WO2020238354A1 - 波束跟踪的方法和装置 - Google Patents

波束跟踪的方法和装置 Download PDF

Info

Publication number
WO2020238354A1
WO2020238354A1 PCT/CN2020/080364 CN2020080364W WO2020238354A1 WO 2020238354 A1 WO2020238354 A1 WO 2020238354A1 CN 2020080364 W CN2020080364 W CN 2020080364W WO 2020238354 A1 WO2020238354 A1 WO 2020238354A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
sta
beam tracking
multiple aps
control
Prior art date
Application number
PCT/CN2020/080364
Other languages
English (en)
French (fr)
Inventor
韩霄
邓彩连
郭子阳
李玲
龙彦
辛岩
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20813993.1A priority Critical patent/EP3968693A4/en
Publication of WO2020238354A1 publication Critical patent/WO2020238354A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0016Hand-off preparation specially adapted for end-to-end data sessions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0058Transmission of hand-off measurement information, e.g. measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/06Authentication

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a method and device for beam tracking.
  • the traditional method for handover mainly includes three steps: scanning, authentication and re-association. That is, once the handover trigger condition is met, the STA will start scanning all channels to obtain the available AP information. Generally, after the scanning process is completed, the STA will select the AP with the largest signal-to-noise ratio among all APs that can establish a connection. Then send a connection request to it to complete the reconnection process, thereby improving the link communication quality.
  • the STA needs to perform beam tracking with multiple APs.
  • multiple APs and STAs perform beam tracking independently, interference is likely to occur.
  • the STA only performs beam tracking with the AP currently in communication.
  • AP handover is required, beam tracking needs to be performed before handover.
  • information exchange authentication is required between the new AP and the STA. Only after passing the authentication can network communication be carried out. The switching delay is relatively large, which affects the communication service quality.
  • the present application provides a beam tracking switching method and device, which can reduce the handover delay and improve the communication service quality.
  • a beam tracking method including: a station STA obtains first information, the first information including time information for beam tracking between the STA and each AP of a plurality of access nodes AP; the STA Perform beam tracking with the multiple APs according to the first information.
  • the STA when the STA performs beam tracking with multiple APs, if it is not coordinated, it is easy to cause interference. Therefore, when performing beam tracking, the STA obtains the first information, and performs beam tracking with multiple APs in an orderly manner according to the first information, thereby avoiding interference, reducing handover delay, and improving network communication quality.
  • multiple APs and STAs performing beam tracking in an orderly manner include multiple APs performing beam tracking with the STA in time sharing.
  • the first AP and STA perform beam tracking in the first time period
  • the second AP and STA perform beam tracking in the second time period
  • the third AP and STA perform beam tracking in the third time period.
  • all APs in the same cluster receive the beam tracking request and start beam tracking at the same time.
  • multiple APs can send feedback to the STA in time sharing information.
  • the first AP feeds back the beam tracking result to the STA in the first period
  • the second AP feeds back the beam tracking result to the STA in the second period
  • the third AP feeds back the beam tracking result to the STA in the third period.
  • multiple APs perform beam tracking with the STA in time sharing, and after beam tracking ends, the beam tracking result is fed back to the STA in time sharing.
  • the specific implementation manner is not limited in the embodiment of the present application.
  • the multiple APs include a control AP, and the control AP can communicate with each AP of the multiple APs, wherein the STA obtains the first information , Including: the STA obtains the first information from the control AP.
  • the first information is obtained by the controlling AP by polling the idle time of each of the multiple APs.
  • the STA moves, the communication quality of the link with the current serving AP (serving AP) is reduced and cannot meet the current communication requirements.
  • the STA initiates a request for beam tracking with other APs to the control AP. In this way, the AP that can meet the communication requirements is re-selected and re-accessed.
  • the AP After each AP of the multiple APs receives the beam tracking request information sent by the controlling AP, the AP sends a beam tracking request response message to the controlling AP, where the beam tracking request response message includes the idle period of the AP.
  • control AP After the control AP obtains the beam tracking request response message sent by each of the multiple APs, it determines the first information according to the idle time of each AP, so that the multiple APs can perform beam tracking with the STA in an orderly manner, thereby avoiding interference.
  • the first information is determined by the controlling AP according to the reserved time interval RTI of each of the multiple APs.
  • control AP can reserve a period of time (reserved time interval, RTI) in the beacon interval (BI) of each AP in advance, and the control AP can control the AP according to each of the multiple APs.
  • RTI reserved time interval
  • the RTI of the AP determines the first information, where the RTI is used for burst beam tracking and handover.
  • the first information is determined by the controlling AP according to a measurement report of beam training performed by the STA with each AP of the multiple APs.
  • the STA may first perform beam training with each of all APs in the same cluster, and send a beam training measurement report to the controlling AP, where the beam training measurement report includes the timing of each AP information.
  • the controlling AP determines the first information according to the time arrangement information in the beam training measurement report of each of the multiple APs, so that the multiple APs and STAs can perform beam tracking in an orderly manner.
  • the STA and all APs in a cluster have completed beam training in advance, and the beam training results are stored in a historical measurement report, the STA and the controlling AP have all AP timing information, so the STA needs to follow
  • the STA needs to follow
  • there is no need to control the AP to ask each AP for the idle period and each AP does not need to feed back its idle period to the control AP, which greatly reduces the information exchange between the AP and the control AP, and simplifies the process , Reduce the handover delay.
  • the STA performs beam tracking with the multiple APs according to the first information, including: the STA performs beam tracking on each of the multiple APs. Perform beam tracking with the corresponding AP within time.
  • the STA performing beam tracking with the multiple APs according to the first information includes:
  • the STA and the multiple APs feed back the beam tracking result through the control AP.
  • another method for beam tracking including: controlling an access node AP to obtain first information, where the first information includes time information for beam tracking between a station STA and each AP of multiple APs; The control AP sends the first information to the STA.
  • the controlling AP to obtain the first information includes: the controlling AP obtains the first information by polling the idle time of each of the multiple APs.
  • the control AP obtains the first information by polling the idle time of each of the multiple APs, including: the control AP receives the information sent by the STA Beam tracking request message; the controlling AP sends the beam tracking request message to each AP of the multiple APs; the controlling AP receives the beam tracking request response message sent by each AP of the multiple APs, the beam tracking request The response message includes the idle time of each of the multiple APs; the controlling AP determines the first information according to the idle time of each of the multiple APs.
  • the controlling AP obtaining the first information includes: the controlling AP obtaining the reserved time interval RTI of each of the multiple APs; the controlling AP according to The RTI of each AP of the plurality of APs determines the first information.
  • that the controlling AP obtains the first information includes: the controlling AP obtains a measurement report of beam training performed by the STA with each of the multiple APs; The control AP determines the first information according to the measurement report.
  • the method further includes: sending second information to each of the multiple APs, the second information including the STA and the multiple APs Time information for each AP to perform beam tracking.
  • the controlling AP After the controlling AP determines the time schedule for beam tracking between multiple APs and STAs, it sends corresponding schedule information to each AP. This allows multiple APs to perform beam tracking with STAs in an orderly manner.
  • the method further includes: in a feedback period, the control AP feeds back the beam tracking result to the STA and the multiple APs.
  • another beam tracking method including: a member access node M-AP obtains second information, the second information includes time information for beam tracking between the M-AP and the STA, and the multiple The AP includes the M-AP; the M-AP performs beam tracking with the STA according to the second information.
  • the multiple APs include a control AP, and the control AP can communicate with each M-AP of the multiple APs, wherein the M-AP
  • the obtaining of the second information includes: the M-AP obtains the second information from the control AP.
  • the second information is obtained by the controlling AP by polling the idle time of each M-AP of the multiple APs.
  • the second information is determined by the controlling AP according to the reserved time interval RTI of each M-AP of the multiple APs.
  • the second information is determined by the controlling AP according to a measurement report of beam training performed by the STA and each of the multiple APs.
  • the M-AP performs beam tracking with the STA according to the second information, including: the M-AP and the STA within the beam tracking time corresponding to the M-AP
  • the STA performs beam tracking.
  • the M-AP performs beam tracking with the STA according to the second information, including: in a feedback period, the M-AP and the STA pass the control AP The beam tracking result is fed back.
  • a security verification method including: controlling an access node AP to obtain first key information, where the first key information is an initial association between a station STA and at least one AP among multiple access nodes AP
  • the key obtained later, the multiple APs include the control AP, and the control AP can communicate with each AP of the multiple APs; the control AP sends the first key information.
  • the current serving AP of the STA is in a cluster with multiple other APs. Since the STA and its serving AP have completed the initial association authentication, they have obtained the pairwise master key (PMK) shared by the STA and the serving AP. Assuming that each of the multiple APs is a virtual antenna that controls the AP, the STA switching from one AP to another AP can be considered as switching from one antenna of the controlling AP to another, and all antennas can share the The master key PMK has been generated.
  • PMK pairwise master key
  • the first key information is the key obtained after the station STA is initially associated with each AP of the multiple access nodes AP, and the control AP obtains the first key information.
  • a key information includes: the control AP receives the first key information sent by the serving AP of the STA.
  • the first key information is the key obtained after the station STA initially associates with the first AP among the multiple access nodes AP, and the control AP obtains the first AP.
  • a key information includes: the control AP generates the first key information for the first AP.
  • the control AP sending the first key information includes: the control AP receives a first request message sent by the multiple APs, and the first request message uses To request the first key information from the control AP; the control AP sends the first key information to the multiple APs.
  • control AP may store the first key information first.
  • the target AP sends a first request message to the control AP, where the first request message is used to request first key information from the control AP.
  • the control AP sending the first key information includes: the control AP receives a first request message sent by the first AP, and the first request message uses To request the first key information from the control AP; the control AP sends the first key information to the first AP.
  • the method further includes: the control AP receives a first handover request message sent by the serving AP, where the first handover request message includes a second key for generating The second key is used to instruct the STA to perform data transmission with the target AP; the control AP sends the first handover request message to the target AP; the control AP receives the first handover request response sent by the target AP Message, the first handover request response message includes information for generating a second key; the control AP sends the first handover request response message to the serving AP.
  • the first handover request message includes at least one of the following information: identification information of the target AP, robust security network element (RSNE) information, and random number information of the STA.
  • RSNE robust security network element
  • the identification information of the target AP is used to indicate which AP the STA switches to.
  • the identification information of the target AP may be the label of the target AP.
  • AP#1 indicates that the STA is switched to AP 1
  • AP#2 indicates that the STA is switched to AP 2.
  • the specific identification method is not limited in the embodiment of this application, as long as the AP in the cluster can be uniquely identified.
  • the RSNE information and the random number of the STA are element information for generating the first key information.
  • the random number of the STA may include at least one of the following: a media access control (media access control, MAC) address of the STA and a random number Snonce of the STA.
  • a security verification method which includes: a station STA sends a second handover request message to the serving access node AP of the STA, the second handover request message includes first key information, and the first key The key information is used to generate a second key, and the second key is used to instruct the STA to perform data transmission with a target AP included in multiple APs; wherein, the first key information is the difference between the STA and the AP Key information obtained after each AP is initially associated; or the first key information is key information obtained after the STA is initially associated with the first AP of the multiple APs.
  • the method further includes: when the serving AP refuses to handover, the STA receives a second handover response message sent by the serving AP, and the second handover response message includes The reason why the serving AP refuses to switch.
  • the method further includes: the STA receives a third handover request message sent by the serving AP, where the third handover request message includes a method for generating the second key Information.
  • the STA sends the third handover request response message to the serving AP.
  • the method further includes: when the target AP refuses to handover, the STA receives a third handover request response message sent by the target AP.
  • a security verification method is provided, which is applied in a communication system including a station STA and multiple access points AP, including: the access node AP obtains first key information from a control AP, and the first key information The key information is the key information obtained after the initial association between the station STA and the AP.
  • the multiple APs include the control AP, and the control AP can communicate with each of the multiple APs; the AP is based on the A key information switches the STA from the AP serving the AP.
  • the AP performs the handover of the STA from the AP serving the AP according to the first key information, including: the target AP receives the first sent by the control AP A handover request message.
  • the first handover request message includes information for generating a second key.
  • the second key is used to instruct the station STA to perform data transmission with the target AP; the target AP sends the first handover to the control AP Request response message.
  • the first handover request response message when the target AP refuses to handover, includes the reason for rejection.
  • the method further includes: when the target AP refuses to handover, the target AP sends a third handover request response message to the STA, the third handover request response message Include the reason for rejection.
  • a beam tracking device which is used to execute the foregoing first aspect or the method in any possible implementation manner of the first aspect.
  • the device includes a unit for executing the foregoing first aspect or any one of the possible implementation manners of the first aspect.
  • a beam tracking device which is used to execute the foregoing second aspect or any possible implementation of the second aspect.
  • the device includes a unit for executing the foregoing second aspect or any one of the possible implementation manners of the second aspect.
  • a beam tracking device which is used to execute the foregoing third aspect or any possible implementation of the third aspect.
  • the device includes a unit for executing the third aspect or the method in any one of the possible implementation manners of the third aspect.
  • another beam tracking device which includes a transceiver, a memory, and a processor.
  • the transceiver, the memory, and the processor communicate with each other through an internal connection path
  • the memory is used to store instructions
  • the processor is used to execute the instructions stored in the memory to control the receiver to receive signals and control the transmitter to send signals
  • the processor executes the instructions stored in the memory, the processor is caused to execute the foregoing aspects or the methods in any possible implementation manners of the aspects.
  • processors there are one or more processors and one or more memories.
  • the memory may be integrated with the processor, or the memory and the processor may be provided separately.
  • the memory can be a non-transitory (non-transitory) memory, such as a read only memory (ROM), which can be integrated with the processor on the same chip, or can be set in different On the chip, the embodiment of the present application does not limit the type of memory and the setting mode of the memory and the processor.
  • ROM read only memory
  • a beam tracking system includes a device for implementing any possible method of the first aspect or the first aspect, for implementing the second aspect or the second aspect. Any one of the possible implementation methods of the device, and a device used to implement the foregoing third aspect or any one of the possible implementation methods of the third aspect.
  • the system includes a device for implementing a method executed by a site, a device for implementing a method executed by an access node, and a device for implementing a method executed by other nodes.
  • a computer program product includes: computer program code, which when the computer program code is run by a computer, causes the computer to execute the methods in each of the above aspects.
  • a computer-readable medium for storing a computer program, and the computer program includes instructions for executing the methods in the foregoing aspects.
  • a chip including a processor, configured to call and execute instructions stored in the memory from a memory, so that a communication device installed with the chip executes the methods in the above aspects.
  • another chip including: an input interface, an output interface, a processor, and a memory.
  • the input interface, the output interface, the processor, and the memory are connected by an internal connection path.
  • the processor is configured to execute the code in the memory, and when the code is executed, the processor is configured to execute the methods in the foregoing various aspects.
  • Fig. 1 is a schematic diagram of a communication system according to an embodiment of the present application.
  • FIG. 2 shows a schematic flowchart of a beam tracking method provided by an embodiment of the present application
  • FIG. 3 shows a schematic flowchart for controlling an AP to determine first information
  • FIG. 4 shows a schematic structural diagram of a scheduling request frame according to an embodiment of the present application
  • Figure 5 shows a schematic structural diagram of a beam tracking request element frame in a BPAC scenario
  • Figure 6 shows a schematic structural diagram of the beacon interval BI
  • FIG. 7 shows an overall flow chart of beam tracking in a BPAC scenario provided by an embodiment of the present application
  • FIG. 8 shows an overall flow chart of beam tracking in another BPAC scenario provided by an embodiment of the present application.
  • FIG. 9 shows a schematic diagram of a feedback frame structure according to an embodiment of the present application.
  • Figure 10 shows the overall flow chart of multi-STA multi-AP beam tracking
  • FIG. 11 shows a schematic flowchart of a security verification method provided by an embodiment of the present application.
  • FIG. 12 shows a schematic flowchart of a beam tracking handover provided by an embodiment of the present application
  • FIG. 13 shows a schematic flowchart of another beam tracking handover provided by an embodiment of the present application.
  • FIG. 14 shows a schematic flowchart of yet another beam tracking handover provided by an embodiment of the present application.
  • FIG. 15 shows a schematic flowchart of yet another beam tracking handover provided by an embodiment of the present application.
  • FIG. 16 shows a schematic diagram of a beam tracking device provided by an embodiment of the present application.
  • Fig. 17 shows a schematic diagram of another beam tracking device provided by an embodiment of the present application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GSM Global System of Mobile Communication
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • 5G 5th Generation
  • 5NR New Radio
  • a WLAN may include multiple communication nodes, for example, one or more personal basic service set control points/access points (PCP/AP) and one or more stations (station, STA) .
  • PCP/AP personal basic service set control points/access points
  • STA stations
  • a site may also be referred to as a system, user unit, access terminal, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, User equipment or user equipment (user equipment, UE).
  • the site can be a wireless communication chip, a wireless sensor or a wireless communication terminal.
  • the site is a mobile phone that supports WiFi communication, a tablet that supports WiFi communication, a set-top box that supports WiFi communication, a smart TV that supports WiFi communication, a smart wearable device that supports WiFi communication, and a vehicle that supports WiFi communication. Communication equipment and computers supporting WiFi communication functions.
