WO2022032425A1 - Indication based passive sidelink sensing - Google Patents

Indication based passive sidelink sensing Download PDF

Info

Publication number
WO2022032425A1
WO2022032425A1 PCT/CN2020/108117 CN2020108117W WO2022032425A1 WO 2022032425 A1 WO2022032425 A1 WO 2022032425A1 CN 2020108117 W CN2020108117 W CN 2020108117W WO 2022032425 A1 WO2022032425 A1 WO 2022032425A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensing
resource
indication
transmitting device
signal
Prior art date
Application number
PCT/CN2020/108117
Other languages
French (fr)
Inventor
Min Huang
Qiaoyu Li
Jing Dai
Chao Wei
Yu Zhang
Hao Xu
Yin Huang
Hui Guo
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/108117 priority Critical patent/WO2022032425A1/en
Publication of WO2022032425A1 publication Critical patent/WO2022032425A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the following relates to wireless communications, including indication based passive sidelink sensing.
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems.
  • 4G systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems
  • 5G systems which may be referred to as New Radio (NR) systems.
  • a wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
  • UE user equipment
  • a receiving device may be configured to perform passive sensing of sensing signals transmitted by one or more transmitting devices.
  • Current techniques for performing passive sensing may fail to provide the receiving device with information that supports accurate passive sensing procedures.
  • the described techniques relate to improved methods, systems, devices, and apparatuses that support indication based passive sidelink sensing.
  • the described techniques provide for improving passive sensing accuracy and capability by transmitting a sensing signal and indicating the transmitting device that transmitted the sensing signal.
  • a receiving device may communicate with one or more transmitting devices, and each transmitting device may transmit a sensing signal and an indication signal indicating the transmitting device that transmitted the sensing signal.
  • a transmitting device may receive a control message indicating at least one of a sensing resource of a sidelink channel, or that a first indication resource of the sidelink channel is assigned to the transmitting device, or both.
  • the transmitting device may transmit a sensing signal to a receiving device via the sensing resource of the sidelink channel.
  • the transmitting device may transmit an indication signal to the receiving device via the first indication resource of the sidelink channel indicating that the transmitting device transmitted the sensing signal via the sensing resource of the sidelink channel.
  • the receiving device may monitor one or more indication resources and determine if one or multiple transmitting devices are transmitting sensing signals within the sensing resource.
  • the receiving device may determine a number of transmitting devices based on monitoring the indication resources and calculate or estimate Doppler Frequency related metrics of a target object based on the number of transmitting devices.
  • the transmitting device may receive an update message indicating a transmission power adjustment, a cycle length adjustment, or both, for the sensing signal and transmit an additional sensing signal to the receiving device according to the transmission power adjustment, the cycle length adjustment, or both.
  • a method of wireless communication at a transmitting device may include receiving a control message indicating at least one of a sensing resource of a sidelink channel or that a first indication resource of the sidelink channel is assigned to the transmitting device, transmitting a sensing signal to a receiving device via the sensing resource of the sidelink channel, and transmitting an indication signal to the receiving device via the first indication resource of the sidelink channel indicating that the transmitting device transmitted the sensing signal via the sensing resource of the sidelink channel.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to receive a control message indicating at least one of a sensing resource of a sidelink channel or that a first indication resource of the sidelink channel is assigned to the transmitting device, transmit a sensing signal to a receiving device via the sensing resource of the sidelink channel, and transmit an indication signal to the receiving device via the first indication resource of the sidelink channel indicating that the transmitting device transmitted the sensing signal via the sensing resource of the sidelink channel.
  • the apparatus may include means for receiving a control message indicating at least one of a sensing resource of a sidelink channel or that a first indication resource of the sidelink channel is assigned to the transmitting device, transmitting a sensing signal to a receiving device via the sensing resource of the sidelink channel, and transmitting an indication signal to the receiving device via the first indication resource of the sidelink channel indicating that the transmitting device transmitted the sensing signal via the sensing resource of the sidelink channel.
  • a non-transitory computer-readable medium storing code for wireless communication at a transmitting device is described.
  • the code may include instructions executable by a processor to receive a control message indicating at least one of a sensing resource of a sidelink channel or that a first indication resource of the sidelink channel is assigned to the transmitting device, transmit a sensing signal to a receiving device via the sensing resource of the sidelink channel, and transmit an indication signal to the receiving device via the first indication resource of the sidelink channel indicating that the transmitting device transmitted the sensing signal via the sensing resource of the sidelink channel.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving the control message indicating that the first indication resource of a set of different resources may be assigned to the transmitting device.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving the control message indicating that a code, or a sequence, or a cyclic shift, or any combination thereof, may be assigned to the transmitting device, and transmitting the indication signal via the first indication resource based on the code, or the sequence, or the cyclic shift, or any combination thereof.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting the indication signal that indicates a resource identifier of the sensing resource in which the sensing signal may be transmitted.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the receiving device, an update message indicating a transmission power adjustment, or a cycle length adjustment, or both, for the sensing signal.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting an additional sensing signal to the receiving device according to the transmission power adjustment, or the cycle length adjustment, or both.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving the update message that indicates a sensing resource identifier, and transmitting an additional sensing signal to the receiving device according to the transmission power adjustment, the cycle length adjustment, or both, based on the sensing resource identifier corresponding to the sensing resource indicated in the control message.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving the update message that indicates an indication resource identifier, and transmitting an additional sensing signal to the receiving device according to the transmission power adjustment, the cycle length adjustment, or both, based on the indication resource identifier corresponding to the first indication resource indicated in the control message.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving the control message from a base station or the receiving device.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving the control message that indicates a multiplexing type, and transmitting the sensing signal and the indication signal to the receiving device according to the multiplexing type.
  • the multiplexing type may be a frequency division multiplexing type or a time division multiplexing type.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving a sensing signal request from the receiving device, and transmitting the sensing signal to the receiving device based on receiving the sensing signal request.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting the sensing signal that may be a sounding reference signal, a frequency modulated continuous wave (FMCW) signal, a signal generated using a Golay sequence, or any combination thereof.
  • the sensing signal may be a sounding reference signal, a frequency modulated continuous wave (FMCW) signal, a signal generated using a Golay sequence, or any combination thereof.
  • FMCW frequency modulated continuous wave
  • a method of wireless communication at a receiving device may include receiving a sensing signal from a transmitting device via a sensing resource of a sidelink channel and receiving an indication signal from the transmitting device via a first indication resource of the sidelink channel indicating that the transmitting device transmitted the sensing signal via the sensing resource of the sidelink channel.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to receive a sensing signal from a transmitting device via a sensing resource of a sidelink channel and receive an indication signal from the transmitting device via a first indication resource of the sidelink channel indicating that the transmitting device transmitted the sensing signal via the sensing resource of the sidelink channel.
  • the apparatus may include means for receiving a sensing signal from a transmitting device via a sensing resource of a sidelink channel and receiving an indication signal from the transmitting device via a first indication resource of the sidelink channel indicating that the transmitting device transmitted the sensing signal via the sensing resource of the sidelink channel.
  • a non-transitory computer-readable medium storing code for wireless communication at a receiving device is described.
  • the code may include instructions executable by a processor to receive a sensing signal from a transmitting device via a sensing resource of a sidelink channel and receive an indication signal from the transmitting device via a first indication resource of the sidelink channel indicating that the transmitting device transmitted the sensing signal via the sensing resource of the sidelink channel.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from a base station, a control message indicating at least one of the sensing resource of the sidelink channel or that the first indication resource of the sidelink channel may be assigned to the transmitting device.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving a control message indicating that the first indication resource of a set of different resources may be assigned to the transmitting device.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving a control message indicating that a code, or a sequence, or a cyclic shift, or any combination thereof, may be assigned to the transmitting device, and receiving the indication signal via the first indication resource based on the code, or the sequence, or the cyclic shift, or any combination thereof.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, to the transmitting device, a control message indicating at least one of the sensing resource of the sidelink channel or that the first indication resource of the sidelink channel may be assigned to the transmitting device.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving the indication signal that indicates a resource identifier of the sensing resource in which the sensing signal may be received.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, to the transmitting device, an update message indicating a transmission power adjustment, or a cycle length adjustment, or both, for the sensing signal.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving an additional sensing signal from the transmitting device according to the transmission power adjustment, or the cycle length adjustment, or both.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting the update message that indicates a sensing resource identifier, and receiving an additional sensing signal from the transmitting device according to the transmission power adjustment, the cycle length adjustment, or both, based on the sensing resource identifier corresponding to the sensing resource indicated in a control message.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting the update message that indicates an indication resource identifier, and receiving an additional sensing signal from the transmitting device according to the transmission power adjustment, the cycle length adjustment, or both, based on the indication resource identifier corresponding to the first indication resource indicated in a control message.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving a control message that indicates a multiplexing type, and receiving the sensing signal and the indication signal from the transmitting device according to the multiplexing type.
  • the multiplexing type may be a frequency division multiplexing type or a time division multiplexing type.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting a sensing signal request to the transmitting device, and receiving the sensing signal from the transmitting device based on transmitting the sensing signal request.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving the sensing signal that may be a sounding reference signal, a frequency modulated continuous wave (FMCW) signal, a signal generated using a Golay sequence, or any combination thereof.
  • the sensing signal may be a sounding reference signal, a frequency modulated continuous wave (FMCW) signal, a signal generated using a Golay sequence, or any combination thereof.
  • FMCW frequency modulated continuous wave
  • a method of wireless communication at a base station may include transmitting, to a receiving device, a first control message indicating a sensing resource and a first indication resource that is assigned to at least one transmitting device and transmitting, to a first transmitting device of the at least one transmitting device, a second control message indicating the sensing resource and the first indication resource are assigned to the first transmitting device.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to transmit, to a receiving device, a first control message indicating a sensing resource and a first indication resource that is assigned to at least one transmitting device and transmit, to a first transmitting device of the at least one transmitting device, a second control message indicating the sensing resource and the first indication resource are assigned to the first transmitting device.
  • the apparatus may include means for transmitting, to a receiving device, a first control message indicating a sensing resource and a first indication resource that is assigned to at least one transmitting device and transmitting, to a first transmitting device of the at least one transmitting device, a second control message indicating the sensing resource and the first indication resource are assigned to the first transmitting device.
  • a non-transitory computer-readable medium storing code for wireless communication at a base station is described.
  • the code may include instructions executable by a processor to transmit, to a receiving device, a first control message indicating a sensing resource and a first indication resource that is assigned to at least one transmitting device and transmit, to a first transmitting device of the at least one transmitting device, a second control message indicating the sensing resource and the first indication resource are assigned to the first transmitting device.
  • transmitting the first control message may include operations, features, means, or instructions for transmitting the first control message indicating a transmitting device identifier of the first transmitting device and that the first transmitting device may be assigned to transmit a sensing signal via the sensing resource.
  • the second control message indicates a multiplexing type.
  • the multiplexing type corresponds to a frequency division multiplexing type or a time division multiplexing type.
  • FIG. 1 illustrates an example of a system for wireless communications that supports indication based passive sidelink sensing in accordance with aspects of the present disclosure.
  • FIG. 2 illustrates an example of a wireless communications system in accordance with aspects of the present disclosure.
  • FIGs. 3A and 3B illustrate examples of resource multiplexing techniques in accordance with aspects of the present disclosure.
  • FIG. 4 illustrates an example of a signal updating technique in accordance with aspects of the present disclosure.
  • FIG. 5 illustrates an example of a sensing signal technique in accordance with aspects of the present disclosure.
  • FIG. 6 illustrates an example of a process flow in accordance with aspects of the present disclosure.
  • FIG. 7 illustrates an example of a process flow in accordance with aspects of the present disclosure.
  • FIGs. 8 and 9 show block diagrams of devices in accordance with aspects of the present disclosure.
  • FIG. 10 shows a block diagram of a communications manager in accordance with aspects of the present disclosure.
  • FIG. 11 shows a diagram of a system including a device in accordance with aspects of the present disclosure.
  • FIGs. 12 and 13 show block diagrams of devices in accordance with aspects of the present disclosure.
  • FIG. 14 shows a block diagram of a communications manager in accordance with aspects of the present disclosure.
  • FIG. 15 shows a diagram of a system including a device in accordance with aspects of the present disclosure.
  • FIGs. 16 through 20 show flowcharts illustrating methods in accordance with aspects of the present disclosure.
  • a receiving device e.g., a user equipment (UE)
  • UE user equipment
  • the receiving device may determine metrics (e.g., Doppler frequency related metrics such as Doppler frequency vs range, Doppler frequency vs time, distance to a target object, speed of a target object, distance of a target object) based on receiving the one or more sensing signals, and the environmental information may be based on the determined metrics.
  • Doppler frequency related metrics such as Doppler frequency vs range, Doppler frequency vs time, distance to a target object, speed of a target object, distance of a target object
  • multiple transmitting devices may transmit one or more sensing signals, which may improve the sensing signal diversity and therefore improve the quality of the determined metrics. This may, however, increase the difficulty for the receiving device to determine whether a change in a sensing signal is due to a change in a transmitting device (e.g., a transmitting device powering on or powering off) or instead is due to a change in the target object (e.g., a movement of the target object) and prevent the receiving device from communicating with the transmitting devices to adjust sensing signal parameters.
  • a transmitting device e.g., a transmitting device powering on or powering off
  • a change in the target object e.g., a movement of the target object
  • a transmitting device may receive a control message indicating that an indication resource of a sidelink channel is assigned to the transmitting device and/or a sensing resource of the sidelink channel.
  • the control message may configure the transmitting device to transmit an indication signal and/or a sensing signal, and the control message may be transmitted by a base station or a receiving device.
  • the transmitting device may transmit a sensing signal to the receiving device via the sensing resource of the sidelink channel.
  • the sensing resource may be a sensing resource that is also used by additional transmitting devices, while in some other cases, the sensing resource may be assigned to just the transmitting device.
  • the transmitting device may transmit an indication signal to the receiving device via the indication resource of the sidelink channel, and the indication signal may indicate that the transmitting device transmitted the sensing signal via the sensing resource of the sidelink channel.
  • the indication signal may indicate a resource identifier of the sensing resource in which the sensing signal is transmitted. Transmitting the indication signal to the receiving device may support adjusting the transmission parameters of sensing signals, which may improve the passive sensing capabilities of the receiving device.
  • Such techniques may include transmitting an indication signal by a transmitting device that indicates the presence of a sensing signal transmitted by the transmitting device and/or the sensing resource at which the transmitting device transmitted the sensing signal.
  • Such techniques may additionally or alternatively include receiving an update message indicating a transmission power adjustment and/or a cycle length adjustment from the receiving device.
  • the update message may adjust the transmission power of a sensing signal transmitted by the transmitting device, which may improve the battery life of the transmitting device.
  • the update message may adjust the cycle length of the sensing signal, which may improve the ability of the receiving device to determine metrics based on receiving the sensing signal.
  • aspects of the disclosure are initially described in the context of wireless communications systems. Aspects of the disclosure are then described with respect to resource multiplexing techniques, a signal updating technique, a sensing signal technique, and a number of process flows. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to indication based passive sidelink sensing.
  • FIG. 1 illustrates an example of a wireless communications system 100 that supports indication based passive sidelink sensing in accordance with aspects of the present disclosure.
  • the wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130.
  • the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-A Pro LTE-A Pro
  • NR New Radio
  • the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
  • ultra-reliable e.g., mission critical
  • the base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities.
  • the base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125.
  • Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125.
  • the coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
  • the UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times.
  • the UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1.
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
  • network equipment e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment
  • the base stations 105 may communicate with the core network 130, or with one another, or both.
  • the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) .
  • the base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both.
  • the backhaul links 120 may be or include one or more wireless links.
  • One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
  • a base transceiver station a radio base station
  • an access point a radio transceiver
  • a NodeB an eNodeB (eNB)
  • eNB eNodeB
  • a next-generation NodeB or a giga-NodeB either of which may be referred to as a gNB
  • gNB giga-NodeB
  • a UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples.
  • a UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer.
  • PDA personal digital assistant
  • a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
  • WLL wireless local loop
  • IoT Internet of Things
  • IoE Internet of Everything
  • MTC machine type communications
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • devices such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • the UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers.
  • the term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125.
  • a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) .
  • BWP bandwidth part
  • Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling.
  • the wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation.
  • a UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration.
  • Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
  • FDD frequency division duplexing
  • TDD time division duplexing
  • a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers.
  • a carrier may be associated with a frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) and may be positioned according to a channel raster for discovery by the UEs 115.
  • E-UTRA evolved universal mobile telecommunication system terrestrial radio access
  • a carrier may be operated in a standalone mode where initial acquisition and connection may be conducted by the UEs 115 via the carrier, or the carrier may be operated in a non-standalone mode where a connection is anchored using a different carrier (e.g., of the same or a different radio access technology) .
  • the communication links 125 shown in the wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115.
  • Carriers may carry downlink or uplink communications (e.g., in an FDD mode) or may be configured to carry downlink and uplink communications (e.g., in a TDD mode) .
  • a carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100.
  • the carrier bandwidth may be one of a number of determined bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 megahertz (MHz) ) .
  • Devices of the wireless communications system 100 e.g., the base stations 105, the UEs 115, or both
  • the wireless communications system 100 may include base stations 105 or UEs 115 that support simultaneous communications via carriers associated with multiple carrier bandwidths.
  • each served UE 115 may be configured for operating over portions (e.g., a sub-band, a BWP) or all of a carrier bandwidth.
  • Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) .
  • MCM multi-carrier modulation
  • OFDM orthogonal frequency division multiplexing
  • DFT-S-OFDM discrete Fourier transform spread OFDM
  • a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related.
  • the number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) .
  • a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
  • One or more numerologies for a carrier may be supported, where a numerology may include a subcarrier spacing ( ⁇ f) and a cyclic prefix.
