WO2020238108A1 - 一种新型自滤光窄光谱响应有机光探测器 - Google Patents

一种新型自滤光窄光谱响应有机光探测器 Download PDF

Info

Publication number
WO2020238108A1
WO2020238108A1 PCT/CN2019/121781 CN2019121781W WO2020238108A1 WO 2020238108 A1 WO2020238108 A1 WO 2020238108A1 CN 2019121781 W CN2019121781 W CN 2019121781W WO 2020238108 A1 WO2020238108 A1 WO 2020238108A1
Authority
WO
WIPO (PCT)
Prior art keywords
type layer
thickness
type
layer
organic photodetector
Prior art date
Application number
PCT/CN2019/121781
Other languages
English (en)
French (fr)
Inventor
黄飞
解博名
张凯
胡志诚
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2020238108A1 publication Critical patent/WO2020238108A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the invention relates to the field of organic optoelectronics, in particular to a novel self-filtering narrow-spectrum response organic photodetector.
  • Optical detectors have the function of converting light signals into electrical signals. They are an important part of imaging systems and have important applications in many fields such as environmental monitoring, information communication and biosensing. According to its spectral response bandwidth, photodetectors can generally be divided into wide response and narrow response photodetectors. Wide response photodetectors are usually integrated for multicolor light detection under low light conditions, while narrow response photodetectors are usually used for monochromatic imaging or visible blind near-infrared light detection. In recent years, the vigorous development of the field of organic optoelectronics has injected new vitality into the development of organic photodetectors. Organic optoelectronic materials can adjust the band gap through structural changes, thereby adjusting their photoelectric response range. With the continuous deepening of research, more and more organic photoelectric materials have come out. However, due to their wide absorption range, most of the organic photodetectors reported at present are broad response photodetectors.
  • spectral selectivity is critical.
  • this approach will increase organic photodetection.
  • the use of the filter system will generate additional optical interfaces, reduce image clarity, and create obstacles for achieving higher pixel density imaging systems.
  • the above-mentioned problems put forward an urgent need for the development of organic light detection of new device structures.
  • the implementation methods mainly include the use of intermolecular charge transfer states [Nature Communications,2017,8,15421] or the use of charge collection narrowing (CCN) to manipulate charge collection [Nature Communications] ,2015,6,6343].
  • the above-mentioned device structures are all based on the traditional bulk blend heterojunction structure, that is, the P-type electron donor material and the N-type electron acceptor material are blended together as the active layer, and this blended active layer
  • the controllability of light field and charge is poor, and additional technical means need to be added to adjust the quantum efficiency or light field distribution in the active layer.
  • an ultra-thick active layer of 2 microns or more can be made to control charge transfer and collection, and super insertion.
  • the thin metal layer is made into an optical microcavity structure, or an ultra-high bias voltage is applied to realize the narrow spectral response function, and this kind of organic photodetector based on the bulk heterojunction structure blended with the acceptor usually has a higher dark current ,
  • the responsivity is low, the detection rate is low, and strict technical means are needed to realize the narrow spectral response function, and it is suitable for this device structure to achieve narrow spectral response organic photoelectric materials, making it universal
  • the performance is poor, and it is difficult to realize the free selection of the detection spectrum band and the free adjustment of the detection spectrum half-width through a single device structure.
  • Another object of the present invention is to provide a method for preparing a novel self-filtering narrow spectral response organic photodetector. With a simple preparation method, the spectrum selective detection function is realized. This provides a simple strategy and theoretical guidance for the development of organic photodetectors that respond to specific regions.
  • a new type of self-filtering narrow-spectrum response organic photodetector includes a substrate, a positive electrode, a P-type layer, an N-type layer and a negative electrode in sequence.
  • the P-type layer is a single-layer P-type layer structure or multiple layers P-type layer structure; when the P-type layer is a single-layer P-type layer structure, the band gap of the P-type layer material is wider than that of the N-type layer material; when the P-type layer is a multilayer P-type layer structure, In the multilayer P-type layer structure, at least one of the P-type layer materials that are not in direct contact with the N-type layer has a wider band gap than the N-type layer material, and the P-type layer that does not directly contact the N-type layer The band gap of at least one P-type layer material in the layer materials is wider than that of the P-type layer material directly in contact with the N-type layer or the P-type layer material that does not directly contact the N-type layer.
  • the gap is
  • a buffer layer may be provided separately or at the same time, and the buffer layer material may be a hydroalcohol-soluble interface material (such as 3, 4-ethylenedioxythiophene mixed polystyrene sulfonate (PEDOT:PSS), [9,9-dioctylfluorene-9,9-bis(N,N-dimethylaminopropyl)fluorene]( PFN), bromo-[9,9-dioctylfluorene-9,9-bis(N,N-dimethylaminopropyl)fluorene](PFN-Br), poly ⁇ 2,7-[9, 9'-Bis(N,N-Dimethylpropyl-3-amino)fluorene]-Alternating-5,5'-[2,6-(Bis-2-thienyl)-N,N'-Di Is
  • PEDOT:PSS 4-ethylenedioxythiophene mixed polystyrene
  • the P-type layer material is a conjugated polymer or conjugated small molecule material containing the following conjugated structure.
  • R 1 -R 6 can be linear, branched or cyclic alkyl chains with 1-40 carbon atoms, one or more of which can be oxygen atoms, alkenyl, alkynyl, aryl, Hydroxyl group, amino group, carbonyl group, carboxyl group, ester group, cyano group or nitro group is substituted, the hydrogen atom can be substituted by fluorine atom, chlorine atom, bromine atom, iodine atom; R 1 -R 6 can also be substituents, such as hydrogen atom, Fluorine atom, chlorine atom, cyano group, nitro group, thienyl group, phenyl group.
  • the P-type layer material is polythiophene and its derivatives
  • the N-type layer material is a fullerene type electron acceptor material (such as PC 71 BM, PC 61 BM, ICBA, etc.), a non-fullerene type electron acceptor material (such as ITIC, COi8DFIC, IEICO-4F , IEICO, Y6, N2200, etc.), or materials with similar functions.
  • the N-type layer material is fullerene electron acceptor material PC 71 BM, non-fullerene electron acceptor material ITIC, IEICO-4F, IEICO, COi8DFIC, Y6.
  • the positive electrode material is indium tin oxide (ITO), graphene, metal nanowires, high-conductivity 3,4-ethylenedioxythiophene mixed polystyrene sulfonate, nano silver paste, metal grid or Carbon nanotubes, or materials with similar functions.
  • the positive electrode material is indium tin oxide (ITO).
  • the negative electrode material is any one or alloy of lithium, magnesium, calcium, strontium, barium, aluminum, copper, gold, silver, and indium, or materials with similar functions.
  • the negative electrode material is silver.
  • the substrate is any one or more composites of glass, polymer, ceramics, and metals, or materials with similar functions.
  • the substrate is glass.
  • the preparation method of a novel self-filtering narrow spectral response organic photodetector includes the following steps:
  • Step 1 Wash and dry the substrate
  • Step 2 Prepare a positive electrode on the surface of the substrate
  • Step 3 Prepare a buffer layer on the positive electrode (this step can be omitted);
  • Step 4 Prepare a P-type layer on the positive electrode or buffer layer
  • Step 5 preparing an N-type layer on the P-type layer
  • Step 6 Prepare a buffer layer on the N-type layer (this step can be omitted);
  • Step 7 Prepare a negative electrode on the N-type layer or buffer layer.
  • the preparation method of each step includes any one of spin coating, spray coating, blade coating, screen printing, inkjet printing, water transfer, electrochemical deposition, vacuum evaporation coating, electron beam evaporation or magnetron sputtering or Multiple combinations are used.
  • step 1 includes: ultrasonically cleaning the glass substrate with acetone, a micron-scale semiconductor special detergent, deionized water, and isopropanol in sequence, and drying with dry nitrogen for use.
  • step 2 includes: magnetron sputtering ITO on the glass substrate with a thickness of 130-150 nm.
  • step 3 includes: spin-coating the water-alcohol-soluble polymer material poly(3,4-ethylenedioxythiophene)-polystyrene sulfonic acid (PEDOT:PSS) on the positive electrode ITO, with a thickness of 20-80 nm, After the spin coating is completed, place it on a heating table at 150°C and heat it for at least 20 minutes.
  • PEDOT:PSS poly(3,4-ethylenedioxythiophene)-polystyrene sulfonic acid
  • step 4 includes: using polythiophene and its derivatives poly(3-hexylthiophene) (P3HT) as the host material, using fluorinated phenyl azide (S-FPA) as the crosslinking agent,
  • the host material and the crosslinking agent are mixed according to a mass ratio of 10:1 ⁇ 1:10, dissolved in chlorobenzene (CB) to prepare a mixed solution, and the mixed solution is spin-coated on PEDOT:PSS, and subjected to UV
  • the lamp is irradiated for 2 to 20 minutes, and then washed with a solvent to obtain a dry film with a thickness of 100 to 2000 nm as the first P-type layer, and then chlorobenzene (CB) and o-dichlorobenzene (o-DCB) at a ratio of 1:1 Mix by volume ratio and use it as a mixed solvent.
  • step 5 includes: dissolving the non-fullerene electron acceptor material IEICO-4F in the solvent chloroform (CF), and spin-coating on the P-type layer to obtain a dry film with a thickness of 10 to 1000 nm, as N Type layer.
  • CF solvent chloroform
  • step 6 includes: dissolving the water-alcohol-soluble polymer material PFN in the solvent methanol, and spinning on the N-type layer to form a dry film with a thickness of 5-10 nm as a buffer layer.
  • step 7 includes: evaporating and depositing the metal electrode Ag on the surface of the buffer layer by means of thermal evaporation at a vacuum of 1 ⁇ 10 -6 mbar, with a thickness of 60-200 nm.
  • a novel self-filtering narrow spectral response organic photodetector preparation method including the following steps:
  • Step 1 Wash and dry the substrate
  • Step 2 Prepare a positive electrode on the surface of the substrate
  • Step 3 Prepare a buffer layer on the positive electrode
  • Step 4 Prepare a P-type layer on the buffer layer
  • Step 5 preparing an N-type layer on the P-type layer
  • Step 6 preparing a buffer layer on the N-type layer
  • Step 7 Prepare a negative electrode on the buffer layer.
  • the above method specifically includes the following steps:
  • the glass substrate is ultrasonically cleaned with acetone, special detergent for micron-level semiconductors, deionized water, and isopropanol in sequence, and dried with dry nitrogen for use.
  • the crosslinking agent is mixed according to a mass ratio of 10:1 ⁇ 1:10, dissolved in chlorobenzene (CB) to prepare a mixed solution, the mixed solution is spin-coated on PEDOT:PSS, and irradiated by an ultraviolet lamp 2 ⁇ 20min, after solvent cleaning, a dry film with a thickness of 100 ⁇ 2000nm is obtained as the first P-type layer, and then chlorobenzene (CB) and o-dichlorobenzene (o-DCB) are mixed in a volume ratio of 1:1, As a mixed solvent, the naphthothiadiazole material NT812 is dissolved in the mixed solvent, and a dry film with a thickness of 800-2000 nm is obtained by spin coating on
  • the metal electrode Ag is evaporated and deposited on the surface of the buffer layer by thermal evaporation at a vacuum of 1 ⁇ 10 -6 mbar, with a thickness of 60-200 nm.
  • a novel self-filtering narrow spectral response organic photodetector preparation method including the following steps:
  • Step 1 Wash and dry the substrate
  • Step 2 Prepare a positive electrode on the surface of the substrate
  • Step 3 Prepare a P-type layer on the positive electrode
  • Step 4 Prepare an N-type layer on the P-type layer
  • Step 5 preparing a buffer layer on the N-type layer
  • Step 6 Prepare a negative electrode on the buffer layer.
  • the above method includes the following steps:
  • the glass substrate is ultrasonically cleaned with acetone, micron-scale semiconductor special detergent, deionized water, and isopropanol in sequence, and dried with dry nitrogen for use.
  • the water-alcohol-soluble polymer material PFN is dissolved in the solvent methanol, and then spin-coated on the N-type layer to form a dry film with a thickness of 5-10 nm as a buffer layer.
  • the metal electrode Ag is evaporated and deposited on the surface of the buffer layer by thermal evaporation at a vacuum of 1 ⁇ 10 -6 mbar, with a thickness of 60-200 nm.
  • a novel self-filtering narrow spectral response organic photodetector preparation method including the following steps:
  • Step 1 Wash and dry the substrate
  • Step 2 Prepare a positive electrode on the surface of the substrate
  • Step 3 Prepare a buffer layer on the positive electrode
  • Step 4 Prepare a P-type layer on the buffer layer
  • Step 5 preparing an N-type layer on the P-type layer
  • Step 6 Prepare a negative electrode on the N-type layer.
  • the above method includes the following steps:
  • the glass substrate is ultrasonically cleaned with acetone, special detergent for micron-sized semiconductors, deionized water, and isopropanol in sequence, and dried with dry nitrogen for use.
  • polythiophene and its derivative material poly(3-hexylthiophene) (P3HT) as the host material using the fluorinated phenyl azide material S-FPA as the crosslinking agent, and combining the host material with The crosslinking agent is mixed according to a mass ratio of 10:1 ⁇ 1:10, dissolved in chlorobenzene (CB) to prepare a mixed solution, the mixed solution is spin-coated on PEDOT:PSS, and irradiated by an ultraviolet lamp 2 ⁇ 20min, after solvent cleaning, a dry film with a thickness of 100 ⁇ 2000nm is obtained as the first P-type layer, and then the diketopyrrolopyrrole material DT-PDPP2T-TT is dissolved in chloroform (CF) solvent.
  • CB chlorobenzene
  • the P-type layer is spin-coated to obtain a dry film with a thickness of 1000-2000nm as the second P-type layer.
  • the benzodithiophene material PTB7-Th is dissolved in o-xylene (o-xy) solvent.
  • the second P-type layer is spin-coated to obtain a dry film with a thickness of 100-500 nm as the third P-type layer.
  • the metal electrode Ag is evaporated and deposited on the surface of the N-type layer by means of thermal evaporation at a vacuum of 1 ⁇ 10 -6 mbar, with a thickness of 60-200 nm.
  • a novel self-filtering narrow spectral response organic photodetector preparation method including the following steps:
  • Step 1 Wash and dry the substrate
  • Step 2 Prepare a positive electrode on the surface of the substrate
  • Step 3 Prepare a P-type layer on the positive electrode
  • Step 4 Prepare an N-type layer on the P-type layer
  • Step 5 Prepare a negative electrode on the N-type layer.
  • the above method includes the following steps:
  • the glass substrate is ultrasonically cleaned with acetone, special detergent for micron-level semiconductors, deionized water, and isopropanol in sequence, and dried with dry nitrogen for use.
  • the layer is spin-coated to obtain a dry film with a thickness of 1000-2000nm, which is used as the second P-type layer.
  • the benzodithiophene material PTB7-Th is dissolved in o-xylene (o-xy) solvent.
  • a dry film with a thickness of 100-500 nm is obtained by spin coating on the P-type layer as the third P-type layer.
  • the metal electrode Ag is evaporated and deposited on the surface of the N-type layer by thermal evaporation under the condition of a vacuum degree of 1 ⁇ 10 -6 mbar, with a thickness of 60-200 nm.
  • the preparation methods of each step include spin coating, spray coating, blade coating, screen printing, inkjet printing, water transfer printing, electrochemical deposition, vacuum evaporation coating, electron beam evaporation or magnetron sputtering. Any one or more of them are used in combination and prepared in layers.
  • the present invention has the following advantages and beneficial effects:
  • the PN layered structure in the present invention enhances the resistance to charge transport and light
  • the controllability of the field distribution can realize the free selection of the detection spectrum band and the free adjustment of the half-width by simply selecting P-type and N-type materials with matching band gaps.
  • the organic photodetector of the present invention is different from the traditional active layer structure of the mixed bulk heterojunction for the acceptor.
  • the PN layered structure is adopted, which can effectively avoid the direct contact of P-type materials, N-type materials and opposite polarity electrodes. Contact can effectively suppress dark current and improve detection rate.
  • the existing similar PN layered device structure actually blends P-type layer materials with different band gaps, which makes different P-type layer materials directly contact the N-type layer, and cannot effectively control the photo-induced excitation.
  • the band gap relationship between the P-type layer and the N-type layer material is also very unreasonable.
  • the band gap of the blended P-type layer material is narrower than that of the N-type layer material, so the incident photons have been completely absorbed by the P-type layer.
  • Layer absorption, only the deep P-type layer material can be used to generate excitons.
  • the N-type layer material only exists as an exciton separation interface and will not contribute to the long-wavelength EQE, which makes it more efficient for photons and charges.
  • the organic photodetector with the new structure in the present invention is completely different from the device structure which is similar to the PN layered device.
