI-RS and CSI-IM;
  • FIG. 10 is a schematic diagram of the first antenna panel periodically generating the second receiving beam
  • FIG. 11 is a flowchart of a method for adjusting a second receive beam provided by an embodiment of the application.
  • FIG. 12 is a flowchart of step S202 of a method for adjusting a receive beam according to an embodiment of this application;
  • FIG. 13 is a flowchart of step S202 of a receiving beam adjustment method according to an embodiment of the application.
  • FIG. 14 is a flowchart of step S202 of a receiving beam adjustment method provided by an embodiment of this application.
  • FIG. 15 is a flowchart of a second receive beam adjustment rule provided by an embodiment of this application.
  • Fig. 16 is a diagram showing an example of adjusting the second receiving beam
  • FIG. 17 is a flowchart of a second receive beam adjustment rule provided by an embodiment of this application.
  • Fig. 18 is an example diagram of adjusting the second receiving beam
  • FIG. 19 is a flowchart of a second receive beam adjustment rule provided by an embodiment of this application.
  • FIG. 20 is a flowchart of a method for adjusting a first receive beam according to an embodiment of this application.
  • FIG. 21 is a flow chart of the adjustment rule of the first receive beam provided by an embodiment of this application.
  • FIG. 22 is another flowchart of the adjustment rule of the first receive beam provided by an embodiment of this application.
  • FIG. 23 is a schematic structural diagram of a receiving beam adjustment apparatus provided by an embodiment of this application.
  • 24 is a schematic structural diagram of another receiving beam adjustment apparatus provided by an embodiment of the application.
  • FIG. 25 is a schematic diagram of a computer-readable storage medium provided by an embodiment of the application.
  • FIG. 26 is a schematic structural diagram of a chip system provided by an embodiment of the application.
  • 5G NR's FR2 frequency band (above 6GHz) has higher data throughput capacity than low frequency bands, and has broad application prospects.
  • the base station and the UE communicate with the directional beams generated by beamforming technology.
  • the radio beam of the base station will be concentrated in a direction with a small coverage area, and the UE will also use the directional receiving beam to receive the signal from the base station.
  • Figure 1 is a base station deployment scenario diagram of 5G NR in the FR2 frequency band.
  • the radio wave frequency of FR2 frequency band is higher and the signal penetration ability is weak, so the cell coverage of the base station The range is small, and it usually requires dense deployment of base stations to achieve better network coverage.
  • UEs located at the edge of a cell have an increased probability of receiving directional beams from neighboring cell base stations, and are therefore susceptible to signal interference from neighboring cells.
  • directional beams usually have higher gains, this This kind of interference is likely to be strong interference for the UE. Therefore, in the current 5G NR FR2 frequency band dense networking scenario, the communication quality of the cell base station where the UE is located at the edge of the cell will be greatly affected by the interference.
  • FIG. 2 is a schematic diagram of UE neighboring cell interference in the FR2 frequency band of 5G NR.
  • UE1 is located in the cell of gNB1, and establishes communication with gNB1 through directional receiving beam 1 and transmitting beam 1.
  • Base station gNB2 and base station gNB3 are base stations of other cells; when UE1 is located at the edge of the cell of gNB1, UE1 may At the same time, it is also located in the cell coverage of gNB2 and gNB3.
  • UE1 may receive the transmission beam 2 and transmission beam 3 of gNB2 and gNB3, and be interfered by gNB2 and gNB3; when UE1 is located in a shopping mall, a station and other base stations and the number of UEs In more dense deployment scenarios, the interference will be more serious.
  • the base station In order for the UE to estimate and measure the interference condition, the base station will configure the UE with time-frequency resources for interference measurement, for example, channel state information-interference measurement (CSI-IM). On the CSI-IM, the base station does not send any information to the UE, so the information received by the UE on the CSI-IM can be regarded as neighboring cell interference.
  • CSI-IM channel state information-interference measurement
  • the transmission/reception of various signals will have a transmission configuration indication (TCI), which indicates the quasi co-location (QCL) relationship between the transmitted signals. It can be used to indicate the beam situation of the UE in downlink reception or uplink transmission. Therefore, when the UE obtains the TCI indication, it can know which receiving beam or transmitting beam should be used when receiving the signal.
  • TCI transmission configuration indication
  • QCL quasi co-location
  • each CSI-IM is bound to a CSI-RS signal.
  • it is stipulated in 3GPP TS 38.214 that for CSI-IM, it has the same QCL as the CSI-RS bound to it. relationship. For example, if CSI-RS #1 has a QCL relationship with synchronization signal block (synchronization signal block, SSB) SSB#1, then CSI-IM#1 bound to it also has a QCL relationship with SSB#1. That is, when CSI-IM#1 is measured, the received beam used is the received beam for receiving CSI-RS#1.
  • synchronization signal block synchronization signal block
  • interference measurement is only performed in the direction of receiving CSI-RS when measuring interference, which results in a decrease in the robustness of interference measurement and cannot measure received CSI- Interference outside the RS direction.
  • the posture changes of the UE such as rotation, or the neighboring cell base station schedules to a neighboring cell UE that is basically in the same direction as the UE the neighboring cell interference may suddenly increase, which may cause demodulation failure.
  • the base station can configure the receiving mode for the UE during interference measurement, including the receiving beam, the polarization method of the receiving beam, and the antenna panel used by the receiving beam.
  • the base station indicates the interference measurement reception mode adopted by the UE through signaling. In this way, the receiving way is pre-configured and only involves single beam measurement.
  • the base station pre-configures the receiving mode in Table 2 for the UE.
  • the base station When measuring CSI-IM#1 or CSI-IM#2, the base station will instruct the UE to use the serial number 1, serial number 2 or serial number 3 reception mode, and the UE uses the corresponding reception beam, polarization mode, and reception panel as instructed.
  • Table 1 CSI-IM receiving mode configured by the base station for the UE
  • the UE can have multiple receiving methods for interference measurement, these receiving methods are all pre-configured by the base station and indicated by static or dynamic signaling, resulting in relatively fixed methods that the UE can use and not flexible enough. , It cannot solve the problems existing in the prior art well.
  • the base station and the UE first need to pass beam training to obtain the best beam in the communication between the two parties.
  • the base station uses the same or different beams in a series of reference signals, and the UE also uses the same or different receiving beams when receiving these reference signals, and the best communication beam pair is measured to achieve beam training. process.
  • the best receiving beam may also change at any time. Therefore, in the prior art, the current best receiving beam of the UE can be obtained by using beam tracking technology.
  • Beam tracking can be achieved through reference signals (usually CSI-RS) or sensor-assisted methods.
  • the UE obtains the current receiving beam that should be used through real-time measurement or prediction according to the used receiving beam situation, for example, the receiving beam with the largest RSRP is measured.
  • the UE obtains the best beam that should be used after the change based on the current sensor change and the used receiving beam. As shown in Figure 3, after the sensor changes, the UE predicts which receiving beam should be used according to the current posture.
  • the UE needs to implement beam tracking through CSI-RS or sensor changes.
  • CSI-RS physical downlink shared channel
  • the current posture of the UE has not changed, but the neighboring cell suddenly performs data scheduling in this direction, causing increased interference.
  • the best receiving beam cannot be obtained through a sensor-assisted method.
  • the existing technology cannot effectively use the receive beam for interference measurement, nor can it make timely and effective adjustments to the receive beam when the interference received by the UE changes.
  • the accuracy of interference measurement is not high, and it cannot accurately reflect the actual situation of the UE being interfered, which reduces the robustness of the entire communication system.
  • an embodiment of the present application provides a method for adjusting a receive beam. This method can be applied to user equipment, where the user equipment and the base station perform data transmission through directional receiving beams and sending beams.
  • FIG. 4 shows a schematic structural diagram of the user equipment 100.
  • the user equipment 100 may include a processor 110, a memory 120, an antenna 130, a mobile communication module 140, and a sensor module 150.
  • the processor 110 may include one or more processing units.
  • the processor 110 may include an application processor (AP), a modem processor, a graphics processing unit (GPU), and an image signal.
  • AP application processor
  • GPU graphics processing unit
  • ISP image signal processor
  • controller video codec
  • digital signal processor digital signal processor
  • baseband processor baseband processor
  • NPU neural-network processing unit
  • the different processing units may be independent devices or integrated in one or more processors.
  • the controller can generate operation control signals according to the instruction operation code and timing signals to complete the control of fetching and executing instructions.
  • the sensor module 150 may include a gyroscope sensor 150A, an air pressure sensor 150B, a magnetic sensor 150C, an acceleration sensor 150D, a gravity sensor 150E, and so on.
  • a memory may also be provided in the processor 110 to store instructions and data.
  • the memory in the processor 110 is a cache memory.
  • the memory can store instructions or data that have just been used or recycled by the processor 110. If the processor 110 needs to use the instruction or data again, it can be directly called from the memory. Repeated accesses are avoided, the waiting time of the processor 110 is reduced, and the efficiency of the system is improved.
  • the wireless communication function of the user equipment 100 may be implemented by the antenna 130, the mobile communication module 140, the modem processor, and the baseband processor.
  • the antenna 130 includes at least one antenna panel, and each antenna panel can be used to transmit and receive electromagnetic wave signals, and the antenna 130 can be used to cover a single or multiple communication frequency bands.
  • the antenna 103 can be used in combination with a tuning switch.
  • the mobile communication module 140 may provide a wireless communication solution including 2G/3G/4G/5G and the like applied to the user equipment 100.
  • the mobile communication module 140 may include at least one filter, a switch, a power amplifier, a low noise amplifier (LNA), etc.
  • the mobile communication module 140 may receive electromagnetic waves by the antenna 130, and perform processing such as filtering, amplifying and transmitting the received electromagnetic waves to the modem processor for demodulation.
  • the mobile communication module 140 can also amplify the signal modulated by the modem processor, and convert it to electromagnetic wave radiation via the antenna 130.
  • at least part of the functional modules of the mobile communication module 140 may be provided in the processor 110.
  • at least part of the functional modules of the mobile communication module 140 and at least part of the modules of the processor 110 may be provided in the same device.
  • the modem processor may include a modulator and a demodulator.
  • the modulator is used to modulate the low frequency baseband signal to be sent into a medium and high frequency signal.
  • the demodulator is used to demodulate the received electromagnetic wave signal into a low-frequency baseband signal. Then the demodulator transmits the demodulated low-frequency baseband signal to the baseband processor for processing.
  • the low-frequency baseband signal is processed by the baseband processor and then passed to the application processor.
  • the application processor outputs sound signals through audio equipment, or displays images or videos on the display screen.
  • the modem processor may be an independent device. In other embodiments, the modem processor may be independent of the processor 110 and be provided in the same device as the mobile communication module 140 or other functional modules.
  • the antenna 130 of the user equipment 100 and the mobile communication module 140 are coupled, so that the user equipment 100 can communicate with the network and other devices through wireless communication technology.
  • Wireless communication technologies can include the 5th generation mobile networks new radio (5G NR), global system for mobile communications (GSM), general packet radio service (general packet radio service, GPRS). ), code division multiple access (CDMA), wideband code division multiple access (WCDMA), time-division code division multiple access (TD-SCDMA) , Long Term Evolution (LTE), etc.
  • 5G NR 5th generation mobile networks new radio
  • GSM global system for mobile communications
  • GPRS general packet radio service
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • TD-SCDMA time-division code division multiple access
  • LTE Long Term Evolution
  • the memory 120 may be used to store computer executable program code, and the executable program code includes instructions.
  • the memory 120 may include a program storage area and a data storage area.
  • the storage program area can store the operating system, at least one application program required by the function (such as sound playback function, image playback function, etc.).
  • the data storage area can store data (such as audio data, phone book, etc.) created during the use of the user equipment 100.
  • the memory 120 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, a universal flash storage (UFS), and the like.
  • the processor 110 executes various functional applications and data processing of the user equipment 100 by running instructions stored in the memory 120 and/or instructions stored in a memory provided in the processor.
  • the gyro sensor 150A may be used to determine the movement posture of the user equipment 100.
  • the angular velocity of the user equipment 100 around three axes ie, x, y, and z axes
  • the gyro sensor 150A can be used for image stabilization.
  • the gyroscope sensor 150A detects the jitter angle of the user equipment 100, calculates the distance that the lens module needs to compensate according to the angle, and allows the lens to counteract the jitter of the user equipment 100 through a reverse movement to achieve anti-shake.
  • the gyro sensor 150A can also be used for navigation and somatosensory game scenes.
  • the air pressure sensor 150B is used to measure air pressure.
  • the user equipment 100 calculates the altitude based on the air pressure value measured by the air pressure sensor 180C to assist positioning and navigation.
  • the acceleration sensor 150D can detect the magnitude of the acceleration of the user equipment 100 in various directions (generally three axes). When the user equipment 100 is stationary, the magnitude and direction of gravity can be detected. It can also be used to identify the posture of the user's device, applied to applications such as horizontal and vertical screen switching, and pedometer.
  • the structure illustrated in the embodiment of the present application does not constitute a specific limitation on the user equipment 100.
  • the user equipment 100 may include more or fewer components than shown, or combine certain components, or split certain components, or arrange different components.
  • the illustrated components can be implemented in hardware, software, or a combination of software and hardware.
  • the base stations in this application may include 5G base stations (next generation-node, gNB) and evolved base stations (evolved node b, eNB), etc.
  • gNB and/or eNB can form an NR network through independent networking (SA) and non-independent networking (NSA), including low frequency band (FR1) and high frequency band (FR2).
  • SA independent networking
  • NSA non-independent networking
  • FR1 low frequency band
  • FR2 high frequency band
  • FIG. 5 is a flowchart of a receiving beam adjustment method provided by an embodiment of the application. As shown in FIG. 5, the receiving beam adjustment method of the embodiment of the present application includes the following steps:
  • step S101 the user equipment determines whether it is necessary to use multiple receiving beams to perform interference measurement according to the location, historical interference statistics, or device posture within a period of time.
  • the user equipment can determine the relative position between itself and the base station according to the measured path loss. If the measured path loss is greater than a certain threshold, it means that the user equipment is far from the cell center. Located at the edge of the cell and subject to signal interference from other cells in different directions. In this case, the user equipment needs to use multiple receive beams for interference measurement.
  • the user equipment determines that if the channel quality indicator (CQI value) reported to the base station within a period of time is relatively high (for example, higher than a certain threshold), but in the downlink physical shared channel (physical downlink) Shared channel, PDSCH)
  • the signal to interference and noise ratio (SINR value) of the received and demodulated data is low (for example, lower than a certain threshold), or the demodulation fails for a period of time, the user is considered
  • the equipment suffers from serious interference, and multiple receiving beams are required to perform interference measurement.
  • the user equipment may determine whether to use multiple receiving beams to perform interference measurement according to a parameter change of the sensor module. For example, the user equipment judges whether the change range of the three-axis data of the gyroscope sensor is greater than a certain threshold. If it is greater than a certain threshold, it means that the posture of the user equipment has changed drastically, and multiple receiving beams need to be used for interference measurement. For another example, the user equipment judges whether the magnitude of the change of the gravity sensor/barometric sensor data is greater than a certain threshold.
  • the user equipment determines whether the acceleration sensor data is greater than a certain threshold. If it is greater than a certain threshold, it indicates that the user equipment is changing from relatively static to high-speed motion, and multiple receiving beams need to be used for interference measurement.
  • the receiving beam of the user equipment is usually an analog beam generated by beamforming. Therefore, each antenna panel of the user equipment can only generate one receiving beam at a time. Then, when the user equipment uses multiple receiving beams for interference measurement, the same antenna panel can be used to generate different receiving beams at different times through time division multiplexing; or, when the user equipment has multiple antenna panels , Different antenna panels simultaneously generate different receiving beams for interference measurement.
  • the first antenna panel, the second antenna panel, etc. are used to represent different antenna panels, and the first receiving beam, the second receiving beam, etc. are used to represent different receiving beams for easy distinction.
  • the first receiving beam is used to receive base station data, and the first receiving beam is generated by the first antenna panel.
  • Step S102 When the user equipment determines that multiple receive beams need to be used for interference measurement, it is determined whether the CSI-RS and CSI-IM configured by the base station overlap in time domain.
  • CSI-RS and CSI-IM are configured by the base station through radio resource control (radio resource control, RRC).
  • Fig. 6 is a schematic diagram of time domain configuration of CSI-RS and CSI-IM. As shown in Figure 6, these two resources may or may not overlap in the time domain.
  • Step S103 When the CSI-RS and the CSI-IM configured by the base station overlap in the time domain of at least one symbol, the user equipment uses the second antenna panel to generate a second receiving beam.
  • the CQI value, precoding matrix indicator (PMI), and rank indicator (RI) that user equipment reports to the base station need to be generated based on CSI-RS, so
  • the priority of the user equipment for receiving CSI-RS is higher than the priority for receiving CSI-IM, that is, the user equipment needs to consider when the first receiving beam can receive the CSI-RS Use the second receiving beam to receive CSI-IM. Therefore, combined with the ability of an antenna panel to generate only one receiving beam at the same time, when the CSI-RS and CSI-IM configured by the base station have at least one symbol time domain overlap, in order not to affect the first receiving beam to receive CSI-RS , The second receiving beam is generated by the second antenna panel.
  • the second receiving beam is a beam with a fixed width.
  • Fig. 7 is a schematic diagram of the width of the receiving beam.
  • the user equipment receives the base station gNB1 through the first receiving beam and sends data such as CSI-RS through the transmission beam 1. It is an interference signal.
  • the user equipment can generate a second receiving beam with a fixed width, and the width of the second receiving beam is preferably greater than that of the first receiving beam, so as to better cover
  • the range of sending beam 2 improves the accuracy of interference measurement.
  • the width of the second receiving beam is greater than the width of the first receiving beam and covers the beam range of the first receiving beam.
  • the directions of the first receiving beam and the second receiving beam may be the same or different.
  • the second receiving beam may also be a beam with a variable width, and the width of the second beam may be adjusted in stages according to the measured interference situation. For example, when the second receiving beam is used for the first interference measurement, the width of the second receiving beam can be set to 20 degrees. If the SINR value increases, it means that the interference measurement direction of the second receiving beam is correct. During the second interference measurement, the direction of the second receiving beam can be kept unchanged, the width of the second receiving beam can be narrowed to 15 degrees, and the SINR value can be judged whether the SINR value has further increased. During the measurement, continue to narrow the width of the second beam, and so on, until the SINR value no longer increases or is greater than a certain threshold.
  • Fig. 8 is a schematic diagram of the direction of the receiving beam.
  • the second receiving beam may be located in the surrounding direction of the first receiving beam.
  • the second receiving beam may be located in direction 2, direction 4, direction 6, and direction 8, which are the nearest around direction 5, or in direction 1, direction 3, direction 7, and direction 9.
  • the direction and width of the second receiving beam may also be determined according to changes in parameters of the sensor.
  • the greater the change in the parameters of the sensor the greater the change in the posture of the user equipment, and therefore the greater the width of the second receiving beam, and the greater the change in the direction of the second receiving beam relative to the first receiving beam. For example: assuming that the first receiving beam is in direction 5, when the gyroscope's parameter change amplitude is greater than 10 degrees, the second antenna panel generates a second receiving beam with direction 4 and a width of 10 degrees. When the gyroscope parameter change amplitude is greater than 20 When it is in degrees, adjust the second receiving beam to direction 1, and the width is 20 degrees.
  • the second antenna panel In order to reduce power consumption, user equipment usually does not turn on multiple antenna panels at the same time even if it has multiple antenna panels. Therefore, when the second antenna panel needs to be used to generate the second receiving beam, the second antenna panel needs to be powered on first. , And then generate the second receiving beam. However, it takes a certain time for the antenna panel to enter the working state from power-on. Therefore, as shown in Figure 9, when the CSI-RS and CSI-IM time domains overlap, the user equipment also needs to determine whether the second receiving beam Generated on time when CSI-IM arrives.
  • the user equipment can turn on the second antenna panel in advance before each arrival of the CSI-IM; if the CSI-IM is an aperiodic resource, the base station will use the downlink control information (downlink control information, DCI) dynamically trigger the user equipment to receive CSI-IM.
  • DCI downlink control information
  • Step S104 When the CSI-RS and the CSI-IM configured by the base station do not overlap in the time domain, the user equipment periodically uses the first antenna panel to generate the second receiving beam.
  • the user equipment uses the first antenna panel
  • the second receiving beam is periodically generated to receive CSI-IM.
  • FIG. 10 is a schematic diagram of the first antenna panel periodically generating the second receiving beam.
  • the user equipment receives both CSI-RS in direction 1 and CSI-IM in the direction of beam 1.
  • the user equipment can, according to the time domain configuration of the CSI-IM, without affecting the reception of the CSI-RS by the first receive beam, at regular intervals (for example, X Time slot, X is a positive integer), switch to the second receiving beam to receive CSI-IM, and the second receiving beam may be located in direction 2 in FIG. 8, for example.
  • the user equipment may determine the period and number of the second receiving beam according to the current interference situation.
  • the more serious the interference for example, the lower the SINR value of the received and demodulated signal
  • step S105 the user equipment judges whether the reception quality is degraded when the first receiving beam is used to receive PDSCH data.
  • the SINR value of the user equipment receiving and demodulating data on the PDSCH continues to decrease, it indicates that the quality of PDSCH data reception is degraded.
  • Step S106 If the reception quality of PDSCH data decreases, the user equipment adjusts the first receiving beam.
  • the user equipment needs to adjust the first receiving beam.
  • the action of the user equipment reporting CSI to the base station is configured by the base station through RRC. If the base station has not configured the user equipment to report CSI to the base station in RRC, the user equipment will not report CSI to the base station.