  • a carrier may be divided into one or more BWPs having the same or different numerologies.
  • a UE 115 may be configured with multiple BWPs.
  • a single BWP for a carrier may be active at a given time and communications for the UE 115 may be restricted to one or more active BWPs.
  • Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) .
  • Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
  • SFN system frame number
  • Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration.
  • a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots.
  • each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing.
  • Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) .
  • a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f ) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
  • a subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) .
  • TTI duration e.g., the number of symbol periods in a TTI
  • the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
  • Physical channels may be multiplexed on a carrier according to various techniques.
  • a physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques.
  • a control region e.g., a control resource set (CORESET)
  • CORESET control resource set
  • a control region for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier.
  • One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115.
  • one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner.
  • An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size.
  • Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
  • Each base station 105 may provide communication coverage via one or more cells, for example a macro cell, a small cell, a hot spot, or other types of cells, or any combination thereof.
  • the term “cell” may refer to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) , or others) .
  • a cell may also refer to a geographic coverage area 110 or a portion of a geographic coverage area 110 (e.g., a sector) over which the logical communication entity operates.
  • Such cells may range from smaller areas (e.g., a structure, a subset of structure) to larger areas depending on various factors such as the capabilities of the base station 105.
  • a cell may be or include a building, a subset of a building, or exterior spaces between or overlapping with geographic coverage areas 110, among other examples.
  • a macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by the UEs 115 with service subscriptions with the network provider supporting the macro cell.
  • a small cell may be associated with a lower-powered base station 105, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed) frequency bands as macro cells.
  • Small cells may provide unrestricted access to the UEs 115 with service subscriptions with the network provider or may provide restricted access to the UEs 115 having an association with the small cell (e.g., the UEs 115 in a closed subscriber group (CSG) , the UEs 115 associated with users in a home or office) .
  • a base station 105 may support one or multiple cells and may also support communications over the one or more cells using one or multiple component carriers.
  • a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) ) that may provide access for different types of devices.
  • protocol types e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB)
  • NB-IoT narrowband IoT
  • eMBB enhanced mobile broadband
  • a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110.
  • different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105.
  • the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105.
  • the wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
  • the wireless communications system 100 may support synchronous or asynchronous operation.
  • the base stations 105 may have similar frame timings, and transmissions from different base stations 105 may be approximately aligned in time.
  • the base stations 105 may have different frame timings, and transmissions from different base stations 105 may, in some examples, not be aligned in time.
  • the techniques described herein may be used for either synchronous or asynchronous operations.
  • Some UEs 115 may be low cost or low complexity devices and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) .
  • M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention.
  • M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay such information to a central server or application program that makes use of the information or presents the information to humans interacting with the application program.
  • Some UEs 115 may be designed to collect information or enable automated behavior of machines or other devices. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
  • Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (e.g., a mode that supports one-way communication via transmission or reception, but not transmission and reception simultaneously) .
  • half-duplex communications may be performed at a reduced peak rate.
  • Other power conservation techniques for the UEs 115 include entering a power saving deep sleep mode when not engaging in active communications, operating over a limited bandwidth (e.g., according to narrowband communications) , or a combination of these techniques.
  • some UEs 115 may be configured for operation using a narrowband protocol type that is associated with a defined portion or range (e.g., set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
  • a narrowband protocol type that is associated with a defined portion or range (e.g., set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
  • the wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof.
  • the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications.
  • the UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) .
  • Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) .
  • MCPTT mission critical push-to-talk
  • MCVideo mission critical video
  • MCData mission critical data
  • Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications.
  • the terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
  • a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) .
  • D2D device-to-device
  • P2P peer-to-peer
  • One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105.
  • Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105.
  • groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group.
  • a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
  • the D2D communication link 135 may be an example of a communication channel, such as a sidelink communication channel, between vehicles (e.g., UEs 115) .
  • vehicles may communicate using vehicle-to-everything (V2X) communications, vehicle-to-vehicle (V2V) communications, or some combination of these.
  • V2X vehicle-to-everything
  • V2V vehicle-to-vehicle
  • a vehicle may signal information related to traffic conditions, signal scheduling, weather, safety, emergencies, or any other information relevant to a V2X system.
  • vehicles in a V2X system may communicate with roadside infrastructure, such as roadside units, or with the network via one or more network nodes (e.g., base stations 105) using vehicle-to-network (V2N) communications, or with both.
  • V2N vehicle-to-network
  • the core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • the core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) .
  • EPC evolved packet core
  • 5GC 5G core
  • MME mobility management entity
  • AMF access and mobility management function
  • S-GW serving gateway
  • PDN Packet Data Network gateway
  • UPF user plane function
  • the control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130.
  • NAS non-access stratum
  • User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions.
  • the user plane entity may be connected to the network operators IP services 150.
  • the network operators IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
  • Some of the network devices may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) .
  • Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) .
  • Each access network transmission entity 145 may include one or more antenna panels.
  • various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
  • the wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) .
  • the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length.
  • UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors.
  • the transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
  • HF high frequency
  • VHF very high frequency
  • the wireless communications system 100 may also operate in a super high frequency (SHF) region using frequency bands from 3 GHz to 30 GHz, also known as the centimeter band, or in an extremely high frequency (EHF) region of the spectrum (e.g., from 30 GHz to 300 GHz) , also known as the millimeter band.
  • SHF super high frequency
  • EHF extremely high frequency
  • the wireless communications system 100 may support millimeter wave (mmW) communications between the UEs 115 and the base stations 105, and EHF antennas of the respective devices may be smaller and more closely spaced than UHF antennas. In some examples, this may facilitate use of antenna arrays within a device.
  • mmW millimeter wave
  • the propagation of EHF transmissions may be subject to even greater atmospheric attenuation and shorter range than SHF or UHF transmissions.
  • the techniques disclosed herein may be employed across transmissions that use one or more different frequency regions, and designated use of bands across these frequency regions may differ by country or regulating body.
  • the wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands.
  • the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • LAA License Assisted Access
  • LTE-U LTE-Unlicensed
  • NR NR technology
  • an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance.
  • operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) .
  • Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
  • a base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming.
  • the antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming.
  • one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower.
  • antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations.
  • a base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115.
  • a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
  • an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
  • the base stations 105 or the UEs 115 may use MIMO communications to exploit multipath signal propagation and increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers. Such techniques may be referred to as spatial multiplexing.
  • the multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas.
  • Each of the multiple signals may be referred to as a separate spatial stream and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams (e.g., different codewords) .
  • Different spatial layers may be associated with different antenna ports used for channel measurement and reporting.
  • MIMO techniques include single-user MIMO (SU-MIMO) , where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) , where multiple spatial layers are transmitted to multiple devices.
  • SU-MIMO single-user MIMO
  • Beamforming which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device.
  • Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference.
  • the adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device.
  • the adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
  • a base station 105 or a UE 115 may use beam sweeping techniques as part of beam forming operations.
  • a base station 105 may use multiple antennas or antenna arrays (e.g., antenna panels) to conduct beamforming operations for directional communications with a UE 115.
  • Some signals e.g., synchronization signals, reference signals, beam selection signals, or other control signals
  • the base station 105 may transmit a signal according to different beamforming weight sets associated with different directions of transmission.
  • Transmissions in different beam directions may be used to identify (e.g., by a transmitting device, such as a base station 105, or by a receiving device, such as a UE 115) a beam direction for later transmission or reception by the base station 105.
  • a transmitting device such as a base station 105
  • a receiving device such as a UE 115
  • Some signals may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) .
  • the beam direction associated with transmissions along a single beam direction may be determined based on a signal that was transmitted in one or more beam directions.
  • a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions and may report to the base station 105 an indication of the signal that the UE 115 received with a highest signal quality or an otherwise acceptable signal quality.
  • transmissions by a device may be performed using multiple beam directions, and the device may use a combination of digital precoding or radio frequency beamforming to generate a combined beam for transmission (e.g., from a base station 105 to a UE 115) .
  • the UE 115 may report feedback that indicates precoding weights for one or more beam directions, and the feedback may correspond to a configured number of beams across a system bandwidth or one or more sub-bands.
  • the base station 105 may transmit a reference signal (e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS) ) , which may be precoded or unprecoded.
  • a reference signal e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS)
  • CRS cell-specific reference signal
  • CSI-RS channel state information reference signal
  • the UE 115 may provide feedback for beam selection, which may be a precoding matrix indicator (PMI) or codebook-based feedback (e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook) .
  • PMI precoding matrix indicator
  • codebook-based feedback e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook
  • a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) or for transmitting a signal in a single direction (e.g., for transmitting data to a receiving device) .
  • a receiving device may try multiple receive configurations (e.g., directional listening) when receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals.
  • receive configurations e.g., directional listening
  • a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets (e.g., different directional listening weight sets) applied to signals received at multiple antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at multiple antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive configurations or receive directions.
  • receive beamforming weight sets e.g., different directional listening weight sets
  • a receiving device may use a single receive configuration to receive along a single beam direction (e.g., when receiving a data signal) .
  • the single receive configuration may be aligned in a beam direction determined based on listening according to different receive configuration directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio (SNR) , or otherwise acceptable signal quality based on listening according to multiple beam directions) .
  • SNR signal-to-noise ratio
  • the wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack.
  • communications at the bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based.
  • a Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels.
  • RLC Radio Link Control
  • a Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels.
  • the MAC layer may also use error detection techniques, error correction techniques, or both to support retransmissions at the MAC layer to improve link efficiency.
  • the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or a core network 130 supporting radio bearers for user plane data.
  • RRC Radio Resource Control
  • transport channels may be mapped to physical channels.
  • the UEs 115 and the base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully.
  • Hybrid automatic repeat request (HARQ) feedback is one technique for increasing the likelihood that data is received correctly over a communication link 125.
  • HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) .
  • FEC forward error correction
  • ARQ automatic repeat request
  • HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., low signal-to-noise conditions) .
  • a device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
  • Object sensing may be performed in some wireless communications system (e.g., a 5G system, an NR system, etc. ) .
  • a sensor or receiving device e.g., a UE 115
  • a smart home may sense the environment of the home to derive environmental information such as a human presence, a gesture, a gait, a position, an activity, breathing, heartbeat, etc.
  • radio sensing may be effective while other sensing technologies (e.g., light sensing, video sensing, lidar sensing, etc. ) are weak or invalid.
  • the performance of video sensing may degrade when the light within an environment (e.g., a night environment, a tunnel environment, a misty weather environment, etc.
  • radio sensing which relies on the transmission and reception of radio signals, can be an effective and efficient sensing technology due to its insensitivity to light and low price.
  • Radio sensing may include active sensing and passive sensing.
  • Active sensing may include a device transmitting and receiving a sensing signal. In other words, if a sensing signal is self-transmitted, the sensing may be considered active.
  • Passive sensing may include a device receiving a sensing signal that was transmitted by another device. In other words, if a sensing signal is not self-transmitted, the sensing may be considered passive. In some cases, passive sensing may be applied when a sensor (e.g., a receiving device) does not have the capability to transmit a sensing sigla or decides to mute its sensing signal transmitter to reduce the co-channel interference or save power.
  • Passive sensing may be divided into two types of passive sensing.
  • passive sensing type 1 may include a target object that is also the sensing signal transmitter.
  • passive sensing type 2 may include a target object that is the reflector of the sensing signal but not the sensing signal transmitter. The techniques described herein may consider passive sensing type 2.
  • a transmitting device may receive a control message indicating at least one of a sensing resource of a sidelink channel or that a first indication resource of the sidelink channel is assigned to the transmitting device.
  • the transmitting device may transmit a sensing signal to a receiving device (e.g., a UE 115) via the sensing resource of the sidelink channel.
  • the transmitting device may transmit an indication signal to the receiving device via the first indication resource of the sidelink channel indicating that the transmitting device transmitted the sensing signal via the sensing resource of the sidelink channel.
  • the transmitting device may receive an update message indicating a transmission power adjustment, a cycle length adjustment, or both, for the sensing signal and transmit an additional sensing signal to the receiving device according to the transmission power adjustment, the cycle length adjustment, or both.
  • FIG. 2 an example of a wireless communications system 200 that supports sidelink based passive sensing in accordance with aspects of the present disclosure.
  • wireless communications system 200 may implement aspects of wireless communications system 100.
  • Wireless communications system 200 may include base station 105-a and a number of UEs 115, which may be examples of base stations 105 and UEs 115 as described with reference to FIG. 1.
  • Base station 105-a may be associated with an area of coverage area 110-a
  • UE 115-c e.g., a receiving device
  • UE 115-c may additionally receive sensing signal 210-b and indication signal 215-b from UE 115-b (e.g., a second transmitting device) .
  • base station 105-a may configure UE 115-a and/or UE 115-b with indication resources. For example, base station 105-a may transmit a configuration message to UE 115-a assigning an indication resource of a sidelink channel to UE 115-a and a configuration message to UE 115-b assigning an indication resource of the sidelink channel to UE 115-b.
  • the configuration message may be a broadcast transmission or a unicast transmission.
  • UE 115-c or base station 105-a may transmit a sensing signal request message, and UE 115-a may transmit sensing signal 210-a and indication signal 215-a based on receiving the sensing signal request message.
  • UE 115-b may transmit sensing signal 210-b and indication signal 215-b based on receiving the sensing signal request message.
  • An indication signal 215 may indicate the UE 115 that transmitted a sensing signal 210.
  • UE 115-c may determine environmental information associated with the target object 205 (e.g., a person) based on receiving one or more sensing signals 210 and/or indication signals 215.
  • the waveform of a sensing signal 210 may be a frequency modulated continuous wave (FMCW) signal, generated using a Golay sequence, or another kind of signal such as a refence signal.
  • UE 115-c may perform a sensing procedure (e.g., a sensing algorithm) to determine one or more Doppler frequency related metrics (e.g., Doppler frequency vs range, Doppler frequency vs time) of the radio channel between the target object 205 and the receiving object (e.g., UE 115-c) .
  • the environmental information may include target information (e.g., distance, speed, direction, etc. ) of the target object 205, and UE 115-c may determine the target information for the target object 205 based on the Doppler frequency related metrics.
  • UE 115-c may broadcast the sensing signal request message to UE 115-a and UE 115-b, and the sensing signal request message may indicate one or more sensing resources on which the transmitting UEs is requested to transmit one or more sensing signals.
  • UE 115-a may transmit sensing signal 210-a to UE 115-c via a first sensing resource and indication signal 215-a to UE 115-c via a first indication resource.
  • the indication signal 215-a may indicate that sensing signal 210-a was transmitted by UE 115-a.
  • UE 115-b may additionally transmit sensing signal 210-b via a second sensing resource and indication resource 215-b via a second indication resource.
  • the first sensing resource and the second sensing resource may be the same (e.g., a group common sensing resource) , while in some other cases, the first sensing resource may be different from the second sensing resource.
  • Receiving sensing signals 210 from multiple transmitting devices may increase the number of received propagation paths, thereby enhancing the sensing diversity and quality of the target information determined by the receiving device (e.g., UE 115-c) .
  • UE 115-c may transmit an update message to UE 115-a and/or UE 115-b indicating the adjustment of a transmission power, a cycle length, or both.
  • the update message may indicate a sensing resource identifier, an indication resource identifier, a transmission power, or a cycle length, and UEs that are associated with the sensing resource identifier or the indication resource identifier may alter the transmission power of a sensing signal 210 based on the indicated transmission power and/or the cycle length of a sensing signal 210 based on the indicated cycle length. Altering the transmission power of a sensing signal 210 and/or the cycle length of a sensing signal 210 may improve the battery life and passive sensing capabilities of a UE 115.
  • passive sensing may be classified based on the transfer direction of a sensing signal 210. For example, transmitting sensing signal 210-c from base station 105-a to UE 115-c (e.g., a downlink direction) may improve battery performance of UE 115-c. Transmitting sensing signal 210-c from UE 115-c to base station 105-a may support the use of powerful sensing analytical capabilities of base station 105-a. In some cases, base station 105-a may be located indoors to support the transmission of sensing signal 210-c to or from UE 115-c.
  • Transmitting a sensing signal 210 (e.g., sensing signal 210-a and/or sensing signal 210-b) from a UE 115 (e.g., UE 115-a and/or UE 115-b) may support passive sensing without an indoor base station.
  • FIGs. 3A and 3B illustrate examples resource multiplexing techniques 301 and 302 that support sidelink based passive sensing in accordance with aspects of the present disclosure.
  • resource multiplexing techniques 301 and 302 may implement aspects of wireless communications system 100 or 200.
  • the resource multiplexing technique 301 may illustrate an FDM technique that supports passive sidelink based sensing
  • the resource multiplexing technique 302 may illustrate a TDM technique that supports passive sidelink based sensing.
  • the operations of resource multiplexing techniques 301 and 302 may be implemented by a UE 115 or its components as described herein.
  • the resource multiplexing technique 301 may include a sensing radio resource 310, an indication radio resource 315, a number of sensing signals 320, a number of indication signals 325, and a number of indication resource regions 330.
  • occasions of the indication resource regions 330 in which one or more sensing signals 320 may be transmitted may be frequency division multiplexed with occasions of the sensing radio resource 310 in which one or more indication signals 325 may be transmitted.
  • the resource multiplexing technique 301 may include a group common sensing radio resource 310. In such cases, an indication signal 325 may indicate the presence or absence of a transmitting device in a corresponding sensing signal 320.
  • the resource multiplexing technique 301 may correspond to an FDM technique and include a sensing radio resource 310 at a first frequency region and an indication resource 315 at a second frequency region. Each Transmitting UE may be assigned an indication resource region 330 of the indication signals 325 in the indication radio resource 315.
  • indication resource region 330-a of indication signal 325-a may be used to indicate the presence of a first transmitting device in sensing signals 320-a and 320-b.
  • Indication resource region 330-b of indication signal 325-b may be used to indicate the presence of the first transmitting device in sensing signals 320-c and 320-d
  • indication resource region 330-f of indication signal 325-b may be used to indicate the presence of a second transmitting device in sensing signals 320-j and 320-k.
