WO2020237572A1 - 激光雷达及智能感应设备 - Google Patents

激光雷达及智能感应设备 Download PDF

Info

Publication number
WO2020237572A1
WO2020237572A1 PCT/CN2019/089283 CN2019089283W WO2020237572A1 WO 2020237572 A1 WO2020237572 A1 WO 2020237572A1 CN 2019089283 W CN2019089283 W CN 2019089283W WO 2020237572 A1 WO2020237572 A1 WO 2020237572A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal processor
lidar
laser
heat dissipation
heat
Prior art date
Application number
PCT/CN2019/089283
Other languages
English (en)
French (fr)
Inventor
叶高山
Original Assignee
深圳市速腾聚创科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市速腾聚创科技有限公司 filed Critical 深圳市速腾聚创科技有限公司
Priority to CN201980002282.XA priority Critical patent/CN110753854B/zh
Priority to PCT/CN2019/089283 priority patent/WO2020237572A1/zh
Publication of WO2020237572A1 publication Critical patent/WO2020237572A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4816Constructional features, e.g. arrangements of optical elements of receivers alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the embodiment of the present invention relates to the field of radar technology, in particular to a laser radar and intelligent sensing equipment.
  • Lidar is a characteristic quantity such as the position and speed of a target which is detected by emitting a laser beam.
  • the inventor of the present invention found that in the laser receiver of the lidar, the photodetector and the signal processor are relatively close, and the heat radiation generated by the chip heating in the signal processor will affect the light.
  • the performance of the detector in the detector affects the detection effect of the lidar.
  • the main purpose of the embodiments of the present invention is to provide a lidar and intelligent sensing equipment, so that the light detector in the lidar will not be affected by thermal radiation, and the detection effect and detection of the lidar are improved performance.
  • a technical solution adopted in the embodiments of the present invention is to provide a laser radar, which includes a laser transmitter for emitting laser light; and a laser receiver for receiving reflected laser light, which includes a light detector, A heat shield and a signal processor, the light detector and the signal processor are electrically connected, and there is a gap between the light detector and the signal processor, and the heat shield is located in the gap .
  • the photodetector is provided with a first protrusion
  • the signal processor is provided with a second protrusion
  • the first protrusion and the second protrusion abut to form a ⁇ gap
  • the lidar further includes a rotating body and a heat dissipation pad, one end of the heat dissipation pad is attached to the signal processor, and the other end of the heat dissipation pad is attached to the rotation body.
  • the lidar further includes a fixing base and a connecting plate
  • the rotating body includes a base and a shaft connection part
  • the connecting plate is arranged on the base
  • the fixing base is fixed on the connecting plate
  • the fixing base is connected with the light detector.
  • the heat dissipation pad is made of thermally conductive silicone material.
  • the lidar further includes a heat sink disposed at one end of the heat dissipation pad, and two side surfaces of one end of the heat dissipation pad are respectively closely attached to the heat sink and the signal processor .
  • the heat sink is a fin type heat sink.
  • the lidar further includes a heat sink, the heat sink is disposed at the other end of the heat dissipation pad, and two side surfaces of the other end of the heat dissipation pad are in close contact with the heat sink and the rotating body, respectively Together.
  • the laser receiver further includes a filter, and the filter is connected to one side of the fixing base; the other side of the fixing base is provided with a first fixing groove, and the photodetector Connected in the first fixing groove.
  • an embodiment of the present invention also provides a smart sensing device, including the above-mentioned lidar.
  • the beneficial effect of the embodiment of the present invention is: different from the prior art, the embodiment of the present invention adds a heat shield between the photodetector and the signal processor to prevent the amplifying module or other modules in the signal processor from generating heat.
  • the thermal radiation of the photodetector prevents the detector in the photodetector from being affected by thermal radiation, thereby reducing temperature drift, ensuring the stability of the detector's work, and improving detection accuracy.
  • the effect of thermal radiation is reduced by increasing the gap between the photodetector and the signal processor.
  • Fig. 1 is a schematic diagram of a lidar provided by an embodiment of the present invention
  • FIG. 2 is a structural block diagram of some components in a lidar provided by an embodiment of the present invention.
  • Figure 3 is an exploded view of a lidar provided by an embodiment of the present invention.
  • FIG. 4 is an assembly diagram of some components in a lidar provided by an embodiment of the present invention.
  • Figure 5 is a top view of a lidar provided by an embodiment of the invention.
  • FIG. 6 is an assembly diagram of other parts in a lidar provided by an embodiment of the present invention.
  • Fig. 7 is an exploded view from another angle of a laser radar provided by an embodiment of the present invention.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection , Or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication of two components or the interaction relationship between two components.
  • installed can be a fixed connection or a detachable connection , Or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication of two components or the interaction relationship between two components.
  • the “on” or “under” of the first feature on the second feature may be in direct contact with the first and second features, or indirectly through an intermediary. contact.
  • the "above”, “above” and “above” of the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the level of the first feature is higher than the second feature.
