WO2021088648A1 - 接收模组以及包括其的激光雷达 - Google Patents

接收模组以及包括其的激光雷达 Download PDF

Info

Publication number
WO2021088648A1
WO2021088648A1 PCT/CN2020/122664 CN2020122664W WO2021088648A1 WO 2021088648 A1 WO2021088648 A1 WO 2021088648A1 CN 2020122664 W CN2020122664 W CN 2020122664W WO 2021088648 A1 WO2021088648 A1 WO 2021088648A1
Authority
WO
WIPO (PCT)
Prior art keywords
receiving module
photoelectric sensor
readout
pcb substrate
readout chip
Prior art date
Application number
PCT/CN2020/122664
Other languages
English (en)
French (fr)
Inventor
闫凯民
向少卿
Original Assignee
上海禾赛科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海禾赛科技股份有限公司 filed Critical 上海禾赛科技股份有限公司
Publication of WO2021088648A1 publication Critical patent/WO2021088648A1/zh
Priority to US17/565,190 priority Critical patent/US20220120870A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/041Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L31/00
    • H01L25/042Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L31/00 the devices being arranged next to each other
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4816Constructional features, e.g. arrangements of optical elements of receivers alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out
    • G01S7/4863Detector arrays, e.g. charge-transfer gates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4912Receivers
    • G01S7/4913Circuits for detection, sampling, integration or read-out
    • G01S7/4914Circuits for detection, sampling, integration or read-out of detector arrays, e.g. charge-transfer gates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/181Printed circuits structurally associated with non-printed electric components associated with surface mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/0243Printed circuits associated with mounted high frequency components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10151Sensor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10431Details of mounted components
    • H05K2201/10507Involving several components
    • H05K2201/10545Related components mounted on both sides of the PCB

Definitions

  • the present invention relates to the field of optoelectronic technology, in particular to a receiving module and a laser radar including the same.
  • Lidar systems are currently widely used in the field of unmanned driving, including laser emission systems and detection receiving systems.
  • the emitted laser light is reflected after encountering the target and is received by the detection system.
  • the distance to the corresponding target point can be measured by measuring the round-trip time of the laser. (Such as the time-of-flight method), when the entire target area is scanned and detected, three-dimensional imaging can finally be realized.
  • the lidar system has an important application in the unmanned driving system. In this application, the lidar is required to have high imaging frame rate, high resolution, long-range ranging capability, small size, high reliability, and low cost.
  • the traditional lidar system is very It is difficult to meet these properties.
  • a 64-line lidar has 64 APDs, and 64 TIA transimpedance circuits are needed.
  • the use of discrete devices requires a larger PCB board area for wiring. Due to the volume requirements of the radar itself, it is unreasonable to use a large PCB.
  • the current solution of using multiple boards to connect via connectors to increase the wiring area brings a series of technical defects.
  • the connector pin spacing is small, the 64-channel APD to the transimpedance amplifier must be converged on the connector first, and then diverged to the receiving board 1 and the receiving board 2 after passing through the connector.
  • the electrical isolation of the pin itself is low.
  • the trace distance corresponding to the pin cannot be increased, and the parallel trace length is very long, resulting in lower trace isolation and different radar channels. The problem of crosstalk between.
  • the traces of the 64-channel APD readout circuit are not the same, which leads to different parasitic parameters on the PCB for different channels, which affects the response characteristics of each channel, resulting in high distance measurement inconsistency for 64 channels.
  • the gain of the avalanche photodiode APD is very sensitive to temperature.
  • the 64 APDs on the receiving board are located in relatively scattered positions on the board. When the radar is working, the temperature of these positions is not equal, and there is a certain gradient, which has good heat dissipation or uniformity.
  • the thermal structure can effectively reduce such a gradient, and the receiving module composed of 4 PCB boards occupies a large space, and it is difficult to install a heat dissipation or uniform heat structure, and there is inevitably high gain inconsistency.