  • the CSI reported by the user equipment to the base station is used to notify the base station to adjust the transmission beam, so that the user equipment can adjust the reception beam accordingly to improve the quality of data reception in the PDSCH. If the user equipment is not configured to report the CSI to the base station, the user equipment and the base station cannot adjust the receiving beam and the sending beam in time according to the CSI. Therefore, in order to avoid untimely adjustment of the receive beam, the user equipment actively adjusts the first receive beam when the PDSCH data reception quality decreases and is not configured to report CSI to the base station for a period of time to ensure the PDSCH data reception quality.
  • the historical directions may be sorted according to historical SINR values measured in historical directions or reference signal receive power (RSRP) size; Then, according to the sorting result, the first receiving beam is adjusted to a historical direction that has a larger historical SINR value or a larger RSRP value and is adjacent to the current direction of the first receive beam.
  • RSRP reference signal receive power
  • the width of the first receiving beam may also be adjusted. For example, while keeping the direction of the first receiving beam unchanged, the width of the first receiving beam is gradually reduced until the PDSCH data reception quality meets expectations.
  • the width of each reduction can be a fixed value or a value. Variable value.
  • the user equipment when the user equipment has multiple antenna panels, if the PDSCH data reception quality decreases, and the user equipment is not configured to report CSI to the base station for a period of time, the user equipment can turn on the second antenna panel , And use the second antenna panel to generate a third receiving beam in the surrounding direction of the first receiving beam to receive PDSCH. If the quality of PDSCH data received by the third receiving beam is better than that of the first receiving beam, switch the first receiving beam to the third Continue to receive the PDSCH in the direction of the receiving beam.
  • Step S107 If the reception quality of PDSCH data does not decrease, the user equipment generates a first receiving beam according to the transmission configuration instruction TCI.
  • the user equipment can continue to generate the first receiving beam according to the TCI configured by the base station to receive the PDSCH.
  • FIG. 11 is a flowchart of a method for adjusting a second receiving beam provided by an embodiment of the application.
  • the method can be applied to user equipment, where the user equipment receives the CSI-RS of the base station through a first receiving beam, the first receiving beam is a directional beam, and is generated by a first antenna panel of the user equipment through beamforming.
  • the method shown in Figure 11 includes the following steps:
  • Step S201 The user equipment obtains beam adjustment reference information.
  • the beam adjustment reference information includes one or more of the path loss between the user equipment and the base station, the signal to interference plus noise ratio SINR value obtained by the user equipment receiving the base station data, and the device attitude parameter of the user equipment.
  • Path loss is the amount of loss introduced by the propagation environment between the base station and the user equipment. At the same frequency, the path loss is related to the distance between the user equipment and the base station. The larger the path loss, the longer the distance between the user equipment and the base station.
  • the path loss is greater than a certain threshold, it indicates that the user equipment may be located at the edge of the cell and is susceptible to signal interference from other cell base stations. The source direction of these interferences is usually different from the first receiving beam, and it is difficult to be measured by the first receiving beam. Therefore, the path loss is used as the beam adjustment reference information in the embodiment of the present invention.
  • SINR refers to the ratio of the strength of the useful signal received by the user equipment to the strength of the received interference signal (noise and interference). The higher the SINR value, the lower the interference received by the user equipment, and the lower the SINR value, indicating the user equipment The stronger the interference.
  • Device attitude parameters such as: the three-axis data of the gyroscope sensor, the air pressure sensor data, and the acceleration sensor data.
  • the above device attitude parameters can reflect the angle, displacement and speed of the user equipment.
  • Step S202 The user equipment determines whether a second receiving beam needs to be used according to the beam adjustment reference information.
  • the second receiving beam is used to receive the channel state information interference measurement resource CSI-IM, and the parameters of the second receiving beam are the same as those of the first receiving beam.
  • the parameters are different, and the parameters include at least one of the direction and the width of the beam.
  • the embodiment of the application may set a corresponding threshold for the beam adjustment reference information.
  • the beam adjustment reference information is greater than (or less than) the corresponding threshold, the user equipment determines that the second receiving beam needs to be used for interference measurement. Since the parameters of the second receiving beam are different from those of the first receiving beam, the second receiving beam can receive CSI-IM outside the range of the first receiving beam, which is beneficial to expand the interference measurement range and improve the accuracy and robustness of interference measurement Sex.
  • Step S203 When the user equipment determines that the second receiving beam needs to be used, according to the adjustment rule of the second receiving beam, the time domain configuration of the CSI-IM and the CSI-RS generates the second receiving beam.
  • the adjustment rule of the second receiving beam is used to determine whether the second receiving beam is generated by the first antenna panel or the second antenna panel according to the number of antenna panels of the user equipment and the time domain configuration of CSI-IM and CSI-RS The second receiving beam; and determining the direction, width, number, and period of the second receiving beam.
  • the priority of the user equipment to receive CSI-RS is higher than The priority of receiving CSI-IM, that is, the user equipment needs to consider using the second receiving beam to receive CSI-IM under the condition that the first receiving beam can receive the CSI-RS.
  • the second receiving beam is generated by the second antenna panel; when the CSI-RS and CSI-IM do not overlap in the time domain, the second receiving beam is generated by the first antenna panel.
  • the user equipment is used to receive the CSI-RS of the base station using the first receiving beam, the user equipment can obtain beam adjustment reference information, and the beam adjustment reference information includes one of path loss, SINR value, and device attitude parameter Or more; then, the user equipment determines whether it is necessary to use the second receiving beam to receive CSI-IM according to the beam adjustment reference information, wherein the direction and/or width of the second receiving beam is different from the first receiving beam; when the user equipment determines that it needs When the second receiving beam is used, the second receiving beam is generated according to the adjustment rule of the second receiving beam and the time domain configuration of CSI-IM and CSI-RS.
  • the user equipment can determine whether it is likely to be subjected to interference with a large intensity and not measured according to the beam adjustment reference information, and use the second receiving beam when it may be subjected to interference with a large intensity and not measured.
  • the interference measurement is performed outside the range of the first receiving beam, thereby expanding the interference measurement range and improving the accuracy and robustness of the interference measurement.
  • FIG. 12 is a flowchart of step S202 of a method for adjusting a receive beam according to an embodiment of the application.
  • the beam adjustment reference information includes path loss
  • step S202 includes the following steps:
  • Step S301 The user equipment determines whether the path loss is greater than a first threshold.
  • Step S302 When the path loss is greater than the first threshold, the user equipment determines that the second receiving beam needs to be used.
  • Path loss is usually related to the distance between the user equipment and the base station. The longer the distance between the user equipment and the base station, the greater the path loss, and the closer the distance, the smaller the path loss.
  • the user equipment may be located at the edge of the cell and is more susceptible to signal interference from other cells from different directions. Therefore, the second receiving beam needs to be used to measure interference in these directions.
  • a first threshold may be set for the path loss.
  • the path loss is greater than the first threshold, the user equipment is considered to be at the edge of the cell and the Second, the receiving beam performs interference measurement.
  • the path loss can be expressed by a number + unit "dB". The larger the number, the more serious the path loss. Illustratively: assuming that the first threshold is 110dB, if the path loss measured by the user equipment is 120dB, it can be considered that the user equipment is located at the edge of the cell and needs to use the second receiving beam to perform interference measurement.
  • the user equipment can determine whether it is located at the edge of the cell according to the path loss, and if it is located at the edge of the cell, the user equipment determines to use the second receiving beam. Therefore, when the user equipment is located at the edge of the cell, interference from other cell base stations is avoided, but the interference is not measured, the accuracy and robustness of interference measurement are improved, and the communication quality of the user equipment is improved.
  • FIG. 13 is a flowchart of step S202 of a method for adjusting a receive beam according to an embodiment of the application.
  • the beam adjustment reference information includes the SINR value
  • step S202 includes the following steps:
  • Step S401 The user equipment determines whether the SINR value is less than a second threshold.
  • Step S402 When the SINR value is less than the second threshold, the user equipment determines that the second receiving beam needs to be used.
  • the user equipment estimates the available CQI value based on the obtained SINR value and reports it to the base station, so that the user equipment and the base station perform data transmission according to the modulation method and code rate corresponding to the CQI value.
  • the larger the SINR value the larger the CQI value estimated by the user equipment to ensure that the block error rate (BLER) is less than a prescribed value.
  • BLER block error rate
  • a second threshold can be set for the SINR value.
  • the SINR value is greater than the second threshold, it is considered that the user equipment has been strongly interfered and the second receiving beam needs to be used for interference. measuring.
  • the second thresholds corresponding to different CQI values are also different.
  • the second threshold may be determined according to the average value of the CQI reported by the user equipment to the base station within the first preset time. The larger the average value of the CQI, the larger the second threshold.
  • the user equipment may also maintain a list containing the correspondence between the CQI average value and the second threshold value, so as to determine the second threshold value corresponding to each CQI average value through the list.
  • the second receiving beam needs to be used for interference measurement.
  • the user equipment can judge whether the interference measurement is accurate according to the SINR value. If the SINR value is lower than the second threshold, it means that the interference measurement is not accurate and there may be unmeasured interference. Therefore, the user equipment determines to use the second receiving beam. Thereby improving the accuracy and robustness of interference measurement and improving the communication quality of user equipment.
  • FIG. 14 is a flowchart of step S202 of a method for adjusting a receive beam according to an embodiment of the application.
  • the beam adjustment reference information includes device attitude parameters
  • step S202 includes the following steps:
  • Step S501 The user equipment determines whether the change value of the device posture parameter is greater than a third threshold.
  • Step S502 When the change value of the device posture parameter is greater than the third threshold, the user equipment determines that the second receiving beam needs to be used.
  • the third threshold is an angular velocity value.
  • the three-axis data can reflect the change of the angle of the user equipment.
  • the change value of any one axis of the three-axis data is greater than the third threshold, it can be considered that the user equipment has rotated substantially and the second receiving beam needs to be used for interference measurement.
  • the three-axis data is (10°/s, 5°/s, 15°/s) at t0 and (10°/s, 5°/s) at t1. s, 55°/s). Then, since the data change value of the z-axis is greater than 30°/s, the user equipment needs to use the second receiving beam to perform interference measurement.
  • the third threshold corresponding to each axis of the three-axis data may be different. Therefore, the third threshold may be a three-dimensional array (w1, w2, w3) corresponding to the x-axis, For the y-axis and z-axis, when the change value of any one of the three-axis data is greater than the corresponding dimension value of the third threshold, the user equipment needs to use the second receiving beam to perform interference measurement.
  • the unit of the third threshold may be Pa or megapascal (MPa).
  • the air pressure sensor data can reflect the change in the altitude of the user equipment.
  • the air pressure sensor data change value is greater than the third threshold, it can be considered that the user equipment has a large vertical displacement, and the second receiving beam needs to be used for interference measurement.
  • the unit of the third threshold may be meters/square second (m/s 2 ), etc.
  • the gravity sensor data can reflect the change in the motion state of the user equipment.
  • the change value of the gravity sensor data is greater than the third threshold, it can be considered that the user equipment has been greatly displaced and the second receiving beam needs to be used for interference measurement.
  • the unit of the third threshold may be meters/square second (m/s 2 ).
  • the acceleration sensor data can reflect the changes in the motion state of the user equipment.
  • the acceleration sensor data is greater than the third threshold, it indicates that the user equipment is moving from relatively static to high-speed motion, which may cause the position and angle of the user equipment relative to the base station to change. Therefore, the second receiving beam needs to be used for interference measurement.
  • the user equipment may simultaneously use multiple beam adjustment reference information combinations such as path loss, SINR, and/or device attitude parameters to determine whether the second receiving beam needs to be used. For example, when the user equipment uses path loss and SINR at the same time, the user equipment determines whether the path loss is greater than the first threshold and whether the SINR is less than the second threshold. If the path loss is greater than the first threshold and the SINR is less than the second threshold, the user equipment The second receive beam needs to be used.
  • multiple beam adjustment reference information combinations such as path loss, SINR, and/or device attitude parameters to determine whether the second receiving beam needs to be used. For example, when the user equipment uses path loss and SINR at the same time, the user equipment determines whether the path loss is greater than the first threshold and whether the SINR is less than the second threshold. If the path loss is greater than the first threshold and the SINR is less than the second threshold, the user equipment The second receive beam needs to be used.
  • the user equipment can judge whether the position, angle, or height of the user equipment has changed greatly according to the posture parameters of the equipment. If there is a large change, it indicates the interference situation of the user equipment and the accuracy of the interference measurement may occur. Change, so it is determined that the second receive beam needs to be used. Therefore, after the user equipment changes in position, angle, height, etc., interference measurement can still be accurately performed to ensure the communication quality of the user equipment.
  • FIG. 15 is a flowchart of a second receive beam adjustment rule provided by an embodiment of this application. As shown in FIG. 15, in an embodiment, the adjustment rule of the second receive beam may include the following steps:
  • Step S601 When the CSI-IM and the CSI-RS have at least one symbol overlap in the time domain, the user equipment uses the second antenna panel to generate a second receiving beam, and the direction of the second receiving beam is different from the direction of the first receiving beam .
  • Step S602 The user equipment determines whether the SINR value increases.
  • Step S603 When the SINR value does not increase, it indicates that the interference measurement situation has not improved, indicating that the interference is not coming from the current direction of the second receiving beam. Therefore, the user equipment changes the second receiving beam to another direction, and thus continues in the other direction. Perform interference measurement.
  • the user equipment cyclically executes steps S602 and S603, and continuously changes the direction of the second receiving beam, until the SINR increases when it is adjusted to a certain direction. So far.
  • Step S604 When the SINR value increases, it indicates that the interference measurement situation has improved, indicating that the interference is indeed the current direction of the second receiving beam. Therefore, when the user equipment uses the second receiving beam again to perform interference measurement, keep the second receiving beam The current direction remains unchanged, and the second receiving beam continues to be generated in the current direction.
  • Fig. 16 is a diagram showing an example of adjusting the second receiving beam.
  • the user equipment receives the PDSCH data of the base station through the first receiving beam generated by the first antenna panel, and the direction of the first receiving beam is direction 5 in FIG.
  • the user equipment uses the second antenna panel to generate the second receiving beam, and performs the first interference measurement outside of direction 5.
  • the second receiving beam is located in direction 2 with a width of 20 degrees. Since the interference does not come from direction 2, the user The SINR value obtained by the device demodulating PDSCH data did not increase.
  • the direction of the second receiving beam is changed to direction 4, and the width is still 20 degrees. Since the interference does come from direction 4, the SINR value obtained by the user equipment increases. Therefore, stop continuing to adjust the direction of the second beam.
  • the second receive beam is used again for interference measurement, the second receive beam can continue to be generated in direction 4. .
  • the user equipment in order to reduce power consumption, the user equipment usually does not turn on multiple antenna panels at the same time even if it has multiple antenna panels. Therefore, when the CSI-IM is a periodic resource, the user equipment can turn on the second antenna panel in advance each time the CSI-IM arrives to ensure that the power consumption is reduced when the CSI-IM can be received; or, the user The device can set the period T2 for turning on the second antenna panel according to the period T1 of the CSI-IM, and T2 is an integer multiple of T1, thereby reducing the number of times the second antenna panel is turned on and further reducing energy consumption.
  • the base station will dynamically trigger the user equipment to measure CSI-IM through DCI.
  • the second antenna panel can be completed in the period from the time of DCI triggering to the arrival of CSI-IM Power on and enter the working state, if it can, you can use the second antenna panel, if not, you can only periodically use the first antenna panel to generate the second receiving beam.
  • the user equipment uses the second antenna panel to generate a second receiving beam with a direction different from the first receiving beam, thereby not affecting the use of the first receiving beam.
  • the receiving beam receives CSI-RS.
  • the user equipment can continuously adjust the direction of the second receiving beam according to the change of the SINR value to find the best direction for interference measurement, thereby improving the accuracy and robustness of interference measurement, and improving the communication quality of the user equipment.
  • FIG. 17 is a flowchart of a second receive beam adjustment rule provided by an embodiment of this application. As shown in FIG. 17, in an embodiment, the adjustment rule of the second receive beam may include the following steps:
  • Step S701 When the CSI-IM and the CSI-RS have at least one symbol overlap in the time domain, the user equipment uses the second antenna panel to generate a second receiving beam, the width of the second receiving beam is different from the width of the first receiving beam .
  • Step S702 The user equipment judges whether the SINR value increases.
  • Step S703 When the SINR value increases, it indicates that the interference measurement situation has improved, indicating that the interference direction is within the coverage of the second receiving beam. Therefore, the user equipment can further reduce the width of the second receiving beam to make the second The receive beam measures interference more accurately in a smaller range.
  • Step S704 When the SINR value does not increase, the user equipment keeps the current width of the second receive beam unchanged.
  • the user equipment when the SINR value increases, the user equipment cyclically performs step S702 and step S703, and continuously reduces the width of the second receiving beam until the SINR value no longer increases. Realize the accurate judgment of the interference direction, and use the narrow beam (second receiving beam) to measure the interference more accurately, which is beneficial to improve the data transmission efficiency between the user equipment and the base station.
  • Fig. 18 is a diagram showing an example of adjusting the second receiving beam.
  • the user equipment receives the PDSCH data of the base station through the first receiving beam generated by the first antenna panel, and the direction of the first receiving beam is direction 5 in FIG. 8.
  • the user equipment uses the second antenna panel to generate the second receiving beam, and performs the first interference measurement outside of direction 5.
  • the second receiving beam is located in direction 4 and has a width of 20 degrees. Because the interference direction is in the second receiving beam Within the beam range of, the SINR value obtained by the user equipment demodulating the PDSCH data increases.
  • PDSCH data is usually transmitted through a narrow beam to achieve a higher throughput rate. Therefore, if the user equipment uses a narrow beam to perform interference measurement, more accurate measurement results can be obtained.
  • the adjustment rule for the second receive beam shown in FIG. 15 may be used in combination with the adjustment rule for the second receive beam shown in FIG. 17.
  • the general direction of the interference is first determined by the adjustment rule of the second receiving beam shown in FIG. 15, and then the width of the second receiving beam is further reduced in this direction by the adjustment rule of the second receiving beam shown in FIG.
  • the precise direction of interference improves the accuracy of interference measurement.
  • the user equipment uses the second antenna panel to generate a second receiving beam with a different width from the first receiving beam, thereby not affecting the use of the first receiving beam to receive CSI- RS.
  • the user equipment can continuously adjust the width of the second receiving beam according to the change of the SINR value to achieve precise positioning of each interference direction, thereby improving the accuracy and robustness of interference measurement, and improving the communication quality of the user equipment.
  • FIG. 19 is a flowchart of a second receive beam adjustment rule provided by an embodiment of this application. As shown in FIG. 19, in an embodiment, the adjustment rule of the second receive beam may include the following steps:
  • Step S801 When the CSI-IM and the CSI-RS do not overlap in the time domain, the user equipment determines the number and period of the second receiving beam according to the SINR value. The number and period of the beam are negatively correlated with the SINR value, and the period is the CSI-IM Positive integer multiple of the sending period.
  • CSI-IM and its associated CSI-RS have the same quasi co-location (QCL) relationship, Therefore, the user equipment uses the same receiving beam (that is, the first receiving beam) to receive the CSI-IM and CSI-RS that have an association relationship by default.
  • QCL quasi co-location
  • the user equipment When the user equipment needs to use the second receiving beam to measure CSI-IM, the user equipment first determines the number and period of the second receiving beam according to the SINR value.
  • the larger the SINR value the smaller the interference. Therefore, the number of second receive beams can be smaller and the period can be longer to reduce power consumption; the smaller the SINR value, the greater the interference, so the number of second receive beams can be greater. More, the cycle can be shorter to improve the accuracy of interference measurement.
  • the user equipment may maintain a list containing the corresponding relationship between the SINR value and the second receive beam period (as shown in Table 2), where X is a positive integer greater than or equal to 1, indicating CSI- The period of IM, and the unit of X is slots. Therefore, the user equipment can determine the period of the corresponding second receive beam according to the look-up table of the SINR value, and the period refers to how many time slots the second receive beam is used to perform interference measurement once.
  • the user equipment may maintain a list containing the corresponding relationship between the SINR value and the second received beam number, as shown in Table 3. Therefore, the user equipment can determine the number of corresponding second receive beams according to the SINR value look-up table.
  • Table 2 and Table 3 can also be collected in one list, such as Table 4.
  • SINR(dB) Beam period (slots/slots) Number of beams > 5 10X 1
  • step S802 the user equipment uses the first antenna panel to generate a second receiving beam according to the number and period.
  • the user equipment looks up the table to determine that the number of corresponding beams is 3, and the beam period is 4X slots. Then, if the first receiving beam is located in direction 5 in FIG. 8, the user equipment may select three directions adjacent to direction 5 as optional directions of the second receiving beam, for example: direction 2, direction 4, and direction 8.
  • the user equipment can use the first antenna panel to generate the second receiving beam every 4X slots.
  • the directions of the second receiving beam are direction 2, direction 4, and direction 8, and the width of the second receiving beam can be initially set to 20 degrees, and The adjustment is performed according to the adjustment rule of the second receiving beam shown in FIG. 17 until the SINR is greater than the threshold.
