WO2024045858A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2024045858A1
WO2024045858A1 PCT/CN2023/104097 CN2023104097W WO2024045858A1 WO 2024045858 A1 WO2024045858 A1 WO 2024045858A1 CN 2023104097 W CN2023104097 W CN 2023104097W WO 2024045858 A1 WO2024045858 A1 WO 2024045858A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
terminal device
cells
target cell
handover
Prior art date
Application number
PCT/CN2023/104097
Other languages
English (en)
French (fr)
Inventor
酉春华
范强
娄崇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024045858A1 publication Critical patent/WO2024045858A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point

Definitions

  • the present application relates to the field of communication technology, and in particular, to a communication method and device.
  • the terminal equipment Since the terminal equipment is mobile, that is, the terminal equipment may move from the coverage area of one cell to the coverage area of another cell, therefore, the terminal equipment needs to perform cell handover during the movement process, so that the terminal equipment switches from one cell to another. A cell, thereby avoiding obvious interruptions in the business connections of terminal equipment (such as voice call connections, network data connections).
  • the terminal device can measure the serving cell and multiple candidate cells based on the measurement configuration information from the network device. After obtaining the cell quality of the serving cell and multiple candidate cells, it reports the serving cell and multiple candidate cells to the network device.
  • the cell quality of multiple candidate cells accordingly, after receiving the cell quality of the serving cell and multiple candidate cells, the network device can select a target cell from the multiple candidate cells based on the cell quality of the multiple candidate cells, and indicate The terminal device switches from the serving cell to the target cell.
  • the network device needs to select the target cell and instruct the terminal device to perform handover. Since cell quality changes dynamically, and the quality of multiple candidate cells based on which the network device selects the target cell is measured by the terminal device before reporting, the target cell selected by the network device may not be suitable for the terminal device to access currently. cell, resulting in handover failure.
  • the present application provides a communication method and device for selecting a target cell for cell handover by a terminal device, thereby improving the success rate of cell handover.
  • embodiments of the present application provide a communication method, which can be applied to a terminal device or a module (such as a chip) in the terminal device.
  • the terminal device receives A first message from a first network device, the first message including configuration information of M cells, all of which are cells managed by the first network device; receiving a first message from the first network device.
  • An indication information the first indication information is used to instruct the terminal equipment to select the first target cell; if the first target cell is selected from the M cells according to the configuration information of the M cells, execute Cell handover to the first target cell; M is an integer greater than or equal to 2.
  • the first indication information sent by the first network device does not need to carry the identity of the first target cell, but the terminal device selects the first target cell (for example, the terminal device can select the first target cell based on the current layer 1/layer 2 measurements of M cells). results to select the first target cell), compared to the first network device selecting the first target cell (for example, the first network device selects the first target cell based on the layer 3 measurement results of M cells previously measured and reported by the terminal device) ) scheme, it is easy to select a suitable first target cell and improve the success rate of cell handover.
  • the first indication information is carried in a layer 1 or layer 2 message.
  • the first network device sends the first indication information to the terminal device through the layer 1/layer 2 message, which can effectively reduce the handover delay compared with the first network device sending the handover command to the terminal device through the RRC message.
  • the method further includes: if the cell handover to the first target cell fails, sending an RRC re-establishment request message to the second network device on the second cell, the RRC The re-establishment request message includes the identity of the first cell and the identity of the terminal device in the first cell; wherein the first cell is the cell that received the first message; or, if the first message is received
  • the cell is a secondary cell, then the first cell is the primary cell corresponding to the secondary cell; or, the first cell is the source cell for cell handover.
  • the cell handover to the first target cell fails, including: when the first timer times out, the cell handover to the first target cell fails; wherein, The first timer is started or restarted upon receipt of the first message or receipt of the first indication information.
  • the terminal device can reselect the first target cell and perform cell handover.
  • the terminal device can determine that the cell switching has failed, thereby avoiding the terminal device from looping the above operation (selecting the first target cell and performing cell switching) for a long time and causing power consumption. larger.
  • the method further includes: Receive second indication information from the first network device, the second indication information is used to instruct the terminal device to select a second target cell; if the M cells are selected according to the configuration information of the M cells, When the second target cell is selected, cell handover to the second target cell is performed, and the handover is successful.
  • cell a may be different from cell b or cell c; where cell b is the cell that receives the first message, or if the first message is received, cell a may be different from cell b or cell c.
  • the cell of the message is a secondary cell, and cell c is the primary cell corresponding to the secondary cell.
  • the cell handover to the first target cell fails, including: when the second timer times out, the configuration information of the M cells is not obtained from the M cells. If the first target cell is selected, the cell handover to the first target cell fails; wherein the second timer is started or restarted upon receiving the first indication information.
  • the terminal device can determine that the cell handover to the first target cell has failed, thereby preventing the terminal device from performing the operation of selecting the first target cell in a loop for a long time.
  • the power consumption is large.
  • the cell handover to the first target cell fails, including: when the number of consecutive handover failures is greater than or equal to a number threshold, the cell handover to the first target cell fails. A failure occurred.
  • the terminal device can determine that the cell handover to the first target cell has failed, thereby preventing the terminal device from looping the above operations for a long time (select the first target cell). a target cell and perform cell handover), resulting in large power consumption.
  • the method further includes: receiving at least one of the following from the first network device: the duration of the first timer; the duration of the second timer; the number of times threshold .
  • the first network device can flexibly control the terminal device.
  • the RRC re-establishment request message also includes a cause value for the cell handover failure; the cause value is used to indicate that the target cell for the cell handover cannot be selected; or, The reason value is used to indicate that the target cell for cell handover cannot be accessed after the target cell is selected.
  • the RRC re-establishment request message carries the cause value of the cell handover failure, so that the second network device can learn the reason.
  • the second network device can collect statistics on the reasons for the cell handover failure.
  • the M cells include a first candidate cell, and the configuration information of the first candidate cell includes first information, and the first information is used to determine whether to select the first candidate cell as the The first target cell.
  • the first network device configuring the first information for the terminal device, the first network device can flexibly control the terminal device's selection of the first target cell.
  • the first information includes at least one of the following: a first wireless link quality threshold; a first beam quality threshold; and priority information of the first candidate cell.
  • the method further includes: sending third indication information to the first network device, the third indication information indicating that the wireless link quality of the third cell is less than or equal to the second wireless link The quality threshold and/or the quality of at least one beam of the third cell is less than or equal to the second beam quality threshold; wherein the third cell is the source cell of the cell handover; wherein the radio of the third cell The link quality is obtained based on the quality of the at least one beam.
  • the terminal device can request the first network device to allow the first terminal device to perform cell switching by sending the third indication information to the first network device; that is, the terminal device can trigger the cell switching.
  • the third cell belongs to the M cells, and the configuration information of the third cell includes the measurement configuration information of the at least one beam; the method further includes: according to the at least one Measurement configuration information of the beam, and measure the quality of the at least one beam.
  • the measurement configuration information of at least one beam is configured for the terminal device through the network device, so that the terminal device can measure the quality of the at least one beam.
  • embodiments of the present application provide a communication method.
  • the method can be applied to a first network device or a module (such as a chip) in the first network device.
  • the method can also be applied to a method that can realize all or part of the first network.
  • Logic modules or software for device functionality Taking this method applied to the first network device as an example, in this method, the first network device sends a first message to the terminal device.
  • the first message includes configuration information of M cells, and the M cells are all A cell managed by the first network device; sending first indication information to the terminal device, the first indication information being used to instruct selection of a first target cell and execution of cell handover to the first target cell; wherein , the configuration information of the M cells is used to select the first target cell from the M cells.
  • the M cells include a first candidate cell, and the configuration information of the first candidate cell includes first information, and the first information is used to determine whether to select the first candidate cell as the The first target cell.
  • the first information includes at least one of the following: a first wireless link quality threshold; a first beam quality threshold; and priority information of the first candidate cell.
  • the method further includes: receiving third indication information from the terminal device, the third indication information indicating that the wireless link quality of the third cell is less than or equal to the second wireless link quality.
  • the threshold and/or the quality of at least one beam of the third cell is less than or equal to the second beam quality threshold; wherein the third cell is the source cell of the cell handover; wherein the wireless link of the third cell
  • the path quality is obtained based on the quality of the at least one beam.
  • the third cell belongs to the M cells, and the configuration information of the third cell includes the measurement configuration information of the at least one beam.
  • embodiments of the present application provide a communication method.
  • the method can be applied to a second network device or a module (such as a chip) in the second network device.
  • the method can also be applied to a method that can realize all or part of the second network.
  • Logic modules or software for device functionality Taking this method applied to the second network device as an example, in this method, the second network device receives an RRC re-establishment request message from the terminal device, and the RRC re-establishment request message includes the identity of the first cell and the The identification of the terminal equipment in the first cell; obtaining the context information of the terminal equipment according to the identification of the first cell and the identification of the terminal equipment in the first cell; sending an RRC reload to the terminal equipment.
  • An establishment response message the RRC re-establishment response message is used to indicate the completion of RRC re-establishment; wherein the first cell is the cell that receives the first message; or, if the cell that receives the first message is a secondary cell , then the first cell is the primary cell corresponding to the secondary cell; or, the first cell is the source cell for the cell handover.
  • the RRC re-establishment request message also includes a cause value for cell handover failure; the cause value is used to indicate that the target cell for the cell handover cannot be selected; or, the cause value It is used to indicate that the target cell cannot be accessed after the target cell for cell handover is selected.
  • the present application provides a communication device.
  • the communication device is capable of implementing the functions related to the first to third aspects.
  • the communication device includes performing operations corresponding to the first to third aspects.
  • Modules, units or means, the functions, units or means can be implemented by software, or implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the communication device includes a processing unit and a communication unit, where the communication unit can be used to send and receive signals to implement communication between the communication device and other devices; the processing unit can be used to perform the communication Some internal operations of the device.
  • the functions performed by the processing unit and the communication unit may correspond to the operations related to the above-mentioned first to third aspects.
  • the communication device includes a processor, and the processor can be coupled to a memory.
  • the memory may store necessary computer programs or instructions to implement the functions related to the above-mentioned first to third aspects.
  • the processor can execute the computer program or instructions stored in the memory. When the computer program or instructions are executed, the communication device implements any of the possible designs or implementations of the first to third aspects. method.
  • the communication device includes a processor and a memory, and the memory can store the necessary computer programs or instructions to implement the functions related to the above first to third aspects.
  • the processor can execute the computer program or instructions stored in the memory. When the computer program or instructions are executed, the communication device implements any of the possible designs or implementations of the first to third aspects. method.
  • the communication device includes a processor and an interface circuit, wherein the processor is configured to communicate with other devices through the interface circuit and execute any possible design or implementation of the first to third aspects above. method within the method.
  • the processor can be implemented by hardware or software.
  • the processor can be a logic circuit, an integrated circuit, etc.; when implemented by software, the processor can be implemented by software.
  • the processor may be a general-purpose processor implemented by reading software code stored in memory.
  • the above processors may be one or more, and the memory may be one or Multiple.
  • the memory can be integrated with the processor, or the memory can be provided separately from the processor. During the specific implementation process, the memory and the processor can be integrated on the same chip, or they can be respectively provided on different chips. The embodiments of this application do not limit the type of memory and the arrangement method of the memory and the processor.
  • this application provides a communication system.
  • the communication system may include a terminal device and a first network device.
  • the terminal device is configured to perform the method described in any possible design of the first aspect.
  • the first network device For performing the method described in any possible design of the second aspect above.
  • the communication system further includes a second network device, and the second network device is configured to perform the method described in any possible design of the third aspect.
  • the present application provides a computer-readable storage medium.
  • Computer-readable instructions are stored in the computer storage medium.
  • the computer reads and executes the computer-readable instructions, the computer is caused to execute the above-mentioned first aspect to Any possible method in the design of the third aspect.
  • the present application provides a computer program product, which when a computer reads and executes the computer program product, causes the computer to execute the method in any possible design of the above-mentioned first aspect to the third aspect.
  • the present application provides a chip.
  • the chip includes a processor.
  • the processor is coupled to a memory and is used to read and execute a software program stored in the memory to implement the above first to third aspects. any possible design approach.
  • Figure 1 is a schematic diagram of a communication system applicable to the embodiment of the present application.
  • Figure 2A is a schematic diagram of a CU-DU separation architecture provided by an embodiment of the present application.
  • Figure 2B is a schematic diagram of another CU-DU separation architecture provided by an embodiment of the present application.
  • Figure 3 is a schematic flowchart of a terminal device performing cell switching provided by an embodiment of the present application
  • Figure 4 is a schematic flow chart corresponding to the communication method provided in Embodiment 1 of the present application.
  • Figure 5 is a schematic diagram of the startup and timeout of the first timer provided by the embodiment of the present application.
  • Figure 6 is a schematic flow chart corresponding to the communication method provided in Embodiment 2 of the present application.
  • Figure 7 is a possible exemplary block diagram of the device involved in the embodiment of the present application.
  • Figure 8 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • Figure 9 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • FIG. 1 is a schematic diagram of a communication system applicable to the embodiment of the present application.
  • the communication system 10 includes one or more network devices 20 and one or more terminal devices 30 .
  • the interface between the network device and the terminal device may be a Uu interface (or called an air interface), and data transmission may be performed between the network device 20 and the terminal device 30 through air interface resources.
  • the terminal device may be located within the communication coverage of one or more cells of the network device, and the number of cells providing services to the terminal device may be one or more.
  • the terminal The device can follow transmission technologies such as carrier aggregation (CA), dual connectivity (DC), coordinated multipoint (CoMP) transmission, multiple transmission and reception point (mTRP), etc.
  • CA carrier aggregation
  • DC dual connectivity
  • CoMP coordinated multipoint
  • mTRP multiple transmission and reception point
  • Terminal equipment also known as user equipment (UE), mobile station (MS), mobile terminal (MT), etc.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • terminals refers to equipment that provides voice and/or data connectivity to users.
  • handheld devices vehicle-mounted devices, etc. with wireless connection capabilities.
  • some examples of terminals are: mobile phones, tablets, laptops, PDAs, mobile internet devices (MID), wearable devices, virtual reality (VR) devices, augmented reality (augmented reality, AR) equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, and smart grids wireless terminals, wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • MID mobile internet devices
  • VR virtual reality
  • AR augmented reality
  • wireless terminals in industrial control wireless terminals in self-driving
  • wireless terminals in remote medical surgery and smart grids wireless terminals, wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • Network equipment may include access network equipment, which refers to a radio access network (RAN) node (or equipment) that connects a terminal to a wireless network, and may also be called a base station.
  • RAN radio access network
  • RAN radio access network
  • gNB evolved Node B
  • TRP transmission reception point
  • eNB evolved Node B
  • RNC radio network controller
  • BSC base station controller
  • BTS base transceiver station
  • home base station e.g., home evolved NodeB, or home Node B, HNB
  • BBU base band unit
  • wireless fidelity wireless fidelity, Wifi
  • the control plane protocol layer structure can include a radio resource control (RRC) layer and a packet data convergence protocol (PDCP) layer.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the user plane protocol layer structure can include the PDCP layer, RLC layer, MAC layer and physical layer.
  • the PDCP layer can also include a service data adaptation protocol (SDAP) layer.
  • SDAP service data adaptation protocol
  • the SDAP layer, PDCP layer, RLC layer, MAC layer, and physical layer can also be collectively referred to as the access layer.
  • 3GPP 3rd generation partnership project
  • the network device may include one or more centralized units (centralized units, CUs) and one or more distributed units (distributed units, DUs). Multiple DUs may be centralized by one CU. Control, this architecture can be called CU-DU separation architecture.
  • the interface between CU and DU may be called the F1 interface, where the control panel (CP) interface may be the F1-C interface and the user panel (UP) interface may be the F1-U interface.
  • CP control panel
  • UP user panel
  • the processing functions of CU and DU can be divided according to the protocol layer of the wireless network: for example, as shown in Figure 2A, the functions of the PDCP layer and above are set in the CU, and the functions of the protocol layers below the PDCP layer (such as RLC layer and MAC layer, etc.) are set In DU.
  • the above-mentioned division of the processing functions of CU and DU according to protocol layers is only an example, and can also be divided in other ways.
  • the functions of the protocol layers above the RLC layer are set in the CU, RLC layer and the following protocol layers.
  • the functions are set in DU.
  • CU or DU can be divided into functions with more protocol layers.
  • CU or DU can also be divided into partial processing functions with protocol layers. The embodiments of the present application do not limit this.
  • the functions of the CU can be implemented by one entity, or by different entities.
  • the functions of CU can be further divided, that is, the control plane and the user plane are separated and implemented through different entities, namely the control plane CU entity (ie CU-CP entity) and the user plane CU entity (ie CU-UP entity).
  • the CU-CP entity and the CU-UP entity can be coupled with the DU to jointly complete the functions of the RAN equipment.
