WO2021248298A1 - Power and interference measurement for wireless sensing - Google Patents

Power and interference measurement for wireless sensing Download PDF

Info

Publication number
WO2021248298A1
WO2021248298A1 PCT/CN2020/095057 CN2020095057W WO2021248298A1 WO 2021248298 A1 WO2021248298 A1 WO 2021248298A1 CN 2020095057 W CN2020095057 W CN 2020095057W WO 2021248298 A1 WO2021248298 A1 WO 2021248298A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensing
base station
signal
interference level
resources
Prior art date
Application number
PCT/CN2020/095057
Other languages
French (fr)
Inventor
Jing Dai
Yuwei REN
Hao Xu
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/095057 priority Critical patent/WO2021248298A1/en
Publication of WO2021248298A1 publication Critical patent/WO2021248298A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/24Monitoring; Testing of receivers with feedback of measurements to the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences

Definitions

  • the following relates generally to wireless communications and more specifically to power and interference measurement for wireless sensing.
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems.
  • 4G systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems
  • 5G systems which may be referred to as New Radio (NR) systems.
  • a wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
  • UE user equipment
  • the described techniques relate to improved methods, systems, devices, and apparatuses that support power and interference measurement for wireless sensing.
  • the described techniques provide various mechanisms to improve wireless communications in a network with devices performing sensing operations. That is, some devices (e.g., sensing devices) in a wireless network may, in addition to performing wireless communication, use wireless sensing signals to perform sensing operations for the sensing device.
  • a base station may transmit, provide, or otherwise configure a sensing resource configuration for user equipment (UE) .
  • UE user equipment
  • At least one of the UE e.g., a sensing device
  • the sensing device may receive the indication of the sensing resource configuration and transmit a sensing signal using the resources.
  • Adjacent UE may measure metric (s) (e.g., reference signal received power (RSRP) , reference signal strength indicator (RSSI) , channel quality indicator (CQI) , and the like) of the resources (e.g., the sensing signal) to identify an interference level associated with the sensing signal.
  • the adjacent UE may transmit or otherwise convey a feedback message to the base station indicating or otherwise identifying the interference level.
  • the base station may identify various parameter (s) for the sensing operations of the sensing device and transmit a configuration signal identifying the parameter (s) , e.g., updating the sensing operation parameter (s) to avoid or mitigate interference introduced into the wireless communication system by the sensing signal.
  • the sensing device may update the parameter (s) for the sensing operations based on the configuration signal. Accordingly, the base station may configure the sensing UE and the adjacent UE with sensing resources to use for sensing signal channel performance measurement and reporting, and then update the parameter (s) of the sensing operations of sensing device (s) to provide improved power control and/or avoid or mitigate interference.
  • aspects of the described techniques may include a base station (or cell, such as a serving base station or cell of the sensing device) transmitting or otherwise conveying an indication of a downlink resource configuration to the sensing device.
  • the downlink resource configuration may indicate or otherwise identify resources for reference signal (s) associated with a corresponding one or more base stations (e.g., the serving base station or cells and, in some examples, one or more adjacent base station (s) or cell (s) ) .
  • the one or more base stations may transmit a reference signal according to the downlink resource configuration, with the sensing device measuring the metric (s) of the reference signals to identify an interference level for each reference signal (e.g., an interference level associated with each base station based on the corresponding reference signal) .
  • the sensing device may transmit or otherwise convey a feedback message to its serving base station identifying or otherwise indicating the interference level, which may be used by the base station to select parameter (s) for the sensing operations of the sensing device.
  • the base station may again transmit a configuration signal to the sensing device identifying the parameter (s) for the sensing operations.
  • the sensing device may autonomously update its sensing parameters based on the interference level, e.g., without the configuration signal from the serving base station Accordingly, the base station may configure sensing device (s) with downlink reference signal resource (s) to use for channel performance measurement and reporting, and then update the parameter (s) of the sensing operations of the sensing device (s) to provide improved power control and/or to avoid or mitigate interference.
  • the base station may configure sensing device (s) with downlink reference signal resource (s) to use for channel performance measurement and reporting, and then update the parameter (s) of the sensing operations of the sensing device (s) to provide improved power control and/or to avoid or mitigate interference.
  • techniques described herein generally refer to the sensing device as a UE, it is to be understood that these techniques may also be implemented by a base station, cell, and/or an access point (AP) . That is, this may include aspects of the described techniques being implemented by the base station, cell, and/or AP to manage interference associated with sensing operations. For example, this may include the base station, cell, and/or AP performing the sensing operations, with UE and/or adjacent base station (s) /cell (s) /AP (s) performing the interference measurement and feedback reporting according to the described techniques.
  • AP access point
  • a method of wireless communication at a first device is described.
  • the method may include receiving, from a base station, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of a second device, measuring one or more metrics of the resources according to the sensing resource configuration, identifying an interference level associated with the sensing signal based on the measuring, and transmitting a feedback message to the base station indicating the interference level.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to receive, from a base station, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of a second device, measure one or more metrics of the resources according to the sensing resource configuration, identify an interference level associated with the sensing signal based on the measuring, and transmit a feedback message to the base station indicating the interference level.
  • the apparatus may include means for receiving, from a base station, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of a second device, measuring one or more metrics of the resources according to the sensing resource configuration, identifying an interference level associated with the sensing signal based on the measuring, and transmitting a feedback message to the base station indicating the interference level.
  • a non-transitory computer-readable medium storing code for wireless communication at a first device is described.
  • the code may include instructions executable by a processor to receive, from a base station, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of a second device, measure one or more metrics of the resources according to the sensing resource configuration, identify an interference level associated with the sensing signal based on the measuring, and transmit a feedback message to the base station indicating the interference level.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving a trigger signal from the base station indicating that sensing signal interference measurements may be enabled for the resources, where measuring the one or more metrics of the resources may be based on the trigger signal.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for updating one or more parameters for sensing operations of the first device based on the interference level.
  • the resources include at least one of a time resource, a frequency resource, a spatial resource, a code resource, or a combination thereof.
  • a method of wireless communication at a first device may include receiving, from a base station, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of the first device, transmitting the sensing signal in response to receiving the sensing resource configuration, receiving, based on the sensing signal, a configuration signal from the base station identifying one or more parameters for the sensing operations, and updating the one or more parameters for the sensing operations based on the configuration signal.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to receive, from a base station, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of the first device, transmit the sensing signal in response to receiving the sensing resource configuration, receive, based on the sensing signal, a configuration signal from the base station identifying one or more parameters for the sensing operations, and update the one or more parameters for the sensing operations based on the configuration signal.
  • the apparatus may include means for receiving, from a base station, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of the first device, transmitting the sensing signal in response to receiving the sensing resource configuration, receiving, based on the sensing signal, a configuration signal from the base station identifying one or more parameters for the sensing operations, and updating the one or more parameters for the sensing operations based on the configuration signal.
  • a non-transitory computer-readable medium storing code for wireless communication at a first device is described.
  • the code may include instructions executable by a processor to receive, from a base station, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of the first device, transmit the sensing signal in response to receiving the sensing resource configuration, receive, based on the sensing signal, a configuration signal from the base station identifying one or more parameters for the sensing operations, and update the one or more parameters for the sensing operations based on the configuration signal.
  • the resources include at least one of a time resource, a frequency resource, a spatial resource, a code resource, or a combination thereof.
  • a method of wireless communication at a base station may include transmitting, to a first device and a second device, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of the second device, receiving a feedback message from the first device indicating an interference level of the sensing signal based on the sensing operations of the second device, identifying, based on the feedback message, one or more parameters for the sensing operations of the second device, and transmitting a configuration signal to the first device identifying the one or more parameters for the sensing operations.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to transmit, to a first device and a second device, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of the second device, receive a feedback message from the first device indicating an interference level of the sensing signal based on the sensing operations of the second device, identify, based on the feedback message, one or more parameters for the sensing operations of the second device, and transmit a configuration signal to the first device identifying the one or more parameters for the sensing operations.
  • the apparatus may include means for transmitting, to a first device and a second device, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of the second device, receiving a feedback message from the first device indicating an interference level of the sensing signal based on the sensing operations of the second device, identifying, based on the feedback message, one or more parameters for the sensing operations of the second device, and transmitting a configuration signal to the first device identifying the one or more parameters for the sensing operations.
  • a non-transitory computer-readable medium storing code for wireless communication at a base station is described.
  • the code may include instructions executable by a processor to transmit, to a first device and a second device, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of the second device, receive a feedback message from the first device indicating an interference level of the sensing signal based on the sensing operations of the second device, identify, based on the feedback message, one or more parameters for the sensing operations of the second device, and transmit a configuration signal to the first device identifying the one or more parameters for the sensing operations.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying, based on the feedback signal, a set of parameters for sensing operations of the first device, and transmitting an additional configuration signal to the first device identifying the set of parameters.
  • the resources include at least one of a time resource, a frequency resource, a spatial resource, a code resource, or a combination thereof.
  • a method of wireless communication at a first device may include receiving, from a base station, a downlink resource configuration identifying resources for one or more reference signals associated with a corresponding one or more base stations, where the one or more base stations include the base station, measuring, based on the resources, a set of metrics of the one or more reference signals according to the downlink resource configuration to identify an interference level for each reference signal of the one or more reference signals, transmitting a feedback message to the base station indicating the interference level, and updating, based on the interference level, one or more parameters for sensing operations of the first device.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to receive, from a base station, a downlink resource configuration identifying resources for one or more reference signals associated with a corresponding one or more base stations, where the one or more base stations include the base station, measure, based on the resources, a set of metrics of the one or more reference signals according to the downlink resource configuration to identify an interference level for each reference signal of the one or more reference signals, transmit a feedback message to the base station indicating the interference level, and update, based on the interference level, one or more parameters for sensing operations of the first device.
  • the apparatus may include means for receiving, from a base station, a downlink resource configuration identifying resources for one or more reference signals associated with a corresponding one or more base stations, where the one or more base stations include the base station, measuring, based on the resources, a set of metrics of the one or more reference signals according to the downlink resource configuration to identify an interference level for each reference signal of the one or more reference signals, transmitting a feedback message to the base station indicating the interference level, and updating, based on the interference level, one or more parameters for sensing operations of the first device.
  • a non-transitory computer-readable medium storing code for wireless communication at a first device is described.
  • the code may include instructions executable by a processor to receive, from a base station, a downlink resource configuration identifying resources for one or more reference signals associated with a corresponding one or more base stations, where the one or more base stations include the base station, measure, based on the resources, a set of metrics of the one or more reference signals according to the downlink resource configuration to identify an interference level for each reference signal of the one or more reference signals, transmit a feedback message to the base station indicating the interference level, and update, based on the interference level, one or more parameters for sensing operations of the first device.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, based on the feedback message, a configuration signal from the base station identifying the one or more parameters for the sensing operations of the first device, where the updating may be based on the configuration signal.
  • the updating further may include operations, features, means, or instructions for autonomously updating the one or more parameters for sensing operations of the first device based on the interference level.
  • the resources include at least one of a time resource, a frequency resource, a spatial resource, a code resource, or a combination thereof.
  • a method of wireless communication at a base station may include transmitting, to a first device, a downlink resource configuration identifying resources for one or more reference signals associated with a corresponding one or more base stations, where the one or more base stations include the base station, transmitting, to the first device, a reference signal of the base station according to the downlink resource configuration to identify an interference level associated with the reference signal, receiving a feedback message from the first device indicating the interference level, selecting, based on the interference level, one or more parameters for sensing operations of the first device, and transmitting a configuration signal to the first device identifying the one or more parameters for the sensing operations.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to transmit, to a first device, a downlink resource configuration identifying resources for one or more reference signals associated with a corresponding one or more base stations, where the one or more base stations include the base station, transmit, to the first device, a reference signal of the base station according to the downlink resource configuration to identify an interference level associated with the reference signal, receive a feedback message from the first device indicating the interference level, select, based on the interference level, one or more parameters for sensing operations of the first device, and transmit a configuration signal to the first device identifying the one or more parameters for the sensing operations.
  • the apparatus may include means for transmitting, to a first device, a downlink resource configuration identifying resources for one or more reference signals associated with a corresponding one or more base stations, where the one or more base stations include the base station, transmitting, to the first device, a reference signal of the base station according to the downlink resource configuration to identify an interference level associated with the reference signal, receiving a feedback message from the first device indicating the interference level, selecting, based on the interference level, one or more parameters for sensing operations of the first device, and transmitting a configuration signal to the first device identifying the one or more parameters for the sensing operations.
  • a non-transitory computer-readable medium storing code for wireless communication at a base station is described.
  • the code may include instructions executable by a processor to transmit, to a first device, a downlink resource configuration identifying resources for one or more reference signals associated with a corresponding one or more base stations, where the one or more base stations include the base station, transmit, to the first device, a reference signal of the base station according to the downlink resource configuration to identify an interference level associated with the reference signal, receive a feedback message from the first device indicating the interference level, select, based on the interference level, one or more parameters for sensing operations of the first device, and transmit a configuration signal to the first device identifying the one or more parameters for the sensing operations.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving an indication of an identifier and resource for at least one other base station of the one or more base stations, and transmitting an indication of the identifier and resource for the at least one other base station in the downlink resource configuration.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying, based on the feedback message an additional interference level associated with the at least one other base station, where the one or more parameters for sensing operations of the first device may be further based on the additional interference level.
  • the resources include at least one of a time resource, a frequency resource, a spatial resource, a code resource, or a combination thereof.
  • FIG. 1 illustrates an example of a system for wireless communications that supports power and interference measurement for wireless sensing in accordance with aspects of the present disclosure.
  • FIG. 2 illustrates an example of a wireless communication system that supports power and interference measurement for wireless sensing in accordance with aspects of the present disclosure.
  • FIG. 3 illustrates an example of a process that supports power and interference measurement for wireless sensing in accordance with aspects of the present disclosure.
  • FIG. 4 illustrates an example of a wireless communication system that supports power and interference measurement for wireless sensing in accordance with aspects of the present disclosure.
  • FIG. 5 illustrates an example of a wireless communication system that supports power and interference measurement for wireless sensing in accordance with aspects of the present disclosure.
  • FIG. 6 illustrates an example of a process that supports power and interference measurement for wireless sensing in accordance with aspects of the present disclosure.
  • FIGs. 7 and 8 show block diagrams of devices that support power and interference measurement for wireless sensing in accordance with aspects of the present disclosure.
  • FIG. 9 shows a block diagram of a communications manager that supports power and interference measurement for wireless sensing in accordance with aspects of the present disclosure.
  • FIG. 10 shows a diagram of a system including a device that supports power and interference measurement for wireless sensing in accordance with aspects of the present disclosure.
  • FIGs. 11 and 12 show block diagrams of devices that support power and interference measurement for wireless sensing in accordance with aspects of the present disclosure.
  • FIG. 13 shows a block diagram of a communications manager that supports power and interference measurement for wireless sensing in accordance with aspects of the present disclosure.
  • FIG. 14 shows a diagram of a system including a device that supports power and interference measurement for wireless sensing in accordance with aspects of the present disclosure.
  • FIGs. 15 through 19 show flowcharts illustrating methods that support power and interference measurement for wireless sensing in accordance with aspects of the present disclosure.
  • Some wireless communication systems may include devices that are configured for sensing operations.
  • the sensing operations may include the device (e.g., the sensing device or sensing user equipment (UE) ) transmitting a sensing signal that is bounced back and/or reflected from nearby objects (e.g., similar to a radar signal) .
  • the sensing device may generally perform the sensing operations to develop Range, Doppler, angular, azimuth, information for environmental imaging (e.g., long-range sensing) .
  • sensing operations may support facial recognition operations (e.g., short-range sensing) , gesture classifications (e.g., to determine a hand, face, or any other body gesture made by a user of the sensing device and/or located near the sensing device) .
  • the sensing signals may use high frequencies (e.g., millimeter wave (mmW) signals, signals in the terahertz range, and the like) and/or may be performed using frequencies used by the network for wireless communications, e.g., radio frequency spectrum band (s) used for cellular and/or Wi-Fi communications.
  • mmW millimeter wave
  • s radio frequency spectrum band
  • wireless communications systems are not configured to support channel performance measurement and feedback operations based on the sensing signals to avoid or otherwise mitigate interference to the network. This may result in a disruption to the wireless communications and/or sensing operations.
  • the described techniques provide various mechanisms to improve wireless communications in a network with devices performing sensing operations. That is, some devices (e.g., sensing devices) in a wireless network may, in addition to performing wireless communication, use wireless sensing signals to perform sensing operations for the sensing device. For example, a base station may transmit, provide, or otherwise configure a sensing resource configuration for UE. At least one of the UE (e.g., a sensing device) may support performing sensing operations and use the resources to transmit a sensing signal during the sensing operations. The sensing device may receive the indication of the sensing resource configuration and transmit a sensing signal using the resources.
  • some devices e.g., sensing devices
  • a base station may transmit, provide, or otherwise configure a sensing resource configuration for UE.
  • At least one of the UE e.g., a sensing device
  • the sensing device may receive the indication of the sensing resource configuration and transmit a sensing signal using the resources.
  • Adjacent UE may measure metric (s) (e.g., reference signal received power (RSRP) , reference signal strength indicator (RSSI) , channel quality indicator (CQI) , and the like) of the resources (e.g., the sensing signal) to identify an interference level associated with the sensing signal.
  • the adjacent UE may transmit or otherwise convey a feedback message to the base station indicating or otherwise identifying the interference level.
  • the base station may identify various parameter (s) for the sensing operations of the sensing device and transmit a configuration signal identifying the parameter (s) .
  • the sensing device may update the parameter (s) for the sensing operations based on the configuration signal.
  • the base station may configure sensing device and the adjacent device (s) with sensing resources to use for sensing signal channel performance measurement and reporting, and then update the parameter (s) of the sensing operations of sensing device (s) to provide improved power control and/or to avoid or mitigate interference.
  • aspects of the described techniques may include a base station (or cell) transmitting or otherwise conveying an indication of a downlink resource configuration to a sensing device.
  • the downlink resource configuration may indicate or otherwise identify resources for reference signal (s) associated with a corresponding one or more base stations (e.g., the serving base station and, in some examples, one or more adjacent base stations) .
  • the one or more base stations may transmit a reference signal according to the downlink resource configuration, with the sensing device measuring the metric (s) of the reference signals to identify an interference level for each reference signal (e.g., an interference level associated with each base station based on the corresponding reference signal) .
  • the sensing device may transmit or otherwise convey a feedback message to its serving base station identifying or otherwise indicating the interference level, which may be used by the base station to select parameter (s) for the sensing operations of the sensing device.
  • the base station may transmit a configuration signal to the sensing device identifying the parameter (s) for the sensing operations.
  • the sensing device may autonomously update the parameter (s) for its sensing operations based on the interference level (s) , e.g., without receiving the configuration signal from the base station.
  • the base station may configure sensing device (s) with downlink reference signal resources to use for channel performance measurement and reporting, and then update the parameter (s) of the sensing operations of the sensing device (s) to provide improved power control and/or to avoid or mitigate interference.
  • a base station may also be implemented by a base station, cell, and/or access point (AP) . That is, this may include aspects of the described techniques being implemented by the base station, cell, and/or AP. For example, this may include the base station, cell, and/or AP performing the sensing operations, with UE and/or adjacent base station (s) /cell (s) /AP (s) performing the interference measurement and feedback reporting according to the described techniques.
  • FIG. 1 illustrates an example of a wireless communications system 100 that supports power and interference measurement for wireless sensing in accordance with aspects of the present disclosure.
  • the wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130.
  • the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-A Pro LTE-A Pro
  • NR New Radio
  • the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
  • ultra-reliable e.g., mission critical
  • the base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities.
  • the base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125.
  • Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125.
  • the coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
  • the UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times.
  • the UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1.
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
  • network equipment e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment
  • the base stations 105 may communicate with the core network 130, or with one another, or both.
  • the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) .
  • the base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both.
  • the backhaul links 120 may be or include one or more wireless links.
  • One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
  • a base transceiver station a radio base station
  • an access point a radio transceiver
  • a NodeB an eNodeB (eNB)
  • eNB eNodeB
  • a next-generation NodeB or a giga-NodeB either of which may be referred to as a gNB
  • gNB giga-NodeB
  • a UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples.
  • a UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer.
  • PDA personal digital assistant
  • a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
  • WLL wireless local loop
  • IoT Internet of Things
  • IoE Internet of Everything
  • MTC machine type communications
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • devices such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • the UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers.
  • the term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125.
  • a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) .
  • BWP bandwidth part
  • Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling.
  • the wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation.
  • a UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration.
  • Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
  • FDD frequency division duplexing
  • TDD time division duplexing
  • a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers.
  • a carrier may be associated with a frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) and may be positioned according to a channel raster for discovery by the UEs 115.
  • E-UTRA evolved universal mobile telecommunication system terrestrial radio access
  • a carrier may be operated in a standalone mode where initial acquisition and connection may be conducted by the UEs 115 via the carrier, or the carrier may be operated in a non-standalone mode where a connection is anchored using a different carrier (e.g., of the same or a different radio access technology) .
  • the communication links 125 shown in the wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115.
  • Carriers may carry downlink or uplink communications (e.g., in an FDD mode) or may be configured to carry downlink and uplink communications (e.g., in a TDD mode) .