  • the station may support the 802.11ax standard, and further optionally, the station supports multiple WLAN standards such as 802.11ac, 802.11n, 802.11g, 802.11b, 802.11ad, and 802.11ay.
  • the AP can be used to communicate with the access terminal through a wireless local area network, and transmit data from the access terminal to the network side, or transmit data from the network side to the access terminal.
  • APs are also called wireless access points or hotspots.
  • AP is the access point for mobile users to enter the wired network. It is mainly deployed in homes, buildings and campuses. The typical coverage radius is from tens of meters to hundreds of meters. Of course, it can also be deployed outdoors.
  • AP is equivalent to a bridge connecting wired and wireless networks, and its main function is to connect various wireless network clients together, and then connect the wireless network to the Ethernet.
  • the AP may be a terminal device or a network device with a wireless fidelity (wireless fidelity, WiFi) chip.
  • the AP may be a device supporting the 802.11ax standard, and further optionally, the AP may be a device supporting multiple WLAN standards such as 802.11ac, 802.11n, 802.11g, 802.11b, 802.11ad, and 802.11ay.
  • the access point or station includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also referred to as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, for example, Linux operating system, Unix operating system, Android operating system, iOS operating system, or windows operating system.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the application do not specifically limit the specific structure of the execution subject of the methods provided in the embodiments of the application, as long as the program that records the codes of the methods provided in the embodiments of the application can be provided according to the embodiments of the application.
  • the execution subject of the method provided in the embodiment of the present application may be an access point or a station, or a functional module in the access point or the station that can call and execute the program.
  • computer-readable media may include, but are not limited to: magnetic storage devices (for example, hard disks, floppy disks, or tapes, etc.), optical disks (for example, compact discs (CDs), digital versatile discs (digital versatile discs, DVDs) Etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • magnetic storage devices for example, hard disks, floppy disks, or tapes, etc.
  • optical disks for example, compact discs (CDs), digital versatile discs (digital versatile discs, DVDs) Etc.
  • smart cards and flash memory devices for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.
  • various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • Fig. 1 shows a schematic diagram of a communication system according to an embodiment of the present application.
  • the communication system includes multiple APs.
  • one or more STAs still exist within the coverage of all or part of the APs.
  • n APs and m STAs in the communication system, and both m and n are integers greater than or equal to 1.
  • the above-mentioned communication system may be aimed at a mobile scenario or a non-mobile scenario, that is, the STA may be mobile or fixed. Therefore, when the STA can move, the number of STAs within the coverage area of an AP can change in real time. In other words, there may be a certain moment when an AP does not cover any STA. This embodiment of the application There is no restriction on this.
  • STA1 In the communication system shown in Figure 1, take STA1 as an example.
  • STA1 is currently connected to AP1 for communication.
  • the communication quality between STA1 and AP1 decreases.
  • STA1 performs beam tracking with AP1 first, and if the communication quality can be restored, it does not need to perform beam tracking with other APs in the range. If the communication quality cannot be restored, the STA1 needs to perform beam tracking with other APs in the range to determine a new AP, so that the STA switches from AP1 to the new AP to ensure the communication quality.
  • the embodiment of the present application proposes a beam tracking method, which can reduce the handover delay and improve the communication service quality.
  • FIG. 2 shows a schematic flowchart of a beam tracking method 200 provided by an embodiment of the present application.
  • the method 200 can be applied to the communication system 100 shown in FIG. 1, but the embodiment of the present application is not limited thereto.
  • the control AP is an AP that can communicate with each of multiple APs, as shown in FIG. 1.
  • the first information includes time information for beam tracking between the station STA and each AP of the multiple APs. That is, the AP is controlled to determine that multiple APs can perform beam tracking in an orderly manner, thereby avoiding interference caused by beam tracking between multiple APs and STAs in the BPAC scenario.
  • multiple APs and STAs performing beam tracking in an orderly manner include multiple APs performing beam tracking with the STA in time sharing.
  • the first AP and STA perform beam tracking in the first time period
  • the second AP and STA perform beam tracking in the second time period
  • the third AP and STA perform beam tracking in the third time period.
  • all APs in the same cluster receive the beam tracking request and start beam tracking at the same time.
  • multiple APs can send feedback to the STA in time sharing information.
  • the first AP feeds back the beam tracking result to the STA in the first period
  • the second AP feeds back the beam tracking result to the STA in the second period
  • the third AP feeds back the beam tracking result to the STA in the third period.
  • multiple APs perform beam tracking with the STA in time sharing, and after beam tracking ends, the beam tracking result is fed back to the STA in time sharing.
  • the specific implementation manner is not limited in the embodiment of the present application.
  • controlling the AP further includes other steps before acquiring the first information.
  • FIG. 3 shows a schematic flowchart for controlling an AP to determine first information.
  • step S310 is further included.
  • the STA sends beam tracking request information to the serving AP for requesting beam tracking to the serving AP.
  • S320 The serving AP sends a beam tracking request message to the controlling AP.
  • the serving AP After receiving the beam tracking request message sent by the STA, the serving AP forwards the beam tracking request message to the controlling AP, and requests beam tracking from the controlling AP.
  • the STA moves, the communication quality of the link with the current serving AP (serving AP) is reduced and cannot meet the current communication requirements.
  • the STA initiates a request for beam tracking with other APs, so that reselection can satisfy The AP required for communication reconnects.
  • steps S310 and S320 may be one step.
  • the control AP sends the beam tracking request message to a member access point (M-AP).
  • the control AP After the control AP receives the beam tracking request message sent by the STA, it sends the beam tracking request message to each M-AP of the multiple APs it communicates with, asking for the idle time of the M-AP, that is, beam tracking can be performed with the STA
  • the multiple APs can be M-APs in the same cluster as the original serving AP.
  • the control AP when the control AP sends the beam tracking request, it may not be necessary to send the beam tracking request message to all M-APs in the cluster.
  • the beam tracking request information is only sent to the M-AP that may be handed over during the movement of the STA.
  • an M-AP that is closer to the STA may be selected, which is not limited in this embodiment of the application.
  • the beam tracking request message may be carried in a scheduling request (schedule request) frame.
  • Fig. 4 shows a schematic structural diagram of a scheduling request frame in an embodiment of the present application.
  • the scheduling request frame may include one or a combination of the following information:
  • Wireless network management action wireless network management action, WNM action: used to instruct the workstation to take which kind of wireless network management action.
  • Dialogue token When there are multiple dialogue requests in parallel, the dialogue token is used to mark which request the current response is for.
  • Beam tracking request element used to request beam tracking between the site and the target node.
  • Figure 5 shows a schematic structural diagram of a beam tracking request element frame in a BPAC scenario.
  • the beam tracking request element frame may include one or a combination of the following information:
  • Element ID an ID used to mark and distinguish elements.
  • Length used to indicate the length of the element.
  • Station ID an ID used to mark and distinguish a station (station).
  • EDMG BT request Based on enhanced directional multi-gigabit beam tracking request (EDMG BT request): used to request beam tracking based on the 802.11ay standard.
  • EDMG BT type used to indicate the beam tracking type based on the 802.11ay standard.
  • Beam tracking request used to request beam tracking based on the 802.11ad standard.
  • Beam tracking type used to indicate the beam tracking type based on the 802.11ad standard.
  • TRN-LEN Beam tracking length
  • Packet type used to indicate whether the data tracking is the initiator receiving beam adjustment, the initiator sending beam adjustment, or the responder receiving beam adjustment.
  • Each transmit beam training (receive training per transmit training, RX TRN per TX TRN): indicates continuous training unit (TRN-unit) that uses the same antenna weight vector (antenna weight vector, AWV) quantity.
  • EDMG TRN-P Based on enhanced directional multi-gigabit training (EDMG TRN-P): indicates the number of TRN subdomains at the beginning of the TRN-unit using the same AWV.
  • EDMG TRN-M Based on enhanced directional multi-gigabit training (EDMG TRN-M): indicates the number of TRN sub-domains that can be used for sending training in a TRN-unit.
  • EDMG TRN-N Based on enhanced directional multi-gigabit training (EDMG TRN-N): Represents the number of TRN sub-domains in each EDMG TRN-Unit M domain.
  • S340 The M-AP sends a beam tracking request response message to the controlling AP.
  • the M-AP After each M-AP of the multiple APs receives the beam tracking request information sent by the control AP, the M-AP sends a beam tracking request response message to the control AP, where the beam tracking request response message includes the M-AP's Free time.
  • the controlling AP After the controlling AP obtains the beam tracking request response message sent by each M-AP of the multiple APs, the first information is determined according to the idle time of each M-AP, so that the multiple APs can beam with the STA in an orderly manner. Track to avoid interference.
  • the STA may first perform beam training with each M-AP in all APs in the same cluster, and send a beam training measurement report to the controlling AP, where the beam training measurement report includes each M-AP. -AP schedule information.
  • the controlling AP determines the first information according to the time arrangement information in the beam training measurement report of each M-AP of the multiple APs, so that the multiple APs and STAs can perform beam tracking in an orderly manner.
  • the STA and all APs in a cluster have completed beam training in advance, and the beam training results are stored in a historical measurement report, the STA and the controlling AP have all AP timing information, so the STA needs to follow
  • the STA needs to follow
  • Information interaction simplifies the process and reduces the handover delay.
  • the foregoing historical measurement report is only a form including the first information, as long as it can be used to indicate the idle period of each M-AP of the multiple APs, and the specific form is not limited in this embodiment of the application.
  • the control AP can reserve a period of time (reserved time interval, RTI) in the beacon interval (BI) of each M-AP in advance, and the control AP can be based on the beacon interval (BI) of each M-AP.
  • RTI reserved time interval
  • the RTI of each M-AP determines the first information, where the RTI is used for burst beam tracking and handover.
  • Fig. 6 shows a schematic structural diagram of the beacon interval BI.
  • the beacon interval is divided into a beacon header interval (BHI) and a data transmission interval (DTI).
  • BHI also includes beacon transmission interval (BTI), association-beamforming training (A-BFT), and announcement transmission interval (ATI).
  • PCP/AP will send multiple beacon frames according to the sector number in the BTI for downlink sector scanning; A-BFT is used for STA association and uplink sector scanning; ATI is used for PCP /AP polls the STA for buffered data information and allocates resources in the data transmission interval (DTI) to the STA.
  • DTI data transmission interval
  • the entire DTI will be divided into several sub-intervals. According to the form of access, the sub-intervals will be divided into contention-based access period (CBAP) and service period (SP). The latter is for scheduled transmission. No need to compete.
  • CBAP contention-based access period
  • SP service period
  • Control the AP to set the RTI in the DTI of each M-AP, and only need to know the RTI of the AP that performs beam tracking with the STA, so that the STA can perform beam tracking with each AP in an orderly manner, thereby avoiding interference.
  • the beam tracking process is simplified, and the handover delay is reduced.
  • the STA obtains the first information.
  • the controlling AP After determining the first information, the controlling AP sends the first information to the serving AP of the STA, and the serving AP sends the first information to the STA. That is, the STA is notified of the beam tracking schedule with each of the multiple APs, so that the STA can perform beam tracking with multiple APs in an orderly manner, thereby avoiding interference.
  • the serving AP of the STA is a controlling AP
  • the controlling AP directly sends the first information to the STA.
  • S230 Control the AP to send the second information to each M-AP of the multiple APs.
  • the second information is the time for each M-AP of the multiple APs to perform beam tracking with the STA.
  • the control AP coordinates the beam tracking time of each M-AP and STA among multiple APs, the time schedule of each M-AP is sent to the corresponding M-AP.
  • control AP can also send all M-AP timing information, that is, the first information to all M-APs, and each M-AP determines its own corresponding timing information , The second information.
  • M-AP timing information that is, the first information to all M-APs
  • each M-AP determines its own corresponding timing information , The second information.
  • the embodiment of the present application does not limit this.
  • the STA performs beam tracking with multiple APs according to the first information.
  • the STA After obtaining the first information, the STA will follow the beam tracking time schedule with multiple APs in the first information in an orderly manner, and determine the new serving AP among the multiple APs.
  • the original serving AP is switched to the new serving AP to ensure communication quality.
  • the STA when the communication quality of the link with the currently served AP is reduced due to the movement of the STA, in order to ensure the communication quality, the STA needs to determine a new AP through beam tracking and switch from the current serving AP to the new AP.
  • the STA performs beam tracking with multiple APs, if it is not coordinated, it is easy to cause interference. Therefore, when performing beam tracking, the STA obtains the first information, and performs beam tracking with multiple APs in an orderly manner according to the first information, thereby avoiding interference.
  • Fig. 7 shows an overall flow chart of beam tracking in a BPAC scenario provided by an embodiment of the present application.
  • the AP transmit tranning is taken as an example, that is, the AP transmits beam adjustment.
  • the AP requests beam tracking in the physical header (PHY Header) of the data packet, and sets the packet type field in the PHY Header It is TRN-T.
  • the training length (TRN-LEN) field is set to a parameter greater than 0 to indicate the beam tracking length, and a TRN-T fileds field is appended to the Data packet to send multiple beams in different directions.
  • BPAC-BT Requested a bit is added to indicate a BPAC beam tracking request (BPAC-BT Requested), and beam tracking with other APs is initiated.
  • the STA After receiving the packet, the STA will append a beam refinement (BRP) frame to the back of the acknowledgement (acknowledgement, ACK) packet to feed back the best transmission beam of the AP.
  • BRP beam refinement
  • ACK acknowledgement
  • the AP that initiates beam tracking can switch to the best beam to adjust the tracking training process of the initiating AP's receiving beam.
  • the controlling AP and STA already know the RTIs of all APs, and the controlling AP selects some possible APs for beam tracking based on historical measurement information, that is: the original serving AP initiates BPAC to the controlling AP.
  • the beam tracking BPAC-BT (BPAC beam tracking, BPAC-BT) request message which carries the identification information of the STA, beam tracking type, TRN-LEN, AP list information or previous measurement information; controls the AP Determine the APs that may perform beam tracking with the STA according to the measurement information, and send them a BPAC-BT beam tracking request message, along with the STA’s identification information, beam tracking type, TRN-LEN, and AP list information; the original serving AP will beam tracking Type, training length (traning length, TRN-LEN), and AP list information are fed back to the STA.
  • BPAC-BT beam tracking, BPAC-BT
  • the beam tracking type can be the transmit/receive beam of the beam tracking initiator, or the transmit/receive beam of the responder, or the transmit beam of one party and the receive beam of the other party can be trained at the same time.
  • This embodiment of the application does not do this. limited.
  • the APs selected by the STA perform beam tracking in their respective RTIs, and the STA receives feedback information in the RTIs of each AP.
  • Fig. 8 shows an overall flow chart of beam tracking in another BPAC scenario provided by an embodiment of the present application.
  • the STA sends and receives beam training (receive training, TRN-R) as an example, that is, the STA receives beam adjustment.
  • TRN-R transmit training
  • the STA requests beam tracking in the PHY Header of the Data packet, and sets the Packet Type field in the PHY Header to TRN-R, and at the same time sets the TNR-LEN field to a value greater than 0
  • the parameter indicates the beam tracking length.
  • BPAC in the initiation phase, a bit is added to indicate a BPAC beam tracking request (BPAC-BT Requested), and beam tracking with other APs is initiated.
  • the AP After the AP receives the packet, it will append a TRN-R field to the back of the acknowledgment (ACK) packet.
  • This field is composed of multiple TRN units and sends multiple beams in different directions. After beaming, you can choose your own best receiving beam to adjust the receiving beam of the STA.
  • the feedback phase between the STA and each AP in order to reduce the power consumption of STA handover, in the feedback phase between the STA and each AP, no feedback is performed first, but after the beam tracking of the STA and all APs is completed, the All the results are fed back to the current serving AP, and the currently serving AP feeds back the result to the controlling AP, and finally the controlling AP feeds back to each AP, thus enriching the beam tracking process between the STA and multiple APs.
  • FIG. 9 shows a schematic diagram of a feedback frame structure according to an embodiment of the present application.
  • the feedback frame may include one or a combination of the following information:
  • Frame control used to indicate the MAC version, frame type, segmentation indication, retransmission indication and other control information used by the frame.
  • Duration used to indicate the duration of feedback.
  • Transmit address used to indicate the address for sending feedback.
  • Forwarding including feedback information of each AP among multiple APs.
  • FCS Frame check sequence
  • the feedback field is variable and is related to the number of APs that the STA performs beam tracking.
  • the feedback field includes the number of APs and the information of each AP.
  • the information of each AP includes one or a combination of the following information:
  • Access node ID ID used to mark and distinguish AP.
  • Beam tracking start time (BT Start time): used to indicate the start time of beam tracking between the STA and the AP indicated by the AP ID.
  • Beam tracking duration used to indicate the duration of beam tracking between the STA and the AP indicated by the AP ID.
  • Feedback start time used to indicate the start time of the AP feedback phase indicated by the STA and the AP ID.
  • Feedback duration used to indicate the duration of the AP feedback phase indicated by the STA and the AP ID.
  • Figure 10 shows the overall flow chart of multi-STA multi-AP beam tracking. As shown in Figure 10, during the RTI period of each AP, all STAs participating in beam tracking are in a connected state, which can be understood as a superposition of one STA and multiple AP beam tracking procedures. For specific procedures, refer to the descriptions of Figures 7 and 8. , I won’t repeat it here.
  • the STA After the beam tracking process, the STA needs to switch from the currently serving AP to the new AP. When a STA switches to a new AP, it needs to perform 802.1X authentication and a four-way handshake protocol. The switching delay is longer and the data interruption time is longer, which affects the user experience.
  • the embodiments of the present application provide a security verification method, which enables the STA to perform initial association authentication with an AP in the cluster, and subsequently when the STA switches to other APs in the cluster, no association is required.
  • Authentication requires only the consent of the target AP of the handover, thereby reducing the handover delay and improving user experience.
  • FIG. 11 shows a schematic flowchart of a security verification method provided in an embodiment of the present application.
  • the method 800 can be applied to the communication system 100 shown in FIG. 1, but the embodiment of the present application is not limited thereto.
  • S810 Control the AP to obtain the first key information.
  • the first key information is key information obtained after the STA initially associates with at least one M-AP of the multiple APs.
  • the current serving AP of the STA is in a cluster with multiple other APs. Since the STA and its serving AP have completed the initial association authentication, they have obtained the first key information shared by the STA and the serving AP, for example, a pairwise master key security association (PMKSA), where the PMKSA includes Master key (pairwise master key, PMK). Assuming that each of the multiple APs is the antenna that controls the AP, the STA switching from one AP to another AP can be considered as switching from one antenna of the controlling AP to another, and all antennas can share the PMKSA , And then share the generated master key PMK.
  • PMKSA pairwise master key security association
  • the STA may initially associate with each AP among multiple APs, and generate the first key information of the corresponding AP in advance, where the first key information of each AP is different.
  • S820 Control the AP to send the first key information.