  • the present invention provides a receiving module that can be used for lidar, including:
  • a PCB substrate having a first side and a second side;
  • the photoelectric sensor array includes a plurality of photoelectric sensors, the photoelectric sensor array is arranged on the first side of the PCB substrate;
  • the readout chip is arranged on the second side of the PCB substrate and is configured to receive and read the output of the photosensors in the photosensor array.
  • the receiving module further includes a second-stage amplifier, the second-stage amplifier is arranged on the second side of the PCB substrate, and is coupled to the readout chip, and is configured to The output of the readout chip can be amplified,
  • the lead between the readout chip and the photosensor array passes through the PCB substrate.
  • the readout chip includes a packaged N-way transimpedance amplifying circuit and an N-selected 1 switch, wherein the input end of each transimpedance amplifying circuit is coupled to one of the photoelectric sensors, and the output end is coupled to To the N-to-1 switch, the N-to-one switch is configured to be selectable and output the output of one of the transimpedance amplifier circuits.
  • the N-to-1 switch is configured to couple the output of one of the transimpedance amplifier circuits to the input terminal of the second-stage amplifier.
  • the receiving module includes a plurality of the readout chips, and the photoelectric sensor is an APD.
  • the photoelectric sensor array includes a total of 64 photoelectric sensors, the receiving module includes 4 readout chips, and each readout chip includes 16 transimpedance amplifier circuits and 16-to-1 switch;
  • the photoelectric sensor array includes 128 photoelectric sensors in total, and the receiving module includes 8 readout chips, and each readout chip includes 16 transimpedance amplifier circuits and 16-to-1 switches.
  • the receiving module further includes a bracket, and the PCB substrate is supported on the bracket.
  • the receiving module further includes a heat sink
  • the heat sink includes a heat-conducting part and a heat-dissipating part, wherein the heat-conducting part is configured to receive the photosensor array and/or the readout
  • the heat dissipation part is configured to dissipate the heat of the chip.
  • the heat dissipation portion includes a plurality of heat dissipation fins.
  • the photoelectric sensor array includes a ceramic tube case, a filter, and a diaphragm, wherein the photoelectric sensor is attached to the ceramic tube case, and the filter is disposed on the photoelectric sensor , To filter stray light, the diaphragm is arranged on the filter to limit the light beam incident on the photoelectric sensor.
  • the readout chip includes a DAC voltage regulator, and the output terminal of the DAC voltage regulator is coupled to the photo sensor, so that the photo sensor can be adjusted to provide a bias voltage.
  • the present invention also relates to a laser radar, including the receiving module as described above.
  • the lidar includes a receiving module.
  • the gain and bandwidth consistency between the channels of the read chip can be far better than that of discrete devices, which enables the receiving end to have a good long-distance measurement consistency; reduced circuit board positions Get a larger space, you can install heat dissipation and heat distribution structure, reduce the temperature gradient of multiple APD; APD array can have better use value, can make the front APD array and the back of the self-developed chip input pin The positions are one-to-one correspondence, the wiring is not crossed and extremely short, in addition, the use of APD array can greatly simplify the assembly and adjustment process.
  • Figure 1 shows a receiving module according to an embodiment of the present invention
  • Figure 2 shows a schematic diagram of a readout chip according to a preferred embodiment of the present invention
  • Figure 3A shows a receiving module according to a preferred embodiment of the present invention
  • Figure 3B shows an assembly view of the PCB substrate, the bracket, and the heat sink
  • Figure 4 shows a schematic diagram of a photosensor array according to a preferred embodiment of the present invention
  • 5A and 5B show a schematic diagram of a photosensor array and a readout chip according to a preferred embodiment of the present invention
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include one or more of the features. In the description of the present invention, “plurality” means two or more than two, unless otherwise specifically defined.
  • the terms “installation”, “connected”, and “connected” should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection.
  • Connected or integrally connected It can be mechanically connected, or electrically connected or can communicate with each other; it can be directly connected or indirectly connected through an intermediate medium, which can be the internal communication of two components or the interaction of two components relationship.
  • an intermediate medium which can be the internal communication of two components or the interaction of two components relationship.
  • the first feature "on” or “under” the second feature may include the first and second features in direct contact, or may include the first and second features Not in direct contact but through other features between them.