  • a carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100.
  • the carrier bandwidth may be one of a number of determined bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 megahertz (MHz) ) .
  • Devices of the wireless communications system 100 e.g., the base stations 105, the UEs 115, or both
  • the wireless communications system 100 may include base stations 105 or UEs 115 that support simultaneous communications via carriers associated with multiple carrier bandwidths.
  • each served UE 115 may be configured for operating over portions (e.g., a sub-band, a BWP) or all of a carrier bandwidth.
  • Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) .
  • MCM multi-carrier modulation
  • OFDM orthogonal frequency division multiplexing
  • DFT-S-OFDM discrete Fourier transform spread OFDM
  • a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related.
  • the number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) .
  • a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
  • One or more numerologies for a carrier may be supported, where a numerology may include a subcarrier spacing ( ⁇ f) and a cyclic prefix.
  • a carrier may be divided into one or more BWPs having the same or different numerologies.
  • a UE 115 may be configured with multiple BWPs.
  • a single BWP for a carrier may be active at a given time and communications for the UE 115 may be restricted to one or more active BWPs.
  • Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) .
  • Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
  • SFN system frame number
  • Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration.
  • a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots.
  • each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing.
  • Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) .
  • a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f ) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
  • a subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) .
  • TTI duration e.g., the number of symbol periods in a TTI
  • the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
  • Physical channels may be multiplexed on a carrier according to various techniques.
  • a physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques.
  • a control region e.g., a control resource set (CORESET)
  • CORESET control resource set
  • a control region for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier.
  • One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115.
  • one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner.
  • An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size.
  • Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
  • Each base station 105 may provide communication coverage via one or more cells, for example a macro cell, a small cell, a hot spot, or other types of cells, or any combination thereof.
  • the term “cell” may refer to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) , or others) .
  • a cell may also refer to a geographic coverage area 110 or a portion of a geographic coverage area 110 (e.g., a sector) over which the logical communication entity operates.
  • Such cells may range from smaller areas (e.g., a structure, a subset of structure) to larger areas depending on various factors such as the capabilities of the base station 105.
  • a cell may be or include a building, a subset of a building, or exterior spaces between or overlapping with geographic coverage areas 110, among other examples.
  • a macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by the UEs 115 with service subscriptions with the network provider supporting the macro cell.
  • a small cell may be associated with a lower-powered base station 105, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed) frequency bands as macro cells.
  • Small cells may provide unrestricted access to the UEs 115 with service subscriptions with the network provider or may provide restricted access to the UEs 115 having an association with the small cell (e.g., the UEs 115 in a closed subscriber group (CSG) , the UEs 115 associated with users in a home or office) .
  • a base station 105 may support one or multiple cells and may also support communications over the one or more cells using one or multiple component carriers.
  • a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) ) that may provide access for different types of devices.
  • protocol types e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB)
  • NB-IoT narrowband IoT
  • eMBB enhanced mobile broadband
  • a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110.
  • different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105.
  • the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105.
  • the wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
  • the wireless communications system 100 may support synchronous or asynchronous operation.
  • the base stations 105 may have similar frame timings, and transmissions from different base stations 105 may be approximately aligned in time.
  • the base stations 105 may have different frame timings, and transmissions from different base stations 105 may, in some examples, not be aligned in time.
  • the techniques described herein may be used for either synchronous or asynchronous operations.
  • Some UEs 115 may be low cost or low complexity devices and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) .
  • M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention.
  • M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay such information to a central server or application program that makes use of the information or presents the information to humans interacting with the application program.
  • Some UEs 115 may be designed to collect information or enable automated behavior of machines or other devices. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
  • Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (e.g., a mode that supports one-way communication via transmission or reception, but not transmission and reception simultaneously) .
  • half-duplex communications may be performed at a reduced peak rate.
  • Other power conservation techniques for the UEs 115 include entering a power saving deep sleep mode when not engaging in active communications, operating over a limited bandwidth (e.g., according to narrowband communications) , or a combination of these techniques.
  • some UEs 115 may be configured for operation using a narrowband protocol type that is associated with a defined portion or range (e.g., set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
  • a narrowband protocol type that is associated with a defined portion or range (e.g., set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
  • the wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof.
  • the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications.
  • the UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) .
  • Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) .
  • MCPTT mission critical push-to-talk
  • MCVideo mission critical video
  • MCData mission critical data
  • Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications.
  • the terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
  • a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) .
  • D2D device-to-device
  • P2P peer-to-peer
  • One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105.
  • Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105.
  • groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group.
  • a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
  • the D2D communication link 135 may be an example of a communication channel, such as a sidelink communication channel, between vehicles (e.g., UEs 115) .
  • vehicles may communicate using vehicle-to-everything (V2X) communications, vehicle-to-vehicle (V2V) communications, or some combination of these.
  • V2X vehicle-to-everything
  • V2V vehicle-to-vehicle
  • a vehicle may signal information related to traffic conditions, signal scheduling, weather, safety, emergencies, or any other information relevant to a V2X system.
  • vehicles in a V2X system may communicate with roadside infrastructure, such as roadside units, or with the network via one or more network nodes (e.g., base stations 105) using vehicle-to-network (V2N) communications, or with both.
  • V2N vehicle-to-network
  • the core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • the core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) .
  • EPC evolved packet core
  • 5GC 5G core
  • MME mobility management entity
  • AMF access and mobility management function
  • S-GW serving gateway
  • PDN Packet Data Network gateway
  • UPF user plane function
  • the control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130.
  • NAS non-access stratum
  • User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions.
  • the user plane entity may be connected to the network operators IP services 150.
  • the operators IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
  • Some of the network devices may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) .
  • Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) .
  • Each access network transmission entity 145 may include one or more antenna panels.
  • various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
  • the wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) .
  • the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length.
  • UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors.
  • the transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
  • HF high frequency
  • VHF very high frequency
  • the wireless communications system 100 may also operate in a super high frequency (SHF) region using frequency bands from 3 GHz to 30 GHz, also known as the centimeter band, or in an extremely high frequency (EHF) region of the spectrum (e.g., from 30 GHz to 300 GHz) , also known as the millimeter band.
  • SHF super high frequency
  • EHF extremely high frequency
  • the wireless communications system 100 may support millimeter wave (mmW) communications between the UEs 115 and the base stations 105, and EHF antennas of the respective devices may be smaller and more closely spaced than UHF antennas. In some examples, this may facilitate use of antenna arrays within a device.
  • mmW millimeter wave
  • the propagation of EHF transmissions may be subject to even greater atmospheric attenuation and shorter range than SHF or UHF transmissions.
  • the techniques disclosed herein may be employed across transmissions that use one or more different frequency regions, and designated use of bands across these frequency regions may differ by country or regulating body.
  • the wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands.
  • the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • LAA License Assisted Access
  • LTE-U LTE-Unlicensed
  • NR NR technology
  • an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance.
  • operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) .
  • Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
  • a base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming.
  • the antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming.
  • one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower.
  • antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations.
  • a base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115.
  • a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
  • an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
  • the base stations 105 or the UEs 115 may use MIMO communications to exploit multipath signal propagation and increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers. Such techniques may be referred to as spatial multiplexing.
  • the multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas.
  • Each of the multiple signals may be referred to as a separate spatial stream and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams (e.g., different codewords) .
  • Different spatial layers may be associated with different antenna ports used for channel measurement and reporting.
  • MIMO techniques include single-user MIMO (SU-MIMO) , where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) , where multiple spatial layers are transmitted to multiple devices.
  • SU-MIMO single-user MIMO
  • Beamforming which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device.
  • Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference.
  • the adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device.
  • the adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
  • a base station 105 or a UE 115 may use beam sweeping techniques as part of beam forming operations.
  • a base station 105 may use multiple antennas or antenna arrays (e.g., antenna panels) to conduct beamforming operations for directional communications with a UE 115.
  • Some signals e.g., synchronization signals, reference signals, beam selection signals, or other control signals
  • the base station 105 may transmit a signal according to different beamforming weight sets associated with different directions of transmission.
  • Transmissions in different beam directions may be used to identify (e.g., by a transmitting device, such as a base station 105, or by a receiving device, such as a UE 115) a beam direction for later transmission or reception by the base station 105.
  • a transmitting device such as a base station 105
  • a receiving device such as a UE 115
  • Some signals may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) .
  • the beam direction associated with transmissions along a single beam direction may be determined based on a signal that was transmitted in one or more beam directions.
  • a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions and may report to the base station 105 an indication of the signal that the UE 115 received with a highest signal quality or an otherwise acceptable signal quality.
  • transmissions by a device may be performed using multiple beam directions, and the device may use a combination of digital precoding or radio frequency beamforming to generate a combined beam for transmission (e.g., from a base station 105 to a UE 115) .
  • the UE 115 may report feedback that indicates precoding weights for one or more beam directions, and the feedback may correspond to a configured number of beams across a system bandwidth or one or more sub-bands.
  • the base station 105 may transmit a reference signal (e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS) ) , which may be precoded or unprecoded.
  • a reference signal e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS)
  • CRS cell-specific reference signal
  • CSI-RS channel state information reference signal
  • the UE 115 may provide feedback for beam selection, which may be a precoding matrix indicator (PMI) or codebook-based feedback (e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook) .
  • PMI precoding matrix indicator
  • codebook-based feedback e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook
  • a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) or for transmitting a signal in a single direction (e.g., for transmitting data to a receiving device) .
  • a receiving device may try multiple receive configurations (e.g., directional listening) when receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals.
  • receive configurations e.g., directional listening
  • a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets (e.g., different directional listening weight sets) applied to signals received at multiple antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at multiple antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive configurations or receive directions.
  • receive beamforming weight sets e.g., different directional listening weight sets
  • a receiving device may use a single receive configuration to receive along a single beam direction (e.g., when receiving a data signal) .
  • the single receive configuration may be aligned in a beam direction determined based on listening according to different receive configuration directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio (SNR) , or otherwise acceptable signal quality based on listening according to multiple beam directions) .
  • SNR signal-to-noise ratio
  • the wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack.
  • communications at the bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based.
  • a Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels.
  • RLC Radio Link Control
  • a Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels.
  • the MAC layer may also use error detection techniques, error correction techniques, or both to support retransmissions at the MAC layer to improve link efficiency.
  • the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or a core network 130 supporting radio bearers for user plane data.
  • RRC Radio Resource Control
  • transport channels may be mapped to physical channels.
  • the UEs 115 and the base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully.
  • Hybrid automatic repeat request (HARQ) feedback is one technique for increasing the likelihood that data is received correctly over a communication link 125.
  • HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) .
  • FEC forward error correction
  • ARQ automatic repeat request
  • HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., low signal-to-noise conditions) .
  • a device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
  • a UE 115 may receive, from a base station 105, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of a second device (e.g., . a sensing device or sensing UE) .
  • the UE 115 may measure one or more metrics of the resources according to the sensing resource configuration.
  • the UE 115 may identify an interference level associated with the sensing signal based at least in part on the measuring.
  • the UE 115 may transmit a feedback message to the base station 105 indicating the interference level.
  • a UE 115 may receive, from a base station 105, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of the first device.
  • the UE 115 may transmit the sensing signal in response to receiving the sensing resource configuration.
  • the UE 115 may receive, based at least in part on the sensing signal, a configuration signal from the base station 105 identifying one or more parameters for the sensing operations.
  • the UE 115 may update the one or more parameters for the sensing operations based at least in part on the configuration signal.
  • a base station 105 may transmit, to a first device (e.g., an adjacent device or adjacent UE) and a second device (e.g., the sensing device in this example) , a sensing resource configuration identifying resources for a sensing signal used for sensing operations of the second device.
  • the base station 105 may receive a feedback message from the first device indicating an interference level of the sensing signal based at least in part on the sensing operations of the second device.
  • the base station 105 may identify, based at least in part on the feedback message, one or more parameters for the sensing operations of the second device.
  • the base station 105 may transmit a configuration signal to the first device identifying the one or more parameters for the sensing operations.
  • a UE 115 may receive, from a base station 105, a downlink resource configuration identifying resources for one or more reference signals associated with a corresponding one or more base stations 105, wherein the one or more base stations 105 comprise the base station 105.
  • the UE 115 may measure, based at least in part on the resources, a set of metrics of the one or more reference signals according to the downlink resource configuration to identify an interference level for each reference signal of the one or more reference signals.
  • the UE 115 may transmit a feedback message to the base station 105 indicating the interference level.
  • the UE 115 may update, based at least in part on the interference level, one or more parameters for sensing operations of the first device.
  • a base station 105 may transmit, to a first device (e.g., the sensing device in this example) , a downlink resource configuration identifying resources for one or more reference signals associated with a corresponding one or more base stations 105, wherein the one or more base stations 105 comprise the base station 105.
  • the base station 105 may transmit, to the first device, a reference signal of the base station 105 according to the downlink resource configuration to identify an interference level associated with the reference signal.
  • the base station 105 may receive a feedback message from the first device indicating the interference level.
  • the base station 105 may select, based at least in part on the interference level, one or more parameters for sensing operations of the first device.
  • the base station 105 may transmit a configuration signal to the first device identifying the one or more parameters for the sensing operations.
  • FIG. 2 illustrates an example of a wireless communication system 200 that supports power and interference measurement for wireless sensing in accordance with aspects of the present disclosure.
  • wireless communication system 200 may implement aspects of wireless communication system 100.
  • Wireless communication system 200 may include UE 205, UE 210, UE 215, base station 220, and/or a base station 225, which may be examples of corresponding devices described herein.
  • UE 210 may be an example of a sensing device or sensing UE, with UE 205 and UE 215 being examples of adjacent devices or adjacent UEs with respect to UE 210.
  • Base station 220 and base station 225 may be serving base stations for one or more of UE 205, UE 210, and/or UE 215.
  • base station 220 may be a serving base station for UE 205 and UE 210, with base station 225 being a serving base station for UE 215.
  • wireless communication system 200 may include devices that are configured for sensing operations.
  • the sensing operations may include the device (e.g., the sensing device or sensing UE, which is UE 210 in this example) transmitting a sensing signal which is bounced back or otherwise reflected from nearby objects (e.g., similar to a radar signal) .
  • the sensing device may generally perform the sensing operations to develop Range, Doppler, angular, azimuth, information for environmental imaging (e.g., long-range sensing) information. This may enable the sensing device to develop a 3D map (e.g., for virtual reality) of its surrounding area, for environmental awareness in industrial IoT applications, for beam tracking/management purposes, for machine learning applications, and the like.
  • sensing operations may support facial recognition operations, gesture classification, in-car based controls, (e.g., short-range sensing) .
  • the sensing signals may use high frequencies (e.g., mmW signals, signals in the terahertz range, and the like) and/or may be performed using frequencies used by the network for wireless communications, e.g., cellular and/or Wi-Fi frequencies.
  • the sensing signal may use a predefined waveform transmitted over the wireless medium that is reflected or bounced back to the sensing device.
  • the sensing device may be configured to support radar signal processing techniques, or other similar techniques, to correlate the transmitted sensing signal with the reflected signal in order to identify or otherwise determine range, position, size, Doppler, angle, azimuth, and the like, information to support environmental imaging.
  • the range resolution may be based on the bandwidth of the sensing signal (e.g., higher bandwidth may lead to higher resolution, but with an associated higher resource and computation cost) .
  • angular resolution may be a function of the wavelength and the array size used for transmitting the sensing signal.
  • Doppler resolution may be a function of the wavelength and the time used to analyze the Doppler effect.
  • the sensing device may perform sensing operations in conjunction with data transmissions, e.g., in parallel or concurrently.
  • the transmit power used for sensing signals may, at least to some degree, be a function of the type of sensing operations being performed.
  • the sensing signal used for a VR game may use a relatively higher transmit power sufficient to cover the entire room or area, whereas the sensing signal used to detect short-range gestures may have a lower transmit power.
  • wireless communication systems are not currently configured to support channel performance measurement and feedback operations based on the sensing signals to avoid or mitigate interference to the network. This may lead to the sensing signals causing interference to adjacent UE and/or adjacent base stations, which may disrupt wireless communications and/or sensing operations.
  • aspects of the described techniques support channel performance measurement and feedback reporting by devices that are adjacent to the device performing sensing operations.
  • base station 220 and/or base station 225 may identify or otherwise select resources for sensing signal 230 of UE 210 for sensing operations.
  • Base station 220 may transmit or otherwise provide a sensing resource configuration to UE 205 (the adjacent device in this example) and UE 210 (the sensing device in this example) that carries or otherwise conveys an indication of the resources for sensing signal 230 used for sensing operations by UE 210.
  • base station 225 may transmit or otherwise provide the sensing resource configuration to UE 215 (another adjacent device in this example) to indicate the resources for sensing signal 230 used for sensing operations by UE 210.
  • this may include base station 220 (the serving base station of UE 210 in this example) coordinating with base station 225 to indicate the resources (e.g., the sensing resource configuration) .
  • the coordination may be performed over a backhaul link and/or using wireless communications between base station 220 and 225.
  • the network may (e.g., via base station 220 and/or base station 225) configure the sensing measurement resources for the sensing UE and adjacent UEs.
  • base station 220 and/or base station 225 may transmit the sensing resource configuration to UE 205/UE 210 and UE 215, respectively, using RRC signaling, a MAC CE, a DCI, and the like.
  • UE 210 may transmit the sensing signal 230 based on the sensing resource configuration. That is, UE 210 may identify the resources (e.g., time resources, frequency resources, spatial resources, code resources, and the like) for sensing signal 230 based on the sensing resource configuration. In some aspects, this may include time resources at the slot and/or symbol level. In some aspects, this may include frequency resources at the resource block (RB) and/or subband level. UE 210 may transmit the sensing signal 230 using the identified resources.
  • the resources e.g., time resources, frequency resources, spatial resources, code resources, and the like
  • UE 205 and UE 215 may measure metric (s) of the resources according to the sensing resource configuration to identify an interference level associated with sensing signal 230. That is, UE 205 may measure the metric (s) of the sensing signal 230 (e.g., RSRP, RSSI, CQI, and the like) to identify the interference level 235 associated with sensing signal 230 from the perspective of UE 205. Similarly, UE 215 may measure the metric (s) of the sensing signal 230 to identify the interference level 240 associated with sensing signal 230 from the perspective of UE 215. This may include UE 205 and/or UE 215 monitoring the resources indicated in the sensing resource configuration to detect sensing signal 230.
  • UE 205 and UE 215 may measure the metric (s) of the resources according to the sensing resource configuration to identify an interference level associated with sensing signal 230. That is, UE 205 may measure the metric (s) of the sensing signal 230 (e.g., RSRP
  • UE 205 and/or UE 215 may measure the metric (s) (e.g., any channel performance/capability metric) of the sensing signal 230 to identify interference levels 235 and 240, respectively.
  • interference levels 235 and 240 may generally refer to the level or degree of interference introduced by sensing signal 230 for UE 205 and UE 215, respectively.
  • UE 205 may transmit or otherwise convey a feedback message to base station 220 that carries or otherwise conveys an indication of interference level 235.
  • UE 215 may transmit or otherwise convey a feedback message to base station 225 that carries or otherwise conveys an indication of interference level 240.
  • base station 225 may transmit or otherwise convey an indication of the feedback message from UE 215 to base station 220 to identify interference level 240 caused by sensing signal 230, e.g., via backhaul and/or wireless transmissions.
  • sensing signal interference measurements may be enabled or disabled based on the trigger signal received from base station 220 for UE 205/UE 210 and/or from base station 225 for UE 215.
  • base station 220 may transmit or otherwise convey a trigger signal (e.g., in an RRC signal, a MAC CE, and/or a DCI, configured with bit(s) , field (s) , flag (s) , or any other indicator to indicate enablement or disablement) to UE 205 indicating that sensing signal interference measurements are enabled for the resources identified in the sensing resource configuration.
  • base station 225 may transmit or otherwise convey a trigger signal to UE 215 indicating that sensing interference measurements are enabled for the resources identified in the sensing resource configuration.
  • base station 220 (which is the serving base station of UE 210 in this example) may identify one or more parameters for sensing operations of UE 210 based on the feedback message (s) . That is, base station 220 may determine or otherwise identify interference level 235 and/or interference level 240 caused by, or otherwise associated with sensing signal 230. Based on this, base station 220 may identify (e.g., update) the parameter (s) for sensing operations of UE 210 to avoid or reduce interference, improve sensing operations, and/or improve wireless communications within the network.
  • Examples of the parameters that may be identified and/or updated based on the feedback messages include, but are not limited to, updating the transmit power level for sensing signal 230, updating the frequency for sensing signal 230, updating the timing or scheduling for sensing signal 230 (e.g., the start time, the end time, the duration, and the like) , updating the direction for sensing signal 230 (e.g., updating a beam used for sensing signal 230) , and the like.
  • base station 220 may change (e.g., reduce) the transmit power level of sensing signal 230 to reduce interference.
  • base station 220 may change the timing and/or direction of sensing signal 230 to avoid interfering with communications associated with UE 205 and/or UE 215.
  • base station 220 may transmit or otherwise convey a configuration signal to UE 210 indicating or otherwise identifying the parameter (s) for sensing operations (e.g., the updated parameters) using sensing signal 230 to reduce or avoid interference for the adjacent devices, such as UE 205 and UE 215.
  • the configuration signal may be transmitted via RRC signaling, a MAC CE, a DCI, and the like.
  • UE 205 and/or UE 215 may also be equipped or otherwise support performing sensing operations.
  • UE 205 and/or UE 215 may also update one or more parameters for their own sensing operations based on interference level 235 and/or interference level 240, respectively.
  • UE 205 and/or UE 215 may adjust the transmit power level, frequency, timing, code, spatial, and the like, parameter (s) of their own sensing signals based on the interference levels.
  • UE 205 and/or UE 215 may update their sensing operation parameters autonomously and/or based on a configuration signal received from base station 220 and base station 225, respectively.
  • reciprocity associated with interference level 235 and/or interference level 240 may be leveraged by UE 205 and/or UE 215 to update the parameter (s) of their sensing operations to avoid or mitigate interference caused by their own sensing signals. This may also reduce or mitigate interference for UE 210 when UE 205 and/or UE 215 are performing sensing operations.
  • base station 220 may update the parameter (s) for sensing operations of UE 205 based on the feedback message and transmit an additional configuration signal to UE 205 identifying the updated parameter (s) .
  • base station 225 may update the parameter (s) for sensing operations of UE 215 based on the feedback message and transmit an additional configuration signal to UE 215 identifying the updated parameter (s) .