  • the control AP When the STA initially associates with an AP in the cluster, the control AP sends the first key information to all APs in the cluster before the STA switches, so that all APs in a cluster share the first key information .
  • the STA switches from the currently serving AP to the target AP, it does not need to perform 802.1X authentication. As long as the target AP agrees to the switch, it can directly connect, thereby reducing the switching delay caused by security verification.
  • the method 800 may further include S830.
  • S830 Control the AP to receive first request messages sent by multiple M-APs.
  • the control AP after obtaining the first key information, the control AP does not need to send the first key information to each M-AP of the multiple APs, and the control AP may store the first key first.
  • the M-AP when the STA needs to switch to a new M-AP, the M-AP sends a first request message to the control AP, where the first request message is used to request first key information from the control AP.
  • FIG. 12 shows a schematic flowchart of a beam tracking handover provided by an embodiment of the present application.
  • the method 900 may be applied to the communication system 100 shown in FIG. 1, but the embodiment of the present application is not limited thereto.
  • the STA sends a second handover request message to the serving AP.
  • the second handover request message includes information for generating a second key, and the second key is used to instruct the STA to perform data transmission with the target AP.
  • the second handover request message includes at least one of the following information: identification information of the target AP, robust security network element (RSNE) information, and random number information of the STA.
  • RSNE robust security network element
  • the identification information of the target AP is used to indicate which AP the STA switches to.
  • the identification information of the target AP may be the label of the target AP.
  • AP#1 indicates that the STA is switched to AP 1
  • AP#2 indicates that the STA is switched to AP 2.
  • the specific identification method is not limited in the embodiment of this application, as long as the AP in the cluster can be uniquely identified.
  • the RSNE information and the random number of the STA are element information for generating the first key information.
  • the random number of the STA may include at least one of the following: a media access control (media access control, MAC) address of the STA and a random number Snonce of the STA.
  • the serving AP sends a first handover request message to the control AP.
  • the first handover request message includes at least one of the following information: identification information of the target AP, robust security network element (RSNE) information, and random number information of the STA.
  • RSNE robust security network element
  • control AP is the serving AP of the STA, then S920 may not be performed.
  • S930 The control AP sends the first handover request message to the target AP.
  • the control AP After receiving the first handover request message sent by the serving AP of the STA, the control AP sends the first handover request message to the target AP.
  • the second key is a pairwise transient key (PTK).
  • PTK pairwise transient key
  • the target AP sends a first handover request response message to the control AP.
  • the target AP After the target AP generates the PTK, if the target AP agrees to handover, the target AP sends a first handover request response message to the control AP, where the first handover request response message includes the MAC address information of the STA, the MAC address information of the target AP, Snonce of STA, random number Anonce of target AP, PMK and other information.
  • S960 The control AP sends the first handover request response message to the serving AP.
  • the control AP After receiving the first handover request response message sent by the target AP, the control AP sends the first handover request response message to the serving AP to inform the serving AP that the target AP agrees to handover.
  • S970 The serving AP sends a second handover request response message to the STA.
  • the serving AP After receiving the first handover request response message sent by the control AP, the serving AP sends a second handover request response message to the STA.
  • the second handover request response message includes at least one of the following information: MAC address information of the STA, MAC address information of the target AP, Snonce of the STA, random number Anonce of the target AP, and PMK.
  • S980 The STA generates a second key.
  • the second key is PTK.
  • the STA After the STA receives the second handover request response message sent by the serving AP, the STA according to the MAC address information of the STA, the MAC address information of the target AP, the Snonce of the STA, the random number Anonce of the target AP, and the master key (pairwise master key) , PMK) negotiate the temporary key PTK information.
  • the STA neither the STA nor the target AP has the PTK for data encryption, that is, the handover is successful and the communication can be directly carried out.
  • FIG. 13 shows a schematic flowchart of another beam tracking handover provided by an embodiment of the present application.
  • the method 1000 can be applied to the communication system 100 shown in FIG. 1, but the embodiment of the present application is not limited thereto.
  • the STA sends a second handover request message to the serving AP.
  • the second handover request message includes information for generating a second key, and the second key is used to instruct the STA to perform data transmission with the target AP.
  • step S1020 is executed.
  • S1020 The serving AP sends a second handover request response message to the STA.
  • the second handover request response message includes information about the reason why the serving AP rejects the handover request.
  • the STA After the STA receives the second handover request response message containing the rejection reason information, it can perform step S1010 again after a period of time.
  • the serving AP After the serving AP receives the second handover request message sent by the STA, if the serving AP agrees to handover, the second handover request response message sent in S1020 includes the information that the serving AP agrees to handover, and continues to execute S1030 and S1040.
  • S1030 The serving AP sends a first handover request message to the control AP.
  • S1040 Control the AP to send the first handover request message to the target AP.
  • steps S1030 to S1040 are the same as steps S920 to 930.
  • steps S920 to 930 please refer to the description of S920 to S930, which will not be repeated here.
  • step S1050 is executed.
  • S1050 The target AP sends a first handover request response message to the control AP.
  • the first handover request response message includes information on the reason why the target AP does not agree to handover. For example, the target AP does not currently have free time for handover, or the target AP does not support the service type requested by the STA.
  • S1060 The control AP sends the first handover request response message to the serving AP.
  • S1070 The serving AP sends a second handover request response message to the STA.
  • the second handover request response message includes information about the reason why the target AP does not agree to handover.
  • the STA After receiving the second handover request response message, the STA re-executes S1010 after a period of time, requesting handover to the new target AP.
  • the target AP when the target AP refuses to handover, the target AP executes S1080, that is, the target AP can directly send a second handover request response message to the STA, where the second handover request response message includes that the target AP does not Information about the reason for agreeing to switch.
  • the STA After receiving the second handover request response message, the STA re-executes S1010 after a period of time, requesting handover to the new target AP.
  • S1050 to S1070 may not be executed, and S1080 may be executed directly, as shown in Figure 13. This greatly simplifies the handover process and reduces the handover delay.
  • FIG. 14 shows a schematic flowchart of still another beam tracking handover provided by an embodiment of the present application.
  • the method 1100 may be applied to the communication system 100 shown in FIG. 1, but the embodiment of the present application is not limited thereto.
  • the STA sends a third handover request message to the serving AP.
  • the serving AP of the STA When the serving AP of the STA is due to signal quality or load and other reasons, the serving AP of the STA sends a third handover request message to the STA, requesting the STA to switch from the serving AP to the target AP.
  • the third handover request message includes information for generating the second key.
  • the second key can be PTK.
  • the third handover request message includes at least one of the following information: identification information of the target AP, RSNE information, and random number information of the STA.
  • the STA sends a third handover request response message to the serving AP.
  • the STA sends a third handover request response message to the serving AP.
  • S1130 The serving AP sends a first handover request response message to the control AP.
  • the serving AP When the serving AP receives the third handover request response message sent by the STA, the serving AP sends the first handover request message to the control AP.
  • the first handover request message includes at least one of the following information: identification information of the target AP, RSNE information, and random number information of the STA.
  • the control AP is the serving AP of the STA, the S1130 may not be executed.
  • the control AP sends the first handover request message to the target AP.
  • the control AP After receiving the first handover request message sent by the serving AP of the STA, the control AP sends the first handover request message to the target AP.
  • S1150 The target AP generates a second key.
  • S1160 The target AP sends a first handover request response message to the control AP.
  • the control AP sends the first handover request response message to the serving AP.
  • S1180 The serving AP sends a third handover request confirmation message to the STA.
  • S1190 The STA generates a second key.
  • steps S1130 to S1190 are the same as steps S920 to 980.
  • steps S920 to S980 please refer to the description of S920 to S980, which will not be repeated here.
  • the serving AP of the STA initiates an AP handover request to the STA due to signal quality or load
  • the STA and the target AP are used for key negotiation, and a new handover procedure in the BPAC scenario is designed, which simplifies the handover complexity This reduces the handover delay.
  • FIG. 15 shows a schematic flowchart of yet another beam tracking handover provided by an embodiment of the present application.
  • the method 1200 can be applied to the communication system 100 shown in FIG. 1, but the embodiment of the present application is not limited thereto.
  • S1210 The serving AP sends a third handover request message to the STA.
  • the third handover request message includes information for generating a second key, and the second key is used to instruct the STA to perform data transmission with the target AP.
  • the second key is used to instruct the STA to perform data transmission with the target AP.
  • PTK Precision Key Determination
  • the third handover request message includes at least one of the following information: identification information of the target AP, robust security network element (RSNE) information, and random number information of the STA.
  • RSNE robust security network element
  • step S1220 is executed.
  • S1220 The STA sends a third handover request response message to the serving AP.
  • the third handover request response message includes information about the reason why the STA rejects the handover request.
  • step S1210 may be executed again after a period of time.
  • the third handover request response message sent in S1220 includes the information that the STA agrees to handover, and continues to execute S1230 and S1240.
  • S1230 The serving AP sends a first handover request message to the control AP.
  • S1240 The control AP sends the first handover request message to the target AP.
  • steps S1230 to S1240 are the same as steps S920 to S930.
  • steps S920 to S930 please refer to the description of S920 to S930, which will not be repeated here.
  • step S1250 is executed.
  • S1250 The target AP sends a first handover request response message to the control AP.
  • the first handover request response message includes information on the reason why the target AP does not agree to handover. For example, the target AP does not currently have free time for handover, or the target AP does not support the service type of the STA.
  • S1260 The control AP sends the first handover request response message to the serving AP.
  • the serving AP of the STA After receiving the first handover request response message, the serving AP of the STA re-executes S1210 after a period of time to request handover to the new target AP.
  • the target AP when the target AP refuses to handover, if the STA's serving AP does not receive the handover confirmation message when the serving AP times out, the serving AP re-executes S1210 after a period of time, requesting handover to the new target AP.
  • S1250 to S1260 may not be executed, which greatly simplifies the handover process and reduces the handover delay.
  • the beam tracking method according to the embodiment of the present application is described in detail above with reference to FIG. 1 to FIG. 15.
  • the device for beam tracking according to the embodiment of the present application will be described in detail below in conjunction with FIG. 16 to FIG. 17.
  • FIG. 16 shows a beam tracking apparatus 1600 provided by an embodiment of the present application.
  • the device 1600 includes: an acquisition unit 1610, a processing unit 1620, and a transceiver unit 1630.
  • the apparatus 1600 is used to implement various procedures and steps corresponding to the station STA in the foregoing method embodiment.
  • the acquiring unit 1610 is configured to acquire first information, and the first information includes time information for beam tracking between the STA and each AP of the multiple access nodes AP.
  • the processing unit 1620 is configured to perform beam tracking with multiple APs according to the first information.
  • the multiple APs include a control AP, and the control AP can communicate with each of the multiple APs, and the obtaining unit 1610 is specifically configured to: obtain the first information from the control AP.
  • the optional first information is obtained by the controlling AP by polling the idle time of each of the multiple APs.
  • the first information is determined by the controlling AP according to the reserved time interval RTI of each of the multiple APs.
  • the first information is determined by the controlling AP according to a measurement report of beam training performed by the STA and each AP of the multiple APs.
  • the processing unit 1620 is further configured to perform beam tracking with the corresponding AP within the beam tracking time of each AP of the multiple APs.
  • the processing unit 1620 is specifically configured to feed back the beam tracking result with the multiple APs through the control AP during the feedback period.
  • the apparatus 1600 is used to implement various processes and steps corresponding to the AP control in the foregoing method embodiment.
  • the obtaining unit 1610 is configured to obtain first information, and the first information includes time information for beam tracking between the station STA and each AP of the multiple APs.
  • the transceiver unit 1630 is configured to send the first information.
  • the acquiring unit 1610 is specifically configured to: obtain the first information by polling the idle time of each of the multiple APs.
  • the transceiver unit 1630 is specifically configured to: receive a beam tracking request message sent by the STA.
  • the transceiver unit 1630 is specifically configured to send the beam tracking request message to each AP of the multiple APs.
  • the transceiving unit 1630 is specifically configured to receive the beam tracking request response message sent by each AP of the multiple APs, where the beam tracking request response message includes the idle time of each AP of the multiple APs.
  • the processing unit 1620 is specifically configured to determine the first information according to the idle time of each of the multiple APs.
  • the acquiring unit 1610 is specifically configured to acquire the reserved time interval RTI of each AP of the multiple APs.
  • the processing unit 1620 is specifically configured to determine the first information according to the RTI of each AP of the multiple APs.
  • the obtaining unit 1610 is specifically configured to obtain a measurement report of beam training performed by the STA and each AP of the multiple APs.
  • the processing unit 1620 is specifically configured to: determine the first information according to the measurement report.
  • the transceiving unit 1630 is further configured to send second information to each AP of the multiple APs, the second information including time information for beam tracking between the STA and each AP of the multiple APs.
  • the processing unit 1620 is further configured to feed back the beam tracking result to the STA and the multiple APs in the feedback period.
  • the STA when the communication quality of the link with the currently served AP is reduced due to the movement of the STA, in order to ensure the communication quality, the STA needs to determine a new AP through beam tracking and switch from the current serving AP to the new AP.
  • the STA performs beam tracking with multiple APs, if it is not coordinated, it is easy to cause interference. Therefore, when performing beam tracking, the STA obtains the first information, and performs beam tracking with multiple APs in an orderly manner according to the first information, thereby avoiding interference.
  • the device 1600 here is embodied in the form of a functional unit.
  • the term "unit” here can refer to application specific integrated circuit (application specific integrated circuit, ASIC), electronic circuit, processor for executing one or more software or firmware programs (such as shared processor, proprietary processor or group Processor, etc.) and memory, merge logic circuits and/or other suitable components that support the described functions.
  • ASIC application specific integrated circuit
  • the apparatus 1600 may be specifically a station or a control access node in the foregoing embodiment, and the apparatus 1600 may be used to execute the station or a control access node in the foregoing method embodiment. In order to avoid repetition, the various processes and/or steps of, will not be repeated here.
  • the apparatus 1600 in each of the foregoing solutions has the function of implementing the corresponding steps performed by the station or the control access node in the foregoing method; the function may be implemented by hardware, or may be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions; for example, the sending unit can be replaced by a transmitter, the receiving unit can be replaced by a receiver, and other units, such as a processing unit and an acquisition unit, can be replaced by a processor. , Respectively perform the receiving and sending operations and related processing operations in each method embodiment.
  • the device in FIG. 16 may be the station or the control access node in the foregoing embodiment, or may be a chip or a chip system, such as a system on chip (SoC).
  • the receiving unit and the sending unit may be the transceiver circuit of the chip, which is not limited here.
  • FIG. 17 shows a beam tracking apparatus 1700 provided by an embodiment of the present application.
  • the device 1700 includes a processor 1710 and a transceiver 1720.
  • the processor 1710 and the transceiver 1720 communicate with each other through an internal connection path, and the processor 1710 is used to execute instructions to control the transceiver 1720 to send signals and/or receive signals.
  • the device 1700 may further include a memory 1730, and the memory 1730 communicates with the processor 1710 and the transceiver 1720 through an internal connection path.
  • the memory 1730 is used to store instructions, and the processor 1710 can execute the instructions stored in the memory 1730.
  • the apparatus 1700 is used to implement various procedures and steps corresponding to the station STA in the foregoing method embodiment.
  • the processor 1710 is configured to: obtain first information, the first information including the time information of beam tracking between the STA and each AP of the multiple access nodes AP; according to the first information obtained by the STA and the multiple Each AP performs beam tracking.
  • the apparatus 1700 is used to implement various procedures and steps corresponding to controlling an access node in the foregoing method embodiment.
  • the processor 1710 is configured to: obtain first information, the first information including the time information of beam tracking between the station STA and each AP of the multiple APs; and, the transceiver 1720 is configured to: send the STA to the STA. First information.
  • the apparatus 1700 may be specifically a station or a control access node in the foregoing embodiment, or may be a chip or a chip system.
  • the transceiver 1720 may be the transceiver circuit of the chip, which is not limited here.
  • the apparatus 1700 may be used to execute various steps and/or processes corresponding to a station or a control access node in the foregoing method embodiment.
  • the memory 1730 may include a read-only memory and a random access memory, and provide instructions and data to the processor. A part of the memory may also include a non-volatile random access memory.
  • the memory can also store device type information.
  • the processor 1710 may be used to execute instructions stored in the memory, and when the processor 1710 executes the instructions stored in the memory, the processor 1710 is configured to execute each of the above method embodiments corresponding to the site or the control access node Steps and/or processes.
  • the processor of the above-mentioned device may be a central processing unit (CPU), and the processor may also be other general-purpose processors, digital signal processors (DSP), or application-specific integrated circuits. (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the above method can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software units in the processor.
  • the software unit may be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor executes the instructions in the memory and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • At least one refers to one or more, and “multiple” refers to two or more.
  • And/or describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects are in an “or” relationship.
  • "The following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or plural items (a).
  • At least one item (a) of a, b, or c can represent: a, b, c, a-b, a-c, b-c or a-b-c, where a, b, and c can be single or multiple.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may also be electrical, mechanical or other forms of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments of the present application.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application is essentially or the part that contributes to the existing technology, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium It includes several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种波束跟踪的方法和装置,能够减小切换时延,提高通信服务质量。该方法包括:站点STA获取第一信息,该第一信息包括该STA与多个接入节点AP中的每一个AP进行波束跟踪的时间信息;该STA根据该第一信息与该多个AP进行波束跟踪。