  • Indication resource region 330-c of indication signal 325-c may be used to indicate the presence of the first transmitting device in sensing signals 320-e and 320-f, and indication resource region 330-g of indication signal 325-c may be used to indicate the presence of the second transmitting device in sensing signals 320-l and 320-m.
  • Indication resource region 330-d of indication signal 325-d may be used to indicate the presence of the first transmitting device in sensing signals 320-g and 320-h.
  • Indication resource region 330-e of indication signal 325-e may be used to indicate the presence of the first transmitting device in sensing signal 320-i.
  • a transmitting UE may be assigned a unique code, sequence, or cyclic shift.
  • the unique code, sequence, or cyclic shift may identify the UE and indicate that the UE transmitted a sensing signal at a corresponding signal resource.
  • the unique code, sequence, or cyclic shift may be used instead of or in addition to the indication signals 325.
  • the resource multiplexing technique 301 may include multiple sensing radio resources 310.
  • the indication signals 325 may indicate the presence or absence of one or more transmitting devices in a corresponding sensing signal 320 of a particular sensing radio resource 310.
  • an indication signal 325 may include a sensing resource identifier indicating the sensing radio resource 310 in which a corresponding sensing signal 320 is transmitted.
  • the resource multiplexing technique 302 may include a number of sensing signals 320 as well as a number of indication signals 325.
  • An indication signal 325 may be transmitted by a transmitting device to a receiving device, and the indication signal 325 may indicate the presence or absence of the transmitting device in a corresponding sensing signal 320. In some cases, an indication signal 325 may indicate the presence or absence of a transmitting device in a corresponding sensing signal 320 of a particular sensing radio resource.
  • the resource multiplexing technique 302 may correspond to a TDM technique.
  • Each Transmitting UE may be assigned an indication resource region 330 of the indication signals 325.
  • occasions of the indication resource regions in which one or more sensing signals 320 may be transmitted may be time division multiplexed with occasions of the sensing radio resource in which one or more indication signals 325 may be transmitted.
  • indication resource region 330-h of indication signal 325-f may be used indicate the presence of a first transmitting device in sensing signals 320-n and 320-o.
  • Indication resource region 330-I of indication signal 325-g may be used to indicate the presence of the first transmitting device in sensing signals 320-p and 320-q.
  • Indication resource region 330-m of indication signal 325-g may be used to indicate the presence of a second transmitting device in sensing signals 320-w and 320-x.
  • Indication resource region 330-j in indication signal 325-h may be used to indicate the presence of the first transmitting device in sensing signals 320-r and 320-s.
  • Indication resource region 330-n in indication signal 325-h may be used to indicate the presence of the second transmitting device in sensing signals 320-y and 320-z.
  • Indication resource region 330-k in indication signal 325-i may be used to indicate the presence of the first transmitting device in sensing signals 320-t and 320-u.
  • Indication resource region 330-l in indication signal 325-j may indicate the presence of the first transmitting device in sensing signal 325-v.
  • a transmitting device transmitting one or more indication signals 325 may support a receiving device (e.g., a receiving UE) in identifying changes in one or more transmitting devices, which may improve the accuracy of passive sensing (e.g., target object gesture recognition) .
  • the indications signals 325 may support the receiving device in the identifying the transmitting devices that transmitted sensing signals, thereby allowing the receiving device to assess whether changes in a sensing signal are due to the sensing signal being sent from a different transmitting device or to movement of a target object.
  • FIG. 4 illustrates an example of signal updating technique 400 that supports sidelink based passive sensing in accordance with aspects of the present disclosure.
  • the signal updating technique 400 may implement aspects of wireless communications system 100 or 200.
  • the operations of the signal updating technique 400 may be implemented by a UE 115 or its components, as described herein.
  • UE 115-d may transmit sensing signal 410-a to UE 115-f (e.g., a receiving device) .
  • UE 115-d may transmit the sensing signal 410-a based on receiving a sensing signal request from UE 115-f or a base station 105.
  • Sensing signal 410-a may be transmitted via a sidelink, and sensing signal 410-a may include a periodical SRS, a semi-persistent SRS, an FMCW signal, generated using a Golay sequence, or the like.
  • UE 115-f may transmit (e.g., via broadcast or unicast) an update message that indicates a transmission power adjustment and/or a cycle length adjustment.
  • a cycle length may correspond to the frequency with which the transmitter a sensing resources occurs in which a transmitting device transmits the sensing signal. Transmitting more often may result in improved sensing signal measurements and improved Doppler frequency metrics. Transmitting less often may consume less power, thereby improving battery life.
  • UE 115-d may receive the update message as update message 420-a
  • UE 115-e may receive the update message as update message 420-b.
  • the update message may be transmitted via group common sidelink control information (SCI) .
  • multiple transmitting devices e.g., UE 115-d and UE 115-e may be associated with different sensing resources.
  • the update message may indicate a sensing resource identifier
  • the transmitting devices associated with the sensing resource identifier may update sensing signals 410 based on the update message (e.g., update the transmission power of a sensing signal 410, update the cycle length of a sensing signal 410) .
  • FIG. 4 also illustrates an example of an SCI format 401 that supports sidelink based passive sensing.
  • the SCI format 401 may include a number of resource identifiers 420 and a number of signal parameter adjustment indications 425.
  • a resource identifier 420 may identify a sensing signal resource or an indication signal resource, and a signal parameter adjustment indication 425 may indicate a transmission power adjustment and/or a cycle length adjustment.
  • a transmitting device may receive an SCI message containing resource identifier 420-a and signal parameter adjustment indications 425-a. If the transmitting device is associated with the sensing resource indicated by resource identifier 425-a, the transmitting device may update sensing signal parameters based on signal parameter adjustment indication 425-a. If the transmitting device is associated with the indication resource indicated by resource identifier 425-a, the transmitting device may update sensing signal parameters based on signal parameter adjustment indication 425-a.
  • Resource identifier 420-b and 420-c may indicate sensing resources or indication resources that are the same or different from the sensing/indication resources indicated in resource identifier 420-a
  • signal parameter adjustment indications 425-b and 425-c may indicate signal parameter adjustments that are the same or different from the signal parameter adjustments indicated in signal parameter adjustment indication 425-a.
  • the SCI format 401 may support a receiving device in adjusting the sensing signal parameters of particular transmitting devices.
  • the SCI format 401 may also support the receiving device in adjusting the sensing signal parameters of multiple transmitting device, which may improve the passive sensing capabilities of the receiving device.
  • multiple transmitting devices may be associated with the same sensing resource.
  • the update message may indicate an indication resource identifier, and the transmitting devices associated with the indication resource identifier may update sensing signals 410 based on the update message (e.g., update the transmission power of sensing signal 410-b according to the update message and/or update the cycle length of sensing signal 410-b according to the update message) .
  • Each transmitting device may be associated with a respective sensing resource identifier and an indication resource identifier, receive the update message, and update one or more sensing signal parameters (e.g., transmission power, cycle length, etc. ) based on the update message indicating the respective sensing resource identifier or indication resource identifier of the transmitting device.
  • UE 115-d may be associated with a first indication resource identifier
  • UE 115-e may be associated with a second indication resource identifier.
  • the update message may be broadcasted to UE 115-d as update message 420-a and to UE 115-e as update message 420-b, and the update message may indicate the first indication resource identifier.
  • UE 115-d may update sensing signal parameters based on the update message and transmit sensing signal 410-b according to the updated sensing signal parameters.
  • UE 115-e may refrain from updating sensing signal parameters based on the update message not indicating the second indication resource identifier. Updating the sensing signal parameters of one or more transmitting devices may reduce device battery consumption and improve passive sensing capabilities
  • FIG. 5 illustrates an example of sensing signal techniques 500 and 501 that support indication based passive sidelink sensing in accordance with aspects of the present disclosure.
  • the sensing signal techniques 500 and 501 may implement aspects of wireless communication system 100 or 200.
  • the sensing signal technique 500 may include a first received signal strength value 505-a, a second received signal strength value 505-b, and a received signal strength indicator 510-a.
  • the sensing signal technique 501 may include a first received signal strength value 505-c, a second received signal strength value 505-d, and a received signal strength indicator 510-b.
  • a receiving device may identify multiple transmitting devices transmitting sensing signals in a group common sensing radio resource.
  • the first received signal strength value 505-a e.g., 80 Decibel-milliwatts (dBm)
  • the second received signal strength value 505-b e.g., 90 dBm
  • the first received signal strength value 505-c and the second received signal strength value 505-d may be associated with a first transmitting device.
  • the first transmitting device may move from a first location to a second location, and the first received signal strength value 505-c may correspond to the first location and the second received signal strength value 505-d may correspond to the second location.
  • a transmitting device may transmit an indication signal to the receiving device, which may support the receiving device in determining the location, movement, speed, distance, or actions of one or more target objects and/or transmitting devices.
  • a first transmitting device and a second transmitting device may transmit sensing signals on a common sensing radio resource, which may reduce radio resource consumption.
  • the first transmitting device and the second transmitting device may also transmit an indication signal, which may support a receiving device in determining whether a change in the received signal strength is due to a change in a transmitting device (e.g., the powering on or off of a transmitting device) or a change in a target object (e.g., a movement of the target object) .
  • the receiving device may transmit an update message to one or more transmitting devices, which may improve the received strength of sensing signals.
  • FIG. 6 illustrates an example of a process flow 600 that supports indication based passive sidelink sensing in accordance with aspects of the present disclosure.
  • process flow 600 may implement aspects of wireless communication system 100 and 200.
  • the process flow 600 includes UE 115-g (e.g., a receiving device) , UE 115-h (e.g., a transmitting device) , and base station 105-b which may be examples of the corresponding devices described with reference to FIGs 1 through 5.
  • UE 115-h may transmit an indication signal which may improve the passive sensing capabilities of UE 115-g.
  • Alternative examples of the following may be implemented, where some steps are performed in a different order than described or are not performed at all. In some cases, steps may include additional features not mentioned below, or further steps may be added.
  • base station 105-b may transmit an indication of an indication resource to UE 115-h.
  • base station 105-b may divide a set of indication resources into multiple parts and assign one or more parts to UE 115-h.
  • An indication resource may include a time-frequency resource, a code, a sequence, or a cycle shift.
  • each transmitting UE may be assigned a unique part of one or more indication resources.
  • the unique part may be a unique time-frequency resource, a unique code, a unique sequence, or a unique cycle shift, that differs from a different unique part of the one or more indication resources assigned to a different transmitting UE.
  • the receiving UE may be able to determine whether one or more multiple transmitting UEs have transmitted in a sensing resource.
  • UE 115-g may transmit a sensing signal request to UE 115-h.
  • the sensing signal request may indicate a sensing resource.
  • UE 115-h may start transmitting a sensing signal.
  • UE 115-h may transmit the sensing signal. In some cases, UE 115-h may transmit the sensing signal based on receiving the sensing signal request. In some additional or alternative cases, the sensing signal may be transmitted via a sensing resource indicated by UE 115-g or base station 105-b.
  • UE 115-h may transmit an indication signal.
  • the indication signal may be transmitted at an indication resource associated with UE 115-h.
  • the indication signal may indicate the presence or absence of UE 115-h in the sensing signal.
  • the indication signal may indicate the sensing resource at which the sensing signal is transmitted.
  • UE 115-g may performing sensing of the sensing signal.
  • UE 115-g may perform the sensing based on the sensing signal and/or the indication signal.
  • UE 115-g may monitor an indication resource while receiving the sensing signal to determine how many transmitters are transmitting a sensing signal.
  • the UE 115-g may use the indication resource to determine whether the number of transmitting devices (e.g., UE 115-h) is the same or has changed relative to prior monitoring of the sensing resource (e.g., the number of transmitting devices have increased, the number of transmitting devices have decreased) , whether the location of any of the transmitting devices has changed or is the same, , and may use observation of the indication resource when processing the received sensing signals to determine one or more Doppler frequency-related metrics for a target object. Thus, the UE 115-g may use the indication resource to derive a more accurate sensing result.
  • UE 115-h may stop transmitting the sensing signal. When UE 115-h stops transmitting the sensing signal it may also stop transmitting the indication signal.
  • FIG. 7 illustrates an example of a process flow 700 that supports indication based passive sidelink sensing in accordance with aspects of the present disclosure.
  • process flow 700 may implement aspects of wireless communication system 100 and 200.
  • the process flow 700 includes UE 115-i (e.g., a transmitting device) , UE 115-j (e.g., a receiving device) , and base station 105-c, which may be examples of the corresponding devices described with reference to FIGs 1 through 6.
  • UE 115-i may transmit an indication signal which may improve the passive sensing capabilities of UE 115-j.
  • Alternative examples of the following may be implemented, where some steps are performed in a different order than described or are not performed at all. In some cases, steps may include additional features not mentioned below, or further steps may be added.
  • UE 115-i may receive a control message indicating a sensing resource of a sidelink channel and/or a first indication resource of the sidelink channel assigned to UE 115-i.
  • the control message may be transmitted by UE 115-j, while in some additional or alternative examples, the control message may be transmitted by base station 105-c.
  • UE 115-i may transmit a sensing signal to UE 115-j via the sensing resource of the sidelink channel.
  • UE 115-i may transmit an indication signal to UE 115-j via the first indication resource of the sidelink channel indicating that UE 115-i transmitted the sensing signal via the sensing resource of the sidelink channel.
  • UE 115-j may transmit an update message to UE 115-i, and the update message may indicate sensing signal parameters (e.g., a transmission power, a cycle length, a sensing signal resource, etc. ) .
  • UE 115-i may transmit a sensing signal to UE 115-j in accordance with the sensing signal parameters indicated in the update message. Updating sensing signal parameters based on an update message may improve sensing signal quality and the passive sensing capabilities of UE 115-j.
  • FIG. 8 shows a block diagram 800 of a device 805 that supports indication based passive sidelink sensing in accordance with aspects of the present disclosure.
  • the device 805 may be an example of aspects of a UE 115 as described herein.
  • the device 805 may include a receiver 810, a communications manager 815, and a transmitter 820.
  • the device 805 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 810 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to indication based passive sidelink sensing, etc. ) . Information may be passed on to other components of the device 805.
  • the receiver 810 may be an example of aspects of the transceiver 1120 described with reference to FIG. 11.
  • the receiver 810 may utilize a single antenna or a set of antennas.
  • the communications manager 815 may receive a control message indicating at least one of a sensing resource of a sidelink channel or that a first indication resource of the sidelink channel is assigned to the transmitting device, transmit a sensing signal to a receiving device via the sensing resource of the sidelink channel, and transmit an indication signal to the receiving device via the first indication resource of the sidelink channel indicating that the transmitting device transmitted the sensing signal via the sensing resource of the sidelink channel.
  • the communications manager 815 may also receive a sensing signal from a transmitting device via a sensing resource of a sidelink channel and receive an indication signal from the transmitting device via a first indication resource of the sidelink channel indicating that the transmitting device transmitted the sensing signal via the sensing resource of the sidelink channel.
  • the communications manager 815 may be an example of aspects of the communications manager 1110 described herein.
  • the communications manager 815 may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 815, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • code e.g., software or firmware
  • ASIC application-specific integrated circuit
  • the communications manager 815 may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communications manager 815, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communications manager 815, or its sub-components may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • I/O input/output
  • the transmitter 820 may transmit signals generated by other components of the device 805.
  • the transmitter 820 may be collocated with a receiver 810 in a transceiver module.
  • the transmitter 820 may be an example of aspects of the transceiver 1120 described with reference to FIG. 11.
  • the transmitter 820 may utilize a single antenna or a set of antennas.
  • FIG. 9 shows a block diagram 900 of a device 905 that supports indication based passive sidelink sensing in accordance with aspects of the present disclosure.
  • the device 905 may be an example of aspects of a device 805, or a UE 115 as described herein.
  • the device 905 may include a receiver 910, a communications manager 915, and a transmitter 945.
  • the device 905 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 910 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to indication based passive sidelink sensing, etc. ) . Information may be passed on to other components of the device 905.
  • the receiver 910 may be an example of aspects of the transceiver 1120 described with reference to FIG. 11.
  • the receiver 910 may utilize a single antenna or a set of antennas.
  • the communications manager 915 may be an example of aspects of the communications manager 815 as described herein.
  • the communications manager 915 may include a control message manager 920, a sensing signal manager 925, an indication signal manager 930, a sensing signal component 935, and an indication signal component 940.
  • the communications manager 915 may be an example of aspects of the communications manager 1110 described herein.
  • the control message manager 920 may receive a control message indicating at least one of a sensing resource of a sidelink channel or that a first indication resource of the sidelink channel is assigned to the transmitting device.
  • the sensing signal manager 925 may transmit a sensing signal to a receiving device via the sensing resource of the sidelink channel.
  • the indication signal manager 930 may transmit an indication signal to the receiving device via the first indication resource of the sidelink channel indicating that the transmitting device transmitted the sensing signal via the sensing resource of the sidelink channel.
  • the sensing signal component 935 may receive a sensing signal from a transmitting device via a sensing resource of a sidelink channel.
  • the indication signal component 940 may receive an indication signal from the transmitting device via a first indication resource of the sidelink channel indicating that the transmitting device transmitted the sensing signal via the sensing resource of the sidelink channel.
  • the transmitter 945 may transmit signals generated by other components of the device 905.
  • the transmitter 945 may be collocated with a receiver 910 in a transceiver module.
  • the transmitter 945 may be an example of aspects of the transceiver 1120 described with reference to FIG. 11.
  • the transmitter 945 may utilize a single antenna or a set of antennas.
  • FIG. 10 shows a block diagram 1000 of a communications manager 1005 that supports indication based passive sidelink sensing in accordance with aspects of the present disclosure.
  • the communications manager 1005 may be an example of aspects of a communications manager 815, a communications manager 915, or a communications manager 1110 described herein.
  • the communications manager 1005 may include a control message manager 1010, a sensing signal manager 1015, an indication signal manager 1020, an update message manager 1025, a sensing signal component 1030, an indication signal component 1035, a control message component 1040, and an update message component 1045.
  • Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the control message manager 1010 may receive a control message indicating at least one of a sensing resource of a sidelink channel or that a first indication resource of the sidelink channel is assigned to the transmitting device.
  • control message manager 1010 may receive the control message indicating that the first indication resource of a set of different resources is assigned to the transmitting device. In some examples, the control message manager 1010 may receive the control message indicating that a code, or a sequence, or a cyclic shift, or any combination thereof, is assigned to the transmitting device.
  • control message manager 1010 may receive the control message from a base station or the receiving device. In some examples, the control message manager 1010 may receive the control message that indicates a multiplexing type. In some cases, the multiplexing type is a frequency division multiplexing type or a time division multiplexing type.
  • the sensing signal manager 1015 may transmit a sensing signal to a receiving device via the sensing resource of the sidelink channel. In some examples, the sensing signal manager 1015 may transmit an additional sensing signal to the receiving device according to the transmission power adjustment, or the cycle length adjustment, or both.
  • the sensing signal manager 1015 may transmit an additional sensing signal to the receiving device according to the transmission power adjustment, the cycle length adjustment, or both, based on the sensing resource identifier corresponding to the sensing resource indicated in the control message.
  • the sensing signal manager 1015 may transmit an additional sensing signal to the receiving device according to the transmission power adjustment, the cycle length adjustment, or both, based on the indication resource identifier corresponding to the first indication resource indicated in the control message.
  • the sensing signal manager 1015 may transmit the sensing signal and the indication signal to the receiving device according to the multiplexing type. In some examples, the sensing signal manager 1015 may receive a sensing signal request from the receiving device. In some examples, the sensing signal manager 1015 may transmit the sensing signal to the receiving device based on receiving the sensing signal request.
  • the sensing signal manager 1015 may transmit the sensing signal that is a sounding reference signal, a frequency modulated continuous wave (FMCW) signal, a signal generated using a Golay sequence, or any combination thereof.
  • FMCW frequency modulated continuous wave
  • the indication signal manager 1020 may transmit an indication signal to the receiving device via the first indication resource of the sidelink channel indicating that the transmitting device transmitted the sensing signal via the sensing resource of the sidelink channel.
  • the indication signal manager 1020 may transmit the indication signal via the first indication resource based on the code, or the sequence, or the cyclic shift, or any combination thereof. In some examples, the indication signal manager 1020 may transmit the indication signal that indicates a resource identifier of the sensing resource in which the sensing signal is transmitted.