  • FIG. 3 illustrates an example of a process 300 that supports power and interference measurement for wireless sensing in accordance with aspects of the present disclosure.
  • process 300 may implement aspects of wireless communication systems 100 and/or 200. Aspects of process 300 may be implemented by UE 305 and/or base station 310, which may be examples of corresponding devices described herein.
  • UE 305 may be an example of an adjacent device configured to measure interference caused by sensing operations of a sensing device located proximate to UE 305.
  • Base station 310 may be a serving base station of UE 305.
  • base station 310 may transmit (and UE 305 may receive) a sensing resource configuration identifying resources for a sensing signal used for sensing operations of a second device (e.g., the sensing device, in this example, that is located near UE 305) .
  • the sensing resource configuration may be transmitted via an RRC signal, a MAC CE, a PDCCH DCI, and the like.
  • the sensing resource configuration may identify time resources, frequency resources, spatial resources, code resources, and the like, used by the sensing device for transmitting a sensing signal.
  • the time resources may be at the symbol level, slot level, subframe level, and the like.
  • the frequency resources may be at the RB level, the subband level, the bandwidth level, the bandwidth part level, and the like.
  • UE 305 may measure one or more metrics of the resources according to the sensing resource configuration. That is, the sensing device may transmit a sensing signal according to the resources identified in the sensing resource configuration. UE 305 may monitor those resources to detect the sensing signal, and then measure the metrics of the sensing signal to identify an interference level associated with the sensing signal. For example, UE 305 may determine the RSRP, RSSI, CQI, or any other channel performance/quality metric to determine the interference level of the sensing signal.
  • UE 305 may transmit (and base station 310 may receive) a feedback message indicating the interference level. That is, UE 305 may transmit or otherwise provide an indication of the interference level associated with the sensing signal to base station 310.
  • the feedback message may be transmitted otherwise provided via an uplink signal, such as a physical uplink control channel (PUCCH) and/or physical uplink shared channel (PUSCH) signal.
  • the feedback message may be transmitted in an uplink control information (UCI) .
  • the feedback message may identify the interference level associated with the sensing device, e.g., may also convey an indication of an identifier corresponding to the sensing device and associated interference level based on the sensing signal of the sensing device.
  • base station 310 may identify one or more parameters for sensing operations of the sensing device based on the feedback message. For temple, base station 310 may identify an updated or changed transmit power level for the sensing operations and/or may implement various resource allocation modifications to support sensing operations of the sensing device. For example, the base station 310 may lower the transmit power level of the sensing signal when the interference level of UE 305 satisfies a threshold or raise the transmit power level of the sensing signal when the interference level is low (e.g., is below or otherwise fails to satisfy the threshold) . In another example, base station 310 may modify time, frequency, spatial, and/or code resources for the sensing signal and/or for wireless communications associated with UE 305 to avoid or reduce the interference level associated with the sensing signal.
  • FIG. 4 illustrates an example of a wireless communication system 400 that supports power and interference measurement for wireless sensing in accordance with aspects of the present disclosure.
  • wireless communication system 400 may implement aspects of wireless communication systems 100 and/or 200, and/or process 300.
  • Wireless communication system 400 may include UE 405, base station 410, and/or base station 415, which may be examples of corresponding devices described herein.
  • UE 405 may be an example of a sensing device or sensing UE.
  • Base station 410 may be serving base station for UE 405, with base station 415 being considered an adjacent device or adjacent base station in this example.
  • base station 410 may configure resources for sensing signal 420 of UE 405 for sensing operations.
  • Base station 410 may transmit or otherwise provide a sensing resource configuration to UE 405 (the sensing device in this example) that carries or otherwise conveys an indication of the resources for sensing signal 420 used for sensing operations by UE 405.
  • base station 410 may transmit or otherwise provide the sensing resource configuration to base station 415 (an adjacent device in this example) to indicate the resources for sensing signal 420 used for sensing operations by UE 405.
  • this may include base station 410 (the serving base station of UE 405 in this example) coordinating with base station 415 to indicate the resources (e.g., the sensing resource configuration) .
  • the coordination may be performed over a backhaul link and/or using wireless communications between base station 410 and 415.
  • the network may (e.g., via base station 410) configure the sensing measurement resources for the adjacent devices.
  • base station 410 may transmit the sensing resource configuration to UE 405 and base station 415, respectively, using RRC signaling, a MAC CE, a DCI, and the like.
  • UE 405 may transmit the sensing signal 420 based on the sensing resource configuration. That is, UE 405 may identify the resources (e.g., time resources, frequency resources, spatial resources, code resources, and the like) for sensing signal 420 based on the sensing resource configuration. In some aspects, this may include time resources at the slot and/or symbol level. In some aspects, this may include frequency resources at the RB and/or subband level. UE 405 may transmit the sensing signal 420 using the identified resources.
  • the resources e.g., time resources, frequency resources, spatial resources, code resources, and the like
  • Base station 410 and/or base station 415 may measure metric (s) of the resources according to the sensing resource configuration to identify an interference level associated with sensing signal 420. That is, base station 410 may measure the metric (s) of sensing signal 420 (e.g., RSRP, RSSI, CQI, and the like) to identify the interference level 425 associated with sensing signal 420. Similarly, base station 415 may measure the metric (s) of the sensing signal 420 to identify the interference level 430 associated with sensing signal 420 from the perspective of base station 415. This may include base station 410 and/or base station 415 monitoring the resources indicated in the sensing resource configuration to detect sensing signal 420.
  • base station 410 and/or base station 415 monitoring the resources indicated in the sensing resource configuration to detect sensing signal 420.
  • Base station 410 and/or base station 415 may measure the metric (s) (e.g., any channel performance/capability metric) of the sensing signal 420 to identify interference levels 425 and 430, respectively.
  • interference levels 425 and 430 may generally refer to the level or degree of interference introduced by sensing signal 420 for base station 410 and base station 415, respectively.
  • Base station 415 may transmit or otherwise convey a feedback message to base station 410 that carries or otherwise conveys an indication of interference level 430, e.g., via backhaul and/or wireless transmissions. Similarly, base station 410 may identify or otherwise determine interference level 425, e.g., based on the measuring.
  • sensing signal interference measurements may be enabled or disabled based on the trigger signal received from base station 410 for base station 415 and/or UE 405.
  • base station 410 may transmit or otherwise convey a trigger signal to base station 415 and/or UE 405 indicating that sensing signal interference measurements are enabled for the resources identified in the sensing resource configuration.
  • base station 410 (which is the serving base station of UE 405 in this example) may identify one or more parameters for sensing operations of UE 405 based on the interference level 425 and/or interference level 430. That is, base station 410 may determine or otherwise identify interference level 425 and/or interference level 430 caused by sensing signal 420. Based on this, base station 410 may identify (e.g., update) the parameter (s) for sensing operations of UE 405 to reduce interference, improve sensing operations, and/or improve wireless communications within the network.
  • Examples of the parameters that may be identified and/or updated based on the feedback messages include, but are not limited to, updating the transmit power level for sensing signal 420, updating the frequency for sensing signal 420, updating the timing for sensing signal 420 (e.g., the start time, the end time, the duration, and the like) , updating the direction or beam used for sensing signal 420, and the like.
  • base station 410 may change (e.g., reduce) the transmit power level of sensing signal 420 to reduce interference.
  • base station 410 may change the timing, frequency, and/or direction of sensing signal 420 to avoid interfering with communications associated with base station 410 and/or base station 415.
  • base station 410 may transmit or otherwise convey a configuration signal to UE 405 indicating or otherwise identifying the parameter (s) for sensing operations (e.g., the updated parameters) using sensing signal 420 to reduce or avoid interference for the adjacent devices, such as base station 410 and/or base station 415.
  • the configuration signal may be transmitted via RRC signaling, a MAC CE, a DCI, and the like.
  • base station 410 and/or base station 415 may also be equipped or otherwise support performing sensing operations.
  • base station 410 and/or base station 415 may also update one or more parameters for their own sensing operations based on interference level 425 and/or interference level 430, respectively.
  • base station 410 and/or base station 415 may adjust the transmit power level, frequency, timing, code, spatial features, and the like, of their own sensing signals based on the interference levels. That is, reciprocity associated with interference level 425 and/or interference level 430 may be leveraged by base station 410 and/or base station 415 to update the parameter (s) of their sensing operations to avoid or mitigate interference caused by their own sensing signals. This may also reduce or mitigate interference for UE 405 when base station 410 and/or base station 415 are performing sensing operations.
  • base station 410 may update the parameter (s) for sensing operations of base station 415 based on the updated parameter (s) and transmit an additional configuration signal to base station 415 identifying the updated parameter (s) .
  • FIG. 5 illustrates an example of a wireless communication system 500 that supports power and interference measurement for wireless sensing in accordance with aspects of the present disclosure.
  • wireless communication system 500 may implement aspects of wireless communication systems 100, 200, and/or 400, and/or process 300.
  • Wireless communication system 500 may include UE 505, base station 510, and/or a base station 515, which may be examples of corresponding devices described herein.
  • UE 505 may be an example of a sensing device or sensing UE.
  • Base station 510 may be serving base station for UE 505, with base station 515 being considered an adjacent device or adjacent base station in this example.
  • wireless communication system 500 may support UE 505 performing downlink power measurements, not only of its serving base station (e.g., base station 510) , but also for any adjacent base stations (such as base station 515) .
  • base station 510 may determine an identifier of the base station 515 and configure resources for a downlink power measurement for base station 515 by UE 505.
  • UE 505 may monitor for the pathloss reference signal from its own serving cell (e.g., base station 510) as well as any adjacent cells (e.g., such as base station 515) .
  • UE 505 may provide feedback in a measurement message/report to base station 510 and, based on the pathloss of the downlink reference signal, the network and/or UE 505 may determine an uplink sensing power level, which may be less than the threshold in order to avoid impacting uplink reception by base station 510 and/or base station 515. Based on the pathloss of the downlink reference signal, the network may also determine which resource scheduling to avoid a downlink transmission interfering with uplink sensing by UE 505 (e.g., . sensing operations using sensing signal 520) .
  • resource scheduling to avoid a downlink transmission interfering with uplink sensing by UE 505 (e.g., . sensing operations using sensing signal 520) .
  • downlink reference signals from base station 510 and/or base station 515 the example described below generally shows the downlink reference signal 530 of base station 515 being used for channel performance measurement and reporting. However, it is to be understood that these techniques may also be implemented for a downlink reference signal from base station 510.
  • base station 510 and/or base station 515 may configure resources for reference signal 530 of base station 515.
  • Base station 510 may transmit or otherwise provide a downlink resource configuration to UE 505 (the sensing device in this example) that carries or otherwise conveys an indication of the resources for reference signal 530 of base station 515.
  • base station 510 may transmit or otherwise provide the downlink resource configuration to base station 515 (the adjacent device in this example) to indicate the resources for reference signal 530 to be transmitted by base station 515.
  • this may include base station 510 (the serving base station of UE 505 in this example) coordinating with base station 515 to identify or otherwise indicate the resources (e.g., the downlink resource configuration) .
  • the coordination may be performed over a backhaul link and/or using wireless communications between base station 510 and 515.
  • the network may (e.g., via base station 510) configure the downlink reference signal measurement resources for the adjacent device (e.g., base station 515) .
  • base station 510 may transmit the downlink resource configuration to UE 505 and/or base station 515, respectively, using RRC signaling, a MAC CE, a DCI, and the like.
  • Base station 515 may transmit the reference signal 530 based on the downlink resource configuration. That is, base station 515 may identify the resources (e.g., time resources, frequency resources, spatial resources, code resources, and the like) for reference signal 530 based on the downlink resource configuration. In some aspects, this may include time resources at the slot and/or symbol level. In some aspects, this may include frequency resources at the RB and/or subband level. Base station 515 may transmit the reference signal 530 using the identified resources.
  • the resources e.g., time resources, frequency resources, spatial resources, code resources, and the like
  • UE 505 may measure metric (s) of the resources according to the downlink resource configuration to identify an interference level associated with reference signal 530. That is, UE 505 may measure the metric (s) of the reference signal 530 (e.g., RSRP, RSSI, CQI, and the like) to identify the interference level 525 associated with sensing signal 520 and/or reference signal 530. This may include UE 505 monitoring the resources indicated in the downlink resource configuration to detect reference signal 530. UE 505 may measure the metric (s) (e.g., any channel performance/capability metric) of the detected reference signal 530 to identify interference level 525.
  • interference level 525 may generally refer to the level or degree of interference introduced by, or otherwise associated with reference signal 530.
  • UE 505 may transmit or otherwise convey a feedback message to base station 510 that carries or otherwise conveys an indication of interference level 525, e.g., via backhaul and/or wireless transmissions.
  • reference signal interference measurements may be enabled or disabled based on the trigger signal received from base station 510 for UE 505 and/or base station 515.
  • base station 510 may transmit or otherwise convey a trigger signal to base station 515 and/or UE 505 indicating that reference signal interference measurements are enabled for the resources identified in the downlink resource configuration.
  • base station 510 (which is the serving base station of UE 505 in this example) may identify or otherwise select one or more parameters for sensing operations of UE 505 based on interference level 525. That is, base station 510 may determine or otherwise identify interference level 525 caused by, or otherwise associated with reference signal 530. Based on this, base station 510 may identify (e.g., update) the parameter (s) for sensing operations of UE 505 to reduce interference, improve sensing operations, and/or improve wireless communications within the network.
  • Examples of the parameters that may be identified and/or updated based on the feedback messages include, but are not limited to, updating the transmit power level for sensing signal 520, updating the frequency for sensing signal 520, updating the timing or scheduling for sensing signal 520 (e.g., the start time, the end time, the duration, and the like) , updating the direction or beam used for sensing signal 520, and the like.
  • base station 510 may change (e.g., lower) the transmit power level of sensing signal 520 to reduce interference.
  • base station 510 may change the timing, frequency, and/or direction of sensing signal 520 to avoid interfering communications associated with base station 515.
  • base station 510 may transmit or otherwise convey a configuration signal to UE 505 indicating or otherwise identifying the parameter (s) for sensing operations (e.g., the updated parameters) using sensing signal 520 to reduce or avoid interference for the adjacent devices, such as base station 515.
  • the configuration signal may be transmitted via RRC signaling, a MAC CE, a DCI, and the like.
  • base station 510 and/or base station 515 may also be equipped or otherwise support performing sensing operations.
  • base station 510 and/or base station 515 may also update one or more parameters for their own sensing operations based on interference level 525.
  • base station 510 and/or base station 515 may adjust the transmit power level, frequency, timing, code, spatial features, and the like, of their own sensing signals based on the interference level 525. That is, reciprocity associated with interference level 525 may be leveraged by base station 510 and/or base station 515 to update the parameter (s) of their sensing operations to avoid or mitigate interference caused by their own sensing signals. This may also reduce or mitigate interference for UE 505 when base station 510 and/or base station 515 are performing sensing operations.
  • UE 505 may update the parameters for it sensing operations based on the interference level 525, without coordinating with its serving base station. For example, UE 505 may autonomously update the parameters for its own sensing operations and/or may receive the configuration signal from base station 510 identifying the updated parameters for sensing operations.
  • base station 510 may update the parameter (s) for sensing operations of base station 515 based on the updated parameter (s) and transmit an additional configuration signal to base station 515 identifying the updated parameter (s) .
  • FIG. 6 illustrates an example of a process 600 that supports power and interference measurement for wireless sensing in accordance with aspects of the present disclosure.
  • process 600 may implement aspects of wireless communication systems 100, 200, 400, and/or 500, and/or process 300. Aspects of process 600 may be implemented by UE 605, serving cell 610, and/or adjacent cell 615, which may be examples of corresponding devices described herein.
  • UE 605 may be an example of a sensing device is described herein.
  • serving cell 610 may be an example of a serving base station of UE 605 and adjacent cell 615 may be an example of an adjacent base station located proximate to UE 605.
  • adjacent cell 615 may transmit (and serving cell 610 may receive) an indication of an identifier and resource of adjacent cell 615. That is, serving cell 610 may receive an indication of the identifier of adjacent cell 615 and/or an indication of one or more resources to be used for a reference signal transmitted by adjacent cell 615. The indication may be transmitted or otherwise provided via wireless communications and/or via backhaul messaging between serving cell 610 and adjacent cell 615.
  • serving cell 610 may transmit (and UE 605 may receive) a downlink resource configuration identifying resources for one or more reference signals associated with a corresponding one or more base stations, with the one or more base stations including at least serving cell 610.
  • the downlink resource configuration may also identify resources for reference signals transmitted by adjacent cell 615.
  • the downlink resource configuration may be transmitted via RRC signaling, a MAC CE, the DCI, and the like. Broadly, the downlink resource configuration may identify resources to be used for reference signal transmissions from serving cell 610 and/or adjacent cell 615.
  • Resources may include time resources (e.g., at the slot or symbol level) , frequency resources (e.g., at the RB or subband level) , spatial resources (e.g., a beam used for transmitting the reference signals) , code resources, and the like.
  • UE 605 may measure a set of metrics of the reference signals according to the downlink resource configuration to identify an interference level for each reference signal. For example, serving cell 610 may transmit a reference signal using the resources indicated in the downlink resource configuration, which UE 605 measures in order to determine the metrics for the reference signal from serving cell 610. Similarly, adjacent cell 615 may transmit a reference signal using the resources indicated in the downlink resource configuration, which UE 605 measures in order to determine the metrics for the reference signal from adjacent cell 615. UE 605 may identify the interference level (s) associated with serving cell 610 and adjacent cell 615 based on their corresponding reference signals. Examples of the metrics include, but are not limited to, and RSRP, RSSI, CQI, and the like, for each reference signal.
  • UE 605 may perform power adaptations (e.g., update the parameters for its own sensing operations) and/or measurement reporting. For example, UE 605 may transmit a feedback message to serving cell 610 indicating the interference level. The indicated interference level may be based on the reference signal transmitted by serving cell 610 and/or based on the reference signal transmitted by adjacent cell 615. This may enable serving cell 610 and/or adjacent cell 615 to update or otherwise select parameters for sensing operations of UE 605 to avoid or mitigate interference associated with the sensing operations of UE 605.
  • UE 605 may autonomously update the parameters for it sensing operations based on the interference level (s) determined at 630. That is, UE 605 may determine the interference level based on reference signals transmitted by serving cell 610 and/or adjacent cell 615, and then modify or otherwise update the parameters that it uses for sensing operations to mitigate or avoid interference to serving cell 610 and/or adjacent cell 615. This may include increasing or decreasing the transmit power level of the sensing signals transmitted during sensing operations and/or implementing scheduling constraints to avoid or mitigate such interference. Scheduling constraints may include, but are not limited to, changing the frequency, timing, spatial direction, and/or code, utilized for the sensing signal to avoid or mitigate such interference.
  • UE 605 may update the parameters for it sensing operations based on receiving a configuration signal from serving cell 610. That is, serving cell 610 (the serving base station of UE 605) may receive the feedback message transmitted from UE 605 and identify or otherwise select updated parameters for the sensing operations of UE 605 based on the interference level (s) indicated in the feedback message. The serving cell 610 may transmit or otherwise convey the configuration signal to UE 605 that identifies the updated parameters. UE 605 may update its sensing operation parameters based on the configuration signal.
  • the configuration signal may be transmitted via RRC signaling, MAC CE, a DCI, and the like.
  • serving cell 610 and/or adjacent cell 615 may also be configured otherwise support sensing operations.
  • Serving cell 610 may update or otherwise select parameters for its own sensing operations based on the feedback message indicating the interference level associated with the reference signal from serving cell 610 and/or adjacent cell 615. That is, serving cell 610 may modify or update its sensing operation parameters to avoid or mitigate interference to UE 605 and/or adjacent cell 615 caused by its own sensing operations. Serving cell 610 may also transmit or otherwise convey an indication to adjacent cell 615 of updated parameters for the sensing operations of adjacent cell 615.
  • serving cell 610 may identify the interference level associated with the reference signals transmitted by adjacent cell 615, identify or otherwise select updated parameters for the sensing operations of adjacent cell 615 based on the interference level, and transmit a configuration signal to adjacent cell 615 indicating otherwise identifying the updated parameters to be used for the sensing operations of adjacent cell 615.
  • FIG. 7 shows a block diagram 700 of a device 705 that supports power and interference measurement for wireless sensing in accordance with aspects of the present disclosure.
  • the device 705 may be an example of aspects of a UE 115 as described herein.
  • the device 705 may include a receiver 710, a communications manager 715, and a transmitter 720.
  • the device 705 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 710 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to power and interference measurement for wireless sensing, etc. ) . Information may be passed on to other components of the device 705.
  • the receiver 710 may be an example of aspects of the transceiver 1020 described with reference to FIG. 10.
  • the receiver 710 may utilize a single antenna or a set of antennas.
  • the communications manager 715 may receive, from a base station, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of a second device, measure one or more metrics of the resources according to the sensing resource configuration, identify an interference level associated with the sensing signal based on the measuring, and transmit a feedback message to the base station indicating the interference level.
  • the communications manager 715 may also receive, from a base station, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of the first device, transmit the sensing signal in response to receiving the sensing resource configuration, receive, based on the sensing signal, a configuration signal from the base station identifying one or more parameters for the sensing operations, and update the one or more parameters for the sensing operations based on the configuration signal.
  • the communications manager 715 may also receive, from a base station, a downlink resource configuration identifying resources for one or more reference signals associated with a corresponding one or more base stations, where the one or more base stations include the base station, measure, based on the resources, a set of metrics of the one or more reference signals according to the downlink resource configuration to identify an interference level for each reference signal of the one or more reference signals, transmit a feedback message to the base station indicating the interference level, and update, based on the interference level, one or more parameters for sensing operations of the first device.
  • the communications manager 715 may be an example of aspects of the communications manager 1010 described herein.
  • the communications manager 715 may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 715, or its sub-components may be executed by a general-purpose processor, a digital signal processor (DSP) , an application-specific integrated circuit (ASIC) , a field-programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate array
  • the communications manager 715 may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communications manager 715, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communications manager 715, or its sub-components may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • I/O input/output
  • the transmitter 720 may transmit signals generated by other components of the device 705.
  • the transmitter 720 may be collocated with a receiver 710 in a transceiver module.
  • the transmitter 720 may be an example of aspects of the transceiver 1020 described with reference to FIG. 10.
  • the transmitter 720 may utilize a single antenna or a set of antennas.
  • FIG. 8 shows a block diagram 800 of a device 805 that supports power and interference measurement for wireless sensing in accordance with aspects of the present disclosure.
  • the device 805 may be an example of aspects of a device 705, or a UE 115 as described herein.
  • the device 805 may include a receiver 810, a communications manager 815, and a transmitter 840.
  • the device 805 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 810 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to power and interference measurement for wireless sensing, etc. ) . Information may be passed on to other components of the device 805.
  • the receiver 810 may be an example of aspects of the transceiver 1020 described with reference to FIG. 10.
  • the receiver 810 may utilize a single antenna or a set of antennas.
  • the communications manager 815 may be an example of aspects of the communications manager 715 as described herein.
  • the communications manager 815 may include a resource manager 820, an interference manager 825, a feedback manager 830, and a sensing parameter manager 835.
  • the communications manager 815 may be an example of aspects of the communications manager 1010 described herein.
  • the resource manager 820 may receive, from a base station, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of a second device.
  • the interference manager 825 may measure one or more metrics of the resources according to the sensing resource configuration and identify an interference level associated with the sensing signal based on the measuring.
  • the feedback manager 830 may transmit a feedback message to the base station indicating the interference level.
  • the resource manager 820 may receive, from a base station, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of the first device.
  • the interference manager 825 may transmit the sensing signal in response to receiving the sensing resource configuration.
  • the sensing parameter manager 835 may receive, based on the sensing signal, a configuration signal from the base station identifying one or more parameters for the sensing operations and update the one or more parameters for the sensing operations based on the configuration signal.
  • the resource manager 820 may receive, from a base station, a downlink resource configuration identifying resources for one or more reference signals associated with a corresponding one or more base stations, where the one or more base stations include the base station.
  • the interference manager 825 may measure, based on the resources, a set of metrics of the one or more reference signals according to the downlink resource configuration to identify an interference level for each reference signal of the one or more reference signals.
  • the feedback manager 830 may transmit a feedback message to the base station indicating the interference level.
  • the sensing parameter manager 835 may update, based on the interference level, one or more parameters for sensing operations of the first device.
  • the transmitter 840 may transmit signals generated by other components of the device 805.
  • the transmitter 840 may be collocated with a receiver 810 in a transceiver module.
  • the transmitter 840 may be an example of aspects of the transceiver 1020 described with reference to FIG. 10.