Description

波束跟踪的方法和装置
本申请要求于2019年05月31日提交中国专利局、申请号为201910471816.5、申请名称为“波束跟踪的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种波束跟踪的方法和装置。
背景技术
由于站点(station,STA)的运动或其附近环境发生变化,导致了由衰落和干扰引起的信道变化,造成链路质量下降,该STA需要将其所关联的接入点(access point,AP)从一个AP切换到另一个AP。传统的用于切换的方法主要包括三个步骤:扫描、认证和重关联。即一旦满足了切换的触发条件,STA会开始扫描全部的信道,获取可使用的AP信息,一般在完成扫描过程后,该STA会选择所有AP中信号信噪比最大的可以建立连接的AP,然后向其发出连接的请求,从而完成重新连接的过程,进而改善链路通信质量。
在多STA多AP的基本服务集控制点/接入点簇(BSS PCP/AP cluster)BPAC场景中,在链路通信质量降低时,STA需要与多个AP进行波束跟踪。但多个AP与STA独立进行波束跟踪时,容易产生干扰。另外,由于现有技术中,STA只与当前通信的AP进行波束跟踪。当需要进行AP切换时,需要先进行波束跟踪,再进行切换。在确定了新的AP后,该新的AP和STA之间需要进行信息交互认证,只有通过了认证以后才可以进行网络通信,切换时延较大,影响通信服务质量。
因此,如何减小切换时延,提高通信服务质量成为亟待解决的问题。
发明内容
本申请提供一种波束跟踪换的方法和装置,能够减小切换时延,提高通信服务质量。
第一方面,提供了一种波束跟踪的方法,包括:站点STA获取第一信息,该第一信息包括该STA与多个接入节点AP中的每一个AP进行波束跟踪的时间信息;该STA根据该第一信息与该多个AP进行波束跟踪。
本申请提供的技术方案中,在BPAC场景下,STA与多个AP进行波束跟踪时,如果没有经过协调,容易造成干扰。因此,在进行波束跟踪时,STA获取第一信息,并根据该第一信息有序地与多个AP进行波束跟踪,从而避免了干扰,减小切换时延,提高网络通信质量。
应理解,多个AP与STA有序地进行波束跟踪包括多个AP分时与STA进行波束跟踪。例如,第一AP与STA在第一时段内进行波束跟踪,第二AP与STA在第二时段内进行波束跟踪,第三AP与STA在第三时段内进行波束跟踪。或者,当STA发起波束跟 踪请求时,同一个簇内的所有AP接收到该波束跟踪请求时,同时开始进行波束跟踪,为了避免干扰,在波束跟踪后,多个AP可以分时向STA发送反馈信息。例如,第一AP在第一时段向STA反馈波束跟踪结果,第二AP在第二时段向STA反馈波束跟踪结果,第三AP在第三时段向STA反馈波束跟踪结果。或者,多个AP分时与STA进行波束跟踪,并且在波束跟踪结束后,分时向STA反馈波束跟踪结果。具体的实现方式,本申请实施例对此并不作限定。
结合第一方面,在第一方面的某些实现方式中,该多个AP中包括控制AP,该控制AP能够与该多个AP中的每一个AP进行通信,其中,该STA获取第一信息,包括:该STA从该控制AP获取该第一信息。
结合第一方面,在第一方面的某些实现方式中,该第一信息为该控制AP通过轮询该多个AP中的每一个AP的空闲时间得到的。
例如,当STA移动时,与当前服务AP(serving AP)之间的链路通信质量降低,无法满足当前的通信要求,为了保证通信质量,STA向控制AP发起与其它AP进行波束跟踪的请求,从而重新选择可以满足通信要求的AP重新接入。
该多个AP中的每一个AP接收到控制AP发送的波束跟踪请求信息后,AP向控制AP发送波束跟踪请求响应消息,其中,该波束跟踪请求响应消息包括该AP的空闲时段。
控制AP得到该多个AP中的每一个AP发送的波束跟踪请求响应消息后,根据各个AP的空闲时间,确定第一信息,从而使得该多个AP有序地与STA进行波束跟踪,从而避免干扰。
结合第一方面,在第一方面的某些实现方式中,该第一信息为该控制AP根据该多个AP中的每一个AP的预留时间间隔RTI确定的。
在一些可能的实现方式中,控制AP可以在每一个AP的信标间隔(beacon interval,BI)中提前预留一段时间(reserved time interval,RTI),控制AP根据该多个AP中的每一个AP的RTI确定第一信息,其中,该RTI用于进行突发的波束跟踪和切换。
结合第一方面,在第一方面的某些实现方式中,该第一信息为该控制AP根据该STA与该多个AP中的每一个AP进行波束训练的测量报告确定的。
在一些可能的实现方式中,该STA可以先与同一个簇内的所有AP种每一个进行波束训练,并向控制AP发送波束训练测量报告,其中该波束训练测量报告包括每一个AP的时间安排信息。控制AP根据该多个AP中每一个AP的波束训练测量报告中的时间安排信息,确定第一信息,使多个AP与STA有序地进行波束跟踪。
上述技术方案中,由于STA与一个簇内所有的AP提前完成了波束训练,并将波束训练结果存储在一个历史测量报告中,STA和控制AP有所有的AP的时间安排信息,则STA需要跟其他AP进行波束跟踪时,不需要控制AP向每一个AP询问空闲时段,每一个AP也不需要向控制AP反馈自己的空闲时段,大大减小了AP和控制AP间的信息交互,简化了流程,减小了切换时延。
结合第一方面,在第一方面的某些实现方式中,该STA根据该第一信息与该多个AP进行波束跟踪,包括:该STA分别在该多个AP中的每一个AP的波束跟踪时间内与对应的AP进行波束跟踪。
结合第一方面,在第一方面的某些实现方式中,该STA根据该第一信息与该多个AP 进行波束跟踪,包括:
在反馈时段内,该STA与该多个AP通过该控制AP反馈该波束跟踪结果。
上述技术方案中,为了减小STA切换功耗,在STA与每一个AP的反馈阶段,先不进行反馈,而是在该STA与所有的AP波束跟踪完成后,将所有的波束跟踪结果反馈至当前的服务AP,当前服务的AP将波束跟踪结果反馈给控制AP,最后控制AP再反馈给每一个AP,进而丰富了STA与多个AP进行波束跟踪的流程。
第二方面,提供了另一种波束跟踪的方法,包括:控制接入节点AP获取第一信息,该第一信息包括站点STA与多个AP中的每一个AP进行波束跟踪的时间信息;该控制AP向该STA发送该第一信息。
结合第二方面,在第二方面的某些实现方式中,该控制AP获取第一信息,包括:该控制AP通过轮询该多个AP中的每一个AP的空闲时间得到该第一信息。
结合第二方面,在第二方面的某些实现方式中,该控制AP通过轮询该多个AP中的每一个AP的空闲时间得到该第一信息,包括:该控制AP接收该STA发送的波束跟踪请求消息;该控制AP向该多个AP中的每一个AP发送该波束跟踪请求消息;该控制AP接收该多个AP中的每一个AP发送该波束跟踪请求响应消息,该波束跟踪请求响应消息包括该多个AP中的每一个AP的空闲时间;该控制AP根据该多个AP中的每一个AP的空闲时间确定该第一信息。
结合第二方面,在第二方面的某些实现方式中,该控制AP获取第一信息,包括:该控制AP获取该多个AP中的每一个AP的预留时间间隔RTI;该控制AP根据该多个AP中的每一个AP的RTI确定该第一信息。
结合第二方面,在第二方面的某些实现方式中,该控制AP获取第一信息,包括:该控制AP获取该STA与该多个AP中的每一个AP进行波束训练的测量报告;该控制AP根据该测量报告确定该第一信息。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:向该多个AP中的每一个AP发送第二信息,该第二信息包括该STA与该多个AP中的每一个AP进行波束跟踪的时间信息。
控制AP在确定多个AP与STA进行波束跟踪的时间安排后,分别向各个AP发送相应的时间安排信息。使得多个AP可以有序地与STA进行波束跟踪。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:在反馈时段内,该控制AP向该STA与该多个AP反馈该波束跟踪结果。
第三方面,提供了又一种波束跟踪的方法,包括:成员接入节点M-AP获取第二信息,该第二信息包括该M-AP与该STA进行波束跟踪的时间信息,该多个AP包括该M-AP;该M-AP根据该第二信息与该STA进行波束跟踪。
结合第三方面,在第三方面的某些实现方式中,该多个AP中包括控制AP,该控制AP能够与该多个AP中的每一个M-AP进行通信,其中,该M-AP获取第二信息,包括:该M-AP从该控制AP获取该第二信息。
结合第三方面,在第三方面的某些实现方式中,该第二信息为该控制AP通过轮询该多个AP中的每一个M-AP的空闲时间得到的。
结合第三方面,在第三方面的某些实现方式中,该第二信息为该控制AP根据该多个 AP中的每一个M-AP的预留时间间隔RTI确定的。
结合第三方面,在第三方面的某些实现方式中,该第二信息为该控制AP根据该STA与该多个AP中的每一个M-AP进行波束训练的测量报告确定的。
结合第三方面,在第三方面的某些实现方式中,该M-AP根据该第二信息与该STA进行波束跟踪,包括:该M-AP在该M-AP相应的波束跟踪时间内与该STA进行波束跟踪。
结合第三方面,在第三方面的某些实现方式中,该M-AP根据该第二信息与该STA进行波束跟踪,包括:在反馈时段内,该M-AP与该STA通过该控制AP反馈该波束跟踪结果。
第四方面,提供了一种安全验证的方法,包括:控制接入节点AP获取第一密钥信息,该第一密钥信息为站点STA与多个接入节点AP中的至少一个AP初始关联后得到的密钥,该多个AP中包括该控制AP,该控制AP能够与该多个AP中的每一个AP进行通信;该控制AP发送该第一密钥信息。
由于可以认为STA当前的服务AP与其它多个AP在一个簇内。由于STA与其服务AP已经完成了初始关联认证,得到了STA与该服务AP共享的主密钥(pairwise master key,PMK)。假设该多个AP中的每一个AP为控制AP的虚拟天线,则STA从一个AP切换至另外一个AP可以认为是从控制AP的一个天线切换至另一个天线,则所有的天线即可共享该已经生成的主密钥PMK。
结合第四方面,在第四方面的某些实现方式中,该第一密钥信息为站点STA与多个接入节点AP中的每一个AP初始关联后得到的密钥,该控制AP获取第一密钥信息,包括:该控制AP接收该STA的服务AP发送的该第一密钥信息。
结合第四方面,在第四方面的某些实现方式中,该第一密钥信息为站点STA与多个接入节点AP中的第一AP初始关联后得到的密钥,该控制AP获取第一密钥信息,包括:该控制AP针对该第一AP生成该第一密钥信息。
上述技术方案中,当STA从当前服务AP切换至目标AP时,由于该簇内的AP提前共享了第一密钥信息或者获取了各自相应的AP,因此,在STA进行AP切换时,不需要每次再进行关联认证,只需目标AP同意切换即可,减小了切换时延,从而保证了通信服务质量。
结合第四方面,在第四方面的某些实现方式中,该控制AP发送该第一密钥信息,包括:该控制AP接收该多个AP发送的第一请求消息,该第一请求消息用于向该控制AP请求该第一密钥信息;该控制AP向该多个AP发送该第一密钥信息。
在一些可能的实现方式中,控制AP在获得第一密钥信息后,不需要向该多个AP中每一个AP发送该第一密钥信息,控制AP可以先存储该第一密钥信息,当STA需要进行切换至目标AP时,该目标AP向控制AP发送第一请求消息,其中,该第一请求消息用于向控制AP请求第一密钥信息。
结合第四方面,在第四方面的某些实现方式中,该控制AP发送该第一密钥信息,包括:该控制AP接收该第一AP发送的第一请求消息,该第一请求消息用于向该控制AP请求该第一密钥信息;该控制AP向该第一AP发送该第一密钥信息。
结合第四方面,在第四方面的某些实现方式中,该方法还包括:该控制AP接收该服 务AP发送的第一切换请求消息,该第一切换请求消息包括用于生成第二密钥的信息,该第二密钥用于指示该STA与该目标AP进行数据传输;该控制AP向该目标AP发送该第一切换请求消息;该控制AP接收该目标AP发送的第一切换请求响应消息,该第一切换请求响应消息包括用于生成第二密钥的信息;该控制AP向该服务AP发送该第一切换请求响应消息。
可选地,该第一切换请求消息包括以下至少一种信息:目标AP的标识信息,健壮安全网络元素(robust security network element,RSNE)信息以及STA的随机数信息。
其中,目标AP的标识信息用于指示该STA切换至哪一个AP。例如,该目标AP的标识信息可以为目标AP的标号。AP#1,表示该STA切换至1号AP,AP#2,表示该STA切换至2号AP。具体的标识方式,本申请实施例对此不作限定,只要能够唯一标识该簇内的AP即可。
RSNE信息以及STA的随机数为生成第一密钥信息的元素信息。可选地,该STA的随机数可以包括以下至少一种:STA的媒体访问控制(media access control,MAC)地址以及STA的随机数Snonce。
第五方面,提供了一种安全验证的方法,包括:站点STA向该STA的服务接入节点AP发送第二切换请求消息,该第二切换请求消息包括第一密钥信息,该第一密钥信息用于生成第二密钥,该第二密钥用于指示该STA与多个AP中包括的目标AP进行数据传输;其中,该该第一密钥信息为该STA与该AP中的每一个AP初始关联后得到的密钥信息;或该第一密钥信息为该STA与该多个AP中的第一AP初始关联后得到的密钥信息。
结合第五方面,在第五方面的某些实现方式中,该方法还包括:当该服务AP拒绝切换时,该STA接收该服务AP发送的第二切换响应消息,该第二切换响应消息包括该服务AP拒绝切换的原因。
结合第五方面,在第五方面的某些实现方式中,该方法还包括:该STA接收该服务AP发送的第三切换请求消息,该第三切换请求消息包括用于生成该第二密钥的信息。该STA向该服务AP发送该第三切换请求响应消息。
结合第五方面,在第五方面的某些实现方式中,该方法还包括:当该目标AP拒绝切换时,该STA接收该目标AP发送的第三切换请求响应消息。
第六方面,提供了一种安全验证的方法,应用于包括站点STA与多个接入点AP的通信系统中,包括:接入节点AP从控制AP获取第一密钥信息,该第一密钥信息为站点STA与该AP的初始关联后得到的密钥信息,该多个AP中包括该控制AP,该控制AP能够与该多个AP中的每一个AP进行通信;该AP根据该第一密钥信息进行该STA从服务AP的该AP的切换。
结合第六方面,在第六方面的某些实现方式中,该AP根据该第一密钥信息进行该STA从服务AP的该AP的切换,包括:该目标AP接收该控制AP发送的第一切换请求消息,该第一切换请求消息包括用于生成第二密钥的信息,该第二密钥用于指示站点STA与该目标AP进行数据传输;该目标AP向该控制AP发送第一切换请求响应消息。
结合第六方面,在第六方面的某些实现方式中,当该目标AP拒绝切换时,该第一切换请求响应消息包括拒绝原因。
结合第六方面,在第六方面的某些实现方式中,该方法还包括:当该目标AP拒绝切 换时,该目标AP向该STA发送第三切换请求响应消息,该第三切换请求响应消息包括拒绝原因。
第七方面,提供了一种波束跟踪的装置,用于执行上述第一方面或第一方面任意可能的实现方式中的方法。具体地,该装置包括用于执行上述第一方面或第一方面的任一种可能的实现方式中的方法的单元。
第八方面,提供了一种波束跟踪的装置,用于执行上述第二方面或第二方面任意可能的实现方式中的方法。具体地,该装置包括用于执行上述第二方面或第二方面的任一种可能的实现方式中的方法的单元。
第九方面,提供了一种波束跟踪的装置,用于执行上述第三方面或第三方面任意可能的实现方式中的方法。具体地,该装置包括用于执行上述第三方面或第三方面的任一种可能的实现方式中的方法的单元。
第十方面,提供了另一种波束跟踪的装置,该装置包括:收发器、存储器和处理器。其中,该收发器、该存储器和该处理器通过内部连接通路互相通信,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,以控制接收器接收信号,并控制发送器发送信号,并且当该处理器执行该存储器存储的指令时,使得该处理器执行上述各个方面或各个方面的任一种可能的实现方式中的方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
在具体实现过程中,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
第十一方面,提供了一种波束跟踪的系统,该系统包括用于实现上述第一方面或第一方面的任一种可能实现的方法的装置,用于实现上述第二方面或第二方面的任一种可能实现的方法的装置,以及用于实现上述第三方面或第三方面的任一种可能实现的方法的装置。在一种设计中,该系统包括用于实现站点执行的方法的装置,用于实现控制接入节点执行的方法的装置,以及用于实现其他节点执行的方法的装置。
第十二方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被计算机运行时,使得所述计算机执行上述各个方面中的方法。
第十三方面,提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行上述各方面中的方法的指令。
第十四方面,提供了一种芯片,包括处理器,用于从存储器中调用并运行所述存储器中存储的指令,使得安装有所述芯片的通信设备执行上述各个方面中的方法。
第十五方面,提供另一种芯片,包括:输入接口、输出接口、处理器和存储器,所述输入接口、输出接口、所述处理器以及所述存储器之间通过内部连接通路相连,所述处理器用于执行所述存储器中的代码,当所述代码被执行时,所述处理器用于执行上述各个方面中的方法。
附图说明
图1是本申请实施例的一种通信系统的示意图;
图2示出了本申请实施例提供的一种波束跟踪的方法的示意性流程图;
图3示出了一种控制AP确定第一信息的示意性流程图;
图4示出了本申请实施例的调度请求帧的结构示意图;
图5示出了BPAC场景下波束跟踪请求元素帧的结构示意图;
图6示出了信标间隔BI的结构示意图;
图7示出了本申请实施例提供的一种BPAC场景下的波束跟踪总体流程图;
图8示出了本申请实施例提供的另一种BPAC场景下的波束跟踪总体流程图;
图9示出了本申请实施例的反馈帧结构示意图;
图10示出了多STA多AP波束跟踪的总体流程图;
图11示出了本申请实施例提供的安全验证的方法的示意性流程图;
图12示出了本申请实施例提供的一种波束跟踪切换的示意性流程图;
图13示出了本申请实施例提供的另一种波束跟踪切换的示意性流程图;
图14示出了本申请实施例提供的再一种波束跟踪切换的示意性流程图;
图15示出了本申请实施例提供的又一种波束跟踪切换的示意性流程图;
图16示出了本申请实施例提供的波束跟踪的装置的示意图;
图17示出了本申请实施例提供的另一个波束跟踪的装置的示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、未来的第五代(5th Generation,5G)系统或新无线(New Radio,NR)等。
本申请实施例的技术方案还可以应用于无线局域网(wireless local area network,WLAN),并且本申请实施例可以适用于WLAN当前采用的国际电工电子工程学会(institute of electrical and electronics engineers,IEEE)802.11系列协议中的任意一种协议。WLAN可以包括多个通信节点,例如,一个或多个个人基本服务集控制点/接入点(personal basic service set control point/access point,PCP/AP)和一个或多个站点(station,STA)。
应理解,本申请实施例中,站点也可以称为系统、用户单元、接入终端、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理、用户装置或用户设备(user equipment,UE)。站点可以为无线通讯芯片、无线传感器或无线通信终端。例如站点为支持WiFi通讯功能的移动电话、支持WiFi通讯功能的平板电脑、支持WiFi通讯功能的机顶盒、支持WiFi通讯功能的智能电视、支持WiFi通讯功能的智 能可穿戴设备、支持WiFi通讯功能的车载通信设备和支持WiFi通讯功能的计算机。可选地,站点可以支持802.11ax制式,进一步可选地,该站点支持802.11ac、802.11n、802.11g、802.11b、802.11ad及802.11ay等多种WLAN制式。