  • the user equipment uses the first antenna panel to generate the second receiving beam without affecting the reception of CSI-RS by the first antenna panel, so there is no need to turn on Other antenna panels help save power consumption of user equipment.
  • FIG. 20 is a flowchart of a method for adjusting a first receive beam provided by an embodiment of the application. This method can be applied after the user equipment uses the second receiving beam to perform interference measurement (that is, after step S203).
  • the method shown in Figure 20 includes the following steps:
  • Step S901 The user equipment determines whether the SINR value continues to decrease within a second preset time or is less than a fourth threshold when receiving PDSCH data using the first receiving beam.
  • the second preset time may be, for example, the time for the user equipment to receive M PDSCH data continuously scheduled by the base station, where M is an integer greater than or equal to 1.
  • the fourth threshold may be determined according to the CQI value estimated by the user equipment, or the fourth threshold may be equal to the second threshold.
  • Step S902 When the SINR value continues to decrease within the second preset time or is less than the fourth threshold, the user equipment determines whether it is configured to send channel state information CSI to the base station within the third preset time.
  • the user equipment when receiving PDSCH data, finds that the SINR within the second preset time has continuously decreased or is always less than the second threshold, the user equipment will determine whether it has not been configured within the third preset time according to RRC Report the CSI to the base station. If it is, it means that the parameters of the first receive beam have not been adjusted in time, which is not conducive to receiving PDSCH data.
  • Step S903 When the user equipment is not configured to send CSI to the base station within the third preset time, the user equipment adjusts the parameters of the first receiving beam.
  • the SINR value of the user equipment and the CSI configuration of the base station to the user equipment determine that when the parameters of the first receive beam are not adjusted in time and are no longer conducive to receiving PDSCH data, the parameters of the first receive beam are adjusted to help the user equipment find slaves. The best receiving beam for the base station to receive PDSCH data.
  • FIG. 21 is a flow chart of the adjustment rule of the first receive beam according to an embodiment of the application. As shown in FIG. 21, in an embodiment, the adjustment rule of the first receive beam may include the following steps:
  • Step S1001 The user equipment changes the direction of the first receiving beam.
  • Step S1002 The user equipment determines whether the SINR value increases.
  • Step S1003 When the SINR value does not increase, the user equipment further changes the direction of the first receiving beam.
  • Steps S1002 and S1003 are cyclically executed until the SINR value increases.
  • step S1001 and step S1003 the user equipment may change the first receiving beam to any adjacent direction.
  • the user equipment cyclically performs step S1002 and step S1003, and continuously changes the direction of the first receiving beam when the SINR does not increase.
  • the user equipment may change the direction of the first receiving beam to direction 2, direction 4, direction 6 and direction Any one of 8. If the direction of the first receive beam is in direction 2, direction 4, direction 6, and direction 8, and the SINR does not increase, the user equipment can continue to change the first receive beam to other directions, such as direction 1 in FIG. 8 , Direction 3, direction 7 and direction 9, make the first receiving beam try to improve the reception quality of PDSCH data in more directions, which is beneficial for the user equipment to find the best receiving beam for receiving PDSCH data from the base station.
  • the user equipment may select one or more historical directions and obtain the user equipment's The historical SINR value corresponding to each historical direction, and then the direction of the first receiving beam is sequentially changed according to the SINR value from large to small.
  • the user equipment cyclically performs step S1002 and step S1003, and continuously changes the direction of the first receiving beam when the SINR does not increase.
  • Table 5 shows the correspondence between historical directions and historical SINR values.
  • the first receiving beam can be changed to direction 5; in step S1003, the first receiving beam can be changed to direction 1, and then Steps S1002 and S1003 are cyclically executed, and the direction of the first receiving beam is continuously changed under the condition that the SINR does not increase.
  • the user equipment can continue to change the first receive beam to other directions according to Table 5, such as direction 2, direction 3, direction 6 and direction 9, make the first receiving beam try to improve the reception quality of PDSCH data in more directions, which is beneficial for the user equipment to find the best receiving beam for receiving PDSCH data from the base station.
  • the SINR value of the user equipment and the CSI configuration of the base station to the user equipment determine that when the parameters of the first receive beam are not adjusted in time and are no longer conducive to receiving PDSCH data, the direction of the first receive beam is adjusted so that the first receive beam is at More attempts to improve the reception quality of PDSCH data will help the user equipment find the best receiving beam for receiving PDSCH data from the base station.
  • FIG. 22 is another flow chart of the adjustment rule of the first receive beam according to an embodiment of the application. As shown in FIG. 22, in an embodiment, the adjustment rule of the first receive beam may include the following steps:
  • Step S1101 The user equipment reduces the width of the first receiving beam.
  • Step S1102 The user equipment determines whether the SINR value increases.
  • Step S1103 When the SINR value increases, the user equipment further reduces the width of the first receive beam.
  • Steps S1102 and S1103 are cyclically executed until the SINR value no longer increases.
  • the width of the first receiving beam may be reduced according to a preset gradient. For example, suppose that the first receiving beam is located in direction 1, the current width is 30 degrees, and the gradient is 5 degrees; then in step S1101, the first receiving beam can be reduced to 25 degrees, and in step S1103, the first receiving beam can be Further reduce to 20 degrees. Then, step S1102 and step S1103 are cyclically executed, so that the width of the first receiving beam is continuously reduced according to the gradient, until the SINR value no longer increases.
  • the user equipment may also determine whether the RSRP of the PDSCH data received by the user equipment has dropped severely (for example, the decrease of RSRP is greater than the preset fifth threshold, It means that the RSRP decline is severe). If the RSRP declines severely, it means that the reduction of the first receive beam width has affected the normal reception of PDSCH data. The first receive beam width should not be reduced. Therefore, when the user equipment finds RSRP The drop is severe, and the first receiving beam adjustment procedure is ended.
  • the RSRP of the PDSCH data received by the user equipment has dropped severely (for example, the decrease of RSRP is greater than the preset fifth threshold, It means that the RSRP decline is severe). If the RSRP declines severely, it means that the reduction of the first receive beam width has affected the normal reception of PDSCH data. The first receive beam width should not be reduced. Therefore, when the user equipment finds RSRP The drop is severe, and the first receiving beam adjustment procedure is ended.
  • the user equipment determines whether the SINR value is increased in step S1102, it may further determine whether the increased value of the SINR is greater than the preset sixth threshold, or further determine the magnitude of the increase in the SINR Is it greater than the seventh threshold. If the increased value of SINR is not greater than the sixth threshold, or the increase of SINR is not greater than the seventh threshold, it means that although the reception quality of PDSCH data has been improved, the improvement is small, and the SINR value is still not high, and the user equipment The width of the first receiving beam needs to be further reduced to continue to increase the SINR value. If the increased value of the SINR is greater than the sixth threshold, or the increase of the SINR is greater than the seventh threshold, it indicates that the reception quality of PDSCH data has been significantly improved, and the first receive beam adjustment process can be ended.
  • the SINR value of the user equipment and the CSI configuration of the base station to the user equipment determine that when the parameters of the first receive beam are not adjusted in time and are no longer conducive to receiving PDSCH data, the width of the first receive beam is adjusted so that the The width is continuously reduced, reducing the reception gain of the first receiving beam in the possible interference direction, thereby helping to improve the quality of PDSCH data received by the user equipment.
  • the user equipment includes hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • FIG. 23 is a schematic structural diagram of a receiving beam adjustment apparatus provided by an embodiment of the application.
  • the user equipment implements corresponding functions through the hardware structure shown in FIG. 23.
  • the receiving beam adjusting device includes: a first antenna panel 1201, a processor 1202, and optionally a second antenna panel 1203.
  • the first antenna panel 1201 and the second antenna panel 1203 are coupled with the processor 1202.
  • the first antenna panel 1201 is used for the generated first receiving beam to receive the channel state information reference signal CSI-RS of the base station.
  • the processor 1202 is configured to obtain beam adjustment reference information, where the beam adjustment reference information includes the path loss between the user equipment and the base station, the signal-to-interference plus noise ratio SINR value obtained by the user equipment receiving base station data, and the device attitude of the user equipment One or more of the parameters.
  • the processor 1202 is further configured to determine whether a second receiving beam needs to be used according to the beam adjustment reference information.
  • the second receiving beam is used to receive the channel state information interference measurement resource CSI-IM, and the parameters of the second receiving beam are the same as those of the first receiving beam.
  • the parameters of the beam are different, and the parameters include at least one of the direction and the width of the beam.
  • the processor 1202 is further configured to use the first antenna panel 1201 or the second antenna panel according to the adjustment rule of the second receiving beam and the time domain configuration of CSI-IM and CSI-RS when it is determined that the second receiving beam needs to be used 1201 generates a second receiving beam.
  • the receiving beam adjustment apparatus when the beam adjustment reference information is in the device attitude parameter, in order to measure the device attitude parameter, the receiving beam adjustment apparatus further includes a sensor module 1204.
  • the sensor module may include, for example, a gyroscope sensor 1204A, used to measure three-axis data of the user equipment; an air pressure sensor 1204B, used to measure the altitude change of the user equipment; an acceleration sensor 1204C and/or a gravity sensor 1204D Used to measure the motion state of user equipment, etc.
  • the device provided in the embodiment of the present application is used to receive the CSI-RS of the base station using the first receiving beam, and the device can obtain beam adjustment reference information, which includes one of path loss, SINR value, and device attitude parameter Or more; then, determine whether it is necessary to use the second receiving beam to receive CSI-IM according to the beam adjustment reference information, wherein the direction and/or width of the second receiving beam is different from the first receiving beam; when it is determined that the second receiving beam is required When beaming, the second receiving beam is generated according to the adjustment rule of the second receiving beam and the time domain configuration of CSI-IM and CSI-RS.
  • beam adjustment reference information which includes one of path loss, SINR value, and device attitude parameter Or more
  • the device can determine whether it is likely to be subjected to interference with a large intensity and not measured according to the beam adjustment reference information, and when it may be subjected to interference with a large intensity and not measured, use the second receiving beam in the first Interference measurement is performed outside the range of the receiving beam, thereby expanding the interference measurement range and improving the accuracy and robustness of the interference measurement.
  • the processor 1202 is configured to determine whether the path loss is greater than the first threshold.
  • the processor 1202 is further configured to determine that the second receiving beam needs to be used when the path loss is greater than the first threshold. Therefore, when the user equipment is located at the edge of the cell, interference from other cell base stations is avoided, but the interference is not measured, the accuracy and robustness of interference measurement are improved, and the communication quality of the user equipment is improved.
  • the processor 1202 is configured to determine whether the SINR value is less than the second threshold.
  • the processor 1202 is further configured to determine that the second receiving beam needs to be used when the SINR value is less than the second threshold.
  • the second threshold is determined according to the average value of the channel quality indicator CQI reported by the device to the base station within the first preset time. Therefore, the device can judge whether the interference measurement is accurate according to the SINR value. If the SINR value is lower than the second threshold, it means that the interference measurement is inaccurate and there may be unmeasured interference. Therefore, it is determined to use the second receiving beam to increase the interference. The accuracy and robustness of measurement improves the communication quality of user equipment.
  • the processor 1202 is configured to determine whether the change value of the device posture parameter is greater than the third threshold.
  • the processor 1202 is further configured to determine that the second receiving beam needs to be used when the change value of the device attitude parameter is greater than the third threshold. Therefore, the device can judge whether the position, angle or height of the user equipment has changed greatly according to the device attitude parameters. If there is a large change, it indicates the interference situation of the user equipment and the accuracy of the interference measurement may occur. Therefore, it is determined that the second receiving beam needs to be used so that the user equipment can still accurately perform interference measurement after the position, angle, or height changes, and ensure the communication quality of the user equipment.
  • the processor 1202 is configured to use the second antenna panel 1201 to generate a second receiving beam when the CSI-IM and CSI-RS have at least one symbol overlap in the time domain.
  • the direction of the beam is different from the direction of the first receiving beam.
  • the processor 1202 is also used for whether the SINR value is increased.
  • the processor 1202 is further configured to change the direction of the second receiving beam when the SINR value does not increase. Therefore, when CSI-IM and CSI-RS have at least one symbol overlap in the time domain, the device uses the second antenna panel 1201 to generate a second receiving beam with a direction different from the first receiving beam, so that the use of the A receiving beam receives CSI-RS.
  • the device can continuously adjust the direction of the second receiving beam according to the change of the SINR value to find the best direction for interference measurement, thereby improving the accuracy and robustness of interference measurement, and improving the communication quality of the user equipment.
  • the processor 1202 is configured to use the second antenna panel 1201 to generate a second receiving beam when the CSI-IM and CSI-RS have at least one symbol overlap in the time domain.
  • the width of the beam is different from the width of the first receiving beam.
  • the processor 1202 is also configured to determine whether the SINR value increases.
  • the processor 1202 is further configured to reduce the width of the second receiving beam when the SINR value increases. Therefore, when the CSI-IM and CSI-RS have at least one symbol overlap in the time domain, the device uses the second antenna panel 1201 to generate a second receiving beam with a different width from the first receiving beam, so that the use of the second antenna is not affected.
  • a receiving beam receives CSI-RS.
  • the device can continuously adjust the width of the second receiving beam according to the change of the SINR value to realize precise positioning of each interference direction, thereby improving the accuracy and robustness of interference measurement, and improving the communication quality of the user equipment.
  • the processor 1202 is configured to determine the number and period of the second receive beam according to the SINR value when the CSI-IM and the CSI-RS do not overlap in the time domain, and the number and period and the SINR value Negative correlation, the period is a positive integer multiple of the CSI-IM transmission period.
  • the processor 1202 is further configured to use the first antenna panel to generate a second receiving beam according to the number and period. Therefore, when CSI-IM and CSI-RS do not overlap in the time domain, the device uses the first antenna panel 1201 to generate the second receive beam without affecting the use of the first receive beam to receive CSI-RS, thereby No need to open other antenna panels, which helps to save power consumption.
  • the processor 1202 is configured to determine whether the SINR value continues to decrease within the second preset time or is less than the fourth threshold.
  • the processor 1202 is further configured to determine whether the apparatus is configured to send channel state information CSI to the base station within the third preset time when the SINR value continues to decrease within the second preset time or is less than the fourth threshold.
  • the processor 1202 is further configured to adjust the parameters of the first receive beam according to the adjustment rule of the first receive beam when the apparatus is not configured to send CSI to the base station within the third preset time.
  • the device determines according to the SINR value and the CSI configuration that when the parameters of the first receive beam are not adjusted in time and are no longer conducive to receiving PDSCH data, adjust the parameters of the first receive beam to facilitate the user equipment to find the PDSCH data received from the base station The best receiving beam.
  • the processor 1202 is configured to change the direction of the first receiving beam.
  • the processor 1202 is also configured to determine whether the SINR value increases.
  • the processor 1202 is further configured to further change the direction of the first receiving beam when the SINR value does not increase. Therefore, the device determines according to the SINR value and the CSI configuration that when the parameters of the first receive beam are not adjusted in time and are no longer conducive to receiving PDSCH data, adjust the direction of the first receive beam to make the first receive beam try in more directions Improving the reception quality of PDSCH data helps the user equipment find the best receiving beam for receiving PDSCH data from the base station.
  • the processor 1202 is configured to reduce the width of the first receiving beam.
  • the processor 1202 is also configured to determine whether the SINR value increases.
  • the processor 1202 is further configured to further reduce the width of the first receiving beam when the SINR value increases. Therefore, the device determines according to the SINR value and the CSI configuration that when the parameters of the first receive beam are not adjusted in time and are no longer conducive to receiving PDSCH data, the device adjusts the width of the first receive beam so that the width of the first receive beam is continuously reduced , Reduce the receiving gain in the possible interference direction, thereby helping to improve the quality of the PDSCH data received by the user equipment.
  • the processor 1202 is further configured to use the first antenna panel 1201 or the second antenna panel 1201 to generate the first antenna panel 1201 or the second antenna panel 1201 before each time when the base station transmits CSI-IM according to the time domain configuration of CSI-IM 2. Receiving beam. Therefore, there is no need to always turn on the second antenna panel 1201, which is beneficial to save power consumption.
  • FIG. 24 is a schematic structural diagram of another receiving beam adjustment apparatus provided by an embodiment of this application.
  • the user equipment implements corresponding functions through the software module shown in FIG. 24, and the receiving beam adjustment apparatus includes:
  • the obtaining module 1301 is configured to obtain beam adjustment reference information.
  • the determining module 1302 is configured to determine whether a second receiving beam needs to be used according to the beam adjustment reference information, the second receiving beam is used to receive channel state information interference measurement resource CSI-IM, and the parameters of the second receiving beam are the same as those of the first receiving beam The parameters are different, and the parameters include at least one of the direction and width of the beam.
  • the execution module 1303 is configured to use the first antenna panel or the second antenna panel to generate the first antenna panel or the second antenna panel according to the adjustment rule of the second receiving beam and the time domain configuration of CSI-IM and CSI-RS when it is determined that the second receiving beam needs to be used. 2.
  • the beam adjustment reference information includes one or more of the path loss between the user equipment and the base station, the signal-to-interference plus noise ratio SINR value obtained by the user equipment receiving the base station data, and the device posture parameters of the user equipment.
  • the device provided by the embodiment of the present application is used to receive the CSI-RS of the base station by using the first receiving beam, and the device can obtain beam adjustment reference information.
  • the beam adjustment reference information includes one or one of path loss, SINR value, and device attitude parameter. Multiple; then, determine whether it is necessary to use the second receiving beam to receive CSI-IM according to the beam adjustment reference information, where the direction and/or width of the second receiving beam are different from the first receiving beam; when it is determined that the second receiving beam needs to be used At this time, the second receiving beam is generated according to the adjustment rule of the second receiving beam and the time domain configuration of CSI-IM and CSI-RS.
  • the device can determine whether it is likely to be subjected to interference with a large intensity and not measured according to the beam adjustment reference information, and when it may be subjected to interference with a large intensity and not measured, use the second receiving beam in the first Interference measurement is performed outside the range of the receiving beam, thereby expanding the interference measurement range and improving the accuracy and robustness of the interference measurement.
  • the embodiment of the present application also provides a computer-readable storage medium 1401, and the computer-readable storage medium 1401 stores instructions, which when run on a computer, causes the computer to execute the methods of the above aspects.
  • the embodiments of the present application also provide a computer program product containing instructions, which when run on a computer, cause the computer to execute the methods of the above aspects.
  • FIG. 26 is a schematic structural diagram of the chip system.
  • the chip system includes a processor 1501, which is used to support the foregoing device to implement the functions involved in the foregoing aspects, for example, to generate or process the information involved in the foregoing method.
  • the chip system further includes a memory 1502 for storing program instructions and data necessary for the receiving beam adjustment device.
  • the chip system can be composed of chips, or include chips and other discrete devices.
  • the controller/processor used to execute the above-mentioned receiving beam adjustment device of the embodiment of the present application may be a central processing unit (CPU), a general-purpose processor, an application processor (AP), a modem processor, and a controller, Digital signal processor (digital signal processor, DSP), baseband processor, neural network processor (neural-network processing unit, NPU), application specific integrated circuit (ASIC), field programmable gate array (FPGA) or other programmable logic Devices, transistor logic devices, hardware components or any combination thereof. It can implement or execute various exemplary logical blocks, modules and circuits described in conjunction with the disclosure of this application.
  • the processor may also be a combination of computing functions, for example, a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and so on.
  • the steps of the method or algorithm described in combination with the disclosure of the present application may be implemented in a hardware manner, or may be implemented in a manner in which a processor executes software instructions.
  • Software instructions can be composed of corresponding software modules, which can be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, mobile hard disk, CD-ROM or any other form of storage known in the art Medium.
  • An exemplary storage medium is coupled to the processor, so that the processor can read information from the storage medium and can write information to the storage medium.
  • the storage medium may also be an integral part of the processor.
  • the processor and the storage medium may be located in the ASIC.
  • the ASIC may be located in the wireless access network device.
  • the processor and the storage medium may also exist as discrete components in the user equipment.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present invention are generated in whole or in part.
  • the computer can be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • Computer instructions can be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • computer instructions can be transmitted from a website, computer, server, or data center through a cable (such as Coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means to transmit to another website, computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种接收波束调整方法及装置。其中,用户设备用于使用第一接收波束接收基站的CSI-RS,用户设备能够获取波束调整参考信息,波束调整参考信息包括路径损耗、SINR值和设备姿态参数中的一个或多个;然后,用户设备根据波束调整参考信息判断是否需要使用第二接收波束接收CSI-IM,第二接收波束的方向和/或宽度与第一接收波束不同;当用户设备确定需要使用第二接收波束时,根据第二接收波束的调整规则,以及CSI-IM和CSI-RS的时域配置产生第二接收波束。由此,用户设备可以判断自身是否可能受到了强度较大并且未被测量到的干扰,并使用第二接收波束在第一接收波束范围之外进行干扰测量,从而扩大干扰测量范围,提高干扰测量的准确性和鲁棒性。