  • the sensing signal component 1030 may receive a sensing signal from a transmitting device via a sensing resource of a sidelink channel. In some examples, the sensing signal component 1030 may receive an additional sensing signal from the transmitting device according to the transmission power adjustment, or the cycle length adjustment, or both.
  • the sensing signal component 1030 may receive an additional sensing signal from the transmitting device according to the transmission power adjustment, the cycle length adjustment, or both, based on the sensing resource identifier corresponding to the sensing resource indicated in a control message.
  • the sensing signal component 1030 may receive an additional sensing signal from the transmitting device according to the transmission power adjustment, the cycle length adjustment, or both, based on the indication resource identifier corresponding to the first indication resource indicated in a control message.
  • the sensing signal component 1030 may receive the sensing signal and the indication signal from the transmitting device according to the multiplexing type. In some examples, the sensing signal component 1030 may transmit a sensing signal request to the transmitting device.
  • the sensing signal component 1030 may receive the sensing signal from the transmitting device based on transmitting the sensing signal request. In some examples, the sensing signal component 1030 may receive the sensing signal that is a sounding reference signal, a frequency modulated continuous wave (FMCW) signal, a signal generated using a Golay sequence, or any combination thereof.
  • FMCW frequency modulated continuous wave
  • the indication signal component 1035 may receive an indication signal from the transmitting device via a first indication resource of the sidelink channel indicating that the transmitting device transmitted the sensing signal via the sensing resource of the sidelink channel.
  • the indication signal component 1035 may receive the indication signal via the first indication resource based on the code, or the sequence, or the cyclic shift, or any combination thereof. In some examples, the indication signal component 1035 may receive the indication signal that indicates a resource identifier of the sensing resource in which the sensing signal is received.
  • the update message manager 1025 may receive, from the receiving device, an update message indicating a transmission power adjustment, or a cycle length adjustment, or both, for the sensing signal. In some examples, the update message manager 1025 may receive the update message that indicates a sensing resource identifier. In some examples, the update message manager 1025 may receive the update message that indicates an indication resource identifier.
  • the control message component 1040 may receive, from a base station, a control message indicating at least one of the sensing resource of the sidelink channel or that the first indication resource of the sidelink channel is assigned to the transmitting device.
  • control message component 1040 may receive a control message indicating that the first indication resource of a set of different resources is assigned to the transmitting device. In some examples, the control message component 1040 may receive a control message indicating that a code, or a sequence, or a cyclic shift, or any combination thereof, is assigned to the transmitting device.
  • control message component 1040 may transmit, to the transmitting device, a control message indicating at least one of the sensing resource of the sidelink channel or that the first indication resource of the sidelink channel is assigned to the transmitting device.
  • control message component 1040 may receive a control message that indicates a multiplexing type.
  • the multiplexing type is a frequency division multiplexing type or a time division multiplexing type.
  • the update message component 1045 may transmit, to the transmitting device, an update message indicating a transmission power adjustment, or a cycle length adjustment, or both, for the sensing signal. In some examples, the update message component 1045 may transmit the update message that indicates a sensing resource identifier. In some examples, the update message component 1045 may transmit the update message that indicates an indication resource identifier.
  • FIG. 11 shows a diagram of a system 1100 including a device 1105 that supports indication based passive sidelink sensing in accordance with aspects of the present disclosure.
  • the device 1105 may be an example of or include the components of device 805, device 905, or a UE 115 as described herein.
  • the device 1105 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1110, an I/O controller 1115, a transceiver 1120, an antenna 1125, memory 1130, and a processor 1140. These components may be in electronic communication via one or more buses (e.g., bus 1145) .
  • buses e.g., bus 1145
  • the communications manager 1110 may receive a control message indicating at least one of a sensing resource of a sidelink channel or that a first indication resource of the sidelink channel is assigned to the transmitting device, transmit a sensing signal to a receiving device via the sensing resource of the sidelink channel, and transmit an indication signal to the receiving device via the first indication resource of the sidelink channel indicating that the transmitting device transmitted the sensing signal via the sensing resource of the sidelink channel.
  • the communications manager 1110 may also receive a sensing signal from a transmitting device via a sensing resource of a sidelink channel and receive an indication signal from the transmitting device via a first indication resource of the sidelink channel indicating that the transmitting device transmitted the sensing signal via the sensing resource of the sidelink channel.
  • the I/O controller 1115 may manage input and output signals for the device 1105.
  • the I/O controller 1115 may also manage peripherals not integrated into the device 1105.
  • the I/O controller 1115 may represent a physical connection or port to an external peripheral.
  • the I/O controller 1115 may utilize an operating system such as or another known operating system.
  • the I/O controller 1115 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device.
  • the I/O controller 1115 may be implemented as part of a processor.
  • a user may interact with the device 1105 via the I/O controller 1115 or via hardware components controlled by the I/O controller 1115.
  • the transceiver 1120 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 1120 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 1120 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 1125. However, in some cases the device may have more than one antenna 1125, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 1130 may include RAM and ROM.
  • the memory 1130 may store computer-readable, computer-executable code 1135 including instructions that, when executed, cause the processor to perform various functions described herein.
  • the memory 1130 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • the processor 1140 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 1140 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 1140.
  • the processor 1140 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1130) to cause the device 1105 to perform various functions (e.g., functions or tasks supporting indication based passive sidelink sensing) .
  • the code 1135 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 1135 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1135 may not be directly executable by the processor 1140 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • FIG. 12 shows a block diagram 1200 of a device 1205 that supports indication based passive sidelink sensing in accordance with aspects of the present disclosure.
  • the device 1205 may be an example of aspects of a base station 105 as described herein.
  • the device 1205 may include a receiver 1210, a communications manager 1215, and a transmitter 1220.
  • the device 1205 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 1210 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to indication based passive sidelink sensing, etc. ) . Information may be passed on to other components of the device 1205.
  • the receiver 1210 may be an example of aspects of the transceiver 1520 described with reference to FIG. 15.
  • the receiver 1210 may utilize a single antenna or a set of antennas.
  • the communications manager 1215 may transmit, to a receiving device, a first control message indicating a sensing resource and a first indication resource that is assigned to at least one transmitting device and transmit, to a first transmitting device of the at least one transmitting device, a second control message indicating the sensing resource and the first indication resource are assigned to the first transmitting device.
  • the communications manager 1215 may be an example of aspects of the communications manager 1510 described herein.
  • the communications manager 1215 may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 1215, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • code e.g., software or firmware
  • ASIC application-specific integrated circuit
  • the communications manager 1215 may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communications manager 1215, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communications manager 1215, or its sub-components may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • I/O input/output
  • the transmitter 1220 may transmit signals generated by other components of the device 1205.
  • the transmitter 1220 may be collocated with a receiver 1210 in a transceiver module.
  • the transmitter 1220 may be an example of aspects of the transceiver 1520 described with reference to FIG. 15.
  • the transmitter 1220 may utilize a single antenna or a set of antennas.
  • FIG. 13 shows a block diagram 1300 of a device 1305 that supports indication based passive sidelink sensing in accordance with aspects of the present disclosure.
  • the device 1305 may be an example of aspects of a device 1205, or a base station 105 as described herein.
  • the device 1305 may include a receiver 1310, a communications manager 1315, and a transmitter 1325.
  • the device 1305 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 1310 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to indication based passive sidelink sensing, etc. ) . Information may be passed on to other components of the device 1305.
  • the receiver 1310 may be an example of aspects of the transceiver 1520 described with reference to FIG. 15.
  • the receiver 1310 may utilize a single antenna or a set of antennas.
  • the communications manager 1315 may be an example of aspects of the communications manager 1215 as described herein.
  • the communications manager 1315 may include a configuration manager 1320.
  • the communications manager 1315 may be an example of aspects of the communications manager 1510 described herein.
  • the configuration manager 1320 may transmit, to a receiving device, a first control message indicating a sensing resource and a first indication resource that is assigned to at least one transmitting device and transmit, to a first transmitting device of the at least one transmitting device, a second control message indicating the sensing resource and the first indication resource are assigned to the first transmitting device.
  • the transmitter 1325 may transmit signals generated by other components of the device 1305.
  • the transmitter 1325 may be collocated with a receiver 1310 in a transceiver module.
  • the transmitter 1325 may be an example of aspects of the transceiver 1520 described with reference to FIG. 15.
  • the transmitter 1325 may utilize a single antenna or a set of antennas.
  • FIG. 14 shows a block diagram 1400 of a communications manager 1405 that supports indication based passive sidelink sensing in accordance with aspects of the present disclosure.
  • the communications manager 1405 may be an example of aspects of a communications manager 1215, a communications manager 1315, or a communications manager 1510 described herein.
  • the communications manager 1405 may include a configuration manager 1410. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the configuration manager 1410 may transmit, to a receiving device, a first control message indicating a sensing resource and a first indication resource that is assigned to at least one transmitting device.
  • the configuration manager 1410 may transmit, to a first transmitting device of the at least one transmitting device, a second control message indicating the sensing resource and the first indication resource are assigned to the first transmitting device.
  • the configuration manager 1410 may transmit the first control message indicating a transmitting device identifier of the first transmitting device and that the first transmitting device is assigned to transmit a sensing signal via the sensing resource.
  • the second control message indicates a multiplexing type.
  • the multiplexing type corresponds to a frequency division multiplexing type or a time division multiplexing type.
  • FIG. 15 shows a diagram of a system 1500 including a device 1505 that supports indication based passive sidelink sensing in accordance with aspects of the present disclosure.
  • the device 1505 may be an example of or include the components of device 1205, device 1305, or a base station 105 as described herein.
  • the device 1505 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1510, a network communications manager 1515, a transceiver 1520, an antenna 1525, memory 1530, a processor 1540, and an inter-station communications manager 1545. These components may be in electronic communication via one or more buses (e.g., bus 1550) .
  • buses e.g., bus 1550
  • the communications manager 1510 may transmit, to a receiving device, a first control message indicating a sensing resource and a first indication resource that is assigned to at least one transmitting device and transmit, to a first transmitting device of the at least one transmitting device, a second control message indicating the sensing resource and the first indication resource are assigned to the first transmitting device.
  • the network communications manager 1515 may manage communications with the core network (e.g., via one or more wired backhaul links) .
  • the network communications manager 1515 may manage the transfer of data communications for client devices, such as one or more UEs 115.
  • the transceiver 1520 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 1520 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 1520 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 1525. However, in some cases the device may have more than one antenna 1525, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 1530 may include RAM, ROM, or a combination thereof.
  • the memory 1530 may store computer-readable code 1535 including instructions that, when executed by a processor (e.g., the processor 1540) cause the device to perform various functions described herein.
  • a processor e.g., the processor 1540
  • the memory 1530 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • the processor 1540 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 1540 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into processor 1540.
  • the processor 1540 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1530) to cause the device 1505 to perform various functions (e.g., functions or tasks supporting indication based passive sidelink sensing) .
  • the inter-station communications manager 1545 may manage communications with other base station 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communications manager 1545 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communications manager 1545 may provide an X2 interface within an LTE/LTE-A wireless communication network technology to provide communication between base stations 105.
  • the code 1535 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 1535 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1535 may not be directly executable by the processor 1540 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • FIG. 16 shows a flowchart illustrating a method 1600 that supports indication based passive sidelink sensing in accordance with aspects of the present disclosure.
  • the operations of method 1600 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1600 may be performed by a communications manager as described with reference to FIGs. 8 through 11.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may receive a control message indicating at least one of a sensing resource of a sidelink channel or that a first indication resource of the sidelink channel is assigned to the transmitting device.
  • the operations of 1605 may be performed according to the methods described herein. In some examples, aspects of the operations of 1605 may be performed by a control message manager as described with reference to FIGs. 8 through 11.
  • the UE may transmit a sensing signal to a receiving device via the sensing resource of the sidelink channel.
  • the operations of 1610 may be performed according to the methods described herein. In some examples, aspects of the operations of 1610 may be performed by a sensing signal manager as described with reference to FIGs. 8 through 11.
  • the UE may transmit an indication signal to the receiving device via the first indication resource of the sidelink channel indicating that the transmitting device transmitted the sensing signal via the sensing resource of the sidelink channel.
  • the operations of 1615 may be performed according to the methods described herein. In some examples, aspects of the operations of 1615 may be performed by an indication signal manager as described with reference to FIGs. 8 through 11.
  • FIG. 17 shows a flowchart illustrating a method 1700 that supports indication based passive sidelink sensing in accordance with aspects of the present disclosure.
  • the operations of method 1700 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1700 may be performed by a communications manager as described with reference to FIGs. 8 through 11.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may receive a control message indicating at least one of a sensing resource of a sidelink channel or that a first indication resource of the sidelink channel is assigned to the transmitting device.
  • the operations of 1705 may be performed according to the methods described herein. In some examples, aspects of the operations of 1705 may be performed by a control message manager as described with reference to FIGs. 8 through 11.
  • the UE may transmit a sensing signal to a receiving device via the sensing resource of the sidelink channel.
  • the operations of 1710 may be performed according to the methods described herein. In some examples, aspects of the operations of 1710 may be performed by a sensing signal manager as described with reference to FIGs. 8 through 11.
  • the UE may transmit an indication signal to the receiving device via the first indication resource of the sidelink channel indicating that the transmitting device transmitted the sensing signal via the sensing resource of the sidelink channel.
  • the operations of 1715 may be performed according to the methods described herein. In some examples, aspects of the operations of 1715 may be performed by an indication signal manager as described with reference to FIGs. 8 through 11.
  • the UE may receive, from the receiving device, an update message indicating a transmission power adjustment, or a cycle length adjustment, or both, for the sensing signal.
  • the operations of 1720 may be performed according to the methods described herein. In some examples, aspects of the operations of 1720 may be performed by an update message manager as described with reference to FIGs. 8 through 11.
  • FIG. 18 shows a flowchart illustrating a method 1800 that supports indication based passive sidelink sensing in accordance with aspects of the present disclosure.
  • the operations of method 1800 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1800 may be performed by a communications manager as described with reference to FIGs. 8 through 11.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may receive a sensing signal from a transmitting device via a sensing resource of a sidelink channel.
  • the operations of 1805 may be performed according to the methods described herein. In some examples, aspects of the operations of 1805 may be performed by a sensing signal component as described with reference to FIGs. 8 through 11.
  • the UE may receive an indication signal from the transmitting device via a first indication resource of the sidelink channel indicating that the transmitting device transmitted the sensing signal via the sensing resource of the sidelink channel.
  • the operations of 1810 may be performed according to the methods described herein. In some examples, aspects of the operations of 1810 may be performed by an indication signal component as described with reference to FIGs. 8 through 11.
  • FIG. 19 shows a flowchart illustrating a method 1900 that supports indication based passive sidelink sensing in accordance with aspects of the present disclosure.
  • the operations of method 1900 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1900 may be performed by a communications manager as described with reference to FIGs. 8 through 11.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may receive a sensing signal from a transmitting device via a sensing resource of a sidelink channel.
  • the operations of 1905 may be performed according to the methods described herein. In some examples, aspects of the operations of 1905 may be performed by a sensing signal component as described with reference to FIGs. 8 through 11.
  • the UE may receive an indication signal from the transmitting device via a first indication resource of the sidelink channel indicating that the transmitting device transmitted the sensing signal via the sensing resource of the sidelink channel.
  • the operations of 1910 may be performed according to the methods described herein. In some examples, aspects of the operations of 1910 may be performed by an indication signal component as described with reference to FIGs. 8 through 11.
  • the UE may transmit, to the transmitting device, an update message indicating a transmission power adjustment, or a cycle length adjustment, or both, for the sensing signal.
  • the operations of 1915 may be performed according to the methods described herein. In some examples, aspects of the operations of 1915 may be performed by an update message component as described with reference to FIGs. 8 through 11.
  • FIG. 20 shows a flowchart illustrating a method 2000 that supports indication based passive sidelink sensing in accordance with aspects of the present disclosure.
  • the operations of method 2000 may be implemented by a base station 105 or its components as described herein.
  • the operations of method 2000 may be performed by a communications manager as described with reference to FIGs. 12 through 15.
  • a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
  • the base station may transmit, to a receiving device, a first control message indicating a sensing resource and a first indication resource that is assigned to at least one transmitting device.
  • the operations of 2005 may be performed according to the methods described herein. In some examples, aspects of the operations of 2005 may be performed by a configuration manager as described with reference to FIGs. 12 through 15.
  • the base station may transmit, to a first transmitting device of the at least one transmitting device, a second control message indicating the sensing resource and the first indication resource are assigned to the first transmitting device.
  • the operations of 2010 may be performed according to the methods described herein. In some examples, aspects of the operations of 2010 may be performed by a configuration manager as described with reference to FIGs. 12 through 15.
  • the base station may transmit the first control message indicating a transmitting device identifier of the first transmitting device and that the first transmitting device is assigned to transmit a sensing signal via the sensing resource.
  • the operations of 2015 may be performed according to the methods described herein. In some examples, aspects of the operations of 2015 may be performed by a configuration manager as described with reference to FIGs. 12 through 15.
  • LTE, LTE-A, LTE-A Pro, or NR may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks.
  • the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
  • UMB Ultra Mobile Broadband
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Institute of Electrical and Electronics Engineers
  • WiMAX IEEE 802.16
  • IEEE 802.20 Flash-OFDM
  • Information and signals described herein may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special purpose computer.
  • non-transitory computer-readable media may include random-access memory (RAM) , read-only memory (ROM) , electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium.
  • RAM random-access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable ROM
  • flash memory compact disk (CD) ROM or other optical disk storage
  • CD compact disk
  • magnetic disk storage or other magnetic storage devices or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer,
  • Disk and disc include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Methods, systems, and devices for wireless communications are described. A transmitting device may receive a control message indicating at least one of a sensing resource of a sidelink channel or that a first indication resource of the sidelink channel is assigned to the transmitting device. The transmitting device may transmit a sensing signal to a receiving device via the sensing resource of the sidelink channel. The transmitting device may transmit an indication signal to the receiving device via the first indication resource of the sidelink channel indicating that the transmitting device transmitted the sensing signal via the sensing resource of the sidelink channel. The transmitting device may receive an update message indicating a transmission power adjustment, a cycle length adjustment, or both, for the sensing signal and transmit an additional sensing signal to the receiving device according to the transmission power adjustment, the cycle length adjustment, or both.