本申请实施例中AP可用于与接入终端通过无线局域网进行通信,并将接入终端的数据传输至网络侧,或将来自网络侧的数据传输至接入终端。AP也称之为无线访问接入点或热点等。AP是移动用户进入有线网络的接入点,主要部署于家庭、大楼内部以及园区内部,典型覆盖半径为几十米至上百米,当然,也可以部署于户外。AP相当于一个连接有线网和无线网的桥梁,其主要作用是将各个无线网络客户端连接到一起,然后将无线网络接入以太网。具体地,AP可以是带有无线保真(wireless fidelity,WiFi)芯片的终端设备或者网络设备。可选地,AP可以为支持802.11ax制式的设备,进一步可选地,该AP可以为支持802.11ac、802.11n、802.11g、802.11b、802.11ad及802.11ay等多种WLAN制式的设备。
在本申请实施例中,接入点或站点包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是接入点或站点,或者,是接入点或者站点中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
图1示出了本申请实施例的一种通信系统的示意图。如图1所示,该通信系统包括多个AP。针对上述多个AP,其中的全部或部分AP的覆盖范围内还存在一个或多个STA。具体地,在图1所示的通信系统中,该通信系统共存在n个AP以及m个STA,m和n均为大于或等于1的整数。
应理解,上述通信系统可以针对移动场景,也可以针对非移动场景,即STA可以是移动的,也可以是固定的。因此,在STA可以移动的情况下,一个AP覆盖范围内的STA的数量可以是实时变化的,换句话说,可能存在某个时刻,存在某个AP并未覆盖到任何STA,本申请实施例对此不作限定。
在图1所示的通信系统中,以STA1为例。STA1当前与AP1连接,进行通信。当STA1 移动时(位置移动,不包括STA1旋转或被遮挡的情况),STA1与AP1的通信质量降低。为了保证通信质量,STA1先与AP1进行波束跟踪,如果通信质量可以恢复,则不需要与该范围内的其他AP进行波束跟踪。如果通信质量不能恢复,则STA1需要与该范围内的其他AP进行波束跟踪,确定新的AP,从而STA从AP1切换至该新的AP,保证通信质量。
然而,该范围内包括多个AP,如果不加以协调,则STA1与该多个AP做波束跟踪时,会存在干扰。另外,当STA1与AP1的链路通信质量降低时,若不提前做好STA1与其他AP的波束跟踪,则当需要进行AP切换时,STA1先与AP1断开连接,再进行波束跟踪,确定新的AP。当从AP1切换至新的AP时,该新的AP和STA之间需要进行信息交互认证,只有通过了认证以后才可以进行网络通信。在切换过程中,切换时延较大,影响通信服务质量。
有鉴于此,本申请实施例提出了一种波束跟踪的方法,能够减小切换时延,提高通信服务质量。
图2示出了本申请实施例提供的波束跟踪的方法200的示意性流程图。该方法200可以应用于图1所示的通信系统100中,但本申请实施例不限于此。
S210,控制AP获取第一信息。
其中,控制AP为可以与多个AP中的每个AP进行通信的AP,如图1所示。该第一信息包括站点STA与多个AP中的每一个AP进行波束跟踪的时间信息。即控制AP确定多个AP能够有序地进行波束跟踪,从而避免在BPAC场景下,多个AP与STA进行波束跟踪造成干扰。
应理解,多个AP与STA有序地进行波束跟踪包括多个AP分时与STA进行波束跟踪。例如,第一AP与STA在第一时段内进行波束跟踪,第二AP与STA在第二时段内进行波束跟踪,第三AP与STA在第三时段内进行波束跟踪。或者,当STA发起波束跟踪请求时,同一个簇内的所有AP接收到该波束跟踪请求时,同时开始进行波束跟踪,为了避免干扰,在波束跟踪后,多个AP可以分时向STA发送反馈信息。例如,第一AP在第一时段向STA反馈波束跟踪结果,第二AP在第二时段向STA反馈波束跟踪结果,第三AP在第三时段向STA反馈波束跟踪结果。或者,多个AP分时与STA进行波束跟踪,并且在波束跟踪结束后,分时向STA反馈波束跟踪结果。具体的实现方式,本申请实施例对此并不作限定。
在一些可能的实现方式中,控制AP在获取第一信息前还包括其他步骤。如图3所示,图3示出了一种控制AP确定第一信息的示意性流程图。
如图3所示,在控制AP获取第一信息之前,还包括步骤S310,STA向服务AP发送波束跟踪请求信息,用于向服务AP请求进行波束跟踪。
S320,服务AP向控制AP发送波束跟踪请求消息。
服务AP接收到STA发送的波束跟踪请求消息后,将该波束跟踪请求消息转发给控制AP,向控制AP请求波束跟踪。
当STA移动时,与当前服务AP(serving AP)之间的链路通信质量降低,无法满足当前的通信要求,为了保证通信质量,STA发起与其它AP进行波束跟踪的请求,从而重新选择可以满足通信要求的AP重新接入。
应理解,在一些可能的实现方式中,当该STA的服务AP与控制AP为一个AP时,则步骤S310和S320可以为一个步骤。
S330,控制AP向成员接入节点(member access point,M-AP)发送该波束跟踪请求消息。
控制AP接收到STA发送的波束跟踪请求消息后,向与其通信的多个AP中的每一个M-AP发送该波束跟踪请求消息,询问该M-AP的空闲时间,即可以与STA进行波束跟踪的时间,其中,该多个AP可以为与原来的serving AP在同一个簇内的M-AP。
为了减小波束跟踪的时延以及设备功耗,控制AP在发送波束跟踪请求时,可以不需要向该簇内的所有M-AP发送波束跟踪请求消息。只向该STA在移动过程中可能会发生切换的M-AP发送该波束跟踪请求信息。
例如,在确定可能与该STA发生波束跟踪的M-AP时,可以选择与该STA位置较近的M-AP,本申请实施例对此不作限定。
可选地,该波束跟踪请求消息可以携带在调度请求(schedule request)帧中。
图4示出了本申请实施例的调度请求帧的结构示意图。如图4所示,该调度请求帧可以包括如下信息中的一项或多项的组合:
1、种类(category):用于标记帧的类型。
2、无线网络管理行动(wireless network management action,WNM action):用于指示工作站采取哪种无线网络管理的行动。
3、对话令牌(dialog token):当有并行的多个对话请求时,对话令牌用于标记当前的响应是针对具体哪个请求的响应。
4、波束跟踪请求元素:用于请求站点与目标节点之间进行波束跟踪。
图5示出了BPAC场景下波束跟踪请求元素帧的结构示意图。如图5所示,该波束跟踪请求元素帧可以包括如下信息中的一项或多项的组合:
1、元素ID(element ID):用于标记和区分元素(element)的ID。
2、长度(length):用于指示该element的长度。
3、站点ID(station ID,STA ID):用于标记和区分站点(station)的ID。
4、基于增强型定向千兆比特波束跟踪请求(enhanced directional multi-gigabit beam tracking request,EDMG BT request):用于请求基于802.11ay标准下的波束跟踪。
5、基于增强型定向千兆比特波束跟踪类型(enhanced directional multi-gigabit beam tracking type,EDMG BT type):用于指示基于802.11ay标准下的波束跟踪类型。
6、波束跟踪请求(beam tracking request,BT request):用于请求基于802.11ad标准下的波束跟踪。
7、波束跟踪类型(beam tracking type,BT type):用于指示基于802.11ad标准下的波束跟踪类型。
8、波束跟踪长度(TRN-LEN):大于0的参数,用于指示波束跟踪长度。
9、包类型(packet type):用于指示数据跟踪是发起方接收波束调整、发起方发送波束调整或应答方接收波束调整。
10、接收波束训练每一个发送波束训练(receive training per transmit training,RX TRN per TX TRN):表示使用相同的天线权向量(antenna weight vector,AWV)的连续训练单 元(training unit,TRN-unit)的数量。
11、基于增强型定向千兆比特波束训练(enhanced directional multi-gigabit training,EDMG TRN-P):表示使用相同AWV的TRN-unit开始处的TRN子域数量。
12、基于增强型定向千兆比特波束训练(enhanced directional multi-gigabit training,EDMG TRN-M):表示一个TRN-unit中可用于发送训练的TRN子域数量。
13、基于增强型定向千兆比特波束训练(enhanced directional multi-gigabit training,EDMG TRN-N):表示每个EDMG TRN-Unit M域中的TRN子域数量。
S340,M-AP向控制AP发送波束跟踪请求响应消息。
该多个AP中的每一个M-AP接收到控制AP发送的波束跟踪请求信息后,M-AP向控制AP发送波束跟踪请求响应消息,其中,该波束跟踪请求响应消息包括该M-AP的空闲时段。
控制AP得到该多个AP中的每一个M-AP发送的波束跟踪请求响应消息后,根据各个M-AP的空闲时间,确定第一信息,从而使得该多个AP有序地与STA进行波束跟踪,从而避免干扰。
在一些可能的实现方式中,该STA可以先与同一个簇内的所有AP中每一个M-AP进行波束训练,并向控制AP发送波束训练测量报告,其中该波束训练测量报告包括每一个M-AP的时间安排信息。控制AP根据该多个AP中每一个M-AP的波束训练测量报告中的时间安排信息,确定第一信息,使多个AP与STA有序地进行波束跟踪。
上述技术方案中,由于STA与一个簇内所有的AP提前完成了波束训练,并将波束训练结果存储在一个历史测量报告中,STA和控制AP有所有的AP的时间安排信息,则STA需要跟其他AP进行波束跟踪时,不需要控制AP向每一个M-AP询问空闲时段,每一个M-AP也不需要向控制AP反馈自己的空闲时段,大大减小了M-AP和控制AP间的信息交互,简化了流程,减小了切换时延。
应理解,上述历史测量报告仅仅为包括第一信息的一种形式,只要能够用于指示多个AP中的每一个M-AP的空闲时段即可,本申请实施例对其具体形式不作限定。
在一些可能的实现方式中,控制AP可以在每一个M-AP的信标间隔(beacon interval,BI)中提前预留一段时间(reserved time interval,RTI),控制AP根据该多个AP中的每一个M-AP的RTI确定第一信息,其中,该RTI用于进行突发的波束跟踪和切换。
图6示出了信标间隔BI的结构示意图,如图6所示,信标间隔分为信标头间隔(beacon header interval,BHI)和数据传输间隔(data transmission interval,DTI)。其中,BHI中又包括信标传输间隔(beacon transmission interval,BTI)、关联-波束赋形训练(association beamforming training,A-BFT)以及公告传输间隔(announcement transmission interval,ATI)。
具体地,PCP/AP会在BTI中按照扇区编号发送多个信标(beacon)帧,用于下行扇区扫描;A-BFT用于STA进行关联,以及上行扇区扫描;ATI用于PCP/AP向STA轮询缓存数据信息以及向STA分配数据传输间隔(data transmission interval,DTI)中的资源。整个DTI会被分为若干个子区间,子区间会根据接入的形式分为基于竞争接入期间(contention based access period,CBAP)和服务区间(service period,SP),后者是进行调度传输,无需进行竞争。
控制AP在每一个M-AP的DTI中设置RTI,只需知道与STA进行波束跟踪的AP的RTI,即可使得STA与各个AP有序地进行波束跟踪,从而避免干扰。另外,简化了波束跟踪的流程,减小了切换时延。
S220,STA获取第一信息。
控制AP在确定第一信息后,向该STA的服务AP发送该第一信息,服务AP向STA发送该第一信息。即将该STA与多个AP中的每一个AP进行波束跟踪的时间安排告知STA,使得STA能够有序地与多个AP进行波束跟踪,从而避免干扰。
可选地,在一些可能的实现方式中,若STA的服务AP为控制AP,则控制AP直接向STA发送该第一信息。
S230,控制AP向多个AP中的每一个M-AP发送第二信息。
其中,该第二信息为多个AP中每一个M-AP与STA进行波束跟踪的时间。在控制AP协调好多个AP中每一个M-AP与STA进行波束跟踪的时间后,将各个M-AP的时间安排发送给相应的M-AP。
可选地,在一些可能的实现方式中,控制AP也可以将所有M-AP的时间安排信息,即第一信息发送给所有的M-AP,每一个M-AP确定自己相应的时间安排信息,即第二信息。本申请实施例对此并不作限定。
S240,STA根据第一信息与多个AP进行波束跟踪。
STA在获取第一信息后,根据该第一信息中与多个AP进行波束跟踪的时间安排,有序地与多个AP进行波速跟踪,在多个AP中确定新的服务AP,进而STA从原来的服务AP切换至新的服务AP,从而保证通信质量。
上述技术方案中,由于STA移动导致与当前服务的AP链路通信质量降低时,为了保证通信质量,STA需要经过波束跟踪确定新的AP,从当前服务AP切换至新的AP。在BPAC场景下,STA与多个AP进行波束跟踪时,如果没有经过协调,容易造成干扰。因此,在进行波束跟踪时,STA获取第一信息,并根据该第一信息有序地与多个AP进行波束跟踪,从而避免了干扰。
图7示出了本申请实施例提供的一种BPAC场景下的波束跟踪总体流程图。
如图7所示,以AP发送波束训练(transmit traning,TRN-T)为例,即AP发送波束调整。在链路通信质量下降时,在发起阶段,AP在数据(data)包的物理头(physical header,PHY Header)中请求进行波束跟踪,并将PHY Header中的数据包类型(packet type)字段设置为TRN-T,同时将训练长度(traning length,TRN-LEN)字段设置一个大于0的参数指示波束跟踪长度,并在Data包后附加一个TRN-T fileds字段,发送多个不同方向的波束。另外,在BPAC场景下,在发起阶段,增加1比特(bit)指示BPAC波束跟踪请求(BPAC-BT Requested),发起与其它AP进行波束跟踪。STA接收到该包后,会在回复的确认消息(acknowledgement,ACK)包后边附加一个波束精炼(beam refinement protocol,BRP)帧,用于反馈AP的最佳发送波束。发起波束跟踪的AP收到该反馈后即可切换至最佳波束上,以此来调整发起方AP接收波束的跟踪训练流程。
在请求阶段,如图7所示,控制AP和STA已经知道所有AP的RTI,控制AP根据历史测量信息选择一些可能的AP来做波束跟踪,即:原来的服务AP向控制AP发起BPAC场景下的波束跟踪BPAC-BT(BPAC beam tracking,BPAC-BT)请求消息,该BPAC-BT 波束跟踪请求消息携带STA的标识信息、波束跟踪类型、TRN-LEN、AP列表信息或前期测量信息;控制AP根据测量信息确定可能与STA进行波束跟踪的AP,并向它们发送BPAC-BT波束跟踪请求消息,并STA的标识信息、波束跟踪类型、TRN-LEN、AP列表信息;原来的服务AP将波束跟踪类型、训练长度(traning length,TRN-LEN)、AP列表信息反馈给STA。
其中,波束跟踪类型可以为波束跟踪发起方的发送/接收波束,或者波束跟踪应答方的发送/接收波束,也可以同时训练一方的发送波束和另一方的接收波束,本申请实施例对此不作限定。
在波束跟踪的训练阶段,STA选择的AP在各自的RTI中进行波束跟踪,STA在各个AP的RTI中接收反馈信息。
图8示出了本申请实施例提供的另一种BPAC场景下的波束跟踪总体流程图。
如图8所示,以STA发接收波束训练(receive training,TRN-R)为例,即STA接收波束调整。在链路通信质量下降时,在发起阶段,STA在Data包的PHY Header中请求进行波束跟踪,并将PHY Header中的Packet Type字段设置为TRN-R,同时将TNR-LEN字段设置一个大于0的参数指示波束跟踪长度。另外,在BPAC场景下,在发起阶段,增加1比特(bit)指示BPAC波束跟踪请求(BPAC-BT Requested),发起与其它AP进行波束跟踪。AP在接收到该包后,会在回复的确认消息(ACK)包后边附加一个TRN-R字段,该字段由多个TRN unit组成,发送多个不同方向的波束,STA在接收到不同方向的波束后可以选择一个自己的最佳接收波束,以此来调整STA的接收波束。
后续的请求阶段和波束跟踪训练阶段请参考图7中的描述,此处为了简洁不再赘述。
在图7所示的BPAC场景下的波束跟踪总体流程设计图中,在波束跟踪的反馈(feedback,FBK)阶段,STA与多个AP中的每一个AP完成波束跟踪训练后,STA就将波束跟踪结果反馈给该AP。
可选地,在一些可能的实现方式中,为了减小STA切换功耗,在STA与每一个AP的反馈阶段,先不进行反馈,而是在该STA与所有的AP波束跟踪完成后,将所有的结果反馈至当前的服务AP,当前服务的AP将结果反馈给控制AP,最后控制AP再反馈给每一个AP,进而丰富了STA与多个AP进行波束跟踪的流程。
图9示出了本申请实施例的反馈帧结构示意图。如图9所示,该反馈帧可以包括如下信息中的一项或多项的组合:
1、帧控制(frame control):用于指示该帧使用的MAC版本、帧类型、分段指示、重传指示等等控制信息。
2、持续时间(duration):用于指示反馈持续时间。
3、接收地址(receive address,RA):用于指示接收反馈的地址。
4、发送地址(transmit address,TA):用于指示发送反馈的地址。
5、反馈(forwarding):包括多个AP中各个AP的反馈信息。
6、帧校验序列(frame check sequence,FCS):用于验证帧在传输过程中的完整性。
其中,反馈字段是可变的,与STA进行波束跟踪的AP个数有关。该反馈字段包括AP的数量(number of AP)以及每一个AP的信息。每一个AP的信息包括如下信息中的一项或多项的组合:
1、接入节点ID(AP ID):用于标记和区分AP的ID。
2、波束跟踪开始时间(BT Start time):用于指示STA与该AP ID指示的AP波束跟踪的开始时间。
3、波束跟踪持续时间(BT duration):用于指示STA与该AP ID指示的AP波束跟踪的持续时间。
4、反馈开始时间(feedback start time):用于指示STA与该AP ID指示的AP反馈阶段的开始时间。
5、反馈持续时间(feedback duration):用于指示STA与该AP ID指示的AP反馈阶段的持续时间。
图10示出了多STA多AP波束跟踪的总体流程图。如图10所示,在每个AP的RTI时段,参与波束跟踪的STA均处于连接状态,可以理解为一个STA与多个AP波束跟踪流程的叠加,具体流程可参考图7和图8的描述,此处不再赘述。
在波束跟踪流程后,STA需要从当前服务的AP切换至新的AP。当STA切换至新的AP时,需要进行802.1X认证以及四次握手协议,切换时延较大,而且数据中断时间较长,影响用户体验。
有鉴于此,本申请实施例提供了一种安全验证的方法,能够使STA在与簇内的一个AP进行初始关联认证,后续该STA切换至该簇内的其他AP时,不再需要进行关联认证,只需要切换的目标AP同意即可,从而减小了切换时延,提高了用户体验。
图11示出了本申请实施例提供的安全验证的方法的示意性流程图。该方法800可以应用于图1所示的通信系统100,但本申请实施例不限于此。
下面将结合图11详细描述安全验证的方法。