  • the interface between the CU-CP entity and the CU-UP entity can be the E1 interface
  • the interface between the CU-CP entity and the DU can be the F1-C interface
  • the interface between the CU-UP entity and the DU can be the F1-U interface.
  • a DU and a CU-UP can be connected to a CU-CP.
  • one DU can be connected to multiple CU-UPs
  • one CU-UP can be connected to multiple DUs.
  • one CU-UP can also be connected to the collaborative Multiple CU-CPs improve the flexibility of CU-CPs.
  • Figure 2B is a schematic diagram of the distribution of an air interface protocol stack. As shown in Figure 2B, for both the user plane and the control plane, the air interface protocol stack can be RLC, MAC, and PHY in DU, and PDCP and above protocol layers in CU.
  • the signaling generated by the CU can be sent to the terminal device through DU, or the signaling generated by the terminal device can be sent to the CU through DU.
  • the DU can directly encapsulate the signaling through the protocol layer and transparently transmit it to the terminal device or CU without parsing the signaling.
  • the sending or receiving of signaling by the DU includes such a scenario.
  • RRC or PDCP layer signaling will eventually be processed into physical layer data and sent to the terminal device, or converted from the received physical layer data.
  • the RRC layer or PDCP layer signaling can also be considered to be sent by the DU, or by the DU and the radio frequency device.
  • the embodiments of the present application do not limit the number of network devices and terminal devices included in the communication system, and in addition to network devices and terminal devices, the above communication system may also include other devices or network elements. , such as core network equipment, relay equipment, etc., the embodiments of the present application are not limited to this.
  • the communication system shown in Figure 1 above can support various radio access technologies (RAT).
  • the communication system shown in Figure 1 can be a fourth generation (4th generation, 4G) communication system (also known as Long term evolution (long term evolution, LTE) communication system), fifth generation (5th generation, 5G) communication system (also called new radio (NR) communication system), wireless fidelity (wireless fidelity, Wi- Fi) system, or an evolutionary system for the future.
  • 4G fourth generation
  • 5th generation, 5G also called new radio (NR) communication system
  • NR new radio
  • wireless fidelity wireless fidelity
  • Wi- Fi wireless fidelity
  • the communication system and business scenarios described in the embodiments of this application are for the purpose of explaining the technical solutions of the embodiments of this application more clearly, and do not constitute a limitation on the technical solutions provided by the embodiments of this application.
  • Those of ordinary skill in the art will know that with the communication System evolution and new services As the scenario arises, the technical solutions provided by the embodiments of this application are also applicable to similar technical problems.
  • the network equipment sends reference signals in multiple beam directions of the cell.
  • the reference signals can be synchronization signal/physical broadcast channel block (SSB), channel state information reference signal (channel state information reference signal, CSI- RS), or channel sounding reference signal (sounding reference signal, SRS), or other possible reference signals, which are not specifically limited.
  • the terminal device performs measurements based on the reference signal on the time-frequency resource indicated by the network device. For example, the terminal device can obtain the signal strength of the beam corresponding to the reference signal at multiple instants within a period of time through sampling, and perform measurement on the obtained multiple signal strengths. Weighting or combining is used to obtain the measurement result of the beam.
  • the measurement result of the beam can also be called the beam quality.
  • the radio link quality of the cell may be obtained according to the quality of at least one beam of the cell, and the radio link quality of the cell is not smoothed.
  • the terminal device can use the average quality of at least one beam among the N1 beams as the wireless link quality of the cell, or the terminal device can also The average quality of the N2 beams with better measurement results among the N1 beams is used as the wireless link quality of the cell.
  • N1 and N2 are positive integers, and N2 is smaller than N1.
  • the quality of the cell may be obtained according to the quality of at least one beam of the cell, and the quality of the cell is smoothed.
  • the terminal equipment performs beam-level measurements on the cell and obtains the quality of multiple beams of the cell, it can average the quality of the multiple beams to obtain the current measurement value, and weight the current measurement value with the quality of the cell obtained last time (That is, smoothing processing) to obtain the quality of the cell.
  • the quality of the cell can also be called the measurement result of the cell.
  • Layer 1 may refer to the physical layer
  • layer 2 may refer to the MAC layer
  • layer 3 may refer to the RRC layer.
  • the terminal device can perform cell handover between different cells of the same network device, or can also perform handover between different cells of different network devices.
  • the network device before handover is the source network device
  • the cell before handover is the source cell
  • the network device after handover is the target network device
  • the cell after handover is for the target community.
  • the following takes the terminal device performing handover between different cells of different network devices as an example, and describes a possible cell handover process in conjunction with Figure 3.
  • Figure 3 is a schematic flowchart of a terminal device performing cell handover. As shown in Figure 3, the process may include:
  • the source network device sends an RRC reconfiguration message 1 to the terminal device; accordingly, the terminal device receives the RRC reconfiguration message 1.
  • the RRC reconfiguration message 1 may include measurement configuration information, and the measurement configuration information may include measurement indication information of the source cell (ie, the current serving cell), measurement indication information of the candidate cell, and indication information of measurement event reporting conditions.
  • the candidate cell may be a neighboring cell of the source cell, so the candidate cell may also be called a neighboring cell.
  • the measurement indication information of the source cell may include the center frequency point of the source cell (for example, the source cell is cell 0).
  • the measurement indication information of the candidate cell may include the center frequency point of the candidate cell (for example, the candidate cell includes cell 1, cell 2 and cell 3).
  • the measurement events may include, for example, the A3 event (Event A3).
  • the A3 event is defined as: the neighboring cell (i.e., the candidate cell) is better than the serving cell by a certain offset.
  • the measurement event may also include other possible events, which are not specifically limited.
  • the terminal device measures the source cell and the candidate cell according to the measurement instruction information of the source cell and the measurement instruction information of the candidate cell, and reports the measurement event (such as the A3 event) after the quality of the source cell and the quality of the candidate cell meet the conditions. , sending a measurement report to the source network device; accordingly, the source network device receives the measurement report.
  • the measurement event such as the A3 event
  • the measurement report may include the quality of the source cell and the quality of a plurality of candidate cells.
  • the source network device determines to trigger the terminal device to perform cell switching based on the measurement report, and sends a handover request (handover request) message to the target network device; accordingly, the target network device receives the handover request message.
  • handover request handover request
  • the source network device can select a target cell from multiple candidate cells based on the quality of the multiple candidate cells, and the target network device It is the network equipment to which the target cell belongs.
  • the target network device After receiving the handover request message, the target network device determines that the terminal device is allowed to access the target cell, and then sends a handover confirmation (handover request Acknowledge) message to the source network device; accordingly, the source network device receives the handover confirmation message.
  • a handover confirmation handover request Acknowledge
  • the target network device may decide whether to allow the terminal device to access the target cell based on the number of connected terminal devices in the target cell.
  • the handover confirmation message may include the configuration information of the target cell.
  • the configuration information of the target cell may include the identification of the target cell (such as the physical cell identifier (PCI) of the target cell) and the configuration required for the terminal device to access the target cell.
  • Information may also include other possible information, which is not specifically limited.
  • the configuration information required for the terminal device to access the target cell may include the identification of the terminal device on the target cell, such as the cell radio network temporary identifier (C-RNTI).
  • C-RNTI cell radio network temporary identifier
  • it may also include the terminal device. Random access resource information used by the device to access the target cell, etc.
  • the source network device sends an RRC reconfiguration message 2 to the terminal device.
  • the RRC reconfiguration message 2 includes a handover command.
  • the handover command is used to instruct the terminal device to switch from the source cell to the target cell.
  • the RRC reconfiguration message 2 may also include the content contained in the handover confirmation message. That is to say, the source network device may transparently transmit the content contained in the handover confirmation message to the terminal device.
  • S306 The terminal device initiates random access on the target cell according to the handover command.
  • the above is an example of the terminal device performing handover between different cells of different network devices.
  • the terminal device performs handover between different cells of the same network device (that is, the source network device and the target network device are the same
  • the network device can no longer perform communication between the source network device and the target network device), and can be processed by referring to the above process.
  • the source network device selects the target cell from the multiple candidate cells based on the quality of the multiple candidate cells, and sends a handover command to the terminal device. To instruct the terminal equipment to switch to the target cell.
  • the quality of multiple candidate cells based on which the source network device selects the target cell is measured by the terminal device before reporting the measurement report, it may result in that the target cell selected by the source network device is not suitable for the terminal device to access currently. cell, resulting in handover failure.
  • the source network device selects cell 1 as the target cell, but the quality of the cell changes dynamically because the quality of multiple candidate cells is measured by the terminal device before reporting a measurement report.
  • the quality of cell 1 drops significantly after the terminal equipment reports the measurement report, and if the terminal equipment receives the handover command at this time and performs cell handover to cell 1 according to the handover command, the quality of cell 1 may deteriorate. Poor results in handover failure.
  • embodiments of the present application provide a communication method to improve the success rate of cell handover.
  • Figure 4 is a schematic flow chart corresponding to the communication method provided in Embodiment 1 of the present application. As shown in Figure 4, the method includes:
  • the first network device sends configuration information of M cells to the terminal device; accordingly, the terminal device receives the configuration information of M cells.
  • the serving cells of the terminal device there may be one or more cells that provide services for the terminal device (i.e., the serving cells of the terminal device); for example, there may be multiple serving cells for the terminal device, and the multiple serving cells are all cells managed by the first network device. Then, multiple serving cells may include one primary cell and one or more secondary cells.
  • the first network device may send a first message to the terminal device on a certain serving cell of the terminal device (called serving cell 1), where the first message includes configuration information of M cells; wherein, the first message It can be an RRC message, such as an RRC reconfiguration message.
  • serving cell 1 may be one of the multiple serving cells.
  • serving cell 1 may be a primary cell or a secondary cell.
  • the first network device can send the configuration information of the M cells to the terminal device through one message (such as the first message), or the first network device can also send the configuration information of the M cells to the terminal device through multiple messages. Information, specific information is not limited.
  • the following describes the M cells and the configuration information of the M cells respectively.
  • the first message may include configuration information of N cells.
  • the N cells may include the terminal device's main cell and multiple neighboring cells.
  • the N cells include the current source cell of the terminal device (such as the source cell of the cell handover to the first target cell below, or the source cell of the cell handover to the second target cell) and Multiple candidate cells; for example, if the current source cell of the terminal device is the main cell, then the multiple candidate cells are multiple neighboring cells.
  • N cells include M cells.
  • the terminal device can perform cell handover between M cells.
  • Selecting the target cell from the M cells can be understood as: selecting the target cell from multiple candidate cells included in the M cells.
  • M cells include cell 1, cell 2, cell 3...cell m.
  • multiple candidate cells may include cell 2, cell 3...cell m; when When the current source cell of the terminal device is cell 2, the multiple candidate cells may include cell 1, cell 3...cell m.
  • the M cells may all be cells managed by the first network device, or the M cells may belong to the first network device; for example, the M cells may belong to one or more DUs of the first network device.
  • the following takes one of the M cells (such as the first candidate cell) as an example to introduce the configuration information of the first candidate cell.
  • the configuration information of the first candidate cell may include at least one of the following: 1 first information, the first information is used to determine whether to select the first candidate cell as the first target cell; 2 the terminal device accesses the first candidate cell
  • the required configuration information can also be called the Layer 1/Layer 2 mobility configuration (L1/2 mobility configuration) of the first candidate cell; 3 Relevant information of the first candidate cell.
  • the first information may include at least one of the following: a first wireless link quality threshold; a first beam quality threshold; and priority information of the first candidate cell. If the first information includes the first radio link quality threshold, when the radio link quality of the first candidate cell is greater than or equal to the first radio link quality threshold, the terminal device may select the first candidate cell as the first target cell. If the first information includes the first beam quality threshold, when the beam quality of at least one beam of the first candidate cell is greater than or equal to the first beam quality threshold, the terminal device may select the first candidate cell as the first target cell.
  • the priority information of the first candidate cell is used to indicate the priority of the first candidate cell.
  • the priority information of the first candidate cell may include a priority level identification of the first candidate cell, and the priority level is, for example, high priority, medium priority, or low priority.
  • the configuration information of the first candidate cell includes the first information 1 corresponding to the first candidate cell
  • the configuration information of the second candidate cell Includes first information 2 corresponding to the second candidate cell.
  • the first information 1 includes the first wireless link quality threshold 1 and the priority information of the first candidate cell.
  • the terminal device The second candidate cell may be selected as the target cell for cell handover; the first information 2 includes the first wireless link quality threshold 2 and the priority information of the second candidate cell.
  • the terminal device may select the second candidate cell as the target cell for cell handover. If the radio link quality of the first candidate cell is greater than or equal to the first radio link quality threshold 1, and the radio link quality of the second candidate cell is greater than or equal to the first radio link quality threshold 2, the terminal device may be configured according to the first radio link quality threshold. Based on the priority of the first candidate cell and the priority of the second candidate cell, the candidate cell with the higher priority is selected as the target cell for cell handover. In this case, the first radio link quality thresholds corresponding to different candidate cells among the M cells may be different, and there is no specific limit.
  • the first radio link quality thresholds (or first beam quality thresholds) corresponding to different candidate cells among the M cells may be the same.
  • the M cells share the same A first radio link quality threshold (or a first beam quality threshold).
  • the terminal device can determine the priority of the candidate cell according to whether the configuration information of the candidate cell includes random access resource information (see the description below); for example , if the configuration information of the first candidate cell includes random access resource information and the configuration information of the second candidate cell does not include random access resource information, the priority of the first candidate cell is greater than that of the second candidate cell.
  • the terminal device can also determine the priority of the candidate cell based on whether the candidate cell is the serving cell of the terminal device (such as a secondary cell); if the first candidate cell is the secondary cell of the terminal device, the second candidate cell is not the terminal device's serving cell. Secondary cell, the priority of the first candidate cell is higher than that of the second candidate cell.
  • the configuration information required for the terminal device to access the first candidate cell may include the identification of the terminal device in the first candidate cell, such as a cell-radio network temporary identifier (C-RNTI); optionally, Includes random access resource information used by the terminal device to initiate random access on the first candidate cell.
  • the random access resource information may include a random access preamble, and/or a time-frequency resource used to carry the random access preamble.
  • the configuration information required for the terminal device to access the first candidate cell may also include other possible information, such as the physical layer channel configuration information of the terminal device in the first candidate cell, which is not specifically limited.
  • the physical layer channels include, for example: physical downlink control channel (PDCCH), physical downlink shared channel (PDSCH), physical uplink control channel (PUCCH), physical uplink data channel Channel (physical uplink shared channel, PUSCH).
  • the relevant information of the first candidate cell may include at least one of the following: a physical cell identity (PCI) of the first candidate cell, and measurement configuration information of at least one beam of the first candidate cell.
  • PCI physical cell identity
  • the measurement configuration information of at least one beam of the first candidate cell is used by the terminal device to measure the beam quality of the at least one beam.
  • the measurement configuration information of at least one beam may include time-frequency resource information of at least one reference signal, and the at least one reference signal corresponds to the at least one beam in a one-to-one manner.
  • the relevant information of the first candidate cell may also include other possible information.
  • the configuration information of the first candidate cell may also include other possible information, which is not specifically limited.
  • the configuration information of cells other than the first candidate cell among the M cells may refer to the configuration information of the first candidate cell, which will not be described again.
  • the first network device sends first indication information to the terminal device, where the first indication information is used to instruct the terminal device to select the first target cell; accordingly, the terminal device receives the first indication information.
  • the first indication information does not include the identification of the first target cell. That is to say, the first network device instructs the terminal device to select the first target cell through the first indication information, and specifically selects which cell as the first target cell. , which can be determined by the terminal device. It can be understood that the first instruction information is used to instruct the terminal equipment to select the first target cell. It can also be understood that the first instruction information is used to instruct the terminal equipment to perform cell switching, and the first instruction information does not include cell switching. target neighborhood.
  • the first network device sends the first indication information to the terminal device.
  • the first network device sends a layer 1/layer 2 message to the terminal device, and the layer 1/layer 2 message includes the first indication information.
  • the first indication information may be a PDCCH order (order). In this way, since the first network device sends the first indication information through the layer 1/layer 2 message, compared with the network device sending the handover command through the layer 3 message in Figure 3, the handover delay can be effectively reduced.
  • the terminal device may send third indication information to the first network device.
  • the third indication information indicates that the wireless link quality of the third cell is less than or equal to the second wireless link quality threshold and/or the third cell's wireless link quality threshold.
  • the beam quality of at least one beam is less than or equal to the second beam quality threshold; accordingly, after receiving the third indication information, the first network device may send the first indication information to the terminal device.
  • the third cell is the source cell for which the terminal device performs cell handover in S403.
  • the terminal device may send the third indication information to the first network device on the third cell, and/or the first network device may send the first indication information to the terminal device on the third cell.
  • the terminal device sends the third indication information to the first network device.