  • the N-type layer is mainly used to generate charges, which greatly increases the external quantum efficiency, and can effectively suppress the detection spectrum in front of the response peak, achieving a true narrow response detection function.
  • the organic photodetector of the new structure of the present invention can realize free selection of detection spectrum band and free adjustment of half-width by simply adjusting the thickness of the P-type layer and the N-type layer.
  • the organic photodetector with a novel structure in the present invention has self-filtering properties, and can achieve narrow-band response without additional optical filters or additional technical means, has a simple structure, and effectively reduces signal distortion.
  • the organic photodetector of the present invention has a single device structure that can be applied to almost all organic photoelectric materials and has universal applicability.
  • Fig. 1 shows a schematic diagram of the structure of an organic photodetector in embodiment 1 and embodiment 8 of the present invention.
  • FIG. 2 shows a schematic diagram of the structure of the organic photodetector in Embodiments 2-10 and 13-15 of the present invention.
  • FIG. 3 shows a schematic diagram of the structure of an organic photodetector in Embodiment 12 of the present invention.
  • FIG. 4 shows a schematic diagram of the structure of an organic photodetector in Embodiment 11 of the present invention.
  • Fig. 5 shows the external quantum efficiency spectrum curve of the organic photodetector in Example 2 of the present invention.
  • Fig. 6 shows the external quantum efficiency spectrum curve of the organic photodetector in Example 3 of the present invention.
  • Fig. 7 shows the external quantum efficiency spectrum curve of the organic photodetector in embodiment 4 of the present invention.
  • FIG. 8 shows the standardized external quantum efficiency spectrum curve of the organic photodetector in Embodiment 5 of the present invention.
  • Figure 9 shows the standardized external quantum efficiency spectrum curves of the organic photodetectors in Examples 6-8 of the present invention.
  • FIG. 10 shows the normalized absorption spectra of the P-type layer material and the N-type layer material used in Example 2 of the present invention.
  • FIG. 11 shows the normalized absorption spectra of the P-type layer material and the N-type layer material used in Example 3 of the present invention.
  • Figure 12 shows the normalized absorption spectra of the P-type layer material and the N-type layer material used in Example 6 of the present invention.
  • FIG. 13 shows the normalized absorption spectra of the P-type layer material and the N-type layer material used in Example 7 of the present invention.
  • the novel self-filtering narrow-spectrum response organic photodetector has a device structure including a substrate 1, a positive electrode 2, a P-type layer 3, an N-type layer 4, and a negative electrode 5 in sequence.
  • the substrate 1 is glass; the positive electrode 2 is indium tin oxide (ITO); the P-type layer 3 is a single-layer P-type layer structure, and the P-type layer material is naphththiadiazole-based material NT812, and the film thickness is 1200nm; the material of the N-type layer 4 is a non-fullerene electron acceptor material IEICO-4F with a film thickness of 150nm; the negative electrode 5 is silver.
  • the band gap of the P-type layer material NT812 is wider than that of the N-type layer material IEICO-4F.
  • the method for preparing the organic photodetector includes the following steps:
  • Step 1 The glass substrate is ultrasonically cleaned with acetone, micron-scale semiconductor special detergent, deionized water, and isopropanol in sequence, and dried with dry nitrogen for use.
  • Step 2 Using a magnetron sputtering method, a positive electrode ITO is prepared on the substrate with a thickness of 150 nm.
  • Step 3 Mix chlorobenzene (CB) and o-dichlorobenzene (o-DCB) in a volume ratio of 1:1 as a mixed solvent.
  • the naphthothiadiazole material NT812 is dissolved in the mixed solvent,
  • a P-type layer with a thickness of 1200 nm is formed by spin coating on the ITO electrode.
  • Step 4 Dissolve the non-fullerene electron acceptor material IEICO-4F in a chloroform (CF) solvent, and spin-coating on the P-type layer to form an N-type layer with a thickness of 150 nm.
  • CF chloroform
  • Step 5 Vacuum thermal evaporation of silver with a thickness of 100 nm on the N-type layer as a negative electrode.
  • the novel self-filtering narrow-spectrum response organic photodetector has a device structure including a substrate 1 in turn , Positive electrode 2, P-type layer 3, N-type layer 4, buffer layer 6, and negative electrode 5.
  • the substrate 1 is glass; the positive electrode 2 is indium tin oxide (ITO); the P-type layer 3 is a single-layer P-type layer structure, and the P-type layer material is a naphththiadiazole-based material NT812;
  • the material of the N-type layer 4 is a non-fullerene electron acceptor material IEICO-4F with a film thickness of 150 nm; the negative electrode 5 is silver;
  • the material of the buffer layer 6 is a water-alcohol-soluble polymer material [9,9- Dioctylfluorene-9,9-bis(N,N-dimethylaminopropyl)fluorene] (PFN), with a thickness of 8nm; the band gap of the P-type layer material NT812 is wider than that of the N-type layer material IEICO-4F.
  • the method for preparing the organic photodetector includes the following steps:
  • Step 1 The glass substrate is ultrasonically cleaned with acetone, micron-scale semiconductor special detergent, deionized water, and isopropanol in sequence, and dried with dry nitrogen for use.
  • Step 2 Using a magnetron sputtering method, a positive electrode ITO is prepared on the substrate with a thickness of 150 nm.
  • Step 3 Mix chlorobenzene (CB) and o-dichlorobenzene (o-DCB) at a volume ratio of 1:1 as a mixed solvent. Dissolve naphththiadiazole material NT812 in the mixed solvent. P-type layers of different thicknesses were prepared by spin coating on the positive electrode ITO.
  • Step 4 Dissolve the non-fullerene electron acceptor material IEICO-4F in a chloroform (CF) solvent, and spin-coating on the P-type layer to form an N-type layer with a thickness of 150 nm.
  • CF chloroform
  • Step 5 Dissolve [9,9-dioctylfluorene-9,9-bis(N,N-dimethylaminopropyl)fluorene] (PFN) in methanol, and spin-coating on the N-type layer A buffer layer with a thickness of 8 nm is obtained.
  • Step 6 Vacuum thermally evaporate silver with a thickness of 100 nm on the buffer layer as a negative electrode.
  • the new self-filtering narrow-spectrum response organic photodetector prepared in Example 2 was tested for related performance.
  • the external quantum efficiency (EQE) spectrum curve obtained by the test without an external bias voltage is shown in Figure 5, and the P type is used
  • the new self-filtering narrow-spectrum response organic photodetector has a device structure including substrate 1, Positive electrode 2, P-type layer 3, N-type layer 4, buffer layer 6, and negative electrode 5.
  • the substrate 1 is glass; the positive electrode 2 is indium tin oxide (ITO); the P-type layer (3) is a multilayer P-type layer structure, and the first P-type layer material is polythiophene and its derivatives The material is poly(3-hexylthiophene) (P3HT) with a film thickness of 150nm.
  • the second P-type layer is made of naphththiadiazole-based material NT812 with a film thickness of 800nm. The second P-type layer is in direct contact with the N-type layer.
  • a P-type layer does not directly contact the N-type layer;
  • the material of the N-type layer 4 is a non-fullerene electron acceptor material IEICO-4F with a film thickness of 150 nm;
  • the negative electrode 5 is silver;
  • the buffer layer 6 The material is a water-alcohol-soluble polymer material [9,9-dioctylfluorene-9,9-bis(N,N-dimethylaminopropyl)fluorene] (PFN), the film thickness is 8nm; the first P type
  • the band gap of the layer material P3HT is wider than the second P-type layer material NT812 and the N-type layer material IEICO-4F.
  • the method for preparing the organic photodetector includes the following steps:
  • Step 1 The glass substrate is ultrasonically cleaned with acetone, micron-scale semiconductor special detergent, deionized water, and isopropanol in sequence, and dried with dry nitrogen for use.
  • Step 2 Using a magnetron sputtering method, a positive electrode ITO is prepared on the substrate with a thickness of 150 nm.
  • Step 3 The P-type layer material poly(3-hexylthiophene) (P3HT) is used as the host material, and the fluorinated phenyl azide (S-FPA) is used as the crosslinking agent to crosslink the host material with the
  • the agent is mixed according to the mass ratio of 10:1, dissolved in chlorobenzene (CB), and prepared as a mixed solution.
  • the mixed solution is spin-coated on the ITO, irradiated with an ultraviolet lamp for 6 minutes, and then washed with a solvent to obtain a thickness of 150nm Dry the film as the first P-type layer, and then mix chlorobenzene (CB) and o-dichlorobenzene (o-DCB) at a volume ratio of 1:1 as a mixed solvent to dissolve the naphthothiadiazole material NT812 In the mixed solvent, spin coating on the first P-type layer to obtain a dry film with a thickness of 800 nm as the second P-type layer.
  • CB chlorobenzene
  • o-DCB o-dichlorobenzene
  • Step 4 The non-fullerene electron acceptor material IEICO-4F is dissolved in a chloroform (CF) solvent, and then spin-coated on the P-type layer to form an N-type layer with a thickness of 150 nm.
  • CF chloroform
  • Step 5 Dissolve [9,9-dioctylfluorene-9,9-bis(N,N-dimethylaminopropyl)fluorene] (PFN) in methanol, and spin-coating on the N-type layer A buffer layer with a thickness of 8 nm is obtained.
  • Step 6 Vacuum thermally evaporate silver with a thickness of 100 nm on the buffer layer as a negative electrode.
  • the new self-filtering narrow-spectrum response organic photodetector prepared in Example 3 was tested for related performance.
  • the external quantum efficiency (EQE) spectrum curve obtained by the test under no applied bias voltage is shown in Figure 6, and the P type is used.
  • the standardized absorption spectra of the layer material and the N-type layer material are shown in Figure 11.
  • the EQE of Example 3 The response in the 500-600nm band is further suppressed, while the response in the 800-1000nm band remains unchanged.
  • the P-type layer material poly(3-hexylthiophene) (P3HT) absorbs mainly in the 400-600nm band.
  • the incident light in this band is absorbed by it to produce excitons, but because it does not interact with the N-type layer
  • the excitons cannot be further effectively separated to generate free charges, so the incident light in this band is filtered out without generating a photoelectric response, so it has a self-filtering effect
  • the crosslinking agent fluorinated phenyl azide S- The function of FPA
  • FPA crosslinking agent fluorinated phenyl azide
  • Example 3 where the material of the buffer layer was changed from PFN to zinc oxide (ZnO), a metal oxide material, with a film thickness of 30 nm.
  • ZnO zinc oxide
  • the new self-filtering narrow-spectrum response organic photodetector prepared in Example 4 was tested for related performance.
  • the external quantum efficiency (EQE) spectrum curves obtained by testing under different applied bias voltages are shown in Figure 7, and it can be seen that, It has an obvious photomultiplier effect.
  • Example 3 changing the thickness of the N-type layer material IEICO-4F.
  • the new self-filtering narrow-spectrum response organic photodetector prepared in Example 5 was tested for related performance.
  • the standardized external quantum efficiency spectrum curve obtained by the test under no applied bias voltage is shown in Figure 8. It can be seen that the present invention
  • the new type of self-filtering narrow-spectrum response organic photodetector can adjust the thickness of the N-type material layer to achieve free selection of the detection spectrum.
  • Example 3 replacing the N-type layer material from IEICO-4F to the non-fullerene electron acceptor material IEICO.
  • the new self-filtering narrow-spectrum response organic photodetector prepared in Example 6 was tested for related performance.
  • the standardized external quantum efficiency spectrum curve obtained by the test under no applied bias voltage is shown in Figure 9.
  • the P-type layer material used The normalized absorption spectrum of the N-type layer material is shown in Figure 12.
  • using an N-type layer material whose absorption edge is more blue-shifted than Embodiment 3 can further narrow the half-width of the detection spectrum.
  • the novel self-filtering narrow-spectrum response organic photodetector has a device structure including a substrate 1, a positive electrode 2, a P-type layer 3, an N-type layer 4, a buffer layer 6, and a negative electrode 5. .
  • the substrate 1 is glass; the positive electrode 2 is indium tin oxide (ITO); the P-type layer 3 is a multilayer P-type layer structure, and the first P-type layer material is polythiophene and its derivatives. (3-hexylthiophene) (P3HT), the film thickness is 150nm, the second P-type layer is made of thienothiophene dione material PBDB-T-SF, the film thickness is 600nm, and the second P-type layer is in direct contact with the N-type layer , The first P-type layer is not in direct contact with the N-type layer; the material of the N-type layer 4 is non-fullerene electron acceptor material ITIC with a film thickness of 80 nm; the negative electrode 5 is silver; the buffer layer 6 The material is a water-alcohol-soluble polymer material [9,9-dioctylfluorene-9,9-bis(N,N-dimethylaminopropyl)fluorene]
  • the method for preparing the organic photodetector includes the following steps:
  • Step 1 The glass substrate is ultrasonically cleaned with acetone, micron-scale semiconductor special detergent, deionized water, and isopropanol in sequence, and dried with dry nitrogen for use.
  • Step 2 Using a magnetron sputtering method, a positive electrode ITO is prepared on the substrate with a thickness of 150 nm.
  • Step 3 The P-type layer material poly(3-hexylthiophene) (P3HT) is used as the host material, and the fluorinated phenyl azide (S-FPA) is used as the crosslinking agent to crosslink the host material with the
  • the agent is mixed according to the mass ratio of 10:1, dissolved in chlorobenzene (CB), and prepared as a mixed solution.
  • the mixed solution is spin-coated on the ITO, irradiated with an ultraviolet lamp for 6 minutes, and then washed with a solvent to obtain a thickness of 150nm Dry the film as the first P-type layer, and then dissolve the P-type layer material PBDB-T-SF in the solvent o-dichlorobenzene (o-DCB), and spin-coating on the first P-type layer to obtain a thickness of 600 nm Dry the film as the second P-type layer.
  • o-DCB solvent o-dichlorobenzene
  • Step 4 Dissolve the non-fullerene electron acceptor material ITIC in a chloroform (CF) solvent, and spin-coating on the P-type layer to form an N-type layer with a thickness of 80 nm.
  • CF chloroform
  • Step 5 Dissolve [9,9-dioctylfluorene-9,9-bis(N,N-dimethylaminopropyl)fluorene] (PFN) in methanol, and spin-coating on the N-type layer A buffer layer with a thickness of 8 nm is obtained.
  • Step 6 Vacuum thermally evaporate silver with a thickness of 100 nm on the buffer layer as a negative electrode.
  • the new self-filtering narrow-spectrum response organic photodetector prepared in Example 7 was subjected to related performance tests.
  • the standardized external quantum efficiency (EQE) spectrum curve obtained by the test under no applied bias voltage is shown in Fig. 9, where P
  • the standardized absorption spectra of the material of the N-type layer and the material of the N-type layer are shown in FIG. 13. Compared with Embodiment 3, changing the material of the P-type layer and the N-type layer can make the detection spectrum move accordingly.
  • the novel self-filtering narrow-spectrum response organic photodetector has a device structure including a substrate 1, a positive electrode 2, a P-type layer 3, an N-type layer 4, and a negative electrode 5 in sequence.
  • the substrate 1 is glass; the positive electrode 2 is indium tin oxide (ITO); the P-type layer 3 is a multilayer P-type layer structure, and the first P-type layer material is polythiophene and its derivatives. (3-hexylthiophene) (P3HT), the film thickness is 150nm, the second P-type layer material is diketopyrrolopyrrole material DT-PDPP2T-TT, the film thickness is 2000nm, the third P-type layer material is benzodithiophene Material PTB7-Th, film thickness 100nm, where the third P-type layer is in direct contact with the N-type layer, the first P-type layer and the second P-type layer are not in direct contact with the N-type layer; the N-type layer 4 is made of non- Fullerene-based electron acceptor material IEICO-4F with a film thickness of 150 nm; the negative electrode 5 is silver; the band gap of the first P-type layer material P3HT is wider than that of the
  • the method for preparing the organic photodetector includes the following steps:
  • Step 1 The glass substrate is ultrasonically cleaned with acetone, micron-scale semiconductor special detergent, deionized water, and isopropanol in sequence, and dried with dry nitrogen for use.
  • Step 2 Using a magnetron sputtering method, a positive electrode ITO is prepared on the substrate with a thickness of 150 nm.
  • Step 3 The P-type layer material poly(3-hexylthiophene) (P3HT) is used as the host material, and the fluorinated phenyl azide (S-FPA) is used as the crosslinking agent to crosslink the host material with the
  • the agent is mixed according to the mass ratio of 10:1, dissolved in chlorobenzene (CB), and prepared as a mixed solution.
  • the mixed solution is spin-coated on the ITO, irradiated with an ultraviolet lamp for 6 minutes, and then washed with a solvent to obtain a thickness of 150nm Dry the film as the first P-type layer, and then dissolve the P-type layer material DT-PDPP2T-TT in a chloroform (CF) solvent, and spin-coating on the first P-type layer to obtain a dry film with a thickness of 2000 nm as the first P-type layer.
  • CF chloroform
  • Two P-type layer, finally the P-type layer material PTB7-Th is dissolved in o-xylene (o-xy) solvent, and spin-coated on the second P-type layer to obtain a dry film with a thickness of 100nm, which is used as the third P Type layer.