S810,控制AP获取第一密钥信息。
其中,该第一密钥信息为STA与多个AP中的至少一个M-AP初始关联后得到的密钥信息。
由于可以认为STA当前的服务AP与其它多个AP在一个簇内。由于STA与其服务AP已经完成了初始关联认证,得到了STA与该服务AP共享的第一密钥信息,例如,主密钥安全关联(pairwise master key security association,PMKSA),其中,该PMKSA中包括主密钥(pairwise master key,PMK)。假设该多个AP中的每一个AP为控制AP的天线,则STA从一个AP切换至另外一个AP可以认为是从控制AP的一个天线切换至另一个天线,则所有的天线即可共享该PMKSA,进而共享该已经生成的主密钥PMK。
或者,在一些可能的实现方式中,STA可以与给多个AP中每一个AP初始关联,提前生成相应AP的第一密钥信息,其中,每一个AP的第一密钥信息均不相同。
S820,控制AP发送该第一密钥信息。
在STA初始关联该簇内的一个AP时,控制AP在该STA切换之前,将第一密钥信息发送给该簇内的所有AP,这样,一个簇内的所有AP共享该第一密钥信息。当STA从当前服务的AP切换至目标AP时,不需要进行802.1X认证,只要目标AP同意切换,即可直接进行连接,从而减小了由于安全验证造成的切换时延。
可选地,在S820之前,方法800还可能包括S830。
S830,控制AP接收多个M-AP发送的第一请求消息。
在一些可能的实现方式中,控制AP在获得第一密钥信息后,不需要向该多个AP中每一个M-AP发送该第一密钥信息,控制AP可以先存储该第一密钥信息,当STA需要进行切换至新的M-AP时,该M-AP向控制AP发送第一请求消息,其中,该第一请求消息用于向控制AP请求第一密钥信息。
上述技术方案中,当STA从当前服务AP切换至目标AP时,由于该簇内的AP提前共享了第一密钥信息或者获取了各自相应的第一密钥信息,因此,在STA进行AP切换时,不需要每次再进行关联认证,只需目标AP同意切换即可,减小了切换时延,从而保证了通信服务质量。
图12示出了本申请实施例提供的一种波束跟踪切换的示意性流程图。该方法900可以应用于图1所示的通信系统100,但本申请实施例不限于此。
S910,STA向服务AP发送第二切换请求消息。
其中,该第二切换请求消息包括用于生成第二密钥的信息,该第二密钥用于指示STA与目标AP进行数据传输。
可选地,该第二切换请求消息包括以下至少一种信息:目标AP的标识信息,健壮安全网络元素(robust security network element,RSNE)信息以及STA的随机数信息。
其中,目标AP的标识信息用于指示该STA切换至哪一个AP。例如,该目标AP的标识信息可以为目标AP的标号。AP#1,表示该STA切换至1号AP,AP#2,表示该STA切换至2号AP。具体的标识方式,本申请实施例对此不作限定,只要能够唯一标识该簇内的AP即可。
RSNE信息以及STA的随机数为生成第一密钥信息的元素信息。可选地,该STA的随机数可以包括以下至少一种:STA的媒体访问控制(media access control,MAC)地址以及STA的随机数Snonce。
S920,服务AP向控制AP发送第一切换请求消息。
其中,可选地,该第一切换请求消息包括以下至少一种信息:目标AP的标识信息,健壮安全网络元素(robust security network element,RSNE)信息以及STA的随机数信息。
可选地,在一些可能的实现方式中,控制AP为该STA的服务AP,则该S920可以不执行。
S930,控制AP向目标AP发送该第一切换请求消息。
控制AP接收到STA的服务AP发送的第一切换请求消息后,将该第一切换请求消息发送至目标AP。
S940,目标AP生成第二密钥。
可选地,该第二密钥为临时密钥(pairwise transient key,PTK)。目标AP接收到该控制AP发送的第一切换请求消息后,目标AP根据该STA的MAC地址信息、目标AP的MAC地址信息、STA的Snonce、目标AP的随机数Anonce以及主密钥(pairwise master key,PMK)协商PTK。
S950,目标AP向控制AP发送第一切换请求响应消息。
目标AP在生成完PTK后,若目标AP同意切换,则目标AP向控制AP发送第一切换请求响应消息,其中该第一切换请求响应消息包括STA的MAC地址信息、目标AP的MAC地址信息、STA的Snonce、目标AP的随机数Anonce以及PMK等信息。
S960,控制AP向服务AP发送该第一切换请求响应消息。
控制AP接收到目标AP发送的第一切换请求响应消息后,将该第一切换请求响应消息发送给服务AP,告知服务AP该目标AP同意切换。
S970,服务AP向STA发送第二切换请求响应消息。
服务AP在收到控制AP发送的第一切换请求响应消息后,向STA发送第二切换请求响应消息。
其中,该第二切换请求响应消息包括以下至少一种信息:STA的MAC地址信息、目标AP的MAC地址信息、STA的Snonce、目标AP的随机数Anonce以及PMK。
S980,STA生成第二密钥。
其中,该第二密钥为PTK。STA接收到服务AP发送的第二切换请求响应消息后,该STA根据该STA的MAC地址信息、目标AP的MAC地址信息、STA的Snonce、目标AP的随机数Anonce以及主密钥(pairwise master key,PMK)协商临时密钥PTK信息。此时,没STA和目标AP均拥有了数据加密的PTK,即切换成功,可以直接进行通信。
上述技术方案中,STA在进行AP切换时,通过STA和目标AP进行密钥协商,设计了BPAC场景下的新的切换流程,简化了切换复杂度,减小了切换时延。
图13示出了本申请实施例提供的另一种波束跟踪切换的示意性流程图。该方法1000可以应用于图1所示的通信系统100,但本申请实施例不限于此。
S1010,STA向服务AP发送第二切换请求消息。
其中,该第二切换请求消息包括用于生成第二密钥的信息,所述第二密钥用于指示STA与目标AP进行数据传输。
当服务AP接收到该STA发送的第二切换请求消息后,若服务AP不同意切换,则执行步骤S1020。
S1020,服务AP向STA发送第二切换请求响应消息。
其中,该第二切换请求响应消息包括该服务AP拒绝切换请求的原因信息。STA接收到该包含拒绝原因信息的第二切换请求响应消息后,过段时间可以重新执行步骤S1010。
当服务AP接收到该STA发送的第二切换请求消息后,若服务AP同意切换,则S1020中发送的第二切换请求响应消息包括服务AP同意切换的信息,并继续执行S1030和S1040。
S1030,服务AP向控制AP发送第一切换请求消息。
S1040,控制AP向目标AP发送该第一切换请求消息。
其中,步骤S1030至S1040与步骤S920至930相同,具体可参见S920至S930的说明,此处不再赘述。
当目标AP接收到该控制AP发送的第一切换请求消息后,目标AP不同意切换,则执行步骤S1050。
S1050,目标AP向控制AP发送第一切换请求响应消息。
其中,该第一切换请求响应消息包括该目标AP不同意切换的原因信息。例如,该目标AP当前没有空闲时间进行切换,或者该目标AP不支持该STA请求的业务类型等。
S1060,控制AP向服务AP发送该第一切换请求响应消息。
S1070,服务AP向STA发送第二切换请求响应消息。
其中,该第二切换请求响应消息包括该目标AP不同意切换的原因信息。STA接收到该第二切换请求响应消息后,过段时间重新执行S1010,请求切换至新的目标AP。
上述技术方案中,描述了在切换过程中当切换请求被拒绝时的流程,从而完善了BPAC场景下波束跟踪切换阶段的流程。
在一些可能的实现方式中,当目标AP拒绝切换时,目标AP执行S1080,即,目标AP可直接向STA发送第二切换请求响应消息,其中,该第二切换请求响应消息包括该目标AP不同意切换的原因信息。STA接收到该第二切换请求响应消息后,过段时间重新执行S1010,请求切换至新的目标AP。
此时,可以不执行S1050至S1070,直接执行S1080,如图13所示。从而大大简化了切换流程,减小了切换时延。
图14示出了本申请实施例提供的再一种波束跟踪切换的示意性流程图。该方法1100可以应用于图1所示的通信系统100,但本申请实施例不限于此。
S1110,STA向服务AP发送第三切换请求消息。
当STA的服务AP由于信号质量或者负载等原因,STA的服务AP向STA发送第三切换请求消息,请求STA从服务AP切换至目标AP。
其中,该第三切换请求消息包括用于生成第二密钥的信息。第二密钥可以为PTK。
可选地,该第三切换请求消息包括以下至少一种信息:目标AP的标识信息,RSNE信息以及STA的随机数信息。
S1120,STA向服务AP发送第三切换请求响应消息。
若STA同意切换,则STA向服务AP发送第三切换请求响应消息。
S1130,服务AP向控制AP发送第一切换请求响应消息。
当服务AP接收到STA发送的第三切换请求响应消息时,该服务AP向控制AP发送第一切换请求消息。
其中,可选地,该第一切换请求消息包括以下至少一种信息:目标AP的标识信息,RSNE信息以及STA的随机数信息。
可选地,在一些可能的实现方式中,控制AP为该STA的服务AP,则该S1130可以不执行。
S1140,控制AP向目标AP发送该第一切换请求消息。
控制AP接收到STA的服务AP发送的第一切换请求消息后,将该第一切换请求消息发送至目标AP。
S1150,目标AP生成第二密钥。
S1160,目标AP向控制AP发送第一切换请求响应消息。
S1170,控制AP向服务AP发送该第一切换请求响应消息。
S1180,服务AP向STA发送第三切换请求确认消息。
S1190,STA生成第二密钥。
其中,步骤S1130至S1190与步骤S920至980相同,具体可参见S920至S980的说明,此处不再赘述。
上述技术方案中,当STA的服务AP由于信号质量或负载的原因向STA发起AP切换请求时,通过STA和目标AP进行密钥协商,设计了BPAC场景下的新的切换流程,简化了切换复杂度,减小了切换时延。
图15示出了本申请实施例提供的又一种波束跟踪切换的示意性流程图。该方法1200可以应用于图1所示的通信系统100,但本申请实施例不限于此。
S1210,服务AP向STA发送第三切换请求消息。
其中,该第三切换请求消息包括用于生成第二密钥的信息,该第二密钥用于指示STA与目标AP进行数据传输。例如PTK。
可选地,该第三切换请求消息包括以下至少一种信息:目标AP的标识信息,健壮安全网络元素(robust security network element,RSNE)信息以及STA的随机数信息。
当STA接收到该STA的服务AP发送的第三切换请求消息后,若STA不同意切换,则执行步骤S1220。
S1220,STA向服务AP发送第三切换请求响应消息。
其中,该第三切换请求响应消息包括该STA拒绝切换请求的原因信息。服务AP接收到该包含拒绝原因信息的第三切换请求响应消息后,过段时间可以重新执行步骤S1210。
当STA接收到该STA的服务AP发送的第三切换请求消息后,若STA同意切换,则S1220中发送的第三切换请求响应消息包括STA同意切换的信息,并继续执行S1230和S1240。
S1230,服务AP向控制AP发送第一切换请求消息。
S1240,控制AP向目标AP发送该第一切换请求消息。
其中,步骤S1230至S1240与步骤S920至S930相同,具体可参见S920至S930的说明,此处不再赘述。
当目标AP接收到该控制AP发送的第一切换请求消息后,目标AP不同意切换,则执行步骤S1250。
S1250,目标AP向控制AP发送第一切换请求响应消息。
其中,该第一切换请求响应消息包括该目标AP不同意切换的原因信息。例如,该目标AP当前没有空闲时间进行切换,或者该目标AP不支持该STA的业务类型等。
S1260,控制AP向服务AP发送该第一切换请求响应消息。
STA的服务AP接收到该第一切换请求响应消息后,过段时间重新执行S1210,请求切换至新的目标AP。
上述技术方案中,描述了在切换过程中当切换请求被拒绝时的流程,从而完善了BPAC场景下波束跟踪切换阶段的流程。
在一些可能的实现方式中,当目标AP拒绝切换时,若STA的服务AP超时时仍未接收到切换确认消息,则该服务AP过段时间重新执行S1210,请求切换至新的目标AP。
此时,可以不执行S1250至S1260,从而大大简化了切换流程,减小了切换时延。
应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上文中结合图1至图15,详细描述了根据本申请实施例的波束跟踪的方法,下面将结合图16至图17,详细描述根据本申请实施例的用于波束跟踪的装置。
图16示出了本申请实施例提供的波束跟踪的装置1600。该装置1600包括:获取单元1610、处理单元1620和收发单元1630。
在一种可能的设计中,装置1600用于实现上述方法实施例中的站点STA对应的各个流程和步骤。
其中,获取单元1610用于:获取第一信息,第一信息包括STA与多个接入节点AP中的每一个AP进行波束跟踪的时间信息。
处理单元1620用于:根据第一信息与多个AP进行波束跟踪。
可选地,多个AP中包括控制AP,该控制AP能够与多个AP中的每一个AP进行通信,获取单元1610具体用于:从控制AP获取第一信息。
可选地,该可选地第一信息为该控制AP通过轮询该多个AP中的每一个AP的空闲时间得到的。
可选地,该第一信息为该控制AP根据该多个AP中的每一个AP的预留时间间隔RTI确定的。
可选地,该第一信息为该控制AP根据该STA与该多个AP中的每一个AP进行波束训练的测量报告确定的。
可选地,处理单元1620还用于:分别在该多个AP中的每一个AP的波束跟踪时间内与对应的AP进行波束跟踪。
可选地,处理单元1620具体用于:在反馈时段内,与该多个AP通过该控制AP反馈该波束跟踪结果。
在另一种可能的设计中,装置1600用于实现上述方法实施例中的控制AP对应的各个流程和步骤。
其中,该获取单元1610用于:获取第一信息,该第一信息包括站点STA与多个AP中的每一个AP进行波束跟踪的时间信息。
收发单元1630用于:发送该第一信息。
可选地,该获取单元1610具体用于:通过轮询该多个AP中的每一个AP的空闲时间得到该第一信息。
可选地,收发单元1630具体用于:接收该STA发送的波束跟踪请求消息。
可选地,收发单元1630具体用于:向该多个AP中的每一个AP发送该波束跟踪请求消息。
可选地,收发单元1630具体用于:接收该多个AP中的每一个AP发送该波束跟踪请求响应消息,该波束跟踪请求响应消息包括该多个AP中的每一个AP的空闲时间。
可选地,处理单元1620具体用于:根据该多个AP中的每一个AP的空闲时间确定该第一信息。
可选地,获取单元1610具体用于:获取该多个AP中的每一个AP的预留时间间隔RTI。
可选地,处理单元1620具体用于:根据该多个AP中的每一个AP的RTI确定该第一信息。
可选地,获取单元1610具体用于:获取该STA与该多个AP中的每一个AP进行波束训练的测量报告。
可选地,处理单元1620具体用于:根据该测量报告确定该第一信息。
可选地,收发单元1630还用于:向该多个AP中的每一个AP发送第二信息,该第二信息包括该STA与该多个AP中的每一个AP进行波束跟踪的时间信息。
可选地,处理单元1620还用于:在反馈时段内,向该STA与该多个AP反馈该波束跟踪结果。
上述技术方案中,由于STA移动导致与当前服务的AP链路通信质量降低时,为了保证通信质量,STA需要经过波束跟踪确定新的AP,从当前服务AP切换至新的AP。在BPAC场景下,STA与多个AP进行波束跟踪时,如果没有经过协调,容易造成干扰。因此,在进行波束跟踪时,STA获取第一信息,并根据该第一信息有序地与多个AP进行波束跟踪,从而避免了干扰。
应理解,这里的装置1600以功能单元的形式体现。这里的术语“单元”可以指应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,装置1600可以具体为上述实施例中的站点或控制接入节点,装置1600可以用于执行上述方法实施例中与站点或控制接入节点对应的各个流程和/或步骤,为避免重复,在此不再赘述。
上述各个方案的装置1600具有实现上述方法中站点或控制接入节点执行的相应步骤的功能;所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块;例如发送单元可以由发射机替代,接收单元可以由接收机替代,其它单元,如处理单元和获取单元等可以由处理器替代,分别执行各个方法实施例中的收发操作以及相关的处理操作。
在本申请的实施例,图16中的装置可以是前述实施例中的站点或控制接入节点,也可以是芯片或者芯片系统,例如:片上系统(system on chip,SoC)。对应的,接收单元和发送单元可以是该芯片的收发电路,在此不做限定。
图17示出了本申请实施例提供的波束跟踪的装置1700。该装置1700包括处理器1710和收发器1720。其中,处理器1710和收发器1720通过内部连接通路互相通信,该处理器1710用于执行指令,以控制该收发器1720发送信号和/或接收信号。
可选地,该装置1700还可以包括存储器1730,该存储器1730与处理器1710、收发器1720通过内部连接通路互相通信。该存储器1730用于存储指令,该处理器1710可以执行该存储器1730中存储的指令。
在一种可能的设计中,装置1700用于实现上述方法实施例中的站点STA对应的各个流程和步骤。
其中,该处理器1710用于:获取第一信息,该第一信息包括该STA与多个接入节点AP中的每一个AP进行波束跟踪的时间信息;根据STA获取的第一信息与该多个AP进行波束跟踪。
在另一种可能的设计中,装置1700用于实现上述方法实施例中的控制接入节点对应的各个流程和步骤。
其中,该处理器1710用于:获取第一信息,该第一信息包括站点STA与多个AP中 的每一个AP进行波束跟踪的时间信息;以及,收发器1720用于:向该STA发送该第一信息。
应理解,装置1700可以具体为上述实施例中的站点或控制接入节点,也可以是芯片或者芯片系统。对应的,该收发器1720可以是该芯片的收发电路,在此不做限定。具体地,该装置1700可以用于执行上述方法实施例中与站点或控制接入节点对应的各个步骤和/或流程。可选地,该存储器1730可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。例如,存储器还可以存储设备类型的信息。该处理器1710可以用于执行存储器中存储的指令,并且当该处理器1710执行存储器中存储的指令时,该处理器1710用于执行上述与站点或控制接入节点对应的方法实施例的各个步骤和/或流程。
应理解,在本申请实施例中,上述装置的处理器可以是中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件单元组合执行完成。软件单元可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器执行存储器中的指令,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
在本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A、B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c或a-b-c,其中a,b,c可以是单个,也可以是多个。
本领域普通技术人员可以意识到,结合本文中所公开的实施例中描述的各方法步骤和单元,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各实施例的步骤及组成。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。本领域普通技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组 件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (20)