Description

一种接收波束调整方法及装置
本申请要求在2019年5月27日提交中国国家知识产权局、申请号为201910444810.9的中国专利申请的优先权,发明名称为“一种接收波束调整方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种接收波束调整方法及装置。
背景技术
第五代移动通信技术(5th generation mobile networks,5G)新空口(new radio,NR)的FR2频段(高于6GHz)与低频段相比具有更高数据吞吐能力,具有广泛的应用前景。在FR2频段上,由于无线电波的频率较高,信号衰减剧烈,因此为了提高通信质量,基站和用户设备(user equipment,UE)利用波束赋形(beamforming)技术产生的定向波束进行通信。在这种通信方式下,区别于低频段中的大范围全向波束,基站的无线电波束会集中在一个覆盖范围小的方向上,UE也会使用定向的接收波束接收基站的信号。
在高频段场景中,由于UE使用定向波束接收基站的信号,因此UE只能接收到固定方向上的干扰,从而导致UE进行干扰测量的准确性不高,无法准确反应UE受到干扰的实际情况,导致UE和基站无法及时根据干扰的实际情况做出调整,降低整个通信系统的鲁棒性。
发明内容
本申请提供了一种接收波束调整方法及装置,可以提高用户设备测量干扰的准确性和鲁棒性。
第一方面,本申请提供了一种接收波束调整方法。该方法应用于用户设备。其中,用户设备使用第一天线面板产生的第一接收波束接收基站的信道状态信息参考信号(channel state information reference,CSI-RS),该方法包括:用户设备获取波束调整参考信息;用户设备根据波束调整参考信息确定是否需要使用第二接收波束,第二接收波束用于接收信道状态信息干扰测量资源CSI-IM,且,第二接收波束的参数与第一接收波束的参数不同,参数包括波束的方向和宽度的至少一个;当用户设备确定需要使用第二接收波束时,根据第二接收波束的调整规则,以及CSI-IM和CSI-RS的时域配置产生第二接收波束;其中,波束调整参考信息包括用户设备与基站之间的路径损耗、用户设备接收基站数据获取的信号与干扰加噪声比SINR值和用户设备的设备姿态参数中的一个或多个。
本申请提供的方法,用户设备用于使用第一接收波束接收基站的CSI-RS,用户设备能够获取波束调整参考信息,波束调整参考信息包括路径损耗、SINR值和设备姿态参数中的一个或多个;然后,用户设备根据波束调整参考信息判断是否需要使用第二接收波束接收CSI-IM,其中,第二接收波束的方向和/或宽度与第一接收波束不同;当用户设备确定需要使用第二接收波束时,根据第二接收波束的调整规则,以及CSI-IM和CSI-RS的时域配置产生第二接收波束。由此,用户设备可以根据波束调整参考信息判断自身是否可能受到了强度较大并且未被测量到的干扰,并在自身可能受到强度较大并且未被测量到的干扰时,使用第二接收波束 在第一接收波束范围之外进行干扰测量,从而扩大干扰测量范围,提高干扰测量的准确性和鲁棒性。
在一种可选择的实现方式中,用户设备确定路径损耗是否大于第一阈值;当路径损耗大于第一阈值时,用户设备确定需要使用第二接收波束。由此,用户设备可以根据路径损耗判断是否位于小区边缘,如果位于小区边缘,则用户设备确定使用第二接收波束。从而,避免当用户设备位于小区边缘时,受到其他小区基站的干扰,却没有测量到这些干扰的情况发生,提高干扰测量的准确性和鲁棒性,改善用户设备的通信质量。
在一种可选择的实施方式中,用户设备确定SINR值是否小于第二阈值;当SINR值小于第二阈值时,用户设备确定需要使用第二接收波束;其中,第二阈值根据用户设备在第一预设时间内向基站上报的信道质量指示CQI的平均值确定。由此,用户设备可以根据SINR值判断干扰测量是否准确,如果SINR值低于第二阈值,说明干扰测量不准确,可能存在未被测量到的干扰,因此确定使用第二接收波束,从而提高干扰测量的准确性和鲁棒性,改善用户设备的通信质量。
在一种可选择的实施方式中,用户设备确定设备姿态参数的变化值是否大于第三阈值;当设备姿态参数的变化值大于第三阈值时,用户设备确定需要使用第二接收波束。由此,用户设备可以根据设备姿态参数判断用户设备的位置、角度或高度等是否发生了很大变化,如果发生很大变化,则说明用户设备的受到的干扰情况以及干扰测量的准确性可能发生变化,因此确定需要使用第二接收波束。从而,使用户设备在位置、角度或高度等发生变化之后,依然能够准确地进行干扰测量,保证用户设备的通信质量。
在一种可选择的实施方式中,当CSI-IM和CSI-RS在时域上至少具有一个符号的重叠时,用户设备使用第二天线面板产生第二接收波束,第二接收波束的方向与第一接收波束的方向不同;用户设备判断SINR值是否增大;当SINR值不增大时,用户设备改变第二接收波束的方向。由此,当CSI-IM和CSI-RS在时域上至少具有一个符号的重叠时,用户设备使用第二天线面板产生与第一接收波束方向不同的第二接收波束,从而不影响使用第一接收波束接收CSI-RS。并且,用户设备能够根据SINR值的变化不断调整第二接收波束的方向,找到干扰测量的最佳方向,从而提高干扰测量的准确性和鲁棒性,改善用户设备的通信质量。
在一种可选择的实施方式中,当CSI-IM和CSI-RS在时域上至少具有一个符号的重叠时,用户设备使用第二天线面板产生第二接收波束,第二接收波束的宽度与第一接收波束的宽度不同;用户设备判断SINR值是否增大;当SINR值增大时,用户设备减小第二接收波束的宽度。由此,当CSI-IM和CSI-RS在时域上至少具有一个符号的重叠时,用户设备使用第二天线面板产生与第一接收波束宽度不同的第二接收波束,从而不影响使用第一接收波束接收CSI-RS。并且,用户设备能够根据SINR值的变化不断调整第二接收波束的宽度,实现对各干扰方向的精确定位,从而提高干扰测量的准确性和鲁棒性,改善用户设备的通信质量。
在一种可选择的实施方式中,当CSI-IM和CSI-RS在时域上不重叠时,用户设备根据SINR值确定第二接收波束的数量和周期,数量和周期与SINR值负相关,周期为CSI-IM的发送周期的正整数倍;用户设备根据数量和周期,使用第一天线面板产生第二接收波束。由此,当CSI-IM和CSI-RS在时域上不重叠时,用户设备在不影响使用第一接收波束接收CSI-RS的前提下,使用第一天线面板产生第二接收波束,从而无需开启其他天线面板,有利于节省用户设备的功耗。
在一种可选择的实施方式中,用户设备判断SINR值在第二预设时间内是否持续下降或者小于第四阈值;当SINR值在第二预设时间内持续下降或者小于第四阈值时,用户设备判 断自身在第三预设时间内是否被配置向基站发送信道状态信息CSI;当用户设备在第三预设时间内未被配置向基站发送CSI时,用户设备根据第一接收波束的调整规则调整第一接收波束的参数。由此,用户设备根据SINR值和CSI配置确定当第一接收波束的参数没有得到及时调整,已经不利于接收PDSCH数据时,调整第一接收波束的参数,有利于用户设备找到从基站接收PDSCH数据的最佳接收波束。
在一种可选择的实施方式中,用户设备改变第一接收波束的方向;用户设备判断SINR值是否增大;当SINR值不增大时,用户设备进一步改变第一接收波束的方向。由此,用户设备根据SINR值和CSI配置确定当第一接收波束的参数没有得到及时调整,已经不利于接收PDSCH数据时,调整第一接收波束的方向,使第一接收波束在更多方向尝试改善PDSCH数据的接收质量,有利于用户设备找到从基站接收PDSCH数据的最佳接收波束。
在一种可选择的实施方式中,用户设备减小第一接收波束的宽度;用户设备判断SINR值是否增大;当SINR值增大时,用户设备进一步减小第一接收波束的宽度。由此,用户设备根据SINR值和CSI配置确定当第一接收波束的参数没有得到及时调整,已经不利于接收PDSCH数据时,调整第一接收波束的宽度,使第一接收波束的宽度不断减小,降低第一接收波束在可能的干扰方向上的接收增益,从而有利于提升用户设备接收PDSCH数据的质量。
在一种可选择的实施方式中,用户设备根据CSI-IM的时域配置,在基站每次发送CSI-IM的时刻之前产生第二接收波束。由此,用户设备无需始终开启第二天线面板,有利于节省功耗。
第二方面,本申请还提供了一种接收波束调整装置。该接收波束调整装置具有实现上述用户设备行为的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,上述接收波束调整装置包括第一天线面板和处理器,可选包括第二天线面板。第一天线面板,用于产生的第一接收波束接收基站的信道状态信息参考信号CSI-RS。处理器,用于获取波束调整参考信息。处理器,还用于根据波束调整参考信息确定是否需要使用第二接收波束,第二接收波束用于接收信道状态信息干扰测量资源CSI-IM,且,第二接收波束的参数与第一接收波束的参数不同,参数包括波束的方向和宽度的至少一个。处理器,还用于当确定需要使用第二接收波束时,根据第二接收波束的调整规则,以及CSI-IM和CSI-RS的时域配置,使用第一天线面板或第二天线面板产生第二接收波束。其中,波束调整参考信息包括用户设备与基站之间的路径损耗、用户设备接收基站数据获取的信号与干扰加噪声比SINR值和用户设备的设备姿态参数中的一个或多个。
本申请提供的装置,用于使用第一接收波束接收基站的CSI-RS,并且该装置能够获取波束调整参考信息,波束调整参考信息包括路径损耗、SINR值和设备姿态参数中的一个或多个;然后,根据波束调整参考信息判断是否需要使用第二接收波束接收CSI-IM,其中,第二接收波束的方向和/或宽度与第一接收波束不同;当确定需要使用第二接收波束时,根据第二接收波束的调整规则,以及CSI-IM和CSI-RS的时域配置产生第二接收波束。由此,该装置可以根据波束调整参考信息判断是否可能受到了强度较大并且未被测量到的干扰,并在可能受到强度较大并且未被测量到的干扰时,使用第二接收波束在第一接收波束范围之外进行干扰测量,从而扩大干扰测量范围,提高干扰测量的准确性和鲁棒性。
第三方面,本申请还提供了一种通信系统。该通信系统包括用户设备和基站。其中,用户设备使用第一天线面板产生的第一接收波束接收基站发送的信道状态信息参考信号CSI-RS。用户设备还用于获取波束调整参考信息;以及,根据波束调整参考信息确定是否需 要使用第二接收波束,第二接收波束用于接收信道状态信息干扰测量资源CSI-IM,且,第二接收波束的参数与第一接收波束的参数不同,参数包括波束的方向和宽度的至少一个;以及,当确定需要使用第二接收波束时,根据第二接收波束的调整规则,以及CSI-IM和CSI-RS的时域配置产生第二接收波束。
本申请提供的通信系统,用户设备用于使用第一接收波束接收基站的CSI-RS,用户设备能够获取波束调整参考信息,波束调整参考信息包括路径损耗、SINR值和设备姿态参数中的一个或多个;然后,根据波束调整参考信息判断是否需要使用第二接收波束接收CSI-IM,其中,第二接收波束的方向和/或宽度与第一接收波束不同;当确定需要使用第二接收波束时,根据第二接收波束的调整规则,以及CSI-IM和CSI-RS的时域配置产生第二接收波束。由此,用户设备可以根据波束调整参考信息判断是否可能受到了强度较大并且未被测量到的干扰,并在可能受到强度较大并且未被测量到的干扰时,使用第二接收波束在第一接收波束范围之外进行干扰测量,从而扩大干扰测量范围,提高干扰测量的准确性和鲁棒性。
第四方面,本申请还提供一种计算机可读存储介质,计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面的方法。
第五方面,本申请还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面的方法。
第六方面,本申请还提供了一种芯片系统,该芯片系统包括存储器和处理器,存储器存储有指令,处理器用于执行指令,以支持上述装置或系统实现上述方面中所涉及的功能,例如,生成或处理上述方法中所涉及的信息。
附图说明
图1是5G NR在FR2频段的一种基站部署场景图;
图2是5G NR在FR2频段的UE邻区干扰的示意图;
图3为5G NR中的波束追踪示意图;
图4示出了用户设备100的结构示意图;
图5为本申请实施例提供的接收波束调整方法的流程图;
图6为CSI-RS和CSI-IM的时域配置示意图;
图7为接收波束的宽度示意图;
图8为接收波束的方向示意图;
图9为CSI-RS和CSI-IM的时域配重叠意图;
图10为第一天线面板周期性产生第二接收波束的示意图;
图11为本申请实施例提供的调整第二接收波束的方法流程图;
图12为本申请实施例提供的一种接收波束调整方法步骤S202的流程图;
图13为本申请实施例提供的一种接收波束调整方法步骤S202的流程图;
图14为本申请实施例提供的一种接收波束调整方法步骤S202的流程图;
图15为本申请实施例提供的一种第二接收波束的调整规则的流程图;
图16为调整第二接收波束的一个示例图;
图17为本申请实施例提供的一种第二接收波束的调整规则的流程图;
图18是调整第二接收波束的一个示例图;
图19为本申请实施例提供的一种第二接收波束的调整规则的流程图;
图20为本申请实施例提供的调整第一接收波束的方法流程图;
图21为本申请实施例提供的第一接收波束的调整规则的一种流程图;
图22为本申请实施例提供的第一接收波束的调整规则的另一种流程图;
图23为本申请实施例提供的一种接收波束调整装置的结构示意图;
图24为本申请实施例提供的另一种接收波束调整装置的结构示意图;
图25为本申请实施例提供的计算机可读存储介质的示意图。
图26为本申请实施例提供的芯片系统的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述。在本申请的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,在本申请的描述中,“多个”是指两个或两个以上。
5G NR的FR2频段(高于6GHz)与低频段相比具有更高数据吞吐能力,具有广泛的应用前景。在FR2频段上,由于无线电波的频率较高,信号衰减剧烈,因此为了提高通信质量,基站和UE利用波束赋形技术产生的定向波束进行通信。在这种通信方式下,区别于低频段中的大范围全向波束,基站的无线电波束会集中在一个覆盖范围小的方向上,UE也会使用定向的接收波束接收基站的信号。
图1是5G NR在FR2频段的一种基站部署场景图。如图1所示,当在商场、写字楼等结构复杂的建筑物内进行FR2频段的基站部署时,由于FR2频段的无线电波频率较高,信号穿透能力弱,因此基站的小区(cell)覆盖范围较小,通常需要通过基站的密集部署以实现较好的网络覆盖。在基站密集部署的场景中,位于小区边缘的UE接收到相邻小区基站的定向波束的概率增大,因此容易受到相邻小区的信号干扰,并且,由于定向波束通常具有较高的增益,这种干扰对于UE而言很可能是强干扰,因此在目前的5G NR FR2频段密集组网场景中,位于小区边缘的UE的所在小区基站的通信质量会因干扰而受到很大影响。
图2是5G NR在FR2频段的UE邻区干扰的示意图。如图2所示,UE1位于gNB1的小区内,与gNB1通过定向的接收波束1和发送波束1建立通信,基站gNB2和基站gNB3是其他小区的基站;当UE1位于gNB1的小区边缘时,UE1可能同时还位于gNB2和gNB3的小区覆盖范围内,因此,UE1可能会接收到gNB2和gNB3的发送波束2和发送波束3,而受到gNB2和gNB3的干扰;当UE1位于商场、车站等基站和UE数量较多的密集部署场景中时,受到的干扰会更严重。
为了使UE对干扰状况进行估算测量,基站会给UE配置用于干扰测量的时频资源,例如:信道状态信息干扰测量资源(channel state information-interference measurement,CSI-IM)。在CSI-IM上,基站不会向该UE发送任何信息,因此UE在CSI-IM接收到的信息即可视为邻区干扰。
在5G NR高频场景中,各类信号的发送/接收都会具有一个传输配置指示(transmission configuration indication,TCI),表示所发送的信号之间的准共址(quasi co-location,QCL)关系,可以用于指示UE的下行接收或上行发送时的波束情况。因此,当UE获取该TCI指示时,即可知道在接收该信号时,应该采用何种接收波束或发送波束。
在5G NR中,每一个CSI-IM都会与一个CSI-RS信号互相绑定,同时,在3GPP TS 38.214中规定,对于CSI-IM而言,它和与其绑定的CSI-RS具有相同的QCL关系。例如:如果CSI-RS #1与同步信息块(synchronization signal block,SSB)SSB#1具有QCL关系,则与其绑定的CSI-IM#1也具有与SSB#1的QCL关系。也就是说,当测量CSI-IM#1时,采用的接收波束是接收CSI-RS#1的接收波束。
可见,由于目前采用与CSI-RS相同的接收波束测量CSI-IM,因此测量干扰时只在接收CSI-RS的方向上进行干扰测量,导致干扰测量的鲁棒性降低,无法测量到接收CSI-RS方向之外的干扰。当UE发生旋转等姿态变动,或邻区基站调度到与该UE方向基本相同的邻区UE时,可能导致邻区干扰突然增大,从而可能引起解调失败等情况。
目前,基站可以给UE配置干扰测量时的接收方式,包括采用何种接收波束、接收波束的极化方式、接收波束使用的天线面板情况。在进行干扰测量时,基站通过信令指示UE采用的干扰测量接收方式。在这种方式中,接收方式预先配置好,且只涉及单波束的测量。
例如,基站预先为UE配置了表2中的接收方式。当测量CSI-IM#1或CSI-IM#2时,基站会指示UE采用序号1、序号2还是序号3的接收方式,UE按照指示使用相应的接收波束、极化方式和接收面板。
序号 测量资源 接收波束 极化方式 接收面板
1 CSI-IM#1 波束1 双极化 面板1
2 CSI-IM#1 波束2 单极化 面板1
3 CSI-IM#2 波束2 双极化 面板2
表1基站为UE配置的CSI-IM接收方式
在上述方案中,虽然UE可以具有多种干扰测量时的接收方式,但这些接收方式均通过基站进行预配置,且通过静态或动态信令进行指示,导致UE可以采用的方式较为固定,不够灵活,不能很好地解决现有技术中存在的问题。