  • Step 4 Mix chlorobenzene and n-butanol in a volume ratio of 3:1 as a mixed solvent, dissolve the non-fullerene electron acceptor material IEICO-4F in the mixed solvent, and pass it on the P-type layer.
  • An N-type layer with a thickness of 150 nm was produced by spin coating.
  • Step 5 Vacuum thermally evaporate silver with a thickness of 100 nm on the N-type layer as a negative electrode.
  • the new self-filtering narrow-spectrum response organic photodetector prepared in Example 8 was tested for related performance.
  • the standardized external quantum efficiency (EQE) spectrum curve obtained by the test under -1V bias voltage is shown in FIG. 9.
  • EQE standardized external quantum efficiency
  • Example 8 add a buffer layer 6 between the N-type layer 4 and the negative electrode 5, and change the N-type layer material from IEICO-4F to the fullerene electron acceptor material PC 71 BM.
  • the material of the triple P layer is replaced by PTB7-Th, which is a thienothiadiazole material PDDTT.
  • PTB7-Th is a thienothiadiazole material PDDTT.
  • the novel self-filtering narrow-spectrum response organic photodetector has a device structure including a substrate 1, a positive electrode 2, a P-type layer 3, an N-type layer 4, a buffer layer 6, and a negative electrode 5. .
  • the substrate 1 is glass; the positive electrode 2 is indium tin oxide (ITO); the P-type layer 3 is a multilayer P-type layer structure, and the first P-type layer material is polythiophene and its derivatives. (3-hexylthiophene) (P3HT), the film thickness is 150nm, the material of the second P-type layer is diketopyrrolopyrrole material DT-PDPP2T-TT, the film thickness is 1400nm, the material of the third P-type layer is thienothiadiazole PDDTT, a film thickness of 200nm, where the third P-type layer is in direct contact with the N-type layer, and the first P-type layer and the second P-type layer are not in direct contact with the N-type layer; the material of the N-type layer 4 is Fuller The olefin electron acceptor material PC 71 BM, the film thickness is 60nm; the negative electrode 5 is silver; the buffer layer 6 is a water-alcohol-soluble poly
  • the method for preparing the organic photodetector includes the following steps:
  • Step 1 The glass substrate is ultrasonically cleaned with acetone, micron-scale semiconductor special detergent, deionized water, and isopropanol in sequence, and dried with dry nitrogen for use.
  • Step 2 Using a magnetron sputtering method, a positive electrode ITO is prepared on the substrate with a thickness of 150 nm.
  • Step 3 The P-type layer material poly(3-hexylthiophene) (P3HT) is used as the host material, and the fluorinated phenyl azide (S-FPA) is used as the crosslinking agent to crosslink the host material with the
  • the agent was mixed according to the mass ratio of 10:1, dissolved in chlorobenzene (CB), and prepared into a mixed solution.
  • the mixed solution was spin-coated on the ITO, irradiated with an ultraviolet lamp for 6 minutes, and then washed with a solvent to obtain a thickness of 150nm Dry the film as the first P-type layer, and then dissolve the P-type layer material DT-PDPP2T-TT in a chloroform (CF) solvent, and spin-coating on the first P-type layer to obtain a dry film with a thickness of 1400 nm as the first P-type layer.
  • CF chloroform
  • Two P-type layers, and finally the P-type layer material PDDTT is dissolved in a chlorobenzene (CB) solvent, and the second P-type layer is spin-coated to obtain a dry film with a thickness of 200 nm as the third P-type layer.
  • CB chlorobenzene
  • Step 4 Mix chlorobenzene and n-butanol in a 4:1 volume ratio as a mixed solvent, dissolve the fullerene electron acceptor material PC 71 BM in the mixed solvent, and spin on the P-type layer.
  • the N-type layer with a thickness of 60 nm is obtained by coating.
  • Step 5 Dissolve [9,9-dioctylfluorene-9,9-bis(N,N-dimethylaminopropyl)fluorene] (PFN) in methanol, and spin-coating on the N-type layer A buffer layer with a thickness of 8 nm is obtained.
  • Step 6 Vacuum thermally evaporate silver with a thickness of 100 nm on the buffer layer as a negative electrode.
  • the new self-filtering narrow-spectrum response organic photodetector has a device structure including a substrate 1, a positive Electrode 2, P-type layer 3, N-type layer 4, buffer layer 6, and negative electrode 5.
  • the substrate 1 is glass; the positive electrode 2 is indium tin oxide (ITO); the P-type layer 3 is a multilayer P-type layer structure, and the first P-type layer material is polythiophene and its derivatives.
  • (3-hexylthiophene) (P3HT) the film thickness is 100nm
  • the second P-type layer material is fluorobenzothiadiazole-based material PffBT4T-2OD, the film thickness is 50nm
  • the third P-type layer material is naphththiadiazole Type material NT812, film thickness 50nm
  • fourth P-type layer material is diketopyrrolopyrrole material DT-PDPP2T-TT, film thickness 3500nm
  • fifth P-type layer material is thienothiophene dione material PBDB-T- SF, film thickness of 50nm
  • sixth P-type layer material is benzodithiophene material PTB7-Th, film thickness of 50nm.
  • the sixth P-type layer is in direct contact with the N-type layer, and the first to fifth P-type layers are not in direct contact with the N-type layer;
  • the material of the N-type layer 4 is a non-fullerene electron acceptor material IEICO-4F,
  • the film thickness is 150nm;
  • the negative electrode 5 is silver;
  • the buffer layer 6 is a water-alcohol-soluble polymer material [9,9-dioctylfluorene-9,9-bis(N,N-dimethylamine) Propyl)fluorene] (PFN), the film thickness is 8nm; the band gaps of the first to fifth P-type layer materials are wider than the N-type layer material IEICO-4F.
  • the method for preparing the organic photodetector includes the following steps:
  • Step 1 The glass substrate is ultrasonically cleaned with acetone, micron-scale semiconductor special detergent, deionized water, and isopropanol in sequence, and dried with dry nitrogen for use.
  • Step 2 Using a magnetron sputtering method, a positive electrode ITO is prepared on the substrate with a thickness of 150 nm.
  • Step 3 The P-type layer material poly(3-hexylthiophene) (P3HT) is used as the host material, and the fluorinated phenyl azide (S-FPA) is used as the crosslinking agent to crosslink the host material with the
  • the agent is mixed according to the mass ratio of 10:1, dissolved in chlorobenzene (CB), and prepared into a mixed solution.
  • the mixed solution is spin-coated on the ITO, irradiated by an ultraviolet lamp for 6 minutes, and then washed with a solvent to obtain a thickness of 100nm Dry the film, as the first P-type layer, dissolve the P-type layer material PffBT4T-2OD in the solvent o-dichlorobenzene (o-DCB), and spin-coating on the first P-type layer to obtain a dry film with a thickness of 50 nm, As the second P-type layer, the P-type layer material NT812 was dissolved in the solvent chlorobenzene (CB), and then spin-coated on the second P-type layer to obtain a dry film with a thickness of 50 nm.
  • o-DCB solvent o-dichlorobenzene
  • P Type layer material DT-PDPP2T-TT is dissolved in chloroform (CF) solvent, and spin-coated on the third P-type layer to obtain a dry film with a thickness of 3500nm
  • the P-type layer material PBDB-T -SF is dissolved in o-dichlorobenzene (o-DCB), a dry film with a thickness of 50nm is obtained by spin coating on the fourth P-type layer.
  • o-DCB o-dichlorobenzene
  • the P-type layer material PTB7-Th is dissolved In an o-xylene (o-xy) solvent, spin-coated on the fifth P-type layer to obtain a dry film with a thickness of 50 nm as the sixth P-type layer.
  • o-xy o-xylene
  • Step 4 Mix chlorobenzene and n-butanol in a volume ratio of 3:1 as a mixed solvent, dissolve the non-fullerene electron acceptor material IEICO-4F in the mixed solvent, and pass it on the P-type layer.
  • An N-type layer with a thickness of 150 nm was produced by spin coating.
  • Step 5 Dissolve [9,9-dioctylfluorene-9,9-bis(N,N-dimethylaminopropyl)fluorene] (PFN) in methanol, and spin-coating on the N-type layer A buffer layer with a thickness of 8 nm is obtained.
  • Step 6 Vacuum thermally evaporate silver with a thickness of 100 nm on the buffer layer as a negative electrode.
  • Example 3 adding a buffer layer 6 between the positive electrode 2 and the P-type layer 3, as follows:
  • the novel self-filtering narrow-spectrum response organic photodetector the device structure of which sequentially includes a substrate 1. , Positive electrode 2, buffer layer 6, P-type layer 3, N-type layer 4, buffer layer 6, and negative electrode 5.
  • the substrate 1 is glass; the positive electrode 2 is indium tin oxide (ITO); the P-type layer 3 is a multilayer P-type layer structure, and the first P-type layer material is polythiophene and its derivatives. (3-hexylthiophene) (P3HT), the film thickness is 150nm, the second P-type layer is made of naphththiadiazole material NT812, the film thickness is 800nm, the second P-type layer is in direct contact with the N-type layer, the first P The N-type layer is not in direct contact with the N-type layer; the material of the N-type layer 4 is the non-fullerene electron acceptor material IEICO-4F with a film thickness of 150 nm; the negative electrode 5 is silver; the positive electrode 2 and P The material of the buffer layer 6 between the type layers 3 is a water-alcohol-soluble polymer material PEDOT:PSS with a thickness of 40nm; the material of the buffer layer 6 between the N-type layer 4 and the negative electrode
  • the method for preparing the organic photodetector includes the following steps:
  • Step 1 The glass substrate is ultrasonically cleaned with acetone, micron-scale semiconductor special detergent, deionized water, and isopropanol in sequence, and dried with dry nitrogen for use.
  • Step 2 Magnetron sputtering positive electrode ITO on the glass substrate with a thickness of 150nm.
  • Step 3 Spin-coating poly(3,4-ethylenedioxythiophene)-polystyrene sulfonic acid (PEDOT:PSS) on the positive electrode ITO with a thickness of 40nm. After the spin-coating is completed, place it on a heating table at 150°C for heating At least 20min.
  • PEDOT:PSS poly(3,4-ethylenedioxythiophene)-polystyrene sulfonic acid
  • Step 4 The P-type layer material poly(3-hexylthiophene) (P3HT) is used as the host material, and the fluorinated phenyl azide (S-FPA) is used as the cross-linking agent to cross-link the host material with the
  • the agent was mixed according to a mass ratio of 10:1, dissolved in chlorobenzene (CB), and prepared into a mixed solution.
  • the mixed solution was spin-coated on the PEDOT:PSS, irradiated with an ultraviolet lamp for 6 minutes, and then washed with a solvent to obtain a thickness of A dry film of 100-2000nm is used as the first P-type layer, and then chlorobenzene (CB) and o-dichlorobenzene (o-DCB) are mixed at a volume ratio of 1:1, as a mixed solvent, and naphththiadiazole
  • CB chlorobenzene
  • o-DCB o-dichlorobenzene
  • the similar material NT812 is dissolved in the mixed solvent, and a dry film with a thickness of 800 nm is obtained by spin coating on the first P-type layer as the second P-type layer.
  • Step 5 Dissolve the non-fullerene electron acceptor material IEICO-4F in the solvent chloroform (CF), and spin-coating on the P-type layer to form a dry film with a thickness of 150 nm as the N-type layer.
  • CF solvent chloroform
  • Step 6 Dissolve [9,9-dioctylfluorene-9,9-bis(N,N-dimethylaminopropyl)fluorene] (PFN) in solvent methanol, and spin-coat on the N-type layer A dry film with a thickness of 8 nm was prepared as a buffer layer.
  • Step 7 The metal electrode Ag is evaporated and deposited on the surface of the buffer layer by means of thermal evaporation at a vacuum of 1 ⁇ 10 -6 mbar, with a thickness of 60-200 nm.
  • Example 8 adding a buffer layer 6 between the positive electrode 2 and the P-type layer 3, as follows: As shown in Figure 3, the novel self-filtering narrow-spectrum response organic photodetector, the device structure of which in turn includes a substrate 1. , Positive electrode 2, buffer layer 6, P-type layer 3, N-type layer 4 and negative electrode 5.
  • the substrate 1 is glass; the positive electrode 2 is indium tin oxide (ITO); the P-type layer 3 is a multilayer P-type layer structure, and the first P-type layer material is polythiophene and its derivatives. (3-hexylthiophene) (P3HT), the film thickness is 150nm, the second P-type layer material is diketopyrrolopyrrole material DT-PDPP2T-TT, the film thickness is 1400nm, the third P-type layer material is benzodithiophene Material PTB7-Th, film thickness 200nm, where the third P-type layer is in direct contact with the N-type layer, the first P-type layer and the second P-type layer are not in direct contact with the N-type layer; the N-type layer 4 is made of non- Fullerene-based electron acceptor material IEICO-4F, with a film thickness of 150nm; the negative electrode 5 is silver; the buffer layer 6 between the positive electrode 2 and the P-type layer 3 is made of
  • the method for preparing the organic photodetector includes the following steps:
  • Step 1 The glass substrate is ultrasonically cleaned with acetone, micron-scale semiconductor special detergent, deionized water, and isopropanol in sequence, and dried with dry nitrogen for use.
  • Step 2 Using a magnetron sputtering method, a positive electrode ITO is prepared on the substrate with a thickness of 150 nm.
  • Step 3 Spin-coating poly(3,4-ethylenedioxythiophene)-polystyrene sulfonic acid (PEDOT:PSS) on the positive electrode ITO with a thickness of 40nm. After the spin-coating is completed, place it on a heating table at 150°C for heating At least 20min.
  • PEDOT:PSS poly(3,4-ethylenedioxythiophene)-polystyrene sulfonic acid
  • Step 4 The P-type layer material poly(3-hexylthiophene) (P3HT) is used as the host material, and the fluorinated phenyl azide (S-FPA) is used as the cross-linking agent to cross-link the host material with the
  • the agent is mixed according to the mass ratio of 10:1, dissolved in chlorobenzene (CB), and prepared as a mixed solution.
  • the mixed solution is spin-coated on the ITO, irradiated with an ultraviolet lamp for 6 minutes, and then washed with a solvent to obtain a thickness of 150nm Dry the film as the first P-type layer, and then dissolve the P-type layer material DT-PDPP2T-TT in a chloroform (CF) solvent, and spin-coating on the first P-type layer to obtain a dry film with a thickness of 1400 nm as the first P-type layer.
  • CF chloroform
  • P-type layer material PTB7-Th is dissolved in o-xylene (o-xy) solvent, and then spin-coated on the second P-type layer to obtain a dry film with a thickness of 200 nm, which is used as the third P Type layer.
  • o-xy o-xylene
  • Step 5 Mix chlorobenzene and n-butanol in a volume ratio of 3:1 as a mixed solvent, dissolve the non-fullerene electron acceptor material IEICO-4F in the mixed solvent, and pass it on the P-type layer.
  • An N-type layer with a thickness of 150 nm was produced by spin coating.
  • Step 6 Vacuum thermal evaporation of silver with a thickness of 100 nm on the N-type layer as a negative electrode.
  • the new self-filtering narrow-spectrum response organic photodetector has a device structure including a substrate 1, a positive electrode 2, a P-type layer 3, N-type layer 4, buffer layer 6, and negative electrode 5.
  • the substrate 1 is glass; the positive electrode 2 is indium tin oxide (ITO); the P-type layer 3 is a multilayer P-type layer structure, and the first P-type layer is made of P-type layer material poly(3-hexylthiophene) ) (P3HT) and P-type layer material poly(2,7-carbazole) (PCDTBT) blending composition, film thickness 150nm, the second P-type layer material is naphththiadiazole-based material NT812, film thickness 800nm, where The second P-type layer is in direct contact with the N-type layer, and the first P-type layer is not in direct contact with the N-type layer; the material of the N-type layer 4 is a non-fullerene electron acceptor material IEICO-4F with a film thickness of 150 nm;
  • the negative electrode 5 is silver; the material of the buffer layer 6 is a water-alcohol-soluble polymer material [9,9-dioctylfluorene-9,
  • the method for preparing the organic photodetector includes the following steps:
  • Step 1 The glass substrate is ultrasonically cleaned with acetone, micron-scale semiconductor special detergent, deionized water, and isopropanol in sequence, and dried with dry nitrogen for use.
  • Step 2 Using a magnetron sputtering method, a positive electrode ITO is prepared on the substrate with a thickness of 150 nm.
  • Step 3 Mix the P-type layer material poly(3-hexylthiophene) (P3HT) and the P-type layer material poly(2,7-carbazole) (PCDTBT) according to the mass ratio of 1:1, together as the main material, Fluorinated phenyl azide (S-FPA) is used as a cross-linking agent.
  • P3HT P-type layer material poly(3-hexylthiophene)
  • PCDTBT P-type layer material poly(2,7-carbazole)
  • S-FPA Fluorinated phenyl azide
  • the host material and the cross-linking agent are mixed at a mass ratio of 10:1 and dissolved in chlorobenzene (CB) to prepare a mixed Solution, spin-coated the mixed solution on the ITO, irradiated with an ultraviolet lamp for 6 minutes, and then washed with a solvent to obtain a dry film with a thickness of 150nm as the first P-type layer, and then chlorobenzene (CB) and o-dichlorobenzene ( o-DCB) Mix at a volume ratio of 1:1 as a mixed solvent, dissolve the naphthothiadiazole material NT812 in the mixed solvent, and spin-coating on the first P-type layer to obtain a dry layer with a thickness of 800 nm Thin film, as the second P-type layer.
  • CB chlorobenzene
  • o-DCB o-dichlorobenzene
  • Step 4 Dissolve the non-fullerene electron acceptor material IEICO-4F in a chloroform (CF) solvent, and spin-coating on the P-type layer to form an N-type layer with a thickness of 150 nm.
  • CF chloroform
  • Step 5 Dissolve [9,9-dioctylfluorene-9,9-bis(N,N-dimethylaminopropyl)fluorene] (PFN) in methanol, and spin-coating on the N-type layer A buffer layer with a thickness of 8 nm is obtained.
  • Step 6 Vacuum thermally evaporate silver with a thickness of 100 nm on the buffer layer as a negative electrode.
  • Example 3 replacing the N-type layer material from IEICO-4F to a non-fullerene electron acceptor material COi8DFIC.
  • Example 7 Repeat Example 7 and replace the N-type layer material from ITIC to the non-fullerene electron acceptor material Y6.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

