WO2021253456A1 - Duration alignment for physical shared channel repetitions in multi-panel transmissions - Google Patents

Duration alignment for physical shared channel repetitions in multi-panel transmissions Download PDF

Info

Publication number
WO2021253456A1
WO2021253456A1 PCT/CN2020/097272 CN2020097272W WO2021253456A1 WO 2021253456 A1 WO2021253456 A1 WO 2021253456A1 CN 2020097272 W CN2020097272 W CN 2020097272W WO 2021253456 A1 WO2021253456 A1 WO 2021253456A1
Authority
WO
WIPO (PCT)
Prior art keywords
shared channel
physical uplink
uplink shared
reference signal
channel transmission
Prior art date
Application number
PCT/CN2020/097272
Other languages
French (fr)
Inventor
Fang Yuan
Mostafa KHOSHNEVISAN
Wooseok Nam
Tao Luo
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/097272 priority Critical patent/WO2021253456A1/en
Publication of WO2021253456A1 publication Critical patent/WO2021253456A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the following relates to wireless communications and more specifically to duration alignment for physical shared channel repetitions in multi-panel transmissions.
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (for example, time, frequency, and power) .
  • Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems.
  • 4G systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems
  • 5G systems which may be referred to as New Radio (NR) systems.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • DFT-S-OFDM discrete Fourier transform spread orthogonal frequency division multiplexing
  • a wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
  • Some communication devices may support multiple antennas to provide transmit diversity and receive diversity, or to enable multiple-input multiple-output (MIMO) transmissions or beamforming. These antennas may be located within one or more antenna arrays or antenna panels.
  • MIMO multiple-input multiple-output
  • two or more downlink transmissions between communication devices may overlap in a time domain or a frequency domain, or both, or two or more uplink transmissions between the communication devices may overlap in the time domain or the frequency domain, or both.
  • These communication devices may experience interference between the respective downlink transmissions, or interference between the respective uplink transmissions due to the overlap of the respective downlink transmissions or the respective uplink transmissions.
  • a wireless communication device such as a base station or a UE may support multi-panel transmissions.
  • each of the base station or the UE may include multiple antenna arrays or panels each including multiple antennas that may be configured to provide transmit diversity and receive diversity or to enable multiple-input multiple-output (MIMO) transmissions or beamforming.
  • MIMO multiple-input multiple-output
  • the base station may schedule or configure the UE for multiple (two or more) uplink transmissions in which each respective uplink transmission is associated with a different antenna array or panel of the UE.
  • the base station may configure the UE with multiple sets of uplink data channel occasions (for example, physical uplink shared channel (PUSCH) occasions) , each for a different respective uplink transmission.
  • uplink data channel occasions for example, physical uplink shared channel (PUSCH) occasions
  • multiple uplink transmissions associated with the uplink data channel occasions may overlap in a time domain or a frequency domain, or both. The overlap may result in interference between the multiple uplink transmissions.
  • the UE may align the multiple uplink transmissions in the time domain or the frequency domain, or both. The UE may then transmit each aligned uplink transmission using a respective antenna panel of the UE.
  • the described techniques may, as a result, include features for improvements to UE operations and, in some examples, may promote high reliability and increased data rates, among other benefits.
  • the method includes receiving a set of downlink control information (DCI) messages, wherein a first DCI message of the set schedules a first set of PUSCH occasions and a second DCI message of the set schedules a second set of PUSCH occasions, determining an overlap, in a time domain or a frequency domain, or both, between a first PUSCH transmission associated with the first set of PUSCH occasions and a second PUSCH transmission associated with the second set of PUSCH occasions, aligning the first PUSCH transmission with the second PUSCH transmission based at least in part on the overlap in the time domain or the frequency domain, or both, and transmitting, based at least in part on the aligning, the first PUSCH transmission using a first antenna panel of the UE and the second PUSCH transmission using a second antenna panel of the UE.
  • DCI downlink control information
  • the method includes aligning the first PUSCH transmission and the second PUSCH transmission based at least in part on aligning one or more demodulation reference signals (DMRSs) associated with the first PUSCH transmission with one or more DMRSs associated with the second PUSCH transmission in the time domain or the frequency domain, or both.
  • DMRSs demodulation reference signals
  • the apparatus includes a processor, memory coupled with the processor, and instructions stored in the memory and executable by the processor to cause the apparatus to receive a set of DCI messages, wherein a first DCI message of the set schedules a first set of PUSCH occasions and a second DCI message of the set schedules a second set of PUSCH occasions, determine an overlap, in a time domain or a frequency domain, or both, between a first PUSCH transmission associated with the first set of PUSCH occasions and a second PUSCH transmission associated with the second set of PUSCH occasions, align the first PUSCH transmission with the second PUSCH transmission based at least in part on the overlap in the time domain or the frequency domain, or both, and transmit, based at least in part on the aligning, the first PUSCH transmission using a first antenna panel of the UE and the second PUSCH transmission using a second antenna panel of the UE.
  • the processor may cause the apparatus to align the first PUSCH transmission and the second PUSCH transmission based at least in part on aligning one or more DMRSs associated with the first PUSCH transmission with one or more DMRSs associated with the second PUSCH transmission in the time domain or the frequency domain, or both.
  • the method includes transmitting, to a UE, a set of DCI messages, wherein a first DCI message of the set schedules a first set of PUSCH occasions and a second DCI message of the set schedules a second set of PUSCH occasions, and receiving a first PUSCH transmission associated with the first set of PUSCH occasions and a second PUSCH transmission associated with the second set of PUSCH occasions, wherein the first PUSCH transmission and the second PUSCH transmission are aligned based at least in part on an overlap, in a time domain or a frequency domain, or both, between the first PUSCH transmission and the second PUSCH transmission.
  • the first PUSCH transmission and the second PUSCH transmission are aligned based at least in part on one or more DMRSs associated with the first PUSCH transmission aligning with one or more DMRSs associated with the second PUSCH transmission in the time domain or the frequency domain, or both.
  • the apparatus includes a processor, memory coupled with the processor, and instructions stored in the memory and executable by the processor to cause the apparatus to transmit, to a UE, a set of DCI messages, wherein a first DCI message of the set schedules a first set of PUSCH occasions and a second DCI message of the set schedules a second set of PUSCH occasions, and receive a first PUSCH transmission associated with the first set of PUSCH occasions and a second PUSCH transmission associated with the second set of PUSCH occasions, wherein the first PUSCH transmission and the second PUSCH transmission are aligned based at least in part on an overlap, in a time domain or a frequency domain, or both, between the first PUSCH transmission and the second PUSCH transmission.
  • the first PUSCH transmission and the second PUSCH transmission are aligned based at least in part on one or more DMRSs of the first PUSCH transmission aligning with one or more DMRSs of the second PUSCH transmission in the time domain or the frequency domain, or both.
  • FIGS 1 and 2 illustrate examples of wireless communications systems that support duration alignment for physical shared channel repetitions in multi-panel transmissions in accordance with aspects of the present disclosure.
  • Figures 3A–3C illustrate examples of transmission schemes that support duration alignment for physical shared channel repetitions in multi-panel transmissions in accordance with aspects of the present disclosure.
  • Figure 4 illustrates an example of a process flow that supports duration alignment for physical shared channel repetitions in multi-panel transmissions in accordance with aspects of the present disclosure.
  • FIGS 5 and 6 show block diagrams of devices that support duration alignment for physical shared channel repetitions in multi-panel transmissions in accordance with aspects of the present disclosure.
  • Figure 7 shows a block diagram of a user equipment (UE) communications manager that supports duration alignment for physical shared channel repetitions in multi-panel transmissions in accordance with aspects of the present disclosure.
  • UE user equipment
  • Figure 8 shows a diagram of a system including a device that supports duration alignment for physical shared channel repetitions in multi-panel transmissions in accordance with aspects of the present disclosure.
  • Figures 9 and 10 show block diagrams of devices that support duration alignment for physical shared channel repetitions in multi-panel transmissions in accordance with aspects of the present disclosure.
  • Figure 11 shows a block diagram of a base station communications manager that supports duration alignment for physical shared channel repetitions in multi-panel transmissions in accordance with aspects of the present disclosure.
  • Figure 12 shows a diagram of a system including a device that supports duration alignment for physical shared channel repetitions in multi-panel transmissions in accordance with aspects of the present disclosure.
  • Figures 13–16 show flowcharts illustrating methods that support duration alignment for physical shared channel repetitions in multi-panel transmissions in accordance with aspects of the present disclosure.
  • Some wireless communications systems include wireless communication devices, such as user equipments (UEs) and base stations (for example, next-generation NodeBs or giga-NodeBs (either of which may be referred to as a gNB) ) , that support one or more radio access technologies, such as fifth generation (5G) systems (which may be referred to as New Radio (NR) systems) , among others.
  • the communication devices may wirelessly communicate with each other over physical channels including a physical control channel and a physical data channel. Examples of physical control channels may include, for downlink transmissions, a physical downlink control channel (PDCCH) , and, for uplink transmissions, a physical uplink control channel (PUCCH) , among others.
  • PDCH physical downlink control channel
  • PUCCH physical uplink control channel
  • Examples of physical data channels may include, for downlink transmissions, a physical downlink shared channel (PDSCH) , and, for uplink transmissions, a physical uplink shared channel (PUSCH) , among others.
  • Each of the communication devices may also be configured with multiple antennas to provide transmit diversity or receive diversity, or to enable multiple-input multiple-out (MIMO) transmissions or beamforming.
  • the multiple antennas may be positioned or arranged within multiple antenna arrays or antenna panels. Wireless communications between the communication devices using multiple antenna panels may be referred to as multi-panel transmissions.
  • resources of the individual transmissions within a multi-panel transmission may overlap in a time domain or a frequency domain, or both, which may result in interference between the individual transmissions of the multi-panel transmission.
  • the base station may configure a multi-panel UE for multiple uplink transmissions, from multiple respective panels of the UE, that share time or frequency resources leading to interference between the uplink transmissions.
  • a communications device may receive or transmit downlink or uplink transmissions over multiple downlink or uplink occasions, respectively.
  • a downlink or uplink occasion may be referred to as a transmission occasion.
  • a transmission occasion may include various frequency resources (for example, carriers or subcarriers) and time resources (for example, symbols, minislots, slots, subframes, or frames) .
  • at least two downlink or uplink transmissions associated with at least two transmission occasions may occupy some of the same time resources or frequency resources, or both. That is, resources for at least two respective downlink transmissions may overlap in a time domain or a frequency domain, or both, or resources for at least two respective uplink transmissions may overlap in the time domain or the frequency domain, or both. The overlap may cause interference between the respective downlink transmissions, or between the respective uplink transmissions thereby degrading downlink or uplink transmission performance and reliability.
  • the communication devices may, for example, align overlapping downlink or uplink transmissions associated with different antenna panels of a multi-panel communication device.
  • a base station may transmit to a UE one or more messages scheduling a first set of transmission occasions for a first uplink transmission and a second set of transmission occasions for a second uplink transmission.
  • the UE may determine that the first uplink transmission associated with the first set of transmission occasions overlaps in time or frequency with the second uplink transmission associated with the second set of transmission occasions. Based on the determination, the UE may align the first uplink transmission with the second uplink transmission.
  • the UE may align one or more demodulation reference signals (DMRSs) associated with the first uplink transmission with one or more DMRSs associated with the second uplink transmission in a time domain or a frequency domain, or both.
  • the UE may then transmit the first uplink transmission using a first antenna panel of the UE and may concurrently transmit the second uplink transmission using a second antenna panel of the UE.
  • the base station may align a first downlink transmission that overlaps with a second downlink transmission in a time domain or a frequency domain, or both.
  • the base station may align one or more DMRSs associated with the first downlink transmission with one or more DMRSs associated with the second downlink transmission in the time domain or the frequency domain, or both
  • the operations performed by the described communication devices to align overlapping downlink or uplink transmissions may improve channel estimation by reducing or eliminating interference caused by the overlap.
  • operations performed by the described communication devices may support improvements to power consumption, reliability for uplink communications, spectral efficiency, higher data rates and, in some examples, low latency for uplink communications, among other benefits.
  • aspects of the disclosure are initially described in the context of wireless communications systems. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to duration alignment for physical shared channel repetitions in multi-panel transmissions.
  • FIG. 1 illustrates an example of a wireless communications system 100 that supports duration alignment for physical shared channel repetitions in multi-panel transmissions in accordance with aspects of the present disclosure.
  • the wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130.
  • the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-A Pro LTE-A Pro
  • NR New Radio
  • the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (for example, mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
  • ultra-reliable for example, mission critical
  • the base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities.
  • the base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125.
  • Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125.
  • the coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
  • the UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times.
  • the UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in Figure 1.
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (for example, core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in Figure 1.
  • network equipment for example, core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment
  • the base stations 105 may communicate with the core network 130, or with one another, or both.
  • the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (for example, via an S1, N2, N3, or other interface) .
  • the base stations 105 may communicate with one another over the backhaul links 120 (for example, via an X2, Xn, or other interface) either directly (for example, directly between base stations 105) , or indirectly (for example, via core network 130) , or both.
  • the backhaul links 120 may be or include one or more wireless links.
  • One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
  • a base transceiver station a radio base station
  • an access point a radio transceiver
  • a NodeB an eNodeB (eNB)
  • eNB eNodeB
  • a next-generation NodeB or a giga-NodeB either of which may be referred to as a gNB
  • gNB giga-NodeB
  • a UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, in which the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples.
  • a UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer.
  • PDA personal digital assistant
  • a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in Figure 1.
  • the UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers.
  • the term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125.
  • a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (for example, a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (for example, LTE, LTE-A, LTE-A Pro, NR) .
  • Each physical layer channel may carry acquisition signaling (for example, synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling.
  • the wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation.
  • a UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration.
  • Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
  • FDD frequency division duplexing
  • TDD time division duplexing
  • a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers.
  • a carrier may be associated with a frequency channel (for example, an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) and may be positioned according to a channel raster for discovery by the UEs 115.
  • E-UTRA evolved universal mobile telecommunication system terrestrial radio access
  • a carrier may be operated in a standalone mode in which initial acquisition and connection may be conducted by the UEs 115 via the carrier, or the carrier may be operated in a non-standalone mode in which a connection is anchored using a different carrier (for example, of the same or a different radio access technology) .
  • the communication links 125 shown in the wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115.
  • Carriers may carry downlink or uplink communications (for example, in an FDD mode) or may be configured to carry downlink and uplink communications (for example, in a TDD mode) .
  • a carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100.
  • the carrier bandwidth may be one of a number of determined bandwidths for carriers of a particular radio access technology (for example, 1.4, 3, 5, 10, 15, 20, 40, or 80 megahertz (MHz) ) .
  • Devices of the wireless communications system 100 may have hardware configurations that support communications over a particular carrier bandwidth or may be configurable to support communications over one of a set of carrier bandwidths.
  • the wireless communications system 100 may include base stations 105 or UEs 115 that support simultaneous communications via carriers associated with multiple carrier bandwidths.
  • each served UE 115 may be configured for operating over portions (for example, a sub-band, a BWP) or all of a carrier bandwidth.
  • Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (for example, using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) .
  • MCM multi-carrier modulation
  • OFDM orthogonal frequency division multiplexing
  • DFT-S-OFDM discrete Fourier transform spread OFDM
  • a resource element may consist of one symbol duration (for example, a duration of one modulation symbol) and one subcarrier, in which the symbol duration and subcarrier spacing are inversely related.
  • the number of bits carried by each resource element may depend on the modulation scheme (for example, the order of the modulation scheme, the coding rate of the modulation scheme, or both) .
  • a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (for example, spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
  • One or more numerologies for a carrier may be supported, in which a numerology may include a subcarrier spacing ( ⁇ f) and a cyclic prefix.
  • a carrier may be divided into one or more BWPs having the same or different numerologies.
  • a UE 115 may be configured with multiple BWPs.
  • a single BWP for a carrier may be active at a given time and communications for the UE 115 may be restricted to one or more active BWPs.
  • Time intervals of a communications resource may be organized according to radio frames each having a specified duration (for example, 10 milliseconds (ms) ) .
  • Each radio frame may be identified by a system frame number (SFN) (for example, ranging from 0 to 1023) .
  • SFN system frame number
  • Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration.
  • a frame may be divided (for example, in the time domain) into subframes, and each subframe may be further divided into a number of slots.
  • each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing.
  • Each slot may include a number of symbol durations (for example, depending on the length of the cyclic prefix prepended to each symbol duration) .
  • a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol duration may contain one or more (for example, N f ) sampling durations.
  • the duration of a symbol duration may depend on the subcarrier spacing or frequency band of operation.
  • a subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (for example, in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) .
  • TTI duration (for example, the number of symbol durations in a TTI) may be variable.
  • the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (for example, in bursts of shortened TTIs (sTTIs) ) .
  • Physical channels may be multiplexed on a carrier according to various techniques.
  • a physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques.
  • a control region for example, a control resource set (CORESET)
  • CORESET control resource set
  • a control region for example, a control resource set (CORESET) for a physical control channel may be defined by a number of symbol durations and may extend across the system bandwidth or a subset of the system bandwidth of the carrier.
  • One or more control regions (for example, CORESETs) may be configured for a set of the UEs 115.
  • one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner.
  • An aggregation level for a control channel candidate may refer to a number of control channel resources (for example, control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size.
  • Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
  • Each base station 105 may provide communication coverage via one or more cells, for example a macro cell, a small cell, a hot spot, or other types of cells, or any combination thereof.
  • the term “cell” may refer to a logical communication entity used for communication with a base station 105 (for example, over a carrier) and may be associated with an identifier for distinguishing neighboring cells (for example, a physical cell identifier (PCID) , a virtual cell identifier (VCID) , or others) .
  • a cell may also refer to a geographic coverage area 110 or a portion of a geographic coverage area 110 (for example, a sector) over which the logical communication entity operates.
  • Such cells may range from smaller areas (for example, a structure, a subset of structure) to larger areas depending on various factors such as the capabilities of the base station 105.
  • a cell may be or include a building, a subset of a building, or exterior spaces between or overlapping with geographic coverage areas 110, among other examples.
  • a macro cell covers a relatively large geographic area (for example, several kilometers in radius) and may allow unrestricted access by the UEs 115 with service subscriptions with the network provider supporting the macro cell.
  • a small cell may be associated with a lower-powered base station 105, as compared with a macro cell, and a small cell may operate in the same or different (for example, licensed, unlicensed) frequency bands as macro cells. Small cells may provide unrestricted access to the UEs 115 with service subscriptions with the network provider or may provide restricted access to the UEs 115 having an association with the small cell (for example, the UEs 115 in a closed subscriber group (CSG) , the UEs 115 associated with users in a home or office) .
  • CSG closed subscriber group
  • a base station 105 may support one or multiple cells and may also support communications over the one or more cells using one or multiple component carriers.
  • a carrier may support multiple cells, and different cells may be configured according to different protocol types (for example, MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) ) that may provide access for different types of devices.
  • MTC mobile transmission control
  • NB-IoT narrowband IoT
  • eMBB enhanced mobile broadband
  • a base station 105 may be movable and provide communication coverage for a moving geographic coverage area 110.
  • different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105.
  • the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105.
  • the wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
  • the wireless communications system 100 may support synchronous or asynchronous operation.
  • the base stations 105 may have similar frame timings, and transmissions from different base stations 105 may be approximately aligned in time.
  • the base stations 105 may have different frame timings, and transmissions from different base stations 105 may, in some examples, not be aligned in time.
  • the techniques described herein may be used for either synchronous or asynchronous operations.
  • Some UEs 115 may be low cost or low complexity devices and may provide for automated communication between machines (for example, via Machine-to-Machine (M2M) communication) .
  • M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention.
  • M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay such information to a central server or application program that makes use of the information or presents the information to humans interacting with the application program.
  • Some UEs 115 may be designed to collect information or enable automated behavior of machines or other devices. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
  • Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (for example, a mode that supports one-way communication via transmission or reception, but not transmission and reception simultaneously) .
  • half-duplex communications may be performed at a reduced peak rate.
  • Other power conservation techniques for the UEs 115 include entering a power saving deep sleep mode if not engaging in active communications, operating over a limited bandwidth (for example, according to narrowband communications) , or a combination of these techniques.
  • some UEs 115 may be configured for operation using a narrowband protocol type that is associated with a defined portion or range (for example, set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
  • a narrowband protocol type that is associated with a defined portion or range (for example, set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
  • the wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof.
  • the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications.
  • the UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (for example, mission critical functions) .
  • Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) .
  • MCPTT mission critical push-to-talk
  • MCVideo mission critical video
  • MCData mission critical data
  • Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications.
  • the terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
  • a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (for example, using a peer-to-peer (P2P) or D2D protocol) .
  • D2D device-to-device
  • P2P peer-to-peer
  • One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105.
  • Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105.
  • groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group.
  • a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
  • the D2D communication link 135 may be an example of a communication channel, such as a sidelink communication channel, between vehicles (for example, UEs 115) .
  • vehicles may communicate using vehicle-to-everything (V2X) communications, vehicle-to-vehicle (V2V) communications, or some combination of these.
  • V2X vehicle-to-everything
  • V2V vehicle-to-vehicle
