WO2020238050A1 - 一种层绞式可融冰光纤复合架空地线 - Google Patents

一种层绞式可融冰光纤复合架空地线 Download PDF

Info

Publication number
WO2020238050A1
WO2020238050A1 PCT/CN2019/117671 CN2019117671W WO2020238050A1 WO 2020238050 A1 WO2020238050 A1 WO 2020238050A1 CN 2019117671 W CN2019117671 W CN 2019117671W WO 2020238050 A1 WO2020238050 A1 WO 2020238050A1
Authority
WO
WIPO (PCT)
Prior art keywords
stranded
layer
optical fiber
ice
fiber composite
Prior art date
Application number
PCT/CN2019/117671
Other languages
English (en)
French (fr)
Inventor
田庚
金榕
伍光磊
朱兴
濮家辉
程磊
Original Assignee
江苏亨通电力智网科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏亨通电力智网科技有限公司 filed Critical 江苏亨通电力智网科技有限公司
Publication of WO2020238050A1 publication Critical patent/WO2020238050A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/08Several wires or the like stranded in the form of a rope
    • H01B5/10Several wires or the like stranded in the form of a rope stranded around a space, insulating material, or dissimilar conducting material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • H01B7/22Metal wires or tapes, e.g. made of steel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/28Protection against damage caused by moisture, corrosion, chemical attack or weather
    • H01B7/282Preventing penetration of fluid, e.g. water or humidity, into conductor or cable
    • H01B7/285Preventing penetration of fluid, e.g. water or humidity, into conductor or cable by completely or partially filling interstices in the cable
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/32Insulated conductors or cables characterised by their form with arrangements for indicating defects, e.g. breaks or leaks
    • H01B7/324Insulated conductors or cables characterised by their form with arrangements for indicating defects, e.g. breaks or leaks comprising temperature sensing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/42Insulated conductors or cables characterised by their form with arrangements for heat dissipation or conduction
    • H01B7/428Heat conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B9/00Power cables
    • H01B9/005Power cables including optical transmission elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B9/00Power cables
    • H01B9/008Power cables for overhead application