  • the transmitter 840 may utilize a single antenna or a set of antennas.
  • FIG. 9 shows a block diagram 900 of a communications manager 905 that supports power and interference measurement for wireless sensing in accordance with aspects of the present disclosure.
  • the communications manager 905 may be an example of aspects of a communications manager 715, a communications manager 815, or a communications manager 1010 described herein.
  • the communications manager 905 may include a resource manager 910, an interference manager 915, a feedback manager 920, a sensing trigger manager 925, a sensing parameter update manager 930, and a sensing parameter manager 935. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the resource manager 910 may receive, from a base station, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of a second device. In some examples, the resource manager 910 may receive, from a base station, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of the first device. In some examples, the resource manager 910 may receive, from a base station, a downlink resource configuration identifying resources for one or more reference signals associated with a corresponding one or more base stations, where the one or more base stations include the base station. In some cases, the resources include at least one of a time resource, a frequency resource, a spatial resource, a code resource, or a combination thereof.
  • the interference manager 915 may measure one or more metrics of the resources according to the sensing resource configuration. In some examples, the interference manager 915 may identify an interference level associated with the sensing signal based on the measuring. In some examples, the interference manager 915 may transmit the sensing signal in response to receiving the sensing resource configuration. In some examples, the interference manager 915 may measure, based on the resources, a set of metrics of the one or more reference signals according to the downlink resource configuration to identify an interference level for each reference signal of the one or more reference signals.
  • the feedback manager 920 may transmit a feedback message to the base station indicating the interference level. In some examples, the feedback manager 920 may transmit a feedback message to the base station indicating the interference level.
  • the sensing parameter manager 935 may receive, based on the sensing signal, a configuration signal from the base station identifying one or more parameters for the sensing operations. In some examples, the sensing parameter manager 935 may update the one or more parameters for the sensing operations based on the configuration signal. In some examples, the sensing parameter manager 935 may update, based on the interference level, one or more parameters for sensing operations of the first device. In some examples, the sensing parameter manager 935 may autonomously update the one or more parameters for sensing operations of the first device based on the interference level.
  • the sensing trigger manager 925 may receive a trigger signal from the base station indicating that sensing signal interference measurements are enabled for the resources, where measuring the one or more metrics of the resources is based on the trigger signal.
  • the sensing parameter update manager 930 may update one or more parameters for sensing operations of the first device based on the interference level.
  • the sensing parameter update manager 930 may receive, based on the feedback message, a configuration signal from the base station identifying the one or more parameters for the sensing operations of the first device, where the updating is based on the configuration signal.
  • FIG. 10 shows a diagram of a system 1000 including a device 1005 that supports power and interference measurement for wireless sensing in accordance with aspects of the present disclosure.
  • the device 1005 may be an example of or include the components of device 705, device 805, or a UE 115 as described herein.
  • the device 1005 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1010, an I/O controller 1015, a transceiver 1020, an antenna 1025, memory 1030, and a processor 1040. These components may be in electronic communication via one or more buses (e.g., bus 1045) .
  • buses e.g., bus 1045
  • the communications manager 1010 may receive, from a base station, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of a second device, measure one or more metrics of the resources according to the sensing resource configuration, identify an interference level associated with the sensing signal based on the measuring, and transmit a feedback message to the base station indicating the interference level.
  • the communications manager 1010 may also receive, from a base station, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of the first device, transmit the sensing signal in response to receiving the sensing resource configuration, receive, based on the sensing signal, a configuration signal from the base station identifying one or more parameters for the sensing operations, and update the one or more parameters for the sensing operations based on the configuration signal.
  • the communications manager 1010 may also receive, from a base station, a downlink resource configuration identifying resources for one or more reference signals associated with a corresponding one or more base stations, where the one or more base stations include the base station, measure, based on the resources, a set of metrics of the one or more reference signals according to the downlink resource configuration to identify an interference level for each reference signal of the one or more reference signals, transmit a feedback message to the base station indicating the interference level, and update, based on the interference level, one or more parameters for sensing operations of the first device.
  • the I/O controller 1015 may manage input and output signals for the device 1005.
  • the I/O controller 1015 may also manage peripherals not integrated into the device 1005.
  • the I/O controller 1015 may represent a physical connection or port to an external peripheral.
  • the I/O controller 1015 may utilize an operating system such as or another known operating system.
  • the I/O controller 1015 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device.
  • the I/O controller 1015 may be implemented as part of a processor.
  • a user may interact with the device 1005 via the I/O controller 1015 or via hardware components controlled by the I/O controller 1015.
  • the transceiver 1020 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 1020 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 1020 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 1025. However, in some cases the device may have more than one antenna 1025, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 1030 may include random access memory (RAM) and read-only memory (ROM) .
  • the memory 1030 may store computer-readable, computer-executable code 1035 including instructions that, when executed, cause the processor to perform various functions described herein.
  • the memory 1030 may contain, among other things, a basic input/output system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • BIOS basic input/output system
  • the processor 1040 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 1040 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 1040.
  • the processor 1040 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1030) to cause the device 1005 to perform various functions (e.g., functions or tasks supporting power and interference measurement for wireless sensing) .
  • the code 1035 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 1035 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1035 may not be directly executable by the processor 1040 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • FIG. 11 shows a block diagram 1100 of a device 1105 that supports power and interference measurement for wireless sensing in accordance with aspects of the present disclosure.
  • the device 1105 may be an example of aspects of a base station 105 as described herein.
  • the device 1105 may include a receiver 1110, a communications manager 1115, and a transmitter 1120.
  • the device 1105 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 1110 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to power and interference measurement for wireless sensing, etc. ) . Information may be passed on to other components of the device 1105.
  • the receiver 1110 may be an example of aspects of the transceiver 1420 described with reference to FIG. 14.
  • the receiver 1110 may utilize a single antenna or a set of antennas.
  • the communications manager 1115 may transmit, to a first device and a second device, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of the second device, receive a feedback message from the first device indicating an interference level of the sensing signal based on the sensing operations of the second device, identify, based on the feedback message, one or more parameters for the sensing operations of the second device, and transmit a configuration signal to the first device identifying the one or more parameters for the sensing operations.
  • the communications manager 1115 may also transmit, to a first device, a downlink resource configuration identifying resources for one or more reference signals associated with a corresponding one or more base stations, where the one or more base stations include the base station, transmit, to the first device, a reference signal of the base station according to the downlink resource configuration to identify an interference level associated with the reference signal, receive a feedback message from the first device indicating the interference level, select, based on the interference level, one or more parameters for sensing operations of the first device, and transmit a configuration signal to the first device identifying the one or more parameters for the sensing operations.
  • the communications manager 1115 may be an example of aspects of the communications manager 1410 described herein.
  • the communications manager 1115 may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 1115, or its sub-components may be executed by a general-purpose processor, a DSP, an ASIC, a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • code e.g., software or firmware
  • the functions of the communications manager 1115, or its sub-components may be executed by a general-purpose processor, a DSP, an ASIC, a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • the communications manager 1115 may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communications manager 1115, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communications manager 1115, or its sub-components may be combined with one or more other hardware components, including but not limited to an I/O component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • the transmitter 1120 may transmit signals generated by other components of the device 1105.
  • the transmitter 1120 may be collocated with a receiver 1110 in a transceiver module.
  • the transmitter 1120 may be an example of aspects of the transceiver 1420 described with reference to FIG. 14.
  • the transmitter 1120 may utilize a single antenna or a set of antennas.
  • FIG. 12 shows a block diagram 1200 of a device 1205 that supports power and interference measurement for wireless sensing in accordance with aspects of the present disclosure.
  • the device 1205 may be an example of aspects of a device 1105, or a base station 105 as described herein.
  • the device 1205 may include a receiver 1210, a communications manager 1215, and a transmitter 1240.
  • the device 1205 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 1210 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to power and interference measurement for wireless sensing, etc. ) . Information may be passed on to other components of the device 1205.
  • the receiver 1210 may be an example of aspects of the transceiver 1420 described with reference to FIG. 14.
  • the receiver 1210 may utilize a single antenna or a set of antennas.
  • the communications manager 1215 may be an example of aspects of the communications manager 1115 as described herein.
  • the communications manager 1215 may include a resource manager 1220, a feedback manager 1225, a sensing parameter manager 1230, and an interference manager 1235.
  • the communications manager 1215 may be an example of aspects of the communications manager 1410 described herein.
  • the resource manager 1220 may transmit, to a first device and a second device, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of the second device.
  • the feedback manager 1225 may receive a feedback message from the first device indicating an interference level of the sensing signal based on the sensing operations of the second device.
  • the sensing parameter manager 1230 may identify, based on the feedback message, one or more parameters for the sensing operations of the second device and transmit a configuration signal to the first device identifying the one or more parameters for the sensing operations.
  • the resource manager 1220 may transmit, to a first device, a downlink resource configuration identifying resources for one or more reference signals associated with a corresponding one or more base stations, where the one or more base stations include the base station.
  • the interference manager 1235 may transmit, to the first device, a reference signal of the base station according to the downlink resource configuration to identify an interference level associated with the reference signal.
  • the feedback manager 1225 may receive a feedback message from the first device indicating the interference level.
  • the sensing parameter manager 1230 may select, based on the interference level, one or more parameters for sensing operations of the first device and transmit a configuration signal to the first device identifying the one or more parameters for the sensing operations.
  • the transmitter 1240 may transmit signals generated by other components of the device 1205.
  • the transmitter 1240 may be collocated with a receiver 1210 in a transceiver module.
  • the transmitter 1240 may be an example of aspects of the transceiver 1420 described with reference to FIG. 14.
  • the transmitter 1240 may utilize a single antenna or a set of antennas.
  • FIG. 13 shows a block diagram 1300 of a communications manager 1305 that supports power and interference measurement for wireless sensing in accordance with aspects of the present disclosure.
  • the communications manager 1305 may be an example of aspects of a communications manager 1115, a communications manager 1215, or a communications manager 1410 described herein.
  • the communications manager 1305 may include a resource manager 1310, a feedback manager 1315, a sensing parameter manager 1320, a sensing parameter update manager 1325, an interference manager 1330, and an adjacent cell manager 1335. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the resource manager 1310 may transmit, to a first device and a second device, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of the second device.
  • the resource manager 1310 may transmit, to a first device, a downlink resource configuration identifying resources for one or more reference signals associated with a corresponding one or more base stations, where the one or more base stations include the base station.
  • the resources include at least one of a time resource, a frequency resource, a spatial resource, a code resource, or a combination thereof.
  • the feedback manager 1315 may receive a feedback message from the first device indicating an interference level of the sensing signal based on the sensing operations of the second device. In some examples, the feedback manager 1315 may receive a feedback message from the first device indicating the interference level.
  • the sensing parameter manager 1320 may identify, based on the feedback message, one or more parameters for the sensing operations of the second device. In some examples, the sensing parameter manager 1320 may transmit a configuration signal to the first device identifying the one or more parameters for the sensing operations. In some examples, the sensing parameter manager 1320 may select, based on the interference level, one or more parameters for sensing operations of the first device. In some examples, the sensing parameter manager 1320 may transmit a configuration signal to the first device identifying the one or more parameters for the sensing operations.
  • the interference manager 1330 may transmit, to the first device, a reference signal of the base station according to the downlink resource configuration to identify an interference level associated with the reference signal.
  • the sensing parameter update manager 1325 may identify, based on the feedback message, a set of parameters for sensing operations of the first device. In some examples, the sensing parameter update manager 1325 may transmit an additional configuration signal to the first device identifying the set of parameters.
  • the adjacent cell manager 1335 may receive an indication of an identifier and resource for at least one other base station of the one or more base stations. In some examples, the adjacent cell manager 1335 may transmit an indication of the identifier and resource for the at least one other base station in the downlink resource configuration. In some examples, the adjacent cell manager 1335 may identify, based on the feedback message an additional interference level associated with the at least one other base station, where the one or more parameters for sensing operations of the first device are further based on the additional interference level.
  • FIG. 14 shows a diagram of a system 1400 including a device 1405 that supports power and interference measurement for wireless sensing in accordance with aspects of the present disclosure.
  • the device 1405 may be an example of or include the components of device 1105, device 1205, or a base station 105 as described herein.
  • the device 1405 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1410, a network communications manager 1415, a transceiver 1420, an antenna 1425, memory 1430, a processor 1440, and an inter-station communications manager 1445. These components may be in electronic communication via one or more buses (e.g., bus 1450) .
  • buses e.g., bus 1450
  • the communications manager 1410 may transmit, to a first device and a second device, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of the second device, receive a feedback message from the first device indicating an interference level of the sensing signal based on the sensing operations of the second device, identify, based on the feedback message, one or more parameters for the sensing operations of the second device, and transmit a configuration signal to the first device identifying the one or more parameters for the sensing operations.
  • the communications manager 1410 may also transmit, to a first device, a downlink resource configuration identifying resources for one or more reference signals associated with a corresponding one or more base stations, where the one or more base stations include the base station, transmit, to the first device, a reference signal of the base station according to the downlink resource configuration to identify an interference level associated with the reference signal, receive a feedback message from the first device indicating the interference level, select, based on the interference level, one or more parameters for sensing operations of the first device, and transmit a configuration signal to the first device identifying the one or more parameters for the sensing operations.
  • the network communications manager 1415 may manage communications with the core network (e.g., via one or more wired backhaul links) .
  • the network communications manager 1415 may manage the transfer of data communications for client devices, such as one or more UEs 115.
  • the transceiver 1420 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 1420 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 1420 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 1425. However, in some cases the device may have more than one antenna 1425, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 1430 may include RAM, ROM, or a combination thereof.
  • the memory 1430 may store computer-readable code 1435 including instructions that, when executed by a processor (e.g., the processor 1440) cause the device to perform various functions described herein.
  • a processor e.g., the processor 1440
  • the memory 1430 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • the processor 1440 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 1440 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into processor 1440.
  • the processor 1440 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1430) to cause the device 1405 to perform various functions (e.g., functions or tasks supporting power and interference measurement for wireless sensing) .
  • the inter-station communications manager 1445 may manage communications with other base station 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communications manager 1445 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communications manager 1445 may provide an X2 interface within an LTE/LTE-A wireless communication network technology to provide communication between base stations 105.
  • the code 1435 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 1435 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1435 may not be directly executable by the processor 1440 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • FIG. 15 shows a flowchart illustrating a method 1500 that supports power and interference measurement for wireless sensing in accordance with aspects of the present disclosure.
  • the operations of method 1500 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1500 may be performed by a communications manager as described with reference to FIGs. 7 through 10.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may receive, from a base station, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of a second device.
  • the operations of 1505 may be performed according to the methods described herein. In some examples, aspects of the operations of 1505 may be performed by a resource manager as described with reference to FIGs. 7 through 10.
  • the UE may measure one or more metrics of the resources according to the sensing resource configuration.
  • the operations of 1510 may be performed according to the methods described herein. In some examples, aspects of the operations of 1510 may be performed by an interference manager as described with reference to FIGs. 7 through 10.
  • the UE may identify an interference level associated with the sensing signal based on the measuring.
  • the operations of 1515 may be performed according to the methods described herein. In some examples, aspects of the operations of 1515 may be performed by an interference manager as described with reference to FIGs. 7 through 10.
  • the UE may transmit a feedback message to the base station indicating the interference level.
  • the operations of 1520 may be performed according to the methods described herein. In some examples, aspects of the operations of 1520 may be performed by a feedback manager as described with reference to FIGs. 7 through 10.
  • FIG. 16 shows a flowchart illustrating a method 1600 that supports power and interference measurement for wireless sensing in accordance with aspects of the present disclosure.
  • the operations of method 1600 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1600 may be performed by a communications manager as described with reference to FIGs. 7 through 10.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may receive, from a base station, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of the first device.
  • the operations of 1605 may be performed according to the methods described herein. In some examples, aspects of the operations of 1605 may be performed by a resource manager as described with reference to FIGs. 7 through 10.
  • the UE may transmit the sensing signal in response to receiving the sensing resource configuration.
  • the operations of 1610 may be performed according to the methods described herein. In some examples, aspects of the operations of 1610 may be performed by an interference manager as described with reference to FIGs. 7 through 10.
  • the UE may receive, based on the sensing signal, a configuration signal from the base station identifying one or more parameters for the sensing operations.
  • the operations of 1615 may be performed according to the methods described herein. In some examples, aspects of the operations of 1615 may be performed by a sensing parameter manager as described with reference to FIGs. 7 through 10.
  • the UE may update the one or more parameters for the sensing operations based on the configuration signal.
  • the operations of 1620 may be performed according to the methods described herein. In some examples, aspects of the operations of 1620 may be performed by a sensing parameter manager as described with reference to FIGs. 7 through 10.
  • FIG. 17 shows a flowchart illustrating a method 1700 that supports power and interference measurement for wireless sensing in accordance with aspects of the present disclosure.
  • the operations of method 1700 may be implemented by a base station 105 or its components as described herein.
  • the operations of method 1700 may be performed by a communications manager as described with reference to FIGs. 11 through 14.
  • a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
  • the base station may transmit, to a first device and a second device, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of the second device.
  • the operations of 1705 may be performed according to the methods described herein. In some examples, aspects of the operations of 1705 may be performed by a resource manager as described with reference to FIGs. 11 through 14.
  • the base station may receive a feedback message from the first device indicating an interference level of the sensing signal based on the sensing operations of the second device.
  • the operations of 1710 may be performed according to the methods described herein. In some examples, aspects of the operations of 1710 may be performed by a feedback manager as described with reference to FIGs. 11 through 14.
  • the base station may identify, based on the feedback message, one or more parameters for the sensing operations of the second device.
  • the operations of 1715 may be performed according to the methods described herein. In some examples, aspects of the operations of 1715 may be performed by a sensing parameter manager as described with reference to FIGs. 11 through 14.
  • the base station may transmit a configuration signal to the first device identifying the one or more parameters for the sensing operations.
  • the operations of 1720 may be performed according to the methods described herein. In some examples, aspects of the operations of 1720 may be performed by a sensing parameter manager as described with reference to FIGs. 11 through 14.
  • FIG. 18 shows a flowchart illustrating a method 1800 that supports power and interference measurement for wireless sensing in accordance with aspects of the present disclosure.
  • the operations of method 1800 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1800 may be performed by a communications manager as described with reference to FIGs. 7 through 10.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may receive, from a base station, a downlink resource configuration identifying resources for one or more reference signals associated with a corresponding one or more base stations, where the one or more base stations include the base station.
  • the operations of 1805 may be performed according to the methods described herein. In some examples, aspects of the operations of 1805 may be performed by a resource manager as described with reference to FIGs. 7 through 10.
  • the UE may measure, based on the resources, a set of metrics of the one or more reference signals according to the downlink resource configuration to identify an interference level for each reference signal of the one or more reference signals.
  • the operations of 1810 may be performed according to the methods described herein. In some examples, aspects of the operations of 1810 may be performed by an interference manager as described with reference to FIGs. 7 through 10.
  • the UE may transmit a feedback message to the base station indicating the interference level.
  • the operations of 1815 may be performed according to the methods described herein. In some examples, aspects of the operations of 1815 may be performed by a feedback manager as described with reference to FIGs. 7 through 10.
  • the UE may update, based on the interference level, one or more parameters for sensing operations of the first device.
  • the operations of 1820 may be performed according to the methods described herein. In some examples, aspects of the operations of 1820 may be performed by a sensing parameter manager as described with reference to FIGs. 7 through 10.
  • FIG. 19 shows a flowchart illustrating a method 1900 that supports power and interference measurement for wireless sensing in accordance with aspects of the present disclosure.
  • the operations of method 1900 may be implemented by a base station 105 or its components as described herein.
  • the operations of method 1900 may be performed by a communications manager as described with reference to FIGs. 11 through 14.
  • a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
  • the base station may transmit, to a first device, a downlink resource configuration identifying resources for one or more reference signals associated with a corresponding one or more base stations, where the one or more base stations include the base station.
  • the operations of 1905 may be performed according to the methods described herein. In some examples, aspects of the operations of 1905 may be performed by a resource manager as described with reference to FIGs. 11 through 14.
  • the base station may transmit, to the first device, a reference signal of the base station according to the downlink resource configuration to identify an interference level associated with the reference signal.
  • the operations of 1910 may be performed according to the methods described herein. In some examples, aspects of the operations of 1910 may be performed by an interference manager as described with reference to FIGs. 11 through 14.
  • the base station may receive a feedback message from the first device indicating the interference level.
  • the operations of 1915 may be performed according to the methods described herein. In some examples, aspects of the operations of 1915 may be performed by a feedback manager as described with reference to FIGs. 11 through 14.
  • the base station may select, based on the interference level, one or more parameters for sensing operations of the first device.
  • the operations of 1920 may be performed according to the methods described herein. In some examples, aspects of the operations of 1920 may be performed by a sensing parameter manager as described with reference to FIGs. 11 through 14.
  • the base station may transmit a configuration signal to the first device identifying the one or more parameters for the sensing operations.
  • the operations of 1925 may be performed according to the methods described herein. In some examples, aspects of the operations of 1925 may be performed by a sensing parameter manager as described with reference to FIGs. 11 through 14.
  • LTE, LTE-A, LTE-A Pro, or NR may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks.
  • the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
  • UMB Ultra Mobile Broadband
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Institute of Electrical and Electronics Engineers
  • WiMAX IEEE 802.16
  • IEEE 802.20 Flash-OFDM
  • Information and signals described herein may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special purpose computer.
  • non-transitory computer-readable media may include random-access memory (RAM) , read-only memory (ROM) , electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium.
  • RAM random-access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable ROM
  • flash memory compact disk (CD) ROM or other optical disk storage
  • CD compact disk
  • magnetic disk storage or other magnetic storage devices or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer,
  • Disk and disc include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.