  • a vehicle may signal information related to traffic conditions, signal scheduling, weather, safety, emergencies, or any other information relevant to a V2X system.
  • vehicles in a V2X system may communicate with roadside infrastructure, such as roadside units, or with the network via one or more network nodes (for example, base stations 105) using vehicle-to-network (V2N) communications, or with both.
  • V2N vehicle-to-network
  • the core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • the core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (for example, a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (for example, a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) .
  • EPC evolved packet core
  • 5GC 5G core
  • MME mobility management entity
  • AMF access and mobility management function
  • S-GW serving gateway
  • PDN Packet Data Network gateway
  • UPF user plane function
  • the control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130.
  • NAS non-access stratum
  • User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions.
  • the user plane entity may be connected to the network operators IP services 150.
  • the operators IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
  • Some of the network devices may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) .
  • Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) .
  • Each access network transmission entity 145 may include one or more antenna panels.
  • various functions of each access network entity 140 or base station 105 may be distributed across various network devices (for example, radio heads and ANCs) or consolidated into a single network device (for example, a base station 105) .
  • the wireless communications system 100 may operate using one or more frequency bands, in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) .
  • the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length.
  • UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors.
  • the transmission of UHF waves may be associated with smaller antennas and shorter ranges (for example, less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
  • HF high frequency
  • VHF very high frequency
  • the wireless communications system 100 may also operate in a super high frequency (SHF) region using frequency bands from 3 GHz to 30 GHz, also known as the centimeter band, or in an extremely high frequency (EHF) region of the spectrum (for example, from 30 GHz to 300 GHz) , also known as the millimeter band.
  • SHF super high frequency
  • EHF extremely high frequency
  • the wireless communications system 100 may support millimeter wave (mmW) communications between the UEs 115 and the base stations 105, and EHF antennas of the respective devices may be smaller and more closely spaced than UHF antennas. In some examples, this may facilitate use of antenna arrays within a device.
  • mmW millimeter wave
  • the propagation of EHF transmissions may be subject to even greater atmospheric attenuation and shorter range than SHF or UHF transmissions.
  • the techniques disclosed herein may be employed across transmissions that use one or more different frequency regions, and designated use of bands across these frequency regions may differ by country or regulating body.
  • the wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands.
  • the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • LAA License Assisted Access
  • LTE-U LTE-Unlicensed
  • NR NR technology
  • an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance.
  • operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (for example, LAA) .
  • Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
  • a base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming.
  • the antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming.
  • one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower.
  • antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations.
  • a base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115.
  • a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
  • an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
  • the base stations 105 or the UEs 115 may use MIMO communications to exploit multipath signal propagation and increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers.
  • Such techniques may be referred to as spatial multiplexing.
  • the multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas.
  • Each of the multiple signals may be referred to as a separate spatial stream and may carry bits associated with the same data stream (for example, the same codeword) or different data streams (for example, different codewords) .
  • Different spatial layers may be associated with different antenna ports used for channel measurement and reporting.
  • MIMO techniques include single-user MIMO (SU-MIMO) , in which multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) , in which multiple spatial layers are transmitted to multiple devices.
  • SU-MIMO single-user MIMO
  • Beamforming which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (for example, a base station 105, a UE 115) to shape or steer an antenna beam (for example, a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device.
  • Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference.
  • the adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device.
  • the adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (for example, with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
  • a base station 105 or a UE 115 may use beam sweeping techniques as part of beam forming operations.
  • a base station 105 may use multiple antennas or antenna arrays (for example, antenna panels) to conduct beamforming operations for directional communications with a UE 115.
  • Some signals (for example, synchronization signals, reference signals, beam selection signals, or other control signals) may be transmitted by a base station 105 multiple times in different directions.
  • the base station 105 may transmit a signal according to different beamforming weight sets associated with different directions of transmission. Transmissions in different beam directions may be used to determine (for example, by a transmitting device, such as a base station 105, or by a receiving device, such as a UE 115) a beam direction for later transmission or reception by the base station 105.
  • Some signals may be transmitted by a base station 105 in a single beam direction (for example, a direction associated with the receiving device, such as a UE 115) .
  • the beam direction associated with transmissions along a single beam direction may be determined based on a signal that was transmitted in one or more beam directions.
  • a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions and may report to the base station 105 an indication of the signal that the UE 115 received with a highest signal quality or an otherwise acceptable signal quality.
  • transmissions by a device may be performed using multiple beam directions, and the device may use a combination of digital precoding or radio frequency beamforming to generate a combined beam for transmission (for example, from a base station 105 to a UE 115) .
  • the UE 115 may report feedback that indicates precoding weights for one or more beam directions, and the feedback may correspond to a configured number of beams across a system bandwidth or one or more sub-bands.
  • the base station 105 may transmit a reference signal (for example, a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS) ) , which may be precoded or unprecoded.
  • a reference signal for example, a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS)
  • the UE 115 may provide feedback for beam selection, which may be a precoding matrix indicator (PMI) or codebook-based feedback (for example, a multi-panel type codebook, a linear combination type codebook, a port selection type codebook) .
  • PMI precoding matrix indicator
  • codebook-based feedback for example, a multi-panel type codebook, a linear combination type codebook, a port selection type codebook
  • these techniques are described with reference to signals transmitted in one or more directions by a base station 105, a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (for example, for determining a beam direction for subsequent transmission or reception by the UE 115) or for transmitting a signal in a single direction (for example, for transmitting data to a receiving device) .
  • a receiving device may try multiple receive configurations (for example, directional listening) if receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals.
  • a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets (for example, different directional listening weight sets) applied to signals received at multiple antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at multiple antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive configurations or receive directions.
  • a receiving device may use a single receive configuration to receive along a single beam direction (for example, if receiving a data signal) .
  • the single receive configuration may be aligned in a beam direction determined based on listening according to different receive configuration directions (for example, a beam direction determined to have a highest signal strength, highest signal-to-noise ratio (SNR) , or otherwise acceptable signal quality based on listening according to multiple beam directions) .
  • SNR signal-to-noise ratio
  • the wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack.
  • communications at the bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based.
  • a Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels.
  • RLC Radio Link Control
  • a Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels.
  • the MAC layer may also use error detection techniques, error correction techniques, or both to support retransmissions at the MAC layer to improve link efficiency.
  • the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or a core network 130 supporting radio bearers for user plane data.
  • RRC Radio Resource Control
  • transport channels may be mapped to physical channels.
  • the UEs 115 and the base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully.
  • Hybrid automatic repeat request (HARQ) feedback is one technique for increasing the likelihood that data is received correctly over a communication link 125.
  • HARQ may include a combination of error detection (for example, using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (for example, automatic repeat request (ARQ) ) .
  • FEC forward error correction
  • ARQ automatic repeat request
  • HARQ may improve throughput at the MAC layer in poor radio conditions (for example, low signal-to-noise conditions) .
  • a device may support same-slot HARQ feedback, in which the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
  • Various aspects generally relate to the UEs 115, in the wireless communications system 100, supporting multi-panel transmissions and more specifically, to aligning uplink transmissions of multi-panel transmissions.
  • the UEs 115 may support aligning two or more uplink transmissions associated with two or more uplink occasions in which each respective uplink transmission of the two or more uplink transmissions is associated with a different antenna array or panel of a respective UE 115, to decrease or mitigate an interference.
  • At least two respective uplink transmissions may occupy some same time resources or frequency resources, or both. That is, one or more resources of the at least two respective uplink transmissions may overlap in a time domain or a frequency domain, or both.
  • the overlap may cause interference at the UEs 115.
  • the UEs 115 may align the at least two respective uplink transmissions based on the overlap. For example, the UEs 115 may align the at least two respective uplink transmissions such that reference signals of the at least two respective uplink transmissions align with one another in the time domain or the frequency domain, or both. The UEs 115 may thus experience high reliability and low latency uplink transmissions.
  • FIG. 2 illustrates an example of a wireless communications system 200 that supports duration alignment for physical shared channel repetitions in multi-panel transmissions in accordance with aspects of the present disclosure.
  • the wireless communications system 200 may implement aspects of the wireless communications system 100.
  • the wireless communications system 200 may include a base station 105-a and a UE 115-a within a geographic coverage area 110-a.
  • the base station 105-a and the UE 115-a may be examples of a base station 105 and a UE 115 as described with reference to Figure 1.
  • the wireless communications system 200 may support multiple radio access technologies including 4G systems such as LTE systems, LTE-A systems, or LTE-A Pro systems, and 5G systems which may be referred to as NR systems.
  • 4G systems such as LTE systems, LTE-A systems, or LTE-A Pro systems
  • 5G systems which may be referred to as NR systems.
  • the base station 105-a and the UE 115-a may be configured with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, MIMO communications, or beamforming.
  • the antennas of the base station 105-a and the UE 115-a may be located within one or more respective antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming.
  • the base station 105-a antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower.
  • antennas or antenna arrays associated with the base station 105-a may be located in diverse geographic locations.
  • the base station 105-a may have an antenna array with a number of rows and columns of antenna ports that the base station 105-a may use to support beamforming of communications with the UE 115-a.
  • the UE 115-a may have one or more antenna arrays that may support various MIMO or beamforming operations.
  • an antenna panel may support radio frequency beamforming for a signal transmitted via one or more antenna ports.
  • the base station 105-a and the UE 115-a may thus be configured to support directional communications (for example, beamformed communications) using the multiple antennas.
  • the base station 105-a and the UE 115-a may communicate via the directional communications using multiple component carriers.
  • the base station 105-a and the UE 115-a may be configured to support multiple downlink component carriers and multiple uplink component carriers.
  • the base station 105-a and the UE 115-a may be configured to support the directional communications over a carrier bandwidth or may be configured to support the directional communications over one of multiple carrier bandwidths.
  • the base station 105 a and the UE 115 a may support directional communications over communication links 125, which may be an example of a communication link 125 as described with reference to Figure 1.
  • the base station 105 a may transmit directional downlink transmissions via a communication link 125 a
  • the UE 115 a may transmit directional uplink transmissions via a communication link 125 b.
  • the base station 105-a and the UE 115-a may transmit reference signals (for example, DMRSs) to increase an efficiency and a reliability of communications between the base station 105-a and the UE 115-a.
  • the reference signals may be transmitted from the base station 105-a to the UE 115-a, and vice versa.
  • the reference signals transmitted to the UE 115-a may be referred to as downlink reference signals and reference signals transmitted to the base station 105-a may be referred to as uplink reference signals.
  • the reference signals may be used by the wireless devices to determine characteristics of a physical channel (for example, a PDSCH, a PUSCH) .
  • the characteristics of a physical channel may also be referred to as a channel estimate, a channel condition, or a channel metric.
  • the UE 115-a and the base station 115-a may use the reference signals to decode or demodulate data transmitted via the physical channel.
  • the base station 105-a may allocate time and frequency resources for one or more physical channels. For example, the base station 105-a may transmit a set of downlink control information (DCI) messages 210 scheduling one or more PUSCH occasions in which the UE 115-a may transmit a PUSCH transmission (for example, a PUSCH transmission 220-a) .
  • the set of DCI messages may include a first DCI message scheduling a first set of PUSCH occasions and a second DCI message scheduling a second set of PUSCH occasions.
  • the UE 115-a may receive the first DCI message and the second DCI message and determine the first PUSCH transmission 220-a associated with the first set of PUSCH occasions and a second PUSCH transmission 220-b associated with the second set of PUSCH occasions. In some examples, the UE 115-a may determine multiple PUSCH transmissions associated with the first set of PUSCH occasions and multiple PUSCH transmissions associated with the second set of PUSCH occasions.
  • the base station 105-a may transmit the set of DCI messages in one or more CORESETs. For example, the base station 105-a may transmit the first DCI message in a first CORESET and the second DCI message in a second CORESET.
  • the first CORESET is associated with a first CORESET pool index and the second COREST is associated with a second CORESET pool index.
  • the UE 115-a may determine the first CORESET based on the first CORESET pool index and the second CORESET based on the second CORESET pool index.
  • the first CORESET pool index and the second CORESET pool index are included in a higher layer parameter (for example, a PDCCH-Config parameter) .
  • two or more uplink transmissions may overlap in a time domain or a frequency domain, or both.
  • the overlap may result in interference between the two or more uplink transmissions.
  • the first PUSCH transmission 220-a and the second PUSCH transmission 220-b may overlap in the time domain or the frequency domain, or both.
  • reference signals for example, DMRSs
  • the overlap may be a partial overlap in the time domain or the frequency domain, or both. In other implementations, the overlap may be a full overlap in the time domain or the frequency domain, or both.
  • the first PUSCH transmission 220-a may overlap with the multiple PUSCH transmissions associated with the second set of PUSCH occasions.
  • the second PUSCH transmission 220-b may overlap with the multiple PUSCH transmissions associated with the first set of PUSCH occasions.
  • the UE 115-a may align the multiple uplink transmissions. For example, the UE 115-a may determine the overlap in the time domain or the frequency domain, or both, between the first PUSCH transmission 220-a and the second PUSCH transmission 220-b associated with different antenna panels of the UE 115-a. The UE 115-a may then align the first PUSCH transmission 220-a with the second PUSCH transmission 220-b based on the overlap.
  • the UE 115-a may align the first PUSCH transmission 220-a with the second PUSCH transmission 220-b such that DMRS symbols of the first PUSCH transmission 220-a overlap with DMRS symbols of the second PUSCH transmission 220-b.
  • the UE 115-a may align the first PUSCH transmission 220-a with the multiple PUSCH transmissions associated with the second set of PUSCH occasions based on an overlap in the time domain or the frequency domain, or both, between the first PUSCH transmission 220-a and the multiple PUSCH transmissions associated with the second set of PUSCH occasions.
  • the UE 115-a may align uplink transmissions based on parameters associated with the uplink transmissions. For example, the UE 115-a may align the first PUSCH transmission 220-a with the second PUSCH transmission 220-b based on parameters associated with the first PUSCH transmission 220-a and the second PUSCH transmission 220-b. For example, the base station 105-a may allocate a first set of DMRS symbols associated with the first PUSCH transmission 220-a in a beginning portion of a first slot and a second set of DMRS symbols associated with the second PUSCH transmission 220-b in a beginning portion of a second slot. In some examples, consecutive DMRS symbols in a beginning portion of a slot may be referred to as front-loaded DMRS symbols.
  • the actual number of front-loaded DMRS symbols in the first or second set of DMRS symbols can be either one or two, which may be indicated by a DCI message scheduling a respective PUSCH transmission.
  • the base station 105-a may allocate a first set of front-loaded DMRS symbols associated with the first PUSCH transmission and a second set of front-loaded DMRS symbols associated with the second PUSCH transmission 220-b.
  • the UE 115-a may determine the first set of front-loaded DMRS symbols and the second set of front-loaded DMRS symbols and align the first PUSCH transmission 220-a with the second PUSCH transmission 220-b based on the first set of front-loaded DMRS symbols and the second set of front-loaded DMRS symbols.
  • the UE 115-a may align the first PUSCH transmission 220-a with the second PUSCH transmission 220-b such that the first set of front-loaded DMRS symbols overlap with the second set of front-loaded DMRS symbols in the time domain or the frequency domain, or both.
  • the first set of front-loaded DMRS symbols indicated by the first DCI message and the second set of front-loaded DMRS symbols indicated by the second DCI message include a same number of actual front-loaded DMRS symbols and a same DMRS time location.
  • the base station 105-a may allocate additional DMRS symbols associated with the first PUSCH transmission 220-a and the second PUSCH transmission 220-b. For example, the base station 105-a may allocate a third set of DMRS symbols associated with the first PUSCH transmission 220-a in a portion of the first slot after the beginning portion of the first slot allocated for the first set of front-loaded DMRS symbols. Additionally, the base station 105-a may allocate a fourth set of DMRS symbols associated with the second PUSCH transmission 220-b in a portion of the second slot after the beginning portion of the second slot allocated for the second set of front-loaded DMRS symbols.
  • DMRS symbols in a portion of a slot after a beginning portion of a slot allocated for front-loaded DMRS symbols may be referred to as additional DMRS symbols.
  • up to three DMRS time locations can be indicated for additional DMRS symbols in one PUSCH occasion, which may depend on a higher-layer configuration and a duration of the scheduled PUSCH occasion.
  • the actual number of additional DMRS symbols in the third or fourth set of DMRS symbols at each DMRS time location can be either one or two, and may be the same as the actual number of front-loaded DMRS.
  • the base station 105-a may thus allocate a first set of additional DMRS symbols associated with the first PUSCH transmission 220-a and a second set of additional DMRS symbols associated with the second PUSCH transmission 220-b.
  • the UE 115-a may determine the first set of additional DMRS symbols and the second set of DMRS symbols align the first PUSCH transmission 220-a with the second PUSCH transmission 220-b based on the first set of additional DMRS symbols and the second set of additional DMRS symbols. That is, the UE 115-a may align the first PUSCH transmission 220-a with the second PUSCH transmission 220-b such that the first set of additional DMRS symbols overlaps with the second set of additional DMRS symbols in the time domain or the frequency domain, or both.
  • the first set of additional DMRS symbols and the second set of additional DMRS symbols include a same time location and a same actual number of DMRS symbols as the actual number of front-loaded DMRS symbols.
  • the base station 105-a may further allocate a quantity of DMRS symbols associated with the first PUSCH transmission 220-a and the second PUSCH transmission 220-b.
  • the UE 115-a may determine a first quantity of DMRS symbols associated with the first PUSCH transmission 220-a and a second quantity of DMRS symbols associated with the second PUSCH transmission 220-b.
  • the UE 115-a may determine that the overlapping portions of the first PUSCH transmission 220-a and the second PUSCH transmission 220-b include a same quantity of DMRS symbols.
  • the same quantity of DMRS symbols includes the same number of DMRS time locations, and the same actual number of DMRS symbols at each DMRS time location.
  • the UE 115-a may then align the first PUSCH transmission 220-a and the second PUSCH transmission 220-b based on the overlapping portions including a same quantity of DMRS symbols.
  • the UE 115-a may determine that the first PUSCH transmission 220-a overlaps with the multiple PUSCH transmissions associated with the second set of PUSCH occasions.
  • the UE 115-a may determine a third quantity of DMRS symbols associated with the multiple PUSCH transmissions.
  • the UE 115-a may determine that the overlapping portions of the first PUSCH transmission 220-a and the multiple PUSCH transmissions may include a same quantity of DMRS symbols. The UE 115-a may then align the first PUSCH transmission 220-a with the multiple PUSCH transmissions based on the overlapping portions including a same quantity of DMRS symbols.
  • the UE 115-a may determine a time location of each DMRS symbols associated with the PUSCH transmissions 220. For example, the UE 115-a may determine a time location of each DMRS symbol associated with the first PUSCH transmission 220-a and a time location of each DMRS symbol associated with the second PUSCH transmission 220-b. The UE 115-a may then align the first PUSCH transmission 220-a with the second PUSCH transmission 220-b such that the time location of each DMRS symbol associated with the first PUSCH transmission 220-a overlaps with the time location of each DMRS symbol associated with the second PUSCH transmission 220-b.
  • the UE 115-a aligns the first PUSCH transmission 220-a with the second PUSCH transmission 220-b such that the time location of each DMRS symbol associated with the first PUSCH transmission 220-a located in the overlap overlaps with the time location of each DMRS symbol associated with the second PUSCH transmission 220-b located in the overlap.
  • the UE 115-a aligns the first PUSCH transmission 220-a with the second PUSCH transmission 220-b such that in an overlapping portion of the first PUSCH transmission 220-a and the second PUSCH transmission 220-b, the multiple DMRS have the same number of DMRS time locations, the same DMRS time locations, and the same actual number of DMRS symbols at each DMRS time location.
  • the base station 105-a may allocate a DMRS configuration type associated with the first PUSCH transmission 220-a and the second PUSCH transmission 220-b. In some examples, the base station 105-a may allocate a DMRS configuration type associated with the first PUSCH transmission 220-a and a same DMRS configuration type associated with the second PUSCH transmission 220-b. The UE 115-a may determine the DMRS configuration type associated with the first PUSCH transmission 220-a and the same DMRS configuration type associated with the second PUSCH transmission 220-b. The UE 115-a may then align the first PUSCH transmission 220-a with the second PUSCH transmission 220-b based on the DMRS configuration types being the same.
  • the base station 105-a may indicate a DMRS code division multiplexing (CDM) group including one or more DMRS ports associated with each set of PUSCH occasions and an uplink transmit beam in each DCI message of the set of DCI messages 210.
  • the uplink transmit beam can be indicated via an uplink transmission configuration indicator (TCI) state, an uplink spatial filter, an uplink spatial relationship information or a sounding reference resource indicator (SRI) in a respective DCI message.
  • TCI transmission configuration indicator
  • SRI sounding reference resource indicator
  • the UE 115-a may determine the DMRS CDM group associated with each set of PUSCH occasions based on the TCI state.
  • the UE 115-a may determine a first DMRS CDM group associated with the first set of PUSCH occasions based on a first TCI state of the first DCI message and a second DMRS CDM group associated with the second set of PUSCH occasions based on a second TCI state of the second DCI message.
  • one DMRS CDM group associated with one PUSCH occasion can be associated with one TCI state.
  • the UE 115-a may then align the first PUSCH transmission 220-a and the second PUSCH transmission 220-b based on the first DMRS CDM group and the second DMRS CDM group.
  • the UE 115-a may transmit the two or more uplink transmissions to the base station 105-a. For example, after the UE 115-a aligns the first PUSCH transmission 220-a with the second PUSCH transmission 220-b, the UE 115-a may transmit the first PUSCH transmission 220-a by a first antenna panel of the UE 115-a using the fist TCI state and the second PUSCH transmission 220-b by a second antenna panel of the UE 115-a using the second TCI state.
  • the wireless communications system 200 may configure the UE 115-a to support aligning physical shared channel repetitions in multi-panel transmissions to improve uplink communications.
  • the UE 115-a may, as a result, support one or more features for improvements to power consumption, reliability for uplink communications, spectral efficiency, higher data rates and, in some examples, may promote low latency for channel estimation operations, among other benefits.
  • FIG 3A illustrates an example of a transmission schemes 300-a that supports duration alignment for physical shared channel repetitions in multi-panel transmissions in accordance with aspects of the present disclosure.
  • the transmission scheme 300-a may implement or may be implemented by aspects of the wireless communications system 100 and 200 as described with reference to Figures 1 and 2.
  • the transmission scheme 300-a may be based on a configuration by a base station 105, and implemented by a UE 115, and may promote higher reliability and lower latency uplink communications in a wireless communications system.