  1. 一种波束跟踪的方法,其特征在于,包括:
    站点STA获取第一信息,所述第一信息包括所述STA与多个接入节点AP中的每一个AP进行波束跟踪的时间信息;
    所述STA根据所述第一信息与所述多个AP进行波束跟踪。
  2. 根据权利要求1所述的方法,其特征在于,所述多个AP中包括控制AP,所述控制AP能够与所述多个AP中的每一个AP进行通信,其中,所述STA获取第一信息,包括:
    所述STA从所述控制AP获取所述第一信息。
  3. 根据权利要求2所述的方法,其特征在于,所述第一信息为所述控制AP通过轮询所述多个AP中的每一个AP的空闲时间得到的。
  4. 根据权利要求2所述的方法,其特征在于,所述第一信息为所述控制AP根据所述多个AP中的每一个AP的预留时间间隔RTI确定的。
  5. 根据权利要求2所述的方法,其特征在于,所述第一信息为所述控制AP根据所述STA与所述多个AP中的每一个AP进行波束训练的测量报告确定的。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述STA根据所述第一信息与所述多个AP进行波束跟踪,包括:
    所述STA分别在所述多个AP中的每一个AP的波束跟踪时间内与对应的AP进行波束跟踪。
  7. 根据权利要求2至5中任一项所述的方法,其特征在于,所述STA根据所述第一信息与所述多个AP进行波束跟踪,包括:
    在反馈时段内,所述STA与所述多个AP通过所述控制AP反馈波束跟踪结果。
  8. 一种波束跟踪的方法,其特征在于,包括:
    控制接入节点AP获取第一信息,所述第一信息包括站点STA与多个AP中的每一个AP进行波束跟踪的时间信息;
    所述控制AP发送所述第一信息。
  9. 根据权利要求8所述的方法,其特征在于,所述控制AP获取第一信息,包括:
    所述控制AP通过轮询所述多个AP中的每一个AP的空闲时间得到所述第一信息。
  10. 根据权利要求9所述的方法,所述控制AP通过轮询所述多个AP中的每一个AP的空闲时间得到所述第一信息,包括:
    所述控制AP接收所述STA发送的波束跟踪请求消息;
    所述控制AP向所述多个AP中的每一个AP发送所述波束跟踪请求消息;
    所述控制AP接收所述多个AP中的每一个AP发送所述波束跟踪请求响应消息,所述波束跟踪请求响应消息包括所述多个AP中的每一个AP的空闲时间;
    所述控制AP根据所述多个AP中的每一个AP的空闲时间确定所述第一信息。
  11. 根据权利要求8所述的方法,其特征在于,所述控制AP获取第一信息,包括:
    所述控制AP获取所述多个AP中的每一个AP的预留时间间隔RTI;
    所述控制AP根据所述多个AP中的每一个AP的RTI确定所述第一信息。
  12. 根据权利要求8所述的方法,其特征在于,所述控制AP获取第一信息,包括:
    所述控制AP获取所述STA与所述多个AP中的每一个AP进行波束训练的测量报告;
    所述控制AP根据所述测量报告确定所述第一信息。
  13. 根据权利要求8至12中任一项所述的方法,其特征在于,所述方法还包括:
    所述控制AP向所述多个AP中的每一个AP发送第二信息,所述第二信息包括所述STA与所述多个AP中的每一个AP进行波束跟踪的时间信息。
  14. 根据权利要求8至13中任一项所述的方法,其特征在于,所述方法还包括:
    在反馈时段内,所述控制AP向所述STA与所述多个AP反馈波束跟踪结果。
  15. 一种波束跟踪的装置,其特征在于,包括用于执行权利要求1至7中任一项所述的方法。
  16. 一种波束跟踪的装置,其特征在于,包括用于执行权利要求8至14中任一项所述的方法。
  17. 一种装置,其特征在于,包括:处理器,用于读取指令,当所述处理器执行所述指令时,使得所述装置实现上述权利要求1至14中任一项所述的方法。
  18. 根据权利要求17所述的装置,其特征在于,所述装置还包括:存储器,所述存储器与所述处理器耦合,所述存储器用于存储所述指令。
  19. 一种计算机可读介质,用于存储计算机程序,其特征在于,所述计算机程序包括用于实现上述权利要求1至14中任一项所述的方法的指令。
  20. 一种计算机程序产品,所述计算机程序产品中包括计算机程序代码,其特征在于,当所述计算机程序代码在计算机上运行时,使得计算机实现上述权利要求1至14中任一项所述的方法。
PCT/CN2020/080364 2019-05-31 2020-03-20 波束跟踪的方法和装置 WO2020238354A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20813993.1A EP3968693A4 (en) 2019-05-31 2020-03-20 METHOD AND DEVICE FOR RAY TRACKING