Abstract

Methods, systems, and devices for wireless communications are described. A first device may receive, from a base station, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of a second device. The first device may measure one or more metrics of the resources according to the sensing resource configuration. The first device may identify an interference level associated with the sensing signal based at least in part on the measuring. The first device may transmit a feedback message to the base station indicating the interference level.

Description

POWER AND INTERFERENCE MEASUREMENT FOR WIRELESS SENSING
FIELD OF TECHNOLOGY
The following relates generally to wireless communications and more specifically to power and interference measurement for wireless sensing.
BACKGROUND
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems. These systems may employ technologies such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , or discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) . A wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
SUMMARY
The described techniques relate to improved methods, systems, devices, and apparatuses that support power and interference measurement for wireless sensing. Generally, the described techniques provide various mechanisms to improve wireless communications in a network with devices performing sensing operations. That is, some devices (e.g., sensing devices) in a wireless network may, in addition to performing wireless communication, use wireless sensing signals to perform sensing operations for the sensing device. For example, a base station may transmit, provide, or otherwise configure a sensing resource configuration for user equipment (UE) . At least one of the UE (e.g., a sensing device) may perform sensing operations and use the resources to transmit a sensing signal during the sensing operations. The sensing device may receive the indication of the sensing resource configuration and  transmit a sensing signal using the resources. Adjacent UE may measure metric (s) (e.g., reference signal received power (RSRP) , reference signal strength indicator (RSSI) , channel quality indicator (CQI) , and the like) of the resources (e.g., the sensing signal) to identify an interference level associated with the sensing signal. The adjacent UE may transmit or otherwise convey a feedback message to the base station indicating or otherwise identifying the interference level. Based on the feedback message, the base station may identify various parameter (s) for the sensing operations of the sensing device and transmit a configuration signal identifying the parameter (s) , e.g., updating the sensing operation parameter (s) to avoid or mitigate interference introduced into the wireless communication system by the sensing signal. The sensing device may update the parameter (s) for the sensing operations based on the configuration signal. Accordingly, the base station may configure the sensing UE and the adjacent UE with sensing resources to use for sensing signal channel performance measurement and reporting, and then update the parameter (s) of the sensing operations of sensing device (s) to provide improved power control and/or avoid or mitigate interference.
Additionally or alternatively, aspects of the described techniques may include a base station (or cell, such as a serving base station or cell of the sensing device) transmitting or otherwise conveying an indication of a downlink resource configuration to the sensing device. Broadly, the downlink resource configuration may indicate or otherwise identify resources for reference signal (s) associated with a corresponding one or more base stations (e.g., the serving base station or cells and, in some examples, one or more adjacent base station (s) or cell (s) ) . The one or more base stations may transmit a reference signal according to the downlink resource configuration, with the sensing device measuring the metric (s) of the reference signals to identify an interference level for each reference signal (e.g., an interference level associated with each base station based on the corresponding reference signal) . The sensing device may transmit or otherwise convey a feedback message to its serving base station identifying or otherwise indicating the interference level, which may be used by the base station to select parameter (s) for the sensing operations of the sensing device. The base station may again transmit a configuration signal to the sensing device identifying the parameter (s) for the sensing operations. In some aspects, the sensing device may autonomously update its sensing parameters based on the interference level, e.g., without the configuration signal from the serving base station Accordingly, the base station may configure sensing device (s) with downlink reference signal resource (s) to use for channel  performance measurement and reporting, and then update the parameter (s) of the sensing operations of the sensing device (s) to provide improved power control and/or to avoid or mitigate interference.
Although techniques described herein generally refer to the sensing device as a UE, it is to be understood that these techniques may also be implemented by a base station, cell, and/or an access point (AP) . That is, this may include aspects of the described techniques being implemented by the base station, cell, and/or AP to manage interference associated with sensing operations. For example, this may include the base station, cell, and/or AP performing the sensing operations, with UE and/or adjacent base station (s) /cell (s) /AP (s) performing the interference measurement and feedback reporting according to the described techniques.
A method of wireless communication at a first device is described. The method may include receiving, from a base station, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of a second device, measuring one or more metrics of the resources according to the sensing resource configuration, identifying an interference level associated with the sensing signal based on the measuring, and transmitting a feedback message to the base station indicating the interference level.
An apparatus for wireless communication at a first device is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to receive, from a base station, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of a second device, measure one or more metrics of the resources according to the sensing resource configuration, identify an interference level associated with the sensing signal based on the measuring, and transmit a feedback message to the base station indicating the interference level.
Another apparatus for wireless communication at a first device is described. The apparatus may include means for receiving, from a base station, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of a second device, measuring one or more metrics of the resources according to the sensing resource configuration, identifying an interference level associated with the sensing signal  based on the measuring, and transmitting a feedback message to the base station indicating the interference level.
A non-transitory computer-readable medium storing code for wireless communication at a first device is described. The code may include instructions executable by a processor to receive, from a base station, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of a second device, measure one or more metrics of the resources according to the sensing resource configuration, identify an interference level associated with the sensing signal based on the measuring, and transmit a feedback message to the base station indicating the interference level.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving a trigger signal from the base station indicating that sensing signal interference measurements may be enabled for the resources, where measuring the one or more metrics of the resources may be based on the trigger signal.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for updating one or more parameters for sensing operations of the first device based on the interference level.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the resources include at least one of a time resource, a frequency resource, a spatial resource, a code resource, or a combination thereof.
A method of wireless communication at a first device is described. The method may include receiving, from a base station, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of the first device, transmitting the sensing signal in response to receiving the sensing resource configuration, receiving, based on the sensing signal, a configuration signal from the base station identifying one or more parameters for the sensing operations, and updating the one or more parameters for the sensing operations based on the configuration signal.
An apparatus for wireless communication at a first device is described. The apparatus may include a processor, memory coupled with the processor, and instructions  stored in the memory. The instructions may be executable by the processor to cause the apparatus to receive, from a base station, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of the first device, transmit the sensing signal in response to receiving the sensing resource configuration, receive, based on the sensing signal, a configuration signal from the base station identifying one or more parameters for the sensing operations, and update the one or more parameters for the sensing operations based on the configuration signal.
Another apparatus for wireless communication at a first device is described. The apparatus may include means for receiving, from a base station, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of the first device, transmitting the sensing signal in response to receiving the sensing resource configuration, receiving, based on the sensing signal, a configuration signal from the base station identifying one or more parameters for the sensing operations, and updating the one or more parameters for the sensing operations based on the configuration signal.
A non-transitory computer-readable medium storing code for wireless communication at a first device is described. The code may include instructions executable by a processor to receive, from a base station, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of the first device, transmit the sensing signal in response to receiving the sensing resource configuration, receive, based on the sensing signal, a configuration signal from the base station identifying one or more parameters for the sensing operations, and update the one or more parameters for the sensing operations based on the configuration signal.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the resources include at least one of a time resource, a frequency resource, a spatial resource, a code resource, or a combination thereof.
A method of wireless communication at a base station is described. The method may include transmitting, to a first device and a second device, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of the second device, receiving a feedback message from the first device indicating an interference level of the sensing signal based on the sensing operations of the second device, identifying, based on the feedback message, one or more parameters for the sensing operations of the  second device, and transmitting a configuration signal to the first device identifying the one or more parameters for the sensing operations.
An apparatus for wireless communication at a base station is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to transmit, to a first device and a second device, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of the second device, receive a feedback message from the first device indicating an interference level of the sensing signal based on the sensing operations of the second device, identify, based on the feedback message, one or more parameters for the sensing operations of the second device, and transmit a configuration signal to the first device identifying the one or more parameters for the sensing operations.
Another apparatus for wireless communication at a base station is described. The apparatus may include means for transmitting, to a first device and a second device, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of the second device, receiving a feedback message from the first device indicating an interference level of the sensing signal based on the sensing operations of the second device, identifying, based on the feedback message, one or more parameters for the sensing operations of the second device, and transmitting a configuration signal to the first device identifying the one or more parameters for the sensing operations.
A non-transitory computer-readable medium storing code for wireless communication at a base station is described. The code may include instructions executable by a processor to transmit, to a first device and a second device, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of the second device, receive a feedback message from the first device indicating an interference level of the sensing signal based on the sensing operations of the second device, identify, based on the feedback message, one or more parameters for the sensing operations of the second device, and transmit a configuration signal to the first device identifying the one or more parameters for the sensing operations.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for  identifying, based on the feedback signal, a set of parameters for sensing operations of the first device, and transmitting an additional configuration signal to the first device identifying the set of parameters.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the resources include at least one of a time resource, a frequency resource, a spatial resource, a code resource, or a combination thereof.
A method of wireless communication at a first device is described. The method may include receiving, from a base station, a downlink resource configuration identifying resources for one or more reference signals associated with a corresponding one or more base stations, where the one or more base stations include the base station, measuring, based on the resources, a set of metrics of the one or more reference signals according to the downlink resource configuration to identify an interference level for each reference signal of the one or more reference signals, transmitting a feedback message to the base station indicating the interference level, and updating, based on the interference level, one or more parameters for sensing operations of the first device.
An apparatus for wireless communication at a first device is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to receive, from a base station, a downlink resource configuration identifying resources for one or more reference signals associated with a corresponding one or more base stations, where the one or more base stations include the base station, measure, based on the resources, a set of metrics of the one or more reference signals according to the downlink resource configuration to identify an interference level for each reference signal of the one or more reference signals, transmit a feedback message to the base station indicating the interference level, and update, based on the interference level, one or more parameters for sensing operations of the first device.
Another apparatus for wireless communication at a first device is described. The apparatus may include means for receiving, from a base station, a downlink resource configuration identifying resources for one or more reference signals associated with a corresponding one or more base stations, where the one or more base stations include the base station, measuring, based on the resources, a set of metrics of the one or more reference  signals according to the downlink resource configuration to identify an interference level for each reference signal of the one or more reference signals, transmitting a feedback message to the base station indicating the interference level, and updating, based on the interference level, one or more parameters for sensing operations of the first device.
A non-transitory computer-readable medium storing code for wireless communication at a first device is described. The code may include instructions executable by a processor to receive, from a base station, a downlink resource configuration identifying resources for one or more reference signals associated with a corresponding one or more base stations, where the one or more base stations include the base station, measure, based on the resources, a set of metrics of the one or more reference signals according to the downlink resource configuration to identify an interference level for each reference signal of the one or more reference signals, transmit a feedback message to the base station indicating the interference level, and update, based on the interference level, one or more parameters for sensing operations of the first device.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, based on the feedback message, a configuration signal from the base station identifying the one or more parameters for the sensing operations of the first device, where the updating may be based on the configuration signal.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the updating further may include operations, features, means, or instructions for autonomously updating the one or more parameters for sensing operations of the first device based on the interference level.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the resources include at least one of a time resource, a frequency resource, a spatial resource, a code resource, or a combination thereof.
A method of wireless communication at a base station is described. The method may include transmitting, to a first device, a downlink resource configuration identifying resources for one or more reference signals associated with a corresponding one or more base stations, where the one or more base stations include the base station, transmitting, to the first device, a reference signal of the base station according to the downlink resource  configuration to identify an interference level associated with the reference signal, receiving a feedback message from the first device indicating the interference level, selecting, based on the interference level, one or more parameters for sensing operations of the first device, and transmitting a configuration signal to the first device identifying the one or more parameters for the sensing operations.
An apparatus for wireless communication at a base station is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to transmit, to a first device, a downlink resource configuration identifying resources for one or more reference signals associated with a corresponding one or more base stations, where the one or more base stations include the base station, transmit, to the first device, a reference signal of the base station according to the downlink resource configuration to identify an interference level associated with the reference signal, receive a feedback message from the first device indicating the interference level, select, based on the interference level, one or more parameters for sensing operations of the first device, and transmit a configuration signal to the first device identifying the one or more parameters for the sensing operations.
Another apparatus for wireless communication at a base station is described. The apparatus may include means for transmitting, to a first device, a downlink resource configuration identifying resources for one or more reference signals associated with a corresponding one or more base stations, where the one or more base stations include the base station, transmitting, to the first device, a reference signal of the base station according to the downlink resource configuration to identify an interference level associated with the reference signal, receiving a feedback message from the first device indicating the interference level, selecting, based on the interference level, one or more parameters for sensing operations of the first device, and transmitting a configuration signal to the first device identifying the one or more parameters for the sensing operations.
A non-transitory computer-readable medium storing code for wireless communication at a base station is described. The code may include instructions executable by a processor to transmit, to a first device, a downlink resource configuration identifying resources for one or more reference signals associated with a corresponding one or more base  stations, where the one or more base stations include the base station, transmit, to the first device, a reference signal of the base station according to the downlink resource configuration to identify an interference level associated with the reference signal, receive a feedback message from the first device indicating the interference level, select, based on the interference level, one or more parameters for sensing operations of the first device, and transmit a configuration signal to the first device identifying the one or more parameters for the sensing operations.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving an indication of an identifier and resource for at least one other base station of the one or more base stations, and transmitting an indication of the identifier and resource for the at least one other base station in the downlink resource configuration.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying, based on the feedback message an additional interference level associated with the at least one other base station, where the one or more parameters for sensing operations of the first device may be further based on the additional interference level.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the resources include at least one of a time resource, a frequency resource, a spatial resource, a code resource, or a combination thereof.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates an example of a system for wireless communications that supports power and interference measurement for wireless sensing in accordance with aspects of the present disclosure.
FIG. 2 illustrates an example of a wireless communication system that supports power and interference measurement for wireless sensing in accordance with aspects of the present disclosure.
FIG. 3 illustrates an example of a process that supports power and interference measurement for wireless sensing in accordance with aspects of the present disclosure.
FIG. 4 illustrates an example of a wireless communication system that supports power and interference measurement for wireless sensing in accordance with aspects of the present disclosure.
FIG. 5 illustrates an example of a wireless communication system that supports power and interference measurement for wireless sensing in accordance with aspects of the present disclosure.
FIG. 6 illustrates an example of a process that supports power and interference measurement for wireless sensing in accordance with aspects of the present disclosure.
FIGs. 7 and 8 show block diagrams of devices that support power and interference measurement for wireless sensing in accordance with aspects of the present disclosure.
FIG. 9 shows a block diagram of a communications manager that supports power and interference measurement for wireless sensing in accordance with aspects of the present disclosure.
FIG. 10 shows a diagram of a system including a device that supports power and interference measurement for wireless sensing in accordance with aspects of the present disclosure.
FIGs. 11 and 12 show block diagrams of devices that support power and interference measurement for wireless sensing in accordance with aspects of the present disclosure.
FIG. 13 shows a block diagram of a communications manager that supports power and interference measurement for wireless sensing in accordance with aspects of the present disclosure.
FIG. 14 shows a diagram of a system including a device that supports power and interference measurement for wireless sensing in accordance with aspects of the present disclosure.
FIGs. 15 through 19 show flowcharts illustrating methods that support power and interference measurement for wireless sensing in accordance with aspects of the present disclosure.
DETAILED DESCRIPTION
Some wireless communication systems may include devices that are configured for sensing operations. Broadly, the sensing operations may include the device (e.g., the sensing device or sensing user equipment (UE) ) transmitting a sensing signal that is bounced back and/or reflected from nearby objects (e.g., similar to a radar signal) . The sensing device may generally perform the sensing operations to develop Range, Doppler, angular, azimuth, information for environmental imaging (e.g., long-range sensing) . Another example of sensing operations may support facial recognition operations (e.g., short-range sensing) , gesture classifications (e.g., to determine a hand, face, or any other body gesture made by a user of the sensing device and/or located near the sensing device) . The sensing signals may use high frequencies (e.g., millimeter wave (mmW) signals, signals in the terahertz range, and the like) and/or may be performed using frequencies used by the network for wireless communications, e.g., radio frequency spectrum band (s) used for cellular and/or Wi-Fi communications. Generally, wireless communications systems are not configured to support channel performance measurement and feedback operations based on the sensing signals to avoid or otherwise mitigate interference to the network. This may result in a disruption to the wireless communications and/or sensing operations.
Aspects of the disclosure are initially described in the context of wireless communications systems. Generally, the described techniques provide various mechanisms to improve wireless communications in a network with devices performing sensing operations. That is, some devices (e.g., sensing devices) in a wireless network may, in addition to performing wireless communication, use wireless sensing signals to perform sensing operations for the sensing device. For example, a base station may transmit, provide, or otherwise configure a sensing resource configuration for UE. At least one of the UE (e.g., a sensing device) may support performing sensing operations and use the resources to transmit a sensing signal during the sensing operations. The sensing device may receive the indication of the sensing resource configuration and transmit a sensing signal using the resources. Adjacent UE may measure metric (s) (e.g., reference signal received power (RSRP) , reference signal strength indicator (RSSI) , channel quality indicator (CQI) , and the like) of the resources (e.g., the sensing signal) to identify an interference level associated with the sensing signal. The adjacent UE may transmit or otherwise convey a feedback message to the base station indicating or otherwise identifying the interference level. Based on the feedback  message, the base station may identify various parameter (s) for the sensing operations of the sensing device and transmit a configuration signal identifying the parameter (s) . The sensing device may update the parameter (s) for the sensing operations based on the configuration signal. Accordingly, the base station may configure sensing device and the adjacent device (s) with sensing resources to use for sensing signal channel performance measurement and reporting, and then update the parameter (s) of the sensing operations of sensing device (s) to provide improved power control and/or to avoid or mitigate interference.
Additionally or alternatively, aspects of the described techniques may include a base station (or cell) transmitting or otherwise conveying an indication of a downlink resource configuration to a sensing device. Broadly, the downlink resource configuration may indicate or otherwise identify resources for reference signal (s) associated with a corresponding one or more base stations (e.g., the serving base station and, in some examples, one or more adjacent base stations) . The one or more base stations may transmit a reference signal according to the downlink resource configuration, with the sensing device measuring the metric (s) of the reference signals to identify an interference level for each reference signal (e.g., an interference level associated with each base station based on the corresponding reference signal) . The sensing device may transmit or otherwise convey a feedback message to its serving base station identifying or otherwise indicating the interference level, which may be used by the base station to select parameter (s) for the sensing operations of the sensing device. The base station may transmit a configuration signal to the sensing device identifying the parameter (s) for the sensing operations. In other aspects, the sensing device may autonomously update the parameter (s) for its sensing operations based on the interference level (s) , e.g., without receiving the configuration signal from the base station. Accordingly, the base station may configure sensing device (s) with downlink reference signal resources to use for channel performance measurement and reporting, and then update the parameter (s) of the sensing operations of the sensing device (s) to provide improved power control and/or to avoid or mitigate interference.
Although techniques described herein generally refer to the sensing device as a UE, it is to be understood that these techniques may also be implemented by a base station, cell, and/or access point (AP) . That is, this may include aspects of the described techniques being implemented by the base station, cell, and/or AP. For example, this may include the base station, cell, and/or AP performing the sensing operations, with UE and/or adjacent base  station (s) /cell (s) /AP (s) performing the interference measurement and feedback reporting according to the described techniques.
Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to power and interference measurement for wireless sensing.
FIG. 1 illustrates an example of a wireless communications system 100 that supports power and interference measurement for wireless sensing in accordance with aspects of the present disclosure. The wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130. In some examples, the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network. In some examples, the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
The base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities. The base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125. Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125. The coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
The UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times. The UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1. The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
The base stations 105 may communicate with the core network 130, or with one another, or both. For example, the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) . The base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both. In some examples, the backhaul links 120 may be or include one or more wireless links.
One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples. A UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer. In some examples, a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
The UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers. The term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125. For example, a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a  bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) . Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling. The wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation. A UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration. Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
In some examples (e.g., in a carrier aggregation configuration) , a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers. A carrier may be associated with a frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) and may be positioned according to a channel raster for discovery by the UEs 115. A carrier may be operated in a standalone mode where initial acquisition and connection may be conducted by the UEs 115 via the carrier, or the carrier may be operated in a non-standalone mode where a connection is anchored using a different carrier (e.g., of the same or a different radio access technology) .
The communication links 125 shown in the wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115. Carriers may carry downlink or uplink communications (e.g., in an FDD mode) or may be configured to carry downlink and uplink communications (e.g., in a TDD mode) .
A carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100. For example, the carrier bandwidth may be one of a number of determined bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 megahertz (MHz) ) . Devices of the wireless communications system 100 (e.g., the base stations 105, the UEs 115, or both) may have hardware configurations that support communications over a particular carrier bandwidth or may be configurable to support communications over one of a set of  carrier bandwidths. In some examples, the wireless communications system 100 may include base stations 105 or UEs 115 that support simultaneous communications via carriers associated with multiple carrier bandwidths. In some examples, each served UE 115 may be configured for operating over portions (e.g., a sub-band, a BWP) or all of a carrier bandwidth.
Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) . In a system employing MCM techniques, a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related. The number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) . Thus, the more resource elements that a UE 115 receives and the higher the order of the modulation scheme, the higher the data rate may be for the UE 115. A wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
One or more numerologies for a carrier may be supported, where a numerology may include a subcarrier spacing (Δf) and a cyclic prefix. A carrier may be divided into one or more BWPs having the same or different numerologies. In some examples, a UE 115 may be configured with multiple BWPs. In some examples, a single BWP for a carrier may be active at a given time and communications for the UE 115 may be restricted to one or more active BWPs.
The time intervals for the base stations 105 or the UEs 115 may be expressed in multiples of a basic time unit which may, for example, refer to a sampling period of T s=1/ (Δf max·N f) seconds, where Δf max may represent the maximum supported subcarrier spacing, and N f may represent the maximum supported discrete Fourier transform (DFT) size. Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) . Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration. In some examples, a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots. Alternatively, each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing. Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) . In some wireless communications systems 100, a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
A subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) . In some examples, the TTI duration (e.g., the number of symbol periods in a TTI) may be variable. Additionally or alternatively, the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
Physical channels may be multiplexed on a carrier according to various techniques. A physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques. A control region (e.g., a control resource set (CORESET) ) for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier. One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115. For example, one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner. An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size. Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
Each base station 105 may provide communication coverage via one or more cells, for example a macro cell, a small cell, a hot spot, or other types of cells, or any combination thereof. The term “cell” may refer to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) , or others) . In some examples, a cell may also refer to a geographic coverage area 110 or a portion of a geographic coverage area 110 (e.g., a sector) over which the logical communication entity operates. Such cells may range from smaller areas (e.g., a structure, a subset of structure) to larger areas depending on various factors such as the capabilities of the base station 105. For example, a cell may be or include a building, a subset of a building, or exterior spaces between or overlapping with geographic coverage areas 110, among other examples.
A macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by the UEs 115 with service subscriptions with the network provider supporting the macro cell. A small cell may be associated with a lower-powered base station 105, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed) frequency bands as macro cells. Small cells may provide unrestricted access to the UEs 115 with service subscriptions with the network provider or may provide restricted access to the UEs 115 having an association with the small cell (e.g., the UEs 115 in a closed subscriber group (CSG) , the UEs 115 associated with users in a home or office) . A base station 105 may support one or multiple cells and may also support communications over the one or more cells using one or multiple component carriers.
In some examples, a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) ) that may provide access for different types of devices.
In some examples, a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110. In some examples, different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105. In other examples, the overlapping geographic coverage areas 110 associated with  different technologies may be supported by different base stations 105. The wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
The wireless communications system 100 may support synchronous or asynchronous operation. For synchronous operation, the base stations 105 may have similar frame timings, and transmissions from different base stations 105 may be approximately aligned in time. For asynchronous operation, the base stations 105 may have different frame timings, and transmissions from different base stations 105 may, in some examples, not be aligned in time. The techniques described herein may be used for either synchronous or asynchronous operations.
Some UEs 115, such as MTC or IoT devices, may be low cost or low complexity devices and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) . M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention. In some examples, M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay such information to a central server or application program that makes use of the information or presents the information to humans interacting with the application program. Some UEs 115 may be designed to collect information or enable automated behavior of machines or other devices. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (e.g., a mode that supports one-way communication via transmission or reception, but not transmission and reception simultaneously) . In some examples, half-duplex communications may be performed at a reduced peak rate. Other power conservation techniques for the UEs 115 include entering a power saving deep sleep mode when not engaging in active communications, operating over  a limited bandwidth (e.g., according to narrowband communications) , or a combination of these techniques. For example, some UEs 115 may be configured for operation using a narrowband protocol type that is associated with a defined portion or range (e.g., set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
The wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof. For example, the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications. The UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) . Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) . Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications. The terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
In some examples, a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) . One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105. Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105. In some examples, groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group. In some examples, a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
In some systems, the D2D communication link 135 may be an example of a communication channel, such as a sidelink communication channel, between vehicles (e.g., UEs 115) . In some examples, vehicles may communicate using vehicle-to-everything (V2X)  communications, vehicle-to-vehicle (V2V) communications, or some combination of these. A vehicle may signal information related to traffic conditions, signal scheduling, weather, safety, emergencies, or any other information relevant to a V2X system. In some examples, vehicles in a V2X system may communicate with roadside infrastructure, such as roadside units, or with the network via one or more network nodes (e.g., base stations 105) using vehicle-to-network (V2N) communications, or with both.
The core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. The core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) . The control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130. User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions. The user plane entity may be connected to the network operators IP services 150. The operators IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
Some of the network devices, such as a base station 105, may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) . Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) . Each access network transmission entity 145 may include one or more antenna panels. In some configurations, various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
The wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) .  Generally, the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length. The UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors. The transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
The wireless communications system 100 may also operate in a super high frequency (SHF) region using frequency bands from 3 GHz to 30 GHz, also known as the centimeter band, or in an extremely high frequency (EHF) region of the spectrum (e.g., from 30 GHz to 300 GHz) , also known as the millimeter band. In some examples, the wireless communications system 100 may support millimeter wave (mmW) communications between the UEs 115 and the base stations 105, and EHF antennas of the respective devices may be smaller and more closely spaced than UHF antennas. In some examples, this may facilitate use of antenna arrays within a device. The propagation of EHF transmissions, however, may be subject to even greater atmospheric attenuation and shorter range than SHF or UHF transmissions. The techniques disclosed herein may be employed across transmissions that use one or more different frequency regions, and designated use of bands across these frequency regions may differ by country or regulating body.
The wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands. For example, the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band. When operating in unlicensed radio frequency spectrum bands, devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance. In some examples, operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) . Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming. The antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming. For example, one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower. In some examples, antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations. A base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115. Likewise, a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations. Additionally or alternatively, an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
The base stations 105 or the UEs 115 may use MIMO communications to exploit multipath signal propagation and increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers. Such techniques may be referred to as spatial multiplexing. The multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas. Each of the multiple signals may be referred to as a separate spatial stream and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams (e.g., different codewords) . Different spatial layers may be associated with different antenna ports used for channel measurement and reporting. MIMO techniques include single-user MIMO (SU-MIMO) , where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) , where multiple spatial layers are transmitted to multiple devices.