  • the transmissions scheme 300-a may also be based on a configuration by the base station 105, and implemented by the UE 115 to decrease power consumption by the UE 115, if performing channel estimation operations, among other benefits.
  • the transmission scheme 300-a is an example of a transmission scheme, and other transmission schemes may apply the principles described herein.
  • the transmission scheme 300-a illustrates a portion of an example slot of an uplink transmission.
  • the transmission scheme 300-a may include 14 symbols in a time domain and two sets of PUSCH occasions 310.
  • Each PUSCH occasion 310 may be defined as a set of time resources and frequency resources in which the UE 115 may transmit a PUSCH transmission 305.
  • each PUSCH occasion 310 may be associated with multiple PUSCH transmissions 305 associated with different antenna panels of the UE 115.
  • Each PUSCH transmission 305 may include a number of DMRS symbols 315 and a number of data symbols 320.
  • the base station 105 may transmit a set of DCI messages to the UE 115.
  • the base station 105 may transmit a first DCI message scheduling a first set of PUSCH occasion 310-a and a second DCI message scheduling a second set of PUSCH occasions 310-b.
  • the first and second DCI messages may indicate DMRS configurations for one or more PUSCH transmissions 305 associated with each respective PUSCH occasion 310.
  • the first and second DCI messages may indicate a quantity of front-loaded DMRS symbols, a quantity of additional DMRS symbols, a total number of DMRS symbols, a location of each DMRS symbol, a DMRS configuration type (for example, type I or type II in mapping type A or mapping type B) , a starting DMRS symbol position, or any combination thereof of a DMRS configuration.
  • the first and second DCI messages may also indicate a quantity of repetitions and a duration for a particular PUSCH transmission 305. Additionally, the first and second DCI messages may indicate a CDM group associated with each PUSCH occasion 310 and a TCI state in each DCI message.
  • the transmission scheme 300-a illustrates an example configuration in which at least two PUSCH transmissions 305 overlap in a time domain or a frequency domain, or both.
  • the UE 115 may be configured or indicated (for example, via DCI messages) with a first set of PUSCH occasions 310-a and a second set of PUSCH occasions 310-b.
  • the UE 115 may determine a first PUSCH transmission 305-a and a second PUSCH transmissions 305-b associated with the first set of PUSCH occasions 310-a and a third PUSCH transmission 305-c associated with the second set of PUSCH occasions 310-b.
  • the UE 115 may determine that the first PUSCH transmission 305-a and the third PUSCH transmission 305-c overlap from the third to seventh symbol.
  • the first PUSCH transmission 305-a and the third PUSCH transmission 305-c are depicted as partially overlapping.
  • the UE 115 may determine a DMRS configuration of each PUSCH transmission 305. For example, the UE 115 may determine that the first PUSCH transmission 305-a includes one front-loaded symbol located in the first symbol position of the first PUSCH transmission 305-a and one additional DMRS symbol located in the fifth symbol position of the first PUSCH transmission 305-a and may determine that the first PUSCH transmission 305-a may have a duration of five symbols, may repeat once (for example, the second PUSCH transmission 305-b) and may be associated with a DMRS configuration type (for example, type I or type II in mapping type A, mapping type B) .
  • a DMRS configuration type for example, type I or type II in mapping type A, mapping type B
  • the UE 115 may also determine that the third PUSCH transmission 305-c includes one front-loaded symbol located in the second symbol position of the third PUSCH transmission 305-c and one additional DMRS symbol located in the sixth symbol position of the third PUSCH transmission 305-c and may determine that the third PUSCH transmission 305-c may have a duration of six symbols, may not repeat, and may be associated with a same DMRS configuration type as the DMRS configuration type associated with the first PUSCH transmission 305-a.
  • the UE 115 may align the first PUSCH transmission 305-a and the third PUSCH transmission 305-c based on the determined DMRS configurations of the first PUSCH transmission 305-a and the third PUSCH transmission 305-c. For example, the UE 115 may align the first PUSCH transmission 305-a and the third PUSCH transmission 305-c such that the front-loaded symbol of the first PUSCH transmission 305-a overlaps with the front-loaded symbol of the third PUSCH transmission 305-c and the additional DMRS symbol of the first PUSCH transmission 305-a overlaps with the additional DMRS symbol of the third PUSCH transmission 305-c.
  • a location of each DMRS symbol of the first PUSCH transmission 305-a may be the same as a location of each DMRS symbol of the third PUSCH transmission 305-c.
  • the UE 115 may align the first PUSCH transmission 305-a and the third PUSCH transmission 305-c based on the first PUSCH transmission 305-a having a same DMRS configuration type as the third PUSCH transmission 305-c.
  • the DMRSs may be aligned with the same number of DMRS time locations (which is two) , the same DMRS time locations (which is the third and seventh symbol in the slot) , and the same actual number of DMRS symbols at each DMRS time location (which is one) .
  • Figure 3B illustrates an example of a transmission schemes 300-b that supports duration alignment for physical shared channel repetitions in multi-panel transmissions in accordance with aspects of the present disclosure.
  • the transmission scheme 300-b may implement or may be implemented by aspects of the wireless communications system 100 and 200 as described with reference to Figures 1 and 2.
  • the transmission scheme 300-b may be based on a configuration by a base station 105, and implemented by a UE 115, and may promote higher reliability and lower latency uplink communications in a wireless communications system.
  • the transmissions scheme 300-b may also be based on a configuration by the base station 105, and implemented by the UE 115 to decrease power consumption by the UE 115, if performing channel estimation operations, among other benefits.
  • the transmission scheme 300-b illustrates a portion of an example slot of an uplink transmission.
  • the transmission scheme 300-b may include 14 symbols in a time domain and two sets of PUSCH occasions 310.
  • each PUSCH occasion 310 may be associated with multiple PUSCH transmissions 305 associated with different antenna panels of the UE 115.
  • Each PUSCH transmission 305 may include a number of DMRS symbols 315 and a number of data symbols 320.
  • the base station 105 may transmit a set of DCI messages to the UE 115.
  • the base station 105 may transmit a first DCI message scheduling a first set of PUSCH occasion 310-c and a second DCI message scheduling a second set of PUSCH occasions 310-d.
  • the first and second DCI messages may indicate DMRS configurations for one or more PUSCH transmissions 305 associated with each respective PUSCH occasion 310.
  • the transmission scheme 300-b illustrates an example configuration in which at least two PUSCH transmission 305 overlap in a time domain or a frequency domain, or both.
  • a UE 115 may be configured with a first set of PUSCH occasions 310-c and a second set of PUSCH occasions 310-d.
  • the UE 115 may determine a first PUSCH transmission 305-d and a second PUSCH transmission 305-e associated with the first set of PUSCH occasions 310-c and a third PUSCH transmission 305-f associated with the second set of PUSCH occasions 310-d.
  • the third PUSCH transmission 305-f is depicted as partially overlapping with both the first PUSCH transmission 305-d and the second PUSCH transmission 305-e.
  • the UE 115 may determine a DMRS configuration of the first PUSCH transmission 305-d, the second PUSCH transmission 305-e, and the third PUSCH transmission 305-f. For example, the UE 115 may determine that the first PUSCH transmission 305-d includes one front-loaded symbol located in the first symbol position of the first PUSCH transmission 305-d and no additional DMRS symbols and may determine that the first PUSCH transmission 305-d may have a duration of four symbols, may repeat once (for example, second PUSCH transmission 305-e) and may be associated with a DMRS configuration type.
  • the UE 115 may also determine that the third PUSCH transmission 305-f includes one front-loaded symbol located in the first symbol position of the third PUSCH transmission 305-f, a first additional DMRS symbols located in the fifth symbol position of the third PUSCH transmission 305-f, and a second additional DMRS symbol located in the ninth symbol position of the third PUSCH transmission 305-f. Additionally the UE may determine that the third PUSCH transmission 305-c may have a duration of ten symbols, may not repeat, and may be associated with a same DMRS configuration type as the DMRS configuration type associated with the first PUSCH transmission 305-d.
  • the UE 115 may align the first PUSCH transmission 305-d, the second PUSCH transmission 305-e, and the third PUSCH transmission 305-f based on the determined DMRS configurations of the first PUSCH transmission 305-d, the second PUSCH transmission 305-e, and the third PUSCH transmission 305-f. For example, the UE 115 may align the first PUSCH transmission 305-d and the second PUSCH transmission 305-e with the third PUSCH transmission 305-f such that overlapping portions of the first PUSCH transmission 305-d, the second PUSCH transmission 305-e, and the third PUSCH transmission 305-f include a same number of DMRS symbols.
  • the UE 115 may align the first PUSCH transmission 305-d and the second PUSCH transmission 305-e with the third PUSCH transmission 305-f such that the front-loaded symbol of the first PUSCH transmission 305-d overlaps with the front-loaded symbol of the third PUSCH transmission 305-f and the front-loaded symbol of the second PUSCH transmission 305-e overlaps with first additional DMRS symbol off the third PUSCH transmission 305-f.
  • the second additional DMRS symbol may not align with a DMRS symbol of the first PUSCH transmission 305-d or the second PUSCH transmission 305-e.
  • the UE 115 may align the first PUSCH transmission 305-d and the second PUSCH transmission 305-e with the third PUSCH transmission 305-f based on the third PUSCH transmission 305-f having a same DMRS configuration type as the first PUSCH transmission 305-d and the second PUSCH transmission 305-e.
  • the DMRSs may be aligned with the same number of DMRS time locations (which is two) , the same DMRS time locations (which is the third and seventh symbol in the slot) , and the same actual number of DMRS symbols at each DMRS time location (which is one) .
  • Figure 3C illustrates an example of a transmission schemes 300-c that supports duration alignment for physical shared channel repetitions in multi-panel transmissions in accordance with aspects of the present disclosure.
  • the transmission scheme 300-c may implement or may be implemented by aspects of the wireless communications systems 100 and 200 as described with reference to Figures 1 and 2.
  • the transmission scheme 300-c may be based on a configuration by a base station 105, and implemented by a UE 115, and may promote higher reliability and lower latency uplink communications in a wireless communications system.
  • the transmissions scheme 300-c may also be based on a configuration by the base station 105, and implemented by the UE 115 to decrease power consumption by the UE 115, if performing channel estimation operations, among other benefits.
  • the transmission scheme 300-c illustrates a portion of an example slot of an uplink transmission.
  • the transmission scheme 300-c may include 14 symbols in a time domain and two sets of PUSCH occasions 310.
  • each PUSCH occasion 310 may be associated with multiple PUSCH transmissions 305 associated with different antenna panels of the UE 115.
  • Each PUSCH transmission 305 may include a number of DMRS symbols 315 and a number of data symbols 320.
  • the base station 105 may transmit a set of DCI messages to the UE 115. For example, the base station 105 may transmit a first DCI message scheduling a first set of PUSCH occasion 310-e and a second DCI message scheduling a second set of PUSCH occasions 310-f.
  • the first DCI message and the second DCI message may indicate the same starting symbol for the two sets of PUSCH occasions 310, and the same duration for each PUSCH occasion in the two sets of PUSCH occasions 310. Additionally, the first and second DCI messages may indicate DMRS configurations for one or more PUSCH transmissions 305 associated with each respective PUSCH occasion 310.
  • the transmission scheme 300-c illustrates an example configuration in which at least two PUSCH transmission 305 overlap in a time domain or a frequency domain, or both.
  • a UE 115 may be configured or indicated with a first set of PUSCH occasions 310-e and a second set of PUSCH occasions 310-f.
  • the UE 115 may determine a first PUSCH transmission 305-g and a second PUSCH transmission 305-h associated with the fifth set of PUSCH occasions 310-e and a third PUSCH transmission 305-i and a fourth PUSCH transmission 305-j associated with the second set of PUSCH occasions 310-f.
  • the first PUSCH transmission 305-g and the second PUSCH transmission 305-h are depicted as fully overlapping with the third PUSCH transmission 305-i and the fourth PUSCH transmission 305-j, respectively.
  • the UE 115 may determine a DMRS configuration of the first PUSCH transmission 305-g, the second PUSCH transmission 305-h, the third PUSCH transmission 305-i, and the fourth PUSCH transmission 305-j. For example, the UE 115 may determine that the first PUSCH transmission 305-g may have a beginning DMRS symbol position of the first symbol of the first PUSCH transmission 305-g, may have a duration of five symbols, and may repeat once (for example, second PUSCH transmission 305-h) .
  • the UE 115 may also determine that the third PUSCH transmission 305-i may have a beginning DMRS symbol position of the first symbol of the third PUSCH transmission 305-i, may have a duration of five symbols, and may repeat once (for example, fourth PUSCH transmission 305-j) .
  • the UE 115 may align the first PUSCH transmission 305-g, the second PUSCH transmission 305-h, the third PUSCH transmission 305-i, and the fourth PUSCH transmission 305-j based on the determined DMRS configurations of the first PUSCH transmission 305-g, the second PUSCH transmission 305-h, the third PUSCH transmission 305-i, and the fourth PUSCH transmission 305-j. For example, the UE 115 may align the first PUSCH transmission 305-g and the third PUSCH transmission 305-i such that the beginning DMRS symbol of the first PUSCH transmission 305-g overlaps with the beginning DMRS symbol of the third PUSCH transmission 305-i.
  • the second PUSCH transmission 305-h may be aligned with the fourth PUSCH transmission 305-j due to the first PUSCH transmission 305-g and the third PUSCH transmission 305-i having the same beginning DMRS symbol position and duration.
  • the UE 115 may align the first PUSCH transmission 305-g, the second PUSCH transmission 305-h, the third PUSCH transmission 305-i, and the fourth PUSCH transmission 305-j based on the first PUSCH transmission 305-g, the second PUSCH transmission 305-h, the third PUSCH transmission 305-i, and the fourth PUSCH transmission 305-j having the same beginning DMRS symbol position and duration.
  • Figure 4 illustrates an example of a process flow 400 that supports duration alignment for physical shared channel repetitions in multi-panel transmissions in accordance with aspects of the present disclosure.
  • the process flow 400 may implement or may be implemented by aspects of the wireless communications system 100 and 200 described with reference to Figures 1 and 2, respectively.
  • the process flow 400 may be based on a configuration by a base station 105-b, and implemented by a UE 115-b.
  • the base station 105-b and the UE 115-b may be examples of a base station 105 and a UE 115, as described with reference to Figures 1 and 2.
  • the process flow 400 may promote higher reliability and lower latency uplink communications in a wireless communications system.
  • the process flow 400 may also be based on a configuration by the base station 105-b, and implemented by the UE 115-b to decrease power consumption by the UE 115-b, if performing channel estimation operations, among other benefits.
  • the base station 105-b may transmit a set of DCI messages to the UE 115-b.
  • the set of DCI messages may include a first DCI message that schedules a first set of PUSCH occasions and a second DCI message that schedules a second set of PUSCH occasions.
  • the UE 115-b determine an overlap in a time domain or a frequency domain, or both, between a first PUSCH transmission (for example, associated with the first set of PUSCH occasions) and a second PUSCH transmission (for example, associated with the second set of PUSCH occasions) .
  • the UE 115-b may determine an overlap between the first PUSCH transmission and one or more PUSCH transmissions associated with the second set of PUSCH occasions.
  • the overlap may be a partial overlap in the time domain or the frequency domain, or both. In other implementations, the overlap may be a full overlap in the time domain or the frequency domain, or both.
  • the UE 115-b may align the first PUSCH transmission with the second PUSCH transmission, for example, based at least in part on the overlap.
  • the UE 115-b may align the first PUSCH transmission and the second PUSCH transmission so that the overlapping portions include a same quantity of front-loaded DMRS symbols, a same quantity of additional DMRS symbols, a same location of each DMRS symbol, and a same DMRS symbol configuration.
  • the UE 115-b may align the first PUSCH transmission and the second PUSCH transmission based on the overlapping transmissions having a same duration and a same beginning DMRS symbol.
  • the UE 115-b may transmit the first PUSCH transmission using a first antenna panel of the UE 115-b based on the aligning.
  • the UE 115-b may transmit the second PUSCH transmission using a second antenna panel of the UE 115-b based on the aligning.
  • the base station 105-b may receive the first PUSCH transmission and the second PUSCH transmission that are aligned based at least in part on the overlap between the first PUSCH transmission and the second PUSCH transmission.
  • The, process flow 400 may thereby enable the UE 115-b to align multiple PUSCH transmissions associated with multiple sets of PUSCH occasions.
  • the alignment of the multiple PUSCH transmissions may enable interference mitigation for the UE 115-b, if one or more time or frequency resources associated with one scheduled PUSCH transmission are overlapping with one or more time or frequency resources associated with another scheduled PUSCH transmission.
  • one or more processors of the UE 115-b may achieve reduced power consumption and may achieve higher reliability and lower latency for channel estimation operations, among other benefits.
  • Figure 5 shows a block diagram of a device 505 that supports duration alignment for physical shared channel repetitions in multi-panel transmissions in accordance with aspects of the present disclosure.
  • the device 505 may be an example of aspects of a UE 115 as described herein.
  • the device 505 may include a receiver 510, a UE communications manager 515, and a transmitter 520.
  • the UE communications manager 515 can be implemented, at least in part, by one or both of a modem and a processor. Each of these components may be in communication with one another (for example, via one or more buses) .
  • the receiver 510 may receive information such as packets, user data, or control information associated with various information channels (for example, control channels, data channels, and information related to duration alignment for physical shared channel repetitions in multi-panel transmissions) . Information may be passed on to other components of the device 505.
  • the receiver 510 may be an example of aspects of the transceiver 820 described with reference to Figure 8.
  • the receiver 510 may utilize a single antenna or a set of antennas.
  • the UE communications manager 515 may receive a set of DCI messages, where a first DCI message of the set schedules a first set of PUSCH occasions and a second DCI message of the set schedules a second set of PUSCH occasions, determine an overlap, in a time domain or a frequency domain, or both, between a first PUSCH transmission associated with the first set of PUSCH occasions and a second PUSCH transmission associated with the second set of PUSCH occasions, align the first PUSCH transmission with the second PUSCH transmission based on the overlap in the time domain or the frequency domain, or both, and transmit, based on the aligning, the first PUSCH transmission using a first antenna panel of the UE and the second PUSCH transmission using a second antenna panel of the UE.
  • the UE communications manager 515 may be implemented as an integrated circuit or chipset for the device 505 modem, and the receiver 510 and the transmitter 520 may be implemented as analog components (for example, amplifiers, filters, antennas) coupled with the device 505 modem to enable wireless transmission and reception.
  • the UE communications manager 515 may be implemented to realize one or more potential improvements. At least one implementation may enable the UE communications manager 515 to align multiple uplink data channels (for example, PUSCH) using multiple antenna panels. Based on implementing the aligning, one or more processors of the device 505 (for example, processor (s) controlling or incorporated with the UE communications manager 515) may promote high reliability and low latency channel estimation operations, among other benefits.
  • the transmitter 520 may transmit signals generated by other components of the device 505.
  • the transmitter 520 may be collocated with a receiver 510 in a transceiver component.
  • the transmitter 520 may be an example of aspects of the transceiver 820 described with reference to Figure 8.
  • the transmitter 520 may utilize a single antenna or a set of antennas.
  • Figure 6 shows a block diagram of a device 605 that supports duration alignment for physical shared channel repetitions in multi-panel transmissions in accordance with aspects of the present disclosure.
  • the device 605 may be an example of aspects of a device 505, or a UE 115 as described herein.
  • the device 605 may include a receiver 610, a UE communications manager 615, and a transmitter 640.
  • the UE communications manager 615 can be implemented, at least in part, by one or both of a modem and a processor. Each of these components may be in communication with one another (for example, via one or more buses) .
  • the receiver 610 may receive information such as packets, user data, or control information associated with various information channels (for example, control channels, data channels, and information related to duration alignment for physical shared channel repetitions in multi-panel transmissions) . Information may be passed on to other components of the device 605.
  • the receiver 610 may be an example of aspects of the transceiver 820 described with reference to Figure 8.
  • the receiver 610 may utilize a single antenna or a set of antennas.
  • the UE communications manager 615 may include a DCI message component 620, an overlap component 625, an alignment component 630, and a channel component 635.
  • the DCI message component 620 may receive a set of DCI messages, where a first DCI message of the set schedules a first set of PUSCH occasions and a second DCI message of the set schedules a second set of PUSCH occasions.
  • the overlap component 625 may determine an overlap, in a time domain or a frequency domain, or both, between a first PUSCH transmission associated with the first set of PUSCH occasions and a second PUSCH transmission associated with the second set of PUSCH occasions.
  • the alignment component 630 may align the first PUSCH transmission with the second PUSCH transmission based on the overlap in the time domain or the frequency domain, or both.
  • the channel component 635 may transmit, based on the aligning, the first PUSCH transmission using a first antenna panel of the UE and the second PUSCH transmission using a second antenna panel of the UE.
  • the transmitter 640 may transmit signals generated by other components of the device 605.
  • the transmitter 640 may be collocated with a receiver 610 in a transceiver component.
  • the transmitter 640 may be an example of aspects of the transceiver 820 described with reference to Figure 8.
  • the transmitter 640 may utilize a single antenna or a set of antennas.
  • FIG. 7 shows a block diagram of a UE communications manager 705 that supports duration alignment for physical shared channel repetitions in multi-panel transmissions in accordance with aspects of the present disclosure.
  • the UE communications manager 705 may include a DCI message component 710, an overlap component 715, an alignment component 720, a channel component 725, a symbol component 730, a location component 735, a configuration component 740, a duration component 745, and a CDM component 750. Each of these components may communicate, directly or indirectly, with one another (for example, via one or more buses) .
  • the DCI message component 710 may receive a set of DCI messages, for example, a first DCI message of the set schedules a first set of PUSCH occasions and a second DCI message of the set schedules a second set of PUSCH occasions. In some examples, the DCI message component 710 may receive the first DCI message in a first CORESET and the second DCI message in a second CORESET different than the first CORESET. In some implementations, the DCI message component 710 may determine the first CORESET based on a first CORESET index in the first DCI message. In some examples, the DCI message component 710 may determine the second CORESET based on a second CORESET index in the second DCI message.
  • the overlap component 715 may determine an overlap, in a time domain or a frequency domain, or both, between a first PUSCH transmission associated with the first set of PUSCH occasions and a second PUSCH transmission associated with the second set of PUSCH occasions. In some examples, the overlap component 715 may determine an additional overlap, in the time domain or the frequency domain, or both, between the first PUSCH transmission and a third PUSCH transmission associated with the second set of PUSCH occasions. The overlap component 715 may align the first PUSCH transmission with the third PUSCH transmission based on the additional overlap in the time domain or the frequency domain, or both. In some examples, the overlap is a partial overlap, in the time domain or the frequency domain, or both. In other examples, the overlap is a full overlap, in the time domain or the frequency domain, or both.
  • the alignment component 720 may align the first PUSCH transmission with the second PUSCH transmission based on the overlap in the time domain or the frequency domain, or both.
  • the channel component 725 may transmit, based on the aligning, the first PUSCH transmission using a first antenna panel of the UE and the second PUSCH transmission using a second antenna panel of the UE.
  • the symbol component 730 may determine a first set of DMRS symbols associated with the first PUSCH transmission in a beginning portion of a first slot and a second set of DMRS symbols associated with the second PUSCH transmission in a beginning portion of a second slot, where the aligning includes aligning the first PUSCH transmission with the second PUSCH transmission based on the first set of DMRS symbols and the second set of DMRS symbols.
  • the first set of DMRS symbols and the second set of DMRS symbols include a same quantity of DMRS symbols.
  • the symbol component 730 may determine a third set of DMRS symbols associated with the first PUSCH transmission in a portion of the first slot after the beginning portion of the first slot and a fourth set of DMRS symbols associated with the second PUSCH transmission in a portion of the second slot after the beginning portion of the second slot, where the aligning includes aligning the first PUSCH transmission with the second PUSCH transmission based on the third set of DMRS symbols and the fourth set of DMRS symbols.
  • the third set of DMRS symbols and the fourth set of DMRS symbols include a same quantity of DMRS symbols.
  • the symbol component 730 may determine a first set of DMRS symbols associated with the first PUSCH transmission and a second set of DMRS symbols associated with the second PUSCH transmission where the overlap in the time domain or the frequency domain, or both, between the first PUSCH transmission and the second PUSCH transmission includes a same quantity of DMRS symbols from the first set of DMRS symbols and the second set of DMRS symbols, and where the aligning includes aligning the first PUSCH transmission with the second PUSCH transmission based on the first set of DMRS symbols and the second set of DMRS symbols.
  • the symbol component 730 may determine a first set of DMRS symbols associated with the first PUSCH transmission and a second set of DMRS symbols associated with the third PUSCH transmission where the additional overlap, in the time domain or the frequency domain, or both, between the first PUSCH transmission and the third PUSCH transmission includes a same quantity of DMRS symbols from the first set of DMRS symbols and the second set of DMRS symbols, and where the aligning further includes aligning the first PUSCH transmission with the third PUSCH transmission associated with the second set of PUSCH occasions based on the first set of DMRS symbols and the second set of DMRS symbols.