  • the “below”, “below” and “below” of the second feature of the first feature may mean that the first feature is directly below or obliquely below the second feature, or it simply means that the level of the first feature is smaller than the second feature.
  • the laser radar 100 provided by the embodiment of the present invention includes: a laser receiver 10, a rotating body 20, a fixing base 30, a connecting plate 40, a heat sink 50, a heat sink 60, a heat sink 70 and a laser transmitter ⁇ 80.
  • the laser transmitter 80 is used to emit laser light toward the detection target; the laser receiver 10 is used to receive the reflected laser light reflected by the detection target, and convert the optical signal into an electrical signal, so as to analyze the position and three-dimensional image of the detection target And speed etc.
  • the laser transmitter 80 is connected to the rotating body 20; the laser receiver 10, the fixing base 30, the connecting plate 40, the heat dissipation pad 50, the radiator 60, and the heat sink 70 form an integral structure and are fixed to the rotating body 20 on.
  • the rotating body 20 is used to drive the laser transmitter 80 and the laser receiver 10 to rotate synchronously, so that the laser radar 100 achieves a 360° detection range.
  • the connecting plate 40 is fixed on the rotating body 20.
  • the fixing seat 30 is fixed on the connecting plate 40, which is equivalent to that the fixing seat 30 is also fixed on the rotating body 20 through the connecting plate 40.
  • the laser receiver 10 is connected to the fixing base 30. As shown in FIGS. 4 and 5, the two ends of the heat dissipation pad 50 are attached to the rotating body 20 and the laser receiver 10, respectively, for transferring the heat of the laser receiver 10 to the rotating body 20, and dissipating heat through the rotating body 20 .
  • the side of the heat dissipation pad 50 away from the laser receiver 10 is also provided with a heat sink 60 for clamping the heat dissipation pad 50 and the laser receiver 10 to increase the heat conduction effect between the heat dissipation pad 50 and the laser receiver 10. It is also used to dissipate heat from the heat dissipation pad 50.
  • a heat sink 70 is provided on the side of the heat dissipation pad 50 away from the rotating body 20, which is used to clamp the heat dissipation pad 50 and the rotation body 20 to enhance the heat conduction effect between the heat dissipation pad 50 and the rotation body 20, and also The heat dissipation pad 50 is radiated.
  • the heat dissipation pad 50 may be a thermally conductive silica gel material, which has a good thermal conductivity effect and can effectively transfer the heat of the laser receiver 10 to the rotating body 20.
  • thermally conductive silica gel is a flexible material, which has flexibility, so that during the assembly process of the lidar 100, even if the laser receiver 10 and the rotating body 20 have been fixed to the heat dissipation pad 50 respectively, the laser receiver 10 can still rotate relative to the body. 20 fine-tuning, and then fix the laser receiver 10 to the rotating body 20 through the fixing base 30, so that the receiving effect of the laser receiver 10 is better.
  • the material of the heat dissipation pad 50 is not limited to the above description, and may also be other materials with the same heat conduction and bending effects, and will not be repeated here.
  • the heat sink 60 can be a fin type heat sink 60, which has a larger heat dissipation area and can dissipate heat from the heat dissipation pad 50 more effectively.
  • the rotating body 20, the fixing base 30, the connecting plate 40, the heat dissipation pad 50, the heat sink 60 and the heat sink 70 can also be omitted, and the lidar 100 can only pass through the laser transmitter 80 and laser
  • the receiver 10 implements a detection function.
  • the laser receiver 10 includes a photodetector 11, a heat shield 12, a signal processor 13 and a filter 14.
  • the light detector 11, the heat insulation board 12, and the signal processor 13 are all connected to the fixing base 30.
  • fasteners may be used to pass through the signal processor 13, the heat insulation board 12 and the light respectively. The detector 11, and then tighten the fasteners.
  • a fixing (limiting) post 15 can also be provided on the light detector 11 and the signal processor 13, and a fixing (limiting) hole (not shown) can be opened in the corresponding position on the heat shield 12, and the fixing
  • the cooperation of the (limiting) column 15 and the fixing (limiting) hole realizes the fixation (limiting) between the light detector 11, the heat shield 12 and the signal processor 13.
  • the photodetector 11 is also electrically connected to the signal processor 13 for receiving the reflected laser light and converting the received optical signal into an electrical signal.
  • the signal processor 13 includes an amplification module and a signal analysis module for amplifying the electrical signal transmitted from the photodetector 11, and analyzing and processing the electrical signal to obtain characteristic values such as the position, shape, and speed of the detection target .
  • the side of the signal processor 13 away from the photodetector 11 is attached to one end of the heat dissipation pad 50, and the other end of the heat dissipation pad 50 is attached to the rotating body 20 for transferring heat generated by the signal processor 13 to the rotating body 20.
  • Heat dissipation through the rotating body 20 because the rotating body 20 has a larger heat dissipation area and good heat conduction effect, which makes the heat dissipation effect better. In this way, the heat of the signal processor 13 is transferred, thereby reducing its heat radiation to the photodetector 11.
  • the signal processor 13 is also electrically connected to the laser transmitter 80 for obtaining the time of laser emission.
  • the heat insulation board 12 may be glass fiber, asbestos or rock wool with good heat insulation effect.
  • the optical filter 14 is connected to the side of the fixing base 30 away from the photodetector 11, and is used to filter out the light that does not belong to the wavelength band where the laser transmitter 80 emits the laser light, so as to prevent the laser receiver 10 from being interfered by the light of other wavelength bands.