  • the "above”, “above” and “above” of the first feature on the second feature include the first feature directly above and obliquely above the second feature, or it simply means that the first feature is higher in level than the second feature.
  • the “below”, “below” and “below” of the first feature of the second feature include the first feature directly above and obliquely above the second feature, or it simply means that the level of the first feature is smaller than the second feature.
  • FIG. 1 shows a receiving module 10 according to an embodiment of the present invention, which can be used in a lidar, for example, to receive echo beams reflected from an obstacle outside the lidar.
  • the receiving module 10 includes a PCB substrate 11, a photosensor array 12 and a readout chip 13.
  • the PCB substrate 11 is used as a mechanical support substrate and a circuit substrate, on which other optoelectronic components of the receiving module 10 can be arranged.
  • the PCB substrate 11 is a thin plate with a first side and a second side, and the left and right sides are shown in FIG. 1.
  • the receiving module 10 may include one or more photoelectric sensor arrays 12 disposed on the first side of the PCB substrate 11, and each photoelectric sensor array 12 includes a plurality of photoelectric sensors.
  • the photo sensor is, for example, a photodiode, preferably an avalanche photodiode APD or SiPM. When it receives an incident beam or photon, it will generate a corresponding electrical signal according to the intensity of the incident beam or the number of photons. After the electrical signal is collected, amplified, and filtered, it can be used for subsequent data processing to generate a laser radar. Point cloud data.
  • Fig. 1 shows that four photoelectric sensor arrays 12 are provided on the PCB substrate 11. Those skilled in the art will easily understand that the present invention is not limited to this.
  • the number of photoelectric sensor arrays 12 can be arbitrarily determined according to needs, or according to photoelectric sensors. The arrangement position and manner of the 12 are determined. For example, as shown in FIG. 5A, 8 photoelectric sensor arrays 12 are arranged on the PCB substrate 11, and each photoelectric sensor array includes 8 photoelectric sensors. In addition, the number of photosensors included in each photosensor array 12 can also be selected according to needs. For example, when applied to a 64-line laser radar, four groups of photoelectric sensor arrays can be selected, and each photoelectric sensor array includes 16 photoelectric sensors. These are all within the protection scope of the present invention.
  • the readout chip 13 is arranged on the second side of the PCB substrate 11, opposite to the photosensor array 12, and is coupled to the photosensor array 12, and is configured to receive and read the photosensor array 12 The output of the photoelectric sensor.
  • the photoelectric sensor array 12 and the readout chip 13 are respectively arranged on opposite sides of the PCB substrate 11. Therefore, according to a preferred embodiment of the present invention, the readout chip 13 and the photoelectric sensor can be connected.
  • the leads between the arrays 12 pass through the inside of the PCB substrate 11, which can reduce or avoid wiring outside the PCB 11. Reduce the length of parallel traces, improve trace isolation, and reduce crosstalk between different channels of lidar.
  • Fig. 2 shows a schematic diagram of a readout chip 13 according to a preferred embodiment of the present invention.
  • the readout chip 13 is, for example, a multi-channel readout chip, which is arranged on the second side of the PCB substrate.
  • the readout chip 13 includes packaged N-way transimpedance amplifier circuits (TIA 1, TIA 2, ..., TIA N) and a switch for selecting one of N.
  • the input end of each transimpedance amplifier circuit is coupled to one of the photoelectric sensors, such as APD, so as to receive the electrical signal of the photoelectric sensor, and perform signal amplification and output.
  • the output terminal of each transimpedance amplifying circuit is coupled to the N-to-1 switch, and the N-to-1 switch is configured to be switchable and output the output of one of the transimpedance amplifying circuits.
  • the readout chip 13 may correspond to the photoelectric sensor array, so that the number of readout chips 13 is the same as the number of the photoelectric sensor array, for example, 4, 3, 2, Or 1.
  • the receiving module 10 includes 4 readout chips 13, and each readout chip 13 includes 16 transimpedance amplifier circuits and a 16-to-1 switch. Therefore, a readout chip is equivalent to 16 discrete TIA transimpedance circuits and 16-to-1 analog switches, only 4 readout chips are used, and a second-stage amplifier circuit is preferably added to achieve the same as the original receiving system.