  • the symbol component 730 may determine a first beginning DMRS symbol location associated with the first PUSCH transmission and a second beginning DMRS symbol location associated with the second PUSCH transmission, where the aligning includes aligning the first PUSCH transmission with the second PUSCH transmission based on the first beginning DMRS symbol location and the second beginning DMRS symbol location.
  • the first beginning DMRS symbol location and the second beginning DMRS symbol location correspond to a same beginning DMRS symbol location.
  • the location component 735 may determine a location of each DMRS symbol of the first set of DMRS symbols associated with the first PUSCH transmission and a location of each DMRS of the second set of DMRS symbols associated with the second PUSCH transmission, where the aligning includes aligning the first PUSCH transmission with the second PUSCH transmission based on the location of each DMRS symbol of the first set of DMRS symbols including the location of each DMRS symbol of the second set of DMRS symbols.
  • the location component 735 may determine a location of each DMRS symbol of the first set of DMRS symbols associated with the first PUSCH transmission and a location of each DMRS symbol of the second set of DMRS symbols associated with the third PUSCH transmission, where the aligning further includes aligning the first PUSCH transmission with the third PUSCH transmission associated with the second set of PUSCH occasions based on the location of each DMRS symbol of the first set of DMRS symbols including the location of each DMRS symbol of the second set of DMRS symbols.
  • the configuration component 740 may determine a DMRS configuration type associated with the first PUSCH transmission and a same DMRS configuration type associated with the second PUSCH transmission, where the aligning includes aligning the first PUSCH transmission with the second PUSCH transmission based on the DMRS configuration type and the same DMRS configuration type. In some examples, the configuration component 740 may determine a DMRS configuration type associated with the first PUSCH transmission and a same DMRS configuration type associated with the third PUSCH transmission, where the aligning further includes aligning the first PUSCH transmission with the third PUSCH transmission associated with the second set of PUSCH occasions based on the DMRS configuration type and the same DMRS configuration type.
  • the duration component 745 may determine a first duration associated with the first PUSCH transmission and a second duration associated with the second PUSCH transmission, where the aligning includes aligning the first PUSCH transmission with the second PUSCH transmission based on the first duration and the second duration.
  • the CDM component 750 may determine a first CDM group associated with the first set of PUSCH occasions based on a first TCI state in the first DCI message. In some examples, the CDM component 750 may determine a second CDM group associated with the second set of PUSCH occasions based on a second TCI state in the second DCI message, where the aligning includes aligning the first PUSCH transmission with the second PUSCH transmission based on the first CDM group and the second CDM group.
  • Figure 8 shows a diagram of a system including a device 805 that supports duration alignment for physical shared channel repetitions in multi-panel transmissions in accordance with aspects of the present disclosure.
  • the device 805 may be an example of or include the components of device 505, device 605, or a UE 115 as described herein.
  • the device 805 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a UE communications manager 810, an I/O controller 815, a transceiver 820, an antenna 825, memory 830, and a processor 840. These components may be in electronic communication via one or more buses (for example, bus 845) .
  • the UE communications manager 810 may receive a set of DCI messages, for example, a first DCI message of the set schedules a first set of PUSCH occasions and a second DCI message of the set schedules a second set of PUSCH occasions.
  • the UE communications manager 810 may determine an overlap, in a time domain or a frequency domain, or both, between a first PUSCH transmission associated with the first set of PUSCH occasions and a second PUSCH transmission associated with the second set of PUSCH occasions.
  • the UE communications manager 810 may align the first PUSCH transmission with the second PUSCH transmission based on the overlap in the time domain or the frequency domain, or both, and transmit, based on the aligning, the first PUSCH transmission using a first antenna panel of the UE and the second PUSCH transmission using a second antenna panel of the UE. At least one implementation may enable the UE communications manager 810 to align multiple uplink data channels (for example, PUSCH) using multiple antenna panels. Based on implementing the aligning, one or more processors of the device 805 (for example, processor (s) controlling or incorporated with the UE communications manager 810) may experience reduce power consumption and promote high reliability and low latency wireless communications (for example, PUSCH transmissions) , among other benefits.
  • processors of the device 805 for example, processor (s) controlling or incorporated with the UE communications manager 810 may experience reduce power consumption and promote high reliability and low latency wireless communications (for example, PUSCH transmissions) , among other benefits.
  • the I/O controller 815 may manage input and output signals for the device 805.
  • the I/O controller 815 may also manage peripherals not integrated into the device 805.
  • the I/O controller 815 may represent a physical connection or port to an external peripheral.
  • the I/O controller 815 may utilize an operating system such as or another known operating system.
  • the I/O controller 815 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device.
  • the I/O controller 815 may be implemented as part of a processor.
  • a user may interact with the device 805 via the I/O controller 815 or via hardware components controlled by the I/O controller 815.
  • the transceiver 820 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 820 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 820 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the device 805 may include a single antenna 825. However, in some other examples, the device 805 may have more than one antenna 825, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 830 may include RAM and ROM.
  • the memory 830 may store computer-readable, computer-executable code 835 including instructions that, if executed, cause the processor 840 to perform various functions described herein.
  • the memory 830 may contain, among other things, a basic input/output system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • BIOS basic input/output system
  • the code 835 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 835 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory.
  • the code 835 may not be directly executable by the processor 840 but may cause a computer (for example, if compiled and executed) to perform functions described herein.
  • the processor 840 may include an intelligent hardware device, (for example, a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 840 may be configured to operate a memory array using a memory controller. In other cases, a memory controller may be integrated into the processor 840.
  • the processor 840 may be configured to execute computer-readable instructions stored in a memory (for example, the memory 830) to cause the device 805 to perform various functions (for example, functions or tasks supporting duration alignment for physical shared channel repetitions in multi-panel transmissions) .
  • Figure 9 shows a block diagram of a device 905 that supports duration alignment for physical shared channel repetitions in multi-panel transmissions in accordance with aspects of the present disclosure.
  • the device 905 may be an example of aspects of a base station 105 as described herein.
  • the device 905 may include a receiver 910, a base station communications manager 915, and a transmitter 920.
  • the base station communications manager 915 can be implemented, at least in part, by one or both of a modem and a processor. Each of these components may be in communication with one another (for example, via one or more buses) .
  • the receiver 910 may receive information such as packets, user data, or control information associated with various information channels (for example, control channels, data channels, and information related to duration alignment for physical shared channel repetitions in multi-panel transmissions) . Information may be passed on to other components of the device 905.
  • the receiver 910 may be an example of aspects of the transceiver 1220 described with reference to Figure 12.
  • the receiver 910 may utilize a single antenna or a set of antennas.
  • the base station communications manager 915 may transmit, to a UE, a set of DCI messages, for example, a first DCI message of the set schedules a first set of PUSCH occasions and a second DCI message of the set schedules a second set of PUSCH occasions.
  • the base station communications manager 915 may receive a first PUSCH transmission associated with the first set of PUSCH occasions and a second PUSCH transmission associated with the second set of PUSCH occasions, where the first PUSCH transmission and the second PUSCH transmission are aligned based on an overlap, in a time domain or a frequency domain, or both, between the first PUSCH transmission and the second PUSCH transmission.
  • the transmitter 920 may transmit signals generated by other components of the device 905.
  • the transmitter 920 may be collocated with a receiver 910 in a transceiver component.
  • the transmitter 920 may be an example of aspects of the transceiver 1220 described with reference to Figure 12.
  • the transmitter 920 may utilize a single antenna or a set of antennas.
  • Figure 10 shows a block diagram of a device 1005 that supports duration alignment for physical shared channel repetitions in multi-panel transmissions in accordance with aspects of the present disclosure.
  • the device 1005 may be an example of aspects of a device 905, or a base station 105 as described herein.
  • the device 1005 may include a receiver 1010, a base station communications manager 1015, and a transmitter 1030.
  • the base station communications manager 1015 can be implemented, at least in part, by one or both of a modem and a processor. Each of these components may be in communication with one another (for example, via one or more buses) .
  • the receiver 1010 may receive information such as packets, user data, or control information associated with various information channels (for example, control channels, data channels, and information related to duration alignment for physical shared channel repetitions in multi-panel transmissions) . Information may be passed on to other components of the device 1005.
  • the receiver 1010 may be an example of aspects of the transceiver 1220 described with reference to Figure 12.
  • the receiver 1010 may utilize a single antenna or a set of antennas.
  • the base station communications manager 1015 may include a DCI message component 1020 and a channel component 1025.
  • the DCI message component 1020 may transmit, to a UE, a set of DCI messages, where a first DCI message of the set schedules a first set of PUSCH occasions and a second DCI message of the set schedules a second set of PUSCH occasions.
  • the channel component 1025 may receive a first PUSCH transmission associated with the first set of PUSCH occasions and a second PUSCH transmission associated with the second set of PUSCH occasions, where the first PUSCH transmission and the second PUSCH transmission are aligned based on an overlap, in a time domain or a frequency domain, or both, between the first PUSCH transmission and the second PUSCH transmission.
  • the transmitter 1030 may transmit signals generated by other components of the device 1005.
  • the transmitter 1030 may be collocated with a receiver 1010 in a transceiver component.
  • the transmitter 1030 may be an example of aspects of the transceiver 1220 described with reference to Figure 12.
  • the transmitter 1030 may utilize a single antenna or a set of antennas.
  • FIG. 11 shows a block diagram of a base station communications manager 1105 that supports duration alignment for physical shared channel repetitions in multi-panel transmissions in accordance with aspects of the present disclosure.
  • the base station communications manager 1105 may include a DCI message component 1110, a channel component 1115, a symbol component 1120, and a configuration component 1125. Each of these components may communicate, directly or indirectly, with one another (for example, via one or more buses) .
  • the DCI message component 1110 may transmit, to a UE, a set of DCI messages, where a first DCI message of the set schedules a first set of PUSCH occasions and a second DCI message of the set schedules a second set of PUSCH occasions.
  • the channel component 1115 may receive a first PUSCH transmission associated with the first set of PUSCH occasions and a second PUSCH transmission associated with the second set of PUSCH occasions.
  • the first PUSCH transmission and the second PUSCH transmission are aligned based on an overlap, in a time domain or a frequency domain, or both, between the first PUSCH transmission and the second PUSCH transmission.
  • the overlap is a partial overlap, in the time domain or the frequency domain, or both.
  • the overlap is a full overlap, in the time domain or the frequency domain, or both.
  • the symbol component 1120 may allocate a first set of DMRS symbols associated with the first PUSCH transmission in a beginning portion of a first slot and a second set of DMRS symbols associated with the second PUSCH transmission in a beginning portion of a second slot, where the receiving includes receiving the first PUSCH transmission and the second PUSCH transmission based on the allocating.
  • the first set of DMRS symbols and the second set of DMRS symbols include a same quantity of DMRS symbols.
  • the symbol component 1120 may allocate a third set of DMRS symbols associated with the first PUSCH transmission in a portion of the first slot after the beginning portion of the first slot and a fourth set of DMRS symbols associated with the second PUSCH transmission in a portion of the second slot after the beginning portion of the second slot, where the receiving includes receiving the first PUSCH transmission and the second PUSCH transmission based on the third set of DMRS symbols and the fourth set of DMRS symbols.
  • the third set of DMRS symbols and the fourth set of DMRS symbols include a same quantity of DMRS symbols.
  • the symbol component 1120 may allocate a first set of DMRS symbols associated with the first PUSCH transmission and a second set of DMRS symbols associated with the second PUSCH transmission where the overlap, in the time domain or the frequency domain, or both, between the first PUSCH transmission and the second PUSCH transmission includes a same quantity of DMRS symbols from the first set of DMRS symbols and the second set of DMRS symbols, and where the receiving includes receiving the first PUSCH transmission and the second PUSCH transmission based on the first set of DMRS symbols and the second set of DMRS symbols.
  • the configuration component 1125 may assign a DMRS configuration type associated with the first PUSCH transmission and a second DMRS configuration type associated with the second PUSCH transmission, where the receiving includes receiving the first PUSCH transmission and the second PUSCH transmission based on the DMRS configuration type and the same DMRS configuration type.
  • Figure 12 shows a diagram of a system including a device 1205 that supports duration alignment for physical shared channel repetitions in multi-panel transmissions in accordance with aspects of the present disclosure.
  • the device 1205 may be an example of or include the components of device 905, device 1005, or a base station 105 as described herein.
  • the device 1205 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a base station communications manager 1210, a network communications manager 1215, a transceiver 1220, an antenna 1225, memory 1230, a processor 1240, and an inter-station communications manager 1245. These components may be in electronic communication via one or more buses (for example, bus 1250) .
  • buses for example, bus 1250
  • the base station communications manager 1210 may transmit, to a UE, a set of DCI messages, for example, a first DCI message of the set schedules a first set of PUSCH occasions and a second DCI message of the set schedules a second set of PUSCH occasions.
  • the base station communications manager 1210 may receive a first PUSCH transmission associated with the first set of PUSCH occasions and a second PUSCH transmission associated with the second set of PUSCH occasions.
  • the first PUSCH transmission and the second PUSCH transmission are aligned based on an overlap, in a time domain or a frequency domain, or both, between the first PUSCH transmission and the second PUSCH transmission.
  • the network communications manager 1215 may manage communications with the core network (for example, via one or more wired backhaul links) .
  • the network communications manager 1215 may manage the transfer of data communications for client devices, such as one or more UEs 115.
  • the transceiver 1220 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 1220 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 1220 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the device 1205 may include a single antenna 1225. However, in some other examples, the device 1205 may have more than one antenna 1225, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 1230 may include RAM, ROM, or a combination thereof.
  • the memory 1230 may store computer-readable code 1235 including instructions that, if executed by a processor (for example, the processor 1240) cause the device to perform various functions described herein.
  • the memory 1230 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • the code 1235 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 1235 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some examples, the code 1235 may not be directly executable by the processor 1240 but may cause a computer (for example, if compiled and executed) to perform functions described herein.
  • the processor 1240 may include an intelligent hardware device, (for example, a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 1240 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into processor 1240.
  • the processor 1240 may be configured to execute computer-readable instructions stored in a memory (for example, the memory 1230) to cause the device 1205 to perform various functions (for example, functions or tasks supporting duration alignment for physical shared channel repetitions in multi-panel transmissions) .
  • the inter-station communications manager 1245 may manage communications with other base station 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communications manager 1245 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communications manager 1245 may provide an X2 interface within an LTE/LTE-A wireless communications network technology to provide communication between base stations 105.
  • Figure 13 shows a flowchart illustrating a method 1300 that supports duration alignment for physical shared channel repetitions in multi-panel transmissions in accordance with aspects of the present disclosure.
  • the operations of method 1300 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1300 may be performed by a UE communications manager as described with reference to Figures 5–8.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may receive a set of DCI messages, in which a first DCI message of the set schedules a first set of PUSCH occasions and a second DCI message of the set schedules a second set of PUSCH occasions.
  • the operations of 1305 may be performed according to the methods described herein. In some examples, aspects of the operations of 1305 may be performed by a DCI message component as described with reference to Figures 5–8.
  • the UE may determine an overlap, in a time domain or a frequency domain, or both, between a first PUSCH transmission associated with the first set of PUSCH occasions and a second PUSCH associated with the second set of PUSCH occasions.
  • the operations of 1310 may be performed according to the methods described herein. In some examples, aspects of the operations of 1310 may be performed by an overlap component as described with reference to Figures 5–8.
  • the UE may align the first PUSCH transmission with the second PUSCH transmission based on the overlap in the time domain or the frequency domain, or both.
  • the operations of 1315 may be performed according to the methods described herein. In some examples, aspects of the operations of 1315 may be performed by an alignment component as described with reference to Figures 5–8.
  • the UE may transmit, based on the aligning, the first PUSCH transmission using a first antenna panel of the UE and the second PUSCH transmission using a second antenna panel of the UE.
  • the operations of 1320 may be performed according to the methods described herein. In some examples, aspects of the operations of 1320 may be performed by a channel component as described with reference to Figures 5–8.
  • Figure 14 shows a flowchart illustrating a method 1400 that supports duration alignment for physical shared channel repetitions in multi-panel transmissions in accordance with aspects of the present disclosure.
  • the operations of method 1400 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1400 may be performed by a UE communications manager as described with reference to Figures 5–8.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may receive a set of DCI messages, in which a first DCI message of the set schedules a first set of PUSCH occasions and a second DCI message of the set schedules a second set of PUSCH occasions.
  • the operations of 1405 may be performed according to the methods described herein. In some examples, aspects of the operations of 1405 may be performed by a DCI message component as described with reference to Figures 5–8.
  • the UE may determine an overlap, in a time domain or a frequency domain, or both, between a first PUSCH transmission associated with the first set of PUSCH occasions and a second PUSCH transmission associated with the second set of PUSCH occasions.
  • the operations of 1410 may be performed according to the methods described herein. In some examples, aspects of the operations of 1410 may be performed by an overlap component as described with reference to Figures 5–8.
  • the UE may determine a first set of DMRS symbols associated with the first PUSCH transmission in a beginning portion of a first slot and a second set of DMRS symbols associated with the second PUSCH transmission in a beginning portion of a second slot.
  • the operations of 1415 may be performed according to the methods described herein. In some examples, aspects of the operations of 1415 may be performed by a symbol component as described with reference to Figures 5–8.
  • the UE may align the first PUSCH transmission with the second PUSCH transmission based on the first set of DMRS symbols and the second set of DMRS symbols.
  • the operations of 1420 may be performed according to the methods described herein. In some examples, aspects of the operations of 1420 may be performed by an alignment component as described with reference to Figures 5–8.
  • the UE may transmit, based on the aligning, the first PUSCH transmission using a first antenna panel of the UE and the second PUSCH transmission using a second antenna panel of the UE.
  • the operations of 1425 may be performed according to the methods described herein. In some examples, aspects of the operations of 1425 may be performed by a channel component as described with reference to Figures 5–8.
  • Figure 15 shows a flowchart illustrating a method 1500 that supports duration alignment for physical shared channel repetitions in multi-panel transmissions in accordance with aspects of the present disclosure.
  • the operations of method 1500 may be implemented by a base station 105 or its components as described herein.
  • the operations of method 1500 may be performed by a base station communications manager as described with reference to Figures 9–12.
  • a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
  • the base station may transmit, to a UE, a set of DCI messages, where a first DCI message of the set schedules a first set of PUSCH occasions and a second DCI of the set schedules a second set of PUSCH occasions.
  • the operations of 1505 may be performed according to the methods described herein. In some examples, aspects of the operations of 1505 may be performed by a DCI message component as described with reference to Figures 9–12.
  • the base station may receive a first PUSCH transmission associated with the first set of PUSCH occasions and a second PUSCH transmission associated with the second set of PUSCH occasions, where the first PUSCH transmission and the second PUSCH transmission are aligned based on an overlap, in a time domain or a frequency domain, or both, between the first PUSCH transmission and the second PUSCH transmission.
  • the operations of 1510 may be performed according to the methods described herein. In some examples, aspects of the operations of 1510 may be performed by a channel component as described with reference to Figures 9–12.
  • Figure 16 shows a flowchart illustrating a method 1600 that supports duration alignment for physical shared channel repetitions in multi-panel transmissions in accordance with aspects of the present disclosure.
  • the operations of method 1600 may be implemented by a base station 105 or its components as described herein.
  • the operations of method 1600 may be performed by a base station communications manager as described with reference to Figures 9–12.
  • a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
  • the base station may allocate a first set of DMRS symbols associated with a first PUSCH transmission in a beginning portion of a first slot and a second set of DMRS symbols associated with a second PUSCH transmission in a beginning portion of a second slot.
  • the operations of 1605 may be performed according to the methods described herein. In some examples, aspects of the operations of 1605 may be performed by a symbol component as described with reference to Figures 9–12.
  • the base station may transmit, to a UE, a set of DCI messages, in which a first DCI message of the set schedules a first set of PUSCH occasions and a second DCI message of the set schedules a second set of PUSCH occasions, the first PUSCH transmission associated with the first set of PUSCH occasions and the second PUSCH transmission associated with the second set of PUSCH occasions.
  • the operations of 1610 may be performed according to the methods described herein. In some examples, aspects of the operations of 1610 may be performed by a DCI message component as described with reference to Figures 9–12.
  • the base station may receive the first PUSCH transmission and the second PUSCH transmission where the first PUSCH transmission and the second PUSCH transmission are aligned based on an overlap, in a time domain or a frequency domain, or both, between the first PUSCH transmission and the second PUSCH transmission and based on the allocating.
  • the operations of 1615 may be performed according to the methods described herein. In some examples, aspects of the operations of 1615 may be performed by a channel component as described with reference to Figures 9–12.
  • LTE, LTE-A, LTE-A Pro, or NR may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks.
  • the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
  • UMB Ultra Mobile Broadband
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Institute of Electrical and Electronics Engineers
  • WiMAX IEEE 802.16
  • IEEE 802.20 Flash-OFDM
  • Information and signals described herein may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (for example, a combination of a digital signal processor (DSP) and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • DSP digital signal processor
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special purpose computer.
  • non-transitory computer-readable media may include random-access memory (RAM) , read-only memory (ROM) , electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium.
  • RAM random-access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable ROM
  • flash memory compact disk (CD) ROM or other optical disk storage
  • CD compact disk
  • magnetic disk storage or other magnetic storage devices or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer,
  • Disk and disc include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Methods, systems, and devices for wireless communications are described. A communication device, which may be a user equipment (UE), may receive a set of downlink control information (DCI) messages, for example, a first DCI message scheduling a first set of physical uplink shared channel (PUSCH) occasions and a second DCI message scheduling a second set of PUSCH occasions. The UE may determine an overlap, in a time domain or a frequency domain, or both, between a first PUSCH transmission associated with the first set of PUSCH occasions and a second PUSCH transmission associated with the second set of PUSCH occasions. Based on the overlap, the UE may align the first PUSCH transmission with the second PUSCH transmission. The UE may then transmit the first PUSCH transmission using a first antenna panel of the UE and the second PUSCH channel transmissions using a second antenna panel of the UE.