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910471816.5 2019-05-31
CN201910471816.5A CN112020064B (zh) 2019-05-31 2019-05-31 波束跟踪的方法和装置

Publications (1)

Publication Number Publication Date
WO2020238354A1 true WO2020238354A1 (zh) 2020-12-03

Family

ID=73506412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/080364 WO2020238354A1 (zh) 2019-05-31 2020-03-20 波束跟踪的方法和装置

Country Status (3)

Country Link
EP (1) EP3968693A4 (zh)
CN (1) CN112020064B (zh)
WO (1) WO2020238354A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112804705B (zh) * 2020-12-30 2022-04-01 深圳市微网力合信息技术有限公司 一种WiFi设备波束方向控制方法、装置及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018009045A1 (en) * 2016-07-07 2018-01-11 Lg Electronics Inc. Method and apparatus for associating between a station and an access point in a wireless communication system
WO2018031908A1 (en) * 2016-08-11 2018-02-15 Convida Wireless, Llc Beam management
CN107733501A (zh) * 2016-08-10 2018-02-23 中兴通讯股份有限公司 波束管理方法及装置
WO2018174800A1 (en) * 2017-03-24 2018-09-27 Telefonaktiebolaget Lm Ericsson (Publ) Method and system for beam tracking failure recovery
US20190082332A1 (en) * 2017-09-11 2019-03-14 Qualcomm Incorporated Beam selection in millimeter wave systems

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8995406B2 (en) * 2012-02-06 2015-03-31 Qualcomm Incorporated Systems and methods for reducing collisions after traffic indication map paging
KR102180959B1 (ko) * 2013-12-09 2020-11-19 삼성전자주식회사 무선통신 시스템의 빔 스위핑 패턴 조정 방법 및 장치
WO2017156366A1 (en) * 2016-03-10 2017-09-14 Interdigital Patent Holdings, Inc. Multi-resolution beam training in mmw wlan systems
CN108242948B (zh) * 2016-12-23 2020-09-08 维沃移动通信有限公司 一种波束训练方法、网络设备及终端
US20180338254A1 (en) * 2017-05-22 2018-11-22 Industrial Technology Research Institute Beam tracking method in multi-cell group of millimeter wave communication system and related apparatuses using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018009045A1 (en) * 2016-07-07 2018-01-11 Lg Electronics Inc. Method and apparatus for associating between a station and an access point in a wireless communication system
CN107733501A (zh) * 2016-08-10 2018-02-23 中兴通讯股份有限公司 波束管理方法及装置
WO2018031908A1 (en) * 2016-08-11 2018-02-15 Convida Wireless, Llc Beam management
WO2018174800A1 (en) * 2017-03-24 2018-09-27 Telefonaktiebolaget Lm Ericsson (Publ) Method and system for beam tracking failure recovery
US20190082332A1 (en) * 2017-09-11 2019-03-14 Qualcomm Incorporated Beam selection in millimeter wave systems

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AZIZ DANISH; GEBERT JENS; AMBROSY ANTON; BAKKER HAJO; HALBAUER HARDY: "Architecture Approaches for 5G Millimetre Wave Access Assisted by 5G Low-Band Using Multi-Connectivity", 2016 IEEE GLOBECOM WORKSHOPS (GC WKSHPS), 4 December 2016 (2016-12-04), pages 1 - 6, XP033063026, DOI: 10.1109/GLOCOMW.2016.7848840 *
PEI ZHOU; KAIJUN CHENG; XIAO HAN; XUMING FANG; YUGUANG FANG; RONG HE; YAN LONG; YANPING LIU: "IEEE 802.11ay-Based mmWave WLANs: Design Challenges and Solutions", IEEE COMMUNICATIONS SURVEYS & TUTORIALS, vol. 20, no. 3, 21 March 2018 (2018-03-21), pages 1654 - 1681, XP080861500, DOI: 10.1109/COMST.2018.2816920 *
See also references of EP3968693A4

Also Published As

Publication number Publication date
EP3968693A1 (en) 2022-03-16
CN112020064B (zh) 2023-06-23
CN112020064A (zh) 2020-12-01
EP3968693A4 (en) 2022-07-13

Similar Documents

Publication Publication Date Title
EP3278468B1 (en) Reciprocity detection and utilization techniques for beamforming training
JP6872013B2 (ja) ワイヤレスハンドオーバのターゲットセルにアクセスするためのビームの識別
US20200187266A1 (en) Random access method, device, and system
US10834740B2 (en) Channel resource scheduling method and apparatus
WO2020199942A1 (zh) 通信方法、通信装置和系统
WO2021223673A1 (zh) 一种数据传输方法及装置
WO2021128224A1 (zh) 通信方法、设备及系统
WO2020038338A1 (zh) 一种通信方法及设备
WO2020156172A1 (zh) 用于切换的方法和装置
WO2020238354A1 (zh) 波束跟踪的方法和装置
WO2021027688A1 (zh) 服务时间调度的方法和装置
JPWO2020031358A1 (ja) ユーザ装置及び送信方法
WO2023202658A1 (zh) 信息处理方法、网络侧设备及终端
US20230049532A1 (en) Random access method and terminal device
WO2020248867A1 (zh) 波束训练的方法和装置
US11849355B2 (en) Handover optimization using time sensitive communication assistance information
WO2020200150A1 (zh) 传输方法和通信装置
JP2023500134A (ja) 通信方法、通信装置、および通信システム
WO2023241181A1 (zh) 指示方法、终端及网络侧设备
WO2019178790A1 (zh) 用于信号传输的方法和设备
WO2024045858A1 (zh) 一种通信方法及装置
WO2024055942A1 (zh) 小区切换方法和通信装置
WO2024113539A1 (zh) 用于定位的方法及装置
TWI815621B (zh) 條件性重新配置的方法和使用所述方法的使用者設備
WO2024065806A1 (zh) 无线通信的方法、终端设备及网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20813993

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020813993

Country of ref document: EP

Effective date: 20211206