一种新型自滤光窄光谱响应有机光探测器,依次包括基底(1)、正电极(2)、P型层(3)、N型层(4)和负电极(5),其中P型层(3)可进一步分为单层P型层结构和多层P型层结构,在单层P型层结构中,P型层材料的带隙宽于N型层材料;在多层P型层结构中,不与N型层(4)直接接触的P型层材料中至少有一种P型层材料的带隙宽于N型层材料和/或直接与N型层(4)接触的P型层材料,正电极(2)与P型层(3)之间和/或N型层(4)与负电极(5)之间增加缓冲层(6)。该有机光探测器在无需带通滤光片情况下实现探测光谱波段的自由选择和探测光谱半峰宽的自由调节。

Description

一种新型自滤光窄光谱响应有机光探测器 技术领域
本发明涉及有机光电子领域,具体涉及一种新型自滤光窄光谱响应有机光探测器。
背景技术
光探测器具有将光信号转变为电信号的功能,是成像系统的重要组成部分,在环境监测,信息通讯和生物传感等众多领域有着重要应用。依据其光谱响应带宽,光探测器通常可划分为宽响应及窄响应光探测器。宽响应光探测器通常被集成化,用于低光条件下的多色光探测,而窄响应光探测器通常应用于单色成像或可见盲近红外光探测。近年来,有机光电领域的蓬勃发展为有机光探测器的开发注入新的活力,有机光电材料可以通过结构的改变调节带隙,进而调节其光电响应范围。随着研究的不断深入,越来越多的有机光电材料问世,然而,受限于其较宽的吸收范围,目前报道的有机光探测器多为宽响应光探测器。
对于窄响应光探测器而言,光谱选择性是至关重要的。为了提高有机光探测器的光谱选择性,通常的做法是将宽光谱响应范围的光探测器与二向色棱镜或者带通光学滤光器耦合在一起,然而,这种做法会增加有机光探测器的结构复杂性和制作成本。此外,滤波系统的使用会产生额外的光学界面,降低图像清晰度,给实现更高像素密度的成像系统造成了障碍。
上述这些问题对开发出新型器件结构的有机光探测提出了迫切需求。目前真正实现窄响应有机光探测器的实例为数不多,实现方式主要包括利用分子间电荷转移态[Nature Communications,2017,8,15421]或采用电荷收集窄化(CCN)操控电荷收集[Nature Communications,2015,6,6343]。但是上述这些器件结构都是基于传统的本体共混异质结结构,即将P型的电子给体材料与N型的电子受体材料共混在一起作为活性层,而这种共混的活性层对光场和电荷的可控性较差,需要同时增加额外的技术手段来调控活性层内量子效率或光场分布,例如制成2微米以上的超厚活性层来控制电荷传输和收集、插入超薄金属层制成光学微腔结构、或外加超高偏压,才能实现窄光谱响应功能,而这种基于给受体共混的本体异质结结构的有机光探测器,通常暗电流较高,响应度较低,探测率较低,且需要配以严苛的技术手段才能实现窄光谱响应功能,而且适用于这种器件结构可实现窄光谱响应的有机光电材料较少,使得其普适性较差,较难通过单一器件结构实现探测光谱波段的自由选择和探测光谱半峰宽的自由调节,这些不足限制了其实际应用。此外最近也有文献报道尝试利用P、N分层的器件结构实现窄响应探测功能[J.Mater.Chem.C,2019,7,4770],但是在该器件中与N型层直接接触的P型层也是由多种P型层材料共混而成,并且其未注意到P型层和N型层材料之间的带隙关系,其所用共混P型层材料的带隙皆窄于N型层材料,因而入射光子已完全被P型层吸收,只能利用深层的P型层材料产生激子,N型层材料只是作为激子分离界面而存在,不会对长波长的EQE产生贡献,这使其对光子和电荷的利用率较低,因而其在-4V的偏压下也只有3%的外量子效率(EQE),更重要的是这种不合理的激子利用使其在可见光范 围内仍有较高的EQE响应,即未能实现真正意义上的窄光谱响应功能,同时这种带隙关系的匹配使其无法通过N型层厚度的调节实现探测光谱波段和半峰宽的调节。
发明内容
为解决现有技术的缺点和不足之处,发明了一种新型自滤光窄光谱响应有机光探测器。以一种新型的器件结构,在无需带通光学滤光器或额外技术手段的条件下实现探测光谱波段的自由选择和探测光谱半峰宽的自由调节。
本发明的另一目的在于提供一种新型自滤光窄光谱响应有机光探测器的制备方法。以简单的制备方法,实现光谱选择性探测功能。这为开发出特定区域响应的有机光探测器提供了一种简单的策略和理论指导。
本发明目的通过以下技术方案实现:
一种新型自滤光窄光谱响应有机光探测器,其器件结构依次包括基底、正电极、P型层、N型层和负电极,所述P型层为单层P型层结构或多层P型层结构;当所述P型层为单层P型层结构时,P型层材料的带隙宽于N型层材料;当所述P型层为多层P型层结构时,在所述多层P型层结构中,不与N型层直接接触的P型层材料中至少有一种P型层材料的带隙宽于N型层材料、不与N型层直接接触的P型层材料中至少有一种P型层材料的带隙宽于直接与N型层接触的P型层材料、或不与N型层直接接触的P型层材料中至少有一种P型层材料的带隙宽于直接与N型层接触的P型层材料且宽于N型层材料。
进一步地,所述正电极与P型层之间、所述N型层与负电极之间可单独或同时设置有缓冲层,所述缓冲层材料可为水醇溶类界面材料(如3,4-乙撑二氧噻吩混合聚苯乙烯磺酸盐(PEDOT:PSS)、[9,9-二辛基芴-9,9-双(N,N-二甲基胺丙基)芴](PFN)、溴代-[9,9-二辛基芴-9,9-双(N,N-二甲基胺丙基)芴](PFN-Br)、聚{2,7-[9,9'-双(N,N-二甲基丙基-3-胺基)芴]-交替-5,5'-[2,6-(双-2-噻吩基)-N,N'-二异辛基-1,4,5,8-萘并酰亚胺]}(PNDI-F3N)、聚{2,7-[9,9'-双(N,N-二甲基丙基-3-乙基溴化铵)芴]-交替-5,5'-[2,6-(双-2-噻吩基)-N,N'-二异辛基-1,4,5,8-萘并酰亚胺]}(PNDI-F3N-Br)、聚乙氧基乙烯亚胺(PEIE))、水醇溶富勒烯衍生物材料(如N,N'-二乙基-5-苯基-5-[(6,6')-C71-戊基]-1-胺、双-[6,6]-苯基-C61-戊基磷酸二乙酯)、有机N型材料(如2,9-二甲基-4,7-联苯-1,10-邻二氮杂菲(BCP)、苯并[1,2-a:4,5-a']二唑嗪-3,3'-(9,9-二辛基-9H-芴-2,7-二基)双[6,7,14,15-四基]氯盐)、金属氧化物类材料(如氧化钼(MoO 3)、氧化镍(NiO)、氧化锌(ZnO)、氧化铜(CuO)、氧化锡(SnO 2)、氧化锌镁(MZO)、氧化锌铝(AZO))中的任意一种及组合,或具有类似功能的材料。
进一步地,所述P型层材料为含有下列共轭结构的共轭聚合物或共轭小分子材料。
Figure PCTCN2019121781-appb-000001
Figure PCTCN2019121781-appb-000002
其中,R 1-R 6可为具有1~40个碳原子的直链、支链或者环状烷基链,其中一个或多个碳原子可被氧原子、烯基、炔基、芳基、羟基、氨基、羰基、羧基、酯基、氰基或硝基取代,氢原子可以被氟原子、氯原子、溴原子、碘原子取代;R 1-R 6也可以为取代基,如氢原子、氟原子、氯原子、氰基、硝基、噻吩基、苯基。优选的,所述P型层材料为聚噻吩及其衍生物类材料
Figure PCTCN2019121781-appb-000003
进一步地,所述N型层材料为富勒烯类电子受体材料(如PC 71BM、PC 61BM、ICBA等)、非富勒烯类电子受体材料(如ITIC、COi8DFIC、IEICO-4F、IEICO、Y6、N2200等)中的任意一种以上,或具有类似功能的材料。优选的,所述N型层材料为富勒烯类电子受体材料PC 71BM、非富勒烯类电子受体材料ITIC、IEICO-4F、IEICO、COi8DFIC、Y6。
Figure PCTCN2019121781-appb-000004
进一步地,所述正电极材料为氧化铟锡(ITO)、石墨烯、金属纳米线、高导3,4-乙撑二氧噻吩混合聚苯乙烯磺酸盐、纳米银浆、金属网格或碳纳米管,或具有类似功能的材料。优选的,所述正电极材料为氧化铟锡(ITO)。
进一步地,所述负电极材料为锂、镁、钙、锶、钡、铝、铜、金、银、铟中的任意一种或合金,或具有类似功能的材料。优选的,所述负电极材料为银。
进一步地,所述基底为玻璃、聚合物、陶瓷、金属中的任意一种或多种复合物,或具有类似功能的材料。优选的,所述基底为玻璃。
一种新型自滤光窄光谱响应有机光探测器的制备方法包括以下步骤:
步骤1:将基底清洗、干燥;
步骤2:在所述基底表面制备正电极;
步骤3:在所述正电极上制备缓冲层(此步骤可省略);
步骤4:在所述正电极或缓冲层上制备P型层;
步骤5:在所述P型层上制备N型层;
步骤6:在所述N型层上制备缓冲层(此步骤可省略);
步骤7:在所述N型层或缓冲层上制备负电极。
所述各步骤的制备方式包括旋涂、喷涂、刮涂、丝网印刷、喷墨打印、水转印、电化学沉积、真空蒸发镀膜、电子束蒸发或磁控溅射中的任意一种或多种的组合使用。
优选的,步骤1包括:将玻璃基底依次用丙酮、微米级半导体专用洗涤剂、去离子水、异丙醇超声清洗,干燥氮气吹干后备用。
进一步的,步骤2包括:在玻璃基板上磁控溅射ITO,厚度为130~150nm。
进一步的,步骤3包括:在正电极ITO上旋涂水醇溶聚合物类材料聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸(PEDOT:PSS),厚度为20~80nm,旋涂完毕后放在150℃的加热台上加热至少20min。
进一步的,步骤4包括:将聚噻吩及其衍生物类材料聚(3-己基噻吩)(P3HT)作为主体材料,将氟化苯基叠氮化物(S-FPA)作为交联剂,将所述主体材料与所述交联剂按照10:1~1:10的质量比进行混合,溶于氯苯(CB)中,制备成混合溶液,将混合溶液旋涂于PEDOT:PSS上,经紫外灯辐照2~20min,后经溶剂清洗得到厚度为100~2000nm的干燥薄膜,作为第一P型层,而后将氯苯(CB)与邻二氯苯(o-DCB)按1:1的体积比混合,作混合溶剂,将萘并噻二唑类材料类材料NT812溶于所述混合溶剂中,在第一P型层上经旋涂得到厚度为800~2000nm的干燥薄膜,作为第二P型层。
进一步的,步骤5包括:将非富勒烯类电子受体材料IEICO-4F溶于溶剂氯仿(CF)中,在P型层上经旋涂制得厚度为10~1000nm的干燥薄膜,作为N型层。
进一步的,步骤6包括:将水醇溶聚合物类材料PFN溶于溶剂甲醇中,在N型层上经旋涂制得厚度为5~10nm的干燥薄膜,作为缓冲层。
进一步的,步骤7包括:将金属电极Ag通过热蒸镀的方式在真空度为1×10 -6mbar条件下蒸发沉积到缓冲层表面,厚度为60~200nm。
以下列举本发明的制备方法:
一种新型自滤光窄光谱响应有机光探测器的制备方法,包括以下步骤:
步骤1:将基底清洗、干燥;
步骤2:在所述基底表面制备正电极;
步骤3:在所述正电极上制备缓冲层;
步骤4:在所述缓冲层上制备P型层;
步骤5:在所述P型层上制备N型层;
步骤6:在所述N型层上制备缓冲层;
步骤7:在所述缓冲层上制备负电极。
上述方法具体包括以下步骤:
(1)将玻璃基底依次用丙酮、微米级半导体专用洗涤剂、去离子水、异丙醇超声清洗,干燥氮气吹干后备用。
(2)在玻璃基板上磁控溅射正电极ITO,厚度为130~150nm。
(3)在正电极ITO上旋涂水醇溶聚合物类材料聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸(PEDOT:PSS),厚度为20~80nm,旋涂完毕后放在150℃的加热台上加热至少20min。
(4)将聚噻吩及其衍生物类材料聚(3-己基噻吩)(P3HT)作为主体材料,将氟化苯基叠氮化物(S-FPA)作为交联剂,将所述主体材料与所述交联剂按照10:1~1:10的质量比进行混合,溶于氯苯(CB)中,制备成混合溶液,将混合溶液旋涂于PEDOT:PSS上,经紫外灯辐照2~20min,后经溶剂清洗得到厚度为100~2000nm的干燥薄膜,作为第一P型层,而后将氯苯(CB)与邻二氯苯(o-DCB)按1:1的体积比混合,作混合溶剂,将萘并噻二唑类材料类材料NT812溶于所述混合溶剂中,在第一P型层上经旋涂得到厚度为800~2000nm的干燥薄膜,作为第二P型层。
(5)将非富勒烯类电子受体材料IEICO-4F溶于溶剂氯仿(CF)中,在P型层上经旋涂制得厚度为10~1000nm的干燥薄膜,作为N型层。
(6)将水醇溶聚合物类材料PFN溶于溶剂甲醇中,在N型层上经旋涂制得厚度为5~10nm的干燥薄膜,作为缓冲层。
(7)将金属电极Ag通过热蒸镀的方式在真空度为1×10 -6mbar条件下蒸发沉积到缓冲层表面,厚度为60~200nm。
一种新型自滤光窄光谱响应有机光探测器的制备方法,包括以下步骤:
步骤1:将基底清洗、干燥;
步骤2:在所述基底表面制备正电极;
步骤3:在所述正电极上制备P型层;
步骤4:在所述P型层上制备N型层;
步骤5:在所述N型层上制备缓冲层;
步骤6:在所述缓冲层上制备负电极。
上述方法包括以下步骤:
(1)将玻璃基底依次用丙酮、微米级半导体专用洗涤剂、去离子水、异丙醇超声清洗,干燥氮气吹干后备用。
(2)在玻璃基板上磁控溅射正电极ITO,厚度为130~150nm。
(3)将聚噻吩及其衍生物类材料聚(3-己基噻吩)(P3HT)作为主体材料,将氟化苯基叠氮化物类材料S-FPA作为交联剂,将所述主体材料与所述交联剂按照10:1~1:10的质量比进行混合,溶于氯苯(CB)中,制备成混合溶液,将混合溶液旋涂于ITO上,经紫外灯辐照2~20min,后经溶剂清洗得到厚度为100~2000nm的干燥薄膜,作为第一P型层,而后将氯苯 (CB)与邻二氯苯(o-DCB)按1:1的体积比混合,作混合溶剂,将萘并噻二唑类材料类NT812溶于所述混合溶剂中,在第一P型层上经旋涂得到厚度为800~2000nm的干燥薄膜,作为第二P型层。
(4)将非富勒烯类电子受体材料IEICO-4F溶于溶剂氯仿(CF)中,在P型层上经旋涂制得厚度为10~1000nm的干燥薄膜,作为N型层。
(5)将水醇溶聚合物类材料PFN溶于溶剂甲醇中,在N型层上经旋涂制得厚度为5~10nm的干燥薄膜,作为缓冲层。
(6)将金属电极Ag通过热蒸镀的方式在真空度为1×10 -6mbar条件下蒸发沉积到缓冲层表面,厚度为60~200nm。
一种新型自滤光窄光谱响应有机光探测器的制备方法,包括以下步骤:
步骤1:将基底清洗、干燥;
步骤2:在所述基底表面制备正电极;
步骤3:在所述正电极上制备缓冲层;
步骤4:在所述缓冲层上制备P型层;
步骤5:在所述P型层上制备N型层;
步骤6:在所述N型层上制备负电极。
上述方法包括以下步骤:
(1)将玻璃基底依次用丙酮、微米级半导体专用洗涤剂、去离子水、异丙醇超声清洗,干燥氮气吹干后备用。
(2)在玻璃基板上磁控溅射正电极ITO,厚度为130~150nm。
(3)在正电极ITO上旋涂水醇溶聚合物类材料聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸(PEDOT:PSS),厚度为20~80nm,旋涂完毕后放在150℃的加热台上加热至少20min。
(4)将聚噻吩及其衍生物类材料聚(3-己基噻吩)(P3HT)作为主体材料,将氟化苯基叠氮化物类材料S-FPA作为交联剂,将所述主体材料与所述交联剂按照10:1~1:10的质量比进行混合,溶于氯苯(CB)中,制备成混合溶液,将混合溶液旋涂于PEDOT:PSS上,经紫外灯辐照2~20min,后经溶剂清洗得到厚度为100~2000nm的干燥薄膜,作为第一P型层,而后将二酮吡咯并吡咯类材料DT-PDPP2T-TT溶于氯仿(CF)溶剂中,在第一P型层上经旋涂得到厚度为1000~2000nm的干燥薄膜,作为第二P型层,最后将苯并二噻吩类材料PTB7-Th溶于邻-二甲苯(o-xy)溶剂中,在第二P型层上经旋涂得到厚度为100~500nm的干燥薄膜,作为第三P型层。