  • the filter 14 the interference of other light on the photodetector 11 is isolated, and the optical signal detected by the photodetector 11 is more accurate.
  • the filter 14 may also be omitted, and the light detector 11 may directly receive the reflected laser light.
  • the heat shield 12 may not be connected to the light detector 11, but to the fixing base 30, which can also achieve the effect of isolating heat radiation.
  • a heat shield 12 is added to isolate the heat radiation of the signal processor 13 to the photodetector 11 and avoid the performance of the photodetector 11 from being affected.
  • the photodetector 11 is provided with a first protrusion 111
  • the signal processor 13 is provided with a second protrusion 131
  • the first protrusion 111 and the second protrusion 131 abut, so that there is a gap between the signal processor 13 and the photodetector 11.
  • the gap can also have a certain degree of heat insulation effect and weaken
  • the thermal radiation of the signal processor 13 affects the photodetector 11.
  • the photodetector 11 is provided with an array of detectors 112 on the side facing the fixing base 30 for receiving the laser light reflected from multiple positions of the detection target.
  • the detector 112 may be PIN photodiode, Avalance Photodiode (APD), Single Photon Avalanche Diode (SPAD), Multi-pixel photon counter (MPPC), Silicon photomultiplier (SiPM) ) And one or more combinations.
  • the photodetector 11 then converts these optical signals into electrical signals and transmits them to the signal processor 13.
  • the signal processor 13 can calculate the distance information of multiple positions of the detection target through the time of laser emission and the time of the received reflected laser, so as to obtain a three-dimensional point cloud of the detection target.
  • the signal processor 13 needs to process more electrical signals, its power consumption is also large, which will generate a large amount of heat, and the large amount of heat cannot be effectively isolated only by adding a gap. Therefore, in the embodiment of the present invention, a heat insulation board 12 is added in the gap, so that a large amount of heat can be effectively isolated.
  • the signal processor 13 may not be connected to the fixing base 30, but the first protrusion 111 and the second protrusion 131 are bonded or welded to make the signal processor 13 13 is connected to the photodetector 11.
  • the arrangement form of the detector 112 of the photodetector 11 is not limited to the above description. Depending on the purpose of the lidar 100, the detector 112 of the photodetector 11 can also be arranged in other forms, which will not be repeated here.
  • Both sides of the fixing seat 30 are provided with a first fixing groove 31 and a second fixing groove 33, and the photodetector 11 is screwed to the first fixing groove.
  • the filter 14 is disposed in the second fixing groove 33.
  • the fixing seat 30 is provided with a fixing boss 34 around the second fixing groove 33.
  • the fixing seat 30 further includes a pressing block 35 which is connected to the fixing boss 34 and connects the filter 14 and The second fixing groove 33 is compressed to fix the filter 14 and the second fixing groove 33.
  • the filter 14 can be set in the second fixing groove 33 first, and then the pressing block 35 is moved along the side of the fixing boss 34 toward the second fixing groove 33 and abuts the filter 14 to be pressed tightly. ; Finally, the connection between the filter 14 and the second fixing groove 33 is completed by screwing the pressing block 35 and the fixing boss 34.
  • the number of the pressing block 35 and the fixing boss 34 can be 3, so that the connection between the filter 14 and the second fixing groove 33 can be more reliable.
  • the fixing seat 30 is also provided with a light-transmitting hole 32 connecting the first fixing groove 31 and the second fixing groove 33.
  • the position of the light-transmitting hole 32 corresponds to the position of the detector 112 on the light detector 11, so that the light
  • the detector 112 on the detector 11 is in communication with the filter 14 so that the reflected laser light after the filter 14 filters interference light can be transmitted to the detector 112.
  • connection manner between the fixing base 30 and the photodetector 11 and the connection manner between the fixing base 30 and the filter 14 are not limited to the manner described above, but may also be other manners, which will not be repeated here.
  • the rotating body 20 includes a base 21 and a shaft connecting portion 22.
  • the base 21 is provided with a third fixing groove 211, and the connecting plate 40 is screwed to the third fixing.
  • the groove 211 is used to realize the connection between the connecting plate 40 and the rotating body 20.
  • the shaft connecting portion 22 is attached to the heat dissipation pad 50 to dissipate heat for the signal processor 13.
  • the shaft connecting portion 22 is also used to connect with the shaft of a power device (not shown), which can drive the entire rotating body 20 and the laser transmitter 80 and laser receiver 10 on the rotating body 20. Spin.
  • connection manner of the connecting plate 40 and the rotating body 20 is not limited to the manner described above, but may also be other manners, which will not be repeated here.
  • the heat shield 12 is added to block the heat radiation generated by the amplifying module or other modules in the signal processor 13, so that the detector 112 in the photodetector 11 will not be affected by the heat radiation and reduce The performance of receiving light.
  • the embodiment of the present invention also adds a heat dissipation pad 50, which can transfer the heat of the signal processor 13 and further reduce its heat radiation.
  • an embodiment of the present invention proposes a smart sensing device including the lidar 100 in the above-mentioned embodiment.
  • the smart sensing device may be a car, a drone, a robot, or other related A device that uses lidar 100 for intelligent sensing and detection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