  • the terminal device may send a layer 1/layer 2 message to the first network device, and the layer 1/layer 2 message includes the third indication information.
  • the terminal device since the terminal device sends the third indication information through the layer 1/layer 2 message, compared with the method in which the terminal device reports the measurement report through the layer 3 message in Figure 3, the handover delay can be effectively reduced.
  • S403 If the terminal device selects the first target cell from the M cells according to the configuration information of the M cells, then performs cell handover to the first target cell.
  • the terminal device may try to select the first target cell from the M cells based on the first information included in the configuration information of the M cells. For details, refer to the above description of the first information. If the terminal device selects the first target cell from the M cells, the terminal device can select the first target cell based on the configuration information required for the terminal device to access the first target cell (such as the identification of the terminal device in the first target cell, random access resource information, etc.). Random access is initiated on the first target cell to access or switch to the first target cell.
  • the configuration information required for the terminal device to access the first target cell such as the identification of the terminal device in the first target cell, random access resource information, etc.
  • the random access initiated by the terminal device on the first target cell may be four-step random access or two-step random access. Taking four-step random access as an example, the message 3 of the four-step random access may include the identification of the terminal device on the first target cell.
  • the above method further includes S404, or the above method further includes S405 to S407.
  • S404 The terminal device successfully switches to the first target cell, and sends switching completion information to the first network device on the first target cell.
  • the switching completion information is used to indicate that the terminal device successfully switches to the first target cell.
  • S405 The terminal device determines that the cell handover to the first target cell fails.
  • the terminal device determines that the cell handover to the first target cell fails.
  • the first timer is started or restarted upon receiving the first message.
  • the terminal device can start or restart the first timer.
  • the starting time of the first timer may be the same as the receiving time of the first message, or the time interval between the starting time of the first timer and the receiving time of the first message is a preset time interval.
  • the terminal device may determine that the cell handover to the first target cell has failed, and stop executing the cell handover to the first target cell. Cell switching.
  • the terminal device may determine that the cell handover to the first target cell has failed. , and stops performing cell handover to the first target cell.
  • one or more handovers may be successfully performed before the terminal device receives the first indication information.
  • the terminal device may receive the second instruction information from the first network device.
  • the second instruction information instructs the terminal device to select the second target cell, and then the terminal device may select the second target cell according to the configuration information of the M cells.
  • a second target cell is selected from the M cells, a cell handover is performed to the second target cell, and the handover is successful.
  • the first network device sends configuration information of M cells to the terminal device on cell 1.
  • the M cells include cell 1, cell 2...cell m.
  • the terminal device After receiving the first message in cell 1, the terminal device starts the first timer.
  • the terminal device receives the second indication information from the first network device on cell 1, and attempts to select the second target cell from the M cells to perform handover to the second target cell.
  • the source cell of this cell handover (that is, the current source cell of the terminal device) is cell 1.
  • the implementation of the terminal device's determination of whether to select a certain candidate cell as the second target cell may refer to the above description.
  • the terminal device can select cell 2 as the second target cell. After the terminal device selects cell 2, it can initiate random access on cell 2 to switch from cell 1 to cell 2. If the terminal device fails to randomly access cell 2, the terminal device can try to select the second target cell from the M cells again. For example, the terminal device selects cell 3 and then initiates random access in cell 3 to obtain the desired target cell from the cell. 1Switch to cell 3. If the terminal device successfully randomly accesses cell 3, the terminal device successfully switches from cell 1 to cell 3.
  • first wireless link quality threshold or first beam quality threshold
  • the terminal device receives the first instruction information from the first network device and attempts to select the first target cell from the M cells to perform cell handover to the first target cell.
  • the source cell of the cell handover is ( That is, the current source cell of the terminal device is cell 3.
  • the terminal device selects cell 4 as the target cell. If the terminal device fails to randomly access cell 4, the terminal device can try to select a target cell from M cells again. For example, the terminal device selects cell 5 as the target cell. If the terminal device fails to randomly access cell 5, the terminal device can try to select a target cell from M cells again, and so on, when the first timer times out. In this case, the terminal device may determine that the cell handover to the first target cell has failed, and stop performing the cell handover to the first target cell.
  • the duration of the first timer may be configured by the first network device for the terminal device.
  • the first message includes the duration of the first timer.
  • the terminal device can successfully perform one or more cell handovers. Therefore, optionally, when the first network device includes a CU and one or more DUs, the first timer The duration of the device can be determined by the CU. Alternatively, the duration of the first timer may also be predefined by the protocol. The embodiments of the present application do not limit this.
  • the terminal device determines that the cell handover to the first target cell fails.
  • the first timer is started or restarted upon receiving the first indication information.
  • the terminal device can start or restart the first timer.
  • the starting time of the first timer may be the same as the receiving time of the first indication information, or the time interval between the starting time of the first timer and the receiving time of the first indicating information is a preset time interval.
  • the terminal device receives the first indication information from the first network device and attempts to select the first target cell from the M cells. Assume that M cells include cell 1, cell 2...and cell m, and the current source cell of the terminal device is cell 3. For example, the terminal device selects cell 1 as the target cell and initiates random access in cell 1. If the terminal device fails to randomly access cell 1, the terminal device can try again to select a target cell from M cells, and so on. When the first timer times out, the terminal device can determine to switch to the first timer. The cell handover of the target cell fails, and the cell handover to the first target cell is stopped.
  • the duration of the first timer may be configured by the first network device for the terminal device.
  • the terminal device starts or restarts the first timer after receiving the first instruction information.
  • the terminal device can only successfully perform one cell handover (that is, handover from the current source cell). to the target cell), therefore, the duration of the first timer may have a corresponding relationship with the current source cell.
  • the configuration information of each of the M cells may include the duration of the first timer, and the duration of the first timer corresponding to different cells among the M cells may be the same or different.
  • the duration of the first timer may be determined by the DU.
  • the M cells can also share the duration of the same first timer.
  • the duration of the first timer may also be predefined by the protocol. The embodiments of the present application do not limit this.
  • the second timer When the second timer times out and the terminal device fails to select the first target cell from the M cells according to the configuration information of the M cells, it is determined that the cell handover to the first target cell fails.
  • the second timer is started or restarted upon receiving the first indication information.
  • the terminal device can start or restart the second timer.
  • the start time of the second timer can be the same as the reception time of the first indication information, or the start time of the second timer can be the same as the first timer.
  • the time interval between the reception times of the indication information is a preset time interval.
  • the terminal device During the running of the second timer, the terminal device never selects the target cell. For example, during the running of the second timer, if the radio link quality of multiple candidate cells included in the M cells is always less than the first radio link quality threshold, the terminal device can determine that the cell handover to the first target cell has occurred. fails, and stops performing cell handover to the first target cell.
  • the duration of the second timer may be configured by the first network device for the terminal device, or the duration of the second timer may be predefined by the protocol.
  • the duration of the first timer in Scenario 2 above please refer to the description of the duration of the first timer in Scenario 2 above.
  • the terminal device When the terminal device performs cell handover, if the number of consecutive handover failures is greater than or equal to the number threshold, it is determined that the cell handover to the first target cell has failed.
  • the terminal device can start a counter with an initial value of 0 and try to select the first target cell from M cells. Assume that M cells include cell 1, cell 2, cell 3...cell m, and the current source cell of the terminal device is cell 3. For example, if the terminal device selects cell 1 as the first target cell, it can initiate random access in cell 1. If the terminal device successfully randomly accesses cell 1, the terminal device successfully switches from cell 3 to cell 1 and closes the counter. If the terminal device fails to randomly access cell 1, the terminal device increments the counter value by 1 and tries again to select the first target cell from M cells. If the terminal device selects cell 2 as the first target cell, it can initiate random access in cell 2.
  • the terminal device fails to randomly access cell 2, the terminal device will increase the value of the counter by 1 and try to select the first target cell from M cells again, and so on. If the value of the counter is greater than or equal to the number of times threshold, Then the terminal device may determine that the cell handover to the first target cell has failed, and stop performing the cell handover to the first target cell.
  • the number of times threshold may be configured by the first network device for the terminal device.
  • the first message may include the number of times threshold; or the number of times threshold may also be predefined by the protocol. The embodiments of the present application do not limit this.
  • the terminal device sends an RRC re-establishment request message to the second network device on the second cell.
  • the terminal device can perform a cell selection process, and select a cell (such as a second cell) that satisfies the cell selection criteria through the cell selection process, and then perform the second cell selection process in the second target cell.
  • the RRC connection re-establishment process is initiated on the cell.
  • the terminal device sends an RRC re-establishment request message to the second network device on the second cell through a random access process.
  • the specific implementation of the cell selection process can be found in the prior art.
  • the second network device After receiving the RRC re-establishment request message, the second network device sends an RRC re-establishment completion message to the terminal device in the second cell.
  • the RRC re-establishment request message may include the identity of the first cell and the identity of the terminal device in the first cell.
  • the first cell may be the serving cell of the terminal device, that is, the cell in which the terminal device receives the first message.
  • the terminal device has multiple serving cells, the first cell may be the primary cell of the terminal device. In this case, if the cell where the terminal equipment receives the first message is the primary cell, then the first cell is the cell where the terminal equipment receives the first message; if the cell where the terminal equipment receives the first message is the secondary cell, then the first cell That is the primary cell corresponding to the secondary cell.
  • the first cell is the source cell of cell handover to the first target cell.
  • the first cell may be cell 3 in scenario 1 above.
  • the first network device can establish an association between the identification of the terminal device on the first cell (such as C-RNTI1) and the context of the terminal device. Since the RRC re-establishment request message includes C-RNTI1, therefore, after receiving the RRC re-establishment request message, the second network device can send a request message to the first network device.
  • the request information includes C-RNTI1, and the request message is used to request to obtain the terminal.
  • Context information of the device furthermore, after receiving the request message, the first network device can query and obtain the context information of the terminal device according to C-RNTI1, and send the context information of the terminal device to the second network device.
  • the second network device may send an RRC re-establishment completion message to the terminal device on the second cell.
  • the RRC re-establishment request message may also include the PCI of the first cell and the integrity message authentication code (integrity message authentication code, MAC-I), MAC- I is calculated based on the PCI and C-RNTI1 of the first cell, and the MAC-I is used to verify the identity of the terminal device; accordingly, after receiving the RRC re-establishment message, the second network device can and C-RNTI1 to calculate MAC-I'.
  • the integrity message authentication code integrity message authentication code
  • MAC-I' is consistent with MAC-I, it can be determined that the identity of the terminal device is legal, and then after obtaining the context information of the terminal device, the terminal device can be informed in the second cell The device sends an RRC re-establishment completion message.
  • the RRC re-establishment request message may also include a cause value for cell handover failure.
  • the cause value is used to indicate that the target cell for cell handover failed to be selected, such as the above scenario 3; or, the reason value is used to indicate that the target cell for cell handover failed to be selected.
  • the target cell cannot be accessed after the cell is switched to the target cell, such as the above scenario 1 or scenario 2.
  • the second network device can learn the reason why the terminal device initiates RRC re-establishment according to the reason value carried in the RRC re-establishment request message.
  • the first network device may first send the configuration information of the M cells managed by the first network device to the terminal device on the first cell; when it is determined that the terminal device is triggered to perform cell switching, the first network device sends the configuration information to the terminal device.
  • the device sends the first indication information.
  • the first indication information is carried in a layer 1/layer 2 message.
  • the terminal device receives the first indication information, it can select the first target from the M cells according to the configuration information of the M cells. cell, and perform cell handover to the first target cell.
  • the cell handover implemented by this method can be called layer 1/layer 2 handover.
  • the first indication information sent by the first network device does not need to carry the identity of the first target cell, but the terminal device selects the first target cell.
  • the terminal device may select the first target cell based on the current layer 1/layer of the candidate cell. 2 measurement results to select the first target cell.
  • the network device selects the target cell based on the layer 3 measurement results reported by the terminal device
  • the terminal device since the first network device does not need to select the first target cell, the terminal device does not need to report the measurement results of all candidate cells to the first network device, thereby saving transmission resources.
  • the first network device does not indicate the first target cell (that is, the first network device does not define which cell is the first target cell), therefore, after the terminal device selects a target cell, if the handover fails, it can select again.
  • a target cell is used for handover, which makes the implementation more flexible and facilitates the terminal device to switch to the appropriate cell.
  • the first network device is taken as a whole, and the implementation process of the embodiment of the present application is described from the perspective of communication between the first network device and the terminal device.
  • the first network device may include a CU and one or more DUs. The following is a description of the implementation process of the embodiment of the present application from the perspective of communication between the CU, the DU and the terminal device in conjunction with Embodiment 2.
  • the first network device includes a CU and a first DU, and the first DU manages the first cell.
  • the first network device may also include a second DU; the M cells may include M1 cells belonging to the first DU, and/or M2 cells belonging to the second DU.
  • M cells may include cell 1, cell 2, cell 3...cell m.
  • Figure 6 is a schematic flow chart corresponding to the communication method provided in Embodiment 2 of the present application. As shown in Figure 6, the method includes:
  • the CU determines to configure layer 1/layer 2 switching for the terminal device.
  • the CU determines to configure layer 1/layer 2 switching for the terminal device. For example, after the CU determines that cell 1 managed by the first DU becomes the serving cell of the terminal device, if the service of the terminal device has high latency requirements, it can determine to configure Layer 1/Layer 2 handover for the terminal device to reduce the handover delay. , to meet the business needs of terminal equipment.
  • the CU sends the first request information to the first DU, where the first request information is used to request the configuration information of M1 cells; accordingly, the first DU receives the first request information.
  • M1 cells may include cell 1.
  • the first DU may send the configuration information of M1 cells to the CU.
  • the CU may send a context modification request (UE context modification request) message of the terminal device to the first DU.
  • the context modification request message includes first request information, and the first request information is used to instruct the CU to send the context modification to the first DU.
  • the purpose of the request message is to request the configuration information of M1 cells; accordingly, the first DU can send a context modification response (UE context modification response) message of the terminal device to the CU, and the context modification response message includes the configuration information of M1 cells.
  • UE context modification response UE context modification response
  • the CU sends the second request information to the second DU.
  • the second request information is used to request the configuration information of M2 cells; accordingly, The second DU receives the second request information.
  • the second DU may send the configuration information of M2 cells to the CU.
  • the CU may send a context setup request (UE context setup request) message of the terminal device to the first DU.
  • the context setup request message of the terminal device includes second request information, and the second request information is used to instruct the CU to send the context setup request message to the second DU.
  • the purpose of sending the context establishment request message is to request the configuration information of M2 cells.
  • the second DU may send a context setup response (UE context setup response) message of the terminal device to the CU, where the context setup response message includes the configuration information of M2 cells.
  • the context establishment response message of the terminal device may also include other possible information, such as the F1AP address assigned by the second DU to the terminal device, the F1-U tunnel address, etc., where the F1AP address is used by the CU to the second DU.
  • the F1-U tunnel address is used by the CU to send the downlink data of the terminal device to the second DU.
  • the CU sends the configuration information of the M cells to the terminal device through the first DU; accordingly, the terminal device receives the configuration information of the M cells.
  • the CU may send a first message (such as an RRC message) to the first DU.
  • the first message includes the configuration information of M cells.
  • the first DU sends the first message to the terminal. equipment.
  • the first DU sends first indication information to the terminal device, and the first indication information instructs the terminal device to select the first target cell; accordingly, the terminal device receives the first indication information.
  • the terminal device may send third indication information to the first DU, and the third indication information indicates the cell of the third cell (for example, the third cell is cell 1).
  • the quality is less than or equal to the third cell quality threshold and/or the beam quality of at least one beam of the third cell is less than or equal to the second beam quality threshold.
  • S608 If the terminal device selects the first target cell from the M cells according to the configuration information of the M cells, then performs cell handover to the first target cell.
  • step numbers in each flow chart described in Embodiment 1 and Embodiment 2 are only an example of the execution process and do not constitute a restriction on the order of execution of the steps. There is no timing between them in the embodiments of the present application. There is no strict order of execution between the steps of a dependency. Not all steps shown in each flowchart are necessary steps. Some steps can be deleted based on actual needs, or other possible steps can be added based on actual needs.
  • Embodiment 1 and Embodiment 2 can be referred to each other; in addition, in the same embodiment, different Implementations or different situations or examples can also be cross-referenced.
  • the first network device, the second network device and the terminal device may include corresponding hardware structures and/or software modules for performing respective functions.
  • the embodiments of the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is performed by hardware or computer software driving the hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each specific application, but such implementations should not be considered beyond the scope of this application.
  • Embodiments of the present application can divide the first network device, the second network device and the terminal device into functional units according to the above method examples.
  • each functional unit can be divided corresponding to each function, or two or more functions can be divided into Integrated in one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.
  • Figure 7 shows a possible exemplary block diagram of the device involved in the embodiment of the present application.
  • the device 700 may include: a processing unit 702 and a communication unit 703.