Description

INDICATION BASED PASSIVE SIDELINK SENSING
FIELD OF TECHNOLOGY
The following relates to wireless communications, including indication based passive sidelink sensing.
BACKGROUND
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems. These systems may employ technologies such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , or discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) . A wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
A receiving device may be configured to perform passive sensing of sensing signals transmitted by one or more transmitting devices. Current techniques for performing passive sensing may fail to provide the receiving device with information that supports accurate passive sensing procedures.
SUMMARY
The described techniques relate to improved methods, systems, devices, and apparatuses that support indication based passive sidelink sensing. Generally, the described techniques provide for improving passive sensing accuracy and capability by transmitting a sensing signal and indicating the transmitting device that transmitted the sensing signal. For example, a receiving device may communicate with one or more transmitting devices, and  each transmitting device may transmit a sensing signal and an indication signal indicating the transmitting device that transmitted the sensing signal.
For example, a transmitting device may receive a control message indicating at least one of a sensing resource of a sidelink channel, or that a first indication resource of the sidelink channel is assigned to the transmitting device, or both. The transmitting device may transmit a sensing signal to a receiving device via the sensing resource of the sidelink channel. The transmitting device may transmit an indication signal to the receiving device via the first indication resource of the sidelink channel indicating that the transmitting device transmitted the sensing signal via the sensing resource of the sidelink channel. The receiving device may monitor one or more indication resources and determine if one or multiple transmitting devices are transmitting sensing signals within the sensing resource. The receiving device may determine a number of transmitting devices based on monitoring the indication resources and calculate or estimate Doppler Frequency related metrics of a target object based on the number of transmitting devices. The transmitting device may receive an update message indicating a transmission power adjustment, a cycle length adjustment, or both, for the sensing signal and transmit an additional sensing signal to the receiving device according to the transmission power adjustment, the cycle length adjustment, or both.
A method of wireless communication at a transmitting device is described. The method may include receiving a control message indicating at least one of a sensing resource of a sidelink channel or that a first indication resource of the sidelink channel is assigned to the transmitting device, transmitting a sensing signal to a receiving device via the sensing resource of the sidelink channel, and transmitting an indication signal to the receiving device via the first indication resource of the sidelink channel indicating that the transmitting device transmitted the sensing signal via the sensing resource of the sidelink channel.
An apparatus for wireless communication at a transmitting device is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to receive a control message indicating at least one of a sensing resource of a sidelink channel or that a first indication resource of the sidelink channel is assigned to the transmitting device, transmit a sensing signal to a receiving device via the sensing resource of the sidelink channel, and transmit an indication signal to the receiving device via the first  indication resource of the sidelink channel indicating that the transmitting device transmitted the sensing signal via the sensing resource of the sidelink channel.
Another apparatus for wireless communication at a transmitting device is described. The apparatus may include means for receiving a control message indicating at least one of a sensing resource of a sidelink channel or that a first indication resource of the sidelink channel is assigned to the transmitting device, transmitting a sensing signal to a receiving device via the sensing resource of the sidelink channel, and transmitting an indication signal to the receiving device via the first indication resource of the sidelink channel indicating that the transmitting device transmitted the sensing signal via the sensing resource of the sidelink channel.
A non-transitory computer-readable medium storing code for wireless communication at a transmitting device is described. The code may include instructions executable by a processor to receive a control message indicating at least one of a sensing resource of a sidelink channel or that a first indication resource of the sidelink channel is assigned to the transmitting device, transmit a sensing signal to a receiving device via the sensing resource of the sidelink channel, and transmit an indication signal to the receiving device via the first indication resource of the sidelink channel indicating that the transmitting device transmitted the sensing signal via the sensing resource of the sidelink channel.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving the control message indicating that the first indication resource of a set of different resources may be assigned to the transmitting device.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving the control message indicating that a code, or a sequence, or a cyclic shift, or any combination thereof, may be assigned to the transmitting device, and transmitting the indication signal via the first indication resource based on the code, or the sequence, or the cyclic shift, or any combination thereof.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for  transmitting the indication signal that indicates a resource identifier of the sensing resource in which the sensing signal may be transmitted.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the receiving device, an update message indicating a transmission power adjustment, or a cycle length adjustment, or both, for the sensing signal.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting an additional sensing signal to the receiving device according to the transmission power adjustment, or the cycle length adjustment, or both.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving the update message that indicates a sensing resource identifier, and transmitting an additional sensing signal to the receiving device according to the transmission power adjustment, the cycle length adjustment, or both, based on the sensing resource identifier corresponding to the sensing resource indicated in the control message.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving the update message that indicates an indication resource identifier, and transmitting an additional sensing signal to the receiving device according to the transmission power adjustment, the cycle length adjustment, or both, based on the indication resource identifier corresponding to the first indication resource indicated in the control message.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving the control message from a base station or the receiving device.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving the control message that indicates a multiplexing type, and transmitting the sensing signal and the indication signal to the receiving device according to the multiplexing type.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the multiplexing type may be a frequency division multiplexing type or a time division multiplexing type.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving a sensing signal request from the receiving device, and transmitting the sensing signal to the receiving device based on receiving the sensing signal request.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting the sensing signal that may be a sounding reference signal, a frequency modulated continuous wave (FMCW) signal, a signal generated using a Golay sequence, or any combination thereof.
A method of wireless communication at a receiving device is described. The method may include receiving a sensing signal from a transmitting device via a sensing resource of a sidelink channel and receiving an indication signal from the transmitting device via a first indication resource of the sidelink channel indicating that the transmitting device transmitted the sensing signal via the sensing resource of the sidelink channel.
An apparatus for wireless communication at a receiving device is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to receive a sensing signal from a transmitting device via a sensing resource of a sidelink channel and receive an indication signal from the transmitting device via a first indication resource of the sidelink channel indicating that the transmitting device transmitted the sensing signal via the sensing resource of the sidelink channel.
Another apparatus for wireless communication at a receiving device is described. The apparatus may include means for receiving a sensing signal from a transmitting device via a sensing resource of a sidelink channel and receiving an indication signal from the transmitting device via a first indication resource of the sidelink channel indicating that the transmitting device transmitted the sensing signal via the sensing resource of the sidelink channel.
A non-transitory computer-readable medium storing code for wireless communication at a receiving device is described. The code may include instructions executable by a processor to receive a sensing signal from a transmitting device via a sensing resource of a sidelink channel and receive an indication signal from the transmitting device via a first indication resource of the sidelink channel indicating that the transmitting device transmitted the sensing signal via the sensing resource of the sidelink channel.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from a base station, a control message indicating at least one of the sensing resource of the sidelink channel or that the first indication resource of the sidelink channel may be assigned to the transmitting device.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving a control message indicating that the first indication resource of a set of different resources may be assigned to the transmitting device.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving a control message indicating that a code, or a sequence, or a cyclic shift, or any combination thereof, may be assigned to the transmitting device, and receiving the indication signal via the first indication resource based on the code, or the sequence, or the cyclic shift, or any combination thereof.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, to the transmitting device, a control message indicating at least one of the sensing resource of the sidelink channel or that the first indication resource of the sidelink channel may be assigned to the transmitting device.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving the indication signal that indicates a resource identifier of the sensing resource in which the sensing signal may be received.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, to the transmitting device, an update message indicating a transmission power adjustment, or a cycle length adjustment, or both, for the sensing signal.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving an additional sensing signal from the transmitting device according to the transmission power adjustment, or the cycle length adjustment, or both.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting the update message that indicates a sensing resource identifier, and receiving an additional sensing signal from the transmitting device according to the transmission power adjustment, the cycle length adjustment, or both, based on the sensing resource identifier corresponding to the sensing resource indicated in a control message.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting the update message that indicates an indication resource identifier, and receiving an additional sensing signal from the transmitting device according to the transmission power adjustment, the cycle length adjustment, or both, based on the indication resource identifier corresponding to the first indication resource indicated in a control message.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving a control message that indicates a multiplexing type, and receiving the sensing signal and the indication signal from the transmitting device according to the multiplexing type.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the multiplexing type may be a frequency division multiplexing type or a time division multiplexing type.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for  transmitting a sensing signal request to the transmitting device, and receiving the sensing signal from the transmitting device based on transmitting the sensing signal request.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving the sensing signal that may be a sounding reference signal, a frequency modulated continuous wave (FMCW) signal, a signal generated using a Golay sequence, or any combination thereof.
A method of wireless communication at a base station is described. The method may include transmitting, to a receiving device, a first control message indicating a sensing resource and a first indication resource that is assigned to at least one transmitting device and transmitting, to a first transmitting device of the at least one transmitting device, a second control message indicating the sensing resource and the first indication resource are assigned to the first transmitting device.
An apparatus for wireless communication at a base station is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to transmit, to a receiving device, a first control message indicating a sensing resource and a first indication resource that is assigned to at least one transmitting device and transmit, to a first transmitting device of the at least one transmitting device, a second control message indicating the sensing resource and the first indication resource are assigned to the first transmitting device.
Another apparatus for wireless communication at a base station is described. The apparatus may include means for transmitting, to a receiving device, a first control message indicating a sensing resource and a first indication resource that is assigned to at least one transmitting device and transmitting, to a first transmitting device of the at least one transmitting device, a second control message indicating the sensing resource and the first indication resource are assigned to the first transmitting device.
A non-transitory computer-readable medium storing code for wireless communication at a base station is described. The code may include instructions executable by a processor to transmit, to a receiving device, a first control message indicating a sensing resource and a first indication resource that is assigned to at least one transmitting device and  transmit, to a first transmitting device of the at least one transmitting device, a second control message indicating the sensing resource and the first indication resource are assigned to the first transmitting device.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, transmitting the first control message may include operations, features, means, or instructions for transmitting the first control message indicating a transmitting device identifier of the first transmitting device and that the first transmitting device may be assigned to transmit a sensing signal via the sensing resource.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the second control message indicates a multiplexing type.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the multiplexing type corresponds to a frequency division multiplexing type or a time division multiplexing type.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates an example of a system for wireless communications that supports indication based passive sidelink sensing in accordance with aspects of the present disclosure.
FIG. 2 illustrates an example of a wireless communications system in accordance with aspects of the present disclosure.
FIGs. 3A and 3B illustrate examples of resource multiplexing techniques in accordance with aspects of the present disclosure.
FIG. 4 illustrates an example of a signal updating technique in accordance with aspects of the present disclosure.
FIG. 5 illustrates an example of a sensing signal technique in accordance with aspects of the present disclosure.
FIG. 6 illustrates an example of a process flow in accordance with aspects of the present disclosure.
FIG. 7 illustrates an example of a process flow in accordance with aspects of the present disclosure.
FIGs. 8 and 9 show block diagrams of devices in accordance with aspects of the present disclosure.
FIG. 10 shows a block diagram of a communications manager in accordance with aspects of the present disclosure.
FIG. 11 shows a diagram of a system including a device in accordance with aspects of the present disclosure.
FIGs. 12 and 13 show block diagrams of devices in accordance with aspects of the present disclosure.
FIG. 14 shows a block diagram of a communications manager in accordance with aspects of the present disclosure.
FIG. 15 shows a diagram of a system including a device in accordance with aspects of the present disclosure.
FIGs. 16 through 20 show flowcharts illustrating methods in accordance with aspects of the present disclosure.
DETAILED DESCRIPTION
In some wireless communications systems, a receiving device (e.g., a user equipment (UE) ) may be configured to receive one or more sensing signals and determine environmental information (e.g., a human presence, a gesture, a gait, a position, an activity, breathing, heartbeat, etc. ) of a target object (e.g., a person) based on the one or more sensing signals. The receiving device may determine metrics (e.g., Doppler frequency related metrics such as Doppler frequency vs range, Doppler frequency vs time, distance to a target object, speed of a target object, distance of a target object) based on receiving the one or more sensing signals, and the environmental information may be based on the determined metrics. In some cases, multiple transmitting devices (e.g., multiple transmitting UEs) may transmit one or more sensing signals, which may improve the sensing signal diversity and therefore improve the quality of the determined metrics. This may, however, increase the difficulty for the receiving device to determine whether a change in a sensing signal is due to a change in a  transmitting device (e.g., a transmitting device powering on or powering off) or instead is due to a change in the target object (e.g., a movement of the target object) and prevent the receiving device from communicating with the transmitting devices to adjust sensing signal parameters.
Various aspects of the present disclosure provide techniques for handling sidelink based passive sensing in the context of multiple transmitting device. For example, a transmitting device may receive a control message indicating that an indication resource of a sidelink channel is assigned to the transmitting device and/or a sensing resource of the sidelink channel. The control message may configure the transmitting device to transmit an indication signal and/or a sensing signal, and the control message may be transmitted by a base station or a receiving device.
The transmitting device may transmit a sensing signal to the receiving device via the sensing resource of the sidelink channel. In some cases, the sensing resource may be a sensing resource that is also used by additional transmitting devices, while in some other cases, the sensing resource may be assigned to just the transmitting device. The transmitting device may transmit an indication signal to the receiving device via the indication resource of the sidelink channel, and the indication signal may indicate that the transmitting device transmitted the sensing signal via the sensing resource of the sidelink channel. In some cases, the indication signal may indicate a resource identifier of the sensing resource in which the sensing signal is transmitted. Transmitting the indication signal to the receiving device may support adjusting the transmission parameters of sensing signals, which may improve the passive sensing capabilities of the receiving device.
Such techniques may include transmitting an indication signal by a transmitting device that indicates the presence of a sensing signal transmitted by the transmitting device and/or the sensing resource at which the transmitting device transmitted the sensing signal. Such techniques may additionally or alternatively include receiving an update message indicating a transmission power adjustment and/or a cycle length adjustment from the receiving device. In some cases, the update message may adjust the transmission power of a sensing signal transmitted by the transmitting device, which may improve the battery life of the transmitting device. In some additional or alternative cases, the update message may  adjust the cycle length of the sensing signal, which may improve the ability of the receiving device to determine metrics based on receiving the sensing signal.
Aspects of the disclosure are initially described in the context of wireless communications systems. Aspects of the disclosure are then described with respect to resource multiplexing techniques, a signal updating technique, a sensing signal technique, and a number of process flows. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to indication based passive sidelink sensing.
FIG. 1 illustrates an example of a wireless communications system 100 that supports indication based passive sidelink sensing in accordance with aspects of the present disclosure. The wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130. In some examples, the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network. In some examples, the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
The base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities. The base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125. Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125. The coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
The UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times. The UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1. The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base  stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
The base stations 105 may communicate with the core network 130, or with one another, or both. For example, the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) . The base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both. In some examples, the backhaul links 120 may be or include one or more wireless links.
One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples. A UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer. In some examples, a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
The UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers. The term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical  layer structure for supporting the communication links 125. For example, a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) . Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling. The wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation. A UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration. Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
In some examples (e.g., in a carrier aggregation configuration) , a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers. A carrier may be associated with a frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) and may be positioned according to a channel raster for discovery by the UEs 115. A carrier may be operated in a standalone mode where initial acquisition and connection may be conducted by the UEs 115 via the carrier, or the carrier may be operated in a non-standalone mode where a connection is anchored using a different carrier (e.g., of the same or a different radio access technology) .
The communication links 125 shown in the wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115. Carriers may carry downlink or uplink communications (e.g., in an FDD mode) or may be configured to carry downlink and uplink communications (e.g., in a TDD mode) .
A carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100. For example, the carrier bandwidth may be one of a number of determined bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 megahertz (MHz) ) . Devices of the wireless communications system 100 (e.g., the base stations 105, the UEs 115,  or both) may have hardware configurations that support communications over a particular carrier bandwidth or may be configurable to support communications over one of a set of carrier bandwidths. In some examples, the wireless communications system 100 may include base stations 105 or UEs 115 that support simultaneous communications via carriers associated with multiple carrier bandwidths. In some examples, each served UE 115 may be configured for operating over portions (e.g., a sub-band, a BWP) or all of a carrier bandwidth.
Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) . In a system employing MCM techniques, a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related. The number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) . Thus, the more resource elements that a UE 115 receives and the higher the order of the modulation scheme, the higher the data rate may be for the UE 115. A wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
One or more numerologies for a carrier may be supported, where a numerology may include a subcarrier spacing (Δf) and a cyclic prefix. A carrier may be divided into one or more BWPs having the same or different numerologies. In some examples, a UE 115 may be configured with multiple BWPs. In some examples, a single BWP for a carrier may be active at a given time and communications for the UE 115 may be restricted to one or more active BWPs.
The time intervals for the base stations 105 or the UEs 115 may be expressed in multiples of a basic time unit which may, for example, refer to a sampling period of T s=1/ (Δf max·N f) seconds, where Δf max may represent the maximum supported subcarrier spacing, and N f may represent the maximum supported discrete Fourier transform (DFT) size. Time intervals of a communications resource may be organized according to radio  frames each having a specified duration (e.g., 10 milliseconds (ms) ) . Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration. In some examples, a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots. Alternatively, each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing. Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) . In some wireless communications systems 100, a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
A subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) . In some examples, the TTI duration (e.g., the number of symbol periods in a TTI) may be variable. Additionally or alternatively, the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
Physical channels may be multiplexed on a carrier according to various techniques. A physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques. A control region (e.g., a control resource set (CORESET) ) for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier. One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115. For example, one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner. An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a  control information format having a given payload size. Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
Each base station 105 may provide communication coverage via one or more cells, for example a macro cell, a small cell, a hot spot, or other types of cells, or any combination thereof. The term “cell” may refer to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) , or others) . In some examples, a cell may also refer to a geographic coverage area 110 or a portion of a geographic coverage area 110 (e.g., a sector) over which the logical communication entity operates. Such cells may range from smaller areas (e.g., a structure, a subset of structure) to larger areas depending on various factors such as the capabilities of the base station 105. For example, a cell may be or include a building, a subset of a building, or exterior spaces between or overlapping with geographic coverage areas 110, among other examples.
A macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by the UEs 115 with service subscriptions with the network provider supporting the macro cell. A small cell may be associated with a lower-powered base station 105, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed) frequency bands as macro cells. Small cells may provide unrestricted access to the UEs 115 with service subscriptions with the network provider or may provide restricted access to the UEs 115 having an association with the small cell (e.g., the UEs 115 in a closed subscriber group (CSG) , the UEs 115 associated with users in a home or office) . A base station 105 may support one or multiple cells and may also support communications over the one or more cells using one or multiple component carriers.
In some examples, a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) ) that may provide access for different types of devices.
In some examples, a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110. In some examples,  different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105. In other examples, the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105. The wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
The wireless communications system 100 may support synchronous or asynchronous operation. For synchronous operation, the base stations 105 may have similar frame timings, and transmissions from different base stations 105 may be approximately aligned in time. For asynchronous operation, the base stations 105 may have different frame timings, and transmissions from different base stations 105 may, in some examples, not be aligned in time. The techniques described herein may be used for either synchronous or asynchronous operations.
Some UEs 115, such as MTC or IoT devices, may be low cost or low complexity devices and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) . M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention. In some examples, M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay such information to a central server or application program that makes use of the information or presents the information to humans interacting with the application program. Some UEs 115 may be designed to collect information or enable automated behavior of machines or other devices. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (e.g., a mode that supports one-way communication via transmission or reception, but not transmission and reception  simultaneously) . In some examples, half-duplex communications may be performed at a reduced peak rate. Other power conservation techniques for the UEs 115 include entering a power saving deep sleep mode when not engaging in active communications, operating over a limited bandwidth (e.g., according to narrowband communications) , or a combination of these techniques. For example, some UEs 115 may be configured for operation using a narrowband protocol type that is associated with a defined portion or range (e.g., set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
The wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof. For example, the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications. The UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) . Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) . Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications. The terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
In some examples, a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) . One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105. Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105. In some examples, groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group. In some examples, a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
In some systems, the D2D communication link 135 may be an example of a communication channel, such as a sidelink communication channel, between vehicles (e.g., UEs 115) . In some examples, vehicles may communicate using vehicle-to-everything (V2X) communications, vehicle-to-vehicle (V2V) communications, or some combination of these. A vehicle may signal information related to traffic conditions, signal scheduling, weather, safety, emergencies, or any other information relevant to a V2X system. In some examples, vehicles in a V2X system may communicate with roadside infrastructure, such as roadside units, or with the network via one or more network nodes (e.g., base stations 105) using vehicle-to-network (V2N) communications, or with both.
The core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. The core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) . The control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130. User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions. The user plane entity may be connected to the network operators IP services 150. The network operators IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
Some of the network devices, such as a base station 105, may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) . Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) . Each access network transmission entity 145 may include one or more antenna panels. In some configurations, various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
The wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) . Generally, the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length. The UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors. The transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
The wireless communications system 100 may also operate in a super high frequency (SHF) region using frequency bands from 3 GHz to 30 GHz, also known as the centimeter band, or in an extremely high frequency (EHF) region of the spectrum (e.g., from 30 GHz to 300 GHz) , also known as the millimeter band. In some examples, the wireless communications system 100 may support millimeter wave (mmW) communications between the UEs 115 and the base stations 105, and EHF antennas of the respective devices may be smaller and more closely spaced than UHF antennas. In some examples, this may facilitate use of antenna arrays within a device. The propagation of EHF transmissions, however, may be subject to even greater atmospheric attenuation and shorter range than SHF or UHF transmissions. The techniques disclosed herein may be employed across transmissions that use one or more different frequency regions, and designated use of bands across these frequency regions may differ by country or regulating body.
The wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands. For example, the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band. When operating in unlicensed radio frequency spectrum bands, devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance. In some examples, operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) . Operations in unlicensed spectrum may include  downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming. The antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming. For example, one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower. In some examples, antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations. A base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115. Likewise, a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations. Additionally or alternatively, an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