本申请涉及雷达技术领域,特别涉及一种激光雷达,包括激光发射机,用于发射激光;激光接收机,用于接收激光,其包括光检测器、隔热板和信号处理器,所述光检测器和所述信号处理器电连接,且在所述光检测器和所述信号处理器之间具有间隙,所述隔热板位于所述间隙内。通过上述方式,本发明实施例能够使激光雷达中光检测器不会受到热辐射的影响,提高了激光雷达的探测效果。

Description

激光雷达及智能感应设备 技术领域
本发明实施例涉及雷达技术领域,特别是涉及一种激光雷达及智能感应设备。
背景技术
激光雷达,是以发射激光束探测目标的位置和速度等特征量。
本发明的发明人在实现本发明的过程中,发现:在激光雷达的激光接收机中,光检测器和信号处理器由于距离较近,信号处理器中的芯片发热产生的热辐射会影响光检测器中的探测器的性能,从而影响激光雷达的探测效果。
发明内容
针对现有技术的上述缺陷,本发明实施例的主要目的在于提供一种激光雷达及智能感应设备,使激光雷达中光检测器不会受到热辐射的影响,提高了激光雷达的探测效果和探测性能。
为解决上述技术问题,本发明实施例采用的一个技术方案是:提供一种激光雷达,包括激光发射机,用于发射出射激光;激光接收机,用于接收反射激光,其包括光检测器、隔热板和信号处理器,所述光检测器和所述信号处理器电连接,且在所述光检测器和所述信号处理器之间具有间隙,所述隔热板位于所述间隙内。
可选的,所述光检测器设有第一凸起部,所述信号处理器设有第二凸起部,所述第一凸起部和所述第二凸起部抵接,形成所述间隙。
可选的,所述激光雷达还包括旋转体和散热垫,所述散热垫的一端与所述信号处理器贴合,所述散热垫的另一端与所述旋转体贴合。
可选的,所述激光雷达还包括固定座和连接板,所述旋转体包括底座和轴心连接部,所述连接板设置于所述底座上,所述固定座固定于所述连接板上,所述固定座和所述光检测器连接。
可选的,所述散热垫为导热硅胶材料。
可选的,所述激光雷达还包括散热器,所述散热器设置于所述散热垫的一 端,所述散热垫的一端的两侧面分别与所述散热器和所述信号处理器紧密贴合。
可选的,所述散热器为鳍片式散热器。
可选的,所述激光雷达还包括散热片,所述散热片设置于所述散热垫的另一端,所述散热垫的另一端的两侧面分别与所述散热片和所述旋转体紧密贴合。
可选的,所述激光接收机还包括滤光片,所述滤光片连接于所述固定座的一侧;所述固定座的另一侧设有第一固定槽,所述光检测器连接于所述第一固定槽内。
为解决上述技术问题,本发明实施例还提供了一种智能感应设备,包括如上所述的激光雷达。
本发明实施例的有益效果是:区别于现有技术的情况,本发明实施例在光检测器和信号处理器之间增加了隔热板,阻挡信号处理器中的放大模块或其它模块发热产生的热辐射,使光检测器中的探测器不会受到热辐射的影响,从而能够减少温度漂移,保证探测器工作的稳定性,提高探测准确性。此外,通过增加光检测器和信号处理器之间的间隙也降低了热辐射的影响。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是本发明实施例提供的一种激光雷达的示意图;
图2是本发明实施例提供的一种激光雷达中部分元件的结构框图;
图3是本发明实施例提供的一种激光雷达的爆炸图;
图4是本发明实施例提供的一种激光雷达中一些部件的装配图;
图5是发明实施例提供的一种激光雷达的俯视图;
图6是本发明实施例提供的一种激光雷达中另一些部件的装配图;
图7是本发明实施例提供的一种激光雷达另一角度的爆炸图。
具体实施方式中的附图标号如下:
激光雷达100 激光接收机10
固定座30 连接板40
散热器60 散热片70
光检测器11 隔热板12
滤光片14 第一凸起部111
探测器112 第一固定槽31
第二固定槽33 固定凸台34
底座21 轴心连接部22
激光雷达100 激光接收机10
固定座30 连接板40
散热器60 散热片70
光检测器11 隔热板12
固定(限位)柱15  
具体实施方式
下面将结合附图对本发明技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本发明的技术方案,因此只作为示例,而不能以此来限制本发明的保护范围。
需要注意的是,除非另有说明,本申请使用的技术术语或者科学术语应当为本发明所属领域技术人员所理解的通常意义。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。在本发明的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