Description

DURATION ALIGNMENT FOR PHYSICAL SHARED CHANNEL REPETITIONS IN MULTI-PANEL TRANSMISSIONS TECHNICAL FIELD
The following relates to wireless communications and more specifically to duration alignment for physical shared channel repetitions in multi-panel transmissions.
DESCRIPTION OF THE RELATED TECHNOLOGY
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (for example, time, frequency, and power) . Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems. These systems may employ technologies such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , or discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) .
A wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) . Some communication devices may support multiple antennas to provide transmit diversity and receive diversity, or to enable multiple-input multiple-output (MIMO) transmissions or beamforming. These antennas may be located within one or more antenna arrays or antenna panels. In some cases, two or more downlink transmissions between communication devices may overlap in a time domain or a frequency domain, or both, or two or more uplink transmissions between the communication devices may overlap in the time domain or the frequency domain, or both. These communication devices may experience interference between the respective downlink transmissions, or interference between the respective uplink transmissions due to the overlap of the respective downlink transmissions or the respective uplink transmissions.
SUMMARY
Various aspects of the described techniques relate to configuring a wireless communications device, which may be otherwise known as a user equipment (UE) , to support physical shared channel alignment, such as for fifth generation (5G) new radio (NR) systems. A wireless communication device such as a base station or a UE may support multi-panel transmissions. For example, each of the base station or the UE may include multiple antenna arrays or panels each including multiple antennas that may be configured to provide transmit diversity and receive diversity or to enable multiple-input multiple-output (MIMO) transmissions or beamforming. In some instances the base station may schedule or configure the UE for multiple (two or more) uplink transmissions in which each respective uplink transmission is associated with a different antenna array or panel of the UE. For example, the base station may configure the UE with multiple sets of uplink data channel occasions (for example, physical uplink shared channel (PUSCH) occasions) , each for a different respective uplink transmission. In some cases, multiple uplink transmissions associated with the uplink data channel occasions may overlap in a time domain or a frequency domain, or both. The overlap may result in interference between the multiple uplink transmissions. To reduce or mitigate the interference between the multiple uplink transmissions, the UE may align the multiple uplink transmissions in the time domain or the frequency domain, or both. The UE may then transmit each aligned uplink transmission using a respective antenna panel of the UE. The described techniques may, as a result, include features for improvements to UE operations and, in some examples, may promote high reliability and increased data rates, among other benefits.
One innovative aspect of the subject matter described in this disclosure can be implemented in a method for wireless communication. The method includes receiving a set of downlink control information (DCI) messages, wherein a first DCI message of the set schedules a first set of PUSCH occasions and a second DCI message of the set schedules a second set of PUSCH occasions, determining an overlap, in a time domain or a frequency domain, or both, between a first PUSCH transmission associated with the first set of PUSCH occasions and a second PUSCH transmission associated with the second set of PUSCH occasions, aligning the first PUSCH transmission with the second PUSCH transmission based at least in part on the overlap in the time domain or the frequency domain, or both, and transmitting, based at least in part on the aligning, the first PUSCH transmission using a first  antenna panel of the UE and the second PUSCH transmission using a second antenna panel of the UE. In some examples, the method includes aligning the first PUSCH transmission and the second PUSCH transmission based at least in part on aligning one or more demodulation reference signals (DMRSs) associated with the first PUSCH transmission with one or more DMRSs associated with the second PUSCH transmission in the time domain or the frequency domain, or both.
Another innovative aspect of the subject matter described in this disclosure can be implemented in an apparatus for wireless communication. The apparatus includes a processor, memory coupled with the processor, and instructions stored in the memory and executable by the processor to cause the apparatus to receive a set of DCI messages, wherein a first DCI message of the set schedules a first set of PUSCH occasions and a second DCI message of the set schedules a second set of PUSCH occasions, determine an overlap, in a time domain or a frequency domain, or both, between a first PUSCH transmission associated with the first set of PUSCH occasions and a second PUSCH transmission associated with the second set of PUSCH occasions, align the first PUSCH transmission with the second PUSCH transmission based at least in part on the overlap in the time domain or the frequency domain, or both, and transmit, based at least in part on the aligning, the first PUSCH transmission using a first antenna panel of the UE and the second PUSCH transmission using a second antenna panel of the UE. In some examples, the processor may cause the apparatus to align the first PUSCH transmission and the second PUSCH transmission based at least in part on aligning one or more DMRSs associated with the first PUSCH transmission with one or more DMRSs associated with the second PUSCH transmission in the time domain or the frequency domain, or both.
Another innovative aspect of the subject matter described in this disclosure can be implemented in a method for wireless communication. The method includes transmitting, to a UE, a set of DCI messages, wherein a first DCI message of the set schedules a first set of PUSCH occasions and a second DCI message of the set schedules a second set of PUSCH occasions, and receiving a first PUSCH transmission associated with the first set of PUSCH occasions and a second PUSCH transmission associated with the second set of PUSCH occasions, wherein the first PUSCH transmission and the second PUSCH transmission are aligned based at least in part on an overlap, in a time domain or a frequency domain, or both, between the first PUSCH transmission and the second PUSCH transmission. In some  examples, the first PUSCH transmission and the second PUSCH transmission are aligned based at least in part on one or more DMRSs associated with the first PUSCH transmission aligning with one or more DMRSs associated with the second PUSCH transmission in the time domain or the frequency domain, or both.
Another innovative aspect of the subject matter described in this disclosure can be implemented in an apparatus for wireless communication. The apparatus includes a processor, memory coupled with the processor, and instructions stored in the memory and executable by the processor to cause the apparatus to transmit, to a UE, a set of DCI messages, wherein a first DCI message of the set schedules a first set of PUSCH occasions and a second DCI message of the set schedules a second set of PUSCH occasions, and receive a first PUSCH transmission associated with the first set of PUSCH occasions and a second PUSCH transmission associated with the second set of PUSCH occasions, wherein the first PUSCH transmission and the second PUSCH transmission are aligned based at least in part on an overlap, in a time domain or a frequency domain, or both, between the first PUSCH transmission and the second PUSCH transmission. In some examples, the first PUSCH transmission and the second PUSCH transmission are aligned based at least in part on one or more DMRSs of the first PUSCH transmission aligning with one or more DMRSs of the second PUSCH transmission in the time domain or the frequency domain, or both.
BRIEF DESCRIPTION OF THE DRAWINGS
Figures 1 and 2 illustrate examples of wireless communications systems that support duration alignment for physical shared channel repetitions in multi-panel transmissions in accordance with aspects of the present disclosure.
Figures 3A–3C illustrate examples of transmission schemes that support duration alignment for physical shared channel repetitions in multi-panel transmissions in accordance with aspects of the present disclosure.
Figure 4 illustrates an example of a process flow that supports duration alignment for physical shared channel repetitions in multi-panel transmissions in accordance with aspects of the present disclosure.
Figures 5 and 6 show block diagrams of devices that support duration alignment for physical shared channel repetitions in multi-panel transmissions in accordance with aspects of the present disclosure.
Figure 7 shows a block diagram of a user equipment (UE) communications manager that supports duration alignment for physical shared channel repetitions in multi-panel transmissions in accordance with aspects of the present disclosure.
Figure 8 shows a diagram of a system including a device that supports duration alignment for physical shared channel repetitions in multi-panel transmissions in accordance with aspects of the present disclosure.
Figures 9 and 10 show block diagrams of devices that support duration alignment for physical shared channel repetitions in multi-panel transmissions in accordance with aspects of the present disclosure.
Figure 11 shows a block diagram of a base station communications manager that supports duration alignment for physical shared channel repetitions in multi-panel transmissions in accordance with aspects of the present disclosure.
Figure 12 shows a diagram of a system including a device that supports duration alignment for physical shared channel repetitions in multi-panel transmissions in accordance with aspects of the present disclosure.
Figures 13–16 show flowcharts illustrating methods that support duration alignment for physical shared channel repetitions in multi-panel transmissions in accordance with aspects of the present disclosure.
DETAILED DESCRIPTION
Some wireless communications systems include wireless communication devices, such as user equipments (UEs) and base stations (for example, next-generation NodeBs or giga-NodeBs (either of which may be referred to as a gNB) ) , that support one or more radio access technologies, such as fifth generation (5G) systems (which may be referred to as New Radio (NR) systems) , among others. The communication devices may wirelessly communicate with each other over physical channels including a physical control channel and a physical data channel. Examples of physical control channels may include, for downlink  transmissions, a physical downlink control channel (PDCCH) , and, for uplink transmissions, a physical uplink control channel (PUCCH) , among others. Examples of physical data channels may include, for downlink transmissions, a physical downlink shared channel (PDSCH) , and, for uplink transmissions, a physical uplink shared channel (PUSCH) , among others. Each of the communication devices may also be configured with multiple antennas to provide transmit diversity or receive diversity, or to enable multiple-input multiple-out (MIMO) transmissions or beamforming. The multiple antennas may be positioned or arranged within multiple antenna arrays or antenna panels. Wireless communications between the communication devices using multiple antenna panels may be referred to as multi-panel transmissions. In some cases, resources of the individual transmissions within a multi-panel transmission may overlap in a time domain or a frequency domain, or both, which may result in interference between the individual transmissions of the multi-panel transmission. For example, the base station may configure a multi-panel UE for multiple uplink transmissions, from multiple respective panels of the UE, that share time or frequency resources leading to interference between the uplink transmissions.
Generally, a communications device may receive or transmit downlink or uplink transmissions over multiple downlink or uplink occasions, respectively. A downlink or uplink occasion may be referred to as a transmission occasion. A transmission occasion may include various frequency resources (for example, carriers or subcarriers) and time resources (for example, symbols, minislots, slots, subframes, or frames) . In some cases, at least two downlink or uplink transmissions associated with at least two transmission occasions may occupy some of the same time resources or frequency resources, or both. That is, resources for at least two respective downlink transmissions may overlap in a time domain or a frequency domain, or both, or resources for at least two respective uplink transmissions may overlap in the time domain or the frequency domain, or both. The overlap may cause interference between the respective downlink transmissions, or between the respective uplink transmissions thereby degrading downlink or uplink transmission performance and reliability.
Various aspects of the described techniques relate to aligning overlapping transmissions to reduce or mitigate interference between, or otherwise to increase the transmission performance or reliability of, the overlapping transmissions, the communication devices may, for example, align overlapping downlink or uplink transmissions associated with different antenna panels of a multi-panel communication device. For example, a base  station may transmit to a UE one or more messages scheduling a first set of transmission occasions for a first uplink transmission and a second set of transmission occasions for a second uplink transmission. The UE may determine that the first uplink transmission associated with the first set of transmission occasions overlaps in time or frequency with the second uplink transmission associated with the second set of transmission occasions. Based on the determination, the UE may align the first uplink transmission with the second uplink transmission. For example, the UE may align one or more demodulation reference signals (DMRSs) associated with the first uplink transmission with one or more DMRSs associated with the second uplink transmission in a time domain or a frequency domain, or both. The UE may then transmit the first uplink transmission using a first antenna panel of the UE and may concurrently transmit the second uplink transmission using a second antenna panel of the UE. Likewise, the base station may align a first downlink transmission that overlaps with a second downlink transmission in a time domain or a frequency domain, or both. For example, the base station may align one or more DMRSs associated with the first downlink transmission with one or more DMRSs associated with the second downlink transmission in the time domain or the frequency domain, or both
Various aspects of the subject matter described in this disclosure may be implemented to realize one or more potential advantages, including providing benefits and enhancements to the operation of the communication devices. In some examples, the operations performed by the described communication devices to align overlapping downlink or uplink transmissions may improve channel estimation by reducing or eliminating interference caused by the overlap. In some examples, operations performed by the described communication devices may support improvements to power consumption, reliability for uplink communications, spectral efficiency, higher data rates and, in some examples, low latency for uplink communications, among other benefits.
Aspects of the disclosure are initially described in the context of wireless communications systems. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to duration alignment for physical shared channel repetitions in multi-panel transmissions.
Figure 1 illustrates an example of a wireless communications system 100 that supports duration alignment for physical shared channel repetitions in multi-panel  transmissions in accordance with aspects of the present disclosure. The wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130. In some examples, the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network. In some examples, the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (for example, mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
The base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities. The base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125. Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125. The coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
The UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times. The UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in Figure 1. The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (for example, core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in Figure 1.
The base stations 105 may communicate with the core network 130, or with one another, or both. For example, the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (for example, via an S1, N2, N3, or other interface) . The base stations 105 may communicate with one another over the backhaul links 120 (for example, via an X2, Xn, or other interface) either directly (for example, directly between base stations 105) , or indirectly (for example, via core network 130) , or both. In some examples, the backhaul links 120 may be or include one or more wireless links. One or more of the  base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, in which the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples. A UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer. In some examples, a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples. The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in Figure 1.
The UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers. The term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125. For example, a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (for example, a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (for example, LTE, LTE-A, LTE-A Pro, NR) . Each physical layer channel may carry acquisition signaling (for example, synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling. The wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation. A UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration. Carrier aggregation may  be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
In some examples (for example, in a carrier aggregation configuration) , a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers. A carrier may be associated with a frequency channel (for example, an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) and may be positioned according to a channel raster for discovery by the UEs 115. A carrier may be operated in a standalone mode in which initial acquisition and connection may be conducted by the UEs 115 via the carrier, or the carrier may be operated in a non-standalone mode in which a connection is anchored using a different carrier (for example, of the same or a different radio access technology) .
The communication links 125 shown in the wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115. Carriers may carry downlink or uplink communications (for example, in an FDD mode) or may be configured to carry downlink and uplink communications (for example, in a TDD mode) . A carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100. For example, the carrier bandwidth may be one of a number of determined bandwidths for carriers of a particular radio access technology (for example, 1.4, 3, 5, 10, 15, 20, 40, or 80 megahertz (MHz) ) . Devices of the wireless communications system 100 (for example, the base stations 105, the UEs 115, or both) may have hardware configurations that support communications over a particular carrier bandwidth or may be configurable to support communications over one of a set of carrier bandwidths. In some examples, the wireless communications system 100 may include base stations 105 or UEs 115 that support simultaneous communications via carriers associated with multiple carrier bandwidths. In some examples, each served UE 115 may be configured for operating over portions (for example, a sub-band, a BWP) or all of a carrier bandwidth.
Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (for example, using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread  OFDM (DFT-S-OFDM) ) . In a system employing MCM techniques, a resource element may consist of one symbol duration (for example, a duration of one modulation symbol) and one subcarrier, in which the symbol duration and subcarrier spacing are inversely related. The number of bits carried by each resource element may depend on the modulation scheme (for example, the order of the modulation scheme, the coding rate of the modulation scheme, or both) . The resource elements that a UE 115 receives and the higher the order of the modulation scheme, the higher the data rate may be for the UE 115. A wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (for example, spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
One or more numerologies for a carrier may be supported, in which a numerology may include a subcarrier spacing (Δf) and a cyclic prefix. A carrier may be divided into one or more BWPs having the same or different numerologies. In some examples, a UE 115 may be configured with multiple BWPs. In some examples, a single BWP for a carrier may be active at a given time and communications for the UE 115 may be restricted to one or more active BWPs. The time intervals for the base stations 105 or the UEs 115 may be expressed in multiples of a basic time unit which may, for example, refer to a sampling duration of T s=1/ (Δf max·N f) seconds, in which Δf max may represent the maximum supported subcarrier spacing, and N f may represent the maximum supported discrete Fourier transform (DFT) size. Time intervals of a communications resource may be organized according to radio frames each having a specified duration (for example, 10 milliseconds (ms) ) . Each radio frame may be identified by a system frame number (SFN) (for example, ranging from 0 to 1023) .
Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration. In some examples, a frame may be divided (for example, in the time domain) into subframes, and each subframe may be further divided into a number of slots. Alternatively, each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing. Each slot may include a number of symbol durations (for example, depending on the length of the cyclic prefix prepended to each symbol duration) . In some wireless communications systems 100, a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding  the cyclic prefix, each symbol duration may contain one or more (for example, N f) sampling durations. The duration of a symbol duration may depend on the subcarrier spacing or frequency band of operation. A subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (for example, in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) . In some examples, the TTI duration (for example, the number of symbol durations in a TTI) may be variable. Additionally or alternatively, the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (for example, in bursts of shortened TTIs (sTTIs) ) .
Physical channels may be multiplexed on a carrier according to various techniques. A physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques. A control region (for example, a control resource set (CORESET) ) for a physical control channel may be defined by a number of symbol durations and may extend across the system bandwidth or a subset of the system bandwidth of the carrier. One or more control regions (for example, CORESETs) may be configured for a set of the UEs 115. For example, one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner. An aggregation level for a control channel candidate may refer to a number of control channel resources (for example, control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size. Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
Each base station 105 may provide communication coverage via one or more cells, for example a macro cell, a small cell, a hot spot, or other types of cells, or any combination thereof. The term “cell” may refer to a logical communication entity used for communication with a base station 105 (for example, over a carrier) and may be associated with an identifier for distinguishing neighboring cells (for example, a physical cell identifier (PCID) , a virtual cell identifier (VCID) , or others) . In some examples, a cell may also refer to a geographic coverage area 110 or a portion of a geographic coverage area 110 (for  example, a sector) over which the logical communication entity operates. Such cells may range from smaller areas (for example, a structure, a subset of structure) to larger areas depending on various factors such as the capabilities of the base station 105. For example, a cell may be or include a building, a subset of a building, or exterior spaces between or overlapping with geographic coverage areas 110, among other examples.
A macro cell covers a relatively large geographic area (for example, several kilometers in radius) and may allow unrestricted access by the UEs 115 with service subscriptions with the network provider supporting the macro cell. A small cell may be associated with a lower-powered base station 105, as compared with a macro cell, and a small cell may operate in the same or different (for example, licensed, unlicensed) frequency bands as macro cells. Small cells may provide unrestricted access to the UEs 115 with service subscriptions with the network provider or may provide restricted access to the UEs 115 having an association with the small cell (for example, the UEs 115 in a closed subscriber group (CSG) , the UEs 115 associated with users in a home or office) . A base station 105 may support one or multiple cells and may also support communications over the one or more cells using one or multiple component carriers. In some examples, a carrier may support multiple cells, and different cells may be configured according to different protocol types (for example, MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) ) that may provide access for different types of devices.
In some examples, a base station 105 may be movable and provide communication coverage for a moving geographic coverage area 110. In some examples, different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105. In other examples, the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105. The wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
The wireless communications system 100 may support synchronous or asynchronous operation. For synchronous operation, the base stations 105 may have similar frame timings, and transmissions from different base stations 105 may be approximately  aligned in time. For asynchronous operation, the base stations 105 may have different frame timings, and transmissions from different base stations 105 may, in some examples, not be aligned in time. The techniques described herein may be used for either synchronous or asynchronous operations.
Some UEs 115, such as MTC or IoT devices, may be low cost or low complexity devices and may provide for automated communication between machines (for example, via Machine-to-Machine (M2M) communication) . M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention. In some examples, M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay such information to a central server or application program that makes use of the information or presents the information to humans interacting with the application program. Some UEs 115 may be designed to collect information or enable automated behavior of machines or other devices. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (for example, a mode that supports one-way communication via transmission or reception, but not transmission and reception simultaneously) . In some examples, half-duplex communications may be performed at a reduced peak rate. Other power conservation techniques for the UEs 115 include entering a power saving deep sleep mode if not engaging in active communications, operating over a limited bandwidth (for example, according to narrowband communications) , or a combination of these techniques. For example, some UEs 115 may be configured for operation using a narrowband protocol type that is associated with a defined portion or range (for example, set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
The wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof.  For example, the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications. The UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (for example, mission critical functions) . Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) . Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications. The terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
In some examples, a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (for example, using a peer-to-peer (P2P) or D2D protocol) . One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105. Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105. In some examples, groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group. In some examples, a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
In some systems, the D2D communication link 135 may be an example of a communication channel, such as a sidelink communication channel, between vehicles (for example, UEs 115) . In some examples, vehicles may communicate using vehicle-to-everything (V2X) communications, vehicle-to-vehicle (V2V) communications, or some combination of these. A vehicle may signal information related to traffic conditions, signal scheduling, weather, safety, emergencies, or any other information relevant to a V2X system. In some examples, vehicles in a V2X system may communicate with roadside infrastructure, such as roadside units, or with the network via one or more network nodes (for example, base stations 105) using vehicle-to-network (V2N) communications, or with both.
The core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. The core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (for example, a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (for example, a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) . The control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130. User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions. The user plane entity may be connected to the network operators IP services 150. The operators IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
Some of the network devices, such as a base station 105, may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) . Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) . Each access network transmission entity 145 may include one or more antenna panels. In some configurations, various functions of each access network entity 140 or base station 105 may be distributed across various network devices (for example, radio heads and ANCs) or consolidated into a single network device (for example, a base station 105) .
The wireless communications system 100 may operate using one or more frequency bands, in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) . The region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length. The UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors. The transmission of UHF waves may be associated with smaller antennas and shorter ranges (for example, less than 100 kilometers) compared to  transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
The wireless communications system 100 may also operate in a super high frequency (SHF) region using frequency bands from 3 GHz to 30 GHz, also known as the centimeter band, or in an extremely high frequency (EHF) region of the spectrum (for example, from 30 GHz to 300 GHz) , also known as the millimeter band. In some examples, the wireless communications system 100 may support millimeter wave (mmW) communications between the UEs 115 and the base stations 105, and EHF antennas of the respective devices may be smaller and more closely spaced than UHF antennas. In some examples, this may facilitate use of antenna arrays within a device. The propagation of EHF transmissions, however, may be subject to even greater atmospheric attenuation and shorter range than SHF or UHF transmissions. The techniques disclosed herein may be employed across transmissions that use one or more different frequency regions, and designated use of bands across these frequency regions may differ by country or regulating body.
The wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands. For example, the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band. If operating in unlicensed radio frequency spectrum bands, devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance. In some examples, operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (for example, LAA) . Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming. The antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming. For example, one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such  as an antenna tower. In some examples, antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations. A base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115. Likewise, a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations. Additionally or alternatively, an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
The base stations 105 or the UEs 115 may use MIMO communications to exploit multipath signal propagation and increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers. Such techniques may be referred to as spatial multiplexing. The multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas. Each of the multiple signals may be referred to as a separate spatial stream and may carry bits associated with the same data stream (for example, the same codeword) or different data streams (for example, different codewords) . Different spatial layers may be associated with different antenna ports used for channel measurement and reporting. MIMO techniques include single-user MIMO (SU-MIMO) , in which multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) , in which multiple spatial layers are transmitted to multiple devices.
Beamforming, which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (for example, a base station 105, a UE 115) to shape or steer an antenna beam (for example, a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device. Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference. The adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device. The adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a  particular orientation (for example, with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
base station 105 or a UE 115 may use beam sweeping techniques as part of beam forming operations. For example, a base station 105 may use multiple antennas or antenna arrays (for example, antenna panels) to conduct beamforming operations for directional communications with a UE 115. Some signals (for example, synchronization signals, reference signals, beam selection signals, or other control signals) may be transmitted by a base station 105 multiple times in different directions. For example, the base station 105 may transmit a signal according to different beamforming weight sets associated with different directions of transmission. Transmissions in different beam directions may be used to determine (for example, by a transmitting device, such as a base station 105, or by a receiving device, such as a UE 115) a beam direction for later transmission or reception by the base station 105.
Some signals, such as data signals associated with a particular receiving device, may be transmitted by a base station 105 in a single beam direction (for example, a direction associated with the receiving device, such as a UE 115) . In some examples, the beam direction associated with transmissions along a single beam direction may be determined based on a signal that was transmitted in one or more beam directions. For example, a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions and may report to the base station 105 an indication of the signal that the UE 115 received with a highest signal quality or an otherwise acceptable signal quality.
In some examples, transmissions by a device (for example, by a base station 105 or a UE 115) may be performed using multiple beam directions, and the device may use a combination of digital precoding or radio frequency beamforming to generate a combined beam for transmission (for example, from a base station 105 to a UE 115) . The UE 115 may report feedback that indicates precoding weights for one or more beam directions, and the feedback may correspond to a configured number of beams across a system bandwidth or one or more sub-bands. The base station 105 may transmit a reference signal (for example, a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS) ) , which may be precoded or unprecoded. The UE 115 may provide feedback for beam selection, which may be a precoding matrix indicator (PMI) or codebook-based feedback (for  example, a multi-panel type codebook, a linear combination type codebook, a port selection type codebook) . Although these techniques are described with reference to signals transmitted in one or more directions by a base station 105, a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (for example, for determining a beam direction for subsequent transmission or reception by the UE 115) or for transmitting a signal in a single direction (for example, for transmitting data to a receiving device) .
A receiving device (for example, a UE 115) may try multiple receive configurations (for example, directional listening) if receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals. For example, a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets (for example, different directional listening weight sets) applied to signals received at multiple antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at multiple antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive configurations or receive directions. In some examples, a receiving device may use a single receive configuration to receive along a single beam direction (for example, if receiving a data signal) . The single receive configuration may be aligned in a beam direction determined based on listening according to different receive configuration directions (for example, a beam direction determined to have a highest signal strength, highest signal-to-noise ratio (SNR) , or otherwise acceptable signal quality based on listening according to multiple beam directions) .
The wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack. In the user plane, communications at the bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based. A Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels. A Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels. The MAC layer may also use error detection techniques, error correction techniques, or both to support retransmissions at the MAC layer to improve link efficiency. In the control plane, the Radio Resource Control  (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or a core network 130 supporting radio bearers for user plane data. At the physical layer, transport channels may be mapped to physical channels.
The UEs 115 and the base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully. Hybrid automatic repeat request (HARQ) feedback is one technique for increasing the likelihood that data is received correctly over a communication link 125. HARQ may include a combination of error detection (for example, using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (for example, automatic repeat request (ARQ) ) . HARQ may improve throughput at the MAC layer in poor radio conditions (for example, low signal-to-noise conditions) . In some examples, a device may support same-slot HARQ feedback, in which the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
Various aspects generally relate to the UEs 115, in the wireless communications system 100, supporting multi-panel transmissions and more specifically, to aligning uplink transmissions of multi-panel transmissions. For example, the UEs 115 may support aligning two or more uplink transmissions associated with two or more uplink occasions in which each respective uplink transmission of the two or more uplink transmissions is associated with a different antenna array or panel of a respective UE 115, to decrease or mitigate an interference.