Definitions

  • the invention relates to the technical field of power transmission, in particular to a stranded ice-melting optical fiber composite overhead ground wire.
  • optical fiber composite overhead ground wires is a special power cable that integrates the functions of communication lines and overhead ground wires. It integrates optical fiber communication functions and power transmission line lightning protection functions. Utilize the unique primary power line resources of the power system to form a communication network.
  • the conventional OPGW is similar in structure to the commonly used steel stranded wire and has the characteristics of good structure and high strength. Its outer strands transmit lightning current, and optical fiber signal transmission lines are set inside.
  • optical fiber composite overhead ground wires is increasingly adopted on a large scale.
  • Ice coating is a relatively widespread natural phenomenon, which mostly occurs in winter and early spring.
  • the ambient temperature is close to freezing point, -5-0°C, wind speed is 1-15m/s, and air humidity is not less than 85%, the precipitation caused by the intersection of cold and hot air currents will produce icing, in addition, it is in a "supercooling" state
  • the water droplets freeze on the surface of the conductor to form ice.
  • the frequency of icing is high in the areas where the micro-climate conditions are distributed and where the hot and cold air flow meet.
  • the OPGW structure determines that the consequences of OPGW icing are different from those of wires.
  • ice coating exceeds the load-bearing range of the optical cable, causing ground wire disconnection; icing causes OPGW tensile transition and causes internal optical fiber breaks, which affects communication transmission quality; OPGW disconnection causes line jumps or towers The tower falls under the action of unbalanced tension; the ice-coated optical cable dances by the wind, and the distance between the cable and the wire is reduced. When the distance is less than the safe distance, the wire may discharge to the optical cable to produce a high-temperature arc, causing accidents such as ground wire breakage.
  • the ground wire melting work is based on the existing transmission line ice melting method.
  • the commonly used ice melting methods mainly include: thermodynamic ice melting method, natural deicing method, mechanical deicing method, etc. Thermal deicing method. This method is the most widely used and effective.
  • the basic principle is to use transmission current or short-circuit current to convert electrical energy into heat and melt the ice on the surface of the wire. Including DC ice melting method, AC ice melting method, etc.
  • the technical problem to be solved by the present invention is to provide a self-contained ice melting circuit during ice melting, the power transmission wire can be energized in normal operation, and the normal operation of the wire is not affected, the ice melting efficiency is high, and the cable strength is a layered twistable ice melting circuit.
  • the present invention provides a layer-stranded ice-melting optical fiber composite overhead ground wire, which includes a central reinforcement, an inner twisted layer, a protective tube, and an outer twisted layer.
  • the inner twisted layer includes an optical unit and several The first insulated wire, the first insulated wire and the light unit are twisted on the central reinforcement, the protective tube is an aluminum tube, the aluminum tube is wrapped around the inner stranded layer, and the outer stranded layer It is a metal monofilament, and a plurality of the metal monofilaments are evenly twisted outside the protective tube.
  • the central reinforcement is a second insulated wire or an aluminum-clad steel wire.
  • first insulated wire and the second insulated wire include an aluminum or copper wire core and a polytetrafluoroethylene insulation sheath.
  • the optical unit is specifically a stainless steel optical unit, and the stainless steel optical unit includes a stainless steel protective tube and a multimode optical fiber arranged inside.
  • thermometer optical fiber which is twisted on the central reinforcing member.
  • the aluminum tube has a seamless structure.
  • the metal monofilament is an aluminum-clad steel monofilament or a road alloy monofilament.
  • the gap between the aluminum tube and the first insulated wire is less than 0.1 mm.
  • the wall thickness deviation of the aluminum layer of the aluminum tube is less than 5% of the designed wall thickness.
  • the layer-stranded ice-melting optical fiber composite overhead ground wire of the present invention has the beneficial effects that it can form an ice-melting circuit by itself when the ice is melted, and has low electromagnetic interference, low inductance, and low energy consumption.
  • the power transmission wire can be energized in normal operation without affecting the normal operation of the wire, the ice melting efficiency is high, and the cable strength is high.
  • Figure 1 is a schematic structural diagram of Embodiment 1 of the present invention.
  • Fig. 2 is a schematic structural diagram of the second embodiment of the present invention.
  • the first embodiment of a layer-stranded ice-melting optical fiber composite overhead ground wire of the present invention includes a central reinforcement 10, an inner twisted layer 20, a protective tube 30, and an outer twisted layer 40.
  • the inner twisted layer 20 twisted on the central reinforcement 10 to form the cable core, the protective tube 30 and the outer stranded layer 40 constitute the sheath structure of the cable core, the central reinforcement 10 is at the center of the cable core, and the inner stranded layer 20 is surrounded by an appropriate stranding pitch Strengthening the core layer stranding, by controlling the excess length of the optical fiber in the inner stranding layer 20 and adjusting the twisting pitch, the optical fiber composite overhead ground wire can have good tensile performance and temperature characteristics, ensuring that the optical fiber composite overhead ground wire in this embodiment
  • the inner twisted layer 20 includes an optical unit 21 and a plurality of first insulated wires 22, and the first insulated wire 22 and the optical unit 21 are twisted in On the central reinforcement 10, in this embodiment, the central reinforcement 10, the first insulated wire
  • the protective tube 30 is The aluminum tube is corrosion-resistant and light in weight.
  • the aluminum tube is wrapped around the inner stranded layer 20 to effectively protect the inner stranded layer 20 while not excessively increasing the weight of the optical fiber composite overhead ground wire. Excellent bending performance and easy installation.
  • it is preferred that the aluminum tube has a seamless structure.
  • the seamless aluminum tube has uniform metal flow at the end and end, high dimensional accuracy, good fatigue resistance, consistent mechanical properties, no laminar structure, and pressure-bearing Good performance
  • the outer twisted layer 40 is a metal monofilament 41