请参阅图1至图3,本发明实施例提供的激光雷达100包括:激光接收机10、旋转体20、固定座30、连接板40、散热垫50、散热器60、散热片70和激光发射机80。所述激光发射机80用于朝探测目标发射出射激光;所述激光接收机10用于接收探测目标反射回来的反射激光,并将光信号转换为电信号,从而分析探测目标的位置、三维图像和速度等。所述激光发射机80与旋转体20连接;所述激光接收机10、固定座30、连接板40、散热垫50、散热器60、散热片70组成一整体结构,固定于所述旋转体20上。所述旋转体20用于带动激光发射机80和激光接收机10同步旋转,从而使激光雷达100实现周围360°的探测范围。
其中,所述连接板40固定于旋转体20上。所述固定座30固定于所述连接板40上,相当于所述固定座30通过连接板40也固定于旋转体20上。所述激光接收机10与固定座30连接。如图4和图5所示,所述散热垫50的两端分别与旋转体20和激光接收机10贴合,用于将激光接收机10的热量传递给旋转体20,通过旋转体20散热。所述散热垫50背离激光接收机10的一侧还设置有散热器60,用于将散热垫50和激光接收机10夹紧,增加散热垫50和激光接收机10之间的导热效果,同时也用于对散热垫50进行散热。同样地,所述散热垫50背离旋转体20的一侧设置有散热片70,用于将散热垫50和旋转体20夹紧,增强散热垫50和旋转体20之间的导热效果,同时也对散热垫50进行散热。
在一些实施例中,所述散热垫50可以是导热硅胶材料,其具有良好的导热效果,可以有效地将激光接收机10的热量传递给旋转体20。同时,导热硅胶为柔性材料,其具有可弯曲性,使在激光雷达100的组装过程中,即使激光接收机10和旋转体20已经分别与散热垫50固定,激光接收机10仍可以相对旋转体20微调,之后再将激光接收机10通过固定座30与旋转体20固定,以使激光接收机10的接收效果更佳。可以理解的是:所述散热垫50的材质不仅限于上面的描述,也可以是其它具有相同导热和弯曲效果的材料,此处不再赘述。
在一些实施例中,所述散热器60可以选用鳍片式散热器60,其散热面积较大,可以更有效地对散热垫50进行散热。
可以理解的是,在其它实施例中,旋转体20、固定座30、连接板40、散热垫50、散热器60和散热片70也可以省略,激光雷达100可以仅通过激光发射机80和激光接收机10实现探测功能。
请继续参阅图2至图5,所述激光接收机10包括光检测器11、隔热板12、信号处理器13和滤光片14。所述光检测器11、隔热板12、信号处理器13皆与固定座30连接,具体地,可以采用将紧固件(图未示)分别穿过信号处理器13、隔热板12和光检测器11,再将紧固件锁紧固定。此外,还可以在光检测器11和信号处理器13上设置固定(限位)柱15,在隔热板12上的相应位置开设固定(限位)孔(图未示),通过所述固定(限位)柱15和固定(限位)孔的配合实现光检测器11、隔热板12和信号处理器13之间的固定(限位)。所述光检测器11还与信号处理器13电连接,用于接收反射回来的激光,并将接收到的光信号转换为电信号。所述信号处理器13包括放大模块和信号分析模块,用于放大光检测器11传送来的电信号,并对所述电信号进行分析处理,以得到探测目标的位置、形状和速度等特征值。所述信号处理器13背离光检测器11的一侧与散热垫50的一端贴合,而散热垫50的另一端与旋转体20贴合,用于将信号处理器13产生热量传递给旋转体20,通过旋转体20散热,因为旋转体20散热面积更大,导热效果好,使得散热效果更好。通过这种方式,转移信号处理器13的热量,进而降低其对光检测器11的热辐射。所述信号处理器13还与激光发射机80电连接,用于获取激光发射的时间。
此外,在所述信号处理器13和光检测器11之间具有间隙,所述隔热板12位于所述间隙内,用于隔离信号处理器13对光检测器11产生的热辐射,避免 光检测器11的性能受到影响。隔热板12可以是隔热效果较好的玻璃纤维、石棉或岩棉等材料。
所述滤光片14连接于固定座30背离光检测器11的一侧,用于滤除不属于激光发射机80发射出射激光的波段的光线,避免激光接收机10被其它波段的光线干扰。通过设置滤光片14,隔绝了其它光线对光检测器11的干扰,使光检测器11的探测到的光信号更加准确。
可以理解的是:在其它实施例中,滤光片14也可以省略,光检测器11可以直接接收反射的激光。此外,隔热板12也可以不与光检测器11连接,而是连接于固定座30,同样可以实现隔离热辐射的效果。
本发明实施例通过增设隔热板12,隔离了信号处理器13对光检测器11的热辐射,避免了光检测器11的性能受到影响。