在5G NR高频场景中,基站和UE首先需要通过波束训练,获取双方通信中的最佳波束。在波束训练时,基站在一系列参考信号中使用相同或不同的波束,UE在接收这些参考信号时也采用相同或不同的接收波束,测量得到最佳的通信波束对,从而来实现波束训练的过程。在UE移动或姿态变化时,最佳的接收波束也可能随时发生变化,因此,现有技术可以通过通过借助波束跟踪技术,来获取当前UE最佳的接收波束。
波束跟踪可以通过参考信号(一般是CSI-RS)或传感器辅助的方式来实现。在接收CSI-RS的过程中,UE根据使用的接收波束情况,通过实时测量或预测的方法,获取当前应该使用的接收波束,例如测量得到RSRP最大的接收波束。利用传感器辅助时,UE通过当前传感器的变化情况和使用的接收波束,获取在变化后,应该采用的最佳波束。如图3所示,传感器变化后,UE根据当前的姿态,预测应该采用的接收波束。
上述方案中,UE需要通过CSI-RS或传感器的变化来实现波束跟踪。然而,在接收下行物理共享信道(physical downlink shared channel,PDSCH)数据时,很可能不具有CSI-RS,导致UE无法利用CSI-RS的测量结果来获取接收波束。另外,有可能当前UE的姿态未发生变化,但邻小区突然在该方向上进行了数据调度,造成干扰增大的情况,但此时无法通过传感器辅助的方法来得到最佳接收波束。
由此可见,在5G NR高频场景中,现有技术无法有效地使用接收波束进行干扰测量,也无法在UE受到的干扰发生变化时,对接收波束做出及时且有效地调整,导致UE进行干扰测量的准确性不高,无法准确反应UE受到干扰的实际情况,降低了整个通信系统的鲁棒性。
为了解决现有技术存在的问题,本申请实施例提供了一种接收波束调整方法。该方法可 应用于用户设备,其中,用户设备与基站通过定向的接收波束和发送波束进行数据传输。
图4示出了用户设备100的结构示意图。
用户设备100可以包括处理器110,存储器120,天线130,移动通信模块140和传感器模块150。其中,处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。传感器模块150可以包括陀螺仪传感器150A,气压传感器150B,磁传感器150C,加速度传感器150D、重力传感器150E等。
处理器110中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器110中的存储器为高速缓冲存储器。该存储器可以保存处理器110刚用过或循环使用的指令或数据。如果处理器110需要再次使用该指令或数据,可从存储器中直接调用。避免了重复存取,减少了处理器110的等待时间,因而提高了系统的效率。
用户设备100的无线通信功能可以通过天线130,移动通信模块140,调制解调处理器以及基带处理器等实现。其中,天线130包括至少一个天线面板,每个天线面板均可用于发射和接收电磁波信号,天线130可用于覆盖单个或多个通信频带。在另外一些实施例中,天线103可以和调谐开关结合使用。
移动通信模块140可以提供应用在用户设备100上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块140可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块140可以由天线130接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块140还可以对经调制解调处理器调制后的信号放大,经天线130转为电磁波辐射出去。在一些实施例中,移动通信模块140的至少部分功能模块可以被设置于处理器110中。在一些实施例中,移动通信模块140的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。
调制解调处理器可以包括调制器和解调器。其中,调制器用于将待发送的低频基带信号调制成中高频信号。解调器用于将接收的电磁波信号解调为低频基带信号。随后解调器将解调得到的低频基带信号传送至基带处理器处理。低频基带信号经基带处理器处理后,被传递给应用处理器。应用处理器通过音频设备输出声音信号,或通过显示屏显示图像或视频。在一些实施例中,调制解调处理器可以是独立的器件。在另一些实施例中,调制解调处理器可以独立于处理器110,与移动通信模块140或其他功能模块设置在同一个器件中。
在一些实施例中,用户设备100的天线130和移动通信模块140耦合,使得用户设备100可以通过无线通信技术与网络以及其他设备通信。无线通信技术可以包括第五代移动通信技术新空口(5th generation mobile networks new radio,5G NR),全球移动通讯系统(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进技术(long term evolution,LTE)等。
存储器120可以用于存储计算机可执行程序代码,可执行程序代码包括指令。存储器120可以包括存储程序区和存储数据区。其中,存储程序区可存储操作系统,至少一个功能所需 的应用程序(比如声音播放功能,图像播放功能等)等。存储数据区可存储用户设备100使用过程中所创建的数据(比如音频数据,电话本等)等。此外,存储器120可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。处理器110通过运行存储在存储器120的指令,和/或存储在设置于处理器中的存储器的指令,执行用户设备100的各种功能应用以及数据处理。
陀螺仪传感器150A可以用于确定用户设备100的运动姿态。在一些实施例中,可以通过陀螺仪传感器150A确定用户设备100围绕三个轴(即,x,y和z轴)的角速度。陀螺仪传感器150A可以用于拍摄防抖。示例性的,当按下快门,陀螺仪传感器150A检测用户设备100抖动的角度,根据角度计算出镜头模组需要补偿的距离,让镜头通过反向运动抵消用户设备100的抖动,实现防抖。陀螺仪传感器150A还可以用于导航,体感游戏场景。
气压传感器150B用于测量气压。在一些实施例中,用户设备100通过气压传感器180C测得的气压值计算海拔高度,辅助定位和导航。
加速度传感器150D可检测用户设备100在各个方向上(一般为三轴)加速度的大小。当用户设备100静止时可检测出重力的大小及方向。还可以用于识别用户设备姿态,应用于横竖屏切换,计步器等应用。
可以理解的是,本申请实施例示意的结构并不构成对用户设备100的具体限定。在本申请另一些实施例中,用户设备100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
本申请中的基站可以包括5G基站(next generation-node,gNB)和演进型基站(evolved node b,eNB)等。其中,gNB和/或eNB可以通过独立组网(SA)和非独立组网(NSA)的方式组建NR网络,包括低频段(FR1)和高频段(FR2)等。
图5为本申请实施例提供的接收波束调整方法的流程图。如图5所示,本申请实施例的接收波束调整方法包括以下步骤:
步骤S101,用户设备根据一段时间内所处的位置、历史干扰统计情况或者设备姿态,确定是否需要使用多个接收波束进行干扰测量。
作为一种可选择的实施方式,用户设备可以根据测量的路径损耗(path loss)确定自身与基站的相对位置,如果测量的路径损耗大于一定的阈值,则说明用户设备距离小区中心较远,可能位于小区的边缘并受到其他小区的不同方向的信号干扰。在这种情况下,用户设备需要使用多个接收波束进行干扰测量。
作为一种可选择的实施方式,用户设备判断如果在一段时间内向基站上报的信道质量指示(chanel quality indicator,CQI值)比较高(例如高于一定阈值),但是在下行物理共享信道(physical downlink shared channel,PDSCH)接收和解调数据的信干噪比(signal to interference and noise ratio,SINR值)较低(例如低于一定阈值),或者在一段持续的时间内解调失败,则认为用户设备受到的干扰严重,需要使用多个接收波束进行干扰测量。
作为一种可选择的实施方式,用户设备可以根据传感器模块的参数变化确定是否使用多个接收波束进行干扰测量。例如,用户设备判断陀螺仪传感器的三轴数据变化幅度是否大于一定阈值,如果大于一定阈值,则说明用户设备的姿态发生剧烈变化,需要使用多个接收波束进行干扰测量。又例如,用户设备判断重力传感器/气压传感器数据变化幅度是否大于一定阈值,如果大于一定阈值,则说明用户设备所处的海拔高度发生很大变化(例如:用户手持用户设备搭乘电梯上下楼等),需要使用多个接收波束进行干扰测量。又例如,用户设备判断 加速度传感器数据是否大于一定阈值,如果大于一定阈值,说明用户设备正在从相对静止变为高速运动,需要使用多个接收波束进行干扰测量。
需要补充说明的是,用户设备的接收波束通常是采用波束赋形产生的模拟波束,因此,用户设备的每个天线面板在同一时刻只能产生一个接收波束。那么,当用户设备使用多个接收波束进行干扰测量时,可以通过分时复用的方式使用同一个天线面板在不同时刻产生不同的接收波束;或者,在用户设备具有多个天线面板的情况下,由不同的天线面板同时分别产生不同的接收波束进行干扰测量。
本申请实施例中,分别以第一天线面板、第二天线面板等表示不同的天线面板,分别以第一接收波束、第二接收波束等表示不同的接收波束,以便于区分。用户设备在未使用多个接收波束进行干扰测量时,使用第一接收波束接收基站数据,第一接收波束由第一天线面板产生。
步骤S102,当用户设备确定需要使用多个接收波束进行干扰测量时,判断基站配置的CSI-RS和CSI-IM是否有时域重叠。
其中,CSI-RS和CSI-IM的时域配置是由基站的通过无线资源控制信令(radio resource control,RRC)配置的。图6为CSI-RS和CSI-IM的时域配置示意图。如图6所示,这两种资源在时域上可能是重叠的,也可能是不重叠的。
步骤S103,当基站配置的CSI-RS和CSI-IM有至少一个符号的时域重叠时,用户设备使用第二天线面板产生第二接收波束。
在NR、LTE等通信系统中,用户设备向基站上报的CQI值、预编码矩阵指示(pro-coding matrix indicator,PMI)和秩指示(rank indicator,RI)等都需要基于CSI-RS生成,因此,本申请实施例中,用户设备接收CSI-RS的优先级要高于接收CSI-IM的优先级,即:用户设备需要在保证第一接收波束能够接收到CSI-RS的情况下,再考虑使用第二接收波束去接收CSI-IM。因此,结合一个天线面板在同一时刻只能产生一个接收波束的能力,当基站配置的CSI-RS和CSI-IM有至少一个符号的时域重叠时,为了不影响第一接收波束接收CSI-RS,第二接收波束由第二天线面板产生。
作为一种可选择的实施方式,第二接收波束是固定宽度的波束。图7为接收波束的宽度示意图。如图7所示,用户设备通过第一接收波束接收基站gNB1通过发送波束1发送CSI-RS等数据,基站gNB2在与CSI-IM相同的时频资源上,使用发送波束2发送的信号对于用户来说是干扰信号。那么,用户设备为了接收到gNB2发送的信号以更准确地测量干扰,可以产生一个固定宽度的第二接收波束,并且第二接收波束的宽度优选大于第一接收波束的宽度,从而更好地覆盖发送波束2的范围,提高干扰测量的准确性。
第二接收波束的宽度大于第一接收波束的宽度,并且覆盖第一接收波束的波束范围,第一接收波束和第二接收波束的方向可以相同也可以不同。
作为一种可选择的实施方式,第二接收波束还可以是可变宽度的波束,并且第二波束的宽度可以根据测量的干扰情况进行分级调整。例如,在使用第二接收波束进行第一次干扰测量时,可以设置第二接收波束的宽度为20度,如果SINR值增大,则说明第二接收波束的干扰测量方向正确,那么,在第二次干扰测量时,可以保持第二接收波束的方向不变,将第二接收波束的宽度收窄为15度,并判断SINR值是否进一步增大,如果进一步增大,则在第三次干扰测量时,继续收窄第二波束的宽度,以此类推,直到SINR值不再增大或者大于一定阈值为止。
作为一种可选择的实施方式,第二接收波束与第一接收波束的方向不同。图8为接收波 束的方向示意图,如图8所示,第二接收波束可以位于第一接收波束的周围方向。例如,当第一接收波束位于方向5时,第二接收波束可以位于方向5周围最近的方向2、方向4、方向6和方向8,也可以位于方向1、方向3、方向7和方向9。
作为一种可选择的实施方式,第二接收波束的方向和宽度还可以根据传感器的参数变化确定。传感器的参数变化越大,表明用户设备的姿态变化幅度越大,因此第二接收波束的宽度就越大,第二接收波束相对第一接收波束的方向变化幅度就越大。例如:假设第一接收波束位于方向5,当陀螺仪的参数变化幅度大于10度时,第二天线面板产生方向4、宽度为10度的第二接收波束,当陀螺仪的参数变化幅度大于20度时,调整第二接收波束至方向1,宽度为20度。
用户设备为了降低功耗,即使具备多个天线面板,也通常不会同时开启多个天线面板,因此,在需要使用第二天线面板产生第二接收波束时,第二天线面板需要先上电开启,再产生第二接收波束。但是,天线面板从上电开启到进入工作状态是需要一定的时间的,因此,如图9所示,当CSI-RS和CSI-IM有时域重叠时,用户设备还要判断第二接收波束是否在CSI-IM到来的时刻按时产生。具体来说,如果CSI-IM是周期性资源,则用户设备可以在CSI-IM每次到来之前提前开启第二天线面板;如果CSI-IM是非周期资源,那么基站会通过下行控制信息(downlink control information,DCI)动态触发用户设备去接收CSI-IM,此时,需要考虑从DCI触发时刻到CSI-IM到来的这段时间内,第二天线面板是否能完成上电并进入工作状态,如果能,则可以使用第二天线面板,如果不能,则只能周期性地使用第一天线面板产生第二接收波束。
步骤S104,当基站配置的CSI-RS和CSI-IM没有时域重叠时,用户设备周期性地使用第一天线面板产生第二接收波束。
具体的,当CSI-RS和CSI-IM没有时域重叠时,或者,第二天线面板从DCI触发时刻到CSI-IM到来的这段时间内无法完成上电时,用户设备使用第一天线面板周期性地产生第二接收波束以接收CSI-IM。
图10为第一天线面板周期性产生第二接收波束的示意图。如图10所示,假设第一接收波束位于图8中的方向1,那么通常情况下,用户设备既在方向1接收CSI-RS,也在波束1方向接收CSI-IM。但是,由于CSI-RS和CSI-IM没有时域重叠,用户设备可以根据CSI-IM的时域配置,在不影响第一接收波束接收CSI-RS的前提下,每隔一段时间(例如X个时隙,X为正整数),切换到第二接收波束去接收CSI-IM,第二接收波束例如可以位于图8中的方向2。
作为一种可选择的实施方式,用户设备可以根据当前的干扰情况确定第二接收波束的周期和数量。干扰越严重(例如接收和解调信号的SINR值越低),则第二接收波束的周期越短,第二接收波束的方向越多。由此,可以提高使用多个接收波束进行干扰测量的频率,扩大干扰测量范围,提高干扰测量的准确性和鲁棒性。
步骤S105,用户设备判断使用第一接收波束接收PDSCH数据时,接收质量是否下降。
如果用户设备在PDSCH接收和解调数据的SINR值持续下降,则说明PDSCH数据接收质量下降。
步骤S106,如果PDSCH数据接收质量下降,用户设备调整第一接收波束。
具体地,如果PDSCH数据接收质量下降,并且用户设备在一段时间内未被配置向基站上报信道状态信息(channel state information reference,CSI),则用户设备需要调整第一接收波束。其中,用户设备向基站上报CSI的动作是由基站通过RRC配置的,如果基站在RRC 中未配置用户设备向基站上报CSI,用户设备就不会向基站上报CSI。
用户设备向基站上报的CSI,用于通知基站调整发送波束,从而用户设备可以对应地调整接收波束,以改善在PDSCH数据接收质量。如果用户设备未被配置向基站上报CSI,用户设备和基站就无法根据CSI及时调整接收波束和发送波束。因此,为了避免接收波束调整不及时,用户设备在PDSCH数据接收质量下降,并且在一段时间内未被配置向基站上报CSI时,主动调整第一接收波束,以保证PDSCH数据接收质量。
作为一种可选择的实施方式,当用户设备调整第一接收波束时,可以根据在历史方向上测量的历史SINR值或者参考信号接收功率(reference signal receive power,RSRP)大小对历史方向进行排序;然后,根据排序结果将第一接收波束调整到历史SINR值数值较大,或者RSRP数值较大,并且与第一接收波束的当前方向相邻的一个历史方向上。示例地,假设第一接收波束的当前方向为图8中的方向4,历史方向按SINR值大小排序依次为方向2、方向5、方向1和方向6,相邻方向为方向5和方向1,那么可以将第一接收波束调整到方向5。
作为一种可选择的实施方式,还可以对第一接收波束的宽度进行调整。例如,在保持第一接收波束方向不变的情况下,有梯度地减小第一接收波束的宽度,直到PDSCH数据接收质量满足预期,每次减小的宽度可以是一个固定值也可以是一个可变值。
作为一种可选择的实施方式,当用户设备具有多个天线面板时,如果PDSCH数据接收质量下降,并且用户设备在一段时间内未被配置向基站上报CSI,则用户设备可以开启第二天线面板,并使用第二天线面板在第一接收波束的周围方向产生第三接收波束去接收PDSCH,如果第三接收波束接收PDSCH数据质量好于第一接收波束,则将第一接收波束切换到第三接收波束的方向上继续接收PDSCH。
步骤S107,如果PDSCH数据接收质量未下降,用户设备根据传输配置指示TCI产生第一接收波束。
如果PDSCH数据接收质量未下降,说明不需要对第一接收波束进行调整,此时用户设备可以继续根据基站配置的TCI产生第一接收波束去接收PDSCH。
图11为本申请实施例提供的调整第二接收波束的方法流程图。该方法可应用于用户设备,其中,用户设备通过第一接收波束接收基站的CSI-RS,第一接收波束为定向波束,由用户设备的第一天线面板通过波束赋形产生。
该方法如图11所示包括以下步骤:
步骤S201,用户设备获取波束调整参考信息。
其中,波束调整参考信息包括用户设备与基站之间的路径损耗(path loss)、用户设备接收基站数据获取的信号与干扰加噪声比SINR值和用户设备的设备姿态参数中的一个或多个。