  • a number of the metal monofilaments 41 are evenly twisted outside the protective tube 30, and the light unit 21 is separated from the metal monofilament 41 of the outer twisted layer 40
  • the central reinforcement 10 is the second insulated wire 11. Therefore, there are 6 insulated wires in this embodiment. When the line is iced, one end of the 6 insulated wires is divided into two parts.
  • the other end is connected to the positive and negative poles of the DC power supply, and a DC current of a suitable voltage is passed to the insulated wire to generate Joule heat as the heat required for ice melting.
  • the first insulated wire 22 is attached for protection
  • the inner wall of the tube 30 can directly transmit the heat generated by the insulated wire to the protection tube 30.
  • the protection tube 30 is an aluminum tube, it has good heat dissipation performance and quickly dissipates the heat to the outer periphery of the optical fiber composite overhead ground wire to achieve the ice melting effect;
  • the gap between the aluminum tube and the first insulated wire 22 is less than 0.1 mm to ensure that the Joule heat generated by the first insulated wire 22 is quickly and effectively conducted to the aluminum tube.
  • the aluminum The wall thickness deviation of the aluminum layer of the tube is less than 5% of the design wall thickness.
  • the wall thickness of the aluminum tube is uniform to ensure that the aluminum tube is evenly heated, that is, to ensure that the part of the aluminum tube in contact with the light unit 21 is also at the same temperature as the other parts of the aluminum tube due to heat conduction.
  • the first insulated wire 22 and the second insulated wire 11 include an aluminum or copper wire core 111 and a polytetrafluoroethylene insulation sheath 112, which can meet the requirements of 27.5KV DC voltage without breakdown and at the same time It satisfies the ability of long-distance DC transmission and Joule heat ice melting. Since the seamless aluminum tube is sheathed outside the first insulated wire 22 to protect it, it effectively improves the service life and weather resistance of the insulated wire.
  • the aluminum tube has excellent electrical conductivity and also It can be used as the protective layer of the first insulated wire 22, participates in the calculation of the short-circuit current capacity in the calculation, and can quickly transfer the charge during a short circuit, reduce local burns of the optical cable, and improve the electrical performance of the ice-meltable OPGW.
  • the central reinforcement 10 is an aluminum-clad steel wire 12, which can make full use of its high mechanical strength to withstand the tension of the ground wire.
  • the unit 21 is specifically a stainless steel optical unit 21.
  • the stainless steel optical unit 21 includes a stainless steel protection tube 211 and a multimode optical fiber 212 arranged inside.
  • the stainless steel protection tube 211 adopts a loose tube structure to mechanically buffer and prevent the multimode optical fiber 212.
  • the lateral pressure of the stranded optical fiber composite overhead ground wire and the function of heat insulation protection; the stainless steel protection tube 211 is continuously filled with suitable water blocking objects (not shown), which can effectively prevent moisture or water from penetrating into the light Unit 21 does not damage the optical fiber transmission characteristics and service life.
  • This embodiment also includes a temperature measuring optical fiber 50 which is twisted on the central reinforcement 10 and mainly measures the temperature change of the cable. The temperature can be detected online when an icing climate occurs during OPGW operation. And feedback from time to time. During the implementation of ice melting, the melting temperature can be detected and fed back to the information center to realize the intelligent online monitoring of the ice coating and melting process of the OPGW line, and realize the intelligent system of power grid line monitoring, ice detection alarm and ice melting.
  • the metal monofilament 41 is an aluminum-clad steel monofilament or an aluminum alloy monofilament
  • the stranding material adopts a high-strength aluminum-clad steel monofilament or an aluminum alloy monofilament to improve the overall breaking force of the OPGW. It can significantly reduce the sag of the OPGW erection; the aluminum-clad steel and the inner aluminum tube are the same material, which reduces the electrochemical corrosion between the previous stainless steel and the aluminum-clad steel. It has excellent corrosion resistance and excellent electrical conductivity. The short-circuit current capacity can be further improved.
  • the layer-stranded ice-melting optical fiber composite overhead ground wire of the present invention When the layer-stranded ice-melting optical fiber composite overhead ground wire of the present invention is in operation, line monitoring and ice-coating detection are realized through the temperature-measuring optical fiber. When it is detected that the line needs to be ice-melted, the first and second insulated wires are added Applying a DC current with a suitable voltage, the resistance Joule heat generated by the insulated wire is transferred to the surface of the OPGW through heat. When the temperature rises above the melting point of the ice, the ice begins to melt and gradually fall off the wire to achieve the purpose of melting ice.
  • This structure does not require the OPGW to form a loop with the earth, a ground wire on the same pole, or a transmission wire, and it can form a self-melting circuit when melting ice, and the transmission wire can be energized in normal operation without affecting the normal operation of the wire.
  • the insulated wires can also supply power to the relay amplifiers and sensors that may be in the line, without changing the traditional OPGW installation method and related line facilities.
  • the temperature measurement optical fiber realizes an intelligent system integrating power grid line monitoring, ice detection and alarm, and ice melting.
  • the traditional AC ice melting method directly uses power from the power grid.
  • the 300MW generator set in the power grid can meet the reactive power demand of 200km long line ice melting. Since the wire inductance is much larger than the resistance, the reactive power consumption of AC ice melting is large, and the power capacity required for ice melting is 5-20 times that of DC, which is far beyond the system's tolerance range and may affect system stability. In addition, a huge induced current will be generated during power-on.
  • the built-in insulated wire of the present invention enables the OPGW to have the advantages of low electromagnetic interference, low inductance, and low energy consumption after the flow of the OPGW; it does not require the OPGW to form a loop with the earth, the ground wire on the same pole or the power transmission wire when melting ice. It can form a self-melting circuit, and the transmission wire can be energized in normal operation without affecting the normal operation of the wire.