In some cases, at least two respective uplink transmissions may occupy some same time resources or frequency resources, or both. That is, one or more resources of the at least two respective uplink transmissions may overlap in a time domain or a frequency domain, or both. The overlap may cause interference at the UEs 115. To prevent interference between the at least two respective uplink transmissions and to improve reliability of the at least two respective uplink transmissions, the UEs 115 may align the at least two respective uplink transmissions based on the overlap. For example, the UEs 115 may align the at least two respective uplink transmissions such that reference signals of the at least two respective uplink transmissions align with one another in the time domain or the  frequency domain, or both. The UEs 115 may thus experience high reliability and low latency uplink transmissions.
Figure 2 illustrates an example of a wireless communications system 200 that supports duration alignment for physical shared channel repetitions in multi-panel transmissions in accordance with aspects of the present disclosure. The wireless communications system 200 may implement aspects of the wireless communications system 100. For example, the wireless communications system 200 may include a base station 105-a and a UE 115-a within a geographic coverage area 110-a. The base station 105-a and the UE 115-a may be examples of a base station 105 and a UE 115 as described with reference to Figure 1. In some examples, the wireless communications system 200 may support multiple radio access technologies including 4G systems such as LTE systems, LTE-A systems, or LTE-A Pro systems, and 5G systems which may be referred to as NR systems.
The base station 105-a and the UE 115-a may be configured with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, MIMO communications, or beamforming. The antennas of the base station 105-a and the UE 115-a may be located within one or more respective antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming. For example, the base station 105-a antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower. In some examples, antennas or antenna arrays associated with the base station 105-a may be located in diverse geographic locations. The base station 105-a may have an antenna array with a number of rows and columns of antenna ports that the base station 105-a may use to support beamforming of communications with the UE 115-a. Likewise, the UE 115-a may have one or more antenna arrays that may support various MIMO or beamforming operations. Additionally or alternatively, an antenna panel may support radio frequency beamforming for a signal transmitted via one or more antenna ports.
The base station 105-a and the UE 115-a may thus be configured to support directional communications (for example, beamformed communications) using the multiple antennas. The base station 105-a and the UE 115-a may communicate via the directional communications using multiple component carriers. For example, the base station 105-a and the UE 115-a may be configured to support multiple downlink component carriers and  multiple uplink component carriers. The base station 105-a and the UE 115-a may be configured to support the directional communications over a carrier bandwidth or may be configured to support the directional communications over one of multiple carrier bandwidths. The base station 105 a and the UE 115 a may support directional communications over communication links 125, which may be an example of a communication link 125 as described with reference to Figure 1. For example, the base station 105 a may transmit directional downlink transmissions via a communication link 125 a, and the UE 115 a may transmit directional uplink transmissions via a communication link 125 b.
The base station 105-a and the UE 115-a may transmit reference signals (for example, DMRSs) to increase an efficiency and a reliability of communications between the base station 105-a and the UE 115-a. The reference signals may be transmitted from the base station 105-a to the UE 115-a, and vice versa. The reference signals transmitted to the UE 115-a may be referred to as downlink reference signals and reference signals transmitted to the base station 105-a may be referred to as uplink reference signals. In some examples, the reference signals may be used by the wireless devices to determine characteristics of a physical channel (for example, a PDSCH, a PUSCH) . The characteristics of a physical channel may also be referred to as a channel estimate, a channel condition, or a channel metric. The UE 115-a and the base station 115-a may use the reference signals to decode or demodulate data transmitted via the physical channel.
The base station 105-a may allocate time and frequency resources for one or more physical channels. For example, the base station 105-a may transmit a set of downlink control information (DCI) messages 210 scheduling one or more PUSCH occasions in which the UE 115-a may transmit a PUSCH transmission (for example, a PUSCH transmission 220-a) . In some examples, the set of DCI messages may include a first DCI message scheduling a first set of PUSCH occasions and a second DCI message scheduling a second set of PUSCH occasions. The UE 115-a may receive the first DCI message and the second DCI message and determine the first PUSCH transmission 220-a associated with the first set of PUSCH occasions and a second PUSCH transmission 220-b associated with the second set of PUSCH occasions. In some examples, the UE 115-a may determine multiple PUSCH transmissions associated with the first set of PUSCH occasions and multiple PUSCH transmissions associated with the second set of PUSCH occasions.
The base station 105-a may transmit the set of DCI messages in one or more CORESETs. For example, the base station 105-a may transmit the first DCI message in a first CORESET and the second DCI message in a second CORESET. In some examples, the first CORESET is associated with a first CORESET pool index and the second COREST is associated with a second CORESET pool index. In some examples, the UE 115-a may determine the first CORESET based on the first CORESET pool index and the second CORESET based on the second CORESET pool index. In some implementations, the first CORESET pool index and the second CORESET pool index are included in a higher layer parameter (for example, a PDCCH-Config parameter) .
In some cases, two or more uplink transmissions may overlap in a time domain or a frequency domain, or both. The overlap may result in interference between the two or more uplink transmissions. For example, the first PUSCH transmission 220-a and the second PUSCH transmission 220-b may overlap in the time domain or the frequency domain, or both. Here, reference signals (for example, DMRSs) of the first the first PUSCH transmission 220-a and the second PUSCH transmission 220-b may overlap in such a way to cause interference that degrades channel estimation for the UE 115-a. In some implementations, the overlap may be a partial overlap in the time domain or the frequency domain, or both. In other implementations, the overlap may be a full overlap in the time domain or the frequency domain, or both. In some examples, the first PUSCH transmission 220-a may overlap with the multiple PUSCH transmissions associated with the second set of PUSCH occasions. In other examples, the second PUSCH transmission 220-b may overlap with the multiple PUSCH transmissions associated with the first set of PUSCH occasions.
Various aspects of the described techniques relate to aligning overlapping transmissions to reduce or mitigate interference between, or otherwise to increase a transmission performance or reliability of the multiple uplink transmissions, the UE 115-a may align the multiple uplink transmissions. For example, the UE 115-a may determine the overlap in the time domain or the frequency domain, or both, between the first PUSCH transmission 220-a and the second PUSCH transmission 220-b associated with different antenna panels of the UE 115-a. The UE 115-a may then align the first PUSCH transmission 220-a with the second PUSCH transmission 220-b based on the overlap. For example, the UE 115-a may align the first PUSCH transmission 220-a with the second PUSCH transmission 220-b such that DMRS symbols of the first PUSCH transmission 220-a overlap  with DMRS symbols of the second PUSCH transmission 220-b. In some implementations, the UE 115-a may align the first PUSCH transmission 220-a with the multiple PUSCH transmissions associated with the second set of PUSCH occasions based on an overlap in the time domain or the frequency domain, or both, between the first PUSCH transmission 220-a and the multiple PUSCH transmissions associated with the second set of PUSCH occasions.
The UE 115-a may align uplink transmissions based on parameters associated with the uplink transmissions. For example, the UE 115-a may align the first PUSCH transmission 220-a with the second PUSCH transmission 220-b based on parameters associated with the first PUSCH transmission 220-a and the second PUSCH transmission 220-b. For example, the base station 105-a may allocate a first set of DMRS symbols associated with the first PUSCH transmission 220-a in a beginning portion of a first slot and a second set of DMRS symbols associated with the second PUSCH transmission 220-b in a beginning portion of a second slot. In some examples, consecutive DMRS symbols in a beginning portion of a slot may be referred to as front-loaded DMRS symbols. The actual number of front-loaded DMRS symbols in the first or second set of DMRS symbols can be either one or two, which may be indicated by a DCI message scheduling a respective PUSCH transmission. The base station 105-a may allocate a first set of front-loaded DMRS symbols associated with the first PUSCH transmission and a second set of front-loaded DMRS symbols associated with the second PUSCH transmission 220-b. The UE 115-a may determine the first set of front-loaded DMRS symbols and the second set of front-loaded DMRS symbols and align the first PUSCH transmission 220-a with the second PUSCH transmission 220-b based on the first set of front-loaded DMRS symbols and the second set of front-loaded DMRS symbols. That is, the UE 115-a may align the first PUSCH transmission 220-a with the second PUSCH transmission 220-b such that the first set of front-loaded DMRS symbols overlap with the second set of front-loaded DMRS symbols in the time domain or the frequency domain, or both. In some examples, the first set of front-loaded DMRS symbols indicated by the first DCI message and the second set of front-loaded DMRS symbols indicated by the second DCI message include a same number of actual front-loaded DMRS symbols and a same DMRS time location.
Additionally, the base station 105-a may allocate additional DMRS symbols associated with the first PUSCH transmission 220-a and the second PUSCH transmission 220-b. For example, the base station 105-a may allocate a third set of DMRS symbols  associated with the first PUSCH transmission 220-a in a portion of the first slot after the beginning portion of the first slot allocated for the first set of front-loaded DMRS symbols. Additionally, the base station 105-a may allocate a fourth set of DMRS symbols associated with the second PUSCH transmission 220-b in a portion of the second slot after the beginning portion of the second slot allocated for the second set of front-loaded DMRS symbols. In some examples, DMRS symbols in a portion of a slot after a beginning portion of a slot allocated for front-loaded DMRS symbols may be referred to as additional DMRS symbols. In some examples, up to three DMRS time locations can be indicated for additional DMRS symbols in one PUSCH occasion, which may depend on a higher-layer configuration and a duration of the scheduled PUSCH occasion. The actual number of additional DMRS symbols in the third or fourth set of DMRS symbols at each DMRS time location can be either one or two, and may be the same as the actual number of front-loaded DMRS.
The base station 105-a may thus allocate a first set of additional DMRS symbols associated with the first PUSCH transmission 220-a and a second set of additional DMRS symbols associated with the second PUSCH transmission 220-b. The UE 115-a may determine the first set of additional DMRS symbols and the second set of DMRS symbols align the first PUSCH transmission 220-a with the second PUSCH transmission 220-b based on the first set of additional DMRS symbols and the second set of additional DMRS symbols. That is, the UE 115-a may align the first PUSCH transmission 220-a with the second PUSCH transmission 220-b such that the first set of additional DMRS symbols overlaps with the second set of additional DMRS symbols in the time domain or the frequency domain, or both. In some examples, the first set of additional DMRS symbols and the second set of additional DMRS symbols include a same time location and a same actual number of DMRS symbols as the actual number of front-loaded DMRS symbols.
The base station 105-a may further allocate a quantity of DMRS symbols associated with the first PUSCH transmission 220-a and the second PUSCH transmission 220-b. In some examples, the UE 115-a may determine a first quantity of DMRS symbols associated with the first PUSCH transmission 220-a and a second quantity of DMRS symbols associated with the second PUSCH transmission 220-b. The UE 115-a may determine that the overlapping portions of the first PUSCH transmission 220-a and the second PUSCH transmission 220-b include a same quantity of DMRS symbols. For an overlapping portion of the first PUSCH transmission 220-a  and the second PUSCH transmission 220-b, the same  quantity of DMRS symbols includes the same number of DMRS time locations, and the same actual number of DMRS symbols at each DMRS time location. The UE 115-a may then align the first PUSCH transmission 220-a  and the second PUSCH transmission 220-b based on the overlapping portions including a same quantity of DMRS symbols. In some examples, the UE 115-a may determine that the first PUSCH transmission 220-a overlaps with the multiple PUSCH transmissions associated with the second set of PUSCH occasions. Here the UE 115-a may determine a third quantity of DMRS symbols associated with the multiple PUSCH transmissions. The UE 115-a may determine that the overlapping portions of the first PUSCH transmission 220-a  and the multiple PUSCH transmissions may include a same quantity of DMRS symbols. The UE 115-a may then align the first PUSCH transmission 220-a with the multiple PUSCH transmissions based on the overlapping portions including a same quantity of DMRS symbols.
The UE 115-a may determine a time location of each DMRS symbols associated with the PUSCH transmissions 220. For example, the UE 115-a may determine a time location of each DMRS symbol associated with the first PUSCH transmission 220-a and a time location of each DMRS symbol associated with the second PUSCH transmission 220-b. The UE 115-a may then align the first PUSCH transmission 220-a with the second PUSCH transmission 220-b such that the time location of each DMRS symbol associated with the first PUSCH transmission 220-a overlaps with the time location of each DMRS symbol associated with the second PUSCH transmission 220-b. In some examples, the UE 115-a aligns the first PUSCH transmission 220-a with the second PUSCH transmission 220-b such that the time location of each DMRS symbol associated with the first PUSCH transmission 220-a located in the overlap overlaps with the time location of each DMRS symbol associated with the second PUSCH transmission 220-b located in the overlap. The UE 115-a aligns the first PUSCH transmission 220-a with the second PUSCH transmission 220-b such that in an overlapping portion of the first PUSCH transmission 220-a and the second PUSCH transmission 220-b, the multiple DMRS have the same number of DMRS time locations, the same DMRS time locations, and the same actual number of DMRS symbols at each DMRS time location.
Additionally the base station 105-a may allocate a DMRS configuration type associated with the first PUSCH transmission 220-a and the second PUSCH transmission 220-b. In some examples, the base station 105-a may allocate a DMRS configuration type  associated with the first PUSCH transmission 220-a and a same DMRS configuration type associated with the second PUSCH transmission 220-b. The UE 115-a may determine the DMRS configuration type associated with the first PUSCH transmission 220-a and the same DMRS configuration type associated with the second PUSCH transmission 220-b. The UE 115-a may then align the first PUSCH transmission 220-a with the second PUSCH transmission 220-b based on the DMRS configuration types being the same.
The base station 105-a may indicate a DMRS code division multiplexing (CDM) group including one or more DMRS ports associated with each set of PUSCH occasions and an uplink transmit beam in each DCI message of the set of DCI messages 210. The uplink transmit beam can be indicated via an uplink transmission configuration indicator (TCI) state, an uplink spatial filter, an uplink spatial relationship information or a sounding reference resource indicator (SRI) in a respective DCI message. The UE 115-a may determine the DMRS CDM group associated with each set of PUSCH occasions based on the TCI state. For example, the UE 115-a may determine a first DMRS CDM group associated with the first set of PUSCH occasions based on a first TCI state of the first DCI message and a second DMRS CDM group associated with the second set of PUSCH occasions based on a second TCI state of the second DCI message. In some examples, one DMRS CDM group associated with one PUSCH occasion can be associated with one TCI state. The UE 115-a may then align the first PUSCH transmission 220-a and the second PUSCH transmission 220-b based on the first DMRS CDM group and the second DMRS CDM group. After aligning two or more uplink transmissions, the UE 115-a may transmit the two or more uplink transmissions to the base station 105-a. For example, after the UE 115-a aligns the first PUSCH transmission 220-a with the second PUSCH transmission 220-b, the UE 115-a may transmit the first PUSCH transmission 220-a by a first antenna panel of the UE 115-a using the fist TCI state and the second PUSCH transmission 220-b by a second antenna panel of the UE 115-a using the second TCI state.
The wireless communications system 200 may configure the UE 115-a to support aligning physical shared channel repetitions in multi-panel transmissions to improve uplink communications. The UE 115-a may, as a result, support one or more features for improvements to power consumption, reliability for uplink communications, spectral efficiency, higher data rates and, in some examples, may promote low latency for channel estimation operations, among other benefits.
Figure 3A illustrates an example of a transmission schemes 300-a that supports duration alignment for physical shared channel repetitions in multi-panel transmissions in accordance with aspects of the present disclosure. The transmission scheme 300-a may implement or may be implemented by aspects of the  wireless communications system  100 and 200 as described with reference to Figures 1 and 2. The transmission scheme 300-a may be based on a configuration by a base station 105, and implemented by a UE 115, and may promote higher reliability and lower latency uplink communications in a wireless communications system. The transmissions scheme 300-a may also be based on a configuration by the base station 105, and implemented by the UE 115 to decrease power consumption by the UE 115, if performing channel estimation operations, among other benefits. It is noted that the transmission scheme 300-a is an example of a transmission scheme, and other transmission schemes may apply the principles described herein.
The transmission scheme 300-a illustrates a portion of an example slot of an uplink transmission. The transmission scheme 300-a may include 14 symbols in a time domain and two sets of PUSCH occasions 310. Each PUSCH occasion 310 may be defined as a set of time resources and frequency resources in which the UE 115 may transmit a PUSCH transmission 305. In some examples, each PUSCH occasion 310 may be associated with multiple PUSCH transmissions 305 associated with different antenna panels of the UE 115. Each PUSCH transmission 305 may include a number of DMRS symbols 315 and a number of data symbols 320. In some implementations, the base station 105 may transmit a set of DCI messages to the UE 115. For example, the base station 105 may transmit a first DCI message scheduling a first set of PUSCH occasion 310-a and a second DCI message scheduling a second set of PUSCH occasions 310-b. Additionally, the first and second DCI messages may indicate DMRS configurations for one or more PUSCH transmissions 305 associated with each respective PUSCH occasion 310. For example, the first and second DCI messages may indicate a quantity of front-loaded DMRS symbols, a quantity of additional DMRS symbols, a total number of DMRS symbols, a location of each DMRS symbol, a DMRS configuration type (for example, type I or type II in mapping type A or mapping type B) , a starting DMRS symbol position, or any combination thereof of a DMRS configuration. The first and second DCI messages may also indicate a quantity of repetitions and a duration for a particular PUSCH transmission 305. Additionally, the first and second DCI messages  may indicate a CDM group associated with each PUSCH occasion 310 and a TCI state in each DCI message.
The transmission scheme 300-a illustrates an example configuration in which at least two PUSCH transmissions 305 overlap in a time domain or a frequency domain, or both. For example, the UE 115 may be configured or indicated (for example, via DCI messages) with a first set of PUSCH occasions 310-a and a second set of PUSCH occasions 310-b. The UE 115 may determine a first PUSCH transmission 305-a and a second PUSCH transmissions 305-b associated with the first set of PUSCH occasions 310-a and a third PUSCH transmission 305-c associated with the second set of PUSCH occasions 310-b. The UE 115 may determine that the first PUSCH transmission 305-a and the third PUSCH transmission 305-c overlap from the third to seventh symbol. Here, the first PUSCH transmission 305-a and the third PUSCH transmission 305-c are depicted as partially overlapping.
Additionally, the UE 115 may determine a DMRS configuration of each PUSCH transmission 305. For example, the UE 115 may determine that the first PUSCH transmission 305-a includes one front-loaded symbol located in the first symbol position of the first PUSCH transmission 305-a and one additional DMRS symbol located in the fifth symbol position of the first PUSCH transmission 305-a and may determine that the first PUSCH transmission 305-a may have a duration of five symbols, may repeat once (for example, the second PUSCH transmission 305-b) and may be associated with a DMRS configuration type (for example, type I or type II in mapping type A, mapping type B) . The UE 115 may also determine that the third PUSCH transmission 305-c includes one front-loaded symbol located in the second symbol position of the third PUSCH transmission 305-c and one additional DMRS symbol located in the sixth symbol position of the third PUSCH transmission 305-c and may determine that the third PUSCH transmission 305-c may have a duration of six symbols, may not repeat, and may be associated with a same DMRS configuration type as the DMRS configuration type associated with the first PUSCH transmission 305-a.
The UE 115 may align the first PUSCH transmission 305-a and the third PUSCH transmission 305-c based on the determined DMRS configurations of the first PUSCH transmission 305-a and the third PUSCH transmission 305-c. For example, the UE 115 may  align the first PUSCH transmission 305-a and the third PUSCH transmission 305-c such that the front-loaded symbol of the first PUSCH transmission 305-a overlaps with the front-loaded symbol of the third PUSCH transmission 305-c and the additional DMRS symbol of the first PUSCH transmission 305-a overlaps with the additional DMRS symbol of the third PUSCH transmission 305-c. Thus, a location of each DMRS symbol of the first PUSCH transmission 305-a may be the same as a location of each DMRS symbol of the third PUSCH transmission 305-c. In some examples, the UE 115 may align the first PUSCH transmission 305-a and the third PUSCH transmission 305-c based on the first PUSCH transmission 305-a having a same DMRS configuration type as the third PUSCH transmission 305-c. For an overlapping portion of the first set of PUSCH occasions 310-a and the second set of PUSCH occasions 310-b, the DMRSs may be aligned with the same number of DMRS time locations (which is two) , the same DMRS time locations (which is the third and seventh symbol in the slot) , and the same actual number of DMRS symbols at each DMRS time location (which is one) .
Figure 3B illustrates an example of a transmission schemes 300-b that supports duration alignment for physical shared channel repetitions in multi-panel transmissions in accordance with aspects of the present disclosure. The transmission scheme 300-b may implement or may be implemented by aspects of the  wireless communications system  100 and 200 as described with reference to Figures 1 and 2. The transmission scheme 300-b may be based on a configuration by a base station 105, and implemented by a UE 115, and may promote higher reliability and lower latency uplink communications in a wireless communications system. The transmissions scheme 300-b may also be based on a configuration by the base station 105, and implemented by the UE 115 to decrease power consumption by the UE 115, if performing channel estimation operations, among other benefits.
The transmission scheme 300-b illustrates a portion of an example slot of an uplink transmission. The transmission scheme 300-b may include 14 symbols in a time domain and two sets of PUSCH occasions 310. In some examples, each PUSCH occasion 310 may be associated with multiple PUSCH transmissions 305 associated with different antenna panels of the UE 115. Each PUSCH transmission 305 may include a number of DMRS symbols 315 and a number of data symbols 320. In some implementations, the base station 105 may transmit a set of DCI messages to the UE 115. For example, the base station  105 may transmit a first DCI message scheduling a first set of PUSCH occasion 310-c and a second DCI message scheduling a second set of PUSCH occasions 310-d. Additionally, the first and second DCI messages may indicate DMRS configurations for one or more PUSCH transmissions 305 associated with each respective PUSCH occasion 310.
The transmission scheme 300-b illustrates an example configuration in which at least two PUSCH transmission 305 overlap in a time domain or a frequency domain, or both. For example, a UE 115 may be configured with a first set of PUSCH occasions 310-c and a second set of PUSCH occasions 310-d. The UE 115 may determine a first PUSCH transmission 305-d and a second PUSCH transmission 305-e associated with the first set of PUSCH occasions 310-c and a third PUSCH transmission 305-f associated with the second set of PUSCH occasions 310-d. Here the third PUSCH transmission 305-f is depicted as partially overlapping with both the first PUSCH transmission 305-d and the second PUSCH transmission 305-e.
The UE 115 may determine a DMRS configuration of the first PUSCH transmission 305-d, the second PUSCH transmission 305-e, and the third PUSCH transmission 305-f. For example, the UE 115 may determine that the first PUSCH transmission 305-d includes one front-loaded symbol located in the first symbol position of the first PUSCH transmission 305-d and no additional DMRS symbols and may determine that the first PUSCH transmission 305-d may have a duration of four symbols, may repeat once (for example, second PUSCH transmission 305-e) and may be associated with a DMRS configuration type. The UE 115 may also determine that the third PUSCH transmission 305-f includes one front-loaded symbol located in the first symbol position of the third PUSCH transmission 305-f, a first additional DMRS symbols located in the fifth symbol position of the third PUSCH transmission 305-f, and a second additional DMRS symbol located in the ninth symbol position of the third PUSCH transmission 305-f. Additionally the UE may determine that the third PUSCH transmission 305-c may have a duration of ten symbols, may not repeat, and may be associated with a same DMRS configuration type as the DMRS configuration type associated with the first PUSCH transmission 305-d.
The UE 115 may align the first PUSCH transmission 305-d, the second PUSCH transmission 305-e, and the third PUSCH transmission 305-f based on the determined DMRS configurations of the first PUSCH transmission 305-d, the second PUSCH transmission  305-e, and the third PUSCH transmission 305-f. For example, the UE 115 may align the first PUSCH transmission 305-d and the second PUSCH transmission 305-e with the third PUSCH transmission 305-f such that overlapping portions of the first PUSCH transmission 305-d, the second PUSCH transmission 305-e, and the third PUSCH transmission 305-f include a same number of DMRS symbols. That is, the UE 115 may align the first PUSCH transmission 305-d and the second PUSCH transmission 305-e with the third PUSCH transmission 305-f such that the front-loaded symbol of the first PUSCH transmission 305-d overlaps with the front-loaded symbol of the third PUSCH transmission 305-f and the front-loaded symbol of the second PUSCH transmission 305-e overlaps with first additional DMRS symbol off the third PUSCH transmission 305-f. Here, the second additional DMRS symbol may not align with a DMRS symbol of the first PUSCH transmission 305-d or the second PUSCH transmission 305-e. In some examples, the UE 115 may align the first PUSCH transmission 305-d and the second PUSCH transmission 305-e with the third PUSCH transmission 305-f based on the third PUSCH transmission 305-f having a same DMRS configuration type as the first PUSCH transmission 305-d and the second PUSCH transmission 305-e. For an overlapping portion of the first set of PUSCH occasions 310-c and the second set of PUSCH occasions 310-d, the DMRSs may be aligned with the same number of DMRS time locations (which is two) , the same DMRS time locations (which is the third and seventh symbol in the slot) , and the same actual number of DMRS symbols at each DMRS time location (which is one) .
Figure 3C illustrates an example of a transmission schemes 300-c that supports duration alignment for physical shared channel repetitions in multi-panel transmissions in accordance with aspects of the present disclosure. The transmission scheme 300-c may implement or may be implemented by aspects of the  wireless communications systems  100 and 200 as described with reference to Figures 1 and 2. The transmission scheme 300-c may be based on a configuration by a base station 105, and implemented by a UE 115, and may promote higher reliability and lower latency uplink communications in a wireless communications system. The transmissions scheme 300-c may also be based on a configuration by the base station 105, and implemented by the UE 115 to decrease power consumption by the UE 115, if performing channel estimation operations, among other benefits.
The transmission scheme 300-c illustrates a portion of an example slot of an uplink transmission. The transmission scheme 300-c may include 14 symbols in a time domain and two sets of PUSCH occasions 310. In some examples, each PUSCH occasion 310 may be associated with multiple PUSCH transmissions 305 associated with different antenna panels of the UE 115. Each PUSCH transmission 305 may include a number of DMRS symbols 315 and a number of data symbols 320. In some implementations, the base station 105 may transmit a set of DCI messages to the UE 115. For example, the base station 105 may transmit a first DCI message scheduling a first set of PUSCH occasion 310-e and a second DCI message scheduling a second set of PUSCH occasions 310-f. The first DCI message and the second DCI message may indicate the same starting symbol for the two sets of PUSCH occasions 310, and the same duration for each PUSCH occasion in the two sets of PUSCH occasions 310. Additionally, the first and second DCI messages may indicate DMRS configurations for one or more PUSCH transmissions 305 associated with each respective PUSCH occasion 310.
The transmission scheme 300-c illustrates an example configuration in which at least two PUSCH transmission 305 overlap in a time domain or a frequency domain, or both. For example, a UE 115 may be configured or indicated with a first set of PUSCH occasions 310-e and a second set of PUSCH occasions 310-f. The UE 115 may determine a first PUSCH transmission 305-g and a second PUSCH transmission 305-h associated with the fifth set of PUSCH occasions 310-e and a third PUSCH transmission 305-i and a fourth PUSCH transmission 305-j associated with the second set of PUSCH occasions 310-f. Here the first PUSCH transmission 305-g and the second PUSCH transmission 305-h are depicted as fully overlapping with the third PUSCH transmission 305-i and the fourth PUSCH transmission 305-j, respectively.
The UE 115 may determine a DMRS configuration of the first PUSCH transmission 305-g, the second PUSCH transmission 305-h, the third PUSCH transmission 305-i, and the fourth PUSCH transmission 305-j. For example, the UE 115 may determine that the first PUSCH transmission 305-g may have a beginning DMRS symbol position of the first symbol of the first PUSCH transmission 305-g, may have a duration of five symbols, and may repeat once (for example, second PUSCH transmission 305-h) . The UE 115 may also determine that the third PUSCH transmission 305-i may have a beginning DMRS symbol position of the first symbol of the third PUSCH transmission 305-i, may have a  duration of five symbols, and may repeat once (for example, fourth PUSCH transmission 305-j) .
The UE 115 may align the first PUSCH transmission 305-g, the second PUSCH transmission 305-h, the third PUSCH transmission 305-i, and the fourth PUSCH transmission 305-j based on the determined DMRS configurations of the first PUSCH transmission 305-g, the second PUSCH transmission 305-h, the third PUSCH transmission 305-i, and the fourth PUSCH transmission 305-j. For example, the UE 115 may align the first PUSCH transmission 305-g and the third PUSCH transmission 305-i such that the beginning DMRS symbol of the first PUSCH transmission 305-g overlaps with the beginning DMRS symbol of the third PUSCH transmission 305-i. Subsequently, the second PUSCH transmission 305-h may be aligned with the fourth PUSCH transmission 305-j due to the first PUSCH transmission 305-g and the third PUSCH transmission 305-i having the same beginning DMRS symbol position and duration. Thus, the UE 115 may align the first PUSCH transmission 305-g, the second PUSCH transmission 305-h, the third PUSCH transmission 305-i, and the fourth PUSCH transmission 305-j based on the first PUSCH transmission 305-g, the second PUSCH transmission 305-h, the third PUSCH transmission 305-i, and the fourth PUSCH transmission 305-j having the same beginning DMRS symbol position and duration.
Figure 4 illustrates an example of a process flow 400 that supports duration alignment for physical shared channel repetitions in multi-panel transmissions in accordance with aspects of the present disclosure. In some examples, the process flow 400 may implement or may be implemented by aspects of the  wireless communications system  100 and 200 described with reference to Figures 1 and 2, respectively. The process flow 400 may be based on a configuration by a base station 105-b, and implemented by a UE 115-b. The base station 105-b and the UE 115-b may be examples of a base station 105 and a UE 115, as described with reference to Figures 1 and 2. The process flow 400 may promote higher reliability and lower latency uplink communications in a wireless communications system. The process flow 400 may also be based on a configuration by the base station 105-b, and implemented by the UE 115-b to decrease power consumption by the UE 115-b, if performing channel estimation operations, among other benefits.
At 405, the base station 105-b may transmit a set of DCI messages to the UE 115-b. The set of DCI messages may include a first DCI message that schedules a first set of PUSCH occasions and a second DCI message that schedules a second set of PUSCH occasions. At 410, the UE 115-b determine an overlap in a time domain or a frequency domain, or both, between a first PUSCH transmission (for example, associated with the first set of PUSCH occasions) and a second PUSCH transmission (for example, associated with the second set of PUSCH occasions) . In some examples, the UE 115-b may determine an overlap between the first PUSCH transmission and one or more PUSCH transmissions associated with the second set of PUSCH occasions. In some implementations, the overlap may be a partial overlap in the time domain or the frequency domain, or both. In other implementations, the overlap may be a full overlap in the time domain or the frequency domain, or both.
At 415, the UE 115-b may align the first PUSCH transmission with the second PUSCH transmission, for example, based at least in part on the overlap. In some examples, the UE 115-b may align the first PUSCH transmission and the second PUSCH transmission so that the overlapping portions include a same quantity of front-loaded DMRS symbols, a same quantity of additional DMRS symbols, a same location of each DMRS symbol, and a same DMRS symbol configuration. In other examples, the UE 115-b may align the first PUSCH transmission and the second PUSCH transmission based on the overlapping transmissions having a same duration and a same beginning DMRS symbol.
At 420, the UE 115-b may transmit the first PUSCH transmission using a first antenna panel of the UE 115-b based on the aligning. At 425, the UE 115-b may transmit the second PUSCH transmission using a second antenna panel of the UE 115-b based on the aligning. Thus the base station 105-b may receive the first PUSCH transmission and the second PUSCH transmission that are aligned based at least in part on the overlap between the first PUSCH transmission and the second PUSCH transmission.
The, process flow 400 may thereby enable the UE 115-b to align multiple PUSCH transmissions associated with multiple sets of PUSCH occasions. The alignment of the multiple PUSCH transmissions may enable interference mitigation for the UE 115-b, if one or more time or frequency resources associated with one scheduled PUSCH transmission are overlapping with one or more time or frequency resources associated with another scheduled  PUSCH transmission. Based on implementing the aligning in the process flow 400, one or more processors of the UE 115-b (for example, processor (s) controlling or incorporated with a UE communications manager) may achieve reduced power consumption and may achieve higher reliability and lower latency for channel estimation operations, among other benefits.
Figure 5 shows a block diagram of a device 505 that supports duration alignment for physical shared channel repetitions in multi-panel transmissions in accordance with aspects of the present disclosure. The device 505 may be an example of aspects of a UE 115 as described herein. The device 505 may include a receiver 510, a UE communications manager 515, and a transmitter 520. The UE communications manager 515 can be implemented, at least in part, by one or both of a modem and a processor. Each of these components may be in communication with one another (for example, via one or more buses) .
The receiver 510 may receive information such as packets, user data, or control information associated with various information channels (for example, control channels, data channels, and information related to duration alignment for physical shared channel repetitions in multi-panel transmissions) . Information may be passed on to other components of the device 505. The receiver 510 may be an example of aspects of the transceiver 820 described with reference to Figure 8. The receiver 510 may utilize a single antenna or a set of antennas.