  • the processing unit 702 is used to control and manage the actions of the device 700 .
  • the communication unit 703 is used to support communication between the device 700 and other devices.
  • the communication unit 703 is also called a transceiver unit and may include a receiving unit and/or a sending unit, respectively configured to perform receiving and sending operations.
  • the device 700 may also include a storage unit 701 for storing program codes and/or data of the device 700 .
  • the device 700 may be the terminal device in the above embodiment.
  • the processing unit 702 can support the apparatus 700 to perform the actions of the terminal device in each of the above method examples.
  • the processing unit 702 mainly performs internal actions of the terminal device in the method example, and the communication unit 703 may support communication between the apparatus 700 and other devices.
  • the communication unit 703 is configured to: receive configuration information of M cells from the first network device, so The M cells are all cells managed by the first network device; receive first indication information from the first network device, where the first indication information is used to instruct the terminal device to select the first target cell; process Unit 702 is configured to: if the first target cell is selected from the M cells according to the configuration information of the M cells, perform cell handover to the first target cell; M is greater than or equal to 2 integer.
  • the device 700 may be the first network device in the above embodiment, and the processing unit 702 may support the device 700 to perform the actions of the first network device in the above method examples.
  • the processing unit 702 mainly performs internal actions of the first network device in the above method example, and the communication unit 703 may support communication between the device 700 and other devices.
  • the communication unit 703 is configured to: send configuration information of M cells to the terminal device, where the M cells are all cells managed by the first network device; send the first network device to the terminal device. Instruction information, the first instruction information is used to instruct to select the first target cell and perform cell handover to the first target cell; wherein the configuration information of the M cells is used to select the first target cell from the M cells. Select the first target cell.
  • the device 700 may be the second network device in the above embodiment, and the processing unit 702 may support the device 700 to perform the actions of the second network device in the above method examples.
  • the processing unit 702 mainly performs internal actions of the second network device in the above method example, and the communication unit 703 may support communication between the device 700 and other devices.
  • the communication unit 703 is configured to: receive an RRC re-establishment request message from a terminal device, where the RRC re-establishment request message includes the identity of the first cell and the location of the terminal device in the first cell.
  • each unit in the device can be a separate processing element, or it can be integrated and implemented in a certain chip of the device.
  • it can also be stored in the memory in the form of a program, and a certain processing element of the device can call and execute the unit. Function.
  • all or part of these units can be integrated together or implemented independently.
  • the processing element described here can also be a processor, which can be an integrated circuit with signal processing capabilities.
  • each operation of the above method or each unit above can be implemented by an integrated logic circuit of hardware in the processor element or implemented in the form of software calling through the processing element.
  • the unit in any of the above devices may be one or more integrated circuits configured to implement the above method, such as: one or more application specific integrated circuits (ASIC), or one or Multiple microprocessors (digital signal processors, DSPs), or one or more field programmable gate arrays (FPGAs), or a combination of at least two of these integrated circuit forms.
  • ASIC application specific integrated circuits
  • DSPs digital signal processors
  • FPGAs field programmable gate arrays
  • the unit in the device can be implemented in the form of a processing element scheduler
  • the processing element can be a processor, such as a general central processing unit (CPU), or other processors that can call programs.
  • these units can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • the above receiving unit is an interface circuit of the device and is used to receive signals from other devices.
  • the receiving unit is an interface circuit used by the chip to receive signals from other chips or devices.
  • the above unit used for sending is an interface circuit of the device and is used to send signals to other devices.
  • the sending unit is an interface circuit used by the chip to send signals to other chips or devices.
  • the terminal device can be applied in the communication system shown in Fig. 1 to implement the operations of the terminal device in the above embodiment.
  • the terminal device includes: an antenna 810, a radio frequency part 820, and a signal processing part 830.
  • the antenna 810 is connected to the radio frequency part 820.
  • the radio frequency part 820 receives the information sent by the network device through the antenna 810, and sends the information sent by the network device to the signal processing part 830 for processing.
  • the signal processing part 830 processes the information of the terminal device and sends it to the radio frequency part 820.
  • the radio frequency part 820 processes the information of the terminal device and sends it to the network device through the antenna 810.
  • the signal processing part 830 may include a modulation and demodulation subsystem for processing each communication protocol layer of the data; it may also include a central processing subsystem for processing the operating system and application layer of the terminal device; in addition, it may Includes other subsystems such as Multimedia subsystem, peripheral subsystem, etc.
  • the multimedia subsystem is used to control the camera, screen display, etc. of the terminal device, and the peripheral subsystem is used to realize the connection with other devices.
  • the modem subsystem can be a separately configured chip.
  • the modem subsystem may include one or more processing elements 831, including, for example, a host CPU and other integrated circuits.
  • the modem subsystem may also include a storage element 832 and an interface circuit 833.
  • the storage element 832 is used to store data and programs, but the program used to perform the method performed by the terminal device in the above method may not be stored in the storage element 832, but is stored in a memory outside the modem subsystem.
  • the modem subsystem is loaded and used when used.
  • Interface circuit 833 is used to communicate with other subsystems.
  • the modulation and demodulation subsystem can be implemented by a chip, which includes at least one processing element and an interface circuit.
  • the processing element is used to perform various steps of any method performed by the above terminal equipment, and the interface circuit is used to communicate with other devices.
  • the unit for the terminal device to implement each step in the above method can be implemented in the form of a processing element scheduler.
  • the device for the terminal device includes a processing element and a storage element, and the processing element calls a program stored in the storage element to Execute the method executed by the terminal device in the above method embodiment.
  • the storage element may be a storage element on the same chip as the processing element, that is, an on-chip storage element.
  • the program for executing the method performed by the terminal device in the above method may be in a storage element on a different chip from the processing element, that is, an off-chip storage element.
  • the processing element calls from the off-chip storage element or loads the program on the on-chip storage element to call and execute the method executed by the terminal device in the above method embodiment.
  • the unit of the terminal device that implements each step in the above method may be configured as one or more processing elements. These processing elements are provided on the modulation and demodulation subsystem.
  • the processing elements here may be integrated circuits. For example: one or more ASICs, or one or more DSPs, or one or more FPGAs, or a combination of these types of integrated circuits. These integrated circuits can be integrated together to form a chip.
  • the units of the terminal device that implement each step in the above method can be integrated together and implemented in the form of a SOC.
  • the SOC chip is used to implement the above method.
  • the chip can integrate at least one processing element and a storage element, and the processing element calls the stored program of the storage element to implement the above method executed by the terminal device; or, the chip can integrate at least one integrated circuit to implement the above terminal device.
  • the method of device execution; or, the above implementation methods can be combined, and the functions of some units are realized in the form of processing components calling programs, and the functions of some units are realized in the form of integrated circuits.
  • the above apparatus for a terminal device may include at least one processing element and an interface circuit, wherein at least one processing element is used to execute any method performed by the terminal device provided in the above method embodiments.