Abstract

一种层绞式可融冰光纤复合架空地线,包括中心加强件(10)、内绞层(20)、保护管(30)和外绞层(40),所述内绞层(20)包括光单元(21)和若干第一绝缘导线(22),所述第一绝缘导线(22)和光单元(21)绞合在所述中心加强件(10)上,所述保护管(30)为铝管,所述铝管包覆于所述内绞层(20)外,所述外绞层(40)为金属单丝,若干根所述金属单丝均匀绞合在所述保护管(30)外,绝缘导线内置,融冰通流时可自成融冰回路,电磁干扰小、电感小、能耗低,且输电导线可以正常运行通电,不影响导线正常工作,融冰效率高,中心加强件(10)保证线缆强度大。

Description

一种层绞式可融冰光纤复合架空地线 技术领域
本发明涉及电力传输技术领域,具体涉及一种层绞式可融冰光纤复合架空地线。
背景技术
现有技术中,光纤复合架空地线Optical fiber composite overhead ground wires(OPGW)是一种集通信线和架空地线功能于一体的电力特种光缆,集光纤通信功能与输电线路避雷功能于一体,它利用电力系统所特有的一次电力线路资源构成通信网络。常规的OPGW与常用的钢绞线结构相近,具有结构好强度高的特点,其外股线传递雷电流,内部设置有光纤信号传输线,随着电力系统光纤通信网络的建设,光纤复合架空地线(OPGW)越来越大规模采用。
覆冰是一种分布较为广泛的自然现象,多发生于冬季和早春。在环境温度接近冰点,-5-0℃,风速为1-15m/s,空气湿度不低于85%的条件下,冷热气流交汇引起的降水产生覆冰,此外,处于“过冷却”状态的水滴在导体表面冻结形成覆冰。在微气象条件分布区域及冷热气流交汇地区覆冰发生频率高。OPGW结构决定了OPGW覆冰产生的后果与导线不同。可归纳为以下几个方面:覆冰超过光缆承重范围,引发地线断线事故;覆冰导致OPGW拉伸过渡引起内部光纤断点,通讯传输质量受影响;OPGW断线引起线路跳间或者塔受不平衡张力作用倒塔;覆冰光缆受风吹舞动,与导线的档距减小,小于安全距离时,导线可能向光缆放电产生高温电弧,造成地线烙断等事故。通常情况下,架空地线与导线处于同一环境条件下,包括湿度、湿度、风速等影响因素基本一致,负荷电流流过输电导线,产生一部分热抵御冰冻,在一定程度上能减轻其覆冰程度。架 空地线正常运行时没有电流通进,因此,地线上的覆冰程度比输电导线严重。地线融冰工作基于现有的输电导线融冰方法展开,常用的融冰方法主要包括:热力学融冰法、自然除冰法、机械除冰法等。热力除冰法。这种方法应用最广且效果显著。基本原理是利用传输电流或者短路电流将电能转换成热能,融化导线表面的覆冰。包括直流融冰法、交流融冰法等。
发明内容
本发明要解决的技术问题是提供一种融冰时可自成融冰回路,输电导线可以正常运行通电,不影响导线正常工作,融冰效率高,线缆强度大的层绞式可融冰光纤复合架空地线。
为了解决上述技术问题,本发明提供了一种层绞式可融冰光纤复合架空地线,包括中心加强件、内绞层、保护管和外绞层,所述内绞层包括光单元和若干第一绝缘导线,所述第一绝缘导线和光单元绞合在所述中心加强件上,所述保护管为铝管,所述铝管包覆于所述内绞层外,所述外绞层为金属单丝,若干根所述金属单丝均匀绞合在所述保护管外。
进一步的,所述中心加强件为第二绝缘导线或者铝包钢线。
进一步的,所述第一绝缘导线和第二绝缘导线包括铝或铜导线芯以及聚四氟乙烯绝缘护套。
进一步的,所述光单元具体为不锈钢光单元,所述不锈钢光单元包括不锈钢保护管及其内部布置的多模光纤。
进一步的,还包括测温光纤,所述测温光纤绞合于所述中心加强件上。
进一步的,所述铝管为无缝结构。
进一步的,所述金属单丝为铝包钢单丝或者路合金单丝。
进一步的,所述铝管与所述第一绝缘导线之间的间隙小于0.1mm。
进一步的,所述铝管铝层壁厚偏差小于设计壁厚的5%。
本发明的一种层绞式可融冰光纤复合架空地线与现有技术相比的有益效果是,融冰通流时可自成融冰回路,电磁干扰小、电感小、能耗低,且输电导线可以正常运行通电,不影响导线正常工作,融冰效率高,同时线缆强度大。
附图说明
图1是本发明的实施例一结构示意图;
图2是本发明的实施例二结构示意图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