对于上述光检测器11和信号处理器13,如图3和图6所示,所述光检测器11设有第一凸起部111,所述信号处理器13设有第二凸起部131,所述第一凸起部111和第二凸起部131抵接,以使信号处理器13和光检测器11之间具有间隙,所述间隙同样也可以起到一定程度的隔热效果,减弱信号处理器13的热辐射对光检测器11的影响。此外,如图7所示,所述光检测器11朝向固定座30的一侧设有阵列式分布的探测器112,用于接收探测目标多处位置反射的激光,其中,探测器112可以是PIN光电二极管、雪崩光电二极管(Avalance Photodiode,APD)、单光子雪崩二极管(Single Photon Avalanche Diode,SPAD)、多像素光子计数器(multi-pixel photon counter,MPPC)、硅光电倍增管(Silicon photomultiplier,SiPM)等的一种或多种组合。之后光检测器11将这些光信号转换为电信号并传送给信号处理器13。信号处理器13通过激光发射的时间和接收的反射的激光的时间即可计算出探测目标多处位置的距离信息,从而可以得到探测目标的三维点云。
因信号处理器13需要处理的电信号较多,其功率消耗也较大,从而会产生较大的热量,仅通过增设间隙无法有效的隔离较大的热量。因此,本发明实施例在间隙中增加了隔热板12,从而可以有效地隔离较大的热量。
可以理解的是:在其它实施例中,信号处理器13也可以不与固定座30连接,而是通过将第一凸起部111和第二凸起部131粘接或焊接,使信号处理器13与光检测器11连接。此外,光检测器11的探测器112的设置形式不仅限于 上面的描述,根据激光雷达100的用途不同,光检测器11的探测器112也可以是其它设置形式,此处不再赘述。
对于上述固定座30,请继续参阅图3和图7,所述固定座30的两侧设有第一固定槽31和第二固定槽33,所述光检测器11螺接于第一固定槽31内,所述滤光片14设置于第二固定槽33内。所述固定座30在第二固定槽33的周围设有固定凸台34,所述固定座30还包括压块35,所述压块35与固定凸台34连接,并将滤光片14和第二固定槽33压紧,使滤光片14和第二固定槽33固定。具体地,可以先将滤光片14设置于第二固定槽33内,之后使压块35沿固定凸台34的侧面朝第二固定槽33移动并抵接滤光片14,将其压紧;最后通过螺接压块35和固定凸台34完成滤光片14和第二固定槽33的连接。在一些实施例中,所述压块35和固定凸台34的数量可以皆为3个,从而可以使滤光片14和第二固定槽33的连接更牢靠。所述固定座30还设有连通第一固定槽31和第二固定槽33的透光孔32,所述透光孔32的位置和光检测器11上的探测器112的位置对应,从而使光检测器11上的探测器112和滤光片14连通,使滤光片14滤除干扰光后的反射激光能够传递给探测器112。
可以理解的是:固定座30和光检测器11的连接方式以及固定座30与滤光片14的连接方式不仅限于上面描述的方式,也可以为其它方式,此处不再赘述。
对于上述旋转体20,请继续参阅图7,所述旋转体20包括底座21和轴心连接部22,所述底座21设置有第三固定槽211,所述连接板40螺接于第三固定槽211内,以实现连接板40和旋转体20的连接。所述轴心连接部22和散热垫50贴合,用于对信号处理器13散热。所述轴心连接部22还用于和动力装置(图未示)的轴心部分连接,所述动力装置可以驱动整个旋转体20以及位于旋转体20上的激光发射机80和激光接收机10旋转。
可以理解的是:连接板40和旋转体20的连接方式不仅限于上面描述的方式,也可以为其它方式,此处不再赘述。
本发明实施例通过增加隔热板12,阻挡了信号处理器13中的放大模块或其它模块发热产生的热辐射,使光检测器11中的探测器112不会受到热辐射的影响,而降低收光的性能。同时,通过增加光检测器11和信号处理器13之间的间隙也可以降低热辐射的影响,从而能够减少温度漂移,保证探测器112工作的稳定性,提高探测准确性。此外,本发明实施例还增加了散热垫50,可以转 移信号处理器13的热量,进一步降低其热辐射。
更进一步的,基于上述激光雷达100,本发明实施例提出了一种包含上述实施例中的激光雷达100的智能感应设备,所述智能感应设备可以是汽车、无人机、机器人以及其他涉及到使用激光雷达100进行智能感应和探测的设备。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围,其均应涵盖在本发明的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本发明并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (10)