  • the processing element can execute part or all of the steps executed by the terminal device in the first way: that is, by calling the program stored in the storage element; or it can also use the second way: that is, by combining the instructions with the integrated logic circuit of the hardware in the processor element. method to perform part or all of the steps performed by the terminal device; of course, the first method and the second method may also be combined to perform part or all of the steps performed by the terminal device.
  • the processing elements here are the same as described above and can be implemented by a processor.
  • the functions of the processing elements can be the same as the functions of the processing unit described in FIG. 7 .
  • the processing element may be a general-purpose processor, such as a CPU, or one or more integrated circuits configured to implement the above method, such as: one or more ASICs, or one or more microprocessors DSP , or, one or more FPGAs, etc., or a combination of at least two of these integrated circuit forms.
  • the storage element can be implemented by a memory, and the function of the storage element can be the same as the function of the storage unit described in FIG. 7 .
  • the storage element can be one memory or a collective name for multiple memories.
  • the terminal device shown in Figure 8 can implement various processes related to the terminal device in the above method embodiment.
  • the operations and/or functions of each module in the terminal device shown in Figure 8 are respectively intended to implement the corresponding processes in the above method embodiment.
  • network device 90 may include one or more DUs 901 and one or more CUs 902.
  • the DU 901 may include at least one antenna 9011, at least one radio frequency unit 9012, at least one processor 9013 and at least one memory 9014.
  • the DU 901 part is mainly used for the transmission and reception of radio frequency signals, the conversion of radio frequency signals and baseband signals, and some baseband processing.
  • CU 902 may include at least one processor 9022 and at least one memory 9021.
  • the CU 902 part is mainly used for baseband processing, control of network equipment, etc.
  • the DU 901 and the CU 902 can be physically set together or physically separated, that is, a distributed base station.
  • the CU 902 is the control center of the network equipment, which can also be called a processing unit, and is mainly used to complete the baseband processing function.
  • the CU 902 can be used to control the network device to perform the operation process of the network device in the above method embodiment.
  • the network device 90 may include one or more radio frequency units, one or more DUs, and one or more CUs.
  • the DU may include at least one processor 9013 and at least one memory 9014
  • the radio frequency unit may include at least one antenna 9011 and at least one radio frequency unit 9012
  • the CU may include at least one processor 9022 and at least one memory 9021.
  • the CU902 may be composed of one or more single boards. Multiple single boards may jointly support a wireless access network (such as a 5G network) with a single access indication, or may support wireless access networks of different access standards respectively. Access network (such as LTE network, 5G network or other networks).
  • the memory 9021 and processor 9022 can serve one or more single boards. In other words, the memory and processor can be set independently on each board. It is also possible for multiple boards to share the same memory and processor. In addition, necessary circuits can also be installed on each board.
  • the DU901 can be composed of one or more single boards.
  • Multiple single boards can jointly support a wireless access network with a single access indication (such as a 5G network), or can respectively support wireless access networks of different access standards (such as a 5G network).
  • a single access indication such as a 5G network
  • the memory 9014 and processor 9013 may serve one or more single boards. In other words, the memory and processor can be set independently on each board. It is also possible for multiple boards to share the same memory and processor. In addition, necessary circuits can also be installed on each board.
  • the network device shown in Figure 9 can implement various processes involving the network device in the above method embodiment.
  • the operations and/or functions of each module in the network device shown in Figure 9 are respectively intended to implement the corresponding processes in the above method embodiment.
  • system and “network” in the embodiments of this application may be used interchangeably.
  • “At least one” means one or more, and “plurality” means two or more.
  • “And/or” describes the relationship between associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist simultaneously, and B alone exists, where A, B can be singular or plural.
  • the character “/” generally indicates that the related objects are in an “or” relationship.
  • “At least one of the following” or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).
  • At least one of A, B, and C includes A, B, C, AB, AC, BC, or ABC.
  • the ordinal numbers such as “first” and “second” mentioned in the embodiments of this application are used to distinguish multiple objects and are not used to limit the order, timing, priority or importance of multiple objects. degree.
  • embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, optical storage, etc.) having computer-usable program code embodied therein.
  • a computer-usable storage media including, but not limited to, disk storage, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction means, the instructions
  • the device implements the functions specified in a process or processes of the flowchart and/or a block or blocks of the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operating steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby executing on the computer or other programmable device.
  • Instructions provide steps for implementing the functions specified in a process or processes of a flowchart diagram and/or a block or blocks of a block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及通信技术领域,公开了一种通信方法及装置。其中方法包括:终端设备接收来自第一网络设备的M个小区的配置信息,M个小区均为第一网络设备管理的小区;以及,终端设备接收来自第一网络设备的第一指示信息,第一指示信息用于指示终端设备选择第一目标小区;若终端设备根据M个小区的配置信息从M个小区选择出第一目标小区,则执行切换至第一目标小区的小区切换。如此,第一网络设备发送的第一指示信息可以无需携带第一目标小区的标识,而是由终端设备来选择第一目标小区(比如终端设备可以基于M个小区当前的层1/层2测量结果来选择第一目标小区),从而便于选择出合适的第一目标小区,提高小区切换的成功率。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2022年08月29日提交中国专利局、申请号为202211040725.4、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
由于终端设备具有移动性,即终端设备可能会从一个小区的覆盖范围移动到另一个小区的覆盖范围,因此,终端设备在移动过程中需要进行小区切换,以使得终端设备从一个小区切换至另一个小区,从而避免终端设备的业务连接(如语音通话连接、网络数据连接)发生明显中断。
在小区切换过程中,终端设备可以根据来自网络设备的测量配置信息,对服务小区和多个候选小区进行测量,得到服务小区和多个候选小区的小区质量后,向网络设备上报服务小区和多个候选小区的小区质量;相应地,网络设备在接收到服务小区和多个候选小区的小区质量后,可以根据多个候选小区的小区质量,从多个候选小区中选择一个目标小区,并指示终端设备从服务小区切换至目标小区。
然而,采用上述方法,需要由网络设备选择目标小区并指示终端设备执行切换。由于小区质量是动态变化的,而网络设备选择目标小区所依据的多个候选小区的质量,是终端设备在上报之前测量得到的,因此,网络设备选择的目标小区可能不是终端设备当前适合接入的小区,从而导致切换失败。
发明内容
本申请提供了一种通信方法及装置,用于实现由终端设备选择小区切换的目标小区,便于提高小区切换的成功率。
第一方面,本申请实施例提供一种通信方法,该方法可以应用于终端设备或者终端设备中的模块(如芯片),以该方法应用于终端设备为例,在该方法中,终端设备接收来自第一网络设备的第一消息,所述第一消息包括M个小区的配置信息,所述M个小区均为所述第一网络设备管理的小区;接收来自所述第一网络设备的第一指示信息,所述第一指示信息用于指示所述终端设备选择第一目标小区;若根据所述M个小区的配置信息从所述M个小区选择出所述第一目标小区,则执行切换至所述第一目标小区的小区切换;M为大于或等于2的整数。
如此,第一网络设备发送的第一指示信息可以无需携带第一目标小区的标识,而是由终端设备来选择第一目标小区(比如终端设备可以基于M个小区当前的层1/层2测量结果来选择第一目标小区),相比于由第一网络设备选择第一目标小区(比如第一网络设备基于终端设备之前测量并上报的M个小区的层3测量结果来选择第一目标小区)的方案来说,便于选择出合适的第一目标小区,提高小区切换的成功率。
在一种可能的设计中,所述第一指示信息承载于层1或层2消息。
如此,第一网络设备通过层1/层2消息向终端设备发送第一指示信息,相比于第一网络设备通过RRC消息向终端设备发送切换命令来说,可以有效降低切换时延。
在一种可能的设计中,所述方法还包括:若切换至所述第一目标小区的小区切换发生失败,则在第二小区上向第二网络设备发送RRC重建立请求消息,所述RRC重建立请求消息包括第一小区的标识和所述终端设备在所述第一小区的标识;其中,所述第一小区为接收所述第一消息的小区;或者,若接收所述第一消息的小区为辅小区,则所述第一小区为所述辅小区对应的主小区;或者,所述第一小区为所述小区切换的源小区。
如此,明确了RRC重建立请求消息中携带哪个小区的标识和终端设备在哪个小区的标识,便于实现终端设备的RRC重建立流程。
在一种可能的设计中,切换至所述第一目标小区的小区切换发生失败,包括:在第一定时器超时的情况下,切换至所述第一目标小区的小区切换发生失败;其中,所述第一定时器是在接收到所述第一消息或接收到所述第一指示信息的情况下启动或重启的。
比如,终端设备接收到第一指示信息后,若选择出第一目标小区但切换失败,则可以重新选择第一目标小区并执行小区切换。如此,通过设置第一定时器,在第一定时器超时后,终端设备可以确定小区切换发生失败,进而避免终端设备长时间循环上述操作(选择第一目标小区并执行小区切换)而导致功耗较大。
在一种可能的设计中,若所述第一定时器是在接收到所述第一消息的情况下启动或重启的,则接收来自所述第一网络设备的第一指示信息之前,还包括:接收来自所述第一网络设备的第二指示信息,所述第二指示信息用于指示所述终端设备选择第二目标小区;若根据所述M个小区的配置信息从所述M个小区选择出所述第二目标小区,则执行切换至所述第二目标小区的小区切换,并切换成功。
也就是说,在第一定时器运行期间,终端设备接收第一指示信息之前,可以成功执行一次或多次切换。因此,比如执行切换至第一目标小区的小区切换的源小区为小区a,则小区a可能不同于小区b或小区c;其中,小区b为接收第一消息的小区,或者,若接收第一消息的小区为辅小区,小区c为所述辅小区对应的主小区。
在一种可能的设计中,切换至所述第一目标小区的小区切换发生失败,包括:在第二定时器超时的情况下,根据所述M个小区的配置信息未从所述M个小区选择出所述第一目标小区,则切换至所述第一目标小区的小区切换发生失败;其中,所述第二定时器是在接收到所述第一指示信息的情况下启动或重启的。
如此,通过设置第二定时器,在第二定时器超时后,终端设备可以确定切换至第一目标小区的小区切换发生失败,进而避免终端设备长时间循环执行选择第一目标小区的操作而导致功耗较大。
在一种可能的设计中,切换至所述第一目标小区的小区切换发生失败,包括:在连续切换失败的次数大于或等于次数阈值的情况下,切换至所述第一目标小区的小区切换发生失败。
如此,通过设置次数阈值,在连续切换失败的次数大于或等于次数阈值的情况下,终端设备可以确定切换至第一目标小区的小区切换发生失败,进而避免终端设备长时间循环上述操作(选择第一目标小区并执行小区切换)而导致功耗较大。
在一种可能的设计中,所述方法还包括:接收来自所述第一网络设备的以下至少一项:所述第一定时器的时长;所述第二定时器的时长;所述次数阈值。
如此,通过第一网络设备为终端设备配置上述参数,可以实现第一网络设备对终端设备的灵活控制。
在一种可能的设计中,所述RRC重建立请求消息还包括所述小区切换发生失败的原因值;所述原因值用于指示未能选择出所述小区切换的目标小区;或者,所述原因值用于指示在选择出所述小区切换的目标小区后无法接入所述目标小区。
如此,通过RRC重建立请求消息携带小区切换发生失败的原因值,使得第二网络设备可以获知该原因,可选地,第二网络设备可以对小区切换发生失败的原因进行统计。
在一种可能的设计中,所述M个小区包括第一候选小区,所述第一候选小区的配置信息包括第一信息,所述第一信息用于确定是否选择所述第一候选小区作为所述第一目标小区。
如此,通过第一网络设备为终端设备配置第一信息,可以实现第一网络设备对终端设备选择第一目标小区进行灵活控制。
在一种可能的设计中,所述第一信息包括以下至少一项:第一无线链路质量阈值;第一波束质量阈值;所述第一候选小区的优先级信息。
在一种可能的设计中,所述方法还包括:向所述第一网络设备发送第三指示信息,所述第三指示信息指示第三小区的无线链路质量小于或等于第二无线链路质量阈值和/或所述第三小区的至少一个波束的质量小于或等于第二波束质量阈值;其中,所述第三小区为所述小区切换的源小区;其中,所述第三小区的无线链路质量是根据所述至少一个波束的质量得到的。
如此,终端设备可以通过向第一网络设备发送第三指示信息,来请求第一网络设备允许第一终端设备执行小区切换;也就是说,可以由终端设备来触发小区切换。
在一种可能的设计中,所述第三小区属于所述M个小区,所述第三小区的配置信息包括所述至少一个波束的测量配置信息;所述方法还包括:根据所述至少一个波束的测量配置信息,测量得到所述至少一个波束的质量。
如此,通过网络设备为终端设备配置至少一个波束的测量配置信息,进而终端设备可以对至少一个波束的质量进行测量。
第二方面,本申请实施例提供一种通信方法,该方法可以应用于第一网络设备或者第一网络设备中的模块(如芯片),该方法还可以应用于能够实现全部或部分第一网络设备功能的逻辑模块或软件。以该方法应用于第一网络设备为例,在该方法中,第一网络设备向终端设备发送第一消息,所述第一消息包括M个小区的配置信息,所述M个小区均为所述第一网络设备管理的小区;向所述终端设备发送第一指示信息,所述第一指示信息用于指示选择第一目标小区,并执行切换至所述第一目标小区的小区切换;其中,所述M个小区的配置信息用于从所述M个小区中选择所述第一目标小区。
在一种可能的设计中,所述M个小区包括第一候选小区,所述第一候选小区的配置信息包括第一信息,所述第一信息用于确定是否选择所述第一候选小区作为所述第一目标小区。