参照图1所示,本发明的一种层绞式可融冰光纤复合架空地线的实施例一,包括中心加强件10、内绞层20、保护管30和外绞层40,内绞层20绞合在中心加强件10上构成缆芯,保护管30和外绞层40构成缆芯的护层结构,中心加强件10处于缆芯中央位置,内绞层20一适当绞合节距围绕加强芯层绞,通过控制内绞层20中光纤余长和调整绞合节距,可使光纤复合架空地线具有很好的抗拉性能和温度特性,保证本实施例中光纤复合架空地线的抗侧压能力好且其的余长可达10%-12%,所述内绞层20包括光单元21和若干第一绝缘导线22,所述第一绝缘导线22和光单元21绞合在所述中心加强件10上,本实施例中,中心加强件10、第一绝缘导线22和光单元21的直径相同,中心加强件10外绞合有5根第一绝缘导线22和一根光单元21,使得中心加强件10、第一绝缘导线22和光单元21之间的间隙小,各部分连接紧密,保证光纤复合架空地线的强度,进一步的,本实施例中,所述保护管30为铝管,铝管耐腐蚀、重量轻,所述铝管包覆于所述内绞层20外,对内绞层20形成有效保护的同时不过分增加光纤复合架空地线的重量,同时铝管弯曲性能优良,易于安装,本实施例中优选所述铝管为无缝结构,无缝铝管首尾金属流动均一、尺寸精度高、耐疲劳 性好、机械性能一致、无层状组织,承压性好,所述外绞层40为金属单丝41,若干根所述金属单丝41均匀绞合在所述保护管30外,光单元21与外绞层40的金属单丝41之间间隔有铝管,不会发生电腐蚀。进一步的,在本实施例中,所述中心加强件10为第二绝缘导线11,因此本实施例中共存在6根绝缘导线,当出现线路覆冰时,将6根绝缘导线的一端份为两组连接,在另一端与直流电源正负极相接,向绝缘导线通入合适电压的直流电流,产生焦耳热作为提供融冰所需热量,由于本实施例中第一绝缘导线22贴合保护管30内壁设置,能够直接将绝缘导线产生的热量传输至保护管30,同时由于保护管30为铝管,散热性能好,快速将热量发散至光纤复合架空地线外周,实现融冰效果;因此,本实施例中,所述铝管与所述第一绝缘导线22之间的间隙小于0.1mm,保证第一绝缘导线22产生的焦耳热快速、有效传导至铝管,进一步的,所述铝管铝层壁厚偏差小于设计壁厚的5%,铝管壁厚均匀,保证铝管受热均匀,即保证铝管与光单元21接触的部分也同样由于热传导而与铝管其他部分温度相同,从而确保光纤复合架空地线表面受热均匀,地线表面冰冻能够全部被融化。进一步的,本实施例中,所述第一绝缘导线22和第二绝缘导线11包括铝或铜导线芯111以及聚四氟乙烯绝缘护套112,满足27.5KV直流电压不击穿,同时还能满足长距离直流电传输和焦耳热融冰能力,由于无缝铝管套设于第一绝缘导线22外对其进行保护,有效提高绝缘导线的使用寿命和耐候性能,同时铝管导电性能优异,还能作为第一绝缘导线22的保护层,计算中参与短路电流容量计算,并且在短路时能很快将电荷转移,降低光缆局部灼伤,提高了可融冰OPGW的电气性能。
参照图2所示,为本发明实施例二结构示意图,在本实施例中,所述中心加强件10为铝包钢线12,可以充分利用其高机械强来承受地线张力,所述光单元21具体为不锈钢光单元21,所述不锈钢光单元21包括不锈钢保护管211及其内部布置的多模光纤212,不锈钢保护管211采用松套结构,对多模光纤212起机械缓冲、防止层绞式光纤复合架空地线的侧向压力并起隔热保护作用; 不锈钢保护管211空隙内连续填充合适的阻水物(未示出),阻水物能有效防止潮气或水份渗进光单元21,不损害光纤传输特性和使用寿命。本实施例中还包括测温光纤50,所述测温光纤50绞合于所述中心加强件10上,主要是测量电缆的温度变化,在OPGW运行中出现覆冰气候时能够在线检测温度,并时时反馈。在实施融冰时能将融冰温度检测并反馈到信息中心,实现OPGW线路覆冰和融冰过程智能化在线监测,实现电网线路监控、覆冰检测报警及融冰为一体的智能化系统。进一步的,本实施例中,所述金属单丝41为铝包钢单丝或者铝合金单丝,绞合材料采用高强度铝包钢单丝或者铝合金单丝,提高OPGW整体拉断力,可以明显降低OPGW架设弧垂;铝包钢和内层铝管为同一种材料,降低了以前不锈钢和铝包钢之间的电化学腐蚀,具有优良的耐腐蚀性能,且铝材导电性能优异,能够进一步提高短路电流容量。
本发明的层绞式可融冰光纤复合架空地线在工作时,通过测温光纤实现线路监控和覆冰检测,当检测到线路覆冰需融冰时,对第一和第二绝缘导线加上合适电压的直流电流,绝缘导线产生的电阻焦耳热通过热传导至OPGW表面,当温度升高超过冰的融点时,覆冰开始融化并逐步在线路上脱落从而达到融冰的目的。此种结构不需要OPGW与大地、同杆架设地线或者是输电导线形成回路,融冰时可自成融冰回路,输电导线可以正常运行通电,不影响导线正常工作。在不融冰时绝缘导线还可向线路中可能有的中继放大器和传感器供电,不用改变传统OPGW的安装方式和相关线路设施。且测温光纤实现了电网线路监控、覆冰检测报警及融冰为一体的智能化系统。
传统交流融冰法直接取用电网电源,目前电网中300MW发电机组能够满足200km长的线路融冰无功需求。由于导线电感数值远大于电阻,交流融冰消耗的无功容量大,融冰所需的电源容量是直流的5-20倍,远远超出系统承受范围,可能影响系统稳定性。并且在通电过程中会产生巨大的感应电流。而本发明内置绝缘导线,使OPGW通流后存在电磁干扰小、电感小、能耗低等优点;融冰时不需要OPGW与大地、同杆架设地线或者是输电导线形成回路,融冰时可自成融 冰回路,输电导线可以正常运行通电,不影响导线正常工作。
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (9)