  1. 一种激光雷达,其特征在于,包括:
    激光发射机(80),用于发射出射激光;
    激光接收机(10),用于接收反射激光,其包括光检测器(11)、隔热板(12)和信号处理器(13),所述光检测器(11)和所述信号处理器(13)电连接,且在所述光检测器(11)和所述信号处理器(13)之间具有间隙,所述隔热板(12)位于所述间隙内。
  2. 根据权利要求1所述的激光雷达,其特征在于,所述光检测器(11)设有第一凸起部(111),所述信号处理器(13)设有第二凸起部(131),所述第一凸起部(111)和所述第二凸起部(131)抵接,形成所述间隙。
  3. 根据权利要求1所述的激光雷达,其特征在于,所述激光雷达还包括旋转体(20)和散热垫(50),所述散热垫(50)的一端与所述信号处理器(13)贴合,所述散热垫(50)的另一端与所述旋转体(20)贴合。
  4. 根据权利要求3所述的激光雷达,其特征在于,所述激光雷达还包括固定座(30)和连接板(40),所述旋转体(20)包括底座(21)和轴心连接部(22),所述连接板(40)设置于所述底座(21)上,所述固定座(30)固定于所述连接板(40)上,所述固定座(30)和所述光检测器(11)连接。
  5. 根据权利要求3所述的激光雷达,其特征在于,所述散热垫(50)为导热硅胶材料。
  6. 根据权利要求3所述的激光雷达,其特征在于,所述激光雷达还包括散热器(60),所述散热器(60)设置于所述散热垫(50)的一端,所述散热垫(50)的一端的两侧面分别与所述散热器(60)和所述信号处理器(13)紧密贴合。
  7. 根据权利要求6所述的激光雷达,其特征在于,所述散热器(60)为鳍片式散热器。
  8. 根据权利要求3所述的激光雷达,其特征在于,所述激光雷达还包括散热片(70),所述散热片(70)设置于所述散热垫(50)的另一端,所述散热垫(50)的另一端的两侧面分别与所述散热片(70)和所述旋转体(20)紧密贴合。
  9. 根据权利要求4所述的激光雷达,其特征在于,所述激光接收机还包括 滤光片(14),所述滤光片(14)连接于所述固定座(30)的一侧;所述固定座(30)的另一侧设有第一固定槽(31),所述光检测器(11)连接于所述第一固定槽(31)内。
  10. 一种智能感应设备,其特征在于,包括权利要求1-9任一项所述的激光雷达。
PCT/CN2019/089283 2019-05-30 2019-05-30 激光雷达及智能感应设备 WO2020237572A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980002282.XA CN110753854B (zh) 2019-05-30 2019-05-30 激光雷达及智能感应设备
PCT/CN2019/089283 WO2020237572A1 (zh) 2019-05-30 2019-05-30 激光雷达及智能感应设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/089283 WO2020237572A1 (zh) 2019-05-30 2019-05-30 激光雷达及智能感应设备