在一种可能的设计中,所述第一信息包括以下至少一项:第一无线链路质量阈值;第一波束质量阈值;所述第一候选小区的优先级信息。
在一种可能的设计中,所述方法还包括:接收来自所述终端设备的第三指示信息,所述第三指示信息指示第三小区的无线链路质量小于或等于第二无线链路质量阈值和/或所述第三小区的至少一个波束的质量小于或等于第二波束质量阈值;其中,所述第三小区为所述小区切换的源小区;其中,所述第三小区的无线链路质量是根据所述至少一个波束的质量得到的。
在一种可能的设计中,所述第三小区属于所述M个小区,所述第三小区的配置信息包括所述至少一个波束的测量配置信息。
第三方面,本申请实施例提供一种通信方法,该方法可以应用于第二网络设备或者第二网络设备中的模块(如芯片),该方法还可以应用于能够实现全部或部分第二网络设备功能的逻辑模块或软件。以该方法应用于第二网络设备为例,在该方法中,第二网络设备接收来自终端设备的RRC重建立请求消息,所述RRC重建立请求消息包括所述第一小区的标识和所述终端设备在所述第一小区的标识;根据所述第一小区的标识和所述终端设备在所述第一小区的标识,获取所述终端设备的上下文信息;向所述终端设备发送RRC重建立响应消息,所述RRC重建立响应消息用于指示RRC重建立完成;其中,所述第一小区为接收所述第一消息的小区;或者,若接收所述第一消息的小区为辅小区,则所述第一小区为所述辅小区对应的主小区;或者,所述第一小区为所述小区切换的源小区。
在一种可能的设计中,所述RRC重建立请求消息还包括小区切换发生失败的原因值;所述原因值用于指示未能选择出所述小区切换的目标小区;或者,所述原因值用于指示在选择出所述小区切换的目标小区后无法接入所述目标小区。
可以理解的是,上述第二方面和第三方面所请求保护的方法与第一方面所请求保护的方法相对应,因此,第二方面和第三方面中相关技术特征的有益效果可以参照第一方面中的描述,不再赘述。
第四方面,本申请提供一种通信装置,所述通信装置具备实现上述第一方面至第三方面涉及的功能,比如,所述通信装置包括执行上述第一方面至第三方面涉及操作所对应的模块或单元或手段,所述功能或单元或手段可以通过软件实现,或者通过硬件实现,也可以通过硬件执行相应的软件实现。
在一种可能的设计中,所述通信装置包括处理单元、通信单元,其中,通信单元可以用于收发信号,以实现该通信装置和其它装置之间的通信;处理单元可以用于执行该通信装置的一些内部操作。处理单元、通信单元执行的功能可以和上述第一方面至第三方面涉及的操作相对应。
在一种可能的设计中,所述通信装置包括处理器,处理器可以用于与存储器耦合。所述存储器可以保存实现上述第一方面至第三方面涉及的功能的必要计算机程序或指令。所述处理器可执行所述存储器存储的计算机程序或指令,当所述计算机程序或指令被执行时,使得所述通信装置实现上述第一方面至第三方面任意可能的设计或实现方式中的方法。
在一种可能的设计中,所述通信装置包括处理器和存储器,存储器可以保存实现上述第一方面至第三方面涉及的功能的必要计算机程序或指令。所述处理器可执行所述存储器存储的计算机程序或指令,当所述计算机程序或指令被执行时,使得所述通信装置实现上述第一方面至第三方面任意可能的设计或实现方式中的方法。
在一种可能的设计中,所述通信装置包括处理器和接口电路,其中,处理器用于通过所述接口电路与其它装置通信,并执行上述第一方面至第三方面任意可能的设计或实现方式中的方法。
可以理解地,上述第四方面中,处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现。此外,以上处理器可以为一个或多个,存储器可以为一个或 多个。存储器可以与处理器集成在一起,或者存储器与处理器分离设置。在具体实现过程中,存储器可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
第五方面,本申请提供一种通信系统,该通信系统可以包括终端设备和第一网络设备,终端设备用于执行上述第一方面任一种可能的设计中所述的方法,第一网络设备用于执行上述第二方面任一种可能的设计中所述的方法。在一种可能的设计中,该通信系统还包括第二网络设备,第二网络设备用于执行上述第三方面任一种可能的设计中所述的方法。
第六方面,本申请提供一种计算机可读存储介质,所述计算机存储介质中存储有计算机可读指令,当计算机读取并执行所述计算机可读指令时,使得计算机执行上述第一方面至第三方面的任一种可能的设计中的方法。
第七方面,本申请提供一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得计算机执行上述第一方面至第三方面的任一种可能的设计中的方法。
第八方面,本申请提供一种芯片,所述芯片包括处理器,所述处理器与存储器耦合,用于读取并执行所述存储器中存储的软件程序,以实现上述第一方面至第三方面的任一种可能的设计中的方法。
附图说明
图1为本申请实施例适用的一种通信系统示意图;
图2A为本申请实施例提供的一种CU-DU分离架构的示意图;
图2B为本申请实施例提供的又一种CU-DU分离架构的示意图;
图3为本申请实施例提供的终端设备执行小区切换的流程示意图;
图4为本申请实施例一提供的通信方法所对应的流程示意图;
图5为本申请实施例提供的第一定时器的启动和超时示意图;
图6为本申请实施例二提供的通信方法所对应的流程示意图;
图7为本申请实施例中所涉及的装置的可能的示例性框图;
图8为本申请实施例提供的一种终端设备的结构示意图;
图9为本申请实施例提供的一种网络设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
图1为本申请实施例适用的一种通信系统示意图。如图1所示,通信系统10包括一个或多个网络设备20,以及一个或多个终端设备30。其中,网络设备与终端设备之间的接口可以为Uu接口(或称为空口),网络设备20与终端设备30之间可以通过空口资源进行数据传输。示例性地,终端设备可以位于网络设备的一个或多个小区的通信覆盖范围内,为终端设备提供服务的小区可以为一个或多个,当为终端设备提供服务的小区有多个时,终端设备可以按照载波聚合(carrier aggregation,CA)、双连接(dual connectivity,DC)、协作多点(coordinated multipoint,CoMP)传输、多传输接收点(multiple transmission and reception point,mTRP)等传输技术中的一种或多种工作。
(1)终端设备
终端设备又称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是指向用户提供语音和/或数据连通性的设备。例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
(2)网络设备
网络设备可以包括接入网设备,接入网设备是指将终端接入到无线网络的无线接入网(radio access network,RAN)节点(或设备),又可以称为基站。目前,一些网络设备的举例为:节点B(Node B, NB)、继续演进的节点B(gNB)、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP)等。
(3)终端设备与网络设备之间的通信
终端设备与网络设备之间的通信遵循一定的协议层结构,例如控制面协议层结构可以包括无线资源控制(radio resource control,RRC)层、分组数据汇聚层协议(packet data convergence protocol,PDCP)层、无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理层(physical layer,PHY);用户面协议层结构可以包括PDCP层、RLC层、MAC层和物理层,在一种可能的实现中,PDCP层之上还可以包括业务数据适配(service data adaptation protocol,SDAP)层。其中,SDAP层、PDCP层、RLC层、MAC层、物理层也可以统称为接入层。有关上述各个协议层的具体描述,可以参考第三代合作伙伴计划(3rd generation partnership project,3GPP)的相关技术规范。
(4)CU-DU分离架构
示例性地,在一些可能的网络结构中,网络设备可以包括一个或多个集中单元(centralized unit,CU)和一个或多个分布单元(distributed unit,DU),多个DU可以由一个CU集中控制,该种架构可以称为CU-DU分离架构。作为示例,CU和DU之间的接口可以称为F1接口,其中,控制面(control panel,CP)接口可以为F1-C接口,用户面(user panel,UP)接口可以为F1-U接口。
CU和DU的处理功能可以根据无线网络的协议层划分:比如图2A所示,PDCP层及以上协议层的功能设置在CU,PDCP层以下协议层(例如RLC层和MAC层等)的功能设置在DU。可以理解的,上述对CU和DU的处理功能按照协议层的划分仅仅是一种举例,也可以按照其他的方式进行划分,比如RLC层以上协议层的功能设置在CU,RLC层及以下协议层的功能设置在DU,又比如可以将CU或者DU划分为具有更多协议层的功能,又比如CU或DU还可以划分为具有协议层的部分处理功能。本申请实施例对此并不进行限定。
进一步地,CU的功能可以由一个实体来实现,或者也可以由不同的实体来实现。例如,可以对CU的功能进行进一步切分,即将控制面和用户面分离并通过不同实体来实现,分别为控制面CU实体(即CU-CP实体)和用户面CU实体(即CU-UP实体),CU-CP实体和CU-UP实体可以与DU相耦合,共同完成RAN设备的功能。CU-CP实体与CU-UP实体之间的接口可以为E1接口,CU-CP实体与DU之间的接口可以为F1-C接口,CU-UP实体与DU之间的接口可以为F1-U接口。其中,一个DU和一个CU-UP可以连接到一个CU-CP。在同一个CU-CP控制下,一个DU可以连接到多个CU-UP,一个CU-UP可以连接到多个DU,在多个CU-CP协作下,一个CU-UP也可以连接到协作的多个CU-CP,从而提升CU-CP的弹性。图2B为一种空口协议栈分布示意图。如图2B所示,针对用户面和控制面来说,空口协议栈都可以是RLC、MAC、PHY在DU,PDCP及以上协议层在CU。
需要说明的是:在上述图2A和图2B所示意的架构中,CU产生的信令可以通过DU发送给终端设备,或者终端设备产生的信令可以通过DU发送给CU。DU可以不对该信令进行解析而直接通过协议层封装后透传给终端设备或CU。以下实施例中如果涉及这种信令在DU和终端设备之间的传输,此时,DU对信令的发送或接收包括这种场景。例如,RRC或PDCP层的信令最终会处理为物理层的数据发送给终端设备,或者,由接收到的物理层的数据转变而来。在这种架构下,该RRC层或PDCP层的信令,即也可以认为是由DU发送的,或者,由DU和射频装置发送的。
可以理解的是,本申请实施例对通信系统中所包括的网络设备的数量、终端设备的数量不作限定,而且上述通信系统中除了包括网络设备和终端设备以外,还可以包括其它设备或网元,如核心网设备、中继设备等,对此本申请实施例也不作限定。
上述图1所示意的通信系统可以支持各种无线接入技术(radio access technology,RAT),例如图1所示意的通信系统可以为第四代(4th generation,4G)通信系统(也可以称为长期演进(long term evolution,LTE)通信系统),第五代(5th generation,5G)通信系统(也可以称为新无线(new radio,NR)通信系统),无线保真(wireless fidelity,Wi-Fi)系统,或者是面向未来的演进系统。本申请实施例描述的通信系统以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着通信系统的演变和新业务 场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
下面先对本申请实施例所涉及的相关技术特征进行解释说明。需要说明的是,这些解释是为了让本申请实施例更容易被理解,而不应该视为对本申请所要求的保护范围的限定。
(1)波束的质量
网络设备在小区的多个波束方向发送参考信号,参考信号可以是同步信号/物理广播信道块(synchronization signal/physical broadcast channel block,SSB)、信道状态信息参考信号(channel state information reference signal,CSI-RS)、或者信道探测参考信号(sounding reference signal,SRS),也可以是其它可能的参考信号,具体不做限定。相应地,终端设备根据网络设备指示的时频资源上的参考信号进行测量,例如终端设备可以通过采样获取一段时间内多个瞬间的参考信号对应波束的信号强度,对获取的多个信号强度进行加权或者合并,进而得到该波束的测量结果,波束的测量结果也可以称为波束的质量(beam quality)。
(2)无线链路质量
示例性地,小区的无线链路质量可以是根据小区的至少一个波束的质量得到的,且小区的无线链路质量未经过平滑处理。比如,终端设备对小区进行波束级测量,得到小区的N1个波束的质量,则终端设备可以将N1个波束中至少一个波束的质量的平均值作为小区的无线链路质量,或者终端设备也可以将N1个波束中测量结果较好的N2个波束的质量的平均值作为小区的无线链路质量。其中,N1、N2为正整数,且N2小于N1。
(3)小区的质量
示例性地,小区的质量可以是根据小区的至少一个波束的质量得到的,且小区的质量经过平滑处理。比如,终端设备对小区进行波束级测量,得到小区的多个波束的质量后,可以对多个波束的质量进行平均得到当前测量值,将当前测量值和上一次得到的小区的质量进行加权(即平滑处理)得到小区的质量,小区的质量也可以称为小区的测量结果。
可以理解的是,上述波束的质量和无线链路质量均为层1/层2测量结果,小区的质量为层3测量结果。其中,层1可以是指物理层,层2可以是指MAC层,层3可以是指RRC层。
在图1所示意的网络架构中,终端设备可以在同一网络设备的不同小区之间执行小区切换,或者也可以在不同网络设备的不同小区之间执行切换。其中,当终端设备在不同网络设备的不同小区之间执行切换时,切换前的网络设备为源网络设备,切换前的小区为源小区,切换后的网络设备为目标网络设备,切换后的小区为目标小区。下面以终端设备在不同网络设备的不同小区之间执行切换为例,结合图3描述一种可能的小区切换流程。
图3为终端设备执行小区切换的流程示意图,如图3所示,该流程可以包括:
S301,源网络设备向终端设备发送RRC重配置(RRC reconfiguration)消息1;相应地,终端设备接收RRC重配置消息1。
此处,RRC重配置消息1中可以包括测量配置信息,测量配置信息可以包括源小区(即当前服务小区)的测量指示信息、候选小区的测量指示信息,以及测量事件上报条件的指示信息。其中,候选小区可以为源小区的邻小区,因此候选小区也可以称为邻小区。
示例性地,源小区的测量指示信息可以包括源小区(比如源小区为小区0)的中心频点。候选小区的测量指示信息可以包括候选小区(比如候选小区包括小区1、小区2和小区3)的中心频点。测量事件比如可以包括A3事件(Event A3),A3事件的定义为:邻小区(即候选小区)优于服务小区一定的偏置量。测量事件还可以包括其它可能的事件,具体不做限定。
S302,终端设备根据源小区的测量指示信息以及候选小区的测量指示信息,对源小区和候选小区进行测量,并在源小区的质量和候选小区的质量满足测量事件(比如A3事件)上报条件后,向源网络设备发送测量报告;相应地,源网络设备接收测量报告。
示例性地,测量报告可以包括源小区的质量以及多个候选小区的质量。
S303,源网络设备根据测量报告,确定触发终端设备进行小区切换,并向目标网络设备发送切换请求(handover request)消息;相应地,目标网络设备接收切换请求消息。
此处,源网络设备可以根据多个候选小区的质量,从多个候选小区中选择目标小区,目标网络设备 为目标小区所属的网络设备。
S304,目标网络设备接收到切换请求消息后,若确定允许终端设备接入目标小区,则向源网络设备发送切换确认(handover request Acknowledge)消息;相应地,源网络设备接收切换确认消息。
示例性地,目标网络设备可以根据目标小区已连接的终端设备的数量等,决定是否允许终端设备接入目标小区。切换确认消息中可以包括目标小区的配置信息,目标小区的配置信息可以包括目标小区的标识(比如目标小区的物理小区标识(physical cell identifier,PCI))、终端设备接入目标小区所需的配置信息,还可以包括其它可能的信息,具体不做限定。
其中,终端设备接入目标小区所需的配置信息可以包括终端设备在目标小区上的标识,比如小区无线网络临时标识(cell radio network temporary identifier,C-RNTI),可选地,还可以包括终端设备接入目标小区所使用的随机接入资源信息等。
S305,源网络设备向终端设备发送RRC重配置消息2,RRC重配置消息2包括切换命令,切换命令用于指示终端设备从源小区切换至目标小区。
示例性地,RRC重配置消息2还可以包括切换确认消息中包含的内容,也就是说,源网络设备可以将切换确认消息中包含的内容透传给终端设备。
S306,终端设备根据切换命令在目标小区上发起随机接入。
可以理解的是,上述是以终端设备在不同网络设备的不同小区之间执行切换为例,当终端设备在同一网络设备的不同小区之间执行切换时(即源网络设备和目标网络设备为同一网络设备,可以不再执行源网络设备与目标网络设备之间的通信),可以参照上述流程来处理。
在上述图3的小区切换流程中,终端设备向源网络设备上报测量报告后,源网络设备根据多个候选小区的质量,从多个候选小区中选择目标小区,并向终端设备发送切换命令,以指示终端设备切换至目标小区。然而,由于源网络设备选择目标小区所依据的多个候选小区的质量,是终端设备在上报测量报告之前测量得到的,因此,可能会导致源网络设备选择的目标小区不是终端设备当前适合接入的小区,从而导致切换失败。比如,多个候选小区中小区1的质量最好,源网络设备选择小区1作为目标小区,但小区的质量是动态变化的,由于多个候选小区的质量是终端设备在上报测量报告之前测量得到的,若终端设备在上报测量报告之后,小区1的质量明显下降,若此时终端设备接收到切换命令,并根据切换命令执行切换至小区1的小区切换,则可能会由于小区1的质量变差而导致切换失败。
基于此,本申请实施例提供一种通信方法,用于提高小区切换的成功率。
实施例一
图4为本申请实施例一提供的通信方法所对应的流程示意图,如图4所示,该方法包括:
S401,第一网络设备向终端设备发送M个小区的配置信息;相应地,终端设备接收M个小区的配置信息。
此处,为终端设备提供服务的小区(即终端设备的服务小区)可以为一个或多个;比如,终端设备的服务小区为多个,多个服务小区均为第一网络设备管理的小区,则多个服务小区中可以包括一个主小区和一个或多个辅小区。
在一个示例中,第一网络设备可以在终端设备的某一个服务小区(称为服务小区1)上向终端设备发送第一消息,第一消息包括M个小区的配置信息;其中,第一消息可以为RRC消息,比如RRC重配置消息。若终端设备的服务小区有多个,则服务小区1可以为多个服务小区中的某一个服务小区,比如服务小区1可以为主小区或辅小区。可以理解的是,第一网络设备可以通过一条消息(比如第一消息)向终端设备发送M个小区的配置信息,或者第一网络设备也可以通过多条消息向终端设备发送M个小区的配置信息,具体不做限定。
下面分别对M个小区和M个小区的配置信息进行描述。
(1)M个小区
示例性地,第一消息可以包括N个小区的配置信息,当终端设备的服务小区为多个时,N个小区可以包括终端设备的主小区和多个邻小区。从小区切换的角度来看,N个小区包括终端设备当前的源小区(比如下文中切换至第一目标小区的小区切换的源小区,或切换至第二目标小区的小区切换的源小区)和多个候选小区;举个例子,终端设备当前的源小区为主小区,则多个候选小区即为多个邻小区。其中,N个小区包括M个小区,比如M个小区可以为多个候选小区,即M小于N,M为大于或等于2的整 数,N为大于或等于3的整数;或者,M个小区即为N个小区,即M=N。
本申请实施例中将以M=N为例进行描述。终端设备可以在M个小区之间进行小区切换,下文中“从M个小区中选择目标小区”可以理解为:从M个小区所包括的多个候选小区中选择目标小区。举个例子,M个小区包括小区1、小区2、小区3……小区m,当终端设备当前的源小区为小区1时,多个候选小区可以包括小区2、小区3……小区m;当终端设备当前的源小区为小区2时,多个候选小区可以包括小区1、小区3……小区m。其中,M个小区可以均为第一网络设备管理的小区,或者说M个小区属于第一网络设备;比如M个小区可以属于第一网络设备的一个或多个DU。
(2)M个小区的配置信息
下面以M个小区中的一个小区(比如第一候选小区)为例,对第一候选小区的配置信息进行介绍。
示例性地,第一候选小区的配置信息可以包括以下至少一项:①第一信息,第一信息用于确定是否选择第一候选小区作为第一目标小区;②终端设备接入第一候选小区所需的配置信息,也可以称为第一候选小区的层1/层2移动性配置(L1/2mobility configuration);③第一候选小区的相关信息。
(2.1)第一信息
示例性地,第一信息可以包括以下至少一项:第一无线链路质量阈值;第一波束质量阈值;第一候选小区的优先级信息。若第一信息包括第一无线链路质量阈值,则当第一候选小区的无线链路质量大于或等于第一无线链路质量阈值时,终端设备可以选择第一候选小区作为第一目标小区。若第一信息包括第一波束质量阈值,则当第一候选小区的至少一个波束的波束质量大于或等于第一波束质量阈值时,终端设备可以选择第一候选小区作为第一目标小区。第一候选小区的优先级信息用于指示第一候选小区的优先级。示例性地,第一候选小区的优先级信息可以包括第一候选小区的优先级等级标识,优先级等级比如为高优先级、中优先级或低优先级。
作为一种可能的实现,以M个小区包括第一候选小区和第二候选小区为例,第一候选小区的配置信息包括第一候选小区对应的第一信息1,第二候选小区的配置信息包括第二候选小区对应的第一信息2。比如,第一信息1包括第一无线链路质量阈值1和第一候选小区的优先级信息,当第一候选小区的无线链路质量大于或等于第一无线链路质量阈值1时,终端设备可以选择第二候选小区作为小区切换的目标小区;第一信息2包括第一无线链路质量阈值2和第二候选小区的优先级信息,当第二候选小区的无线链路质量大于或等于第一无线链路质量阈值2时,终端设备可以选择第二候选小区作为小区切换的目标小区。若第一候选小区的无线链路质量大于或等于第一无线链路质量阈值1,且第二候选小区的无线链路质量大于或等于第一无线链路质量阈值2,则终端设备可以根据第一候选小区的优先级和第二候选小区的优先级,选择优先级高的候选小区作为小区切换的目标小区。此种情形下,M个小区中不同候选小区对应的第一无线链路质量阈值可以不同,具体不做限定。
可以理解的是,在其它可能的实现中,M个小区中不同候选小区对应的第一无线链路质量阈值(或第一波束质量阈值)可以相同,此种情形下,M个小区共享同一个第一无线链路质量阈值(或第一波束质量阈值)。
此外,若第一信息不包括第一候选小区的优先级信息,则终端设备可以根据候选小区的配置信息是否包括随机接入资源信息(参见下文的描述),来确定候选小区的优先级;比如,若第一候选小区的配置信息包括随机接入资源信息,第二候选小区的配置信息不包括随机接入资源信息,则第一候选小区的优先级大于第二候选小区。或者,终端设备也可以根据候选小区是否为终端设备的服务小区(比如辅小区),来确定候选小区的优先级;若第一候选小区为终端设备的辅小区,第二候选小区不是终端设备的辅小区,则第一候选小区的优先级大于第二候选小区。