(5)将氯苯与正丁醇按3:1的体积比混合,作混合溶剂,将非富勒烯类电子受体材料IEICO-4F溶于所述混合溶剂中,在P型层上经旋涂制得厚度为10~1000nm的干燥薄膜,作为N型层。
(6)将金属电极Ag通过热蒸镀的方式在真空度为1×10 -6mbar条件下蒸发沉积到N型层表面,厚度为60~200nm。
一种新型自滤光窄光谱响应有机光探测器的制备方法,包括以下步骤:
步骤1:将基底清洗、干燥;
步骤2:在所述基底表面制备正电极;
步骤3:在所述正电极上制备P型层;
步骤4:在所述P型层上制备N型层;
步骤5:在所述N型层上制备负电极。
上述方法包括以下步骤:
(1)将玻璃基底依次用丙酮、微米级半导体专用洗涤剂、去离子水、异丙醇超声清洗,干燥氮气吹干后备用。
(2)在玻璃基板上磁控溅射正电极ITO,厚度为130~150nm。
(3)将聚噻吩及其衍生物类材料聚(3-己基噻吩)(P3HT)作为主体材料,将氟化苯基叠氮化物类材料S-FPA作为交联剂,将所述主体材料与所述交联剂按照10:1~1:10的质量比进行混合,溶于氯苯(CB)中,制备成混合溶液,将混合溶液旋涂于ITO上,经紫外灯辐照2~20min,后经溶剂清洗得到厚度为100~2000nm的干燥薄膜,作为第一P型层,而后将二酮吡咯并吡咯类材料DT-PDPP2T-TT溶于氯仿(CF)溶剂中,在第一P型层上经旋涂得到厚度为1000~2000nm的干燥薄膜,作为第二P型层,最后将苯并二噻吩类材料PTB7-Th溶于邻-二甲苯(o-xy)溶剂中,在第二P型层上经旋涂得到厚度为100~500nm的干燥薄膜,作为第三P型层。
(4)将氯苯与正丁醇按3:1的体积比混合,作混合溶剂,将非富勒烯类电子受体材料IEICO-4F溶于所述混合溶剂中,在P型层上经旋涂制得厚度为10~1000nm的干燥薄膜,作为N型层。
(5)将金属电极Ag通过热蒸镀的方式在真空度为1×10 -6mbar条件下蒸发沉积到N型层表面,厚度为60~200nm。
上述方法中,所述各步骤的制备方式包括旋涂、喷涂、刮涂、丝网印刷、喷墨打印、水转印、电化学沉积、真空蒸发镀膜、电子束蒸发或磁控溅射中的任意一种或多种的组合使用,分层制备。
与现有技术相比,本发明具有以下优点及有益效果:
(1)相较于传统的将P型电子给体材料与N型电子受体材料共混的本体异质结活性层结构而言,本发明中的PN分层结构增强了对电荷传输及光场分布的可控性,通过简单地选取带隙匹配的P型和N型材料,便可实现探测光谱波段的自由选择和半峰宽的自由调节。
(2)本发明中的有机光探测器不同于传统的给受体共混本体异质结活性层结构,采用PN分层结构,可有效避免P型材料、N型材料与相反极性电极直接接触,可有效压制暗电流,提高探测率。
(3)现有的近似PN分层的器件结构,其实是将带隙不同的P型层材料共混起来,这使得不同的P型层材料都与N型层直接接触,无法有效操控光生激子分布,并且P型层和N型 层材料之间的带隙关系也很不合理,其所用共混P型层材料的带隙皆窄于N型层材料,因而入射光子已完全被P型层吸收,只能利用深层的P型层材料产生激子,N型层材料只是作为激子分离界面而存在,不会对长波长的EQE产生贡献,这使其对光子和电荷的利用率较低,因而其在-4V的偏压下也只有3%的外量子效率(EQE),更重要的是这种不合理的激子利用使其在可见光范围内仍有较高的EQE响应,即未能实现真正意义上的窄光谱响应功能,同时这种带隙关系的匹配使其无法通过N型层厚度的调节实现探测光谱波段和半峰宽的调节。本发明中的新型结构有机光探测器则与这种近似PN分层的器件结构完全不同,通过合理利用P型层材料与N型层材料的带隙关系以及控制各层在器件中的分布关系,主要利用N型层产生电荷,使外量子效率大幅增加,并且可以有效压制响应峰前面的探测光谱,实现真正意义上的窄响应探测功能。
(4)本发明中的新型结构有机光探测器,可以通过简单调节P型层与N型层的厚度实现探测光谱波段的自由选择和半峰宽的自由调节。
(5)本发明中的新型结构有机光探测器具有自滤光性,无需外加光学滤光器或额外技术手段即可实现窄带响应,结构简单,有效降低信号失真。
(6)本发明中的有机光探测器,其单一的器件结构可适用于几乎所有的有机光电材料,具有普适性。
附图说明
图1示出本发明实施例1、实施例8中有机光探测器结构示意图。
图2示出本发明实施例2-10及实施例13-15中有机光探测器结构示意图。
图3示出本发明实施例12中有机光探测器结构示意图。
图4示出本发明实施例11中有机光探测器结构示意图。
图5示出本发明实施例2中有机光探测器的外量子效率光谱曲线。
图6示出本发明实施例3中有机光探测器的外量子效率光谱曲线。
图7示出本发明实施例4中有机光探测器的外量子效率光谱曲线。
图8示出本发明实施例5中有机光探测器的标准化外量子效率光谱曲线。
图9示出本发明实施例6-8中有机光探测器的标准化外量子效率光谱曲线。
图10示出本发明实施例2中所用P型层材料与N型层材料的标准化吸收光谱图。
图11示出本发明实施例3中所用P型层材料与N型层材料的标准化吸收光谱图。
图12示出本发明实施例6中所用P型层材料与N型层材料的标准化吸收光谱图。
图13示出本发明实施例7中所用P型层材料与N型层材料的标准化吸收光谱图。
具体实施方式
为了更清楚地说明本发明,下面结合优选实施例和附图对本发明做进一步的说明。附图中相似的部件以相同的附图标记进行表示。本领域技术人员应当理解,下面所具体描述的内容是说明性的而非限制性的,不应以此限制本发明的保护范围。
实施例1
如图1所示,新型自滤光窄光谱响应有机光探测器,其器件结构依次包括基底1、正电极2、P型层3、N型层4和负电极5。
所述基底1为玻璃;所述正电极2为氧化铟锡(ITO);所述P型层3为单层P型层结构,P型层材料为萘并噻二唑类材料NT812,膜厚1200nm;所述N型层4材料为非富勒烯类电子受体材料IEICO-4F,膜厚150nm;所述负电极5为银。P型层材料NT812的带隙宽于N型层材料IEICO-4F。
上述有机光探测器制备方法包括以下步骤:
步骤1:将玻璃基底依次用丙酮、微米级半导体专用洗涤剂、去离子水、异丙醇超声清洗,干燥氮气吹干后备用。
步骤2:采用磁控溅射方法,在基材上制备正电极ITO,厚度150nm。
步骤3:将氯苯(CB)与邻二氯苯(o-DCB)按1:1的体积比混合,作混合溶剂,萘并噻二唑类材料NT812溶于所述混合溶剂中,在正电极ITO上经旋涂制得厚度为1200nm的P型层。
步骤4:将非富勒烯类电子受体材料IEICO-4F溶于氯仿(CF)溶剂中,在P型层上经旋涂制得厚度为150nm的N型层。
步骤5:在N型层上真空热蒸镀厚度为100nm的银作负电极。
实施例2
重复实施例1,在其N型层4和负电极5之间增加缓冲层6,具体如下:如图2所示,新型自滤光窄光谱响应有机光探测器,其器件结构依次包括基底1、正电极2、P型层3、N型层4、缓冲层6和负电极5。
所述基底1为玻璃;所述正电极2为氧化铟锡(ITO);所述P型层3为单层P型层结构,P型层材料为萘并噻二唑类材料NT812;所述N型层4材料为非富勒烯类电子受体材料IEICO-4F,膜厚150nm;所述负电极5为银;所述缓冲层6材料为水醇溶聚合物类材料[9,9-二辛基芴-9,9-双(N,N-二甲基胺丙基)芴](PFN),膜厚8nm;P型层材料NT812的带隙宽于N型层材料IEICO-4F。
上述有机光探测器制备方法包括以下步骤:
步骤1:将玻璃基底依次用丙酮、微米级半导体专用洗涤剂、去离子水、异丙醇超声清洗,干燥氮气吹干后备用。
步骤2:采用磁控溅射方法,在基材上制备正电极ITO,厚度150nm。
步骤3:将氯苯(CB)与邻二氯苯(o-DCB)按1:1的体积比混合,作混合溶剂,将萘并噻二唑类材料NT812溶于所述混合溶剂中,在正电极ITO上经旋涂制得不同厚度的P型层。
步骤4:将非富勒烯类电子受体材料IEICO-4F溶于氯仿(CF)溶剂中,在P型层上经旋涂制得厚度为150nm的N型层。
步骤5:将[9,9-二辛基芴-9,9-双(N,N-二甲基胺丙基)芴](PFN)溶于甲醇中,在N型层上经旋涂制得厚度为8nm的缓冲层。
步骤6:在缓冲层上真空热蒸镀厚度为100nm的银作负电极。
对实施例2中制备的新型自滤光窄光谱响应有机光探测器进行相关性能测试,其在无外加偏压下测试得到的外量子效率(EQE)光谱曲线如图5所示,所用P型层材料与N型层材料的标准化吸收光谱图如图10所示,需要说明的是,本专利中所述材料带隙(Eg)与材料吸收边(λ)有如下对应关系:Eg=1240/λ,所述材料吸收边(λ)为该材料吸收光谱曲线下降沿切线与x轴的交点。可以看到,当NT812薄膜的厚度为800nm时,其EQE响应主要出现在800~1000nm波段,同时在500~600nm波段伴有较弱响应。这是由于,800nm前的入射光绝大部分被P型层材料NT812吸收,而其膜厚足够厚,被这部分入射光激发所产生的激子在有限寿命内未能扩散给受体界面处,因而无法解离成自由电荷产生EQE响应;而长波长的入射光则可以穿透较长距离到达受体及毗邻受体的深层给体处,受这部分入射光激发产生的激子可以有效扩散到给受体界面并解离成自由电荷,因而在800~1000nm处出现较强的EQE响应。同时,由于P型层材料NT812在500~600nm的吸收系数较低,这部分入射光在该给体厚度条件下未能被给体完全过滤掉,而到达受体处并在该波段产生了较弱的EQE响应;而当NT812薄膜的厚度为1200nm时,其在500~600nm波段的EQE响应也可以被进一步压制。
实施例3
重复实施例2,另外增加一层P型层,组成多层P型层结构,具体如下:如图2所示,新型自滤光窄光谱响应有机光探测器,其器件结构依次包括基底1、正电极2、P型层3、N型层4、缓冲层6和负电极5。
所述基底1为玻璃;所述正电极2为氧化铟锡(ITO);所述P型层(3)为多层P型层结构,第一P型层材料为聚噻吩及其衍生物类材料聚(3-己基噻吩)(P3HT),膜厚150nm,第二P型层材料为萘并噻二唑类材料NT812,膜厚800nm,其中第二P型层与N型层直接接触,第一P型层不与N型层直接接触;所述N型层4材料为非富勒烯类电子受体材料IEICO-4F,膜厚150nm;所述负电极5为银;所述缓冲层6材料为水醇溶聚合物类材料[9,9-二辛基芴-9,9-双(N,N-二甲基胺丙基)芴](PFN),膜厚8nm;第一P型层材料P3HT的带隙宽于第二P型层材料NT812和N型层材料IEICO-4F。
上述有机光探测器制备方法包括以下步骤:
步骤1:将玻璃基底依次用丙酮、微米级半导体专用洗涤剂、去离子水、异丙醇超声清洗,干燥氮气吹干后备用。
步骤2:采用磁控溅射方法,在基材上制备正电极ITO,厚度150nm。
步骤3:将P型层材料聚(3-己基噻吩)(P3HT)作为主体材料,将氟化苯基叠氮化物(S-FPA)作为交联剂,将所述主体材料与所述交联剂按照10:1的质量比进行混合,溶于氯苯(CB)中,制备成混合溶液,将混合溶液旋涂于ITO上,经紫外灯辐照6min,后经溶剂清洗得到厚度为150nm的干燥薄膜,作为第一P型层,而后将氯苯(CB)与邻二氯苯(o-DCB)按1:1的体积比混合,作混合溶剂,将萘并噻二唑类材料NT812溶于所述混合溶剂中,在第一P型层上经旋涂得到厚度为800nm的干燥薄膜,作为第二P型层。
步骤4:非富勒烯类电子受体材料IEICO-4F溶于氯仿(CF)溶剂中,在P型层上经旋涂制得厚度为150nm的N型层。
步骤5:将[9,9-二辛基芴-9,9-双(N,N-二甲基胺丙基)芴](PFN)溶于甲醇中,在N型层上经旋涂制得厚度为8nm的缓冲层。
步骤6:在缓冲层上真空热蒸镀厚度为100nm的银作负电极。
对实施例3中制备的新型自滤光窄光谱响应有机光探测器进行相关性能测试,其在无外加偏压下测试得到的外量子效率(EQE)光谱曲线如图6所示,所用P型层材料与N型层材料的标准化吸收光谱图如图11所示,相较于实施例2中800nmNT812作单层P型层而言,在增加一层P型层P3HT后,实施例3的EQE中500~600nm波段的响应被进一步压制,而800~1000nm波段的响应保持不变。这是由于,所述P型层材料聚(3-己基噻吩)(P3HT)吸收范围主要在400~600nm波段,这一波段的入射光被其吸收产生激子,但由于其未与N型层材料直接接触,激子不能进一步有效分离产生自由电荷,故该波段入射光被过滤掉而不产生光电响应,因而具有自滤光作用;所述交联剂氟化苯基叠氮化物(S-FPA)的作用是使主体材料聚(3-己基噻吩)(P3HT)交联,使其不被后层所用溶剂洗掉或共混于NT812中,进一步避免了其与N型层材料的直接接触。
实施例4
重复实施例3,将其中缓冲层材料由PFN更换为金属氧化物类材料氧化锌(ZnO),膜厚30nm。对实施例4中制备的新型自滤光窄光谱响应有机光探测器进行相关性能测试,在不同外加偏压下测试得到的外量子效率(EQE)光谱曲线如图7所示,可以看到,其具有明显的光电倍增效果。
实施例5
重复实施例3,改变N型层材料IEICO-4F的厚度。对实施例5中制备的新型自滤光窄光谱响应有机光探测器进行相关性能测试,在无外加偏压下测试得到的标准化外量子效率光谱曲线如图8所示,可以看到,本发明中新型自滤光窄光谱响应有机光探测器,可以通过调节N型材料层的厚度,实现探测光谱波段的自由选择。
实施例6
重复实施例3,将其N型层材料由IEICO-4F更换为非富勒烯类电子受体材料IEICO。对实施例6中制备的新型自滤光窄光谱响应有机光探测器进行相关性能测试,其在无外加偏压下测试得到的标准化外量子效率光谱曲线如图9所示,所用P型层材料与N型层材料的标准化吸收光谱图如图12所示。相较于实施例3而言,换用吸收边较实施例3进一步蓝移的N型层材料,可使探测光谱半峰宽进一步变窄。
实施例7
重复实施例3,将其N型层材料由IEICO-4F更换为非富勒烯类电子受体材料ITIC,同时将其第二P型层材料由NT812更换为噻吩并噻吩二酮类材料PBDB-T-SF。具体如下:如图2所示,新型自滤光窄光谱响应有机光探测器,其器件结构依次包括基底1、正电极2、P型 层3、N型层4、缓冲层6和负电极5。
所述基底1为玻璃;所述正电极2为氧化铟锡(ITO);所述P型层3为多层P型层结构,第一P型层材料为聚噻吩及其衍生物类材料聚(3-己基噻吩)(P3HT),膜厚150nm,第二P型层材料为噻吩并噻吩二酮类材料PBDB-T-SF,膜厚600nm,其中第二P型层与N型层直接接触,第一P型层不与N型层直接接触;所述N型层4材料为非富勒烯类电子受体材料ITIC,膜厚80nm;所述负电极5为银;所述缓冲层6材料为水醇溶聚合物类材料[9,9-二辛基芴-9,9-双(N,N-二甲基胺丙基)芴](PFN),膜厚8nm;第一P型层材料P3HT的带隙宽于第二P型层材料PBDB-T-SF和N型层材料ITIC。
上述有机光探测器制备方法包括以下步骤:
步骤1:将玻璃基底依次用丙酮、微米级半导体专用洗涤剂、去离子水、异丙醇超声清洗,干燥氮气吹干后备用。
步骤2:采用磁控溅射方法,在基材上制备正电极ITO,厚度150nm。
步骤3:将P型层材料聚(3-己基噻吩)(P3HT)作为主体材料,将氟化苯基叠氮化物(S-FPA)作为交联剂,将所述主体材料与所述交联剂按照10:1的质量比进行混合,溶于氯苯(CB)中,制备成混合溶液,将混合溶液旋涂于ITO上,经紫外灯辐照6min,后经溶剂清洗得到厚度为150nm的干燥薄膜,作为第一P型层,而后将P型层材料PBDB-T-SF溶于溶剂邻二氯苯(o-DCB)中,在第一P型层上经旋涂得到厚度为600nm的干燥薄膜,作为第二P型层。
步骤4:将非富勒烯类电子受体材料ITIC溶于氯仿(CF)溶剂中,在P型层上经旋涂制得厚度为80nm的N型层。
步骤5:将[9,9-二辛基芴-9,9-双(N,N-二甲基胺丙基)芴](PFN)溶于甲醇中,在N型层上经旋涂制得厚度为8nm的缓冲层。
步骤6:在缓冲层上真空热蒸镀厚度为100nm的银作负电极。