路径损耗是在基站和用户设备之间由传播环境引入的损耗的量。在同一频率下,路径损耗与用户设备与基站之间的距离有关,路径损耗越大,通常意味着用户设备与基站之间的距离越远。当路径损耗大于一定的阈值时,说明用户设备可能位于小区的边缘,容易受到其他小区基站的信号干扰。这些干扰的来源方向通常与第一接收波束不同,难以被第一接收波束测量到,因此,本发明实施例中将路径损耗作为波束调整参考信息。
SINR是指用户设备接收到的有用信号的强度与接收到的干扰信号(噪声和干扰)的强度的比值,SINR值越高,说明用户设备受到的干扰越低,SINR值越低,说明用户设备受到的干扰越强。
设备姿态参数例如:陀螺仪传感器的三轴数据、气压传感器数据和加速度传感器数据等,上述设备姿态参数能够反映出用户设备的角度、位移和速度等运动姿态,当用户设备与基站 使用定向的接收波束进行通信时,一旦用户设备的运动姿态发生变化,受到的干扰也会相应发生变化。
步骤S202,用户设备根据波束调整参考信息确定是否需要使用第二接收波束,第二接收波束用于接收信道状态信息干扰测量资源CSI-IM,且,第二接收波束的参数与第一接收波束的参数不同,参数包括波束的方向和宽度的至少一个。
本申请实施例可以为波束调整参考信息设置对应的阈值,当波束调整参考信息大于(或者小于)对应的阈值时,用户设备确定需要使用第二接收波束进行干扰测量。由于第二接收波束的参数与第一接收波束的参数不同,第二接收波束能够在第一接收波束范围之外接收CSI-IM,有利于扩大干扰测量范围,提高干扰测量的准确性和鲁棒性。
步骤S203,当用户设备确定需要使用第二接收波束时,根据第二接收波束的调整规则,CSI-IM和CSI-RS的时域配置产生第二接收波束。
其中,第二接收波束的调整规则用于根据用户设备的天线面板数量,以及CSI-IM和CSI-RS的时域配置确定由第一天线面板产生第二接收波束,还是由第二天线面板产生第二接收波束;以及确定第二接收波束的方向、宽度、数量和周期等参数。
在NR、LTE等通信系统中,用户设备向基站上报的CQI值、PMI和RI等都需要基于CSI-RS生成,因此,本申请实施例中,用户设备接收CSI-RS的优先级要高于接收CSI-IM的优先级,即:用户设备需要在保证第一接收波束能够接收到CSI-RS的情况下,再考虑使用第二接收波束去接收CSI-IM。因此,结合一个天线面板在同一时刻只能产生一个接收波束的能力,当基站配置的CSI-RS和CSI-IM有至少一个符号的时域重叠时,为了不影响第一接收波束接收CSI-RS,第二接收波束由第二天线面板产生;当CSI-RS和CSI-IM没有时域重叠时,第二接收波束由第一天线面板产生。
本申请实施例提供的方法,用户设备用于使用第一接收波束接收基站的CSI-RS,用户设备能够获取波束调整参考信息,波束调整参考信息包括路径损耗、SINR值和设备姿态参数中的一个或多个;然后,用户设备根据波束调整参考信息判断是否需要使用第二接收波束接收CSI-IM,其中,第二接收波束的方向和/或宽度与第一接收波束不同;当用户设备确定需要使用第二接收波束时,根据第二接收波束的调整规则,以及CSI-IM和CSI-RS的时域配置产生第二接收波束。由此,用户设备可以根据波束调整参考信息判断自身是否可能受到了强度较大并且未被测量到的干扰,并在自身可能受到强度较大并且未被测量到的干扰时,使用第二接收波束在第一接收波束范围之外进行干扰测量,从而扩大干扰测量范围,提高干扰测量的准确性和鲁棒性。
图12为本申请实施例提供的一种接收波束调整方法步骤S202的流程图。如图12所示,在一个实施例中,波束调整参考信息包括路径损耗,步骤S202包括以下步骤:
步骤S301,用户设备确定路径损耗是否大于第一阈值。
步骤S302,当路径损耗大于第一阈值时,用户设备确定需要使用第二接收波束。
路径损耗通常与用户设备和基站的距离有关,用户设备和基站的距离越远,路径损耗越大,距离越近,路径损耗越小。当用户设备和基站的距离较远时,用户设备可能位于小区的边缘,更容易受到其他小区的来自不同方向的信号干扰,因此需要使用第二接收波束去测量这些方向上的干扰。
作为一种可选择的实施方式,为了使用户设备判断自身是否位于小区边缘,可以针对路径损耗设置第一阈值,当路径损耗大于第一阈值时,则认为用户设备位于小区的边缘,需要使用第二接收波束进行干扰测量。
路径损耗可以用数字+单位“dB”表示,数字越大表示路径损耗越严重。示例地:假设第一阈值为110dB,如果用户设备测得的路径损耗为120dB,则可以认为用户设备位于小区边缘,需要使用第二接收波束进行干扰测量。
由此,用户设备可以根据路径损耗判断是否位于小区边缘,如果位于小区边缘,则用户设备确定使用第二接收波束。从而,避免当用户设备位于小区边缘时,受到其他小区基站的干扰,却没有测量到这些干扰的情况发生,提高干扰测量的准确性和鲁棒性,改善用户设备的通信质量。
图13为本申请实施例提供的一种接收波束调整方法步骤S202的流程图。如图13所示,在一个实施例中,波束调整参考信息包括SINR值,步骤S202包括以下步骤:
步骤S401,用户设备确定SINR值是否小于第二阈值。
步骤S402,当SINR值小于第二阈值时,用户设备确定需要使用第二接收波束。
在NR或LTE等系统中,用户设备会根据获取的SINR值估算出可用的CQI值并上报给基站,使用户设备与基站按照CQI值对应的调制方式和码率进行数据传输,一般来说,SINR值越大,用户设备估算的CQI值就越大,以保证块差错率(block error rate,BLER)小于规定值。
在CQI值对应调制方式和码率之下,如果用户设备受到的干扰加强,获取的SINR值就会下降。因此,为了使用户设备判断自身受到的干扰程度,可以针对SINR值设定第二阈值,当SINR值大于第二阈值时,认为用户设备受到了很强的干扰,需要使用第二接收波束进行干扰测量。
由于不同的CQI值对应的SINR值不同,因此不同的CQI值对应的第二阈值也不同。本申请实施例中,第二阈值可以根据用户设备在第一预设时间内向基站上报的CQI的平均值确定,CQI平均值越大,第二阈值越大。用户设备还可以维护一个包含CQI平均值和第二阈值对应关系的列表,以通过该列表确定每个CQI平均值对应的第二阈值。
示例地,假设用户设备在10s内上报的CQI的平均值为10,对应的第二阈值为5,那么,如果用户设备获取的SINR值小于5dB,则需要使用第二接收波束进行干扰测量。
由此,用户设备可以根据SINR值判断干扰测量是否准确,如果SINR值低于第二阈值,说明干扰测量不准确,可能存在未被测量到的干扰,因此用户设备确定使用第二接收波束。从而提高干扰测量的准确性和鲁棒性,改善用户设备的通信质量。
图14为本申请实施例提供的一种接收波束调整方法步骤S202的流程图。如图14所示,在一个实施例中,波束调整参考信息包括设备姿态参数,步骤S202包括以下步骤:
步骤S501,用户设备确定设备姿态参数的变化值是否大于第三阈值。
步骤S502,当设备姿态参数的变化值大于第三阈值时,用户设备确定需要使用第二接收波束。
当设备姿态参数是陀螺仪传感器的三轴数据(x轴,y轴,z轴)时,第三阈值是一个角速度值。三轴数据能够反映出用户设备角度的变化,当三轴数据的任意一个轴的变化值大于第三阈值时,可以认为用户设备发生了大幅度的旋转,需要使用第二接收波束进行干扰测量。
示例地,假设第三阈值为30°/s,三轴数据在t0时刻为(10°/s,5°/s,15°/s),在t1时刻为(10°/s,5°/s,55°/s)。那么,由于z轴的数据变化值大于30°/s,用户设备需要使用第二接收波束进行干扰测量。
需要补充说明的是,在一些实施例中,三轴数据的每一个轴对应的第三阈值可以不同,因此,第三阈值可以是一个三维数组(w1,w2,w3),分别对应x轴、y轴和z轴,当三轴 数据的任意一个轴的变化值大于第三阈值的对应维度值时,用户设备需要使用第二接收波束进行干扰测量。
当设备姿态参数是气压传感器数据时,第三阈值的单位可以是帕(Pa)或者兆帕(MPa)等。气压传感器数据能够反映出用户设备海拔高度的变化,当气压传感器数据变化值大于第三阈值时,可以认为用户设备发生了很大的垂直位移,需要使用第二接收波束进行干扰测量。
当设备姿态参数是重力传感器数据时,第三阈值的单位可以是米/平方秒(m/s 2)等。重力传感器数据能够反映出用户设备运动状态的变化,当重力传感器数据变化值大于第三阈值时,可以认为用户设备发生了很大的位移,需要使用第二接收波束进行干扰测量。
当设备姿态参数是加速度传感器时,第三阈值的单位可以是米/平方秒(m/s 2)。加速度传感器数据能够反映出用户设备运动状态的变化,当加速度传感器数据大于第三阈值时,说明用户设备正在从相对静止变为高速运动,可能导致用户设备相对于基站的位置和角度都发生变化,因此需要使用第二接收波束进行干扰测量。
需要补充说明的是,在一些实施例中,用户设备可以同时使用路径损耗、SINR和/或设备姿态参数等多个波束调整参考信息组合判断是否需要使用第二接收波束。例如,当用户设备同时使用路径损耗和SINR时,用户设备分别确定路径损耗是否大于第一阈值,以及SINR是否小于第二阈值,如果路径损耗大于第一阈值,并且SINR小于第二阈值,用户设备需要使用第二接收波束。
由此,用户设备可以根据设备姿态参数判断,用户设备的位置、角度或高度等是否发生了很大变化,如果发生很大变化,则说明用户设备受到的干扰情况以及干扰测量的准确性可能发生变化,因此确定需要使用第二接收波束。从而,使用户设备在位置、角度或高度等发生变化之后,依然能够准确地进行干扰测量,保证用户设备的通信质量。
图15为本申请实施例提供的一种第二接收波束的调整规则的流程图。如图15所示,在一个实施例中,第二接收波束的调整规则可以包括以下步骤:
步骤S601,当CSI-IM和CSI-RS在时域上至少具有一个符号的重叠时,用户设备使用第二天线面板产生第二接收波束,第二接收波束的方向与第一接收波束的方向不同。
步骤S602,用户设备判断SINR值是否增大。
步骤S603,当SINR值不增大时,说明干扰测量情况并没有改善,表明干扰不是来第二接收波束的当前方向,因此,用户设备将第二接收波束改变到其他方向,从而继续在其他方向进行干扰测量。
作为一种可选择的实施方式,在SINR值未出现增大的情况下,用户设备循环执行步骤S602和步骤S603,不断改变第二接收波束的方向,直到调整到某个方向时,SINR出现增大为止。
步骤S604,当SINR值增大时,说明干扰测量情况有改善,表明干扰确实第二接收波束的当前方向,因此,当用户设备再次使用第二接收波束进行干扰测量时,保持第二接收波束的当前方向不变,继续在当前方向产生第二接收波束。
图16为调整第二接收波束的一个示例图。
如图16所示,在t0时刻,用户设备通过第一天线面板产生的第一接收波束接收基站的PDSCH数据,第一接收波束的方向如图8中的方向5。在t1时刻,用户设备使用第二天线面板产生第二接收波束,对方向5之外进行第一次干扰测量,第二接收波束位于方向2,宽度为20度,由于干扰不是来自方向2,用户设备解调PDSCH数据获取的SINR值未出现增大。在t2时刻,当用户设备第二次使用第二接收波束进行干扰测量时,将第二接收波束的方向改 变到方向4,宽度依然为20度。由于干扰确实来自方向4,用户设备获取的SINR值出现增大,因此,停止继续调整第二波束的方向,当再次使用第二接收波束进行干扰测量时,可以继续在方向4产生第二接收波束。
在一种可能的实现方式中,用户设备为了降低功耗,即使具备多个天线面板,也通常不会同时开启多个天线面板。因此,当CSI-IM是周期性资源时,用户设备可以在CSI-IM每次到来之前提前开启第二天线面板,以保证在能够接收到CSI-IM的情况下,降低功耗;或者,用户设备可以根据CSI-IM的周期T1设置开启第二天线面板的周期T2,T2为T1的整数倍,从而减小第二天线面板的开启次数,进一步降低能耗。当CSI-IM是非周期资源时,基站会通过DCI动态触发用户设备去测量CSI-IM,此时,需要考虑从DCI触发时刻到CSI-IM到来的这段时间内,第二天线面板是否能完成上电并进入工作状态,如果能,则可以使用第二天线面板,如果不能,则只能周期性地使用第一天线面板产生第二接收波束。
由此,当CSI-IM和CSI-RS在时域上至少具有一个符号的重叠时,用户设备使用第二天线面板产生与第一接收波束方向不同的第二接收波束,从而不影响使用第一接收波束接收CSI-RS。并且,用户设备能够根据SINR值的变化不断调整第二接收波束的方向,找到干扰测量的最佳方向,从而提高干扰测量的准确性和鲁棒性,改善用户设备的通信质量。
图17为本申请实施例提供的一种第二接收波束的调整规则的流程图。如图17所示,在一个实施例中,第二接收波束的调整规则可以包括以下步骤:
步骤S701,当CSI-IM和CSI-RS在时域上至少具有一个符号的重叠时,用户设备使用第二天线面板产生第二接收波束,第二接收波束的宽度与第一接收波束的宽度不同。
步骤S702,用户设备判断SINR值是否增大。
步骤S703,当SINR值增大时,则说明干扰测量情况有所改善,表明干扰方向在第二接收波束的覆盖范围内,因此,用户设备可以进一步减小第二接收波束的宽度,使第二接收波束在更小的范围内更精确地测量干扰。
步骤S704,当SINR值不增大时,用户设备保持第二接收波束的当前宽度不变。
作为一种可选择的实施方式,在SINR值增大的情况下,用户设备循环执行步骤S702和步骤S703,不断地减小第二接收波束的宽度,直到SINR值不再增大为止。实现对干扰方向的精确判断,并使用窄波束(第二接收波束)对干扰进行更准确地测量,有利于提高用户设备和基站之间的数据传输效率。
图18是调整第二接收波束的一个示例图。
如图18所示,在t0时刻,用户设备通过第一天线面板产生的第一接收波束接收基站的PDSCH数据,第一接收波束的方向如图8中的方向5。在t3时刻,用户设备使用第二天线面板产生第二接收波束,在方向5之外进行第一次干扰测量,第二接收波束位于方向4,宽度为20度,由于干扰方向在第二接收波束的波束范围内,用户设备解调PDSCH数据获取的SINR值出现增大。在t4时刻,当用户设备第二次使用第二接收波束进行干扰测量时,将第二接收波束的宽度调整为15度,然后判断SINR值是否继续增大,如果继续增大,则进一步减小第二接收波束的宽度,直到SINR值不再增大为止。
需要补充说明的是,在NR的高频场景中,PDSCH数据通常通过窄波束传输,以达到更高的吞吐速率,因此,如果用户设备使用窄波束进行干扰测量,能够得到更精确的测量结果。
需要补充说明的是,在一些实施例中,图15示出的第二接收波束的调整规则可以与图17示出的第二接收波束的调整规则组合使用。例如首先通过图15示出的第二接收波束的调整规则确定干扰的大概方向,然后通过图17示出的第二接收波束的调整规则在该方向上进一 步减小第二接收波束的宽度以确定干扰的精确方向从而提高干扰测量的准确性。
由此,当CSI-IM和CSI-RS在时域上重叠时,用户设备使用第二天线面板产生与第一接收波束宽度不同的第二接收波束,从而不影响使用第一接收波束接收CSI-RS。并且,用户设备能够根据SINR值的变化不断调整第二接收波束的宽度,实现对个干扰方向的精确定位,从而提高干扰测量的准确性和鲁棒性,改善用户设备的通信质量。
图19为本申请实施例提供的一种第二接收波束的调整规则的流程图。如图19所示,在一个实施例中,第二接收波束的调整规则可以包括以下步骤:
步骤S801,当CSI-IM和CSI-RS在时域上不重叠时,用户设备根据SINR值确定第二接收波束的数量和周期,波束数量和周期与SINR值负相关,周期为CSI-IM的发送周期的正整数倍。
根据第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)的技术规范TS 38.214之规定,CSI-IM和与其相关联的CSI-RS具有相同的准共址(quasi co-location,QCL)关系,因此用户设备在默认情况下使用同一个接收波束(即第一接收波束)接收具有关联关系的CSI-IM和CSI-RS。
当用户设备需要使用第二接收波束测量CSI-IM时,用户设备首先根据SINR值确定第二接收波束的数量和周期。SINR值越大,说明干扰越小,因此第二接收波束的数量可以更少,周期可以更长,以降低功耗;SINR值越小,说明干扰越大,因此第二接收波束的数量可以更多,周期可以更短,以提高干扰测量准确性。
作为一种可选择的实施方式,用户设备可以维护一个包含SINR值和第二接收波束周期对应关系的列表(如表2所示),其中,X为大于或者等于1的正整数,表示CSI-IM的周期,X的单位为时隙(slots)。从而,用户设备可以根据SINR值查表确定对应的第二接收波束的周期,该周期指的是每隔多少个时隙使用第二接收波束进行一次干扰测量。
SINR(dB) 波束周期(时隙/slots)
>=5 10X
[2,5] 8X
[0,2] 4X
<=0 3X
表2 SINR值与第二接收波束周期关系表
作为一种可选择的实施方式,用户设备可以维护一个包含SINR值与第二接收波束数量对应关系的列表,如表3所示。从而,用户设备可以根据SINR值查表确定对应的第二接收波束的数量。
SINR(dB) 波束数量
>=5 1
[2,5] 2
[0,2] 3
<=0 4
表3 SINR值与第二接收波束数量关系表
另外,表2和表3中的信息也可以集中在一个列表中,例如表4。
SINR(dB) 波束周期(时隙/slots) 波束数量
>=5 10X 1
[2,5] 8X 2
[0,2] 4X 3
<=0 3X 4
表4 SINR值与第二接收波束周期和数量关系表
步骤S802,用户设备根据数量和周期,使用第一天线面板产生第二接收波束。
示例地,当用户设备解调PDSCH数据的SINR值为1时(或者一段时间内SINR值的平均值为1时),用户设备查表确定对应的波束数量为3,波束周期为4X slots。那么,如果第一接收波束位于图8中的方向5,则用户设备可以选取3个与方向5相邻的方向作为第二接收波束的可选方向,例如:方向2、方向4和方向8。用户设备可以每隔4X slots使用第一天线面板产生一次第二接收波束,第二接收波束的方向依次为方向2、方向4和方向8,第二接收波束的宽度可以初始设置为20度,并根据图17示出的第二接收波束的调整规则进行调整,直到SINR大于阈值为止。
由此,当CSI-IM和CSI-RS在时域上不重叠时,用户设备在不影响第一天线面板接收CSI-RS的前提下,使用第一天线面板产生第二接收波束,从而无需开启其他天线面板,有利于节省用户设备的功耗。
图20为本申请实施例提供的调整第一接收波束的方法流程图。该方法可以应用于用户设备使用第二接收波束进行干扰测量之后(即步骤S203之后)。该方法如图20所示包括以下步骤:
步骤S901,用户设备判断使用第一接收波束接收PDSCH数据时,SINR值在第二预设时间内是否持续下降或者小于第四阈值。
其中,第二预设时间例如可以是用户设备接收基站连续调度的M个PDSCH数据的时间,其中M为大于或者等于1的整数。第四阈值可以根据用户设备估算的CQI值确定,或者,第四阈值可以等于第二阈值。
步骤S902,当SINR值在第二预设时间内持续下降或者小于第四阈值时,用户设备判断自身在第三预设时间内是否被配置向基站发送信道状态信息CSI。
如果用户设备在接收PDSCH数据时,发现第二预设时间内的SINR出现了持续下降或者始终小于第二阈值,用户设备会根据RRC判断自身是否在未来的第三预设时间内都没有被配置向基站上报CSI,如果是,说明第一接收波束的参数没有得到及时调整,已经不利于接收PDSCH数据。
步骤S903,当用户设备在第三预设时间内未被配置向基站发送CSI时,用户设备调整第一接收波束的参数。
由此,用户设备SINR值和基站对用户设备的CSI配置确定当第一接收波束的参数没有得到及时调整,已经不利于接收PDSCH数据时,调整第一接收波束的参数,有利于用户设备找到从基站接收PDSCH数据的最佳接收波束。
图21为本申请实施例提供的第一接收波束的调整规则的一种流程图。如图21所示,在一个实施例中,第一接收波束的调整规则可以包括以下步骤:
步骤S1001,用户设备改变第一接收波束的方向。
步骤S1002,用户设备判断SINR值是否增大。
步骤S1003,当SINR值不增大时,用户设备进一步改变第一接收波束的方向。
循环执行步骤S1002和步骤S1003,直到SINR值增大为止。
作为一种可选择的实施方式,在步骤S1001和步骤S1003中,用户设备可以将第一接收波束改变到任意一个相邻方向。并且,用户设备循环执行步骤S1002和步骤S1003,在SINR不增大的情况下,不断改变第一接收波束的方向。
示例地,假设第一接收波束当前方向为图8中的方向5,那么在步骤S1001中和步骤S1003中,用户设备可以将第一接收波束的方向改变到方向2、方向4、方向6和方向8中的任意一个。如果第一接收波束的方向位于方向2、方向4、方向6和方向8时,SINR都没有增大,那么用户设备可以继续将第一接收波束改变到其他的方向,例如图8中的方向1、方向3、方向7和方向9等,使第一接收波束在更多方向尝试改善PDSCH数据的接收质量,有利于用户设备找到从基站接收PDSCH数据的最佳接收波束。
作为一种可选择的实施方式,如果用户设备之前调整过第一接收波束的方向,或者第一接收波束曾经位于其他的方向,则用户设备可以选取一个或多个历史方向,并获取用户设备在每个历史方向对应的历史SINR值,然后按照SINR值从大到小的顺序依次改变第一接收波束的方向。并且,用户设备循环执行步骤S1002和步骤S1003,在SINR不增大的情况下,不断改变第一接收波束的方向。
示例地,表5示出了历史方向和历史SINR值的对应关系,结合表5,假设第一接收波束当前方向位于方向4,则第一接收波束的相邻方向为方向1、方向5和方向7。因此,根据方向1、方向5和方向7的对应的历史SINR值,可以在步骤S1001中,将第一接收波束改变到方向5;在步骤S1003中,将第一接收波束改变到方向1,然后循环执行步骤S1002和步骤S1003,在SINR不增大的情况下,不断改变第一接收波束的方向。如果第一接收波束的方向位于方向5、方向1和方向7时,SINR都没有增大,那么用户设备可以根据表5继续改变第一接收波束到其他的方向,例如方向2、方向3、方向6和方向9等,使第一接收波束在更多方向尝试改善PDSCH数据的接收质量,有利于用户设备找到从基站接收PDSCH数据的最佳接收波束。
Beam SINR
1 0.5
2 2
4 3
5 1.5
6 0
7 0.25
表5历史方向和历史SINR值
由此,用户设备SINR值和基站对用户设备的CSI配置确定当第一接收波束的参数没有得到及时调整,已经不利于接收PDSCH数据时,调整第一接收波束的方向,使第一接收波束在更多方向尝试改善PDSCH数据的接收质量,有利于用户设备找到从基站接收PDSCH数据的最佳接收波束。
图22为本申请实施例提供的第一接收波束的调整规则的另一种流程图。如图22所示,在一个实施例中,第一接收波束的调整规则可以包括以下步骤:
步骤S1101,用户设备减小第一接收波束的宽度。
步骤S1102,用户设备判断SINR值是否增大。
步骤S1103,当SINR值增大时,用户设备进一步减小第一接收波束的宽度。
循环执行步骤S1102和步骤S1103,直到SINR值不再增大为止。
作为一种可选择的实施方式,第一接收波束的宽度可以按照预设的梯度减小。示例地,假设第一接收波束位于方向1,当前宽度为30度,梯度为5度;则在步骤S1101中,第一接收波束可以减小到25度,在步骤S1103中,第一接收波束可以进一步减小到20度。然后,循环执行步骤S1102和步骤S1103,使第一接收波束的宽度按照梯度不断减小,直到SINR值不再增大为止。
作为一种可选择的实施方式,用户设备在步骤S1102判断SINR值是否增大时,还可以判断用户设备接收PDSCH数据的RSRP是否下降严重(例如:RSRP的下降幅度大于预设的第五阈值,则说明RSRP下降严重),如果RSRP下降严重,则说明第一接收波束宽度的减小已经影响到了PDSCH数据的正常接收,不应该再减小第一接收波束的宽度,因此,当用户设备发现RSRP下降严重,结束第一接收波束调整流程。
作为一种可选择的实施方式,用户设备在步骤S1102判断SINR值是否增大时,还可以进一步判断SINR增大后的值是否大于预设的第六阈值,或者,进一步判断SINR增大的幅度是否大于第七阈值。如果SINR增大后的值不大于第六阈值,或者,SINR增大的幅度不大于第七阈值,说明PDSCH数据的接收质量虽然有改善,但改善幅度很小,SINR值依然不高,用户设备需要进一步减小第一接收波束的宽度以继续提高SINR值。如果SINR增大后的值大于第六阈值,或者,SINR增大的幅度大于第七阈值,说明PDSCH数据的接收质量有明显改善,可以结束第一接收波束调整流程。
由此,用户设备SINR值和基站对用户设备的CSI配置确定当第一接收波束的参数没有得到及时调整,已经不利于接收PDSCH数据时,调整第一接收波束的宽度,使第一接收波束的宽度不断减小,降低第一接收波束在可能的干扰方向上的接收增益,从而有利于提升用户设备接收PDSCH数据的质量。
上述本申请提供的实施例中,对本申请提供的接收波束调整方法的各方案进行了介绍。可以理解的是,用户设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
图23为本申请实施例提供的一种接收波束调整装置的结构示意图。在一个实施例中用户设备通过图23示出的硬件结构实现相应的功能。如图23所示,该接收波束调整装置包括:第一天线面板1201,处理器1202,可选包括第二天线面板1203。第一天线面板1201和第二天线面板1203与处理器1202耦合。
第一天线面板1201,用于产生的第一接收波束接收基站的信道状态信息参考信号CSI-RS。处理器1202,用于获取波束调整参考信息,其中,波束调整参考信息包括用户设备与基站之间的路径损耗、用户设备接收基站数据获取的信号与干扰加噪声比SINR值和用户设备的设备姿态参数中的一个或多个。处理器1202,还用于根据波束调整参考信息确定是否需要使用第二接收波束,第二接收波束用于接收信道状态信息干扰测量资源CSI-IM,且,第二接收波束的参数与第一接收波束的参数不同,参数包括波束的方向和宽度的至少一个。处理器1202,还用于当确定需要使用第二接收波束时,根据第二接收波束的调整规则,以及CSI-IM和CSI-RS的时域配置,使用第一天线面板1201或第二天线面板1201产生第二接收 波束。
在一些实施例中,当波束调整参考信息是设备姿态参数中时,为了测量到设备姿态参数,接收波束调整装置还包括传感器模块1204。如图23所示,传感器模块例如可以包括:陀螺仪传感器1204A,用于测量用户设备的三轴数据;气压传感器1204B,用于测量用户设备的海拔高度变化;加速度传感器1204C和/或重力传感器1204D用于测量用户设备的运动状态等。
本申请实施例提供的装置,用于使用第一接收波束接收基站的CSI-RS,并且该装置能够能够获取波束调整参考信息,波束调整参考信息包括路径损耗、SINR值和设备姿态参数中的一个或多个;然后,根据波束调整参考信息判断是否需要使用第二接收波束接收CSI-IM,其中,第二接收波束的方向和/或宽度与第一接收波束不同;当确定需要使用第二接收波束时,根据第二接收波束的调整规则,以及CSI-IM和CSI-RS的时域配置产生第二接收波束。由此,该装置可以根据波束调整参考信息判断是否可能受到了强度较大并且未被测量到的干扰,并在可能受到强度较大并且未被测量到的干扰时,使用第二接收波束在第一接收波束范围之外进行干扰测量,从而扩大干扰测量范围,提高干扰测量的准确性和鲁棒性。
作为一种可选择的实施方式,处理器1202,用于确定路径损耗是否大于第一阈值。处理器1202,还用于当路径损耗大于第一阈值时,确定需要使用第二接收波束。从而,避免当用户设备位于小区边缘时,受到其他小区基站的干扰,却没有测量到这些干扰的情况发生,提高干扰测量的准确性和鲁棒性,改善用户设备的通信质量。
作为一种可选择的实施方式,处理器1202,用于确定SINR值是否小于第二阈值。处理器1202,还用于当SINR值小于第二阈值时,确定需要使用第二接收波束。其中,第二阈值根据装置在第一预设时间内向基站上报的信道质量指示CQI的平均值确定。由此,该装置可以根据SINR值判断干扰测量是否准确,如果SINR值低于第二阈值,说明干扰测量不准确,可能存在未被测量到的干扰,因此确定使用第二接收波束,从而提高干扰测量的准确性和鲁棒性,改善用户设备的通信质量。
作为一种可选择的实施方式,处理器1202,用于确定设备姿态参数的变化值是否大于第三阈值。处理器1202,还用于当设备姿态参数的变化值大于第三阈值时,确定需要使用第二接收波束。由此,该装置可以根据设备姿态参数判断用户设备的位置、角度或高度等是否发生了很大变化,如果发生很大变化,则说明用户设备的受到的干扰情况以及干扰测量的准确性可能发生变化,因此确定需要使用第二接收波束,使用户设备在位置、角度或高度等发生变化之后,依然能够准确地进行干扰测量,保证用户设备的通信质量。
作为一种可选择的实施方式,处理器1202,用于当CSI-IM和CSI-RS在时域上至少具有一个符号的重叠时,使用第二天线面板1201产生第二接收波束,第二接收波束的方向与第一接收波束的方向不同。处理器1202,还用于SINR值是否增大。处理器1202,还用于当SINR值不增大时,改变第二接收波束的方向。由此,当CSI-IM和CSI-RS在时域上至少具有一个符号的重叠时,该装置使用第二天线面板1201产生与第一接收波束方向不同的第二接收波束,从而不影响使用第一接收波束接收CSI-RS。并且,该装置能够根据SINR值的变化不断调整第二接收波束的方向,找到干扰测量的最佳方向,从而提高干扰测量的准确性和鲁棒性,改善用户设备的通信质量。
作为一种可选择的实施方式,处理器1202,用于当CSI-IM和CSI-RS在时域上至少具有一个符号的重叠时,使用第二天线面板1201产生第二接收波束,第二接收波束的宽度与第一接收波束的宽度不同。处理器1202,还用于判断SINR值是否增大。处理器1202,还用于当 SINR值增大时,减小第二接收波束的宽度。由此,当CSI-IM和CSI-RS在时域上至少具有一个符号的重叠时,该装置使用第二天线面板1201产生与第一接收波束宽度不同的第二接收波束,从而不影响使用第一接收波束接收CSI-RS。并且,该装置能够根据SINR值的变化不断调整第二接收波束的宽度,实现对个干扰方向的精确定位,从而提高干扰测量的准确性和鲁棒性,改善用户设备的通信质量。
作为一种可选择的实施方式,处理器1202,用于当CSI-IM和CSI-RS在时域上不重叠时,根据SINR值确定第二接收波束的数量和周期,数量和周期与SINR值负相关,周期为CSI-IM的发送周期的正整数倍。处理器1202,还用于根据数量和周期,使用第一天线面板产生第二接收波束。由此,当CSI-IM和CSI-RS在时域上不重叠时,该装置在不影响使用第一接收波束接收CSI-RS的前提下,使用第一天线面板1201产生第二接收波束,从而无需开启其他天线面板,有利于节省功耗。
作为一种可选择的实施方式,处理器1202,用于判断SINR值在第二预设时间内是否持续下降或者小于第四阈值。处理器1202,还用于当SINR值在第二预设时间内持续下降或者小于第四阈值时,判断装置在第三预设时间内是否被配置向基站发送信道状态信息CSI。处理器1202,还用于当装置在第三预设时间内未被配置向基站发送CSI时,根据第一接收波束的调整规则调整第一接收波束的参数。由此,该装置根据SINR值和CSI配置确定当第一接收波束的参数没有得到及时调整,已经不利于接收PDSCH数据时,调整第一接收波束的参数,有利于用户设备找到从基站接收PDSCH数据的最佳接收波束。
作为一种可选择的实施方式,处理器1202,用于改变第一接收波束的方向。处理器1202,还用于判断SINR值是否增大。处理器1202,还用于当SINR值不增大时,进一步改变第一接收波束的方向。由此,该装置根据SINR值和CSI配置确定当第一接收波束的参数没有得到及时调整,已经不利于接收PDSCH数据时,调整第一接收波束的方向,使第一接收波束在更多方向尝试改善PDSCH数据的接收质量,有利于用户设备找到从基站接收PDSCH数据的最佳接收波束。
作为一种可选择的实施方式,处理器1202,用于减小第一接收波束的宽度。处理器1202,还用于判断SINR值是否增大。处理器1202,还用于当SINR值增大时,进一步减小第一接收波束的宽度。由此,该装置根据SINR值和CSI配置确定当第一接收波束的参数没有得到及时调整,已经不利于接收PDSCH数据时,调整第一接收波束的宽度,使第一接收波束的宽度不断减小,降低在可能的干扰方向上的接收增益,从而有利于提升用户设备接收PDSCH数据的质量。
作为一种可选择的实施方式,处理器1202,还用于根据CSI-IM的时域配置,在基站每次发送CSI-IM的时刻之前使用第一天线面板1201或第二天线面板1201产生第二接收波束。由此,无需始终开启第二天线面板1201,有利于节省功耗。
图24为本申请实施例提供的另一种接收波束调整装置的结构示意图。在一个实施例中,用户设备通过图24示出的软件模块实现相应的功能,该接收波束调整装置包括:
获取模块1301,用于获取波束调整参考信息。确定模块1302,用于根据波束调整参考信息确定是否需要使用第二接收波束,第二接收波束用于接收信道状态信息干扰测量资源CSI-IM,且,第二接收波束的参数与第一接收波束的参数不同,参数包括波束的方向和宽度的至少一个。执行模块1303,用于当确定需要使用第二接收波束时,根据第二接收波束的调整规则,以及CSI-IM和CSI-RS的时域配置,使用第一天线面板或第二天线面板产生第二接收波束。其中,波束调整参考信息包括用户设备与基站之间的路径损耗、用户设备接收基站 数据获取的信号与干扰加噪声比SINR值和用户设备的设备姿态参数中的一个或多个。
本申请实施例提供的装置,用于使用第一接收波束接收基站的CSI-RS,并且该装置能够获取波束调整参考信息,波束调整参考信息包括路径损耗、SINR值和设备姿态参数中的一个或多个;然后,根据波束调整参考信息判断是否需要使用第二接收波束接收CSI-IM,其中,第二接收波束的方向和/或宽度与第一接收波束不同;当确定需要使用第二接收波束时,根据第二接收波束的调整规则,以及CSI-IM和CSI-RS的时域配置产生第二接收波束。由此,该装置可以根据波束调整参考信息判断是否可能受到了强度较大并且未被测量到的干扰,并在可能受到强度较大并且未被测量到的干扰时,使用第二接收波束在第一接收波束范围之外进行干扰测量,从而扩大干扰测量范围,提高干扰测量的准确性和鲁棒性。
如图25所示,本申请实施例还提供一种计算机可读存储介质1401,计算机可读存储介质1401中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面的方法。
本申请实施例还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面的方法。
本申请实施例还提供了一种芯片系统,图26为该芯片系统的结构示意图。该芯片系统包括处理器1501,用于支持上述装置实现上述方面中所涉及的功能,例如,生成或处理上述方法中所涉及的信息。在一种可能的设计中,芯片系统还包括存储器1502,用于保存接收波束调整装置必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
用于执行本申请实施例上述接收波束调整装置的控制器/处理器可以是中央处理器(CPU),通用处理器,应用处理器(application processor,AP),调制解调处理器,控制器,数字信号处理器(digital signal processor,DSP),基带处理器,神经网络处理器(neural-network processing unit,NPU),专用集成电路(ASIC),现场可编程门阵列(FPGA)或者其他可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
结合本申请公开内容所描述的方法或者算法的步骤可以通过硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于无线接入网设备中。当然,处理器和存储介质也可以作为分立组件存在于用户设备中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本发明实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读 存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
以上的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上仅为本申请的具体实施方式而已,并不用于限定本申请的保护范围,凡在本申请的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请的保护范围之内。