(2.2)终端设备接入第一候选小区所需的配置信息
终端设备接入第一候选小区所需的配置信息可以包括终端设备在第一候选小区的标识,比如小区无线网络临时标识(cell-radio network temporary identifier,C-RNTI);可选地,还可以包括终端设备在第一候选小区上发起随机接入所使用的随机接入资源信息。其中,随机接入资源信息可以包括随机接入前导码,和/或,用于承载随机接入前导码的时频资源。此外,终端设备接入第一候选小区所需的配置信息还可以包括其它可能的信息,比如终端设备在第一候选小区的物理层信道配置信息,具体不做限定。其中,物理层信道例如包括:物理下行控制信道(physical downlink control channel,PDCCH)、物理下行数据信道(physical downlink shared channel,PDSCH)、物理上行控制信道(physical uplink control channel,PUCCH),物理上行数据信道(physical uplink shared channel,PUSCH)。
(2.3)第一候选小区的相关信息
第一候选小区的相关信息可以包括以下至少一项:第一候选小区的物理小区标识(physical cell identity,PCI),第一候选小区的至少一个波束的测量配置信息。其中,第一候选小区的至少一个波束的测量配置信息用于终端设备对至少一个波束的波束质量进行测量。比如,至少一个波束的测量配置信息可以包括至少一个参考信号的时频资源信息,至少一个参考信号与至少一个波束一一对应。可选地,第一候选小区的相关信息还可以包括其它可能的信息。
可以理解的是,第一候选小区的配置信息还可以包括其它可能的信息,具体不做限定。此外,M个小区中除第一候选小区以外的其它小区的配置信息可以参照第一候选小区的配置信息,不再赘述。
S402,第一网络设备向终端设备发送第一指示信息,第一指示信息用于指示所述终端设备选择第一目标小区;相应地,终端设备接收第一指示信息。
此处,第一指示信息不包括第一目标小区的标识,也就是说,第一网络设备是通过第一指示信息指示终端设备选择第一目标小区,而具体选择哪一个小区作为第一目标小区,可以由终端设备确定。可以理解的是,第一指示信息用于指示所述终端设备选择第一目标小区,也可以理解为:第一指示信息用于指示终端设备执行小区切换,且第一指示信息不包括小区切换的目标小区。
第一网络设备向终端设备发送第一指示信息的方式可以有多种,比如第一网络设备向终端设备发送层1/层2消息,层1/层2消息中包括第一指示信息。在一个示例中,第一指示信息可以为PDCCH命令(order)。如此,由于第一网络设备通过层1/层2消息来发送第一指示信息,相比于图3中网络设备通过层3消息发送切换命令来说,可以有效降低切换时延。
示例性地,触发第一网络设备向终端设备发送第一指示信息的情形可以有多种。比如,在S402之前,终端设备可以向第一网络设备发送第三指示信息,第三指示信息指示第三小区的无线链路质量小于或等于第二无线链路质量阈值和/或第三小区的至少一个波束的波束质量小于或等于第二波束质量阈值;相应地,第一网络设备接收到第三指示信息后,可以向终端设备发送第一指示信息。其中,第三小区为终端设备在S403中执行小区切换的源小区。作为一种可能的实现,终端设备可以在第三小区上向第一网络设备发送第三指示信息,和/或,第一网络设备可以在第三小区上向终端设备发送第一指示信息。
终端设备向第一网络设备发送第三指示信息的方式可以有多种,比如终端设备可以向第一网络设备发送层1/层2消息,层1/层2消息包括第三指示信息。如此,由于终端设备通过层1/层2消息发送第三指示信息,相比于图3中终端设备通过层3消息上报测量报告方式来说,可以有效降低切换时延。
S403,若终端设备根据M个小区的配置信息从M个小区选择出第一目标小区,则执行切换至第一目标小区的小区切换。
示例性地,终端设备可以根据M个小区的配置信息所包括的第一信息,尝试从M个小区中选择第一目标小区,具体参见上文有关第一信息的描述。若终端设备从M个小区选择出第一目标小区,则可以根据终端设备接入第一目标小区所需的配置信息(比如终端设备在第一目标小区的标识、随机接入资源信息等)在第一目标小区上发起随机接入,以接入或者说切换至第一目标小区。
其中,终端设备在第一目标小区(此处以第一目标小区为例,下文中的第二目标小区可以参照处理)上发起的随机接入可以为四步随机接入或者两步随机接入。以四步随机接入为例,四步随机接入的消息3中可以包括终端设备在第一目标小区上的标识。
可选地,上述方法还包括S404,或者上述方法还包括S405至S407。
S404,终端设备成功切换至第一目标小区,并在第一目标小区上向第一网络设备发送切换完成信息,切换完成信息用于指示终端设备成功切换至第一目标小区。
S405,终端设备确定切换至第一目标小区的小区切换发生失败。
示例性地,终端设备确定切换至第一目标小区的小区切换发生失败的情形可以有多种,下面结合情形1至情形4描述几种可能的情形。
(1)情形1
在第一定时器超时的情况下,终端设备确定切换至第一目标小区的小区切换发生失败。其中,第一定时器是在接收到第一消息的情况下启动或重启的。比如,终端设备接收到第一消息后,可以启动或重启第一定时器。第一定时器的启动时间可以与第一消息的接收时间相同,或者第一定时器的启动时间与第一消息的接收时间之间的时间间隔为预设时间间隔。
在第一定时器运行期间,终端设备接收到第一指示信息后,若选择出第一目标小区,正在执行(或 尚未执行或准备执行)切换至第一目标小区的小区切换时,第一定时器超时,则终端设备可以确定切换至第一目标小区的小区切换发生失败,并停止执行切换至第一目标小区的小区切换。或者,在第一定时器运行期间,终端设备接收到第一指示信息后,尚未选择出第一目标小区,第一定时器超时,则终端设备可以确定切换至第一目标小区的小区切换发生失败,并停止执行切换至第一目标小区的小区切换。
可选地,在第一定时器运行期间,终端设备接收第一指示信息之前,可以成功执行一次或多次切换。比如,终端设备接收第一指示信息之前,终端设备可以接收来自第一网络设备的第二指示信息,第二指示信息指示终端设备选择第二目标小区,进而终端设备可以根据M个小区的配置信息从M个小区选择出第二目标小区,执行切换至第二目标小区的小区切换,并切换成功。
下面结合图5举例说明,假设第一网络设备在小区1上向终端设备发送M个小区的配置信息,M个小区包括小区1、小区2……小区m。参见图5所示,终端设备在小区1上接收到第一消息后,启动第一定时器。在第一定时器运行期间,终端设备在小区1上接收到来自第一网络设备的第二指示信息,并尝试从M个小区中选择第二目标小区,以执行切换至第二目标小区的小区切换,该小区切换的源小区(即终端设备当前的源小区)为小区1。其中,终端设备确定是否选择某一候选小区作为第二目标小区的实现可以参照上文的描述。
具体来说,以M个小区适用同一个第一无线链路质量阈值(或第一波束质量阈值)为例,若M个小区中小区2的无线链路质量大于或等于第一无线链路质量阈值,而其它候选小区的无线链路质量均小于第一无线链路质量阈值,则终端设备可以选择小区2作为第二目标小区。终端设备选择出小区2后,可以在小区2上发起随机接入,以便从小区1切换至小区2。若终端设备在小区2上随机接入失败,则终端设备可以再次尝试从M个小区中选择第二目标小区,比如终端设备选择出小区3,进而在小区3上发起随机接入,以便从小区1切换至小区3。若终端设备在小区3上随机接入成功,则终端设备从小区1成功切换至小区3。
进一步地,终端设备接收到来自第一网络设备的第一指示信息,并尝试从M个小区中选择第一目标小区,以执行切换至第一目标小区的小区切换,该小区切换的源小区(即终端设备当前的源小区)为小区3。比如,终端设备选择小区4作为目标小区,若终端设备在小区4上随机接入失败,则终端设备可以再次尝试从M个小区中选择一个目标小区。比如,终端设备选择小区5作为目标小区,若终端设备在小区5上随机接入失败,则终端设备可以再次尝试从M个小区中选择一个目标小区,以此类推,在第一定时器超时的情况下,终端设备可以确定切换至第一目标小区的小区切换发生失败,并停止执行切换至第一目标小区的小区切换。
上述情形1中,第一定时器的时长可以是由第一网络设备为终端设备配置的,比如第一消息包括第一定时器的时长。根据上文描述可知,在第一定时器运行期间,终端设备可以成功执行一次或多次小区切换,因此,可选地,当第一网络设备包括CU和一个或多个DU时,第一定时器的时长可以是由CU确定的。或者,第一定时器的时长也可以是协议预先定义的。本申请实施例对此不做限定。
(2)情形2
在第一定时器超时的情况下,终端设备确定切换至第一目标小区的小区切换发生失败。其中,第一定时器是在接收到第一指示信息的情况下启动或重启的。比如,终端设备接收到第一指示信息后,可以启动或重启第一定时器。第一定时器的启动时间可以与第一指示信息的接收时间相同,或者第一定时器的启动时间与第一指示信息的接收时间之间的时间间隔为预设时间间隔。
在第一定时器运行期间,终端设备接收到来自第一网络设备的第一指示信息,并尝试从M个小区中选择第一目标小区。假设M个小区包括小区1、小区2……小区m,终端设备当前的源小区为小区3。比如,终端设备选择小区1作为目标小区,并在小区1上发起随机接入。若终端设备在小区1上随机接入失败,则终端设备可以再次尝试从M个小区中选择一个目标小区,以此类推,在第一定时器超时的情况下,终端设备可以确定切换至第一目标小区的小区切换发生失败,并停止执行切换至第一目标小区的小区切换。
上述情形2中,第一定时器的时长可以是由第一网络设备为终端设备配置的。根据上文描述可知,终端设备是在接收到第一指示信息后启动或重启第一定时器,在第一定时器运行期间,终端设备只能成功执行一次小区切换(即从当前的源小区切换至目标小区),因此,第一定时器的时长可以与当前的源小区具有对应关系。比如,M个小区中每个小区的配置信息可以包括第一定时器的时长,M个小区中不同小区对应的第一定时器的时长可以相同或者不同。此种情形下,可选地,当第一网络设备包括CU 和一个或多个DU时,第一定时器的时长可以是由DU确定的。此外,当M个小区中不同小区对应的第一定时器的时长相同时,M个小区也可以共享同一个第一定时器的时长。或者,第一定时器的时长也可以是协议预先定义的。本申请实施例对此不做限定。
(3)情形3
在第二定时器超时的情况下,终端设备根据M个小区的配置信息未从所述M个小区选择出第一目标小区,则确定切换至第一目标小区的小区切换发生失败。其中,第二定时器是在接收到第一指示信息的情况下启动或重启的。比如,终端设备接收到第一指示信息后,可以启动或重启第二定时器,第二定时器的启动时间可以与第一指示信息的接收时间相同,或者第二定时器的启动时间与第一指示信息的接收时间之间的时间间隔为预设时间间隔。
在第二定时器运行期间,终端设备始终未能选择出目标小区。比如,在第二定时器运行期间,M个小区所包括的多个候选小区的无线链路质量始终小于第一无线链路质量阈值,则终端设备可以确定切换至第一目标小区的小区切换发生失败,并停止执行切换至第一目标小区的小区切换。
上述情形3中,第二定时器的时长可以是由第一网络设备为终端设备配置的,或者,第二定时器的时长也可以是协议预先定义的。具体可以参照上述情形2中第一定时器的时长的描述。
(4)情形4
终端设备执行小区切换时,连续切换失败的次数大于或等于次数阈值,则确定切换至第一目标小区的小区切换发生失败。
作为一种可能的实现,终端设备接收到第一指示信息后,可以启动计数器,计数器的初始值为0,并尝试从M个小区中选择第一目标小区。假设M个小区包括小区1、小区2、小区3……小区m,终端设备当前的源小区为小区3。比如,终端设备选择小区1作为第一目标小区,则可以在小区1上发起随机接入。若终端设备在小区1上随机接入成功,则终端设备从小区3成功切换至小区1,并关闭计数器。若终端设备在小区1上随机接入失败,则终端设备将计数器的值加1,并再次尝试从M个小区中选择第一目标小区。若终端设备选择小区2作为第一目标小区,则可以在小区2上发起随机接入。若终端设备在小区2上随机接入失败,则终端设备将计数器的值加1,并再次尝试从M个小区中选择第一目标小区,以此类推,若计数器的值大于或等于次数阈值,则终端设备可以确定切换至第一目标小区的小区切换发生失败,并停止执行切换至第一目标小区的小区切换。
上述情形4中,次数阈值可以是由第一网络设备为终端设备配置的,比如第一消息可以包括次数阈值;或者,次数阈值也可以是协议预先定义的。本申请实施例对此不做限定。
S406,终端设备在第二小区上向第二网络设备发送RRC重建立请求消息。
示例性地,终端设备确定切换至第一目标小区的小区切换发生失败后,可以执行小区选择过程,并通过小区选择过程选择一个满足小区选择准则的小区(比如第二小区),进而在第二小区上发起RRC连接重建立过程,比如终端设备通过随机接入过程在第二小区上向第二网络设备发送RRC重建立请求消息。其中,小区选择过程的具体实现可以参见现有技术。
S407,第二网络设备接收到RRC重建立请求消息后,在第二小区上向终端设备发送RRC重建立完成消息。
示例性地,RRC重建立请求消息可以包括第一小区的标识和终端设备在第一小区的标识。比如,终端设备的服务小区为一个,则第一小区可以为终端设备的服务小区,即终端设备接收第一消息的小区。又比如,若终端设备的服务小区为多个,则第一小区可以为终端设备的主小区。此种情形下,若终端设备接收第一消息的小区为主小区,则第一小区即为终端设备接收第一消息的小区;若终端设备接收第一消息的小区为辅小区,则第一小区即为辅小区对应的主小区。又比如,第一小区为切换至第一目标小区的小区切换的源小区,比如第一小区可以为上述情形1的小区3。
具体来说,在第一小区成为终端设备的服务小区后,第一网络设备可以建立终端设备在第一小区上的标识(比如C-RNTI1)与终端设备的上下文之间的关联关系。由于RRC重建立请求消息包括C-RNTI1,因此,第二网络设备接收到RRC重建立请求消息后,可以向第一网络设备发送请求消息,请求信息包括C-RNTI1,请求消息用于请求获取终端设备的上下文信息;进而,第一网络设备接收到请求消息后,可以根据C-RNTI1,查询得到终端设备的上下文信息,并将终端设备的上下文信息发送给第二网络设备。第二网络设备接收到终端设备的上下文信息后,可以在第二小区上向终端设备发送RRC重建立完成消息。
可选地,以RRC重建立请求消息包括C-RNTI1为例,RRC重建立请求消息还可以包括第一小区的PCI和完整性消息鉴权码(integrity message authentication code,MAC-I),MAC-I是根据第一小区的PCI和C-RNTI1计算得到的,MAC-I用于校验终端设备的身份;相应地,第二网络设备接收到RRC重建立消息后,可以根据第一小区的PCI和C-RNTI1计算得到MAC-I’,若MAC-I’与MAC-I一致,则可以确定终端设备的身份合法,进而可以在获取到终端设备的上下文信息后,在第二小区上向终端设备发送RRC重建立完成消息。
可选地,RRC重建立请求消息还可以包括小区切换失败的原因值,原因值用于指示未能选择出小区切换的目标小区,比如上述情形3;或者,原因值用于指示在选择出所述小区切换的目标小区后无法接入所述目标小区,比如上述情形1或情形2。如此,第二网络设备可以根据RRC重建立请求消息所携带的原因值,获知终端设备发起RRC重建立的原因。
在上述方法中,第一网络设备可以先将第一网络设备管理的M个小区的配置信息在第一小区上发送给终端设备;当确定触发终端设备执行小区切换时,第一网络设备向终端设备发送第一指示信息,比如第一指示信息承载于层1/层2消息,进而终端设备接收到第一指示信息后,可以根据M个小区的配置信息,从M个小区中选择第一目标小区,并执行切换至第一目标小区的小区切换。采用该种方法所实现的小区切换可以称为层1/层2切换。
如此,一方面,第一网络设备发送的第一指示信息可以无需携带第一目标小区的标识,而是由终端设备来选择第一目标小区,比如终端设备可以基于候选小区当前的层1/层2测量结果来选择第一目标小区,相比于图3中“网络设备根据终端设备上报的层3测量结果来选择目标小区”的方式来说,便于选择出合适的第一目标小区,提高小区切换的成功率。另一方面,由于第一网络设备无需选择第一目标小区,因此,终端设备可以无需向第一网络设备上报所有候选小区的测量结果,从而便于节省传输资源。
此外,由于第一网络设备未指示第一目标小区(即第一网络设备未限定哪个小区为第一目标小区),因此,终端设备选择出一个目标小区后,若切换失败,则可以再重新选择一个目标小区进行切换,从而使得实现较为灵活,便于终端设备切换至合适的小区。
上述实施例一中,是将第一网络设备作为一个整体,从第一网络设备和终端设备通信的角度,描述了本申请实施例的实现流程。在一个示例中,第一网络设备可以包括CU和一个或多个DU,下面结合实施例二,从CU、DU和终端设备通信的角度,描述本申请实施例的实现流程。
实施例二
在实施例二中,将基于上述实施例一,描述CU、DU和终端设备之间的交互流程。其中,第一网络设备包括CU和第一DU,第一DU管理第一小区,可选地,第一网络设备还可以包括第二DU;M个小区可以包括属于第一DU的M1个小区,和/或属于第二DU的M2个小区。M1、M2均为正整数,且M1小于或等于M,M2小于或等于M,比如M=M1+M2。此外,沿用上述实施例一,在实施例二中,M个小区可以包括小区1、小区2、小区3……小区m。
图6为本申请实施例二提供的通信方法所对应的流程示意图,如图6所示,该方法包括:
S601,CU确定为终端设备配置层1/层2切换。
此处,CU确定为终端设备配置层1/层2切换的情形可以有多种。比如,CU确定第一DU管理的小区1成为终端设备的服务小区后,若终端设备的业务对时延要求较高,则可以确定为终端设备配置层1/层2切换,以降低切换时延,满足终端设备的业务需求。
S602,CU向第一DU发送第一请求信息,第一请求信息用于请求M1个小区的配置信息;相应地,第一DU接收第一请求信息。其中,M1个小区可以包括小区1。
S603,第一DU接收到第一请求信息后,可以向CU发送M1个小区的配置信息。
示例性地,CU可以向第一DU发送终端设备的上下文修改请求(UE context modification request)消息,上下文修改请求消息包括第一请求信息,第一请求信息用于指示CU向第一DU发送上下文修改请求消息的目的是请求M1个小区的配置信息;相应地,第一DU可以向CU发送终端设备的上下文修改响应(UE context modification response)消息,上下文修改响应消息包括M1个小区的配置信息。可以理解的是,由于第一DU管理的小区1为终端设备的服务小区,即第一DU已经建立有终端设备的上下文信息,因此,CU可以通过上下文修改请求消息来请求M1个小区的配置信息。
S604,CU向第二DU发送第二请求信息,第二请求信息用于请求M2个小区的配置信息;相应地, 第二DU接收第二请求信息。
S605,第二DU接收到第二请求信息后,可以向CU发送M2个小区的配置信息。
示例性地,CU可以向第一DU发送终端设备的上下文建立请求(UE context setup request)消息,终端设备的上下文建立请求消息包括第二请求信息,第二请求信息用于指示CU向第二DU发送上下文建立请求消息的目的是请求M2个小区的配置信息。相应地,第二DU可以向CU发送终端设备的上下文建立响应(UE context setup response)消息,上下文建立响应消息包括M2个小区的配置信息。可以理解的是,终端设备的上下文建立响应消息还可以包括其它可能的信息,比如第二DU为终端设备分配的F1AP地址、F1-U隧道地址等,其中,F1AP地址用于CU向第二DU发送终端设备的下行控制信令,F1-U隧道地址用于CU向第二DU发送终端设备的下行数据。
S606,CU通过第一DU向终端设备发送M个小区的配置信息;相应地,终端设备接收M个小区的配置信息。
示例性地,CU可以向第一DU发送第一消息(比如RRC消息),第一消息包括M个小区的配置信息,进而,第一DU接收到第一消息后,将第一消息发送给终端设备。
S607,第一DU向终端设备发送第一指示信息,第一指示信息指示终端设备选择第一目标小区;相应地,终端设备接收第一指示信息。
可选地,在第一DU向终端设备发送第一指示信息之前,终端设备可以向第一DU发送第三指示信息,第三指示信息指示第三小区(比如第三小区为小区1)的小区质量小于或等于第三小区质量阈值和/或第三小区的至少一个波束的波束质量小于或等于第二波束质量阈值。
S608,若终端设备根据M个小区的配置信息从M个小区选择出第一目标小区,则执行切换至第一目标小区的小区切换。
上述S608之后的流程可以参照实施例一,不再赘述。
针对于上述实施例一和实施例二,可以理解的是:
(1)实施例一和实施例二所描述的各个流程图的步骤编号仅为执行流程的一种示例,并不构成对步骤执行的先后顺序的限制,本申请实施例中相互之间没有时序依赖关系的步骤之间没有严格的执行顺序。各个流程图中所示意的步骤并非全部是必须执行的步骤,可以根据实际需要在各个流程图的基础上删除部分步骤,或者也可以根据实际需要在各个流程图的基础上增添其它可能的步骤。
(2)上述侧重描述了实施例一和实施例二之间的差异之处,除差异之处的其它内容,实施例一和实施例二之间可以相互参照;此外,同一实施例中,不同实现方式或不同情形或不同示例之间也可以相互参照。
上述主要从不同设备交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,为了实现上述功能,第一网络设备、第二网络设备和终端设备可以包括执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请的实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对第一网络设备、第二网络设备和终端设备进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
在采用集成的单元的情况下,图7示出了本申请实施例中所涉及的装置的可能的示例性框图。如图7所示,装置700可以包括:处理单元702和通信单元703。处理单元702用于对装置700的动作进行控制管理。通信单元703用于支持装置700与其他设备的通信。可选地,通信单元703也称为收发单元,可以包括接收单元和/或发送单元,分别用于执行接收和发送操作。装置700还可以包括存储单元701,用于存储装置700的程序代码和/或数据。
该装置700可以为上述实施例中的终端设备。处理单元702可以支持装置700执行上文中各方法示例中终端设备的动作。或者,处理单元702主要执行方法示例中终端设备的内部动作,通信单元703可以支持装置700与其它设备之间的通信。
比如,在一个实施例中,通信单元703用于:接收来自第一网络设备的M个小区的配置信息,所 述M个小区均为所述第一网络设备管理的小区;接收来自所述第一网络设备的第一指示信息,所述第一指示信息用于指示所述终端设备选择第一目标小区;处理单元702用于:若根据所述M个小区的配置信息从所述M个小区选择出所述第一目标小区,则执行切换至所述第一目标小区的小区切换;M为大于或等于2的整数。
该装置700可以为上述实施例中的第一网络设备,处理单元702可以支持装置700执行上文中各方法示例中第一网络设备的动作。或者,处理单元702主要执行上述方法示例中第一网络设备的内部动作,通信单元703可以支持装置700与其它设备之间的通信。