对实施例7中制备的新型自滤光窄光谱响应有机光探测器进行相关性能测试,其在无外加偏压下测试得到的标准化外量子效率(EQE)光谱曲线如图9所示,所用P型层材料与N型层材料的标准化吸收光谱图如图13所示,相较于实施例3而言,改变P型层材料和N型层材料,可以使探测光谱的波段随之移动。
实施例8
如图1所示,新型自滤光窄光谱响应有机光探测器,其器件结构依次包括基底1、正电极2、P型层3、N型层4和负电极5。
所述基底1为玻璃;所述正电极2为氧化铟锡(ITO);所述P型层3为多层P型层结构,第一P型层材料为聚噻吩及其衍生物类材料聚(3-己基噻吩)(P3HT),膜厚150nm,第二P型层材料为二酮吡咯并吡咯类材料DT-PDPP2T-TT,膜厚2000nm,第三P型层材料为苯并二噻吩类材料PTB7-Th,膜厚100nm,其中第三P型层与N型层直接接触,第一P型层、第二P型层不与N型层直接接触;所述N型层4材料为非富勒烯类电子受体材料IEICO-4F,膜厚150nm;所述负电极5为银;第一P型层材料P3HT的带隙宽于第三P型层材料PTB7-Th和 N型层材料IEICO-4F,第二P型层材料DT-PDPP2T-TT的带隙宽于N型层材料IEICO-4F。
上述有机光探测器制备方法包括以下步骤:
步骤1:将玻璃基底依次用丙酮、微米级半导体专用洗涤剂、去离子水、异丙醇超声清洗,干燥氮气吹干后备用。
步骤2:采用磁控溅射方法,在基材上制备正电极ITO,厚度150nm。
步骤3:将P型层材料聚(3-己基噻吩)(P3HT)作为主体材料,将氟化苯基叠氮化物(S-FPA)作为交联剂,将所述主体材料与所述交联剂按照10:1的质量比进行混合,溶于氯苯(CB)中,制备成混合溶液,将混合溶液旋涂于ITO上,经紫外灯辐照6min,后经溶剂清洗得到厚度为150nm的干燥薄膜,作为第一P型层,而后将P型层材料DT-PDPP2T-TT溶于氯仿(CF)溶剂中,在第一P型层上经旋涂得到厚度为2000nm的干燥薄膜,作为第二P型层,最后将P型层材料PTB7-Th溶于邻-二甲苯(o-xy)溶剂中,在第二P型层上经旋涂得到厚度为100nm的干燥薄膜,作为第三P型层。
步骤4:将氯苯与正丁醇按3:1的体积比混合,作混合溶剂,将非富勒烯类电子受体材料IEICO-4F溶于所述混合溶剂中,在P型层上经旋涂制得厚度为150nm的N型层。
步骤5:在N型层上真空热蒸镀厚度为100nm的银作负电极。
对实施例8中制备的新型自滤光窄光谱响应有机光探测器进行相关性能测试,其在-1V偏压下测试得到的标准化外量子效率(EQE)光谱曲线如图9所示,相较于实施例3而言,换用带隙较实施例3进一步变窄的P型层材料,可使探测光谱半峰宽进一步变窄。
实施例9
重复实施例8,在其N型层4和负电极5之间增加缓冲层6,同时将其N型层材料由IEICO-4F更换为富勒烯类电子受体材料PC 71BM,将其第三P型层材料由PTB7-Th更换为噻吩并噻二唑类材料PDDTT。具体如下:如图2所示,新型自滤光窄光谱响应有机光探测器,其器件结构依次包括基底1、正电极2、P型层3、N型层4、缓冲层6和负电极5。
所述基底1为玻璃;所述正电极2为氧化铟锡(ITO);所述P型层3为多层P型层结构,第一P型层材料为聚噻吩及其衍生物类材料聚(3-己基噻吩)(P3HT),膜厚150nm,第二P型层材料为二酮吡咯并吡咯类材料DT-PDPP2T-TT,膜厚1400nm,第三P型层材料为噻吩并噻二唑类材料PDDTT,膜厚200nm,其中第三P型层与N型层直接接触,第一P型层、第二P型层不与N型层直接接触;所述N型层4材料为富勒烯类电子受体材料PC 71BM,膜厚60nm;所述负电极5为银;所述缓冲层6材料为水醇溶聚合物类材料[9,9-二辛基芴-9,9-双(N,N-二甲基胺丙基)芴](PFN),膜厚8nm。第一P型层材料P3HT和第二P型层材料DT-PDPP2T-TT的带隙都宽于第三P型层材料PDDTT。
上述有机光探测器制备方法包括以下步骤:
步骤1:将玻璃基底依次用丙酮、微米级半导体专用洗涤剂、去离子水、异丙醇超声清洗,干燥氮气吹干后备用。
步骤2:采用磁控溅射方法,在基材上制备正电极ITO,厚度150nm。
步骤3:将P型层材料聚(3-己基噻吩)(P3HT)作为主体材料,将氟化苯基叠氮化物(S-FPA)作为交联剂,将所述主体材料与所述交联剂按照10:1的质量比进行混合,溶于氯苯(CB)中,制备成混合溶液,将混合溶液旋涂于ITO上,经紫外灯辐照6min,后经溶剂清洗得到厚度为150nm的干燥薄膜,作为第一P型层,而后将P型层材料DT-PDPP2T-TT溶于氯仿(CF)溶剂中,在第一P型层上经旋涂得到厚度为1400nm的干燥薄膜,作为第二P型层,最后将P型层材料PDDTT溶于氯苯(CB)溶剂中,在第二P型层上经旋涂得到厚度为200nm的干燥薄膜,作为第三P型层。
步骤4:将氯苯与正丁醇按4:1的体积比混合,作混合溶剂,将富勒烯类电子受体材料PC 71BM溶于所述混合溶剂中,在P型层上经旋涂制得厚度为60nm的N型层。
步骤5:将[9,9-二辛基芴-9,9-双(N,N-二甲基胺丙基)芴](PFN)溶于甲醇中,在N型层上经旋涂制得厚度为8nm的缓冲层。
步骤6:在缓冲层上真空热蒸镀厚度为100nm的银作负电极。
实施例10
重复实施例3,新增一些P型层,组成多层P型层结构,具体如下:如图2所示,新型自滤光窄光谱响应有机光探测器,其器件结构依次包括基底1、正电极2、P型层3、N型层4、缓冲层6和负电极5。
所述基底1为玻璃;所述正电极2为氧化铟锡(ITO);所述P型层3为多层P型层结构,第一P型层材料为聚噻吩及其衍生物类材料聚(3-己基噻吩)(P3HT),膜厚100nm,第二P型层材料为氟代苯并噻二唑类材料PffBT4T-2OD,膜厚50nm;第三P型层材料为萘并噻二唑类材料NT812,膜厚50nm,第四P型层材料为二酮吡咯并吡咯类材料DT-PDPP2T-TT,膜厚3500nm,第五P型层材料为噻吩并噻吩二酮类材料PBDB-T-SF,膜厚50nm;第六P型层材料为苯并二噻吩类材料PTB7-Th,膜厚50nm。其中第六P型层与N型层直接接触,第一至第五P型层不与N型层直接接触;所述N型层4材料为非富勒烯类电子受体材料IEICO-4F,膜厚150nm;所述负电极5为银;所述缓冲层6材料为水醇溶聚合物类材料[9,9-二辛基芴-9,9-双(N,N-二甲基胺丙基)芴](PFN),膜厚8nm;第一至第五P型层材料的带隙都宽于N型层材料IEICO-4F。
上述有机光探测器制备方法包括以下步骤:
步骤1:将玻璃基底依次用丙酮、微米级半导体专用洗涤剂、去离子水、异丙醇超声清洗,干燥氮气吹干后备用。
步骤2:采用磁控溅射方法,在基材上制备正电极ITO,厚度150nm。
步骤3:将P型层材料聚(3-己基噻吩)(P3HT)作为主体材料,将氟化苯基叠氮化物(S-FPA)作为交联剂,将所述主体材料与所述交联剂按照10:1的质量比进行混合,溶于氯苯(CB)中,制备成混合溶液,将混合溶液旋涂于ITO上,经紫外灯辐照6min,后经溶剂清洗得到厚度为100nm的干燥薄膜,作为第一P型层,将P型层材料PffBT4T-2OD溶于溶剂邻二氯苯(o-DCB)中,在第一P型层上经旋涂得到厚度为50nm的干燥薄膜,作为第二P型层,将P型层材料 NT812溶于溶剂氯苯(CB)中,在第二P型层上经旋涂得到厚度为50nm的干燥薄膜,作为第三P型层,将P型层材料DT-PDPP2T-TT溶于氯仿(CF)溶剂中,在第三P型层上经旋涂得到厚度为3500nm的干燥薄膜,作为第四P型层,将P型层材料PBDB-T-SF溶于溶剂邻二氯苯(o-DCB)中,在第四P型层上经旋涂得到厚度为50nm的干燥薄膜,作为第五P型层,将P型层材料PTB7-Th溶于邻-二甲苯(o-xy)溶剂中,在第五P型层上经旋涂得到厚度为50nm的干燥薄膜,作为第六P型层。
步骤4:将氯苯与正丁醇按3:1的体积比混合,作混合溶剂,将非富勒烯类电子受体材料IEICO-4F溶于所述混合溶剂中,在P型层上经旋涂制得厚度为150nm的N型层。
步骤5:将[9,9-二辛基芴-9,9-双(N,N-二甲基胺丙基)芴](PFN)溶于甲醇中,在N型层上经旋涂制得厚度为8nm的缓冲层。
步骤6:在缓冲层上真空热蒸镀厚度为100nm的银作负电极。
实施例11
重复实施例3,在其正电极2和P型层3之间增加缓冲层6,具体如下:如图4所示,新型自滤光窄光谱响应有机光探测器,其器件结构依次包括基底1、正电极2、缓冲层6、P型层3、N型层4、缓冲层6和负电极5。
所述基底1为玻璃;所述正电极2为氧化铟锡(ITO);所述P型层3为多层P型层结构,第一P型层材料为聚噻吩及其衍生物类材料聚(3-己基噻吩)(P3HT),膜厚150nm,第二P型层材料为萘并噻二唑类材料NT812,膜厚800nm,其中第二P型层与N型层直接接触,第一P型层不与N型层直接接触;所述N型层4材料为非富勒烯类电子受体材料IEICO-4F,膜厚150nm;所述负电极5为银;所述正电极2与P型层3之间的缓冲层6材料为水醇溶聚合物类材料PEDOT:PSS,膜厚40nm;N型层4与负电极5之间的缓冲层6材料为水醇溶聚合物类材料PFN,膜厚8nm。
上述有机光探测器制备方法包括以下步骤:
步骤1:将玻璃基底依次用丙酮、微米级半导体专用洗涤剂、去离子水、异丙醇超声清洗,干燥氮气吹干后备用。
步骤2:在玻璃基板上磁控溅射正电极ITO,厚度为150nm。
步骤3:在正电极ITO上旋涂聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸(PEDOT:PSS),厚度为40nm,旋涂完毕后放在150℃的加热台上加热至少20min。
步骤4:将P型层材料聚(3-己基噻吩)(P3HT)作为主体材料,将氟化苯基叠氮化物(S-FPA)作为交联剂,将所述主体材料与所述交联剂按照10:1的质量比进行混合,溶于氯苯(CB)中,制备成混合溶液,将混合溶液旋涂于PEDOT:PSS上,经紫外灯辐照6min,后经溶剂清洗得到厚度为100~2000nm的干燥薄膜,作为第一P型层,而后将氯苯(CB)与邻二氯苯(o-DCB)按1:1的体积比混合,作混合溶剂,将萘并噻二唑类材料NT812溶于所述混合溶剂中,在第一P型层上经旋涂得到厚度为800nm的干燥薄膜,作为第二P型层。
步骤5:将非富勒烯类电子受体材料IEICO-4F溶于溶剂氯仿(CF)中,在P型层上经旋 涂制得厚度为150nm的干燥薄膜,作为N型层。
步骤6:将[9,9-二辛基芴-9,9-双(N,N-二甲基胺丙基)芴](PFN)溶于溶剂甲醇中,在N型层上经旋涂制得厚度为8nm的干燥薄膜,作为缓冲层。
步骤7:将金属电极Ag通过热蒸镀的方式在真空度为1×10 -6mbar条件下蒸发沉积到缓冲层表面,厚度为60~200nm。
实施例12
重复实施例8,在其正电极2和P型层3之间增加缓冲层6,具体如下:如图3所示,新型自滤光窄光谱响应有机光探测器,其器件结构依次包括基底1、正电极2、缓冲层6、P型层3、N型层4和负电极5。
所述基底1为玻璃;所述正电极2为氧化铟锡(ITO);所述P型层3为多层P型层结构,第一P型层材料为聚噻吩及其衍生物类材料聚(3-己基噻吩)(P3HT),膜厚150nm,第二P型层材料为二酮吡咯并吡咯类材料DT-PDPP2T-TT,膜厚1400nm,第三P型层材料为苯并二噻吩类材料PTB7-Th,膜厚200nm,其中第三P型层与N型层直接接触,第一P型层、第二P型层不与N型层直接接触;所述N型层4材料为非富勒烯类电子受体材料IEICO-4F,膜厚150nm;所述负电极5为银;所述正电极2与P型层3之间的缓冲层6为水醇溶聚合物类材料聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸(PEDOT:PSS),膜厚40nm。
上述有机光探测器制备方法包括以下步骤:
步骤1:将玻璃基底依次用丙酮、微米级半导体专用洗涤剂、去离子水、异丙醇超声清洗,干燥氮气吹干后备用。
步骤2:采用磁控溅射方法,在基材上制备正电极ITO,厚度150nm。
步骤3:在正电极ITO上旋涂聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸(PEDOT:PSS),厚度为40nm,旋涂完毕后放在150℃的加热台上加热至少20min。
步骤4:将P型层材料聚(3-己基噻吩)(P3HT)作为主体材料,将氟化苯基叠氮化物(S-FPA)作为交联剂,将所述主体材料与所述交联剂按照10:1的质量比进行混合,溶于氯苯(CB)中,制备成混合溶液,将混合溶液旋涂于ITO上,经紫外灯辐照6min,后经溶剂清洗得到厚度为150nm的干燥薄膜,作为第一P型层,而后将P型层材料DT-PDPP2T-TT溶于氯仿(CF)溶剂中,在第一P型层上经旋涂得到厚度为1400nm的干燥薄膜,作为第二P型层,最后将P型层材料PTB7-Th溶于邻-二甲苯(o-xy)溶剂中,在第二P型层上经旋涂得到厚度为200nm的干燥薄膜,作为第三P型层。
步骤5:将氯苯与正丁醇按3:1的体积比混合,作混合溶剂,将非富勒烯类电子受体材料IEICO-4F溶于所述混合溶剂中,在P型层上经旋涂制得厚度为150nm的N型层。
步骤6:在N型层上真空热蒸镀厚度为100nm的银作负电极。
实施例13
重复实施例3,在其第一P型层内混入另外一种P型层材料:聚咔唑类材料聚(2,7-咔唑)(PCDTBT),将这两种P型层材料构成的共混薄膜作为新的第一P型层,具体如下:如图2 所示,新型自滤光窄光谱响应有机光探测器,其器件结构依次包括基底1、正电极2、P型层3、N型层4、缓冲层6和负电极5。
所述基底1为玻璃;所述正电极2为氧化铟锡(ITO);所述P型层3为多层P型层结构,第一P型层由P型层材料聚(3-己基噻吩)(P3HT)与P型层材料聚(2,7-咔唑)(PCDTBT)共混构成,膜厚150nm,第二P型层材料为萘并噻二唑类材料NT812,膜厚800nm,其中第二P型层与N型层直接接触,第一P型层不与N型层直接接触;所述N型层4材料为非富勒烯类电子受体材料IEICO-4F,膜厚150nm;所述负电极5为银;所述缓冲层6材料为水醇溶聚合物类材料[9,9-二辛基芴-9,9-双(N,N-二甲基胺丙基)芴](PFN),膜厚8nm;第一P型层中的P型层材料P3HT、PCDTBT的带隙都宽于第二P型层材料NT812和N型层材料IEICO-4F。
上述有机光探测器制备方法包括以下步骤:
步骤1:将玻璃基底依次用丙酮、微米级半导体专用洗涤剂、去离子水、异丙醇超声清洗,干燥氮气吹干后备用。
步骤2:采用磁控溅射方法,在基材上制备正电极ITO,厚度150nm。
步骤3:将P型层材料聚(3-己基噻吩)(P3HT)与P型层材料聚(2,7-咔唑)(PCDTBT)按照1:1的质量比混合,共同作为主体材料,将氟化苯基叠氮化物(S-FPA)作为交联剂,将所述主体材料与所述交联剂按照10:1的质量比进行混合,溶于氯苯(CB)中,制备成混合溶液,将混合溶液旋涂于ITO上,经紫外灯辐照6min,后经溶剂清洗得到厚度为150nm的干燥薄膜,作为第一P型层,而后将氯苯(CB)与邻二氯苯(o-DCB)按1:1的体积比混合,作混合溶剂,将萘并噻二唑类材料NT812溶于所述混合溶剂中,在第一P型层上经旋涂得到厚度为800nm的干燥薄膜,作为第二P型层。
步骤4:将非富勒烯类电子受体材料IEICO-4F溶于氯仿(CF)溶剂中,在P型层上经旋涂制得厚度为150nm的N型层。
步骤5:将[9,9-二辛基芴-9,9-双(N,N-二甲基胺丙基)芴](PFN)溶于甲醇中,在N型层上经旋涂制得厚度为8nm的缓冲层。
步骤6:在缓冲层上真空热蒸镀厚度为100nm的银作负电极。
实施例14
重复实施例3,将其N型层材料由IEICO-4F更换为非富勒烯类电子受体材料COi8DFIC。
实施例15
重复实施例7,将其N型层材料由ITIC更换为非富勒烯类电子受体材料Y6。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (9)