The base stations 105 or the UEs 115 may use MIMO communications to exploit multipath signal propagation and increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers. Such techniques may be referred to as spatial multiplexing. The multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas. Each of the multiple signals may be referred to as a separate spatial stream and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams (e.g., different codewords) . Different spatial layers may be associated with different antenna ports used for channel measurement and reporting. MIMO techniques include single-user MIMO (SU-MIMO) , where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) , where multiple spatial layers are transmitted to multiple devices.
Beamforming, which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer  an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device. Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference. The adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device. The adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
base station 105 or a UE 115 may use beam sweeping techniques as part of beam forming operations. For example, a base station 105 may use multiple antennas or antenna arrays (e.g., antenna panels) to conduct beamforming operations for directional communications with a UE 115. Some signals (e.g., synchronization signals, reference signals, beam selection signals, or other control signals) may be transmitted by a base station 105 multiple times in different directions. For example, the base station 105 may transmit a signal according to different beamforming weight sets associated with different directions of transmission. Transmissions in different beam directions may be used to identify (e.g., by a transmitting device, such as a base station 105, or by a receiving device, such as a UE 115) a beam direction for later transmission or reception by the base station 105.
Some signals, such as data signals associated with a particular receiving device, may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) . In some examples, the beam direction associated with transmissions along a single beam direction may be determined based on a signal that was transmitted in one or more beam directions. For example, a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions and may report to the base station 105 an indication of the signal that the UE 115 received with a highest signal quality or an otherwise acceptable signal quality.
In some examples, transmissions by a device (e.g., by a base station 105 or a UE 115) may be performed using multiple beam directions, and the device may use a  combination of digital precoding or radio frequency beamforming to generate a combined beam for transmission (e.g., from a base station 105 to a UE 115) . The UE 115 may report feedback that indicates precoding weights for one or more beam directions, and the feedback may correspond to a configured number of beams across a system bandwidth or one or more sub-bands. The base station 105 may transmit a reference signal (e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS) ) , which may be precoded or unprecoded. The UE 115 may provide feedback for beam selection, which may be a precoding matrix indicator (PMI) or codebook-based feedback (e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook) . Although these techniques are described with reference to signals transmitted in one or more directions by a base station 105, a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) or for transmitting a signal in a single direction (e.g., for transmitting data to a receiving device) .
A receiving device (e.g., a UE 115) may try multiple receive configurations (e.g., directional listening) when receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals. For example, a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets (e.g., different directional listening weight sets) applied to signals received at multiple antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at multiple antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive configurations or receive directions. In some examples, a receiving device may use a single receive configuration to receive along a single beam direction (e.g., when receiving a data signal) . The single receive configuration may be aligned in a beam direction determined based on listening according to different receive configuration directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio (SNR) , or otherwise acceptable signal quality based on listening according to multiple beam directions) .
The wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack. In the user plane, communications at the  bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based. A Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels. A Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels. The MAC layer may also use error detection techniques, error correction techniques, or both to support retransmissions at the MAC layer to improve link efficiency. In the control plane, the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or a core network 130 supporting radio bearers for user plane data. At the physical layer, transport channels may be mapped to physical channels.
The UEs 115 and the base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully. Hybrid automatic repeat request (HARQ) feedback is one technique for increasing the likelihood that data is received correctly over a communication link 125. HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) . HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., low signal-to-noise conditions) . In some examples, a device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
Object sensing may be performed in some wireless communications system (e.g., a 5G system, an NR system, etc. ) . For example, a sensor or receiving device (e.g., a UE 115) in a smart home may sense the environment of the home to derive environmental information such as a human presence, a gesture, a gait, a position, an activity, breathing, heartbeat, etc. In some cases, radio sensing may be effective while other sensing technologies (e.g., light sensing, video sensing, lidar sensing, etc. ) are weak or invalid. For example, the performance of video sensing may degrade when the light within an environment (e.g., a night environment, a tunnel environment, a misty weather environment, etc. ) is be dim. Some sensing technologies (e.g., lidar sensing) may be overly expense for some environments such as medium or low class vehicles. In such cases, radio sensing, which relies on the  transmission and reception of radio signals, can be an effective and efficient sensing technology due to its insensitivity to light and low price.
Radio sensing may include active sensing and passive sensing. Active sensing may include a device transmitting and receiving a sensing signal. In other words, if a sensing signal is self-transmitted, the sensing may be considered active. Passive sensing may include a device receiving a sensing signal that was transmitted by another device. In other words, if a sensing signal is not self-transmitted, the sensing may be considered passive. In some cases, passive sensing may be applied when a sensor (e.g., a receiving device) does not have the capability to transmit a sensing sigla or decides to mute its sensing signal transmitter to reduce the co-channel interference or save power.
Passive sensing may be divided into two types of passive sensing. In some cases, passive sensing type 1 may include a target object that is also the sensing signal transmitter. In some cases, passive sensing type 2 may include a target object that is the reflector of the sensing signal but not the sensing signal transmitter. The techniques described herein may consider passive sensing type 2.
A transmitting device (e.g., a UE 115) may receive a control message indicating at least one of a sensing resource of a sidelink channel or that a first indication resource of the sidelink channel is assigned to the transmitting device. The transmitting device may transmit a sensing signal to a receiving device (e.g., a UE 115) via the sensing resource of the sidelink channel. The transmitting device may transmit an indication signal to the receiving device via the first indication resource of the sidelink channel indicating that the transmitting device transmitted the sensing signal via the sensing resource of the sidelink channel. The transmitting device may receive an update message indicating a transmission power adjustment, a cycle length adjustment, or both, for the sensing signal and transmit an additional sensing signal to the receiving device according to the transmission power adjustment, the cycle length adjustment, or both.
FIG. 2 an example of a wireless communications system 200 that supports sidelink based passive sensing in accordance with aspects of the present disclosure. In some examples, wireless communications system 200 may implement aspects of wireless communications system 100. Wireless communications system 200 may include base station 105-a and a number of UEs 115, which may be examples of base stations 105 and UEs 115 as  described with reference to FIG. 1. Base station 105-a may be associated with an area of coverage area 110-a, and UE 115-c (e.g., a receiving device) may receive sensing signal 210-a and indication signal 215-a from UE 115-a (e.g., a first transmitting device) . In some cases, UE 115-c may additionally receive sensing signal 210-b and indication signal 215-b from UE 115-b (e.g., a second transmitting device) .
In some cases, base station 105-a may configure UE 115-a and/or UE 115-b with indication resources. For example, base station 105-a may transmit a configuration message to UE 115-a assigning an indication resource of a sidelink channel to UE 115-a and a configuration message to UE 115-b assigning an indication resource of the sidelink channel to UE 115-b. The configuration message may be a broadcast transmission or a unicast transmission. In some examples, UE 115-c or base station 105-a may transmit a sensing signal request message, and UE 115-a may transmit sensing signal 210-a and indication signal 215-a based on receiving the sensing signal request message. In some additional or alternative examples, UE 115-b may transmit sensing signal 210-b and indication signal 215-b based on receiving the sensing signal request message. An indication signal 215 may indicate the UE 115 that transmitted a sensing signal 210. UE 115-c may determine environmental information associated with the target object 205 (e.g., a person) based on receiving one or more sensing signals 210 and/or indication signals 215.
In some cases, the waveform of a sensing signal 210 may be a frequency modulated continuous wave (FMCW) signal, generated using a Golay sequence, or another kind of signal such as a refence signal. UE 115-c may perform a sensing procedure (e.g., a sensing algorithm) to determine one or more Doppler frequency related metrics (e.g., Doppler frequency vs range, Doppler frequency vs time) of the radio channel between the target object 205 and the receiving object (e.g., UE 115-c) . The environmental information may include target information (e.g., distance, speed, direction, etc. ) of the target object 205, and UE 115-c may determine the target information for the target object 205 based on the Doppler frequency related metrics.
In some cases, UE 115-c may broadcast the sensing signal request message to UE 115-a and UE 115-b, and the sensing signal request message may indicate one or more sensing resources on which the transmitting UEs is requested to transmit one or more sensing signals. In some cases, UE 115-a may transmit sensing signal 210-a to UE 115-c via a first  sensing resource and indication signal 215-a to UE 115-c via a first indication resource. The indication signal 215-a may indicate that sensing signal 210-a was transmitted by UE 115-a. UE 115-b may additionally transmit sensing signal 210-b via a second sensing resource and indication resource 215-b via a second indication resource. In some cases, the first sensing resource and the second sensing resource may be the same (e.g., a group common sensing resource) , while in some other cases, the first sensing resource may be different from the second sensing resource. Receiving sensing signals 210 from multiple transmitting devices may increase the number of received propagation paths, thereby enhancing the sensing diversity and quality of the target information determined by the receiving device (e.g., UE 115-c) .
UE 115-c may transmit an update message to UE 115-a and/or UE 115-b indicating the adjustment of a transmission power, a cycle length, or both. The update message may indicate a sensing resource identifier, an indication resource identifier, a transmission power, or a cycle length, and UEs that are associated with the sensing resource identifier or the indication resource identifier may alter the transmission power of a sensing signal 210 based on the indicated transmission power and/or the cycle length of a sensing signal 210 based on the indicated cycle length. Altering the transmission power of a sensing signal 210 and/or the cycle length of a sensing signal 210 may improve the battery life and passive sensing capabilities of a UE 115.
In some cases, passive sensing may be classified based on the transfer direction of a sensing signal 210. For example, transmitting sensing signal 210-c from base station 105-a to UE 115-c (e.g., a downlink direction) may improve battery performance of UE 115-c. Transmitting sensing signal 210-c from UE 115-c to base station 105-a may support the use of powerful sensing analytical capabilities of base station 105-a. In some cases, base station 105-a may be located indoors to support the transmission of sensing signal 210-c to or from UE 115-c. Transmitting a sensing signal 210 (e.g., sensing signal 210-a and/or sensing signal 210-b) from a UE 115 (e.g., UE 115-a and/or UE 115-b) may support passive sensing without an indoor base station.
FIGs. 3A and 3B illustrate examples  resource multiplexing techniques  301 and 302 that support sidelink based passive sensing in accordance with aspects of the present disclosure. In some examples,  resource multiplexing techniques  301 and 302 may implement  aspects of  wireless communications system  100 or 200. The resource multiplexing technique 301 may illustrate an FDM technique that supports passive sidelink based sensing, and the resource multiplexing technique 302 may illustrate a TDM technique that supports passive sidelink based sensing. The operations of  resource multiplexing techniques  301 and 302 may be implemented by a UE 115 or its components as described herein.
The resource multiplexing technique 301 may include a sensing radio resource 310, an indication radio resource 315, a number of sensing signals 320, a number of indication signals 325, and a number of indication resource regions 330. In some examples, occasions of the indication resource regions 330 in which one or more sensing signals 320 may be transmitted may be frequency division multiplexed with occasions of the sensing radio resource 310 in which one or more indication signals 325 may be transmitted. In some cases, the resource multiplexing technique 301 may include a group common sensing radio resource 310. In such cases, an indication signal 325 may indicate the presence or absence of a transmitting device in a corresponding sensing signal 320. The resource multiplexing technique 301 may correspond to an FDM technique and include a sensing radio resource 310 at a first frequency region and an indication resource 315 at a second frequency region. Each Transmitting UE may be assigned an indication resource region 330 of the indication signals 325 in the indication radio resource 315.
For example, indication resource region 330-a of indication signal 325-a may be used to indicate the presence of a first transmitting device in sensing signals 320-a and 320-b. Indication resource region 330-b of indication signal 325-b may be used to indicate the presence of the first transmitting device in sensing signals 320-c and 320-d, and indication resource region 330-f of indication signal 325-b may be used to indicate the presence of a second transmitting device in sensing signals 320-j and 320-k. Indication resource region 330-c of indication signal 325-c may be used to indicate the presence of the first transmitting device in sensing signals 320-e and 320-f, and indication resource region 330-g of indication signal 325-c may be used to indicate the presence of the second transmitting device in sensing signals 320-l and 320-m. Indication resource region 330-d of indication signal 325-d may be used to indicate the presence of the first transmitting device in sensing signals 320-g and 320-h. Indication resource region 330-e of indication signal 325-e may be used to indicate the presence of the first transmitting device in sensing signal 320-i.
In some cases, a transmitting UE may be assigned a unique code, sequence, or cyclic shift. The unique code, sequence, or cyclic shift may identify the UE and indicate that the UE transmitted a sensing signal at a corresponding signal resource. The unique code, sequence, or cyclic shift may be used instead of or in addition to the indication signals 325.
In some additional or alternative cases, the resource multiplexing technique 301 may include multiple sensing radio resources 310. In such cases, the indication signals 325 may indicate the presence or absence of one or more transmitting devices in a corresponding sensing signal 320 of a particular sensing radio resource 310. In some examples, an indication signal 325 may include a sensing resource identifier indicating the sensing radio resource 310 in which a corresponding sensing signal 320 is transmitted.
The resource multiplexing technique 302 may include a number of sensing signals 320 as well as a number of indication signals 325. An indication signal 325 may be transmitted by a transmitting device to a receiving device, and the indication signal 325 may indicate the presence or absence of the transmitting device in a corresponding sensing signal 320. In some cases, an indication signal 325 may indicate the presence or absence of a transmitting device in a corresponding sensing signal 320 of a particular sensing radio resource. The resource multiplexing technique 302 may correspond to a TDM technique. Each Transmitting UE may be assigned an indication resource region 330 of the indication signals 325. In some examples, occasions of the indication resource regions in which one or more sensing signals 320 may be transmitted may be time division multiplexed with occasions of the sensing radio resource in which one or more indication signals 325 may be transmitted.
For example, indication resource region 330-h of indication signal 325-f may be used indicate the presence of a first transmitting device in sensing signals 320-n and 320-o. Indication resource region 330-I of indication signal 325-g may be used to indicate the presence of the first transmitting device in sensing signals 320-p and 320-q. Indication resource region 330-m of indication signal 325-g may be used to indicate the presence of a second transmitting device in sensing signals 320-w and 320-x. Indication resource region 330-j in indication signal 325-h may be used to indicate the presence of the first transmitting device in sensing signals 320-r and 320-s. Indication resource region 330-n in indication signal 325-h may be used to indicate the presence of the second transmitting device in  sensing signals 320-y and 320-z. Indication resource region 330-k in indication signal 325-i may be used to indicate the presence of the first transmitting device in sensing signals 320-t and 320-u. Indication resource region 330-l in indication signal 325-j may indicate the presence of the first transmitting device in sensing signal 325-v. A transmitting device (e.g., a transmitting UE) transmitting one or more indication signals 325 may support a receiving device (e.g., a receiving UE) in identifying changes in one or more transmitting devices, which may improve the accuracy of passive sensing (e.g., target object gesture recognition) . For example, the indications signals 325 may support the receiving device in the identifying the transmitting devices that transmitted sensing signals, thereby allowing the receiving device to assess whether changes in a sensing signal are due to the sensing signal being sent from a different transmitting device or to movement of a target object.
FIG. 4 illustrates an example of signal updating technique 400 that supports sidelink based passive sensing in accordance with aspects of the present disclosure. In some examples, the signal updating technique 400 may implement aspects of  wireless communications system  100 or 200. The operations of the signal updating technique 400 may be implemented by a UE 115 or its components, as described herein.
UE 115-d (e.g., a first transmitting device) may transmit sensing signal 410-a to UE 115-f (e.g., a receiving device) . UE 115-d may transmit the sensing signal 410-a based on receiving a sensing signal request from UE 115-f or a base station 105. Sensing signal 410-a may be transmitted via a sidelink, and sensing signal 410-a may include a periodical SRS, a semi-persistent SRS, an FMCW signal, generated using a Golay sequence, or the like. UE 115-f may transmit (e.g., via broadcast or unicast) an update message that indicates a transmission power adjustment and/or a cycle length adjustment. A cycle length may correspond to the frequency with which the transmitter a sensing resources occurs in which a transmitting device transmits the sensing signal. Transmitting more often may result in improved sensing signal measurements and improved Doppler frequency metrics. Transmitting less often may consume less power, thereby improving battery life. UE 115-d may receive the update message as update message 420-a, and UE 115-e may receive the update message as update message 420-b. In some cases, the update message may be transmitted via group common sidelink control information (SCI) . In some cases, multiple transmitting devices (e.g., UE 115-d and UE 115-e) may be associated with different sensing resources. In such cases, the update message may indicate a sensing resource identifier, and  the transmitting devices associated with the sensing resource identifier may update sensing signals 410 based on the update message (e.g., update the transmission power of a sensing signal 410, update the cycle length of a sensing signal 410) .
FIG. 4 also illustrates an example of an SCI format 401 that supports sidelink based passive sensing. The SCI format 401 may include a number of resource identifiers 420 and a number of signal parameter adjustment indications 425. A resource identifier 420 may identify a sensing signal resource or an indication signal resource, and a signal parameter adjustment indication 425 may indicate a transmission power adjustment and/or a cycle length adjustment.
A transmitting device may receive an SCI message containing resource identifier 420-a and signal parameter adjustment indications 425-a. If the transmitting device is associated with the sensing resource indicated by resource identifier 425-a, the transmitting device may update sensing signal parameters based on signal parameter adjustment indication 425-a. If the transmitting device is associated with the indication resource indicated by resource identifier 425-a, the transmitting device may update sensing signal parameters based on signal parameter adjustment indication 425-a. Resource identifier 420-b and 420-c may indicate sensing resources or indication resources that are the same or different from the sensing/indication resources indicated in resource identifier 420-a, and signal parameter adjustment indications 425-b and 425-c may indicate signal parameter adjustments that are the same or different from the signal parameter adjustments indicated in signal parameter adjustment indication 425-a.
The SCI format 401 may support a receiving device in adjusting the sensing signal parameters of particular transmitting devices. The SCI format 401 may also support the receiving device in adjusting the sensing signal parameters of multiple transmitting device, which may improve the passive sensing capabilities of the receiving device.
In some additional or alternative cases, multiple transmitting devices (e.g., UE 115-d and UE 115-e) may be associated with the same sensing resource. In such cases, the update message may indicate an indication resource identifier, and the transmitting devices associated with the indication resource identifier may update sensing signals 410 based on the update message (e.g., update the transmission power of sensing signal 410-b according to the  update message and/or update the cycle length of sensing signal 410-b according to the update message) .
Each transmitting device (e.g., UE 115-d and UE 115-e) may be associated with a respective sensing resource identifier and an indication resource identifier, receive the update message, and update one or more sensing signal parameters (e.g., transmission power, cycle length, etc. ) based on the update message indicating the respective sensing resource identifier or indication resource identifier of the transmitting device. For example, UE 115-d may be associated with a first indication resource identifier and UE 115-e may be associated with a second indication resource identifier. The update message may be broadcasted to UE 115-d as update message 420-a and to UE 115-e as update message 420-b, and the update message may indicate the first indication resource identifier. UE 115-d may update sensing signal parameters based on the update message and transmit sensing signal 410-b according to the updated sensing signal parameters. UE 115-e may refrain from updating sensing signal parameters based on the update message not indicating the second indication resource identifier. Updating the sensing signal parameters of one or more transmitting devices may reduce device battery consumption and improve passive sensing capabilities
FIG. 5 illustrates an example of  sensing signal techniques  500 and 501 that support indication based passive sidelink sensing in accordance with aspects of the present disclosure. In some examples, the  sensing signal techniques  500 and 501 may implement aspects of  wireless communication system  100 or 200. The sensing signal technique 500 may include a first received signal strength value 505-a, a second received signal strength value 505-b, and a received signal strength indicator 510-a. The sensing signal technique 501 may include a first received signal strength value 505-c, a second received signal strength value 505-d, and a received signal strength indicator 510-b.
A receiving device may identify multiple transmitting devices transmitting sensing signals in a group common sensing radio resource. In some cases, the first received signal strength value 505-a (e.g., 80 Decibel-milliwatts (dBm) ) may be associated with a first transmitting device and the second received signal strength value 505-b (e.g., 90 dBm) may be associated with a second transmitting device.
In some additional or alternative cases, the first received signal strength value 505-c and the second received signal strength value 505-d may be associated with a first  transmitting device. For example, the first transmitting device may move from a first location to a second location, and the first received signal strength value 505-c may correspond to the first location and the second received signal strength value 505-d may correspond to the second location. A transmitting device may transmit an indication signal to the receiving device, which may support the receiving device in determining the location, movement, speed, distance, or actions of one or more target objects and/or transmitting devices.
In some cases, a first transmitting device and a second transmitting device may transmit sensing signals on a common sensing radio resource, which may reduce radio resource consumption. When transmitting a sensing signal, the first transmitting device and the second transmitting device may also transmit an indication signal, which may support a receiving device in determining whether a change in the received signal strength is due to a change in a transmitting device (e.g., the powering on or off of a transmitting device) or a change in a target object (e.g., a movement of the target object) . In some additional or alternative cases, the receiving device may transmit an update message to one or more transmitting devices, which may improve the received strength of sensing signals.
FIG. 6 illustrates an example of a process flow 600 that supports indication based passive sidelink sensing in accordance with aspects of the present disclosure. In some examples, process flow 600 may implement aspects of  wireless communication system  100 and 200. The process flow 600 includes UE 115-g (e.g., a receiving device) , UE 115-h (e.g., a transmitting device) , and base station 105-b which may be examples of the corresponding devices described with reference to FIGs 1 through 5. UE 115-h may transmit an indication signal which may improve the passive sensing capabilities of UE 115-g. Alternative examples of the following may be implemented, where some steps are performed in a different order than described or are not performed at all. In some cases, steps may include additional features not mentioned below, or further steps may be added.
At 605, base station 105-b may transmit an indication of an indication resource to UE 115-h. In some cases, base station 105-b may divide a set of indication resources into multiple parts and assign one or more parts to UE 115-h. An indication resource may include a time-frequency resource, a code, a sequence, or a cycle shift. For example, each transmitting UE may be assigned a unique part of one or more indication resources. The unique part may be a unique time-frequency resource, a unique code, a unique sequence, or a  unique cycle shift, that differs from a different unique part of the one or more indication resources assigned to a different transmitting UE. By assignment of different unique parts of the one or more indication resources, the receiving UE may be able to determine whether one or more multiple transmitting UEs have transmitted in a sensing resource.
At 610, UE 115-g may transmit a sensing signal request to UE 115-h. In some cases, the sensing signal request may indicate a sensing resource. At 615, UE 115-h may start transmitting a sensing signal.
At 620, UE 115-h may transmit the sensing signal. In some cases, UE 115-h may transmit the sensing signal based on receiving the sensing signal request. In some additional or alternative cases, the sensing signal may be transmitted via a sensing resource indicated by UE 115-g or base station 105-b.
At 625, UE 115-h may transmit an indication signal. The indication signal may be transmitted at an indication resource associated with UE 115-h. In some cases, the indication signal may indicate the presence or absence of UE 115-h in the sensing signal. In some additional or alternative cases, the indication signal may indicate the sensing resource at which the sensing signal is transmitted.
At 630, UE 115-g may performing sensing of the sensing signal. UE 115-g may perform the sensing based on the sensing signal and/or the indication signal. In some examples, UE 115-g may monitor an indication resource while receiving the sensing signal to determine how many transmitters are transmitting a sensing signal. The UE 115-g may use the indication resource to determine whether the number of transmitting devices (e.g., UE 115-h) is the same or has changed relative to prior monitoring of the sensing resource (e.g., the number of transmitting devices have increased, the number of transmitting devices have decreased) , whether the location of any of the transmitting devices has changed or is the same, , and may use observation of the indication resource when processing the received sensing signals to determine one or more Doppler frequency-related metrics for a target object. Thus, the UE 115-g may use the indication resource to derive a more accurate sensing result. At 635, UE 115-h may stop transmitting the sensing signal. When UE 115-h stops transmitting the sensing signal it may also stop transmitting the indication signal.
FIG. 7 illustrates an example of a process flow 700 that supports indication based passive sidelink sensing in accordance with aspects of the present disclosure. In some  examples, process flow 700 may implement aspects of  wireless communication system  100 and 200. The process flow 700 includes UE 115-i (e.g., a transmitting device) , UE 115-j (e.g., a receiving device) , and base station 105-c, which may be examples of the corresponding devices described with reference to FIGs 1 through 6. UE 115-i may transmit an indication signal which may improve the passive sensing capabilities of UE 115-j. Alternative examples of the following may be implemented, where some steps are performed in a different order than described or are not performed at all. In some cases, steps may include additional features not mentioned below, or further steps may be added.
At 705, UE 115-i may receive a control message indicating a sensing resource of a sidelink channel and/or a first indication resource of the sidelink channel assigned to UE 115-i. In some cases, the control message may be transmitted by UE 115-j, while in some additional or alternative examples, the control message may be transmitted by base station 105-c.
At 710, UE 115-i may transmit a sensing signal to UE 115-j via the sensing resource of the sidelink channel. At 715, UE 115-i may transmit an indication signal to UE 115-j via the first indication resource of the sidelink channel indicating that UE 115-i transmitted the sensing signal via the sensing resource of the sidelink channel.
At 720, UE 115-j may transmit an update message to UE 115-i, and the update message may indicate sensing signal parameters (e.g., a transmission power, a cycle length, a sensing signal resource, etc. ) . At 725, UE 115-i may transmit a sensing signal to UE 115-j in accordance with the sensing signal parameters indicated in the update message. Updating sensing signal parameters based on an update message may improve sensing signal quality and the passive sensing capabilities of UE 115-j.
FIG. 8 shows a block diagram 800 of a device 805 that supports indication based passive sidelink sensing in accordance with aspects of the present disclosure. The device 805 may be an example of aspects of a UE 115 as described herein. The device 805 may include a receiver 810, a communications manager 815, and a transmitter 820. The device 805 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 810 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data  channels, and information related to indication based passive sidelink sensing, etc. ) . Information may be passed on to other components of the device 805. The receiver 810 may be an example of aspects of the transceiver 1120 described with reference to FIG. 11. The receiver 810 may utilize a single antenna or a set of antennas.
The communications manager 815 may receive a control message indicating at least one of a sensing resource of a sidelink channel or that a first indication resource of the sidelink channel is assigned to the transmitting device, transmit a sensing signal to a receiving device via the sensing resource of the sidelink channel, and transmit an indication signal to the receiving device via the first indication resource of the sidelink channel indicating that the transmitting device transmitted the sensing signal via the sensing resource of the sidelink channel. The communications manager 815 may also receive a sensing signal from a transmitting device via a sensing resource of a sidelink channel and receive an indication signal from the transmitting device via a first indication resource of the sidelink channel indicating that the transmitting device transmitted the sensing signal via the sensing resource of the sidelink channel. The communications manager 815 may be an example of aspects of the communications manager 1110 described herein.