The UE communications manager 515 may receive a set of DCI messages, where a first DCI message of the set schedules a first set of PUSCH occasions and a second DCI message of the set schedules a second set of PUSCH occasions, determine an overlap, in a time domain or a frequency domain, or both, between a first PUSCH transmission associated with the first set of PUSCH occasions and a second PUSCH transmission associated with the second set of PUSCH occasions, align the first PUSCH transmission with the second PUSCH transmission based on the overlap in the time domain or the frequency domain, or both, and transmit, based on the aligning, the first PUSCH transmission using a first antenna panel of the UE and the second PUSCH transmission using a second antenna panel of the UE.
The UE communications manager 515 may be implemented as an integrated circuit or chipset for the device 505 modem, and the receiver 510 and the transmitter 520 may be implemented as analog components (for example, amplifiers, filters, antennas) coupled  with the device 505 modem to enable wireless transmission and reception. The UE communications manager 515 may be implemented to realize one or more potential improvements. At least one implementation may enable the UE communications manager 515 to align multiple uplink data channels (for example, PUSCH) using multiple antenna panels. Based on implementing the aligning, one or more processors of the device 505 (for example, processor (s) controlling or incorporated with the UE communications manager 515) may promote high reliability and low latency channel estimation operations, among other benefits.
The transmitter 520 may transmit signals generated by other components of the device 505. In some examples, the transmitter 520 may be collocated with a receiver 510 in a transceiver component. For example, the transmitter 520 may be an example of aspects of the transceiver 820 described with reference to Figure 8. The transmitter 520 may utilize a single antenna or a set of antennas.
Figure 6 shows a block diagram of a device 605 that supports duration alignment for physical shared channel repetitions in multi-panel transmissions in accordance with aspects of the present disclosure. The device 605 may be an example of aspects of a device 505, or a UE 115 as described herein. The device 605 may include a receiver 610, a UE communications manager 615, and a transmitter 640. The UE communications manager 615 can be implemented, at least in part, by one or both of a modem and a processor. Each of these components may be in communication with one another (for example, via one or more buses) .
The receiver 610 may receive information such as packets, user data, or control information associated with various information channels (for example, control channels, data channels, and information related to duration alignment for physical shared channel repetitions in multi-panel transmissions) . Information may be passed on to other components of the device 605. The receiver 610 may be an example of aspects of the transceiver 820 described with reference to Figure 8. The receiver 610 may utilize a single antenna or a set of antennas.
The UE communications manager 615 may include a DCI message component 620, an overlap component 625, an alignment component 630, and a channel component 635. The DCI message component 620 may receive a set of DCI messages, where a first DCI message  of the set schedules a first set of PUSCH occasions and a second DCI message of the set schedules a second set of PUSCH occasions. The overlap component 625 may determine an overlap, in a time domain or a frequency domain, or both, between a first PUSCH transmission associated with the first set of PUSCH occasions and a second PUSCH transmission associated with the second set of PUSCH occasions. The alignment component 630 may align the first PUSCH transmission with the second PUSCH transmission based on the overlap in the time domain or the frequency domain, or both. The channel component 635 may transmit, based on the aligning, the first PUSCH transmission using a first antenna panel of the UE and the second PUSCH transmission using a second antenna panel of the UE.
The transmitter 640 may transmit signals generated by other components of the device 605. In some examples, the transmitter 640 may be collocated with a receiver 610 in a transceiver component. For example, the transmitter 640 may be an example of aspects of the transceiver 820 described with reference to Figure 8. The transmitter 640 may utilize a single antenna or a set of antennas.
Figure 7 shows a block diagram of a UE communications manager 705 that supports duration alignment for physical shared channel repetitions in multi-panel transmissions in accordance with aspects of the present disclosure. The UE communications manager 705 may include a DCI message component 710, an overlap component 715, an alignment component 720, a channel component 725, a symbol component 730, a location component 735, a configuration component 740, a duration component 745, and a CDM component 750. Each of these components may communicate, directly or indirectly, with one another (for example, via one or more buses) .
The DCI message component 710 may receive a set of DCI messages, for example, a first DCI message of the set schedules a first set of PUSCH occasions and a second DCI message of the set schedules a second set of PUSCH occasions. In some examples, the DCI message component 710 may receive the first DCI message in a first CORESET and the second DCI message in a second CORESET different than the first CORESET. In some implementations, the DCI message component 710 may determine the first CORESET based on a first CORESET index in the first DCI message. In some examples, the DCI message component 710 may determine the second CORESET based on a second CORESET index in the second DCI message.
The overlap component 715 may determine an overlap, in a time domain or a frequency domain, or both, between a first PUSCH transmission associated with the first set of PUSCH occasions and a second PUSCH transmission associated with the second set of PUSCH occasions. In some examples, the overlap component 715 may determine an additional overlap, in the time domain or the frequency domain, or both, between the first PUSCH transmission and a third PUSCH transmission associated with the second set of PUSCH occasions. The overlap component 715 may align the first PUSCH transmission with the third PUSCH transmission based on the additional overlap in the time domain or the frequency domain, or both. In some examples, the overlap is a partial overlap, in the time domain or the frequency domain, or both. In other examples, the overlap is a full overlap, in the time domain or the frequency domain, or both.
The alignment component 720 may align the first PUSCH transmission with the second PUSCH transmission based on the overlap in the time domain or the frequency domain, or both. The channel component 725 may transmit, based on the aligning, the first PUSCH transmission using a first antenna panel of the UE and the second PUSCH transmission using a second antenna panel of the UE. The symbol component 730 may determine a first set of DMRS symbols associated with the first PUSCH transmission in a beginning portion of a first slot and a second set of DMRS symbols associated with the second PUSCH transmission in a beginning portion of a second slot, where the aligning includes aligning the first PUSCH transmission with the second PUSCH transmission based on the first set of DMRS symbols and the second set of DMRS symbols. In some examples, the first set of DMRS symbols and the second set of DMRS symbols include a same quantity of DMRS symbols.
The symbol component 730 may determine a third set of DMRS symbols associated with the first PUSCH transmission in a portion of the first slot after the beginning portion of the first slot and a fourth set of DMRS symbols associated with the second PUSCH transmission in a portion of the second slot after the beginning portion of the second slot, where the aligning includes aligning the first PUSCH transmission with the second PUSCH transmission based on the third set of DMRS symbols and the fourth set of DMRS symbols. In some examples, the third set of DMRS symbols and the fourth set of DMRS symbols include a same quantity of DMRS symbols. In some implementations, the symbol component 730 may determine a first set of DMRS symbols associated with the first PUSCH  transmission and a second set of DMRS symbols associated with the second PUSCH transmission where the overlap in the time domain or the frequency domain, or both, between the first PUSCH transmission and the second PUSCH transmission includes a same quantity of DMRS symbols from the first set of DMRS symbols and the second set of DMRS symbols, and where the aligning includes aligning the first PUSCH transmission with the second PUSCH transmission based on the first set of DMRS symbols and the second set of DMRS symbols.
The symbol component 730 may determine a first set of DMRS symbols associated with the first PUSCH transmission and a second set of DMRS symbols associated with the third PUSCH transmission where the additional overlap, in the time domain or the frequency domain, or both, between the first PUSCH transmission and the third PUSCH transmission includes a same quantity of DMRS symbols from the first set of DMRS symbols and the second set of DMRS symbols, and where the aligning further includes aligning the first PUSCH transmission with the third PUSCH transmission associated with the second set of PUSCH occasions based on the first set of DMRS symbols and the second set of DMRS symbols. In some implementations, the symbol component 730 may determine a first beginning DMRS symbol location associated with the first PUSCH transmission and a second beginning DMRS symbol location associated with the second PUSCH transmission, where the aligning includes aligning the first PUSCH transmission with the second PUSCH transmission based on the first beginning DMRS symbol location and the second beginning DMRS symbol location. In some examples, the first beginning DMRS symbol location and the second beginning DMRS symbol location correspond to a same beginning DMRS symbol location.
The location component 735 may determine a location of each DMRS symbol of the first set of DMRS symbols associated with the first PUSCH transmission and a location of each DMRS of the second set of DMRS symbols associated with the second PUSCH transmission, where the aligning includes aligning the first PUSCH transmission with the second PUSCH transmission based on the location of each DMRS symbol of the first set of DMRS symbols including the location of each DMRS symbol of the second set of DMRS symbols. In some examples, the location component 735 may determine a location of each DMRS symbol of the first set of DMRS symbols associated with the first PUSCH transmission and a location of each DMRS symbol of the second set of DMRS symbols  associated with the third PUSCH transmission, where the aligning further includes aligning the first PUSCH transmission with the third PUSCH transmission associated with the second set of PUSCH occasions based on the location of each DMRS symbol of the first set of DMRS symbols including the location of each DMRS symbol of the second set of DMRS symbols.
The configuration component 740 may determine a DMRS configuration type associated with the first PUSCH transmission and a same DMRS configuration type associated with the second PUSCH transmission, where the aligning includes aligning the first PUSCH transmission with the second PUSCH transmission based on the DMRS configuration type and the same DMRS configuration type. In some examples, the configuration component 740 may determine a DMRS configuration type associated with the first PUSCH transmission and a same DMRS configuration type associated with the third PUSCH transmission, where the aligning further includes aligning the first PUSCH transmission with the third PUSCH transmission associated with the second set of PUSCH occasions based on the DMRS configuration type and the same DMRS configuration type.
The duration component 745 may determine a first duration associated with the first PUSCH transmission and a second duration associated with the second PUSCH transmission, where the aligning includes aligning the first PUSCH transmission with the second PUSCH transmission based on the first duration and the second duration. The CDM component 750 may determine a first CDM group associated with the first set of PUSCH occasions based on a first TCI state in the first DCI message. In some examples, the CDM component 750 may determine a second CDM group associated with the second set of PUSCH occasions based on a second TCI state in the second DCI message, where the aligning includes aligning the first PUSCH transmission with the second PUSCH transmission based on the first CDM group and the second CDM group.
Figure 8 shows a diagram of a system including a device 805 that supports duration alignment for physical shared channel repetitions in multi-panel transmissions in accordance with aspects of the present disclosure. The device 805 may be an example of or include the components of device 505, device 605, or a UE 115 as described herein. The device 805 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a UE  communications manager 810, an I/O controller 815, a transceiver 820, an antenna 825, memory 830, and a processor 840. These components may be in electronic communication via one or more buses (for example, bus 845) .
The UE communications manager 810 may receive a set of DCI messages, for example, a first DCI message of the set schedules a first set of PUSCH occasions and a second DCI message of the set schedules a second set of PUSCH occasions. The UE communications manager 810 may determine an overlap, in a time domain or a frequency domain, or both, between a first PUSCH transmission associated with the first set of PUSCH occasions and a second PUSCH transmission associated with the second set of PUSCH occasions. The UE communications manager 810 may align the first PUSCH transmission with the second PUSCH transmission based on the overlap in the time domain or the frequency domain, or both, and transmit, based on the aligning, the first PUSCH transmission using a first antenna panel of the UE and the second PUSCH transmission using a second antenna panel of the UE. At least one implementation may enable the UE communications manager 810 to align multiple uplink data channels (for example, PUSCH) using multiple antenna panels. Based on implementing the aligning, one or more processors of the device 805 (for example, processor (s) controlling or incorporated with the UE communications manager 810) may experience reduce power consumption and promote high reliability and low latency wireless communications (for example, PUSCH transmissions) , among other benefits.
The I/O controller 815 may manage input and output signals for the device 805. The I/O controller 815 may also manage peripherals not integrated into the device 805. In some examples, the I/O controller 815 may represent a physical connection or port to an external peripheral. In some examples, the I/O controller 815 may utilize an operating system such as
Figure PCTCN2020097272-appb-000001
Figure PCTCN2020097272-appb-000002
or another known operating system. In other cases, the I/O controller 815 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device. In some examples, the I/O controller 815 may be implemented as part of a processor. In some examples, a user may interact with the device 805 via the I/O controller 815 or via hardware components controlled by the I/O controller 815.
The transceiver 820 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 820 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 820 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas. In some examples, the device 805 may include a single antenna 825. However, in some other examples, the device 805 may have more than one antenna 825, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 830 may include RAM and ROM. The memory 830 may store computer-readable, computer-executable code 835 including instructions that, if executed, cause the processor 840 to perform various functions described herein. In some examples, the memory 830 may contain, among other things, a basic input/output system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices. The code 835 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 835 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some examples, the code 835 may not be directly executable by the processor 840 but may cause a computer (for example, if compiled and executed) to perform functions described herein.
The processor 840 may include an intelligent hardware device, (for example, a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some examples, the processor 840 may be configured to operate a memory array using a memory controller. In other cases, a memory controller may be integrated into the processor 840. The processor 840 may be configured to execute computer-readable instructions stored in a memory (for example, the memory 830) to cause the device 805 to perform various functions (for example, functions or tasks supporting duration alignment for physical shared channel repetitions in multi-panel transmissions) .
Figure 9 shows a block diagram of a device 905 that supports duration alignment for physical shared channel repetitions in multi-panel transmissions in accordance with aspects of the present disclosure. The device 905 may be an example of aspects of a base  station 105 as described herein. The device 905 may include a receiver 910, a base station communications manager 915, and a transmitter 920. The base station communications manager 915 can be implemented, at least in part, by one or both of a modem and a processor. Each of these components may be in communication with one another (for example, via one or more buses) .
The receiver 910 may receive information such as packets, user data, or control information associated with various information channels (for example, control channels, data channels, and information related to duration alignment for physical shared channel repetitions in multi-panel transmissions) . Information may be passed on to other components of the device 905. The receiver 910 may be an example of aspects of the transceiver 1220 described with reference to Figure 12. The receiver 910 may utilize a single antenna or a set of antennas.
The base station communications manager 915 may transmit, to a UE, a set of DCI messages, for example, a first DCI message of the set schedules a first set of PUSCH occasions and a second DCI message of the set schedules a second set of PUSCH occasions. The base station communications manager 915 may receive a first PUSCH transmission associated with the first set of PUSCH occasions and a second PUSCH transmission associated with the second set of PUSCH occasions, where the first PUSCH transmission and the second PUSCH transmission are aligned based on an overlap, in a time domain or a frequency domain, or both, between the first PUSCH transmission and the second PUSCH transmission.
The transmitter 920 may transmit signals generated by other components of the device 905. In some examples, the transmitter 920 may be collocated with a receiver 910 in a transceiver component. For example, the transmitter 920 may be an example of aspects of the transceiver 1220 described with reference to Figure 12. The transmitter 920 may utilize a single antenna or a set of antennas.
Figure 10 shows a block diagram of a device 1005 that supports duration alignment for physical shared channel repetitions in multi-panel transmissions in accordance with aspects of the present disclosure. The device 1005 may be an example of aspects of a device 905, or a base station 105 as described herein. The device 1005 may include a receiver 1010, a base station communications manager 1015, and a transmitter 1030. The  base station communications manager 1015 can be implemented, at least in part, by one or both of a modem and a processor. Each of these components may be in communication with one another (for example, via one or more buses) .
The receiver 1010 may receive information such as packets, user data, or control information associated with various information channels (for example, control channels, data channels, and information related to duration alignment for physical shared channel repetitions in multi-panel transmissions) . Information may be passed on to other components of the device 1005. The receiver 1010 may be an example of aspects of the transceiver 1220 described with reference to Figure 12. The receiver 1010 may utilize a single antenna or a set of antennas.
The base station communications manager 1015 may include a DCI message component 1020 and a channel component 1025. The DCI message component 1020 may transmit, to a UE, a set of DCI messages, where a first DCI message of the set schedules a first set of PUSCH occasions and a second DCI message of the set schedules a second set of PUSCH occasions. The channel component 1025 may receive a first PUSCH transmission associated with the first set of PUSCH occasions and a second PUSCH transmission associated with the second set of PUSCH occasions, where the first PUSCH transmission and the second PUSCH transmission are aligned based on an overlap, in a time domain or a frequency domain, or both, between the first PUSCH transmission and the second PUSCH transmission.
The transmitter 1030 may transmit signals generated by other components of the device 1005. In some examples, the transmitter 1030 may be collocated with a receiver 1010 in a transceiver component. For example, the transmitter 1030 may be an example of aspects of the transceiver 1220 described with reference to Figure 12. The transmitter 1030 may utilize a single antenna or a set of antennas.
Figure 11 shows a block diagram of a base station communications manager 1105 that supports duration alignment for physical shared channel repetitions in multi-panel transmissions in accordance with aspects of the present disclosure. The base station communications manager 1105 may include a DCI message component 1110, a channel component 1115, a symbol component 1120, and a configuration component 1125. Each of  these components may communicate, directly or indirectly, with one another (for example, via one or more buses) .
The DCI message component 1110 may transmit, to a UE, a set of DCI messages, where a first DCI message of the set schedules a first set of PUSCH occasions and a second DCI message of the set schedules a second set of PUSCH occasions. The channel component 1115 may receive a first PUSCH transmission associated with the first set of PUSCH occasions and a second PUSCH transmission associated with the second set of PUSCH occasions. The first PUSCH transmission and the second PUSCH transmission are aligned based on an overlap, in a time domain or a frequency domain, or both, between the first PUSCH transmission and the second PUSCH transmission. In some examples, the overlap is a partial overlap, in the time domain or the frequency domain, or both. In other examples, the overlap is a full overlap, in the time domain or the frequency domain, or both.
The symbol component 1120 may allocate a first set of DMRS symbols associated with the first PUSCH transmission in a beginning portion of a first slot and a second set of DMRS symbols associated with the second PUSCH transmission in a beginning portion of a second slot, where the receiving includes receiving the first PUSCH transmission and the second PUSCH transmission based on the allocating. In some implementations, the first set of DMRS symbols and the second set of DMRS symbols include a same quantity of DMRS symbols. The symbol component 1120 may allocate a third set of DMRS symbols associated with the first PUSCH transmission in a portion of the first slot after the beginning portion of the first slot and a fourth set of DMRS symbols associated with the second PUSCH transmission in a portion of the second slot after the beginning portion of the second slot, where the receiving includes receiving the first PUSCH transmission and the second PUSCH transmission based on the third set of DMRS symbols and the fourth set of DMRS symbols. In some examples, the third set of DMRS symbols and the fourth set of DMRS symbols include a same quantity of DMRS symbols.
The symbol component 1120 may allocate a first set of DMRS symbols associated with the first PUSCH transmission and a second set of DMRS symbols associated with the second PUSCH transmission where the overlap, in the time domain or the frequency domain, or both, between the first PUSCH transmission and the second PUSCH transmission includes a same quantity of DMRS symbols from the first set of DMRS symbols and the second set of  DMRS symbols, and where the receiving includes receiving the first PUSCH transmission and the second PUSCH transmission based on the first set of DMRS symbols and the second set of DMRS symbols. The configuration component 1125 may assign a DMRS configuration type associated with the first PUSCH transmission and a second DMRS configuration type associated with the second PUSCH transmission, where the receiving includes receiving the first PUSCH transmission and the second PUSCH transmission based on the DMRS configuration type and the same DMRS configuration type.
Figure 12 shows a diagram of a system including a device 1205 that supports duration alignment for physical shared channel repetitions in multi-panel transmissions in accordance with aspects of the present disclosure. The device 1205 may be an example of or include the components of device 905, device 1005, or a base station 105 as described herein. The device 1205 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a base station communications manager 1210, a network communications manager 1215, a transceiver 1220, an antenna 1225, memory 1230, a processor 1240, and an inter-station communications manager 1245. These components may be in electronic communication via one or more buses (for example, bus 1250) .
The base station communications manager 1210 may transmit, to a UE, a set of DCI messages, for example, a first DCI message of the set schedules a first set of PUSCH occasions and a second DCI message of the set schedules a second set of PUSCH occasions. The base station communications manager 1210 may receive a first PUSCH transmission associated with the first set of PUSCH occasions and a second PUSCH transmission associated with the second set of PUSCH occasions. The first PUSCH transmission and the second PUSCH transmission are aligned based on an overlap, in a time domain or a frequency domain, or both, between the first PUSCH transmission and the second PUSCH transmission.
The network communications manager 1215 may manage communications with the core network (for example, via one or more wired backhaul links) . For example, the network communications manager 1215 may manage the transfer of data communications for client devices, such as one or more UEs 115.
The transceiver 1220 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 1220 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 1220 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas. In some examples, the device 1205 may include a single antenna 1225. However, in some other examples, the device 1205 may have more than one antenna 1225, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 1230 may include RAM, ROM, or a combination thereof. The memory 1230 may store computer-readable code 1235 including instructions that, if executed by a processor (for example, the processor 1240) cause the device to perform various functions described herein. In some examples, the memory 1230 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices. The code 1235 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 1235 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some examples, the code 1235 may not be directly executable by the processor 1240 but may cause a computer (for example, if compiled and executed) to perform functions described herein.
The processor 1240 may include an intelligent hardware device, (for example, a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some examples, the processor 1240 may be configured to operate a memory array using a memory controller. In some examples , a memory controller may be integrated into processor 1240. The processor 1240 may be configured to execute computer-readable instructions stored in a memory (for example, the memory 1230) to cause the device 1205 to perform various functions (for example, functions or tasks supporting duration alignment for physical shared channel repetitions in multi-panel transmissions) .
The inter-station communications manager 1245 may manage communications with other base station 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communications manager 1245 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communications manager 1245 may provide an X2 interface within an LTE/LTE-A wireless communications network technology to provide communication between base stations 105.
Figure 13 shows a flowchart illustrating a method 1300 that supports duration alignment for physical shared channel repetitions in multi-panel transmissions in accordance with aspects of the present disclosure. The operations of method 1300 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1300 may be performed by a UE communications manager as described with reference to Figures 5–8. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1305, the UE may receive a set of DCI messages, in which a first DCI message of the set schedules a first set of PUSCH occasions and a second DCI message of the set schedules a second set of PUSCH occasions. The operations of 1305 may be performed according to the methods described herein. In some examples, aspects of the operations of 1305 may be performed by a DCI message component as described with reference to Figures 5–8.
At 1310, the UE may determine an overlap, in a time domain or a frequency domain, or both, between a first PUSCH transmission associated with the first set of PUSCH occasions and a second PUSCH associated with the second set of PUSCH occasions. The operations of 1310 may be performed according to the methods described herein. In some examples, aspects of the operations of 1310 may be performed by an overlap component as described with reference to Figures 5–8.
At 1315, the UE may align the first PUSCH transmission with the second PUSCH transmission based on the overlap in the time domain or the frequency domain, or both. The  operations of 1315 may be performed according to the methods described herein. In some examples, aspects of the operations of 1315 may be performed by an alignment component as described with reference to Figures 5–8.
At 1320, the UE may transmit, based on the aligning, the first PUSCH transmission using a first antenna panel of the UE and the second PUSCH transmission using a second antenna panel of the UE. The operations of 1320 may be performed according to the methods described herein. In some examples, aspects of the operations of 1320 may be performed by a channel component as described with reference to Figures 5–8.
Figure 14 shows a flowchart illustrating a method 1400 that supports duration alignment for physical shared channel repetitions in multi-panel transmissions in accordance with aspects of the present disclosure. The operations of method 1400 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1400 may be performed by a UE communications manager as described with reference to Figures 5–8. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1405, the UE may receive a set of DCI messages, in which a first DCI message of the set schedules a first set of PUSCH occasions and a second DCI message of the set schedules a second set of PUSCH occasions. The operations of 1405 may be performed according to the methods described herein. In some examples, aspects of the operations of 1405 may be performed by a DCI message component as described with reference to Figures 5–8.
At 1410, the UE may determine an overlap, in a time domain or a frequency domain, or both, between a first PUSCH transmission associated with the first set of PUSCH occasions and a second PUSCH transmission associated with the second set of PUSCH occasions. The operations of 1410 may be performed according to the methods described herein. In some examples, aspects of the operations of 1410 may be performed by an overlap component as described with reference to Figures 5–8.
At 1415, the UE may determine a first set of DMRS symbols associated with the first PUSCH transmission in a beginning portion of a first slot and a second set of DMRS  symbols associated with the second PUSCH transmission in a beginning portion of a second slot. The operations of 1415 may be performed according to the methods described herein. In some examples, aspects of the operations of 1415 may be performed by a symbol component as described with reference to Figures 5–8.
At 1420, the UE may align the first PUSCH transmission with the second PUSCH transmission based on the first set of DMRS symbols and the second set of DMRS symbols. The operations of 1420 may be performed according to the methods described herein. In some examples, aspects of the operations of 1420 may be performed by an alignment component as described with reference to Figures 5–8.
At 1425, the UE may transmit, based on the aligning, the first PUSCH transmission using a first antenna panel of the UE and the second PUSCH transmission using a second antenna panel of the UE. The operations of 1425 may be performed according to the methods described herein. In some examples, aspects of the operations of 1425 may be performed by a channel component as described with reference to Figures 5–8.
Figure 15 shows a flowchart illustrating a method 1500 that supports duration alignment for physical shared channel repetitions in multi-panel transmissions in accordance with aspects of the present disclosure. The operations of method 1500 may be implemented by a base station 105 or its components as described herein. For example, the operations of method 1500 may be performed by a base station communications manager as described with reference to Figures 9–12. In some examples, a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
At 1505, the base station may transmit, to a UE, a set of DCI messages, where a first DCI message of the set schedules a first set of PUSCH occasions and a second DCI of the set schedules a second set of PUSCH occasions. The operations of 1505 may be performed according to the methods described herein. In some examples, aspects of the operations of 1505 may be performed by a DCI message component as described with reference to Figures 9–12.
At 1510, the base station may receive a first PUSCH transmission associated with the first set of PUSCH occasions and a second PUSCH transmission associated with the  second set of PUSCH occasions, where the first PUSCH transmission and the second PUSCH transmission are aligned based on an overlap, in a time domain or a frequency domain, or both, between the first PUSCH transmission and the second PUSCH transmission. The operations of 1510 may be performed according to the methods described herein. In some examples, aspects of the operations of 1510 may be performed by a channel component as described with reference to Figures 9–12.
Figure 16 shows a flowchart illustrating a method 1600 that supports duration alignment for physical shared channel repetitions in multi-panel transmissions in accordance with aspects of the present disclosure. The operations of method 1600 may be implemented by a base station 105 or its components as described herein. For example, the operations of method 1600 may be performed by a base station communications manager as described with reference to Figures 9–12. In some examples, a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
At 1605, the base station may allocate a first set of DMRS symbols associated with a first PUSCH transmission in a beginning portion of a first slot and a second set of DMRS symbols associated with a second PUSCH transmission in a beginning portion of a second slot. The operations of 1605 may be performed according to the methods described herein. In some examples, aspects of the operations of 1605 may be performed by a symbol component as described with reference to Figures 9–12.
At 1610, the base station may transmit, to a UE, a set of DCI messages, in which a first DCI message of the set schedules a first set of PUSCH occasions and a second DCI message of the set schedules a second set of PUSCH occasions, the first PUSCH transmission associated with the first set of PUSCH occasions and the second PUSCH transmission associated with the second set of PUSCH occasions. The operations of 1610 may be performed according to the methods described herein. In some examples, aspects of the operations of 1610 may be performed by a DCI message component as described with reference to Figures 9–12.
At 1615, the base station may receive the first PUSCH transmission and the second PUSCH transmission where the first PUSCH transmission and the second PUSCH  transmission are aligned based on an overlap, in a time domain or a frequency domain, or both, between the first PUSCH transmission and the second PUSCH transmission and based on the allocating. The operations of 1615 may be performed according to the methods described herein. In some examples, aspects of the operations of 1615 may be performed by a channel component as described with reference to Figures 9–12.
It should be noted that the methods described herein describe possible implementations, and that the operations and the steps may be rearranged or otherwise modified and that other implementations are possible. Further, aspects from two or more of the methods may be combined.
Although aspects of an LTE, LTE-A, LTE-A Pro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks. For example, the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
Information and signals described herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative blocks and components described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a DSP, an ASIC, a CPU, a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (for example, a combination of a digital signal processor  (DSP) and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special purpose computer. By way of example, and not limitation, non-transitory computer-readable media may include random-access memory (RAM) , read-only memory (ROM) , electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium. Disk and disc, as used herein, include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
As used herein, including in the claims, “or” as used in a list of items (for example, a list of items prefaced by a phrase such as “at least one of” or “one or more of” ) indicates an inclusive list such that, for example, a list of at least one of A, B, or C means A or B or C or AB or AC or BC or ABC (in other words, A and B and C) . Also, as used herein, the phrase “based on” shall not be construed as a reference to a closed set of conditions. For example, an example step that is described as “based on condition A” may be based on both a condition A and a condition B without departing from the scope of the present disclosure. In other words, as used herein, the phrase “based on” shall be construed in the same manner as the phrase “based at least in part on. ”
In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label, or other subsequent reference label.
The description set forth herein, in connection with the appended drawings, describes example configurations and does not represent all the examples that may be implemented or that are within the scope of the claims. The term “example” used herein means “serving as an example, instance, or illustration, ” and not “preferred” or “advantageous over other examples. ” The detailed description includes specific details for the purpose of providing an understanding of the described techniques. These techniques, however, may be practiced without these specific details. In some instances, known structures and devices are shown in block diagram form in order to avoid obscuring the concepts of the described examples.
The description herein is provided to enable a person having ordinary skill in the art to make or use the disclosure. Various modifications to the disclosure will be apparent to a person having ordinary skill in the art, and the generic principles defined herein may be applied to other variations without departing from the scope of the disclosure. Thus, the disclosure is not limited to the examples and designs described herein, but is to be accorded the broadest scope consistent with the principles and novel features disclosed herein.