Beamforming, which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device. Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals  propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference. The adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device. The adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
base station 105 or a UE 115 may use beam sweeping techniques as part of beam forming operations. For example, a base station 105 may use multiple antennas or antenna arrays (e.g., antenna panels) to conduct beamforming operations for directional communications with a UE 115. Some signals (e.g., synchronization signals, reference signals, beam selection signals, or other control signals) may be transmitted by a base station 105 multiple times in different directions. For example, the base station 105 may transmit a signal according to different beamforming weight sets associated with different directions of transmission. Transmissions in different beam directions may be used to identify (e.g., by a transmitting device, such as a base station 105, or by a receiving device, such as a UE 115) a beam direction for later transmission or reception by the base station 105.
Some signals, such as data signals associated with a particular receiving device, may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) . In some examples, the beam direction associated with transmissions along a single beam direction may be determined based on a signal that was transmitted in one or more beam directions. For example, a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions and may report to the base station 105 an indication of the signal that the UE 115 received with a highest signal quality or an otherwise acceptable signal quality.
In some examples, transmissions by a device (e.g., by a base station 105 or a UE 115) may be performed using multiple beam directions, and the device may use a combination of digital precoding or radio frequency beamforming to generate a combined beam for transmission (e.g., from a base station 105 to a UE 115) . The UE 115 may report feedback that indicates precoding weights for one or more beam directions, and the feedback  may correspond to a configured number of beams across a system bandwidth or one or more sub-bands. The base station 105 may transmit a reference signal (e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS) ) , which may be precoded or unprecoded. The UE 115 may provide feedback for beam selection, which may be a precoding matrix indicator (PMI) or codebook-based feedback (e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook) . Although these techniques are described with reference to signals transmitted in one or more directions by a base station 105, a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) or for transmitting a signal in a single direction (e.g., for transmitting data to a receiving device) .
A receiving device (e.g., a UE 115) may try multiple receive configurations (e.g., directional listening) when receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals. For example, a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets (e.g., different directional listening weight sets) applied to signals received at multiple antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at multiple antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive configurations or receive directions. In some examples, a receiving device may use a single receive configuration to receive along a single beam direction (e.g., when receiving a data signal) . The single receive configuration may be aligned in a beam direction determined based on listening according to different receive configuration directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio (SNR) , or otherwise acceptable signal quality based on listening according to multiple beam directions) .
The wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack. In the user plane, communications at the bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based. A Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels. A Medium Access Control (MAC) layer may perform priority handling and  multiplexing of logical channels into transport channels. The MAC layer may also use error detection techniques, error correction techniques, or both to support retransmissions at the MAC layer to improve link efficiency. In the control plane, the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or a core network 130 supporting radio bearers for user plane data. At the physical layer, transport channels may be mapped to physical channels.
The UEs 115 and the base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully. Hybrid automatic repeat request (HARQ) feedback is one technique for increasing the likelihood that data is received correctly over a communication link 125. HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) . HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., low signal-to-noise conditions) . In some examples, a device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
A UE 115 (e.g., a first device in this example, which may be an example of an adjacent device or UE) may receive, from a base station 105, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of a second device (e.g., . a sensing device or sensing UE) . The UE 115 may measure one or more metrics of the resources according to the sensing resource configuration. The UE 115 may identify an interference level associated with the sensing signal based at least in part on the measuring. The UE 115 may transmit a feedback message to the base station 105 indicating the interference level.
A UE 115 (e.g., a first device in this example, which may be an example of a sensing device or sensing UE) may receive, from a base station 105, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of the first device. The UE 115 may transmit the sensing signal in response to receiving the sensing resource configuration. The UE 115 may receive, based at least in part on the sensing signal,  a configuration signal from the base station 105 identifying one or more parameters for the sensing operations. The UE 115 may update the one or more parameters for the sensing operations based at least in part on the configuration signal.
base station 105 may transmit, to a first device (e.g., an adjacent device or adjacent UE) and a second device (e.g., the sensing device in this example) , a sensing resource configuration identifying resources for a sensing signal used for sensing operations of the second device. The base station 105 may receive a feedback message from the first device indicating an interference level of the sensing signal based at least in part on the sensing operations of the second device. The base station 105 may identify, based at least in part on the feedback message, one or more parameters for the sensing operations of the second device. The base station 105 may transmit a configuration signal to the first device identifying the one or more parameters for the sensing operations.
A UE 115 (e.g., a first device, which may be the sensing device in this example) may receive, from a base station 105, a downlink resource configuration identifying resources for one or more reference signals associated with a corresponding one or more base stations 105, wherein the one or more base stations 105 comprise the base station 105. The UE 115 may measure, based at least in part on the resources, a set of metrics of the one or more reference signals according to the downlink resource configuration to identify an interference level for each reference signal of the one or more reference signals. The UE 115 may transmit a feedback message to the base station 105 indicating the interference level. The UE 115 may update, based at least in part on the interference level, one or more parameters for sensing operations of the first device.
base station 105 may transmit, to a first device (e.g., the sensing device in this example) , a downlink resource configuration identifying resources for one or more reference signals associated with a corresponding one or more base stations 105, wherein the one or more base stations 105 comprise the base station 105. The base station 105 may transmit, to the first device, a reference signal of the base station 105 according to the downlink resource configuration to identify an interference level associated with the reference signal. The base station 105 may receive a feedback message from the first device indicating the interference level. The base station 105 may select, based at least in part on the interference level, one or more parameters for sensing operations of the first device. The base station 105 may transmit  a configuration signal to the first device identifying the one or more parameters for the sensing operations.
FIG. 2 illustrates an example of a wireless communication system 200 that supports power and interference measurement for wireless sensing in accordance with aspects of the present disclosure. In some examples, wireless communication system 200 may implement aspects of wireless communication system 100. Wireless communication system 200 may include UE 205, UE 210, UE 215, base station 220, and/or a base station 225, which may be examples of corresponding devices described herein. Broadly, UE 210 may be an example of a sensing device or sensing UE, with UE 205 and UE 215 being examples of adjacent devices or adjacent UEs with respect to UE 210. Base station 220 and base station 225 may be serving base stations for one or more of UE 205, UE 210, and/or UE 215. For example, base station 220 may be a serving base station for UE 205 and UE 210, with base station 225 being a serving base station for UE 215.
In some aspects, wireless communication system 200 may include devices that are configured for sensing operations. Broadly, the sensing operations may include the device (e.g., the sensing device or sensing UE, which is UE 210 in this example) transmitting a sensing signal which is bounced back or otherwise reflected from nearby objects (e.g., similar to a radar signal) . The sensing device may generally perform the sensing operations to develop Range, Doppler, angular, azimuth, information for environmental imaging (e.g., long-range sensing) information. This may enable the sensing device to develop a 3D map (e.g., for virtual reality) of its surrounding area, for environmental awareness in industrial IoT applications, for beam tracking/management purposes, for machine learning applications, and the like. Another example of sensing operations may support facial recognition operations, gesture classification, in-car based controls, (e.g., short-range sensing) . The sensing signals may use high frequencies (e.g., mmW signals, signals in the terahertz range, and the like) and/or may be performed using frequencies used by the network for wireless communications, e.g., cellular and/or Wi-Fi frequencies. Broadly, the sensing signal may use a predefined waveform transmitted over the wireless medium that is reflected or bounced back to the sensing device. The sensing device may be configured to support radar signal processing techniques, or other similar techniques, to correlate the transmitted sensing signal with the reflected signal in order to identify or otherwise determine range, position, size, Doppler, angle, azimuth, and the like, information to support environmental imaging. For  example, the range resolution may be based on the bandwidth of the sensing signal (e.g., higher bandwidth may lead to higher resolution, but with an associated higher resource and computation cost) . In another example, angular resolution may be a function of the wavelength and the array size used for transmitting the sensing signal. Finally, Doppler resolution may be a function of the wavelength and the time used to analyze the Doppler effect. In some aspects, the sensing device may perform sensing operations in conjunction with data transmissions, e.g., in parallel or concurrently.
The transmit power used for sensing signals may, at least to some degree, be a function of the type of sensing operations being performed. For example, the sensing signal used for a VR game may use a relatively higher transmit power sufficient to cover the entire room or area, whereas the sensing signal used to detect short-range gestures may have a lower transmit power. However, wireless communication systems are not currently configured to support channel performance measurement and feedback operations based on the sensing signals to avoid or mitigate interference to the network. This may lead to the sensing signals causing interference to adjacent UE and/or adjacent base stations, which may disrupt wireless communications and/or sensing operations.
Accordingly, aspects of the described techniques support channel performance measurement and feedback reporting by devices that are adjacent to the device performing sensing operations. For example, base station 220 and/or base station 225 may identify or otherwise select resources for sensing signal 230 of UE 210 for sensing operations. Base station 220 may transmit or otherwise provide a sensing resource configuration to UE 205 (the adjacent device in this example) and UE 210 (the sensing device in this example) that carries or otherwise conveys an indication of the resources for sensing signal 230 used for sensing operations by UE 210. Similarly, base station 225 may transmit or otherwise provide the sensing resource configuration to UE 215 (another adjacent device in this example) to indicate the resources for sensing signal 230 used for sensing operations by UE 210. In some aspects, this may include base station 220 (the serving base station of UE 210 in this example) coordinating with base station 225 to indicate the resources (e.g., the sensing resource configuration) . The coordination may be performed over a backhaul link and/or using wireless communications between  base station  220 and 225. Accordingly, the network may (e.g., via base station 220 and/or base station 225) configure the sensing measurement resources for the sensing UE and adjacent UEs. In some aspects, base station 220 and/or base  station 225 may transmit the sensing resource configuration to UE 205/UE 210 and UE 215, respectively, using RRC signaling, a MAC CE, a DCI, and the like.
UE 210 may transmit the sensing signal 230 based on the sensing resource configuration. That is, UE 210 may identify the resources (e.g., time resources, frequency resources, spatial resources, code resources, and the like) for sensing signal 230 based on the sensing resource configuration. In some aspects, this may include time resources at the slot and/or symbol level. In some aspects, this may include frequency resources at the resource block (RB) and/or subband level. UE 210 may transmit the sensing signal 230 using the identified resources.
UE 205 and UE 215 (the adjacent UEs in this example) may measure metric (s) of the resources according to the sensing resource configuration to identify an interference level associated with sensing signal 230. That is, UE 205 may measure the metric (s) of the sensing signal 230 (e.g., RSRP, RSSI, CQI, and the like) to identify the interference level 235 associated with sensing signal 230 from the perspective of UE 205. Similarly, UE 215 may measure the metric (s) of the sensing signal 230 to identify the interference level 240 associated with sensing signal 230 from the perspective of UE 215. This may include UE 205 and/or UE 215 monitoring the resources indicated in the sensing resource configuration to detect sensing signal 230. UE 205 and/or UE 215 may measure the metric (s) (e.g., any channel performance/capability metric) of the sensing signal 230 to identify  interference levels  235 and 240, respectively. Broadly,  interference levels  235 and 240 may generally refer to the level or degree of interference introduced by sensing signal 230 for UE 205 and UE 215, respectively.
UE 205 may transmit or otherwise convey a feedback message to base station 220 that carries or otherwise conveys an indication of interference level 235. Similarly, UE 215 may transmit or otherwise convey a feedback message to base station 225 that carries or otherwise conveys an indication of interference level 240. In some aspects, base station 225 may transmit or otherwise convey an indication of the feedback message from UE 215 to base station 220 to identify interference level 240 caused by sensing signal 230, e.g., via backhaul and/or wireless transmissions.
In some aspects, sensing signal interference measurements may be enabled or disabled based on the trigger signal received from base station 220 for UE 205/UE 210 and/or  from base station 225 for UE 215. For example, base station 220 may transmit or otherwise convey a trigger signal (e.g., in an RRC signal, a MAC CE, and/or a DCI, configured with bit(s) , field (s) , flag (s) , or any other indicator to indicate enablement or disablement) to UE 205 indicating that sensing signal interference measurements are enabled for the resources identified in the sensing resource configuration. Similarly, base station 225 may transmit or otherwise convey a trigger signal to UE 215 indicating that sensing interference measurements are enabled for the resources identified in the sensing resource configuration.
Accordingly, base station 220 (which is the serving base station of UE 210 in this example) may identify one or more parameters for sensing operations of UE 210 based on the feedback message (s) . That is, base station 220 may determine or otherwise identify interference level 235 and/or interference level 240 caused by, or otherwise associated with sensing signal 230. Based on this, base station 220 may identify (e.g., update) the parameter (s) for sensing operations of UE 210 to avoid or reduce interference, improve sensing operations, and/or improve wireless communications within the network. Examples of the parameters that may be identified and/or updated based on the feedback messages include, but are not limited to, updating the transmit power level for sensing signal 230, updating the frequency for sensing signal 230, updating the timing or scheduling for sensing signal 230 (e.g., the start time, the end time, the duration, and the like) , updating the direction for sensing signal 230 (e.g., updating a beam used for sensing signal 230) , and the like. For example, base station 220 may change (e.g., reduce) the transmit power level of sensing signal 230 to reduce interference. In another example, base station 220 may change the timing and/or direction of sensing signal 230 to avoid interfering with communications associated with UE 205 and/or UE 215. Accordingly, base station 220 may transmit or otherwise convey a configuration signal to UE 210 indicating or otherwise identifying the parameter (s) for sensing operations (e.g., the updated parameters) using sensing signal 230 to reduce or avoid interference for the adjacent devices, such as UE 205 and UE 215. The configuration signal may be transmitted via RRC signaling, a MAC CE, a DCI, and the like.
In some aspects, UE 205 and/or UE 215 may also be equipped or otherwise support performing sensing operations. In this example, UE 205 and/or UE 215 may also update one or more parameters for their own sensing operations based on interference level 235 and/or interference level 240, respectively. For example, UE 205 and/or UE 215 may adjust the transmit power level, frequency, timing, code, spatial, and the like, parameter (s) of  their own sensing signals based on the interference levels. UE 205 and/or UE 215 may update their sensing operation parameters autonomously and/or based on a configuration signal received from base station 220 and base station 225, respectively. That is, reciprocity associated with interference level 235 and/or interference level 240 may be leveraged by UE 205 and/or UE 215 to update the parameter (s) of their sensing operations to avoid or mitigate interference caused by their own sensing signals. This may also reduce or mitigate interference for UE 210 when UE 205 and/or UE 215 are performing sensing operations.
In some aspects, base station 220 may update the parameter (s) for sensing operations of UE 205 based on the feedback message and transmit an additional configuration signal to UE 205 identifying the updated parameter (s) . Similarly, base station 225 may update the parameter (s) for sensing operations of UE 215 based on the feedback message and transmit an additional configuration signal to UE 215 identifying the updated parameter (s) .
FIG. 3 illustrates an example of a process 300 that supports power and interference measurement for wireless sensing in accordance with aspects of the present disclosure. In some examples, process 300 may implement aspects of wireless communication systems 100 and/or 200. Aspects of process 300 may be implemented by UE 305 and/or base station 310, which may be examples of corresponding devices described herein. In some aspects, UE 305 may be an example of an adjacent device configured to measure interference caused by sensing operations of a sensing device located proximate to UE 305. Base station 310 may be a serving base station of UE 305.
At 315, base station 310 may transmit (and UE 305 may receive) a sensing resource configuration identifying resources for a sensing signal used for sensing operations of a second device (e.g., the sensing device, in this example, that is located near UE 305) . The sensing resource configuration may be transmitted via an RRC signal, a MAC CE, a PDCCH DCI, and the like. The sensing resource configuration may identify time resources, frequency resources, spatial resources, code resources, and the like, used by the sensing device for transmitting a sensing signal. The time resources may be at the symbol level, slot level, subframe level, and the like. The frequency resources may be at the RB level, the subband level, the bandwidth level, the bandwidth part level, and the like.
At 320, UE 305 may measure one or more metrics of the resources according to the sensing resource configuration. That is, the sensing device may transmit a sensing signal according to the resources identified in the sensing resource configuration. UE 305 may monitor those resources to detect the sensing signal, and then measure the metrics of the sensing signal to identify an interference level associated with the sensing signal. For example, UE 305 may determine the RSRP, RSSI, CQI, or any other channel performance/quality metric to determine the interference level of the sensing signal.
At 325, UE 305 may transmit (and base station 310 may receive) a feedback message indicating the interference level. That is, UE 305 may transmit or otherwise provide an indication of the interference level associated with the sensing signal to base station 310. The feedback message may be transmitted otherwise provided via an uplink signal, such as a physical uplink control channel (PUCCH) and/or physical uplink shared channel (PUSCH) signal. In some aspects, the feedback message may be transmitted in an uplink control information (UCI) . The feedback message may identify the interference level associated with the sensing device, e.g., may also convey an indication of an identifier corresponding to the sensing device and associated interference level based on the sensing signal of the sensing device.
At 330, base station 310 may identify one or more parameters for sensing operations of the sensing device based on the feedback message. For temple, base station 310 may identify an updated or changed transmit power level for the sensing operations and/or may implement various resource allocation modifications to support sensing operations of the sensing device. For example, the base station 310 may lower the transmit power level of the sensing signal when the interference level of UE 305 satisfies a threshold or raise the transmit power level of the sensing signal when the interference level is low (e.g., is below or otherwise fails to satisfy the threshold) . In another example, base station 310 may modify time, frequency, spatial, and/or code resources for the sensing signal and/or for wireless communications associated with UE 305 to avoid or reduce the interference level associated with the sensing signal.
FIG. 4 illustrates an example of a wireless communication system 400 that supports power and interference measurement for wireless sensing in accordance with aspects of the present disclosure. In some examples, wireless communication system 400 may  implement aspects of wireless communication systems 100 and/or 200, and/or process 300. Wireless communication system 400 may include UE 405, base station 410, and/or base station 415, which may be examples of corresponding devices described herein. Broadly, UE 405 may be an example of a sensing device or sensing UE. Base station 410 may be serving base station for UE 405, with base station 415 being considered an adjacent device or adjacent base station in this example.
Aspects of the described techniques support channel performance measurement and feedback reporting by devices that are adjacent to the device performing sensing operations. For example, base station 410 may configure resources for sensing signal 420 of UE 405 for sensing operations. Base station 410 may transmit or otherwise provide a sensing resource configuration to UE 405 (the sensing device in this example) that carries or otherwise conveys an indication of the resources for sensing signal 420 used for sensing operations by UE 405. Similarly, base station 410 may transmit or otherwise provide the sensing resource configuration to base station 415 (an adjacent device in this example) to indicate the resources for sensing signal 420 used for sensing operations by UE 405. In some aspects, this may include base station 410 (the serving base station of UE 405 in this example) coordinating with base station 415 to indicate the resources (e.g., the sensing resource configuration) . The coordination may be performed over a backhaul link and/or using wireless communications between  base station  410 and 415. Accordingly, the network may (e.g., via base station 410) configure the sensing measurement resources for the adjacent devices. In some aspects, base station 410 may transmit the sensing resource configuration to UE 405 and base station 415, respectively, using RRC signaling, a MAC CE, a DCI, and the like.
UE 405 may transmit the sensing signal 420 based on the sensing resource configuration. That is, UE 405 may identify the resources (e.g., time resources, frequency resources, spatial resources, code resources, and the like) for sensing signal 420 based on the sensing resource configuration. In some aspects, this may include time resources at the slot and/or symbol level. In some aspects, this may include frequency resources at the RB and/or subband level. UE 405 may transmit the sensing signal 420 using the identified resources.
Base station 410 and/or base station 415 (the adjacent devices from the perspective of UE 405) may measure metric (s) of the resources according to the sensing  resource configuration to identify an interference level associated with sensing signal 420. That is, base station 410 may measure the metric (s) of sensing signal 420 (e.g., RSRP, RSSI, CQI, and the like) to identify the interference level 425 associated with sensing signal 420. Similarly, base station 415 may measure the metric (s) of the sensing signal 420 to identify the interference level 430 associated with sensing signal 420 from the perspective of base station 415. This may include base station 410 and/or base station 415 monitoring the resources indicated in the sensing resource configuration to detect sensing signal 420. Base station 410 and/or base station 415 may measure the metric (s) (e.g., any channel performance/capability metric) of the sensing signal 420 to identify  interference levels  425 and 430, respectively. Broadly,  interference levels  425 and 430 may generally refer to the level or degree of interference introduced by sensing signal 420 for base station 410 and base station 415, respectively.
Base station 415 may transmit or otherwise convey a feedback message to base station 410 that carries or otherwise conveys an indication of interference level 430, e.g., via backhaul and/or wireless transmissions. Similarly, base station 410 may identify or otherwise determine interference level 425, e.g., based on the measuring.
In some aspects, sensing signal interference measurements may be enabled or disabled based on the trigger signal received from base station 410 for base station 415 and/or UE 405. For example, base station 410 may transmit or otherwise convey a trigger signal to base station 415 and/or UE 405 indicating that sensing signal interference measurements are enabled for the resources identified in the sensing resource configuration.
Accordingly, base station 410 (which is the serving base station of UE 405 in this example) may identify one or more parameters for sensing operations of UE 405 based on the interference level 425 and/or interference level 430. That is, base station 410 may determine or otherwise identify interference level 425 and/or interference level 430 caused by sensing signal 420. Based on this, base station 410 may identify (e.g., update) the parameter (s) for sensing operations of UE 405 to reduce interference, improve sensing operations, and/or improve wireless communications within the network. Examples of the parameters that may be identified and/or updated based on the feedback messages include, but are not limited to, updating the transmit power level for sensing signal 420, updating the frequency for sensing signal 420, updating the timing for sensing signal 420 (e.g., the start time, the end time, the  duration, and the like) , updating the direction or beam used for sensing signal 420, and the like. For example, base station 410 may change (e.g., reduce) the transmit power level of sensing signal 420 to reduce interference. In another example, base station 410 may change the timing, frequency, and/or direction of sensing signal 420 to avoid interfering with communications associated with base station 410 and/or base station 415. Accordingly, base station 410 may transmit or otherwise convey a configuration signal to UE 405 indicating or otherwise identifying the parameter (s) for sensing operations (e.g., the updated parameters) using sensing signal 420 to reduce or avoid interference for the adjacent devices, such as base station 410 and/or base station 415. The configuration signal may be transmitted via RRC signaling, a MAC CE, a DCI, and the like.
In some aspects, base station 410 and/or base station 415 may also be equipped or otherwise support performing sensing operations. In this example, base station 410 and/or base station 415 may also update one or more parameters for their own sensing operations based on interference level 425 and/or interference level 430, respectively. For example, base station 410 and/or base station 415 may adjust the transmit power level, frequency, timing, code, spatial features, and the like, of their own sensing signals based on the interference levels. That is, reciprocity associated with interference level 425 and/or interference level 430 may be leveraged by base station 410 and/or base station 415 to update the parameter (s) of their sensing operations to avoid or mitigate interference caused by their own sensing signals. This may also reduce or mitigate interference for UE 405 when base station 410 and/or base station 415 are performing sensing operations.
In some aspects, base station 410 may update the parameter (s) for sensing operations of base station 415 based on the updated parameter (s) and transmit an additional configuration signal to base station 415 identifying the updated parameter (s) .
FIG. 5 illustrates an example of a wireless communication system 500 that supports power and interference measurement for wireless sensing in accordance with aspects of the present disclosure. In some examples, wireless communication system 500 may implement aspects of  wireless communication systems  100, 200, and/or 400, and/or process 300. Wireless communication system 500 may include UE 505, base station 510, and/or a base station 515, which may be examples of corresponding devices described herein. Broadly, UE 505 may be an example of a sensing device or sensing UE. Base station 510  may be serving base station for UE 505, with base station 515 being considered an adjacent device or adjacent base station in this example.
Generally, wireless communication system 500 may support UE 505 performing downlink power measurements, not only of its serving base station (e.g., base station 510) , but also for any adjacent base stations (such as base station 515) . For example, base station 510 may determine an identifier of the base station 515 and configure resources for a downlink power measurement for base station 515 by UE 505. UE 505 may monitor for the pathloss reference signal from its own serving cell (e.g., base station 510) as well as any adjacent cells (e.g., such as base station 515) . UE 505 may provide feedback in a measurement message/report to base station 510 and, based on the pathloss of the downlink reference signal, the network and/or UE 505 may determine an uplink sensing power level, which may be less than the threshold in order to avoid impacting uplink reception by base station 510 and/or base station 515. Based on the pathloss of the downlink reference signal, the network may also determine which resource scheduling to avoid a downlink transmission interfering with uplink sensing by UE 505 (e.g., . sensing operations using sensing signal 520) . Although these techniques may be implemented for downlink reference signals from base station 510 and/or base station 515, the example described below generally shows the downlink reference signal 530 of base station 515 being used for channel performance measurement and reporting. However, it is to be understood that these techniques may also be implemented for a downlink reference signal from base station 510.
Aspects of the described techniques support channel performance measurement and feedback reporting by devices that are adjacent to the device performing sensing operations. For example, base station 510 and/or base station 515 may configure resources for reference signal 530 of base station 515. Base station 510 may transmit or otherwise provide a downlink resource configuration to UE 505 (the sensing device in this example) that carries or otherwise conveys an indication of the resources for reference signal 530 of base station 515. Similarly, base station 510 may transmit or otherwise provide the downlink resource configuration to base station 515 (the adjacent device in this example) to indicate the resources for reference signal 530 to be transmitted by base station 515. In some aspects, this may include base station 510 (the serving base station of UE 505 in this example) coordinating with base station 515 to identify or otherwise indicate the resources (e.g., the downlink resource configuration) . The coordination may be performed over a backhaul link  and/or using wireless communications between  base station  510 and 515. Accordingly, the network may (e.g., via base station 510) configure the downlink reference signal measurement resources for the adjacent device (e.g., base station 515) . In some aspects, base station 510 may transmit the downlink resource configuration to UE 505 and/or base station 515, respectively, using RRC signaling, a MAC CE, a DCI, and the like.
Base station 515 may transmit the reference signal 530 based on the downlink resource configuration. That is, base station 515 may identify the resources (e.g., time resources, frequency resources, spatial resources, code resources, and the like) for reference signal 530 based on the downlink resource configuration. In some aspects, this may include time resources at the slot and/or symbol level. In some aspects, this may include frequency resources at the RB and/or subband level. Base station 515 may transmit the reference signal 530 using the identified resources.
UE 505 (both a sensing device and the adjacent device from the perspective of base station 515) may measure metric (s) of the resources according to the downlink resource configuration to identify an interference level associated with reference signal 530. That is, UE 505 may measure the metric (s) of the reference signal 530 (e.g., RSRP, RSSI, CQI, and the like) to identify the interference level 525 associated with sensing signal 520 and/or reference signal 530. This may include UE 505 monitoring the resources indicated in the downlink resource configuration to detect reference signal 530. UE 505 may measure the metric (s) (e.g., any channel performance/capability metric) of the detected reference signal 530 to identify interference level 525. Broadly, interference level 525 may generally refer to the level or degree of interference introduced by, or otherwise associated with reference signal 530.
UE 505 may transmit or otherwise convey a feedback message to base station 510 that carries or otherwise conveys an indication of interference level 525, e.g., via backhaul and/or wireless transmissions. In some aspects, reference signal interference measurements may be enabled or disabled based on the trigger signal received from base station 510 for UE 505 and/or base station 515. For example, base station 510 may transmit or otherwise convey a trigger signal to base station 515 and/or UE 505 indicating that reference signal interference measurements are enabled for the resources identified in the downlink resource configuration.
Accordingly, base station 510 (which is the serving base station of UE 505 in this example) may identify or otherwise select one or more parameters for sensing operations of UE 505 based on interference level 525. That is, base station 510 may determine or otherwise identify interference level 525 caused by, or otherwise associated with reference signal 530. Based on this, base station 510 may identify (e.g., update) the parameter (s) for sensing operations of UE 505 to reduce interference, improve sensing operations, and/or improve wireless communications within the network. Examples of the parameters that may be identified and/or updated based on the feedback messages include, but are not limited to, updating the transmit power level for sensing signal 520, updating the frequency for sensing signal 520, updating the timing or scheduling for sensing signal 520 (e.g., the start time, the end time, the duration, and the like) , updating the direction or beam used for sensing signal 520, and the like. For example, base station 510 may change (e.g., lower) the transmit power level of sensing signal 520 to reduce interference. In another example, base station 510 may change the timing, frequency, and/or direction of sensing signal 520 to avoid interfering communications associated with base station 515. Accordingly, base station 510 may transmit or otherwise convey a configuration signal to UE 505 indicating or otherwise identifying the parameter (s) for sensing operations (e.g., the updated parameters) using sensing signal 520 to reduce or avoid interference for the adjacent devices, such as base station 515. The configuration signal may be transmitted via RRC signaling, a MAC CE, a DCI, and the like.
In some aspects, base station 510 and/or base station 515 may also be equipped or otherwise support performing sensing operations. In this example, base station 510 and/or base station 515 may also update one or more parameters for their own sensing operations based on interference level 525. For example, base station 510 and/or base station 515 may adjust the transmit power level, frequency, timing, code, spatial features, and the like, of their own sensing signals based on the interference level 525. That is, reciprocity associated with interference level 525 may be leveraged by base station 510 and/or base station 515 to update the parameter (s) of their sensing operations to avoid or mitigate interference caused by their own sensing signals. This may also reduce or mitigate interference for UE 505 when base station 510 and/or base station 515 are performing sensing operations.
In some aspects, UE 505 may update the parameters for it sensing operations based on the interference level 525, without coordinating with its serving base station. For  example, UE 505 may autonomously update the parameters for its own sensing operations and/or may receive the configuration signal from base station 510 identifying the updated parameters for sensing operations.
In some aspects, base station 510 may update the parameter (s) for sensing operations of base station 515 based on the updated parameter (s) and transmit an additional configuration signal to base station 515 identifying the updated parameter (s) .
FIG. 6 illustrates an example of a process 600 that supports power and interference measurement for wireless sensing in accordance with aspects of the present disclosure. In some examples, process 600 may implement aspects of  wireless communication systems  100, 200, 400, and/or 500, and/or process 300. Aspects of process 600 may be implemented by UE 605, serving cell 610, and/or adjacent cell 615, which may be examples of corresponding devices described herein. In some aspects, UE 605 may be an example of a sensing device is described herein. In some aspects, serving cell 610 may be an example of a serving base station of UE 605 and adjacent cell 615 may be an example of an adjacent base station located proximate to UE 605.
At 620, adjacent cell 615 may transmit (and serving cell 610 may receive) an indication of an identifier and resource of adjacent cell 615. That is, serving cell 610 may receive an indication of the identifier of adjacent cell 615 and/or an indication of one or more resources to be used for a reference signal transmitted by adjacent cell 615. The indication may be transmitted or otherwise provided via wireless communications and/or via backhaul messaging between serving cell 610 and adjacent cell 615.
At 625, serving cell 610 may transmit (and UE 605 may receive) a downlink resource configuration identifying resources for one or more reference signals associated with a corresponding one or more base stations, with the one or more base stations including at least serving cell 610. In the example illustrated in process 600, the downlink resource configuration may also identify resources for reference signals transmitted by adjacent cell 615. The downlink resource configuration may be transmitted via RRC signaling, a MAC CE, the DCI, and the like. Broadly, the downlink resource configuration may identify resources to be used for reference signal transmissions from serving cell 610 and/or adjacent cell 615. Resources may include time resources (e.g., at the slot or symbol level) , frequency  resources (e.g., at the RB or subband level) , spatial resources (e.g., a beam used for transmitting the reference signals) , code resources, and the like.
At 630, UE 605 may measure a set of metrics of the reference signals according to the downlink resource configuration to identify an interference level for each reference signal. For example, serving cell 610 may transmit a reference signal using the resources indicated in the downlink resource configuration, which UE 605 measures in order to determine the metrics for the reference signal from serving cell 610. Similarly, adjacent cell 615 may transmit a reference signal using the resources indicated in the downlink resource configuration, which UE 605 measures in order to determine the metrics for the reference signal from adjacent cell 615. UE 605 may identify the interference level (s) associated with serving cell 610 and adjacent cell 615 based on their corresponding reference signals. Examples of the metrics include, but are not limited to, and RSRP, RSSI, CQI, and the like, for each reference signal.
At 635, UE 605 may perform power adaptations (e.g., update the parameters for its own sensing operations) and/or measurement reporting. For example, UE 605 may transmit a feedback message to serving cell 610 indicating the interference level. The indicated interference level may be based on the reference signal transmitted by serving cell 610 and/or based on the reference signal transmitted by adjacent cell 615. This may enable serving cell 610 and/or adjacent cell 615 to update or otherwise select parameters for sensing operations of UE 605 to avoid or mitigate interference associated with the sensing operations of UE 605.