  1. 一种层绞式可融冰光纤复合架空地线,其特征在于,包括中心加强件、内绞层、保护管和外绞层,所述内绞层包括光单元和若干第一绝缘导线,所述第一绝缘导线和光单元绞合在所述中心加强件上,所述保护管为铝管,所述铝管包覆于所述内绞层外,所述外绞层为金属单丝,若干根所述金属单丝均匀绞合在所述保护管外。
  2. 如权利要求1所述的一种层绞式可融冰光纤复合架空地线,其特征在于,所述中心加强件为第二绝缘导线或者铝包钢线。
  3. 如权利要求2所述的一种层绞式可融冰光纤复合架空地线,其特征在于,所述第一绝缘导线和第二绝缘导线包括铝或铜导线芯以及聚四氟乙烯绝缘护套。
  4. 如权利要求1所述的一种层绞式可融冰光纤复合架空地线,其特征在于,所述光单元具体为不锈钢光单元,所述不锈钢光单元包括不锈钢保护管及其内部布置的多模光纤。
  5. 如权利要求1所述的一种层绞式可融冰光纤复合架空地线,其特征在于,还包括测温光纤,所述测温光纤绞合于所述中心加强件上。
  6. 如权利要求1所述的一种层绞式可融冰光纤复合架空地线,其特征在于,所述铝管为无缝结构。
  7. 如权利要求1所述的一种层绞式可融冰光纤复合架空地线,其特征在于,所述金属单丝为铝包钢单丝或者路合金单丝。
  8. 如权利要求1所述的一种层绞式可融冰光纤复合架空地线,其特征在于,所述铝管与所述第一绝缘导线之间的间隙小于0.1mm。
  9. 如权利要求1所述的一种层绞式可融冰光纤复合架空地线,其特征在于,所述铝管铝层壁厚偏差小于设计壁厚的5%。
PCT/CN2019/117671 2019-05-29 2019-11-12 一种层绞式可融冰光纤复合架空地线 WO2020238050A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910456549.4A CN110136881A (zh) 2019-05-29 2019-05-29 一种层绞式可融冰光纤复合架空地线
CN201910456549.4 2019-05-29