Claims (22)

  1. 一种接收波束调整方法,其特征在于,应用于用户设备,所述用户设备使用第一天线面板产生的第一接收波束接收基站的信道状态信息参考信号CSI-RS,所述方法包括:
    所述用户设备获取波束调整参考信息;
    所述用户设备根据所述波束调整参考信息确定是否需要使用第二接收波束,所述第二接收波束用于接收信道状态信息干扰测量资源CSI-IM,且,所述第二接收波束的参数与所述第一接收波束的参数不同,所述参数包括波束的方向和宽度的至少一个;
    当所述用户设备确定需要使用所述第二接收波束时,根据第二接收波束的调整规则,以及所述CSI-IM和所述CSI-RS的时域配置产生第二接收波束;
    其中,所述波束调整参考信息包括所述用户设备与所述基站之间的路径损耗、所述用户设备接收基站数据获取的信号与干扰加噪声比SINR值和所述用户设备的设备姿态参数中的一个或多个。
  2. 根据权利要求1所述的方法,其特征在于,所述用户设备根据所述波束调整参考信息确定是否需要使用第二接收波束,包括:
    所述用户设备确定所述路径损耗是否大于第一阈值;
    当所述路径损耗大于所述第一阈值时,所述用户设备确定需要使用所述第二接收波束。
  3. 根据权利要求1所述的方法,其特征在于,所述用户设备根据所述波束调整参考信息确定是否需要使用第二接收波束,包括:
    所述用户设备确定所述SINR值是否小于第二阈值;
    当所述SINR值小于所述第二阈值时,所述用户设备确定需要使用所述第二接收波束;
    其中,所述第二阈值根据所述用户设备在第一预设时间内向基站上报的信道质量指示CQI的平均值确定。
  4. 根据权利要求1所述的方法,其特征在于,所述用户设备根据所述波束调整参考信息确定是否需要使用第二接收波束,包括:
    所述用户设备确定所述设备姿态参数的变化值是否大于第三阈值;
    当所述设备姿态参数的变化值大于所述第三阈值时,所述用户设备确定需要使用所述第二接收波束。
  5. 根据权利要求1-4任意一项所述的方法,其特征在于,所述第二接收波束的调整规则,包括:
    当所述CSI-IM和所述CSI-RS在时域上至少具有一个符号的重叠时,所述用户设备使用第二天线面板产生所述第二接收波束,所述第二接收波束的方向与所述第一接收波束的方向不同;
    所述用户设备判断所述SINR值是否增大;
    当所述SINR值不增大时,所述用户设备改变所述第二接收波束的方向。
  6. 根据权利要求1-4任意一项所述的方法,其特征在于,所述第二接收波束的调整规则, 包括:
    当所述CSI-IM和所述CSI-RS在时域上至少具有一个符号的重叠时,所述用户设备使用第二天线面板产生所述第二接收波束,所述第二接收波束的宽度与所述第一接收波束的宽度不同;
    所述用户设备判断所述SINR值是否增大;
    当所述SINR值增大时,所述用户设备减小所述第二接收波束的宽度。
  7. 根据权利要求1-4任意一项所述的方法,其特征在于,所述第二接收波束的调整规则,包括:
    当所述CSI-IM和所述CSI-RS在时域上不重叠时,所述用户设备根据所述SINR值确定所述第二接收波束的数量和周期,所述数量和所述周期与所述SINR值负相关,所述周期为所述CSI-IM的发送周期的正整数倍;
    所述用户设备根据所述数量和所述周期,使用所述第一天线面板产生所述第二接收波束。
  8. 根据权利要求1所述的方法,其特征在于,还包括:
    所述用户设备判断所述SINR值在第二预设时间内是否持续下降或者小于第四阈值;
    当所述SINR值在所述第二预设时间内持续下降或者小于第四阈值时,所述用户设备判断自身在第三预设时间内是否被配置向基站发送信道状态信息CSI;
    当所述用户设备在所述第三预设时间内未被配置向基站发送所述CSI时,所述用户设备根据第一接收波束的调整规则调整所述第一接收波束的参数。
  9. 根据权利要求8所述的方法,其特征在于,所述第一接收波束的调整规则,包括:
    所述用户设备改变所述第一接收波束的方向;
    所述用户设备判断所述SINR值是否增大;
    当所述SINR值不增大时,所述用户设备改变所述第一接收波束的方向。
  10. 根据权利要求8所述的方法,其特征在于,所述第一接收波束的调整规则,包括:
    所述用户设备减小所述第一接收波束的宽度;
    所述用户设备判断所述SINR值是否增大;
    当所述SINR值增大时,所述用户设备减小所述第一接收波束的宽度。
  11. 一种接收波束调整装置,其特征在于,包括:
    第一天线面板,用于产生的第一接收波束接收基站的信道状态信息参考信号CSI-RS;
    处理器,用于获取波束调整参考信息;
    所述处理器,还用于根据所述波束调整参考信息确定是否需要使用第二接收波束,所述第二接收波束用于接收信道状态信息干扰测量资源CSI-IM,且,所述第二接收波束的参数与所述第一接收波束的参数不同,所述参数包括波束的方向和宽度的至少一个;
    所述处理器,还用于当确定需要使用所述第二接收波束时,根据第二接收波束的调整规则,以及所述CSI-IM和所述CSI-RS的时域配置,使用所述第一天线面板或第二天线面板产生第二接收波束;
    其中,所述波束调整参考信息包括所述装置与所述基站之间的路径损耗、所述装置接收 基站数据获取的信号与干扰加噪声比SINR值和所述装置的设备姿态参数中的一个或多个。
  12. 根据权利要求11所述的装置,其特征在于,
    所述处理器,用于确定所述路径损耗是否大于第一阈值;
    所述处理器,还用于当所述路径损耗大于所述第一阈值时,确定需要使用所述第二接收波束。
  13. 根据权利要求11所述的装置,其特征在于,
    所述处理器,用于确定所述SINR值是否小于第二阈值;
    所述处理器,还用于当所述SINR值小于所述第二阈值时,确定需要使用所述第二接收波束;
    其中,所述第二阈值根据所述装置在第一预设时间内向基站上报的信道质量指示CQI的平均值确定。
  14. 根据权利要求11所述的装置,其特征在于,
    所述处理器,用于确定所述设备姿态参数的变化值是否大于第三阈值;
    所述处理器,还用于当所述设备姿态参数的变化值大于所述第三阈值时,确定需要使用所述第二接收波束。
  15. 根据权利要求11-14任意一项所述的装置,其特征在于,
    所述处理器,用于当所述CSI-IM和所述CSI-RS在时域上至少具有一个符号的重叠时,使用第二天线面板产生所述第二接收波束,所述第二接收波束的方向与所述第一接收波束的方向不同;
    所述处理器,还用于所述SINR值是否增大;
    所述处理器,还用于当所述SINR值不增大时,改变所述第二接收波束的方向。
  16. 根据权利要求11-14任意一项所述的装置,其特征在于,
    所述处理器,用于当所述CSI-IM和所述CSI-RS在时域上至少具有一个符号的重叠时,使用第二天线面板产生所述第二接收波束,所述第二接收波束的宽度与所述第一接收波束的宽度不同;
    所述处理器,还用于判断所述SINR值是否增大;
    所述处理器,还用于当所述SINR值增大时,减小所述第二接收波束的宽度。
  17. 根据权利要求11-14任意一项所述的装置,其特征在于,
    所述处理器,用于当所述CSI-IM和所述CSI-RS在时域上不重叠时,根据所述SINR值确定所述第二接收波束的数量和周期,所述数量和所述周期与所述SINR值负相关,所述周期为所述CSI-IM的发送周期的正整数倍;
    所述处理器,还用于根据所述数量和所述周期,使用所述第一天线面板产生所述第二接收波束。
  18. 根据权利要求11所述的装置,其特征在于,
    所述处理器,用于判断所述SINR值在第二预设时间内是否持续下降或者小于第四阈值;
    所述处理器,还用于当所述SINR值在所述第二预设时间内持续下降或者小于第四阈值时,判断所述装置在第三预设时间内是否被配置向基站发送信道状态信息CSI;
    所述处理器,还用于当所述装置在所述第三预设时间内未被配置向基站发送所述CSI时,根据第一接收波束的调整规则调整所述第一接收波束的参数。
  19. 根据权利要求18所述的装置,其特征在于,
    所述处理器,用于改变所述第一接收波束的方向;
    所述处理器,还用于判断SINR值是否增大;
    所述处理器,还用于当所述SINR值不增大时,进一步改变所述第一接收波束的方向。
  20. 根据权利要求18所述的装置,其特征在于,
    所述处理器,用于减小所述第一接收波束的宽度;
    所述处理器,还用于判断所述SINR值是否增大;
    所述处理器,还用于当所述SINR值增大时,进一步减小所述第一接收波束的宽度。
  21. 一种接收波束调整装置,其特征在于,应用于用户设备,所述用户设备使用第一天线面板产生的第一接收波束接收基站的信道状态信息参考信号CSI-RS,所述装置包括:
    获取模块,用于获取波束调整参考信息;
    确定模块,用于根据所述波束调整参考信息确定是否需要使用第二接收波束,所述第二接收波束用于接收信道状态信息干扰测量资源CSI-IM,且,所述第二接收波束的参数与所述第一接收波束的参数不同,所述参数包括波束的方向和宽度的至少一个;
    执行模块,用于当确定需要使用所述第二接收波束时,根据第二接收波束的调整规则,以及所述CSI-IM和所述CSI-RS的时域配置产生第二接收波束;
    其中,所述波束调整参考信息包括所述用户设备与所述基站之间的路径损耗、所述用户设备接收基站数据获取的信号与干扰加噪声比SINR值和所述用户设备的设备姿态参数中的一个或多个。
  22. 一种芯片系统,其特征在于,包括存储器和处理器,所述存储器存储有指令,所述处理器用于执行所述指令,以使用户设备执行权利要求1-10任意一项所述的方法。
PCT/CN2020/091677 2019-05-27 2020-05-22 一种接收波束调整方法及装置 WO2020238770A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910444810.9A CN112004235B (zh) 2019-05-27 2019-05-27 一种接收波束调整方法及装置
CN201910444810.9 2019-05-27

Publications (1)

Publication Number Publication Date
WO2020238770A1 true WO2020238770A1 (zh) 2020-12-03

Family

ID=73461359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/091677 WO2020238770A1 (zh) 2019-05-27 2020-05-22 一种接收波束调整方法及装置

Country Status (2)

Country Link
CN (1) CN112004235B (zh)
WO (1) WO2020238770A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023284983A1 (en) * 2021-07-16 2023-01-19 Telefonaktiebolaget Lm Ericsson (Publ) Concurrent beam scanning and data reception

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112533296B (zh) * 2020-12-09 2024-02-02 中国联合网络通信集团有限公司 基于波束的通信处理方法、装置、设备和存储介质
CN112512077B (zh) * 2020-12-15 2023-08-11 中国联合网络通信集团有限公司 一种上行速率的评估方法及装置
CN113727365A (zh) * 2021-08-27 2021-11-30 中国联合网络通信集团有限公司 一种干扰控制方法及装置
CN113873536B (zh) * 2021-09-28 2024-02-27 中国星网网络应用有限公司 基于干扰规避的低轨卫星波束设计方法及系统
CN114828036B (zh) * 2022-05-30 2023-06-06 中国联合网络通信集团有限公司 一种干扰管理方法、装置及存储介质
CN117040608B (zh) * 2023-10-10 2023-12-08 四川轻化工大学 一种车载卫星中继

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104602219A (zh) * 2013-11-01 2015-05-06 上海贝尔股份有限公司 多点协作中的信令信息交换装置与方法
WO2017111642A1 (en) * 2015-12-21 2017-06-29 Intel Corporation Beam discovery reporting for spatial multiplexing
CN107395332A (zh) * 2016-05-16 2017-11-24 华为技术有限公司 一种cqi确定方法、用户设备和基站
US20180049137A1 (en) * 2016-08-10 2018-02-15 Asustek Computer Inc. Method and apparatus for pathloss derivation for beam operation in a wireless communication system
CN108111286A (zh) * 2017-11-17 2018-06-01 中兴通讯股份有限公司 信息发送、接收方法及装置、存储介质、处理器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2512634A (en) * 2013-04-04 2014-10-08 Nec Corp Communication system
US10367625B2 (en) * 2014-07-03 2019-07-30 Lg Electronics Inc. Hybrid beamforming method and apparatus for multi-rank support in wireless access system
US9716541B2 (en) * 2015-09-15 2017-07-25 Qualcomm Incorporated Systems and methods for reducing interference using polarization diversity
US10298309B2 (en) * 2016-02-12 2019-05-21 Telefonaktiebolaget Lm Ericsson (Publ) Wireless device, a network node and methods therein for determining the quality of uplink beamforming directions in a wireless communications network
CN107743042A (zh) * 2016-08-11 2018-02-27 华为技术有限公司 一种信道状态反馈的方法及装置
CN107872260B (zh) * 2016-09-28 2021-03-05 华为技术有限公司 通信方法及网络设备
CN107889170A (zh) * 2016-09-29 2018-04-06 中兴通讯股份有限公司 一种信号发送方法、接收方法及装置
CN114143826A (zh) * 2017-08-09 2022-03-04 维沃移动通信有限公司 一种信号测量方法、第一移动终端及网络侧设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104602219A (zh) * 2013-11-01 2015-05-06 上海贝尔股份有限公司 多点协作中的信令信息交换装置与方法
WO2017111642A1 (en) * 2015-12-21 2017-06-29 Intel Corporation Beam discovery reporting for spatial multiplexing
CN107395332A (zh) * 2016-05-16 2017-11-24 华为技术有限公司 一种cqi确定方法、用户设备和基站
US20180049137A1 (en) * 2016-08-10 2018-02-15 Asustek Computer Inc. Method and apparatus for pathloss derivation for beam operation in a wireless communication system
CN108111286A (zh) * 2017-11-17 2018-06-01 中兴通讯股份有限公司 信息发送、接收方法及装置、存储介质、处理器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023284983A1 (en) * 2021-07-16 2023-01-19 Telefonaktiebolaget Lm Ericsson (Publ) Concurrent beam scanning and data reception

Also Published As

Publication number Publication date
CN112004235A (zh) 2020-11-27
CN112004235B (zh) 2021-07-16

Similar Documents

Publication Publication Date Title
WO2020238770A1 (zh) 一种接收波束调整方法及装置
EP3711411B1 (en) Beam management in a wireless network
CN108112074B (zh) 信息的上报、接收方法、装置及计算机可读存储介质
JP6921190B2 (ja) 無線通信システムにおけるダウンリンク制御チャネルの送信および検出のための方法およびデバイス
TW202107919A (zh) 具有定位參考信號(prs)資源之不連續接收(drx)之互動
KR20200013056A (ko) 업링크 송신 전력 제어
US20160294514A1 (en) Hybrid reference signals for wireless communication
JP2020503805A (ja) 多入力多出力無線システムのためのサウンディング基準信号の電力制御
WO2016054938A1 (zh) 一种用于无线通信系统中的空闲信道检测方法和系统
US20210160849A1 (en) Methods providing resource selection for directional sidelink communications
CN109803298B (zh) 无线通信系统中控制信道监听行为的方法和设备
WO2015147839A1 (en) Apparatus, system and method of selecting a wireless communication channel
CN116711413A (zh) 传达可重构智能表面(ris)信息以支持ris分多址
WO2022032425A1 (en) Indication based passive sidelink sensing
WO2014190472A1 (zh) 一种信号质量测量信息的上报方法和设备
CN113170505B (zh) 免许可频谱中的随机接入和pucch的增强的信道占用共享机制
US20220086602A1 (en) Link adaptation for sidelink groupcast
CN113261217A (zh) 路径损耗估计
KR20170055770A (ko) 빔 포밍 방식을 지원하는 통신 시스템에서 랜덤 억세스 프로세스 수행 장치 및 방법
US11271687B2 (en) Method and arrangement for enhanced soft buffer handling
WO2020144656A1 (en) Integrated access and backhaul distributed unit soft resources
JP6389337B2 (ja) セル間に干渉が存在する場合のネットワーク支援型パラメータ推定
WO2019053630A1 (en) DISCONTINUOUS TRANSMISSIONS OF CONFIGURED SYNCHRONIZATION SIGNALS
EP3084978B1 (en) Method, communication system and computer program for sector selection
EP4292235A1 (en) Techniques for cross-link interference measurements

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20813273

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20813273

Country of ref document: EP

Kind code of ref document: A1