In some aspects, UE 605 may autonomously update the parameters for it sensing operations based on the interference level (s) determined at 630. That is, UE 605 may determine the interference level based on reference signals transmitted by serving cell 610 and/or adjacent cell 615, and then modify or otherwise update the parameters that it uses for sensing operations to mitigate or avoid interference to serving cell 610 and/or adjacent cell 615. This may include increasing or decreasing the transmit power level of the sensing signals transmitted during sensing operations and/or implementing scheduling constraints to avoid or mitigate such interference. Scheduling constraints may include, but are not limited to, changing the frequency, timing, spatial direction, and/or code, utilized for the sensing signal to avoid or mitigate such interference.
Additionally or alternatively, UE 605 may update the parameters for it sensing operations based on receiving a configuration signal from serving cell 610. That is, serving cell 610 (the serving base station of UE 605) may receive the feedback message transmitted from UE 605 and identify or otherwise select updated parameters for the sensing operations of UE 605 based on the interference level (s) indicated in the feedback message. The serving cell 610 may transmit or otherwise convey the configuration signal to UE 605 that identifies the updated parameters. UE 605 may update its sensing operation parameters based on the configuration signal. The configuration signal may be transmitted via RRC signaling, MAC CE, a DCI, and the like.
As discussed, in some examples serving cell 610 and/or adjacent cell 615 may also be configured otherwise support sensing operations. Serving cell 610 may update or otherwise select parameters for its own sensing operations based on the feedback message indicating the interference level associated with the reference signal from serving cell 610 and/or adjacent cell 615. That is, serving cell 610 may modify or update its sensing operation parameters to avoid or mitigate interference to UE 605 and/or adjacent cell 615 caused by its own sensing operations. Serving cell 610 may also transmit or otherwise convey an indication to adjacent cell 615 of updated parameters for the sensing operations of adjacent cell 615. For example, serving cell 610 may identify the interference level associated with the reference signals transmitted by adjacent cell 615, identify or otherwise select updated parameters for the sensing operations of adjacent cell 615 based on the interference level, and transmit a configuration signal to adjacent cell 615 indicating otherwise identifying the updated parameters to be used for the sensing operations of adjacent cell 615.
FIG. 7 shows a block diagram 700 of a device 705 that supports power and interference measurement for wireless sensing in accordance with aspects of the present disclosure. The device 705 may be an example of aspects of a UE 115 as described herein. The device 705 may include a receiver 710, a communications manager 715, and a transmitter 720. The device 705 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 710 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to power and interference measurement for wireless  sensing, etc. ) . Information may be passed on to other components of the device 705. The receiver 710 may be an example of aspects of the transceiver 1020 described with reference to FIG. 10. The receiver 710 may utilize a single antenna or a set of antennas.
The communications manager 715 may receive, from a base station, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of a second device, measure one or more metrics of the resources according to the sensing resource configuration, identify an interference level associated with the sensing signal based on the measuring, and transmit a feedback message to the base station indicating the interference level.
The communications manager 715 may also receive, from a base station, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of the first device, transmit the sensing signal in response to receiving the sensing resource configuration, receive, based on the sensing signal, a configuration signal from the base station identifying one or more parameters for the sensing operations, and update the one or more parameters for the sensing operations based on the configuration signal.
The communications manager 715 may also receive, from a base station, a downlink resource configuration identifying resources for one or more reference signals associated with a corresponding one or more base stations, where the one or more base stations include the base station, measure, based on the resources, a set of metrics of the one or more reference signals according to the downlink resource configuration to identify an interference level for each reference signal of the one or more reference signals, transmit a feedback message to the base station indicating the interference level, and update, based on the interference level, one or more parameters for sensing operations of the first device. The communications manager 715 may be an example of aspects of the communications manager 1010 described herein.
The communications manager 715, or its sub-components, may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 715, or its sub-components may be executed by a general-purpose processor, a digital signal processor (DSP) , an application-specific integrated circuit (ASIC) , a field-programmable gate array (FPGA) or other programmable logic device, discrete gate or  transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
The communications manager 715, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some examples, the communications manager 715, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some examples, the communications manager 715, or its sub-components, may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
The transmitter 720 may transmit signals generated by other components of the device 705. In some examples, the transmitter 720 may be collocated with a receiver 710 in a transceiver module. For example, the transmitter 720 may be an example of aspects of the transceiver 1020 described with reference to FIG. 10. The transmitter 720 may utilize a single antenna or a set of antennas.
FIG. 8 shows a block diagram 800 of a device 805 that supports power and interference measurement for wireless sensing in accordance with aspects of the present disclosure. The device 805 may be an example of aspects of a device 705, or a UE 115 as described herein. The device 805 may include a receiver 810, a communications manager 815, and a transmitter 840. The device 805 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 810 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to power and interference measurement for wireless sensing, etc. ) . Information may be passed on to other components of the device 805. The receiver 810 may be an example of aspects of the transceiver 1020 described with reference to FIG. 10. The receiver 810 may utilize a single antenna or a set of antennas.
The communications manager 815 may be an example of aspects of the communications manager 715 as described herein. The communications manager 815 may  include a resource manager 820, an interference manager 825, a feedback manager 830, and a sensing parameter manager 835. The communications manager 815 may be an example of aspects of the communications manager 1010 described herein.
The resource manager 820 may receive, from a base station, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of a second device.
The interference manager 825 may measure one or more metrics of the resources according to the sensing resource configuration and identify an interference level associated with the sensing signal based on the measuring.
The feedback manager 830 may transmit a feedback message to the base station indicating the interference level.
The resource manager 820 may receive, from a base station, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of the first device.
The interference manager 825 may transmit the sensing signal in response to receiving the sensing resource configuration.
The sensing parameter manager 835 may receive, based on the sensing signal, a configuration signal from the base station identifying one or more parameters for the sensing operations and update the one or more parameters for the sensing operations based on the configuration signal.
The resource manager 820 may receive, from a base station, a downlink resource configuration identifying resources for one or more reference signals associated with a corresponding one or more base stations, where the one or more base stations include the base station.
The interference manager 825 may measure, based on the resources, a set of metrics of the one or more reference signals according to the downlink resource configuration to identify an interference level for each reference signal of the one or more reference signals.
The feedback manager 830 may transmit a feedback message to the base station indicating the interference level.
The sensing parameter manager 835 may update, based on the interference level, one or more parameters for sensing operations of the first device.
The transmitter 840 may transmit signals generated by other components of the device 805. In some examples, the transmitter 840 may be collocated with a receiver 810 in a transceiver module. For example, the transmitter 840 may be an example of aspects of the transceiver 1020 described with reference to FIG. 10. The transmitter 840 may utilize a single antenna or a set of antennas.
FIG. 9 shows a block diagram 900 of a communications manager 905 that supports power and interference measurement for wireless sensing in accordance with aspects of the present disclosure. The communications manager 905 may be an example of aspects of a communications manager 715, a communications manager 815, or a communications manager 1010 described herein. The communications manager 905 may include a resource manager 910, an interference manager 915, a feedback manager 920, a sensing trigger manager 925, a sensing parameter update manager 930, and a sensing parameter manager 935. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The resource manager 910 may receive, from a base station, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of a second device. In some examples, the resource manager 910 may receive, from a base station, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of the first device. In some examples, the resource manager 910 may receive, from a base station, a downlink resource configuration identifying resources for one or more reference signals associated with a corresponding one or more base stations, where the one or more base stations include the base station. In some cases, the resources include at least one of a time resource, a frequency resource, a spatial resource, a code resource, or a combination thereof.
The interference manager 915 may measure one or more metrics of the resources according to the sensing resource configuration. In some examples, the interference manager 915 may identify an interference level associated with the sensing signal based on the measuring. In some examples, the interference manager 915 may transmit the sensing signal in response to receiving the sensing resource configuration. In some examples, the  interference manager 915 may measure, based on the resources, a set of metrics of the one or more reference signals according to the downlink resource configuration to identify an interference level for each reference signal of the one or more reference signals.
The feedback manager 920 may transmit a feedback message to the base station indicating the interference level. In some examples, the feedback manager 920 may transmit a feedback message to the base station indicating the interference level.
The sensing parameter manager 935 may receive, based on the sensing signal, a configuration signal from the base station identifying one or more parameters for the sensing operations. In some examples, the sensing parameter manager 935 may update the one or more parameters for the sensing operations based on the configuration signal. In some examples, the sensing parameter manager 935 may update, based on the interference level, one or more parameters for sensing operations of the first device. In some examples, the sensing parameter manager 935 may autonomously update the one or more parameters for sensing operations of the first device based on the interference level.
The sensing trigger manager 925 may receive a trigger signal from the base station indicating that sensing signal interference measurements are enabled for the resources, where measuring the one or more metrics of the resources is based on the trigger signal.
The sensing parameter update manager 930 may update one or more parameters for sensing operations of the first device based on the interference level. In some examples, the sensing parameter update manager 930 may receive, based on the feedback message, a configuration signal from the base station identifying the one or more parameters for the sensing operations of the first device, where the updating is based on the configuration signal.
FIG. 10 shows a diagram of a system 1000 including a device 1005 that supports power and interference measurement for wireless sensing in accordance with aspects of the present disclosure. The device 1005 may be an example of or include the components of device 705, device 805, or a UE 115 as described herein. The device 1005 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1010, an I/O controller 1015, a transceiver 1020, an antenna 1025, memory 1030, and a processor 1040. These components may be in electronic communication via one or more buses (e.g., bus 1045) .
The communications manager 1010 may receive, from a base station, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of a second device, measure one or more metrics of the resources according to the sensing resource configuration, identify an interference level associated with the sensing signal based on the measuring, and transmit a feedback message to the base station indicating the interference level.
The communications manager 1010 may also receive, from a base station, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of the first device, transmit the sensing signal in response to receiving the sensing resource configuration, receive, based on the sensing signal, a configuration signal from the base station identifying one or more parameters for the sensing operations, and update the one or more parameters for the sensing operations based on the configuration signal.
The communications manager 1010 may also receive, from a base station, a downlink resource configuration identifying resources for one or more reference signals associated with a corresponding one or more base stations, where the one or more base stations include the base station, measure, based on the resources, a set of metrics of the one or more reference signals according to the downlink resource configuration to identify an interference level for each reference signal of the one or more reference signals, transmit a feedback message to the base station indicating the interference level, and update, based on the interference level, one or more parameters for sensing operations of the first device.
The I/O controller 1015 may manage input and output signals for the device 1005. The I/O controller 1015 may also manage peripherals not integrated into the device 1005. In some cases, the I/O controller 1015 may represent a physical connection or port to an external peripheral. In some cases, the I/O controller 1015 may utilize an operating system such as 
Figure PCTCN2020095057-appb-000001
or another known operating system. In other cases, the I/O controller 1015 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device. In some cases, the I/O controller 1015 may be implemented as part of a processor. In some cases, a user may interact with the device 1005 via the I/O controller 1015 or via hardware components controlled by the I/O controller 1015.
The transceiver 1020 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 1020 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 1020 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some cases, the wireless device may include a single antenna 1025. However, in some cases the device may have more than one antenna 1025, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 1030 may include random access memory (RAM) and read-only memory (ROM) . The memory 1030 may store computer-readable, computer-executable code 1035 including instructions that, when executed, cause the processor to perform various functions described herein. In some cases, the memory 1030 may contain, among other things, a basic input/output system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 1040 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 1040 may be configured to operate a memory array using a memory controller. In other cases, a memory controller may be integrated into the processor 1040. The processor 1040 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1030) to cause the device 1005 to perform various functions (e.g., functions or tasks supporting power and interference measurement for wireless sensing) .
The code 1035 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 1035 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1035 may not be directly executable by the processor 1040 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
FIG. 11 shows a block diagram 1100 of a device 1105 that supports power and interference measurement for wireless sensing in accordance with aspects of the present disclosure. The device 1105 may be an example of aspects of a base station 105 as described herein. The device 1105 may include a receiver 1110, a communications manager 1115, and a transmitter 1120. The device 1105 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 1110 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to power and interference measurement for wireless sensing, etc. ) . Information may be passed on to other components of the device 1105. The receiver 1110 may be an example of aspects of the transceiver 1420 described with reference to FIG. 14. The receiver 1110 may utilize a single antenna or a set of antennas.
The communications manager 1115 may transmit, to a first device and a second device, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of the second device, receive a feedback message from the first device indicating an interference level of the sensing signal based on the sensing operations of the second device, identify, based on the feedback message, one or more parameters for the sensing operations of the second device, and transmit a configuration signal to the first device identifying the one or more parameters for the sensing operations.
The communications manager 1115 may also transmit, to a first device, a downlink resource configuration identifying resources for one or more reference signals associated with a corresponding one or more base stations, where the one or more base stations include the base station, transmit, to the first device, a reference signal of the base station according to the downlink resource configuration to identify an interference level associated with the reference signal, receive a feedback message from the first device indicating the interference level, select, based on the interference level, one or more parameters for sensing operations of the first device, and transmit a configuration signal to the first device identifying the one or more parameters for the sensing operations. The communications manager 1115 may be an example of aspects of the communications manager 1410 described herein.
The communications manager 1115, or its sub-components, may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 1115, or its sub-components may be executed by a general-purpose processor, a DSP, an ASIC, a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
The communications manager 1115, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some examples, the communications manager 1115, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some examples, the communications manager 1115, or its sub-components, may be combined with one or more other hardware components, including but not limited to an I/O component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
The transmitter 1120 may transmit signals generated by other components of the device 1105. In some examples, the transmitter 1120 may be collocated with a receiver 1110 in a transceiver module. For example, the transmitter 1120 may be an example of aspects of the transceiver 1420 described with reference to FIG. 14. The transmitter 1120 may utilize a single antenna or a set of antennas.
FIG. 12 shows a block diagram 1200 of a device 1205 that supports power and interference measurement for wireless sensing in accordance with aspects of the present disclosure. The device 1205 may be an example of aspects of a device 1105, or a base station 105 as described herein. The device 1205 may include a receiver 1210, a communications manager 1215, and a transmitter 1240. The device 1205 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 1210 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data  channels, and information related to power and interference measurement for wireless sensing, etc. ) . Information may be passed on to other components of the device 1205. The receiver 1210 may be an example of aspects of the transceiver 1420 described with reference to FIG. 14. The receiver 1210 may utilize a single antenna or a set of antennas.
The communications manager 1215 may be an example of aspects of the communications manager 1115 as described herein. The communications manager 1215 may include a resource manager 1220, a feedback manager 1225, a sensing parameter manager 1230, and an interference manager 1235. The communications manager 1215 may be an example of aspects of the communications manager 1410 described herein.
The resource manager 1220 may transmit, to a first device and a second device, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of the second device.
The feedback manager 1225 may receive a feedback message from the first device indicating an interference level of the sensing signal based on the sensing operations of the second device.
The sensing parameter manager 1230 may identify, based on the feedback message, one or more parameters for the sensing operations of the second device and transmit a configuration signal to the first device identifying the one or more parameters for the sensing operations.
The resource manager 1220 may transmit, to a first device, a downlink resource configuration identifying resources for one or more reference signals associated with a corresponding one or more base stations, where the one or more base stations include the base station.
The interference manager 1235 may transmit, to the first device, a reference signal of the base station according to the downlink resource configuration to identify an interference level associated with the reference signal.
The feedback manager 1225 may receive a feedback message from the first device indicating the interference level.
The sensing parameter manager 1230 may select, based on the interference level, one or more parameters for sensing operations of the first device and transmit a configuration signal to the first device identifying the one or more parameters for the sensing operations.
The transmitter 1240 may transmit signals generated by other components of the device 1205. In some examples, the transmitter 1240 may be collocated with a receiver 1210 in a transceiver module. For example, the transmitter 1240 may be an example of aspects of the transceiver 1420 described with reference to FIG. 14. The transmitter 1240 may utilize a single antenna or a set of antennas.
FIG. 13 shows a block diagram 1300 of a communications manager 1305 that supports power and interference measurement for wireless sensing in accordance with aspects of the present disclosure. The communications manager 1305 may be an example of aspects of a communications manager 1115, a communications manager 1215, or a communications manager 1410 described herein. The communications manager 1305 may include a resource manager 1310, a feedback manager 1315, a sensing parameter manager 1320, a sensing parameter update manager 1325, an interference manager 1330, and an adjacent cell manager 1335. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The resource manager 1310 may transmit, to a first device and a second device, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of the second device. In some examples, the resource manager 1310 may transmit, to a first device, a downlink resource configuration identifying resources for one or more reference signals associated with a corresponding one or more base stations, where the one or more base stations include the base station. In some cases, the resources include at least one of a time resource, a frequency resource, a spatial resource, a code resource, or a combination thereof.
The feedback manager 1315 may receive a feedback message from the first device indicating an interference level of the sensing signal based on the sensing operations of the second device. In some examples, the feedback manager 1315 may receive a feedback message from the first device indicating the interference level.
The sensing parameter manager 1320 may identify, based on the feedback message, one or more parameters for the sensing operations of the second device. In some  examples, the sensing parameter manager 1320 may transmit a configuration signal to the first device identifying the one or more parameters for the sensing operations. In some examples, the sensing parameter manager 1320 may select, based on the interference level, one or more parameters for sensing operations of the first device. In some examples, the sensing parameter manager 1320 may transmit a configuration signal to the first device identifying the one or more parameters for the sensing operations.
The interference manager 1330 may transmit, to the first device, a reference signal of the base station according to the downlink resource configuration to identify an interference level associated with the reference signal.
The sensing parameter update manager 1325 may identify, based on the feedback message, a set of parameters for sensing operations of the first device. In some examples, the sensing parameter update manager 1325 may transmit an additional configuration signal to the first device identifying the set of parameters.
The adjacent cell manager 1335 may receive an indication of an identifier and resource for at least one other base station of the one or more base stations. In some examples, the adjacent cell manager 1335 may transmit an indication of the identifier and resource for the at least one other base station in the downlink resource configuration. In some examples, the adjacent cell manager 1335 may identify, based on the feedback message an additional interference level associated with the at least one other base station, where the one or more parameters for sensing operations of the first device are further based on the additional interference level.
FIG. 14 shows a diagram of a system 1400 including a device 1405 that supports power and interference measurement for wireless sensing in accordance with aspects of the present disclosure. The device 1405 may be an example of or include the components of device 1105, device 1205, or a base station 105 as described herein. The device 1405 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1410, a network communications manager 1415, a transceiver 1420, an antenna 1425, memory 1430, a processor 1440, and an inter-station communications manager 1445. These components may be in electronic communication via one or more buses (e.g., bus 1450) .
The communications manager 1410 may transmit, to a first device and a second device, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of the second device, receive a feedback message from the first device indicating an interference level of the sensing signal based on the sensing operations of the second device, identify, based on the feedback message, one or more parameters for the sensing operations of the second device, and transmit a configuration signal to the first device identifying the one or more parameters for the sensing operations.
The communications manager 1410 may also transmit, to a first device, a downlink resource configuration identifying resources for one or more reference signals associated with a corresponding one or more base stations, where the one or more base stations include the base station, transmit, to the first device, a reference signal of the base station according to the downlink resource configuration to identify an interference level associated with the reference signal, receive a feedback message from the first device indicating the interference level, select, based on the interference level, one or more parameters for sensing operations of the first device, and transmit a configuration signal to the first device identifying the one or more parameters for the sensing operations.
The network communications manager 1415 may manage communications with the core network (e.g., via one or more wired backhaul links) . For example, the network communications manager 1415 may manage the transfer of data communications for client devices, such as one or more UEs 115.
The transceiver 1420 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 1420 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 1420 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some cases, the wireless device may include a single antenna 1425. However, in some cases the device may have more than one antenna 1425, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 1430 may include RAM, ROM, or a combination thereof. The memory 1430 may store computer-readable code 1435 including instructions that, when  executed by a processor (e.g., the processor 1440) cause the device to perform various functions described herein. In some cases, the memory 1430 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 1440 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 1440 may be configured to operate a memory array using a memory controller. In some cases, a memory controller may be integrated into processor 1440. The processor 1440 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1430) to cause the device 1405 to perform various functions (e.g., functions or tasks supporting power and interference measurement for wireless sensing) .
The inter-station communications manager 1445 may manage communications with other base station 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communications manager 1445 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communications manager 1445 may provide an X2 interface within an LTE/LTE-A wireless communication network technology to provide communication between base stations 105.
The code 1435 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 1435 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1435 may not be directly executable by the processor 1440 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
FIG. 15 shows a flowchart illustrating a method 1500 that supports power and interference measurement for wireless sensing in accordance with aspects of the present disclosure. The operations of method 1500 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1500 may be  performed by a communications manager as described with reference to FIGs. 7 through 10. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1505, the UE may receive, from a base station, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of a second device. The operations of 1505 may be performed according to the methods described herein. In some examples, aspects of the operations of 1505 may be performed by a resource manager as described with reference to FIGs. 7 through 10.
At 1510, the UE may measure one or more metrics of the resources according to the sensing resource configuration. The operations of 1510 may be performed according to the methods described herein. In some examples, aspects of the operations of 1510 may be performed by an interference manager as described with reference to FIGs. 7 through 10.
At 1515, the UE may identify an interference level associated with the sensing signal based on the measuring. The operations of 1515 may be performed according to the methods described herein. In some examples, aspects of the operations of 1515 may be performed by an interference manager as described with reference to FIGs. 7 through 10.
At 1520, the UE may transmit a feedback message to the base station indicating the interference level. The operations of 1520 may be performed according to the methods described herein. In some examples, aspects of the operations of 1520 may be performed by a feedback manager as described with reference to FIGs. 7 through 10.
FIG. 16 shows a flowchart illustrating a method 1600 that supports power and interference measurement for wireless sensing in accordance with aspects of the present disclosure. The operations of method 1600 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1600 may be performed by a communications manager as described with reference to FIGs. 7 through 10. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1605, the UE may receive, from a base station, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of the first device. The operations of 1605 may be performed according to the methods described herein. In some examples, aspects of the operations of 1605 may be performed by a resource manager as described with reference to FIGs. 7 through 10.
At 1610, the UE may transmit the sensing signal in response to receiving the sensing resource configuration. The operations of 1610 may be performed according to the methods described herein. In some examples, aspects of the operations of 1610 may be performed by an interference manager as described with reference to FIGs. 7 through 10.
At 1615, the UE may receive, based on the sensing signal, a configuration signal from the base station identifying one or more parameters for the sensing operations. The operations of 1615 may be performed according to the methods described herein. In some examples, aspects of the operations of 1615 may be performed by a sensing parameter manager as described with reference to FIGs. 7 through 10.
At 1620, the UE may update the one or more parameters for the sensing operations based on the configuration signal. The operations of 1620 may be performed according to the methods described herein. In some examples, aspects of the operations of 1620 may be performed by a sensing parameter manager as described with reference to FIGs. 7 through 10.
FIG. 17 shows a flowchart illustrating a method 1700 that supports power and interference measurement for wireless sensing in accordance with aspects of the present disclosure. The operations of method 1700 may be implemented by a base station 105 or its components as described herein. For example, the operations of method 1700 may be performed by a communications manager as described with reference to FIGs. 11 through 14. In some examples, a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
At 1705, the base station may transmit, to a first device and a second device, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of the second device. The operations of 1705 may be performed according to the  methods described herein. In some examples, aspects of the operations of 1705 may be performed by a resource manager as described with reference to FIGs. 11 through 14.
At 1710, the base station may receive a feedback message from the first device indicating an interference level of the sensing signal based on the sensing operations of the second device. The operations of 1710 may be performed according to the methods described herein. In some examples, aspects of the operations of 1710 may be performed by a feedback manager as described with reference to FIGs. 11 through 14.
At 1715, the base station may identify, based on the feedback message, one or more parameters for the sensing operations of the second device. The operations of 1715 may be performed according to the methods described herein. In some examples, aspects of the operations of 1715 may be performed by a sensing parameter manager as described with reference to FIGs. 11 through 14.
At 1720, the base station may transmit a configuration signal to the first device identifying the one or more parameters for the sensing operations. The operations of 1720 may be performed according to the methods described herein. In some examples, aspects of the operations of 1720 may be performed by a sensing parameter manager as described with reference to FIGs. 11 through 14.
FIG. 18 shows a flowchart illustrating a method 1800 that supports power and interference measurement for wireless sensing in accordance with aspects of the present disclosure. The operations of method 1800 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1800 may be performed by a communications manager as described with reference to FIGs. 7 through 10. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1805, the UE may receive, from a base station, a downlink resource configuration identifying resources for one or more reference signals associated with a corresponding one or more base stations, where the one or more base stations include the base station. The operations of 1805 may be performed according to the methods described herein. In some examples, aspects of the operations of 1805 may be performed by a resource manager as described with reference to FIGs. 7 through 10.
At 1810, the UE may measure, based on the resources, a set of metrics of the one or more reference signals according to the downlink resource configuration to identify an interference level for each reference signal of the one or more reference signals. The operations of 1810 may be performed according to the methods described herein. In some examples, aspects of the operations of 1810 may be performed by an interference manager as described with reference to FIGs. 7 through 10.
At 1815, the UE may transmit a feedback message to the base station indicating the interference level. The operations of 1815 may be performed according to the methods described herein. In some examples, aspects of the operations of 1815 may be performed by a feedback manager as described with reference to FIGs. 7 through 10.
At 1820, the UE may update, based on the interference level, one or more parameters for sensing operations of the first device. The operations of 1820 may be performed according to the methods described herein. In some examples, aspects of the operations of 1820 may be performed by a sensing parameter manager as described with reference to FIGs. 7 through 10.
FIG. 19 shows a flowchart illustrating a method 1900 that supports power and interference measurement for wireless sensing in accordance with aspects of the present disclosure. The operations of method 1900 may be implemented by a base station 105 or its components as described herein. For example, the operations of method 1900 may be performed by a communications manager as described with reference to FIGs. 11 through 14. In some examples, a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
At 1905, the base station may transmit, to a first device, a downlink resource configuration identifying resources for one or more reference signals associated with a corresponding one or more base stations, where the one or more base stations include the base station. The operations of 1905 may be performed according to the methods described herein. In some examples, aspects of the operations of 1905 may be performed by a resource manager as described with reference to FIGs. 11 through 14.
At 1910, the base station may transmit, to the first device, a reference signal of the base station according to the downlink resource configuration to identify an interference level associated with the reference signal. The operations of 1910 may be performed according to the methods described herein. In some examples, aspects of the operations of 1910 may be performed by an interference manager as described with reference to FIGs. 11 through 14.
At 1915, the base station may receive a feedback message from the first device indicating the interference level. The operations of 1915 may be performed according to the methods described herein. In some examples, aspects of the operations of 1915 may be performed by a feedback manager as described with reference to FIGs. 11 through 14.
At 1920, the base station may select, based on the interference level, one or more parameters for sensing operations of the first device. The operations of 1920 may be performed according to the methods described herein. In some examples, aspects of the operations of 1920 may be performed by a sensing parameter manager as described with reference to FIGs. 11 through 14.
At 1925, the base station may transmit a configuration signal to the first device identifying the one or more parameters for the sensing operations. The operations of 1925 may be performed according to the methods described herein. In some examples, aspects of the operations of 1925 may be performed by a sensing parameter manager as described with reference to FIGs. 11 through 14.
It should be noted that the methods described herein describe possible implementations, and that the operations and the steps may be rearranged or otherwise modified and that other implementations are possible. Further, aspects from two or more of the methods may be combined.
Although aspects of an LTE, LTE-A, LTE-A Pro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks. For example, the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
Information and signals described herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative blocks and components described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a DSP, an ASIC, a CPU, an FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special purpose computer. By way of example, and not limitation, non-transitory computer-readable media may include random-access memory (RAM) , read-only memory (ROM) , electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic  disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium. Disk and disc, as used herein, include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
As used herein, including in the claims, “or” as used in a list of items (e.g., a list of items prefaced by a phrase such as “at least one of” or “one or more of” ) indicates an inclusive list such that, for example, a list of at least one of A, B, or C means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) . Also, as used herein, the phrase “based on” shall not be construed as a reference to a closed set of conditions. For example, an example step that is described as “based on condition A” may be based on both a condition A and a condition B without departing from the scope of the present disclosure. In other words, as used herein, the phrase “based on” shall be construed in the same manner as the phrase “based at least in part on. ”
In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label, or other subsequent reference label.
The description set forth herein, in connection with the appended drawings, describes example configurations and does not represent all the examples that may be implemented or that are within the scope of the claims. The term “example” used herein  means “serving as an example, instance, or illustration, ” and not “preferred” or “advantageous over other examples. ” The detailed description includes specific details for the purpose of providing an understanding of the described techniques. These techniques, however, may be practiced without these specific details. In some instances, known structures and devices are shown in block diagram form in order to avoid obscuring the concepts of the described examples.
The description herein is provided to enable a person having ordinary skill in the art to make or use the disclosure. Various modifications to the disclosure will be apparent to a person having ordinary skill in the art, and the generic principles defined herein may be applied to other variations without departing from the scope of the disclosure. Thus, the disclosure is not limited to the examples and designs described herein, but is to be accorded the broadest scope consistent with the principles and novel features disclosed herein.