  1. 一种新型自滤光窄光谱响应有机光探测器,其特征在于,其器件结构依次包括基底(1)、正电极(2)、P型层(3)、N型层(4)和负电极(5),所述P型层为单层P型层结构或多层P型层结构;当所述P型层为单层P型层结构时,P型层材料的带隙宽于N型层材料;当所述P型层为多层P型层结构时,在所述多层P型层结构中,不与N型层直接接触的P型层材料中至少有一种P型层材料的带隙宽于N型层材料、不与N型层直接接触的P型层材料中至少有一种P型层材料的带隙宽于直接与N型层接触的P型层材料、或不与N型层直接接触的P型层材料中至少有一种P型层材料的带隙宽于直接与N型层接触的P型层材料且宽于N型层材料。
  2. 根据权利要求1所述的一种新型自滤光窄光谱响应有机光探测器,其特征在于,所述正电极(2)与P型层(3)之间、所述N型层(4)与负电极(5)之间单独或同时设置有缓冲层(6),所述缓冲层材料为水醇溶类界面材料;所述水醇溶类界面材料为3,4-乙撑二氧噻吩混合聚苯乙烯磺酸盐(PEDOT:PSS)、[9,9-二辛基芴-9,9-双(N,N-二甲基胺丙基)芴](PFN)、溴代-[9,9-二辛基芴-9,9-双(N,N-二甲基胺丙基)芴](PFN-Br)、聚{2,7-[9,9'-双(N,N-二甲基丙基-3-胺基)芴]-交替-5,5'-[2,6-(双-2-噻吩基)-N,N'-二异辛基-1,4,5,8-萘并酰亚胺]}(PNDI-F3N)、聚{2,7-[9,9'-双(N,N-二甲基丙基-3-乙基溴化铵)芴]-交替-5,5'-[2,6-(双-2-噻吩基)-N,N'-二异辛基-1,4,5,8-萘并酰亚胺]}(PNDI-F3N-Br)、聚乙氧基乙烯亚胺(PEIE))、水醇溶富勒烯衍生物材料(如N,N'-二乙基-5-苯基-5-[(6,6')-C71-戊基]-1-胺、双-[6,6]-苯基-C61-戊基磷酸二乙酯)、有机N型材料(如2,9-二甲基-4,7-联苯-1,10-邻二氮杂菲(BCP)、苯并[1,2-a:4,5-a']二唑嗪-3,3'-(9,9-二辛基-9H-芴-2,7-二基)双[6,7,14,15-四基]氯盐)、金属氧化物类材料(如氧化钼(MoO 3)、氧化镍(NiO)、氧化锌(ZnO)、氧化铜(CuO)、氧化锡(SnO 2)、氧化锌镁(MZO)、氧化锌铝(AZO)中的任意一种以上。
  3. 根据权利要求1所述的一种新型自滤光窄光谱响应有机光探测器,其特征在于,所述P型层材料为含有下列共轭结构的共轭聚合物或共轭小分子材料:
    Figure PCTCN2019121781-appb-100001
  4. 根据权利要求3所述的一种新型自滤光窄光谱响应有机光探测器,其特征在于,R 1-R 6为具有1~40个碳原子的直链、支链或者环状烷基链,其中一个或多个碳原子被氧原子、烯基、炔基、芳基、羟基、氨基、羰基、羧基、酯基、氰基或硝基取代,氢原子被氟原子、氯原子、溴原子、碘原子取代。
  5. 根据权利要求3所述的一种新型自滤光窄光谱响应有机光探测器,其特征在于,R 1-R 6为 取代基,包括氢原子、氟原子、氯原子、氰基、硝基、噻吩基或苯基。
  6. 根据权利要求1所述的一种新型自滤光窄光谱响应有机光探测器,其特征在于,所述N型层材料为富勒烯类电子受体材料或非富勒烯类电子受体材料;所述富勒烯类电子受体材料包括PC 71BM、PC 61BM、ICBA中的任意一种以上;所述非富勒烯类电子受体材料包括ITIC、COi8DFIC、IEICO-4F、IEICO、Y6、N2200中的任意一种以上;
    Figure PCTCN2019121781-appb-100002
  7. 根据权利要求1所述的一种新型自滤光窄光谱响应有机光探测器,其特征在于,所述正电极材料为氧化铟锡(ITO)、石墨烯、金属纳米线、高导3,4-乙撑二氧噻吩混合聚苯乙烯磺酸盐、纳米银浆、金属网格或碳纳米管。
  8. 根据权利要求1所述的一种新型自滤光窄光谱响应有机光探测器,其特征在于,所述负电极材料为锂、镁、钙、锶、钡、铝、铜、金、银、铟中的任意一种或合金。
  9. 根据权利要求1所述的一种新型自滤光窄光谱响应有机光探测器,其特征在于,所述基底为玻璃、聚合物、陶瓷、金属中的任意一种或多种复合物。
PCT/CN2019/121781 2019-05-28 2019-11-29 一种新型自滤光窄光谱响应有机光探测器 WO2020238108A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910451408.3A CN110534650B (zh) 2019-05-28 2019-05-28 一种自滤光窄光谱响应有机光探测器
CN201910451408.3 2019-05-28