Publications (1)

Publication Number Publication Date
WO2020237572A1 true WO2020237572A1 (zh) 2020-12-03

Family

ID=69286030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/089283 WO2020237572A1 (zh) 2019-05-30 2019-05-30 激光雷达及智能感应设备

Country Status (2)

Country Link
CN (1) CN110753854B (zh)
WO (1) WO2020237572A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114323442A (zh) * 2021-12-31 2022-04-12 深圳市普渡怒放科技有限公司 机械式激光雷达

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2615733Y (zh) * 2003-03-26 2004-05-12 晟铭电子科技股份有限公司 中央处理器散热模组
CN1767600A (zh) * 2004-10-26 2006-05-03 索尼株式会社 半导体图像传感器模块及制备方法、相机及其制备方法
CN204694845U (zh) * 2015-06-04 2015-10-07 程浩伦 光学测距仪
CN109239690A (zh) * 2018-11-01 2019-01-18 国耀量子雷达科技有限公司 一种基于无人机的机载激光雷达系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11187806B2 (en) * 2017-07-24 2021-11-30 Huawei Technologies Co., Ltd. LIDAR scanning system
CN108828558B (zh) * 2018-06-08 2020-10-09 上海禾赛科技股份有限公司 一种激光雷达

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2615733Y (zh) * 2003-03-26 2004-05-12 晟铭电子科技股份有限公司 中央处理器散热模组
CN1767600A (zh) * 2004-10-26 2006-05-03 索尼株式会社 半导体图像传感器模块及制备方法、相机及其制备方法
CN204694845U (zh) * 2015-06-04 2015-10-07 程浩伦 光学测距仪
CN109239690A (zh) * 2018-11-01 2019-01-18 国耀量子雷达科技有限公司 一种基于无人机的机载激光雷达系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114323442A (zh) * 2021-12-31 2022-04-12 深圳市普渡怒放科技有限公司 机械式激光雷达

Also Published As

Publication number Publication date
CN110753854A (zh) 2020-02-04
CN110753854B (zh) 2023-04-18

Similar Documents

Publication Publication Date Title
WO2019174382A1 (zh) 激光投射模组、深度相机和电子装置
CN108594206A (zh) 光传输模块、激光发射模块、激光雷达系统及车辆
US7290942B2 (en) Optical transceiver modules
US20160226592A1 (en) Integrated parallel optical transceiver
WO2020107164A1 (zh) 激光二极管封装模块及距离探测装置、电子设备
KR101907966B1 (ko) 테라헤르츠파 발생 모듈 및 그것을 포함하는 테라헤르츠파 검출 장치
CN110708122A (zh) 高导热收发一体光模块
CN108802919A (zh) 包含散热器的光收发器及其制造和使用方法
CN109917353A (zh) 激光雷达的激光发射装置以及激光雷达
WO2020237572A1 (zh) 激光雷达及智能感应设备
CN112713933A (zh) 一种板间微波光无线传输系统
CN113805284A (zh) 光发射组件及光收发模块
US10969473B2 (en) Infrared range-measurement device and TIR lens
WO2024098771A1 (zh) 激光雷达
FI91999C (fi) Laite kohteen paikallistamiseksi ja valolähetin
CN210518345U (zh) 高导热收发一体光模块
JP2016541107A (ja) 低放射率を有するフレキシブルプリント回路
JPH0377674B2 (zh)
US5734771A (en) Packaging assembly for a laser array module
CN116413726A (zh) 激光雷达和车辆
CN113867688A (zh) 基于光电共封装的量子噪声源模块及量子噪声源生成方法
CN108186040B (zh) Pet探测模块及具有该模块的pet探测设备
US11965989B2 (en) Copackaging photodetector and readout circuit for improved LiDAR detection
CN215932125U (zh) 激光雷达
CN217484776U (zh) 一种基于臭氧激光雷达的apd探测器温控结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19930660

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19930660

Country of ref document: EP

Kind code of ref document: A1