比如,在一个实施例中,通信单元703用于:向终端设备发送M个小区的配置信息,所述M个小区均为所述第一网络设备管理的小区;向所述终端设备发送第一指示信息,所述第一指示信息用于指示选择第一目标小区,并执行切换至所述第一目标小区的小区切换;其中,所述M个小区的配置信息用于从所述M个小区中选择所述第一目标小区。
该装置700可以为上述实施例中的第二网络设备,处理单元702可以支持装置700执行上文中各方法示例中第二网络设备的动作。或者,处理单元702主要执行上述方法示例中第二网络设备的内部动作,通信单元703可以支持装置700与其它设备之间的通信。
比如,在一个实施例中,通信单元703用于:接收来自终端设备的RRC重建立请求消息,所述RRC重建立请求消息包括所述第一小区的标识和所述终端设备在所述第一小区的标识;处理单元702用于:根据所述第一小区的标识和所述终端设备在所述第一小区的标识,获取所述终端设备的上下文信息;通信单元703还用于:向所述终端设备发送RRC重建立响应消息,所述RRC重建立响应消息用于指示RRC重建立完成;其中,所述第一小区为接收所述第一消息的小区;或者,若接收所述第一消息的小区为辅小区,则所述第一小区为所述辅小区对应的主小区;或者,所述第一小区为所述小区切换的源小区。
应理解以上装置中单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且装置中的单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元以软件通过处理元件调用的形式实现,部分单元以硬件的形式实现。例如,各个单元可以为单独设立的处理元件,也可以集成在装置的某一个芯片中实现,此外,也可以以程序的形式存储于存储器中,由装置的某一个处理元件调用并执行该单元的功能。此外这些单元全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件又可以成为处理器,可以是一种具有信号的处理能力的集成电路。在实现过程中,上述方法的各操作或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路实现或者以软件通过处理元件调用的形式实现。
在一个例子中,以上任一装置中的单元可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(application specific integrated circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA),或这些集成电路形式中至少两种的组合。再如,当装置中的单元可以通过处理元件调度程序的形式实现时,该处理元件可以是处理器,比如通用中央处理器(central processing unit,CPU),或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
以上用于接收的单元是一种该装置的接口电路,用于从其它装置接收信号。例如,当该装置以芯片的方式实现时,该接收单元是该芯片用于从其它芯片或装置接收信号的接口电路。以上用于发送的单元是一种该装置的接口电路,用于向其它装置发送信号。例如,当该装置以芯片的方式实现时,该发送单元是该芯片用于向其它芯片或装置发送信号的接口电路。
参见图8,为本申请实施例提供的一种终端设备的结构示意图,该终端设备可应用于如图1所示的通信系统中,用于实现以上实施例中终端设备的操作。如图8所示,该终端设备包括:天线810、射频部分820、信号处理部分830。天线810与射频部分820连接。在下行方向上,射频部分820通过天线810接收网络设备发送的信息,将网络设备发送的信息发送给信号处理部分830进行处理。在上行方向上,信号处理部分830对终端设备的信息进行处理,并发送给射频部分820,射频部分820对终端设备的信息进行处理后经过天线810发送给网络设备。
信号处理部分830可以包括调制解调子系统,用于实现对数据各通信协议层的处理;还可以包括中央处理子系统,用于实现对终端设备操作系统以及应用层的处理;此外,还可以包括其它子系统,例如 多媒体子系统,周边子系统等,其中多媒体子系统用于实现对终端设备相机,屏幕显示等的控制,周边子系统用于实现与其它设备的连接。调制解调子系统可以为单独设置的芯片。
调制解调子系统可以包括一个或多个处理元件831,例如,包括一个主控CPU和其它集成电路。此外,该调制解调子系统还可以包括存储元件832和接口电路833。存储元件832用于存储数据和程序,但用于执行以上方法中终端设备所执行的方法的程序可能不存储于该存储元件832中,而是存储于调制解调子系统之外的存储器中,使用时调制解调子系统加载使用。接口电路833用于与其它子系统通信。
该调制解调子系统可以通过芯片实现,该芯片包括至少一个处理元件和接口电路,其中处理元件用于执行以上终端设备执行的任一种方法的各个步骤,接口电路用于与其它装置通信。在一种实现中,终端设备实现以上方法中各个步骤的单元可以通过处理元件调度程序的形式实现,例如用于终端设备的装置包括处理元件和存储元件,处理元件调用存储元件存储的程序,以执行以上方法实施例中终端设备执行的方法。存储元件可以为与处理元件处于同一芯片上的存储元件,即片内存储元件。
在另一种实现中,用于执行以上方法中终端设备所执行的方法的程序可以在与处理元件处于不同芯片上的存储元件,即片外存储元件。此时,处理元件从片外存储元件调用或加载程序于片内存储元件上,以调用并执行以上方法实施例中终端设备执行的方法。
在又一种实现中,终端设备实现以上方法中各个步骤的单元可以是被配置成一个或多个处理元件,这些处理元件设置于调制解调子系统上,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA,或者这些类集成电路的组合。这些集成电路可以集成在一起,构成芯片。
终端设备实现以上方法中各个步骤的单元可以集成在一起,以SOC的形式实现,该SOC芯片,用于实现以上方法。该芯片内可以集成至少一个处理元件和存储元件,由处理元件调用存储元件的存储的程序的形式实现以上终端设备执行的方法;或者,该芯片内可以集成至少一个集成电路,用于实现以上终端设备执行的方法;或者,可以结合以上实现方式,部分单元的功能通过处理元件调用程序的形式实现,部分单元的功能通过集成电路的形式实现。
可见,以上用于终端设备的装置可以包括至少一个处理元件和接口电路,其中至少一个处理元件用于执行以上方法实施例所提供的任一种终端设备执行的方法。处理元件可以以第一种方式:即调用存储元件存储的程序的方式执行终端设备执行的部分或全部步骤;也可以以第二种方式:即通过处理器元件中的硬件的集成逻辑电路结合指令的方式执行终端设备执行的部分或全部步骤;当然,也可以结合第一种方式和第二种方式执行终端设备执行的部分或全部步骤。
这里的处理元件同以上描述,可以通过处理器实现,处理元件的功能可以和图7中所描述的处理单元的功能相同。示例性地,处理元件可以是通用处理器,例如CPU,还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个ASIC,或,一个或多个微处理器DSP,或,一个或者多个FPGA等,或这些集成电路形式中至少两种的组合。存储元件可以通过存储器实现,存储元件的功能可以和图7中所描述的存储单元的功能相同。存储元件可以是一个存储器,也可以是多个存储器的统称。
图8所示的终端设备能够实现上述方法实施例中涉及终端设备的各个过程。图8所示的终端设备中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
参见图9,为本申请实施例提供的一种网络设备的结构示意图,该网络设备(或基站)可应用于如图1所示的通信系统中,执行上述方法实施例中网络设备的功能。如图9所示,网络设备90可包括一个或多个DU 901和一个或多个CU 902。所述DU 901可以包括至少一个天线9011,至少一个射频单元9012,至少一个处理器9013和至少一个存储器9014。所述DU 901部分主要用于射频信号的收发以及射频信号与基带信号的转换,以及部分基带处理。CU902可以包括至少一个处理器9022和至少一个存储器9021。
所述CU 902部分主要用于进行基带处理,对网络设备进行控制等。所述DU 901与CU 902可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。所述CU 902为网络设备的控制中心,也可以称为处理单元,主要用于完成基带处理功能。例如所述CU 902可以用于控制网络设备执行上述方法实施例中关于网络设备的操作流程。
此外,可选的,网络设备90可以包括一个或多个射频单元,一个或多个DU和一个或多个CU。 其中,DU可以包括至少一个处理器9013和至少一个存储器9014,射频单元可以包括至少一个天线9011和至少一个射频单元9012,CU可以包括至少一个处理器9022和至少一个存储器9021。
在一个实例中,所述CU902可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如5G网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述存储器9021和处理器9022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。所述DU901可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如5G网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述存储器9014和处理器9013可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
图9所示的网络设备能够实现上述方法实施例中涉及网络设备的各个过程。图9所示的网络设备中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
本申请实施例中的术语“系统”和“网络”可被互换使用。“至少一种”是指一种或者多种,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A、同时存在A和B、单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如“A,B和C中的至少一个”包括A,B,C,AB,AC,BC或ABC。以及,除非有特别说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (21)

  1. 一种通信方法,其特征在于,所述方法应用于终端设备或者所述终端设备中的模块,所述方法包括:
    接收来自第一网络设备的第一消息,所述第一消息包括M个小区的配置信息,所述M个小区均为所述第一网络设备管理的小区;
    接收来自所述第一网络设备的第一指示信息,所述第一指示信息用于指示所述终端设备选择第一目标小区;
    若根据所述M个小区的配置信息从所述M个小区选择出所述第一目标小区,则执行切换至所述第一目标小区的小区切换;M为大于或等于2的整数。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    若切换至所述第一目标小区的小区切换发生失败,则在第二小区上向第二网络设备发送无线资源控制RRC重建立请求消息,所述RRC重建立请求消息包括第一小区的标识和所述终端设备在所述第一小区的标识;
    其中,所述第一小区为接收所述第一消息的小区;或者,
    若接收所述第一消息的小区为辅小区,则所述第一小区为所述辅小区对应的主小区;或者,
    所述第一小区为切换至所述第一目标小区的小区切换的源小区。
  3. 根据权利要求2所述的方法,其特征在于,所述切换至所述第一目标小区的小区切换发生失败,包括:
    在第一定时器超时的情况下,切换至所述第一目标小区的小区切换发生失败;其中,所述第一定时器是在接收到所述第一消息或接收到所述第一指示信息的情况下启动或重启的。
  4. 根据权利要求3所述的方法,其特征在于,若所述第一定时器是在接收到所述第一消息的情况下启动或重启的,则接收来自所述第一网络设备的第一指示信息之前,还包括:
    接收来自所述第一网络设备的第二指示信息,所述第二指示信息用于指示所述终端设备选择第二目标小区;
    若根据所述M个小区的配置信息从所述M个小区选择出所述第二目标小区,则执行切换至所述第二目标小区的小区切换,并切换成功。
  5. 根据权利要求2所述的方法,其特征在于,切换至所述第一目标小区的小区切换发生失败,包括:
    在第二定时器超时的情况下,根据所述M个小区的配置信息未从所述M个小区选择出所述第一目标小区,则切换至所述第一目标小区的小区切换发生失败;其中,所述第二定时器是在接收到所述第一指示信息的情况下启动或重启的。
  6. 根据权利要求2所述的方法,其特征在于,切换至所述第一目标小区的小区切换发生失败,包括:
    在连续切换失败的次数大于或等于次数阈值的情况下,切换至所述第一目标小区的小区切换发生失败。
  7. 根据权利要求2至6中任一项所述的方法,其特征在于,所述RRC重建立请求消息还包括所述小区切换发生失败的原因值;
    所述原因值用于指示未能选择出所述小区切换的目标小区;或者,所述原因值用于指示在选择出所述小区切换的目标小区后无法接入所述目标小区。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述M个小区包括第一候选小区,所述第一候选小区的配置信息包括第一信息,所述第一信息用于确定是否选择所述第一候选小区作为所述第一目标小区。
  9. 根据权利要求8所述的方法,其特征在于,所述第一信息包括以下至少一项:
    第一无线链路质量阈值;
    第一波束质量阈值;
    所述第一候选小区的优先级信息。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述方法还包括:
    向所述第一网络设备发送第三指示信息,所述第三指示信息指示第三小区的无线链路质量小于或等于第二无线链路质量阈值,和/或,所述第三小区的至少一个波束的质量小于或等于第二波束质量阈值;其中,所述第三小区为所述小区切换的源小区;
    其中,所述第三小区的无线链路质量是根据所述至少一个波束的质量得到的。
  11. 根据权利要求10所述的方法,其特征在于,所述第三小区属于所述M个小区,所述第三小区的配置信息包括所述至少一个波束的测量配置信息;
    所述方法还包括:
    根据所述至少一个波束的测量配置信息,测量得到所述至少一个波束的质量。
  12. 一种通信方法,其特征在于,所述方法应用于第一网络设备或者所述第一网络设备中的模块,所述方法包括:
    向终端设备发送第一消息,所述第一消息包括M个小区的配置信息,所述M个小区均为所述第一网络设备管理的小区;M为大于或等于2的整数;
    向所述终端设备发送第一指示信息,所述第一指示信息用于指示选择第一目标小区,并执行切换至所述第一目标小区的小区切换;
    其中,所述M个小区的配置信息用于从所述M个小区中选择所述第一目标小区。
  13. 根据权利要求12所述的方法,其特征在于,所述M个小区包括第一候选小区,所述第一候选小区的配置信息包括第一信息,所述第一信息用于确定是否选择所述第一候选小区作为所述第一目标小区。
  14. 根据权利要求13所述的方法,其特征在于,所述第一信息包括以下至少一项:
    第一无线链路质量阈值;
    第一波束质量阈值;
    所述第一候选小区的优先级信息。
  15. 根据权利要求12至14中任一项所述的方法,其特征在于,所述方法还包括:
    接收来自所述终端设备的第三指示信息,所述第三指示信息指示第三小区的无线链路质量小于或等于第二无线链路质量阈值,和/或,所述第三小区的至少一个波束的质量小于或等于第二波束质量阈值;其中,所述第三小区为所述小区切换的源小区;
    其中,所述第三小区的无线链路质量是根据所述至少一个波束的质量得到的。
  16. 根据权利要求15所述的方法,其特征在于,所述第三小区属于所述M个小区,所述第三小区的配置信息包括所述至少一个波束的测量配置信息。
  17. 一种通信装置,其特征在于,包括用于执行如权利要求1至11中任一项所述方法的模块,或者用于执行如权利要求12至16中任一项所述方法的模块。
  18. 一种通信装置,其特征在于,包括处理器,所述处理器和存储器耦合,所述存储器中存储有计算机程序;所述处理器用于调用所述存储器中的计算机程序,使得所述通信装置执行如权利要求1至11中任一项所述的方法或者如权利要求12至16中任一项所述的方法。
  19. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被计算机执行时,实现如权利要求1至11中任一项所述的方法或者如权利要求12至16中任一项所述的方法。
  20. 一种计算机程序产品,其特征在于,当计算机读取并执行所述计算机程序产品时,使得计算机执行权利要求1至11中任一项所述的方法或者如权利要求12至16中任一项所述的方法。
  21. 一种通信系统,其特征在于,所述通信系统包括终端设备和第一网络设备,所述终端设备用于执行上述权利要求1至11中任一项所述的方法,所述第一网络设备用于执行上述权利要求12至16中任一项所述的方法。
PCT/CN2023/104097 2022-08-29 2023-06-29 一种通信方法及装置 WO2024045858A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211040725.4A CN117676733A (zh) 2022-08-29 2022-08-29 一种通信方法及装置
CN202211040725.4 2022-08-29

Publications (1)

Publication Number Publication Date
WO2024045858A1 true WO2024045858A1 (zh) 2024-03-07

Family

ID=90073805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/104097 WO2024045858A1 (zh) 2022-08-29 2023-06-29 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN117676733A (zh)
WO (1) WO2024045858A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111372293A (zh) * 2018-12-26 2020-07-03 华为技术有限公司 通信方法和通信装置
US20210014848A1 (en) * 2019-10-04 2021-01-14 Alexei Davydov Ue configured for joint activation of tci states and spatial relation info on multiple component carriers
CN112740760A (zh) * 2019-02-13 2021-04-30 Oppo广东移动通信有限公司 用于小区切换的方法及设备
CN113301618A (zh) * 2017-03-24 2021-08-24 华为技术有限公司 通信方法、网络设备和终端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113301618A (zh) * 2017-03-24 2021-08-24 华为技术有限公司 通信方法、网络设备和终端
CN111372293A (zh) * 2018-12-26 2020-07-03 华为技术有限公司 通信方法和通信装置
CN112740760A (zh) * 2019-02-13 2021-04-30 Oppo广东移动通信有限公司 用于小区切换的方法及设备
US20210014848A1 (en) * 2019-10-04 2021-01-14 Alexei Davydov Ue configured for joint activation of tci states and spatial relation info on multiple component carriers

Also Published As

Publication number Publication date
CN117676733A (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
WO2018171759A1 (zh) 一种信息传输方法和装置
US20220225203A1 (en) Communication Method and Communications Apparatus
WO2021018283A1 (zh) 通信方法和通信装置
US11974178B2 (en) Cell handover method, device and readable storage medium
WO2019096285A1 (zh) 一种接入网络的控制方法和装置
WO2021226967A1 (zh) 切换的方法和设备
WO2023078239A1 (zh) 一种通信方法及装置
US20230049532A1 (en) Random access method and terminal device
WO2023088160A1 (zh) 信息处理的方法及装置
WO2024045858A1 (zh) 一种通信方法及装置
WO2021088770A1 (zh) 一种测量配置方法及设备
WO2021164494A1 (zh) 一种通信方法及装置
WO2021169380A1 (zh) 一种测量配置方法及设备
KR20230091138A (ko) Mro 크리티컬 시나리오의 판정 방법, 장치 및 기기
WO2023138669A1 (zh) 一种通信方法及装置
WO2023160706A1 (zh) 一种通信方法及装置
WO2023197804A1 (zh) 一种通信方法、装置及设备
WO2024022341A1 (zh) 小区切换方法、终端、基站、通信系统和存储介质
WO2024061165A1 (zh) 通信方法及通信装置
WO2024067270A1 (zh) 一种切换方法及通信装置
CN114451063B (zh) 通信方法和通信装置
US20240098604A1 (en) Information obtaining method, processing method, node, network device and apparatus
EP4344114A1 (en) Pdcch monitoring method and apparatus, and device and storage medium
WO2023011165A1 (zh) 一种通信方法及装置
WO2024026752A1 (zh) 小区切换方法、装置、设备和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23858896

Country of ref document: EP

Kind code of ref document: A1