The communications manager 815, or its sub-components, may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 815, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
The communications manager 815, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some examples, the communications manager 815, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some examples, the communications manager 815, or its sub-components, may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other  components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
The transmitter 820 may transmit signals generated by other components of the device 805. In some examples, the transmitter 820 may be collocated with a receiver 810 in a transceiver module. For example, the transmitter 820 may be an example of aspects of the transceiver 1120 described with reference to FIG. 11. The transmitter 820 may utilize a single antenna or a set of antennas.
FIG. 9 shows a block diagram 900 of a device 905 that supports indication based passive sidelink sensing in accordance with aspects of the present disclosure. The device 905 may be an example of aspects of a device 805, or a UE 115 as described herein. The device 905 may include a receiver 910, a communications manager 915, and a transmitter 945. The device 905 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 910 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to indication based passive sidelink sensing, etc. ) . Information may be passed on to other components of the device 905. The receiver 910 may be an example of aspects of the transceiver 1120 described with reference to FIG. 11. The receiver 910 may utilize a single antenna or a set of antennas.
The communications manager 915 may be an example of aspects of the communications manager 815 as described herein. The communications manager 915 may include a control message manager 920, a sensing signal manager 925, an indication signal manager 930, a sensing signal component 935, and an indication signal component 940. The communications manager 915 may be an example of aspects of the communications manager 1110 described herein.
The control message manager 920 may receive a control message indicating at least one of a sensing resource of a sidelink channel or that a first indication resource of the sidelink channel is assigned to the transmitting device.
The sensing signal manager 925 may transmit a sensing signal to a receiving device via the sensing resource of the sidelink channel.
The indication signal manager 930 may transmit an indication signal to the receiving device via the first indication resource of the sidelink channel indicating that the transmitting device transmitted the sensing signal via the sensing resource of the sidelink channel.
The sensing signal component 935 may receive a sensing signal from a transmitting device via a sensing resource of a sidelink channel.
The indication signal component 940 may receive an indication signal from the transmitting device via a first indication resource of the sidelink channel indicating that the transmitting device transmitted the sensing signal via the sensing resource of the sidelink channel.
The transmitter 945 may transmit signals generated by other components of the device 905. In some examples, the transmitter 945 may be collocated with a receiver 910 in a transceiver module. For example, the transmitter 945 may be an example of aspects of the transceiver 1120 described with reference to FIG. 11. The transmitter 945 may utilize a single antenna or a set of antennas.
FIG. 10 shows a block diagram 1000 of a communications manager 1005 that supports indication based passive sidelink sensing in accordance with aspects of the present disclosure. The communications manager 1005 may be an example of aspects of a communications manager 815, a communications manager 915, or a communications manager 1110 described herein. The communications manager 1005 may include a control message manager 1010, a sensing signal manager 1015, an indication signal manager 1020, an update message manager 1025, a sensing signal component 1030, an indication signal component 1035, a control message component 1040, and an update message component 1045. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The control message manager 1010 may receive a control message indicating at least one of a sensing resource of a sidelink channel or that a first indication resource of the sidelink channel is assigned to the transmitting device.
In some examples, the control message manager 1010 may receive the control message indicating that the first indication resource of a set of different resources is assigned  to the transmitting device. In some examples, the control message manager 1010 may receive the control message indicating that a code, or a sequence, or a cyclic shift, or any combination thereof, is assigned to the transmitting device.
In some examples, the control message manager 1010 may receive the control message from a base station or the receiving device. In some examples, the control message manager 1010 may receive the control message that indicates a multiplexing type. In some cases, the multiplexing type is a frequency division multiplexing type or a time division multiplexing type.
The sensing signal manager 1015 may transmit a sensing signal to a receiving device via the sensing resource of the sidelink channel. In some examples, the sensing signal manager 1015 may transmit an additional sensing signal to the receiving device according to the transmission power adjustment, or the cycle length adjustment, or both.
In some examples, the sensing signal manager 1015 may transmit an additional sensing signal to the receiving device according to the transmission power adjustment, the cycle length adjustment, or both, based on the sensing resource identifier corresponding to the sensing resource indicated in the control message.
In some examples, the sensing signal manager 1015 may transmit an additional sensing signal to the receiving device according to the transmission power adjustment, the cycle length adjustment, or both, based on the indication resource identifier corresponding to the first indication resource indicated in the control message.
In some examples, the sensing signal manager 1015 may transmit the sensing signal and the indication signal to the receiving device according to the multiplexing type. In some examples, the sensing signal manager 1015 may receive a sensing signal request from the receiving device. In some examples, the sensing signal manager 1015 may transmit the sensing signal to the receiving device based on receiving the sensing signal request.
In some examples, the sensing signal manager 1015 may transmit the sensing signal that is a sounding reference signal, a frequency modulated continuous wave (FMCW) signal, a signal generated using a Golay sequence, or any combination thereof.
The indication signal manager 1020 may transmit an indication signal to the receiving device via the first indication resource of the sidelink channel indicating that the  transmitting device transmitted the sensing signal via the sensing resource of the sidelink channel.
In some examples, the indication signal manager 1020 may transmit the indication signal via the first indication resource based on the code, or the sequence, or the cyclic shift, or any combination thereof. In some examples, the indication signal manager 1020 may transmit the indication signal that indicates a resource identifier of the sensing resource in which the sensing signal is transmitted.
The sensing signal component 1030 may receive a sensing signal from a transmitting device via a sensing resource of a sidelink channel. In some examples, the sensing signal component 1030 may receive an additional sensing signal from the transmitting device according to the transmission power adjustment, or the cycle length adjustment, or both.
In some examples, the sensing signal component 1030 may receive an additional sensing signal from the transmitting device according to the transmission power adjustment, the cycle length adjustment, or both, based on the sensing resource identifier corresponding to the sensing resource indicated in a control message.
In some examples, the sensing signal component 1030 may receive an additional sensing signal from the transmitting device according to the transmission power adjustment, the cycle length adjustment, or both, based on the indication resource identifier corresponding to the first indication resource indicated in a control message.
In some examples, the sensing signal component 1030 may receive the sensing signal and the indication signal from the transmitting device according to the multiplexing type. In some examples, the sensing signal component 1030 may transmit a sensing signal request to the transmitting device.
In some examples, the sensing signal component 1030 may receive the sensing signal from the transmitting device based on transmitting the sensing signal request. In some examples, the sensing signal component 1030 may receive the sensing signal that is a sounding reference signal, a frequency modulated continuous wave (FMCW) signal, a signal generated using a Golay sequence, or any combination thereof.
The indication signal component 1035 may receive an indication signal from the transmitting device via a first indication resource of the sidelink channel indicating that the transmitting device transmitted the sensing signal via the sensing resource of the sidelink channel.
In some examples, the indication signal component 1035 may receive the indication signal via the first indication resource based on the code, or the sequence, or the cyclic shift, or any combination thereof. In some examples, the indication signal component 1035 may receive the indication signal that indicates a resource identifier of the sensing resource in which the sensing signal is received.
The update message manager 1025 may receive, from the receiving device, an update message indicating a transmission power adjustment, or a cycle length adjustment, or both, for the sensing signal. In some examples, the update message manager 1025 may receive the update message that indicates a sensing resource identifier. In some examples, the update message manager 1025 may receive the update message that indicates an indication resource identifier.
The control message component 1040 may receive, from a base station, a control message indicating at least one of the sensing resource of the sidelink channel or that the first indication resource of the sidelink channel is assigned to the transmitting device.
In some examples, the control message component 1040 may receive a control message indicating that the first indication resource of a set of different resources is assigned to the transmitting device. In some examples, the control message component 1040 may receive a control message indicating that a code, or a sequence, or a cyclic shift, or any combination thereof, is assigned to the transmitting device.
In some examples, the control message component 1040 may transmit, to the transmitting device, a control message indicating at least one of the sensing resource of the sidelink channel or that the first indication resource of the sidelink channel is assigned to the transmitting device.
In some examples, the control message component 1040 may receive a control message that indicates a multiplexing type. In some cases, the multiplexing type is a frequency division multiplexing type or a time division multiplexing type.
The update message component 1045 may transmit, to the transmitting device, an update message indicating a transmission power adjustment, or a cycle length adjustment, or both, for the sensing signal. In some examples, the update message component 1045 may transmit the update message that indicates a sensing resource identifier. In some examples, the update message component 1045 may transmit the update message that indicates an indication resource identifier.
FIG. 11 shows a diagram of a system 1100 including a device 1105 that supports indication based passive sidelink sensing in accordance with aspects of the present disclosure. The device 1105 may be an example of or include the components of device 805, device 905, or a UE 115 as described herein. The device 1105 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1110, an I/O controller 1115, a transceiver 1120, an antenna 1125, memory 1130, and a processor 1140. These components may be in electronic communication via one or more buses (e.g., bus 1145) .
The communications manager 1110 may receive a control message indicating at least one of a sensing resource of a sidelink channel or that a first indication resource of the sidelink channel is assigned to the transmitting device, transmit a sensing signal to a receiving device via the sensing resource of the sidelink channel, and transmit an indication signal to the receiving device via the first indication resource of the sidelink channel indicating that the transmitting device transmitted the sensing signal via the sensing resource of the sidelink channel. The communications manager 1110 may also receive a sensing signal from a transmitting device via a sensing resource of a sidelink channel and receive an indication signal from the transmitting device via a first indication resource of the sidelink channel indicating that the transmitting device transmitted the sensing signal via the sensing resource of the sidelink channel.
The I/O controller 1115 may manage input and output signals for the device 1105. The I/O controller 1115 may also manage peripherals not integrated into the device 1105. In some cases, the I/O controller 1115 may represent a physical connection or port to an external peripheral. In some cases, the I/O controller 1115 may utilize an operating system such as 
Figure PCTCN2020108117-appb-000001
or another known operating system. In other cases, the I/O controller 1115 may represent or interact  with a modem, a keyboard, a mouse, a touchscreen, or a similar device. In some cases, the I/O controller 1115 may be implemented as part of a processor. In some cases, a user may interact with the device 1105 via the I/O controller 1115 or via hardware components controlled by the I/O controller 1115.
The transceiver 1120 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 1120 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 1120 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some cases, the wireless device may include a single antenna 1125. However, in some cases the device may have more than one antenna 1125, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 1130 may include RAM and ROM. The memory 1130 may store computer-readable, computer-executable code 1135 including instructions that, when executed, cause the processor to perform various functions described herein. In some cases, the memory 1130 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 1140 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 1140 may be configured to operate a memory array using a memory controller. In other cases, a memory controller may be integrated into the processor 1140. The processor 1140 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1130) to cause the device 1105 to perform various functions (e.g., functions or tasks supporting indication based passive sidelink sensing) .
The code 1135 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 1135 may be stored in a non-transitory computer-readable medium such as system memory or other type of  memory. In some cases, the code 1135 may not be directly executable by the processor 1140 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
FIG. 12 shows a block diagram 1200 of a device 1205 that supports indication based passive sidelink sensing in accordance with aspects of the present disclosure. The device 1205 may be an example of aspects of a base station 105 as described herein. The device 1205 may include a receiver 1210, a communications manager 1215, and a transmitter 1220. The device 1205 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 1210 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to indication based passive sidelink sensing, etc. ) . Information may be passed on to other components of the device 1205. The receiver 1210 may be an example of aspects of the transceiver 1520 described with reference to FIG. 15. The receiver 1210 may utilize a single antenna or a set of antennas.
The communications manager 1215 may transmit, to a receiving device, a first control message indicating a sensing resource and a first indication resource that is assigned to at least one transmitting device and transmit, to a first transmitting device of the at least one transmitting device, a second control message indicating the sensing resource and the first indication resource are assigned to the first transmitting device. The communications manager 1215 may be an example of aspects of the communications manager 1510 described herein.
The communications manager 1215, or its sub-components, may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 1215, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
The communications manager 1215, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are  implemented at different physical locations by one or more physical components. In some examples, the communications manager 1215, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some examples, the communications manager 1215, or its sub-components, may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
The transmitter 1220 may transmit signals generated by other components of the device 1205. In some examples, the transmitter 1220 may be collocated with a receiver 1210 in a transceiver module. For example, the transmitter 1220 may be an example of aspects of the transceiver 1520 described with reference to FIG. 15. The transmitter 1220 may utilize a single antenna or a set of antennas.
FIG. 13 shows a block diagram 1300 of a device 1305 that supports indication based passive sidelink sensing in accordance with aspects of the present disclosure. The device 1305 may be an example of aspects of a device 1205, or a base station 105 as described herein. The device 1305 may include a receiver 1310, a communications manager 1315, and a transmitter 1325. The device 1305 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 1310 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to indication based passive sidelink sensing, etc. ) . Information may be passed on to other components of the device 1305. The receiver 1310 may be an example of aspects of the transceiver 1520 described with reference to FIG. 15. The receiver 1310 may utilize a single antenna or a set of antennas.
The communications manager 1315 may be an example of aspects of the communications manager 1215 as described herein. The communications manager 1315 may include a configuration manager 1320. The communications manager 1315 may be an example of aspects of the communications manager 1510 described herein.
The configuration manager 1320 may transmit, to a receiving device, a first control message indicating a sensing resource and a first indication resource that is assigned  to at least one transmitting device and transmit, to a first transmitting device of the at least one transmitting device, a second control message indicating the sensing resource and the first indication resource are assigned to the first transmitting device.
The transmitter 1325 may transmit signals generated by other components of the device 1305. In some examples, the transmitter 1325 may be collocated with a receiver 1310 in a transceiver module. For example, the transmitter 1325 may be an example of aspects of the transceiver 1520 described with reference to FIG. 15. The transmitter 1325 may utilize a single antenna or a set of antennas.
FIG. 14 shows a block diagram 1400 of a communications manager 1405 that supports indication based passive sidelink sensing in accordance with aspects of the present disclosure. The communications manager 1405 may be an example of aspects of a communications manager 1215, a communications manager 1315, or a communications manager 1510 described herein. The communications manager 1405 may include a configuration manager 1410. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The configuration manager 1410 may transmit, to a receiving device, a first control message indicating a sensing resource and a first indication resource that is assigned to at least one transmitting device.
In some examples, the configuration manager 1410 may transmit, to a first transmitting device of the at least one transmitting device, a second control message indicating the sensing resource and the first indication resource are assigned to the first transmitting device.
In some examples, the configuration manager 1410 may transmit the first control message indicating a transmitting device identifier of the first transmitting device and that the first transmitting device is assigned to transmit a sensing signal via the sensing resource.
In some cases, the second control message indicates a multiplexing type.
In some cases, the multiplexing type corresponds to a frequency division multiplexing type or a time division multiplexing type.
FIG. 15 shows a diagram of a system 1500 including a device 1505 that supports indication based passive sidelink sensing in accordance with aspects of the present disclosure.  The device 1505 may be an example of or include the components of device 1205, device 1305, or a base station 105 as described herein. The device 1505 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1510, a network communications manager 1515, a transceiver 1520, an antenna 1525, memory 1530, a processor 1540, and an inter-station communications manager 1545. These components may be in electronic communication via one or more buses (e.g., bus 1550) .
The communications manager 1510 may transmit, to a receiving device, a first control message indicating a sensing resource and a first indication resource that is assigned to at least one transmitting device and transmit, to a first transmitting device of the at least one transmitting device, a second control message indicating the sensing resource and the first indication resource are assigned to the first transmitting device.
The network communications manager 1515 may manage communications with the core network (e.g., via one or more wired backhaul links) . For example, the network communications manager 1515 may manage the transfer of data communications for client devices, such as one or more UEs 115.
The transceiver 1520 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 1520 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 1520 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some cases, the wireless device may include a single antenna 1525. However, in some cases the device may have more than one antenna 1525, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 1530 may include RAM, ROM, or a combination thereof. The memory 1530 may store computer-readable code 1535 including instructions that, when executed by a processor (e.g., the processor 1540) cause the device to perform various functions described herein. In some cases, the memory 1530 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 1540 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 1540 may be configured to operate a memory array using a memory controller. In some cases, a memory controller may be integrated into processor 1540. The processor 1540 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1530) to cause the device 1505 to perform various functions (e.g., functions or tasks supporting indication based passive sidelink sensing) .
The inter-station communications manager 1545 may manage communications with other base station 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communications manager 1545 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communications manager 1545 may provide an X2 interface within an LTE/LTE-A wireless communication network technology to provide communication between base stations 105.
The code 1535 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 1535 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1535 may not be directly executable by the processor 1540 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
FIG. 16 shows a flowchart illustrating a method 1600 that supports indication based passive sidelink sensing in accordance with aspects of the present disclosure. The operations of method 1600 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1600 may be performed by a communications manager as described with reference to FIGs. 8 through 11. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1605, the UE may receive a control message indicating at least one of a sensing resource of a sidelink channel or that a first indication resource of the sidelink channel is assigned to the transmitting device. The operations of 1605 may be performed according to the methods described herein. In some examples, aspects of the operations of 1605 may be performed by a control message manager as described with reference to FIGs. 8 through 11.
At 1610, the UE may transmit a sensing signal to a receiving device via the sensing resource of the sidelink channel. The operations of 1610 may be performed according to the methods described herein. In some examples, aspects of the operations of 1610 may be performed by a sensing signal manager as described with reference to FIGs. 8 through 11.
At 1615, the UE may transmit an indication signal to the receiving device via the first indication resource of the sidelink channel indicating that the transmitting device transmitted the sensing signal via the sensing resource of the sidelink channel. The operations of 1615 may be performed according to the methods described herein. In some examples, aspects of the operations of 1615 may be performed by an indication signal manager as described with reference to FIGs. 8 through 11.
FIG. 17 shows a flowchart illustrating a method 1700 that supports indication based passive sidelink sensing in accordance with aspects of the present disclosure. The operations of method 1700 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1700 may be performed by a communications manager as described with reference to FIGs. 8 through 11. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1705, the UE may receive a control message indicating at least one of a sensing resource of a sidelink channel or that a first indication resource of the sidelink channel is assigned to the transmitting device. The operations of 1705 may be performed according to the methods described herein. In some examples, aspects of the operations of 1705 may be performed by a control message manager as described with reference to FIGs. 8 through 11.
At 1710, the UE may transmit a sensing signal to a receiving device via the sensing resource of the sidelink channel. The operations of 1710 may be performed according  to the methods described herein. In some examples, aspects of the operations of 1710 may be performed by a sensing signal manager as described with reference to FIGs. 8 through 11.
At 1715, the UE may transmit an indication signal to the receiving device via the first indication resource of the sidelink channel indicating that the transmitting device transmitted the sensing signal via the sensing resource of the sidelink channel. The operations of 1715 may be performed according to the methods described herein. In some examples, aspects of the operations of 1715 may be performed by an indication signal manager as described with reference to FIGs. 8 through 11.
At 1720, the UE may receive, from the receiving device, an update message indicating a transmission power adjustment, or a cycle length adjustment, or both, for the sensing signal. The operations of 1720 may be performed according to the methods described herein. In some examples, aspects of the operations of 1720 may be performed by an update message manager as described with reference to FIGs. 8 through 11.
FIG. 18 shows a flowchart illustrating a method 1800 that supports indication based passive sidelink sensing in accordance with aspects of the present disclosure. The operations of method 1800 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1800 may be performed by a communications manager as described with reference to FIGs. 8 through 11. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1805, the UE may receive a sensing signal from a transmitting device via a sensing resource of a sidelink channel. The operations of 1805 may be performed according to the methods described herein. In some examples, aspects of the operations of 1805 may be performed by a sensing signal component as described with reference to FIGs. 8 through 11.
At 1810, the UE may receive an indication signal from the transmitting device via a first indication resource of the sidelink channel indicating that the transmitting device transmitted the sensing signal via the sensing resource of the sidelink channel. The operations of 1810 may be performed according to the methods described herein. In some examples, aspects of the operations of 1810 may be performed by an indication signal component as described with reference to FIGs. 8 through 11.
FIG. 19 shows a flowchart illustrating a method 1900 that supports indication based passive sidelink sensing in accordance with aspects of the present disclosure. The operations of method 1900 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1900 may be performed by a communications manager as described with reference to FIGs. 8 through 11. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1905, the UE may receive a sensing signal from a transmitting device via a sensing resource of a sidelink channel. The operations of 1905 may be performed according to the methods described herein. In some examples, aspects of the operations of 1905 may be performed by a sensing signal component as described with reference to FIGs. 8 through 11.
At 1910, the UE may receive an indication signal from the transmitting device via a first indication resource of the sidelink channel indicating that the transmitting device transmitted the sensing signal via the sensing resource of the sidelink channel. The operations of 1910 may be performed according to the methods described herein. In some examples, aspects of the operations of 1910 may be performed by an indication signal component as described with reference to FIGs. 8 through 11.
At 1915, the UE may transmit, to the transmitting device, an update message indicating a transmission power adjustment, or a cycle length adjustment, or both, for the sensing signal. The operations of 1915 may be performed according to the methods described herein. In some examples, aspects of the operations of 1915 may be performed by an update message component as described with reference to FIGs. 8 through 11.
FIG. 20 shows a flowchart illustrating a method 2000 that supports indication based passive sidelink sensing in accordance with aspects of the present disclosure. The operations of method 2000 may be implemented by a base station 105 or its components as described herein. For example, the operations of method 2000 may be performed by a communications manager as described with reference to FIGs. 12 through 15. In some examples, a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a  base station may perform aspects of the functions described below using special-purpose hardware.
At 2005, the base station may transmit, to a receiving device, a first control message indicating a sensing resource and a first indication resource that is assigned to at least one transmitting device. The operations of 2005 may be performed according to the methods described herein. In some examples, aspects of the operations of 2005 may be performed by a configuration manager as described with reference to FIGs. 12 through 15.
At 2010, the base station may transmit, to a first transmitting device of the at least one transmitting device, a second control message indicating the sensing resource and the first indication resource are assigned to the first transmitting device. The operations of 2010 may be performed according to the methods described herein. In some examples, aspects of the operations of 2010 may be performed by a configuration manager as described with reference to FIGs. 12 through 15.
At 2015, the base station may transmit the first control message indicating a transmitting device identifier of the first transmitting device and that the first transmitting device is assigned to transmit a sensing signal via the sensing resource. The operations of 2015 may be performed according to the methods described herein. In some examples, aspects of the operations of 2015 may be performed by a configuration manager as described with reference to FIGs. 12 through 15.
It should be noted that the methods described herein describe possible implementations, and that the operations and the steps may be rearranged or otherwise modified and that other implementations are possible. Further, aspects from two or more of the methods may be combined.
Although aspects of an LTE, LTE-A, LTE-A Pro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks. For example, the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
Information and signals described herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative blocks and components described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a DSP, an ASIC, a CPU, an FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special purpose computer. By way of example, and not limitation, non-transitory computer-readable media may include random-access memory (RAM) , read-only memory (ROM) , electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic  disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium. Disk and disc, as used herein, include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
As used herein, including in the claims, “or” as used in a list of items (e.g., a list of items prefaced by a phrase such as “at least one of” or “one or more of” ) indicates an inclusive list such that, for example, a list of at least one of A, B, or C means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) . Also, as used herein, the phrase “based on” shall not be construed as a reference to a closed set of conditions. For example, an example step that is described as “based on condition A” may be based on both a condition A and a condition B without departing from the scope of the present disclosure. In other words, as used herein, the phrase “based on” shall be construed in the same manner as the phrase “based at least in part on. ”
In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label, or other subsequent reference label.
The description set forth herein, in connection with the appended drawings, describes example configurations and does not represent all the examples that may be implemented or that are within the scope of the claims. The term “example” used herein  means “serving as an example, instance, or illustration, ” and not “preferred” or “advantageous over other examples. ” The detailed description includes specific details for the purpose of providing an understanding of the described techniques. These techniques, however, may be practiced without these specific details. In some instances, known structures and devices are shown in block diagram form in order to avoid obscuring the concepts of the described examples.
The description herein is provided to enable a person having ordinary skill in the art to make or use the disclosure. Various modifications to the disclosure will be apparent to a person having ordinary skill in the art, and the generic principles defined herein may be applied to other variations without departing from the scope of the disclosure. Thus, the disclosure is not limited to the examples and designs described herein, but is to be accorded the broadest scope consistent with the principles and novel features disclosed herein.