Publications (1)

Publication Number Publication Date
WO2020238050A1 true WO2020238050A1 (zh) 2020-12-03

Family

ID=67582654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/117671 WO2020238050A1 (zh) 2019-05-29 2019-11-12 一种层绞式可融冰光纤复合架空地线

Country Status (2)

Country Link
CN (1) CN110136881A (zh)
WO (1) WO2020238050A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110136881A (zh) * 2019-05-29 2019-08-16 江苏藤仓亨通光电有限公司 一种层绞式可融冰光纤复合架空地线
CN113380446A (zh) * 2021-04-21 2021-09-10 安徽龙联智能光电有限公司 自融冰式架空绝缘导线及监测装置
CN115236818B (zh) * 2022-09-22 2023-01-24 深圳市特发信息股份有限公司 一种具有非金属单元的光缆

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020027012A1 (en) * 1998-12-31 2002-03-07 Jean-Pierre Bonicel Structurally-reinforced cable for transporting power and/or for telecommunications
CN203038715U (zh) * 2013-02-20 2013-07-03 浙江省电力公司电力经济技术研究院 一种可自循环融冰的低覆冰光纤复合架空地线
CN203218016U (zh) * 2013-04-18 2013-09-25 江苏藤仓亨通光电有限公司 一种具有连续测温功能的光纤复合架空相线
CN204348432U (zh) * 2015-02-09 2015-05-20 国家电网公司 一种光纤复合架空地线
CN205450393U (zh) * 2016-03-18 2016-08-10 安徽中电八所光电通信技术发展有限公司 具有温度传感功能的融冰型opgw光缆
CN205920821U (zh) * 2016-05-10 2017-02-01 江苏藤仓亨通光电有限公司 一种具有快速融冰功能的光纤复合架空地线
CN208225599U (zh) * 2018-05-31 2018-12-11 江苏藤仓亨通光电有限公司 一种具有融冰功能的光纤复合架空地线
CN110136881A (zh) * 2019-05-29 2019-08-16 江苏藤仓亨通光电有限公司 一种层绞式可融冰光纤复合架空地线