Publications (1)

Publication Number Publication Date
WO2020238108A1 true WO2020238108A1 (zh) 2020-12-03

Family

ID=68659522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/121781 WO2020238108A1 (zh) 2019-05-28 2019-11-29 一种新型自滤光窄光谱响应有机光探测器

Country Status (2)

Country Link
CN (1) CN110534650B (zh)
WO (1) WO2020238108A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113540356A (zh) * 2021-06-08 2021-10-22 中国科学院大学 一种对于近红外光具有高探测率的自驱动有机光电探测器
CN114284436A (zh) * 2021-12-21 2022-04-05 广州光达创新科技有限公司 一种有机无机杂化的短波红外光电探测器及其所构成的阵列,以及相关制备方法
US20230171973A1 (en) * 2020-03-31 2023-06-01 Sumitomo Chemical Company, Limited Photodetector element

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102446165B1 (ko) * 2019-12-10 2022-09-23 경상국립대학교산학협력단 (아릴옥시)알킬기가 치환된 화합물 및 이를 이용하는 유기 전자 소자
WO2021118171A1 (ko) * 2019-12-10 2021-06-17 경상국립대학교산학협력단 (아릴옥시)알킬기가 치환된 화합물 및 이를 이용하는 유기 전자 소자
CN111682110B (zh) * 2020-05-13 2022-04-22 华南理工大学 一种含非富勒烯受体的近红外光谱响应聚合物光探测器件
CN112635676B (zh) * 2020-12-21 2023-12-19 广州光达创新科技有限公司 一种可见盲近红外窄带有机光电探测器
CN113972322B (zh) * 2021-09-29 2023-06-23 华南理工大学 一种高灵敏度自滤光多波段窄谱带响应有机光电探测器
CN117279465A (zh) * 2023-11-20 2023-12-22 浙江晶科能源有限公司 钙钛矿电池的制备方法、钙钛矿电池及钙钛矿叠层电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007009995A1 (de) * 2007-03-01 2008-09-04 Hahn-Meitner-Institut Berlin Gmbh Organische Solarzelle
CN105655491A (zh) * 2016-03-29 2016-06-08 上海大学 具有激子阻挡及太阳光增敏的一体式空穴传输层的有机太阳能电池及其制备方法
CN107591484A (zh) * 2017-09-01 2018-01-16 北京交通大学 一种兼具窄带及宽带光探测能力的倍增型有机光电探测器
CN108807688A (zh) * 2018-06-14 2018-11-13 中国科学院苏州纳米技术与纳米仿生研究所 一种长寿命的宽带倍增型有机光电探测器及制备方法
US20190058138A1 (en) * 2006-02-10 2019-02-21 Universal Display Corporation Organic electroluminescent materials and devices
CN109786560A (zh) * 2019-01-15 2019-05-21 苏州大学 基于光活性层与光学调控层协同效应的半透明有机太阳能电池及其应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10651409B2 (en) * 2012-07-20 2020-05-12 Nutech Ventures Narrowband nanocomposite photodetector
CN205564748U (zh) * 2016-03-22 2016-09-07 中国电子科技集团公司第三十八研究所 一种红斑响应探测器
CN108258121B (zh) * 2018-01-15 2021-03-02 苏州大学 有机无机复合自驱动光电探测器及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190058138A1 (en) * 2006-02-10 2019-02-21 Universal Display Corporation Organic electroluminescent materials and devices
DE102007009995A1 (de) * 2007-03-01 2008-09-04 Hahn-Meitner-Institut Berlin Gmbh Organische Solarzelle
CN105655491A (zh) * 2016-03-29 2016-06-08 上海大学 具有激子阻挡及太阳光增敏的一体式空穴传输层的有机太阳能电池及其制备方法
CN107591484A (zh) * 2017-09-01 2018-01-16 北京交通大学 一种兼具窄带及宽带光探测能力的倍增型有机光电探测器
CN108807688A (zh) * 2018-06-14 2018-11-13 中国科学院苏州纳米技术与纳米仿生研究所 一种长寿命的宽带倍增型有机光电探测器及制备方法
CN109786560A (zh) * 2019-01-15 2019-05-21 苏州大学 基于光活性层与光学调控层协同效应的半透明有机太阳能电池及其应用

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230171973A1 (en) * 2020-03-31 2023-06-01 Sumitomo Chemical Company, Limited Photodetector element
CN113540356A (zh) * 2021-06-08 2021-10-22 中国科学院大学 一种对于近红外光具有高探测率的自驱动有机光电探测器
CN113540356B (zh) * 2021-06-08 2024-04-05 中国科学院大学 一种对于近红外光具有高探测率的自驱动有机光电探测器
CN114284436A (zh) * 2021-12-21 2022-04-05 广州光达创新科技有限公司 一种有机无机杂化的短波红外光电探测器及其所构成的阵列,以及相关制备方法

Also Published As

Publication number Publication date
CN110534650A (zh) 2019-12-03
CN110534650B (zh) 2021-08-10

Similar Documents

Publication Publication Date Title
WO2020238108A1 (zh) 一种新型自滤光窄光谱响应有机光探测器
Liu et al. Challenges and recent advances in photodiodes-based organic photodetectors
Huang et al. Understanding and countering illumination-sensitive dark current: toward organic photodetectors with reliable high detectivity
Li et al. Graphene oxide modified hole transport layer for CH3NH3PbI3 planar heterojunction solar cells
US8158881B2 (en) Tandem photovoltaic cells
TWI645573B (zh) 具有激子障蔽性電荷載體濾波器之有機光敏性裝置
Wang et al. Three-phase morphology evolution in sequentially solution-processed polymer photodetector: toward low dark current and high photodetectivity
JP6024776B2 (ja) 有機光電変換素子、太陽電池及び光センサアレイ
TW201345010A (zh) 有機薄膜太陽電池
KR101543438B1 (ko) 페로브스카이트 태양전지 및 이의 제조 방법
WO2017115646A1 (ja) 光電変換素子および撮像装置
TWI612704B (zh) 利用方酸施體添加物的聚合物光伏打裝置
WO2023169068A1 (zh) 一种基于金属诱导有机界面层的有机光电器件及制备方法
KR102192918B1 (ko) 금속 산화물층을 포함하는 정공 전달층, 그를 포함하는 페로브스카이트 태양전지 및 그의 제조방법
Cai et al. Using ultra-high molecular weight hydrophilic polymer as cathode interlayer for inverted polymer solar cells: Enhanced efficiency and excellent air-stability
CN113410391B (zh) 一种具有共混层的有机太阳电池和制备方法
Adhikary et al. Enhanced Performance of PDPP3T/${\rm PC} _ {60}{\rm BM} $ Solar Cells Using High Boiling Solvent and UV-Ozone Treatment
TWI660532B (zh) 具有激子障蔽性電荷載體濾波器之有機光敏性裝置
TWI684296B (zh) 具有採用高玻璃轉換溫度材料之激子障蔽性電荷載體濾波器之穩定性有機光敏性裝置
CN112635676B (zh) 一种可见盲近红外窄带有机光电探测器
Kobori et al. Effect of annealing-induced oxidation of molybdenum oxide on organic photovoltaic device performance
Li et al. Interface passivation and electron transport improvement of polymer solar cells through embedding a polyfluorene layer
KR101572061B1 (ko) 금 나노입자가 분산되는 버퍼층을 포함하는 유기태양전지 및 그 제조방법
KR102255409B1 (ko) 이중층 유기태양전지 및 그 제조방법
KR20150054550A (ko) 복층 유기광전소자 및 그의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19931352

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19931352

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/05/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19931352

Country of ref document: EP

Kind code of ref document: A1