Claims (31)

  1. A method for wireless communications at a user equipment (UE) , comprising:
    receiving a set of downlink control information messages, wherein a first downlink control information message of the set schedules a first set of physical uplink shared channel occasions and a second downlink control information message of the set schedules a second set of physical uplink shared channel occasions;
    determining an overlap, in a time domain or a frequency domain, or both, between a first physical uplink shared channel transmission associated with the first set of physical uplink shared channel occasions and a second physical uplink shared channel transmission associated with the second set of physical uplink shared channel occasions;
    aligning the first physical uplink shared channel transmission with the second physical uplink shared channel transmission based at least in part on the overlap in the time domain or the frequency domain, or both; and
    transmitting, based at least in part on the aligning, the first physical uplink shared channel transmission using a first antenna panel of the UE and the second physical uplink shared channel transmission using a second antenna panel of the UE.
  2. The method of claim 1, further comprising determining a first set of demodulation reference signal symbols associated with the first physical uplink shared channel transmission in a beginning portion of a first slot and a second set of demodulation reference signal symbols associated with the second physical uplink shared channel transmission in a beginning portion of a second slot, wherein the aligning comprises aligning the first physical uplink shared channel transmission with the second physical uplink shared channel transmission based at least in part on the first set of demodulation reference signal symbols and the second set of demodulation reference signal symbols.
  3. The method of claim 2, wherein the first set of demodulation reference signal symbols and the second set of demodulation reference signal symbols comprise a same quantity of demodulation reference signal symbols.
  4. The method of claim 2, further comprising determining a third set of demodulation reference signal symbols associated with the first physical uplink shared channel transmission in a portion of the first slot after the beginning portion of the first slot and a fourth set of demodulation reference signal symbols associated with the second physical uplink shared channel transmission in a portion of the second slot after the beginning portion of the second slot, wherein the aligning comprises aligning the first physical uplink shared channel transmission with the second physical uplink shared channel transmission based at least in part on the third set of demodulation reference signal symbols and the fourth set of demodulation reference signal symbols.
  5. The method of claim 4, wherein the third set of demodulation reference signal symbols and the fourth set of demodulation reference signal symbols comprise a same quantity of demodulation reference signal symbols.
  6. The method of any of claims 1–5, further comprising determining a first set of demodulation reference signal symbols associated with the first physical uplink shared channel transmission and a second set of demodulation reference signal symbols associated with the second physical uplink shared channel transmission, wherein the overlap in the time domain or the frequency domain, or both, between the first physical uplink shared channel transmission and the second physical uplink shared channel transmission comprises a same quantity of demodulation reference signal symbols from the first set of demodulation reference signal symbols and the second set of demodulation reference signal symbols, and wherein the aligning comprises aligning the first physical uplink shared channel transmission with the second physical uplink shared channel transmission based at least in part on the first set of demodulation reference signal symbols and the second set of demodulation reference signal symbols.
  7. The method of claim 6, further comprising determining a location of each demodulation reference signal symbol of the first set of demodulation reference signal symbols associated with the first physical uplink shared channel transmission and a location of each demodulation reference signal of the second set of demodulation reference signal symbols associated with the second physical uplink shared channel transmission, wherein the  aligning comprises aligning the first physical uplink shared channel transmission with the second physical uplink shared channel transmission based at least in part on the location of each demodulation reference signal symbol of the first set of demodulation reference signal symbols comprising the location of each demodulation reference signal symbol of the second set of demodulation reference signal symbols.
  8. The method of any of claims 1–7, further comprising determining a demodulation reference signal configuration type associated with the first physical uplink shared channel transmission and a same demodulation reference signal configuration type associated with the second physical uplink shared channel transmission, wherein the aligning comprises aligning the first physical uplink shared channel transmission with the second physical uplink shared channel transmission based at least in part on the demodulation reference signal configuration type and the same demodulation reference signal configuration type.
  9. The method of any of claims 1–8, further comprising determining an additional overlap, in the time domain or the frequency domain, or both, between the first physical uplink shared channel transmission and a third physical uplink shared channel transmission associated with the second set of physical uplink shared channel occasions, wherein the aligning further comprises aligning the first physical uplink shared channel transmission with the third physical uplink shared channel transmission based at least in part on the additional overlap in the time domain or the frequency domain, or both.
  10. The method of claim 9, further comprising determining a first set of demodulation reference signal symbols associated with the first physical uplink shared channel transmission and a second set of demodulation reference signal symbols associated with the third physical uplink shared channel transmission wherein the additional overlap, in the time domain or the frequency domain, or both, between the first physical uplink shared channel transmission and the third physical uplink shared channel transmission comprises a same quantity of demodulation reference signal symbols from the first set of demodulation reference signal symbols and the second set of demodulation reference signal symbols, and wherein the aligning further comprises aligning the first physical uplink shared channel transmission with the third physical uplink shared channel transmission associated with the  second set of physical uplink shared channel occasions based at least in part on the first set of demodulation reference signal symbols and the second set of demodulation reference signal symbols.
  11. The method of claim 10, further comprising determining a location of each demodulation reference signal symbol of the first set of demodulation reference signal symbols associated with the first physical uplink shared channel transmission and a location of each demodulation reference signal symbol of the second set of demodulation reference signal symbols associated with the third physical uplink shared channel transmission, wherein the aligning further comprises aligning the first physical uplink shared channel transmission with the third physical uplink shared channel transmission associated with the second set of physical uplink shared channel occasions based at least in part on the location of each demodulation reference signal symbol of the first set of demodulation reference signal symbols comprising the location of each demodulation reference signal symbol of the second set of demodulation reference signal symbols.
  12. The method of claim 10, further comprising determining a demodulation reference signal configuration type associated with the first physical uplink shared channel transmission and a same demodulation reference signal configuration type associated with the third physical uplink shared channel transmission, wherein the aligning further comprises aligning the first physical uplink shared channel transmission with the third physical uplink shared channel transmission associated with the second set of physical uplink shared channel occasions based at least in part on the demodulation reference signal configuration type and the same demodulation reference signal configuration type.
  13. The method of any of claims 1–12, further comprising determining a first duration associated with the first physical uplink shared channel transmission and a second duration associated with the second physical uplink shared channel transmission, wherein the aligning comprises aligning the first physical uplink shared channel transmission with the second physical uplink shared channel transmission based at least in part on the first duration and the second duration.
  14. The method of any of claims 1–13, further comprising determining a first beginning demodulation reference signal symbol location associated with the first physical uplink shared channel transmission and a second beginning demodulation reference signal symbol location associated with the second physical uplink shared channel transmission, wherein the aligning comprises aligning the first physical uplink shared channel transmission with the second physical uplink shared channel transmission based at least in part on the first beginning demodulation reference signal symbol location and the second beginning demodulation reference signal symbol location.
  15. The method of claim 14, wherein the first beginning demodulation reference signal symbol location and the second beginning demodulation reference signal symbol location correspond to a same beginning demodulation reference signal symbol location.
  16. The method of any of claims 1–15, wherein the overlap is a partial overlap, in the time domain or the frequency domain, or both.
  17. The method of any of claims 1–16, wherein the overlap is a full overlap, in the time domain or the frequency domain, or both.
  18. The method of any of claims 1–17, further comprising:
    determining a first code division multiplexing group associated with the first set of physical uplink shared channel occasions based at least in part on a first transmission configuration indicator state in the first downlink control information message; and
    determining a second code division multiplexing group associated with the second set of physical uplink shared channel occasions based at least in part on a second transmission configuration indicator state in the second downlink control information message, wherein the aligning comprises aligning the first physical uplink shared channel transmission with the second physical uplink shared channel transmission based at least in part on the first code division multiplexing group and the second code division multiplexing group.
  19. The method of any of claims 1–18, wherein receiving the set of downlink control information messages comprises receiving the first downlink control information  message in a first control resource set and the second downlink control information message in a second control resource set different than the first control resource set.
  20. The method of claim 19, further comprising:
    determining the first control resource set based at least in part on a first control resource set index in the first downlink control information message; and
    determining the second control resource set based at least in part on a second control resource set index in the second downlink control information message.
  21. A method for wireless communications at a base station, comprising:
    transmitting, to a user equipment (UE) , a set of downlink control information messages, wherein a first downlink control information message of the set schedules a first set of physical uplink shared channel occasions and a second downlink control information message of the set schedules a second set of physical uplink shared channel occasions; and
    receiving a first physical uplink shared channel transmission associated with the first set of physical uplink shared channel occasions and a second physical uplink shared channel transmission associated with the second set of physical uplink shared channel occasions, wherein the first physical uplink shared channel transmission and the second physical uplink shared channel transmission are aligned based at least in part on an overlap, in a time domain or a frequency domain, or both, between the first physical uplink shared channel transmission and the second physical uplink shared channel transmission.
  22. The method of claim 21, further comprising allocating a first set of demodulation reference signal symbols associated with the first physical uplink shared channel transmission in a beginning portion of a first slot and a second set of demodulation reference signal symbols associated with the second physical uplink shared channel transmission in a beginning portion of a second slot, wherein the receiving comprises receiving the first physical uplink shared channel transmission and the second physical uplink shared channel transmission based at least in part on the allocating.
  23. The method of claim 22, wherein the first set of demodulation reference signal symbols and the second set of demodulation reference signal symbols comprise a same quantity of demodulation reference signal symbols.
  24. The method of claim 22, further comprising allocating a third set of demodulation reference signal symbols associated with the first physical uplink shared channel transmission in a portion of the first slot after the beginning portion of the first slot and a fourth set of demodulation reference signal symbols associated with the second physical uplink shared channel transmission in a portion of the second slot after the beginning portion of the second slot, wherein the receiving comprises receiving the first physical uplink shared channel transmission and the second physical uplink shared channel transmission based at least in part on the third set of demodulation reference signal symbols and the fourth set of demodulation reference signal symbols.
  25. The method of claim 24, wherein the third set of demodulation reference signal symbols and the fourth set of demodulation reference signal symbols comprise a same quantity of demodulation reference signal symbols.
  26. The method of any of claims 21–25, further comprising allocating a first set of demodulation reference signal symbols associated with the first physical uplink shared channel transmission and a second set of demodulation reference signal symbols associated with the second physical uplink shared channel transmission wherein the overlap, in the time domain or the frequency domain, or both, between the first physical uplink shared channel transmission and the second physical uplink shared channel transmission comprises a same quantity of demodulation reference signal symbols from the first set of demodulation reference signal symbols and the second set of demodulation reference signal symbols, and wherein the receiving comprises receiving the first physical uplink shared channel transmission and the second physical uplink shared channel transmission based at least in part on the first set of demodulation reference signal symbols and the second set of demodulation reference signal symbols.
  27. The method of any of claims 21–26, further comprising assigning a demodulation reference signal configuration type associated with the first physical uplink shared channel transmission and a second demodulation reference signal configuration type associated with the second physical uplink shared channel transmission, wherein the receiving comprises receiving the first physical uplink shared channel transmission and the  second physical uplink shared channel transmission based at least in part on the demodulation reference signal configuration type and the same demodulation reference signal configuration type.
  28. The method of any of claims 21–27, wherein the overlap is a partial overlap, in the time domain or the frequency domain, or both.
  29. The method of any of claims 21–28, wherein the overlap is a full overlap, in the time domain or the frequency domain, or both.
  30. An apparatus for wireless communications, comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    receive a set of downlink control information messages, wherein a first downlink control information message of the set schedules a first set of physical uplink shared channel occasions and a second downlink control information message of the set schedules a second set of physical uplink shared channel occasions;
    determine an overlap, in a time domain or a frequency domain, or both, between a first physical uplink shared channel transmission associated with the first set of physical uplink shared channel occasions and a second physical uplink shared channel transmission associated with the second set of physical uplink shared channel occasions;
    align the first physical uplink shared channel transmission with the second physical uplink shared channel transmission based at least in part on the overlap in the time domain or the frequency domain, or both; and
    transmit, based at least in part on the aligning, the first physical uplink shared channel transmission using a first antenna panel of the UE and the second physical uplink shared channel transmission using a second antenna panel of the UE.
  31. An apparatus for wireless communications, comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    transmit, to a user equipment (UE) , a set of downlink control information messages, wherein a first downlink control information message of the set schedules a first set of physical uplink shared channel occasions and a second downlink control information message of the set schedules a second set of physical uplink shared channel occasions; and
    receive a first physical uplink shared channel transmission associated with the first set of physical uplink shared channel occasions and a second physical uplink shared channel transmission associated with the second set of physical uplink shared channel occasions, wherein the first physical uplink shared channel transmission and the second physical uplink shared channel transmission are aligned based at least in part on an overlap, in a time domain or a frequency domain, or both, between the first physical uplink shared channel transmission and the second physical uplink shared channel transmission.
PCT/CN2020/097272 2020-06-20 2020-06-20 Duration alignment for physical shared channel repetitions in multi-panel transmissions WO2021253456A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/097272 WO2021253456A1 (en) 2020-06-20 2020-06-20 Duration alignment for physical shared channel repetitions in multi-panel transmissions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/097272 WO2021253456A1 (en) 2020-06-20 2020-06-20 Duration alignment for physical shared channel repetitions in multi-panel transmissions

Publications (1)

Publication Number Publication Date
WO2021253456A1 true WO2021253456A1 (en) 2021-12-23

Family

ID=79269071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/097272 WO2021253456A1 (en) 2020-06-20 2020-06-20 Duration alignment for physical shared channel repetitions in multi-panel transmissions

Country Status (1)

Country Link
WO (1) WO2021253456A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024011395A1 (en) * 2022-07-12 2024-01-18 Qualcomm Incorporated Techniques for multiplexing data and non-data signals
WO2024094387A1 (en) * 2022-11-04 2024-05-10 Nokia Technologies Oy Devices, methods and apparatuses for simultaneous transmissions

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019160903A1 (en) * 2018-02-16 2019-08-22 Qualcomm Incorporated Downlink control information signaling schemes for bandwidth part switching
CN110266450A (en) * 2018-03-12 2019-09-20 上海朗帛通信技术有限公司 A kind of user equipment that be used to wirelessly communicate, the method and apparatus in base station
US20200112417A1 (en) * 2015-01-20 2020-04-09 Lg Electronics Inc. Method for transmitting uplink control information and apparatus therefor
US20200128576A1 (en) * 2016-11-04 2020-04-23 Motorola Mobility Llc Identifying a resource for transmitting a first uplink channel
US20200137695A1 (en) * 2017-04-21 2020-04-30 Samsung Electronics Co., Ltd. Information type multiplexing and power control

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200112417A1 (en) * 2015-01-20 2020-04-09 Lg Electronics Inc. Method for transmitting uplink control information and apparatus therefor
US20200128576A1 (en) * 2016-11-04 2020-04-23 Motorola Mobility Llc Identifying a resource for transmitting a first uplink channel
US20200137695A1 (en) * 2017-04-21 2020-04-30 Samsung Electronics Co., Ltd. Information type multiplexing and power control
WO2019160903A1 (en) * 2018-02-16 2019-08-22 Qualcomm Incorporated Downlink control information signaling schemes for bandwidth part switching
CN110266450A (en) * 2018-03-12 2019-09-20 上海朗帛通信技术有限公司 A kind of user equipment that be used to wirelessly communicate, the method and apparatus in base station

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Physical layer procedures for data (Release 15)", 3GPP STANDARD; TECHNICAL SPECIFICATION; 3GPP TS 38.214, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. V15.9.0, 3 April 2020 (2020-04-03), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 107, XP051893822 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024011395A1 (en) * 2022-07-12 2024-01-18 Qualcomm Incorporated Techniques for multiplexing data and non-data signals
WO2024094387A1 (en) * 2022-11-04 2024-05-10 Nokia Technologies Oy Devices, methods and apparatuses for simultaneous transmissions

Similar Documents

Publication Publication Date Title
US20210273742A1 (en) Rate matching between uplink and downlink
US11758514B2 (en) Physical downlink control channel candidates related to physical downlink control channel repetitions
WO2021155505A1 (en) Repetition and time domain cover code based sounding reference signal resources for antenna switching
US11799604B2 (en) Techniques for adapting a number of tracking reference signal symbols
US11817978B2 (en) Techniques for configuring multi-transmission reception point communication schemes
US11723036B2 (en) Dynamic search spaces
US20220104211A1 (en) Incentive-based relaying with prioritization
WO2021253456A1 (en) Duration alignment for physical shared channel repetitions in multi-panel transmissions
WO2021047539A1 (en) Uplink transmission timing patterns
WO2021226956A1 (en) Monitoring for downlink repetitions
US11671940B2 (en) Sidelink communication during a downlink slot
WO2021253258A1 (en) Phase-tracking reference signal alignment for physical shared channel
WO2021258385A1 (en) Dynamic uplink control multiplexing between physical uplink channels
US20230164819A1 (en) Uplink control information multiplexing rule for simultaneous uplink control channel and uplink shared channel transmission
US11576201B2 (en) Candidate uplink grants for channel access
US11272496B2 (en) Narrowband retuning in wireless communications
WO2021253282A1 (en) Aligned frequency hopping
WO2023082998A1 (en) Carrier aggregation switching for switching multiple radio frequency bands
WO2023039742A1 (en) Random access channel resource configuration for different capability user equipment
WO2023082167A1 (en) Carrier aggregation switching for switching multiple radio frequency bands
WO2021203299A1 (en) Updating bandwidth part width from default configuration
WO2023130421A1 (en) Uplink switching for concurrent transmissions
WO2022027410A1 (en) Panel-specific slot format indication
WO2022011612A1 (en) Pathloss reference signal update for multiple beams
WO2021155509A1 (en) Joint repetition of control channels and data channels

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20941006

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20941006

Country of ref document: EP

Kind code of ref document: A1