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204087905U (zh) * 2014-10-15 2015-01-07 国家电网公司 融冰线路防雷击opgw光缆
CN105761837A (zh) * 2016-05-10 2016-07-13 江苏藤仓亨通光电有限公司 一种具有快速融冰功能的光纤复合架空地线

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020027012A1 (en) * 1998-12-31 2002-03-07 Jean-Pierre Bonicel Structurally-reinforced cable for transporting power and/or for telecommunications
CN203038715U (zh) * 2013-02-20 2013-07-03 浙江省电力公司电力经济技术研究院 一种可自循环融冰的低覆冰光纤复合架空地线
CN203218016U (zh) * 2013-04-18 2013-09-25 江苏藤仓亨通光电有限公司 一种具有连续测温功能的光纤复合架空相线
CN204348432U (zh) * 2015-02-09 2015-05-20 国家电网公司 一种光纤复合架空地线
CN205450393U (zh) * 2016-03-18 2016-08-10 安徽中电八所光电通信技术发展有限公司 具有温度传感功能的融冰型opgw光缆
CN205920821U (zh) * 2016-05-10 2017-02-01 江苏藤仓亨通光电有限公司 一种具有快速融冰功能的光纤复合架空地线
CN208225599U (zh) * 2018-05-31 2018-12-11 江苏藤仓亨通光电有限公司 一种具有融冰功能的光纤复合架空地线
CN110136881A (zh) * 2019-05-29 2019-08-16 江苏藤仓亨通光电有限公司 一种层绞式可融冰光纤复合架空地线

Also Published As

Publication number Publication date
CN110136881A (zh) 2019-08-16

Similar Documents

Publication Publication Date Title
WO2020238050A1 (zh) 一种层绞式可融冰光纤复合架空地线
CN201181607Y (zh) 一种架空融雪化冰光/电缆
WO2013000271A1 (zh) 加强型光纤复合耐高温架空绝缘电缆
CN101625909A (zh) 复合导线及该复合导线的发热单丝的制造方法
CN103337295A (zh) 一种防止冰雪灾害的输电导线
CN201126735Y (zh) 去冰雪导线
CN204087905U (zh) 融冰线路防雷击opgw光缆
CN104616800B (zh) 一种加热型扩径光纤复合铝合金架空导线
CN103151746A (zh) 一种可融冰复合架空地线的内循环融冰方法
CN204348414U (zh) 加热型扩径光纤复合铝合金架空导线
CN105761837A (zh) 一种具有快速融冰功能的光纤复合架空地线
CN208225599U (zh) 一种具有融冰功能的光纤复合架空地线
CN205450393U (zh) 具有温度传感功能的融冰型opgw光缆
Zhao et al. Review of transmission line icing and anti-icing technologies
CN205211477U (zh) 铝包殷钢芯特耐热铝合金架空导线
CN203351266U (zh) 一种防止冰雪灾害的输电导线
CN204423930U (zh) 复合芯节能型低风压导线
CN203150265U (zh) 新型熔冰光纤复合架空地线
CN103117122A (zh) 防覆冰自动除冰防舞动异型架空导线
CN113541036A (zh) 一种实时监测的opgw光缆直流融冰系统
CN104637616B (zh) 一种加热扩径型防冰雪中强度铝合金架空电缆
CN220252916U (zh) 光纤复合架空地线
CN206649950U (zh) 预绞式碳纤维导线耐张串
CN205827997U (zh) 架空电缆
CN205920821U (zh) 一种具有快速融冰功能的光纤复合架空地线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19930238

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19930238

Country of ref document: EP

Kind code of ref document: A1