Claims (44)

  1. A method for wireless communication at a first device, comprising:
    receiving, from a base station, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of a second device;
    measuring one or more metrics of the resources according to the sensing resource configuration;
    identifying an interference level associated with the sensing signal based at least in part on the measuring; and
    transmitting a feedback message to the base station indicating the interference level.
  2. The method of claim 1, further comprising:
    receiving a trigger signal from the base station indicating that sensing signal interference measurements are enabled for the resources, wherein measuring the one or more metrics of the resources is based at least in part on the trigger signal.
  3. The method of claim 1, further comprising:
    updating one or more parameters for sensing operations of the first device based at least in part on the interference level.
  4. The method of claim 1, wherein the resources comprise at least one of a time resource, a frequency resource, a spatial resource, a code resource, or a combination thereof.
  5. A method for wireless communication at a first device, comprising:
    receiving, from a base station, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of the first device;
    transmitting the sensing signal in response to receiving the sensing resource configuration;
    receiving, based at least in part on the sensing signal, a configuration signal from the base station identifying one or more parameters for the sensing operations; and
    updating the one or more parameters for the sensing operations based at least in part on the configuration signal.
  6. The method of claim 5, wherein the resources comprise at least one of a time resource, a frequency resource, a spatial resource, a code resource, or a combination thereof.
  7. A method for wireless communication at a base station, comprising:
    transmitting, to a first device and a second device, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of the second device;
    receiving a feedback message from the first device indicating an interference level of the sensing signal based at least in part on the sensing operations of the second device;
    identifying, based at least in part on the feedback message, one or more parameters for the sensing operations of the second device; and
    transmitting a configuration signal to the first device identifying the one or more parameters for the sensing operations.
  8. The method of claim 7, further comprising:
    identifying, based at least in part on the feedback message, a set of parameters for sensing operations of the first device; and
    transmitting an additional configuration signal to the first device identifying the set of parameters.
  9. The method of claim 7, wherein the resources comprise at least one of a time resource, a frequency resource, a spatial resource, a code resource, or a combination thereof.
  10. A method for wireless communication at a first device, comprising:
    receiving, from a base station, a downlink resource configuration identifying resources for one or more reference signals associated with a corresponding one or more base stations, wherein the one or more base stations comprise the base station;
    measuring, based at least in part on the resources, a set of metrics of the one or more reference signals according to the downlink resource configuration to identify an interference level for each reference signal of the one or more reference signals;
    transmitting a feedback message to the base station indicating the interference level; and
    updating, based at least in part on the interference level, one or more parameters for sensing operations of the first device.
  11. The method of claim 10, further comprising:
    receiving, based at least in part on the feedback message, a configuration signal from the base station identifying the one or more parameters for the sensing operations of the first device, wherein the updating is based at least in part on the configuration signal.
  12. The method of claim 10, wherein the updating further comprises:
    autonomously updating the one or more parameters for sensing operations of the first device based at least in part on the interference level.
  13. The method of claim 10, wherein the resources comprise at least one of a time resource, a frequency resource, a spatial resource, a code resource, or a combination thereof.
  14. A method for wireless communication at a base station, comprising:
    transmitting, to a first device, a downlink resource configuration identifying resources for one or more reference signals associated with a corresponding one or more base stations, wherein the one or more base stations comprise the base station;
    transmitting, to the first device, a reference signal of the base station according to the downlink resource configuration to identify an interference level associated with the reference signal;
    receiving a feedback message from the first device indicating the interference level;
    selecting, based at least in part on the interference level, one or more parameters for sensing operations of the first device; and
    transmitting a configuration signal to the first device identifying the one or more parameters for the sensing operations.
  15. The method of claim 14, further comprising:
    receiving an indication of an identifier and resource for at least one other base station of the one or more base stations; and
    transmitting an indication of the identifier and resource for the at least one other base station in the downlink resource configuration.
  16. The method of claim 15, further comprises:
    identifying, based at least in part on the feedback message an additional interference level associated with the at least one other base station, wherein the one or more parameters for sensing operations of the first device are further based on the additional interference level.
  17. The method of claim 14, wherein the resources comprise at least one of a time resource, a frequency resource, a spatial resource, a code resource, or a combination thereof.
  18. An apparatus for wireless communication at a first device, comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    receive, from a base station, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of a second device;
    measure one or more metrics of the resources according to the sensing resource configuration;
    identify an interference level associated with the sensing signal based at least in part on the measuring; and
    transmit a feedback message to the base station indicating the interference level.
  19. The apparatus of claim 18, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive a trigger signal from the base station indicating that sensing signal interference measurements are enabled for the resources, wherein measuring the one or more metrics of the resources is based at least in part on the trigger signal.
  20. The apparatus of claim 18, wherein the instructions are further executable by the processor to cause the apparatus to:
    update one or more parameters for sensing operations of the first device based at least in part on the interference level.
  21. The apparatus of claim 18, wherein the resources comprise at least one of a time resource, a frequency resource, a spatial resource, a code resource, or a combination thereof.
  22. An apparatus for wireless communication at a first device, comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    receive, from a base station, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of the first device;
    transmit the sensing signal in response to receiving the sensing resource configuration;
    receive, based at least in part on the sensing signal, a configuration signal from the base station identifying one or more parameters for the sensing operations; and
    update the one or more parameters for the sensing operations based at least in part on the configuration signal.
  23. The apparatus of claim 22, wherein the resources comprise at least one of a time resource, a frequency resource, a spatial resource, a code resource, or a combination thereof.
  24. An apparatus for wireless communication at a base station, comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    transmit, to a first device and a second device, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of the second device;
    receive a feedback message from the first device indicating an interference level of the sensing signal based at least in part on the sensing operations of the second device;
    identify, based at least in part on the feedback message, one or more parameters for the sensing operations of the second device; and
    transmit a configuration signal to the first device identifying the one or more parameters for the sensing operations.
  25. The apparatus of claim 24, wherein the instructions are further executable by the processor to cause the apparatus to:
    identify, based at least in part on the feedback message, a set of parameters for sensing operations of the first device; and
    transmit an additional configuration signal to the first device identifying the set of parameters.
  26. The apparatus of claim 24, wherein the resources comprise at least one of a time resource, a frequency resource, a spatial resource, a code resource, or a combination thereof.
  27. An apparatus for wireless communication at a first device, comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    receive, from a base station, a downlink resource configuration identifying resources for one or more reference signals associated with a corresponding one or more base stations, wherein the one or more base stations comprise the base station;
    measure, based at least in part on the resources, a set of metrics of the one or more reference signals according to the downlink resource configuration to identify an interference level for each reference signal of the one or more reference signals;
    transmit a feedback message to the base station indicating the interference level; and
    update, based at least in part on the interference level, one or more parameters for sensing operations of the first device.
  28. The apparatus of claim 27, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive, based at least in part on the feedback message, a configuration signal from the base station identifying the one or more parameters for the sensing operations of the first device, wherein the updating is based at least in part on the configuration signal.
  29. The apparatus of claim 27, wherein the updating further comprises:
    autonomously update the one or more parameters for sensing operations of the first device based at least in part on the interference level.
  30. The apparatus of claim 27, wherein the resources comprise at least one of a time resource, a frequency resource, a spatial resource, a code resource, or a combination thereof.
  31. An apparatus for wireless communication at a base station, comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    transmit, to a first device, a downlink resource configuration identifying resources for one or more reference signals associated with a corresponding one or more base stations, wherein the one or more base stations comprise the base station;
    transmit, to the first device, a reference signal of the base station according to the downlink resource configuration to identify an interference level associated with the reference signal;
    receive a feedback message from the first device indicating the interference level;
    select, based at least in part on the interference level, one or more parameters for sensing operations of the first device; and
    transmit a configuration signal to the first device identifying the one or more parameters for the sensing operations.
  32. The apparatus of claim 31, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive an indication of an identifier and resource for at least one other base station of the one or more base stations; and
    transmit an indication of the identifier and resource for the at least one other base station in the downlink resource configuration.
  33. The apparatus of claim 31, wherein the instructions are further executable by the processor to cause the apparatus to:
    identify, based at least in part on the feedback message an additional interference level associated with the at least one other base station, wherein the one or more parameters for sensing operations of the first device are further based on the additional interference level
  34. The apparatus of claim 31, wherein the resources comprise at least one of a time resource, a frequency resource, a spatial resource, a code resource, or a combination thereof.
  35. An apparatus for wireless communication at a first device, comprising:
    means for receiving, from a base station, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of a second device;
    means for measuring one or more metrics of the resources according to the sensing resource configuration;
    means for identifying an interference level associated with the sensing signal based at least in part on the measuring; and
    means for transmitting a feedback message to the base station indicating the interference level.
  36. An apparatus for wireless communication at a first device, comprising:
    means for receiving, from a base station, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of the first device;
    means for transmitting the sensing signal in response to receiving the sensing resource configuration;
    means for receiving, based at least in part on the sensing signal, a configuration signal from the base station identifying one or more parameters for the sensing operations; and
    means for updating the one or more parameters for the sensing operations based at least in part on the configuration signal.
  37. An apparatus for wireless communication at a base station, comprising:
    means for transmitting, to a first device and a second device, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of the second device;
    means for receiving a feedback message from the first device indicating an interference level of the sensing signal based at least in part on the sensing operations of the second device;
    means for identifying, based at least in part on the feedback message, one or more parameters for the sensing operations of the second device; and
    means for transmitting a configuration signal to the first device identifying the one or more parameters for the sensing operations.
  38. An apparatus for wireless communication at a first device, comprising:
    means for receiving, from a base station, a downlink resource configuration identifying resources for one or more reference signals associated with a corresponding one or more base stations, wherein the one or more base stations comprise the base station;
    means for measuring, based at least in part on the resources, a set of metrics of the one or more reference signals according to the downlink resource configuration to identify an interference level for each reference signal of the one or more reference signals;
    means for transmitting a feedback message to the base station indicating the interference level; and
    means for updating, based at least in part on the interference level, one or more parameters for sensing operations of the first device.
  39. An apparatus for wireless communication at a base station, comprising:
    means for transmitting, to a first device, a downlink resource configuration identifying resources for one or more reference signals associated with a corresponding one or more base stations, wherein the one or more base stations comprise the base station;
    means for transmitting, to the first device, a reference signal of the base station according to the downlink resource configuration to identify an interference level associated with the reference signal;
    means for receiving a feedback message from the first device indicating the interference level;
    means for selecting, based at least in part on the interference level, one or more parameters for sensing operations of the first device; and
    means for transmitting a configuration signal to the first device identifying the one or more parameters for the sensing operations.
  40. A non-transitory computer-readable medium storing code for wireless communication at a first device, the code comprising instructions executable by a processor to:
    receive, from a base station, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of a second device;
    measure one or more metrics of the resources according to the sensing resource configuration;
    identify an interference level associated with the sensing signal based at least in part on the measuring; and
    transmit a feedback message to the base station indicating the interference level.
  41. A non-transitory computer-readable medium storing code for wireless communication at a first device, the code comprising instructions executable by a processor to:
    receive, from a base station, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of the first device;
    transmit the sensing signal in response to receiving the sensing resource configuration;
    receive, based at least in part on the sensing signal, a configuration signal from the base station identifying one or more parameters for the sensing operations; and
    update the one or more parameters for the sensing operations based at least in part on the configuration signal.
  42. A non-transitory computer-readable medium storing code for wireless communication at a base station, the code comprising instructions executable by a processor to:
    transmit, to a first device and a second device, a sensing resource configuration identifying resources for a sensing signal used for sensing operations of the second device;
    receive a feedback message from the first device indicating an interference level of the sensing signal based at least in part on the sensing operations of the second device;
    identify, based at least in part on the feedback message, one or more parameters for the sensing operations of the second device; and
    transmit a configuration signal to the first device identifying the one or more parameters for the sensing operations.
  43. A non-transitory computer-readable medium storing code for wireless communication at a first device, the code comprising instructions executable by a processor to:
    receive, from a base station, a downlink resource configuration identifying resources for one or more reference signals associated with a corresponding one or more base stations, wherein the one or more base stations comprise the base station;
    measure, based at least in part on the resources, a set of metrics of the one or more reference signals according to the downlink resource configuration to identify an interference level for each reference signal of the one or more reference signals;
    transmit a feedback message to the base station indicating the interference level; and
    update, based at least in part on the interference level, one or more parameters for sensing operations of the first device.
  44. A non-transitory computer-readable medium storing code for wireless communication at a base station, the code comprising instructions executable by a processor to:
    transmit, to a first device, a downlink resource configuration identifying resources for one or more reference signals associated with a corresponding one or more base stations, wherein the one or more base stations comprise the base station;
    transmit, to the first device, a reference signal of the base station according to the downlink resource configuration to identify an interference level associated with the reference signal;
    receive a feedback message from the first device indicating the interference level;
    select, based at least in part on the interference level, one or more parameters for sensing operations of the first device; and
    transmit a configuration signal to the first device identifying the one or more parameters for the sensing operations.
PCT/CN2020/095057 2020-06-09 2020-06-09 Power and interference measurement for wireless sensing WO2021248298A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/095057 WO2021248298A1 (en) 2020-06-09 2020-06-09 Power and interference measurement for wireless sensing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/095057 WO2021248298A1 (en) 2020-06-09 2020-06-09 Power and interference measurement for wireless sensing

Publications (1)

Publication Number Publication Date
WO2021248298A1 true WO2021248298A1 (en) 2021-12-16

Family

ID=78846655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/095057 WO2021248298A1 (en) 2020-06-09 2020-06-09 Power and interference measurement for wireless sensing

Country Status (1)

Country Link
WO (1) WO2021248298A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023115493A1 (en) * 2021-12-23 2023-06-29 Huawei Technologies Co.,Ltd. Triggering sensing in a wireless communication system
WO2023164850A1 (en) * 2022-03-02 2023-09-07 北京小米移动软件有限公司 Power determination method/apparatus/user equipment/network side device and storage medium
WO2023236005A1 (en) * 2022-06-06 2023-12-14 Qualcomm Incorporated Target path based beam measurement and report

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103797837A (en) * 2013-11-18 2014-05-14 华为技术有限公司 Method, base station, and user equipment for improving channel measuring accuracy
WO2017054618A1 (en) * 2015-09-28 2017-04-06 中国移动通信集团公司 Interference processing method, base station and network equipment
CN107370559A (en) * 2016-05-13 2017-11-21 中兴通讯股份有限公司 The feedback method and device of channel condition information
CN109327847A (en) * 2017-08-01 2019-02-12 夏普株式会社 Base station, user equipment and correlation technique
CN111132219A (en) * 2012-11-14 2020-05-08 华为技术有限公司 System and method for adaptation and reconfiguration in wireless networks

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111132219A (en) * 2012-11-14 2020-05-08 华为技术有限公司 System and method for adaptation and reconfiguration in wireless networks
CN103797837A (en) * 2013-11-18 2014-05-14 华为技术有限公司 Method, base station, and user equipment for improving channel measuring accuracy
WO2017054618A1 (en) * 2015-09-28 2017-04-06 中国移动通信集团公司 Interference processing method, base station and network equipment
CN107370559A (en) * 2016-05-13 2017-11-21 中兴通讯股份有限公司 The feedback method and device of channel condition information
CN109327847A (en) * 2017-08-01 2019-02-12 夏普株式会社 Base station, user equipment and correlation technique

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE, ZTE MICROELECTRONICS: "Overview of Duplexing and Cross-link Interference Mitigation", 3GPP DRAFT; R1-1700269 - OVERVIEW OF DUPLEX AND INTERFER MANGT, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Spokane, Wa; 20170116 - 20170120, 16 January 2017 (2017-01-16), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051207807 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023115493A1 (en) * 2021-12-23 2023-06-29 Huawei Technologies Co.,Ltd. Triggering sensing in a wireless communication system
WO2023164850A1 (en) * 2022-03-02 2023-09-07 北京小米移动软件有限公司 Power determination method/apparatus/user equipment/network side device and storage medium
WO2023236005A1 (en) * 2022-06-06 2023-12-14 Qualcomm Incorporated Target path based beam measurement and report

Similar Documents

Publication Publication Date Title
US20210194556A1 (en) Aperiodic channel state information physical uplink shared channel repetition with demodulation reference signal bundling
WO2021168645A1 (en) Beam switching techniques for uplink transmission
WO2022032567A1 (en) Methods for measuring and reporting doppler shift
US11616560B2 (en) Measurement reporting for full-duplex multi-beam communications
US11825440B2 (en) Vehicular and cellular wireless device colocation using uplink communications
WO2021248298A1 (en) Power and interference measurement for wireless sensing
WO2022032522A1 (en) Handling of cross link interference collisions with reference signal measurements
US20210067997A1 (en) Sounding reference signal channel measurement for sidelink communication
US20220038249A1 (en) Techniques for declaring default operating frequencies
US11800581B2 (en) Techniques for sidelink assisted device association
US11832226B2 (en) Indicating slot format indices used across multiple user equipments
WO2021226956A1 (en) Monitoring for downlink repetitions
WO2021046666A1 (en) Uplink transmission timing patterns
US11923946B2 (en) Beam measurement reporting on sidelink channel
US20220070708A1 (en) Techniques to enhance beam reporting for non-communication signals
US11671940B2 (en) Sidelink communication during a downlink slot
WO2021248447A1 (en) Wireless sensing indication through slot format indication
WO2021258242A1 (en) Support of flexible sounding reference signal switching capability
WO2021151230A1 (en) Sounding reference signal configuration
US11882472B2 (en) Differential reporting for full-duplex multi-beam communications
US11683351B2 (en) Protection level indication and configuration
US11576201B2 (en) Candidate uplink grants for channel access
WO2022213298A1 (en) Signaling of sounding reference signal grouping
WO2021217507A1 (en) Techniques for configuring power spectral density for wireless systems
US20230147146A1 (en) Reference signal for cross-link interference measurement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20939783

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20939783

Country of ref document: EP

Kind code of ref document: A1