Claims (108)

  1. A method for wireless communication at a transmitting device, comprising:
    receiving a control message indicating at least one of a sensing resource of a sidelink channel or that a first indication resource of the sidelink channel is assigned to the transmitting device;
    transmitting a sensing signal to a receiving device via the sensing resource of the sidelink channel; and
    transmitting an indication signal to the receiving device via the first indication resource of the sidelink channel indicating that the transmitting device transmitted the sensing signal via the sensing resource of the sidelink channel.
  2. The method of claim 1, further comprising:
    receiving the control message indicating that the first indication resource of a plurality of different resources is assigned to the transmitting device.
  3. The method of claim 1, further comprising:
    receiving the control message indicating that a code, or a sequence, or a cyclic shift, or any combination thereof, is assigned to the transmitting device; and
    transmitting the indication signal via the first indication resource based at least in part on the code, or the sequence, or the cyclic shift, or any combination thereof.
  4. The method of claim 1, further comprising:
    transmitting the indication signal that indicates a resource identifier of the sensing resource in which the sensing signal is transmitted.
  5. The method of claim 1, further comprising:
    receiving, from the receiving device, an update message indicating a transmission power adjustment, or a cycle length adjustment, or both, for the sensing signal.
  6. The method of claim 5, further comprising:
    transmitting an additional sensing signal to the receiving device according to the transmission power adjustment, or the cycle length adjustment, or both.
  7. The method of claim 5, further comprising:
    receiving the update message that indicates a sensing resource identifier; and
    transmitting an additional sensing signal to the receiving device according to the transmission power adjustment, the cycle length adjustment, or both, based at least in part on the sensing resource identifier corresponding to the sensing resource indicated in the control message.
  8. The method of claim 5, further comprising:
    receiving the update message that indicates an indication resource identifier; and
    transmitting an additional sensing signal to the receiving device according to the transmission power adjustment, the cycle length adjustment, or both, based at least in part on the indication resource identifier corresponding to the first indication resource indicated in the control message.
  9. The method of claim 1, further comprising:
    receiving the control message from a base station or the receiving device.
  10. The method of claim 1, further comprising:
    receiving the control message that indicates a multiplexing type; and
    transmitting the sensing signal and the indication signal to the receiving device according to the multiplexing type.
  11. The method of claim 10, wherein the multiplexing type is a frequency division multiplexing type or a time division multiplexing type.
  12. The method of claim 1, further comprising:
    receiving a sensing signal request from the receiving device; and
    transmitting the sensing signal to the receiving device based at least in part on receiving the sensing signal request.
  13. The method of claim 1, further comprising:
    transmitting the sensing signal that is a sounding reference signal, a frequency modulated continuous wave (FMCW) signal, a signal generated using a Golay sequence, or any combination thereof.
  14. A method for wireless communication at a receiving device, comprising:
    receiving a sensing signal from a transmitting device via a sensing resource of a sidelink channel; and
    receiving an indication signal from the transmitting device via a first indication resource of the sidelink channel indicating that the transmitting device transmitted the sensing signal via the sensing resource of the sidelink channel.
  15. The method of claim 14, further comprising:
    receiving, from a base station, a control message indicating at least one of the sensing resource of the sidelink channel or that the first indication resource of the sidelink channel is assigned to the transmitting device.
  16. The method of claim 14, further comprising:
    receiving a control message indicating that the first indication resource of a plurality of different resources is assigned to the transmitting device.
  17. The method of claim 14, further comprising:
    receiving a control message indicating that a code, or a sequence, or a cyclic shift, or any combination thereof, is assigned to the transmitting device; and
    receiving the indication signal via the first indication resource based at least in part on the code, or the sequence, or the cyclic shift, or any combination thereof.
  18. The method of claim 14, further comprising:
    transmitting, to the transmitting device, a control message indicating at least one of the sensing resource of the sidelink channel or that the first indication resource of the sidelink channel is assigned to the transmitting device.
  19. The method of claim 14, further comprising:
    receiving the indication signal that indicates a resource identifier of the sensing resource in which the sensing signal is received.
  20. The method of claim 14, further comprising:
    transmitting, to the transmitting device, an update message indicating a transmission power adjustment, or a cycle length adjustment, or both, for the sensing signal.
  21. The method of claim 20, further comprising:
    receiving an additional sensing signal from the transmitting device according to the transmission power adjustment, or the cycle length adjustment, or both.
  22. The method of claim 20, further comprising:
    transmitting the update message that indicates a sensing resource identifier; and
    receiving an additional sensing signal from the transmitting device according to the transmission power adjustment, the cycle length adjustment, or both, based at least in part on the sensing resource identifier corresponding to the sensing resource indicated in a control message.
  23. The method of claim 20, further comprising:
    transmitting the update message that indicates an indication resource identifier; and
    receiving an additional sensing signal from the transmitting device according to the transmission power adjustment, the cycle length adjustment, or both, based at least in part on the indication resource identifier corresponding to the first indication resource indicated in a control message.
  24. The method of claim 14, further comprising:
    receiving a control message that indicates a multiplexing type; and
    receiving the sensing signal and the indication signal from the transmitting device according to the multiplexing type.
  25. The method of claim 24, wherein the multiplexing type is a frequency division multiplexing type or a time division multiplexing type.
  26. The method of claim 14, further comprising:
    transmitting a sensing signal request to the transmitting device; and
    receiving the sensing signal from the transmitting device based at least in part on transmitting the sensing signal request.
  27. The method of claim 14, further comprising:
    receiving the sensing signal that is a sounding reference signal, a frequency modulated continuous wave (FMCW) signal, a signal generated using a Golay sequence, or any combination thereof.
  28. A method for wireless communication at a base station, comprising:
    transmitting, to a receiving device, a first control message indicating a sensing resource and a first indication resource that is assigned to at least one transmitting device; and
    transmitting, to a first transmitting device of the at least one transmitting device, a second control message indicating the sensing resource and the first indication resource are assigned to the first transmitting device.
  29. The method of claim 28, wherein transmitting the first control message comprises:
    transmitting the first control message indicating a transmitting device identifier of the first transmitting device and that the first transmitting device is assigned to transmit a sensing signal via the sensing resource.
  30. The method of claim 28, wherein the second control message indicates a multiplexing type.
  31. The method of claim 30, wherein the multiplexing type corresponds to a frequency division multiplexing type or a time division multiplexing type.
  32. An apparatus for wireless communication at a transmitting device, comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    receive a control message indicating at least one of a sensing resource of a sidelink channel or that a first indication resource of the sidelink channel is assigned to the transmitting device;
    transmit a sensing signal to a receiving device via the sensing resource of the sidelink channel; and
    transmit an indication signal to the receiving device via the first indication resource of the sidelink channel indicating that the transmitting device transmitted the sensing signal via the sensing resource of the sidelink channel.
  33. The apparatus of claim 32, further comprising a receiver, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive, via the receiver, the control message indicating that the first indication resource of a plurality of different resources is assigned to the transmitting device.
  34. The apparatus of claim 32, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive the control message indicating that a code, or a sequence, or a cyclic shift, or any combination thereof, is assigned to the transmitting device; and
    transmit the indication signal via the first indication resource based at least in part on the code, or the sequence, or the cyclic shift, or any combination thereof.
  35. The apparatus of claim 32, wherein the instructions are further executable by the processor to cause the apparatus to:
    transmit the indication signal that indicates a resource identifier of the sensing resource in which the sensing signal is transmitted.
  36. The apparatus of claim 32, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive, from the receiving device, an update message indicating a transmission power adjustment, or a cycle length adjustment, or both, for the sensing signal.
  37. The apparatus of claim 36, wherein the instructions are further executable by the processor to cause the apparatus to:
    transmit an additional sensing signal to the receiving device according to the transmission power adjustment, or the cycle length adjustment, or both.
  38. The apparatus of claim 36, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive the update message that indicates a sensing resource identifier; and
    transmit an additional sensing signal to the receiving device according to the transmission power adjustment, the cycle length adjustment, or both, based at least in part on the sensing resource identifier corresponding to the sensing resource indicated in the control message.
  39. The apparatus of claim 36, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive the update message that indicates an indication resource identifier; and
    transmit an additional sensing signal to the receiving device according to the transmission power adjustment, the cycle length adjustment, or both, based at least in part on the indication resource identifier corresponding to the first indication resource indicated in the control message.
  40. The apparatus of claim 32, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive the control message from a base station or the receiving device.
  41. The apparatus of claim 32, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive the control message that indicates a multiplexing type; and
    transmit the sensing signal and the indication signal to the receiving device according to the multiplexing type.
  42. The apparatus of claim 41, wherein the multiplexing type is a frequency division multiplexing type or a time division multiplexing type.
  43. The apparatus of claim 32, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive a sensing signal request from the receiving device; and
    transmit the sensing signal to the receiving device based at least in part on receiving the sensing signal request.
  44. The apparatus of claim 32, wherein the instructions are further executable by the processor to cause the apparatus to:
    transmit the sensing signal that is a sounding reference signal, a frequency modulated continuous wave (FMCW) signal, a signal generated using a Golay sequence, or any combination thereof.
  45. An apparatus for wireless communication at a receiving device, comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    receive a sensing signal from a transmitting device via a sensing resource of a sidelink channel; and
    receive an indication signal from the transmitting device via a first indication resource of the sidelink channel indicating that the transmitting device transmitted the sensing signal via the sensing resource of the sidelink channel.
  46. The apparatus of claim 45, further comprising a receiver, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive, from a base station via the receiver, a control message indicating at least one of the sensing resource of the sidelink channel or that the first indication resource of the sidelink channel is assigned to the transmitting device.
  47. The apparatus of claim 45, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive a control message indicating that the first indication resource of a plurality of different resources is assigned to the transmitting device.
  48. The apparatus of claim 45, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive a control message indicating that a code, or a sequence, or a cyclic shift, or any combination thereof, is assigned to the transmitting device; and
    receive the indication signal via the first indication resource based at least in part on the code, or the sequence, or the cyclic shift, or any combination thereof.
  49. The apparatus of claim 45, wherein the instructions are further executable by the processor to cause the apparatus to:
    transmit, to the transmitting device, a control message indicating at least one of the sensing resource of the sidelink channel or that the first indication resource of the sidelink channel is assigned to the transmitting device.
  50. The apparatus of claim 45, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive the indication signal that indicates a resource identifier of the sensing resource in which the sensing signal is received.
  51. The apparatus of claim 45, wherein the instructions are further executable by the processor to cause the apparatus to:
    transmit, to the transmitting device, an update message indicating a transmission power adjustment, or a cycle length adjustment, or both, for the sensing signal.
  52. The apparatus of claim 51, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive an additional sensing signal from the transmitting device according to the transmission power adjustment, or the cycle length adjustment, or both.
  53. The apparatus of claim 51, wherein the instructions are further executable by the processor to cause the apparatus to:
    transmit the update message that indicates a sensing resource identifier; and
    receive an additional sensing signal from the transmitting device according to the transmission power adjustment, the cycle length adjustment, or both, based at least in part on the sensing resource identifier corresponding to the sensing resource indicated in a control message.
  54. The apparatus of claim 51, wherein the instructions are further executable by the processor to cause the apparatus to:
    transmit the update message that indicates an indication resource identifier; and
    receive an additional sensing signal from the transmitting device according to the transmission power adjustment, the cycle length adjustment, or both, based at least in part on the indication resource identifier corresponding to the first indication resource indicated in a control message.
  55. The apparatus of claim 45, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive a control message that indicates a multiplexing type; and
    receive the sensing signal and the indication signal from the transmitting device according to the multiplexing type.
  56. The apparatus of claim 55, wherein the multiplexing type is a frequency division multiplexing type or a time division multiplexing type.
  57. The apparatus of claim 45, wherein the instructions are further executable by the processor to cause the apparatus to:
    transmit a sensing signal request to the transmitting device; and
    receive the sensing signal from the transmitting device based at least in part on transmitting the sensing signal request.
  58. The apparatus of claim 45, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive the sensing signal that is a sounding reference signal, a frequency modulated continuous wave (FMCW) signal, a signal generated using a Golay sequence, or any combination thereof.
  59. An apparatus for wireless communication at a base station, comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    transmit, to a receiving device, a first control message indicating a sensing resource and a first indication resource that is assigned to at least one transmitting device; and
    transmit, to a first transmitting device of the at least one transmitting device, a second control message indicating the sensing resource and the first indication resource are assigned to the first transmitting device.
  60. The apparatus of claim 59, further comprising a transmitter, wherein the instructions to transmit the first control message are executable by the processor to cause the apparatus to:
    transmit, via the transmitter, the first control message indicating a transmitting device identifier of the first transmitting device and that the first transmitting device is assigned to transmit a sensing signal via the sensing resource.
  61. The apparatus of claim 59, wherein the second control message indicates a multiplexing type.
  62. The apparatus of claim 61, wherein the multiplexing type corresponds to a frequency division multiplexing type or a time division multiplexing type.
  63. An apparatus for wireless communication at a transmitting device, comprising:
    means for receiving a control message indicating at least one of a sensing resource of a sidelink channel or that a first indication resource of the sidelink channel is assigned to the transmitting device;
    means for transmitting a sensing signal to a receiving device via the sensing resource of the sidelink channel; and
    means for transmitting an indication signal to the receiving device via the first indication resource of the sidelink channel indicating that the transmitting device transmitted the sensing signal via the sensing resource of the sidelink channel.
  64. The apparatus of claim 63, further comprising:
    means for receiving the control message indicating that the first indication resource of a plurality of different resources is assigned to the transmitting device.
  65. The apparatus of claim 63, further comprising:
    means for receiving the control message indicating that a code, or a sequence, or a cyclic shift, or any combination thereof, is assigned to the transmitting device; and
    means for transmitting the indication signal via the first indication resource based at least in part on the code, or the sequence, or the cyclic shift, or any combination thereof.
  66. The apparatus of claim 63, further comprising:
    means for transmitting the indication signal that indicates a resource identifier of the sensing resource in which the sensing signal is transmitted.
  67. The apparatus of claim 63, further comprising:
    means for receiving, from the receiving device, an update message indicating a transmission power adjustment, or a cycle length adjustment, or both, for the sensing signal.
  68. The apparatus of claim 67, further comprising:
    means for transmitting an additional sensing signal to the receiving device according to the transmission power adjustment, or the cycle length adjustment, or both.
  69. The apparatus of claim 67, further comprising:
    means for receiving the update message that indicates a sensing resource identifier; and
    means for transmitting an additional sensing signal to the receiving device according to the transmission power adjustment, the cycle length adjustment, or both, based at least in part on the sensing resource identifier corresponding to the sensing resource indicated in the control message.
  70. The apparatus of claim 67, further comprising:
    means for receiving the update message that indicates an indication resource identifier; and
    means for transmitting an additional sensing signal to the receiving device according to the transmission power adjustment, the cycle length adjustment, or both, based at least in part on the indication resource identifier corresponding to the first indication resource indicated in the control message.
  71. The apparatus of claim 63, further comprising:
    means for receiving the control message from a base station or the receiving device.
  72. The apparatus of claim 63, further comprising:
    means for receiving the control message that indicates a multiplexing type; and
    means for transmitting the sensing signal and the indication signal to the receiving device according to the multiplexing type.
  73. The apparatus of claim 72, wherein the multiplexing type is a frequency division multiplexing type or a time division multiplexing type.
  74. The apparatus of claim 63, further comprising:
    means for receiving a sensing signal request from the receiving device; and
    means for transmitting the sensing signal to the receiving device based at least in part on receiving the sensing signal request.
  75. The apparatus of claim 63, further comprising:
    means for transmitting the sensing signal that is a sounding reference signal, a frequency modulated continuous wave (FMCW) signal, a signal generated using a Golay sequence, or any combination thereof.
  76. An apparatus for wireless communication at a receiving device, comprising:
    means for receiving a sensing signal from a transmitting device via a sensing resource of a sidelink channel; and
    means for receiving an indication signal from the transmitting device via a first indication resource of the sidelink channel indicating that the transmitting device transmitted the sensing signal via the sensing resource of the sidelink channel.
  77. The apparatus of claim 76, further comprising:
    means for receiving, from a base station, a control message indicating at least one of the sensing resource of the sidelink channel or that the first indication resource of the sidelink channel is assigned to the transmitting device.
  78. The apparatus of claim 76, further comprising:
    means for receiving a control message indicating that the first indication resource of a plurality of different resources is assigned to the transmitting device.
  79. The apparatus of claim 76, further comprising:
    means for receiving a control message indicating that a code, or a sequence, or a cyclic shift, or any combination thereof, is assigned to the transmitting device; and
    means for receiving the indication signal via the first indication resource based at least in part on the code, or the sequence, or the cyclic shift, or any combination thereof.
  80. The apparatus of claim 76, further comprising:
    means for transmitting, to the transmitting device, a control message indicating at least one of the sensing resource of the sidelink channel or that the first indication resource of the sidelink channel is assigned to the transmitting device.
  81. The apparatus of claim 76, further comprising:
    means for receiving the indication signal that indicates a resource identifier of the sensing resource in which the sensing signal is received.
  82. The apparatus of claim 76, further comprising:
    means for transmitting, to the transmitting device, an update message indicating a transmission power adjustment, or a cycle length adjustment, or both, for the sensing signal.
  83. The apparatus of claim 82, further comprising:
    means for receiving an additional sensing signal from the transmitting device according to the transmission power adjustment, or the cycle length adjustment, or both.
  84. The apparatus of claim 82, further comprising:
    means for transmitting the update message that indicates a sensing resource identifier; and
    means for receiving an additional sensing signal from the transmitting device according to the transmission power adjustment, the cycle length adjustment, or both, based at least in part on the sensing resource identifier corresponding to the sensing resource indicated in a control message.
  85. The apparatus of claim 82, further comprising:
    means for transmitting the update message that indicates an indication resource identifier; and
    means for receiving an additional sensing signal from the transmitting device according to the transmission power adjustment, the cycle length adjustment, or both, based at least in part on the indication resource identifier corresponding to the first indication resource indicated in a control message.
  86. The apparatus of claim 76, further comprising:
    means for receiving a control message that indicates a multiplexing type; and
    means for receiving the sensing signal and the indication signal from the transmitting device according to the multiplexing type.
  87. The apparatus of claim 86, wherein the multiplexing type is a frequency division multiplexing type or a time division multiplexing type.
  88. The apparatus of claim 76, further comprising:
    means for transmitting a sensing signal request to the transmitting device; and
    means for receiving the sensing signal from the transmitting device based at least in part on transmitting the sensing signal request.
  89. The apparatus of claim 76, further comprising:
    means for receiving the sensing signal that is a sounding reference signal, a frequency modulated continuous wave (FMCW) signal, a signal generated using a Golay sequence, or any combination thereof.
  90. An apparatus for wireless communication at a base station, comprising:
    means for transmitting, to a receiving device, a first control message indicating a sensing resource and a first indication resource that is assigned to at least one transmitting device; and
    means for transmitting, to a first transmitting device of the at least one transmitting device, a second control message indicating the sensing resource and the first indication resource are assigned to the first transmitting device.
  91. The apparatus of claim 90, wherein the means for transmitting the first control message comprises:
    means for transmitting the first control message indicating a transmitting device identifier of the first transmitting device and that the first transmitting device is assigned to transmit a sensing signal via the sensing resource.
  92. The apparatus of claim 90, wherein the second control message indicates a multiplexing type.
  93. The apparatus of claim 92, wherein the multiplexing type corresponds to a frequency division multiplexing type or a time division multiplexing type.
  94. A non-transitory computer-readable medium storing code for wireless communication at a transmitting device, the code comprising instructions executable by a processor to:
    receive a control message indicating at least one of a sensing resource of a sidelink channel or that a first indication resource of the sidelink channel is assigned to the transmitting device;
    transmit a sensing signal to a receiving device via the sensing resource of the sidelink channel; and
    transmit an indication signal to the receiving device via the first indication resource of the sidelink channel indicating that the transmitting device transmitted the sensing signal via the sensing resource of the sidelink channel.
  95. The non-transitory computer-readable medium of claim 94, wherein the instructions are further executable to:
    receive the control message indicating that the first indication resource of a plurality of different resources is assigned to the transmitting device.
  96. The non-transitory computer-readable medium of claim 94, wherein the instructions are further executable to:
    receive the control message indicating that a code, or a sequence, or a cyclic shift, or any combination thereof, is assigned to the transmitting device; and
    transmit the indication signal via the first indication resource based at least in part on the code, or the sequence, or the cyclic shift, or any combination thereof.
  97. The non-transitory computer-readable medium of claim 94, wherein the instructions are further executable to:
    transmit the indication signal that indicates a resource identifier of the sensing resource in which the sensing signal is transmitted.
  98. The non-transitory computer-readable medium of claim 94, wherein the instructions are further executable to:
    receive, from the receiving device, an update message indicating a transmission power adjustment, or a cycle length adjustment, or both, for the sensing signal.
  99. The non-transitory computer-readable medium of claim 98, wherein the instructions are further executable to:
    transmit an additional sensing signal to the receiving device according to the transmission power adjustment, or the cycle length adjustment, or both.
  100. The non-transitory computer-readable medium of claim 98, wherein the instructions are further executable to:
    receive the update message that indicates a sensing resource identifier; and
    transmit an additional sensing signal to the receiving device according to the transmission power adjustment, the cycle length adjustment, or both, based at least in part on the sensing resource identifier corresponding to the sensing resource indicated in the control message.
  101. The non-transitory computer-readable medium of claim 98, wherein the instructions are further executable to:
    receive the update message that indicates an indication resource identifier; and
    transmit an additional sensing signal to the receiving device according to the transmission power adjustment, the cycle length adjustment, or both, based at least in part on the indication resource identifier corresponding to the first indication resource indicated in the control message.
  102. The non-transitory computer-readable medium of claim 94, wherein the instructions are further executable to:
    receive the control message from a base station or the receiving device.
  103. The non-transitory computer-readable medium of claim 94, wherein the instructions are further executable to:
    receive the control message that indicates a multiplexing type; and
    transmit the sensing signal and the indication signal to the receiving device according to the multiplexing type.
  104. The non-transitory computer-readable medium of claim 103, wherein the multiplexing type is a frequency division multiplexing type or a time division multiplexing type.
  105. The non-transitory computer-readable medium of claim 94, wherein the instructions are further executable to:
    receive a sensing signal request from the receiving device; and
    transmit the sensing signal to the receiving device based at least in part on receiving the sensing signal request.
  106. The non-transitory computer-readable medium of claim 94, wherein the instructions are further executable to:
    transmit the sensing signal that is a sounding reference signal, a frequency modulated continuous wave (FMCW) signal, a signal generated using a Golay sequence, or any combination thereof.
  107. A non-transitory computer-readable medium storing code for wireless communication at a receiving device, the code comprising instructions executable by a processor to:
    receive a sensing signal from a transmitting device via a sensing resource of a sidelink channel; and
    receive an indication signal from the transmitting device via a first indication resource of the sidelink channel indicating that the transmitting device transmitted the sensing signal via the sensing resource of the sidelink channel.
  108. The non-transitory computer-readable medium of claim 107, wherein the instructions are further executable to:
PCT/CN2020/108117 2020-08-10 2020-08-10 Indication based passive sidelink sensing WO2022032425A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/108117 WO2022032425A1 (en) 2020-08-10 2020-08-10 Indication based passive sidelink sensing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/108117 WO2022032425A1 (en) 2020-08-10 2020-08-10 Indication based passive sidelink sensing

Publications (1)

Publication Number Publication Date
WO2022032425A1 true WO2022032425A1 (en) 2022-02-17

Family

ID=80247532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108117 WO2022032425A1 (en) 2020-08-10 2020-08-10 Indication based passive sidelink sensing

Country Status (1)

Country Link
WO (1) WO2022032425A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023209573A1 (en) * 2022-04-25 2023-11-02 Lenovo (Singapore) Pte. Ltd. Configuring participation in a radio sensing operation
WO2023216256A1 (en) * 2022-05-13 2023-11-16 北京小米移动软件有限公司 Method and apparatus for providing wireless sensing service, and device and storage medium
WO2023230757A1 (en) * 2022-05-30 2023-12-07 Qualcomm Incorporated Autonomous sensing resource allocation in isac systems
WO2024001788A1 (en) * 2022-06-27 2024-01-04 中兴通讯股份有限公司 Wireless sensing method, and electronic device and storage medium
WO2024016343A1 (en) * 2022-07-22 2024-01-25 北京小米移动软件有限公司 Receiving parameter adjustment method, system and apparatus, communication apparatus, and storage medium
EP4380204A1 (en) * 2022-11-29 2024-06-05 Nokia Solutions and Networks Oy Communication methods, apparatuses, an access point, stations, and computer readable medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018052631A1 (en) * 2016-09-19 2018-03-22 Qualcomm Incorporated Location based sensor sharing
US20190132656A1 (en) * 2017-10-31 2019-05-02 Tionesta, Llc IoT TAG & INVIVO SENSOR SYSTEM AND COMMUNICATION METHOD
CN109792752A (en) * 2018-12-25 2019-05-21 北京小米移动软件有限公司 Direct-connected resource allocation method and device
US20190364501A1 (en) * 2016-11-03 2019-11-28 Samsung Electronics Co., Ltd. Signal transmission method and device of terminal in wireless mobile communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018052631A1 (en) * 2016-09-19 2018-03-22 Qualcomm Incorporated Location based sensor sharing
US20190364501A1 (en) * 2016-11-03 2019-11-28 Samsung Electronics Co., Ltd. Signal transmission method and device of terminal in wireless mobile communication system
US20190132656A1 (en) * 2017-10-31 2019-05-02 Tionesta, Llc IoT TAG & INVIVO SENSOR SYSTEM AND COMMUNICATION METHOD
CN109792752A (en) * 2018-12-25 2019-05-21 北京小米移动软件有限公司 Direct-connected resource allocation method and device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Resource allocation Mode 2 for NR SL", 3GPP DRAFT; R1-2004544, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200525 - 20200605, 15 May 2020 (2020-05-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051886263 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023209573A1 (en) * 2022-04-25 2023-11-02 Lenovo (Singapore) Pte. Ltd. Configuring participation in a radio sensing operation
WO2023216256A1 (en) * 2022-05-13 2023-11-16 北京小米移动软件有限公司 Method and apparatus for providing wireless sensing service, and device and storage medium
WO2023230757A1 (en) * 2022-05-30 2023-12-07 Qualcomm Incorporated Autonomous sensing resource allocation in isac systems
WO2024001788A1 (en) * 2022-06-27 2024-01-04 中兴通讯股份有限公司 Wireless sensing method, and electronic device and storage medium
WO2024016343A1 (en) * 2022-07-22 2024-01-25 北京小米移动软件有限公司 Receiving parameter adjustment method, system and apparatus, communication apparatus, and storage medium
EP4380204A1 (en) * 2022-11-29 2024-06-05 Nokia Solutions and Networks Oy Communication methods, apparatuses, an access point, stations, and computer readable medium

Similar Documents

Publication Publication Date Title
WO2022032425A1 (en) Indication based passive sidelink sensing
WO2021168645A1 (en) Beam switching techniques for uplink transmission
US11388690B1 (en) Dynamic timing advance adjustment schemes
WO2022067635A1 (en) Default pathloss reference signals for multi-panel uplink transmissions
WO2022032567A1 (en) Methods for measuring and reporting doppler shift
WO2021203410A1 (en) Cross-link interference measurement configuration
US20210058871A1 (en) Uplink power control via mac-ce messaging
EP4026368A1 (en) Sounding reference signal channel measurement for sidelink communication
WO2021248298A1 (en) Power and interference measurement for wireless sensing
WO2023130344A1 (en) Usage of a reconfigurable intelligent surface in wireless communications
WO2022011492A1 (en) Configuring a retuning gap and amplitude and phase continuity for sensing and wireless communications
WO2021253456A1 (en) Duration alignment for physical shared channel repetitions in multi-panel transmissions
WO2021226956A1 (en) Monitoring for downlink repetitions
WO2023108392A1 (en) Beam change reporting via prediction based beam management
WO2022160204A1 (en) Resource allocation for sidelink full duplex communications
WO2021258378A1 (en) Uplink control information multiplexing rule for simultaneous uplink control channel and uplink shared channel transmission
WO2021248447A1 (en) Wireless sensing indication through slot format indication
WO2021223204A1 (en) Vehicle-to-everything cell reselection
WO2022011612A1 (en) Pathloss reference signal update for multiple beams
WO2021226753A1 (en) Reference signal for cross-link interference measurement
WO2022109849A1 (en) Layer-specific feedback periodicity
WO2022226871A1 (en) Capability reporting based on wireless device cooperation
WO2023082998A1 (en) Carrier aggregation switching for switching multiple radio frequency bands
WO2023087165A1 (en) Reconfigurable surface controller capability signaling
WO2023137653A1 (en) Layer 1 cross-link interference collision management

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20948924

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20948924

Country of ref document: EP

Kind code of ref document: A1