  • FIG. 5A eight photoelectric sensor arrays 12 are provided on the first side of the PCB substrate 11; as shown in FIG. 5B, four readout chips 13 are provided on the second side of the PCB substrate 11.
  • the chip 13 is coupled to one or more photoelectric sensor arrays 12 and reads its output.
  • the connection relationship between the readout chip 13 and the photosensor array 12 can be determined according to their position distribution, so as to minimize the wiring length.
  • FIG 5A there are 8 photoelectric sensor arrays 12, respectively 12-1, 12-2,..., 12-8, where the photoelectric sensors 12-2, 12-3, and 12-4 are located close to each other, and the photoelectric sensors The positions of 12-5, 12-6, and 12-7 are close to each other, and the positions of the other two photoelectric sensors 12-1 and 12-8 are independent of each other.
  • the positions of the four readout chips 13 provided on the second side of the PCB substrate 11 correspond to the positions of the photoelectric sensors, respectively.
  • the position of the readout chip 13-1 roughly corresponds to the photoelectric sensor 12-1
  • the position of the readout chip 13-2 roughly corresponds to the photoelectric sensors 12-2, 12-3, and 12-4
  • the position of the readout chip 13-3 The position roughly corresponds to the photoelectric sensor 12-5, 12-6, 12-7
  • the position of the readout chip 13-4 roughly corresponds to the photoelectric sensor 12-8.
  • the receiving module can include 8 readout chips, and each readout chip includes 16 transimpedance amplifier circuits and 16 selections. 1 switch.
  • the receiving module 1 further includes a second-stage amplifier 16, and the second-stage amplifier 16 is arranged on the second side of the PCB substrate. , And the readout chip 13 are located on the same side.
  • the second-stage amplifier 16 is coupled to the readout chip 13 so as to amplify the signal output by the readout chip 13 for a second time.
  • the N-to-one switch is configured to couple the output of one of the transimpedance amplifier circuits to the input terminal of the second-stage amplifier.
  • the N-select 1 switch has, for example, N input channels, and its gate selects one of the input channels, and outputs the input of the input channel.
  • FIG. 3A shows a receiving module 10 according to a preferred embodiment of the present invention, which further includes a bracket 14 on which the PCB substrate 11 is supported.
  • the bracket 14 is usually made of higher-strength metal, and is used to install and fix the receiving module, for example, to be fixed on the base of the lidar.
  • the receiving module 10 in FIG. 3A further includes a heat sink 15 which includes a heat-conducting portion (or heat-absorbing portion) 151 and a heat-dissipating portion 152, wherein the heat-conducting portion 151 is made of a material with a higher thermal conductivity.
  • the heat dissipation portion 152 includes a plurality of heat dissipation fins.
  • the heat dissipation portion 152 includes spirally arranged heat dissipation walls to increase the heat dissipation area and enhance the heat dissipation effect.
  • FIG. 3B shows an assembly view of the PCB substrate 11, the bracket 14 and the heat dissipation part 15.
  • the photosensor array 12 may include a plurality of discrete photosensors. However, preferably, the multiple photosensors in the photosensor array 12 are appropriately grouped and packaged, as described below with reference to FIG. 4, FIG. 5A, and FIG. 5B.
  • Fig. 4 shows a schematic diagram of a photosensor array 12 according to a preferred embodiment of the present invention.
  • the photoelectric sensor array 12 in addition to a plurality of photoelectric sensors, such as APD die, the photoelectric sensor array 12 also includes a ceramic tube shell 122 and a filter 123, wherein the APD die is attached to the ceramic tube shell 122, The filter 123 is disposed on the APD die to filter stray light.
  • a packaged APD line array can be formed, which can be directly installed on the receiving module 10 of the lidar.
  • the photosensor array may also include a diaphragm structure, which is arranged upstream of the optical path of the photosensor, for example, on the filter 123, which can also be used to prevent or reduce the incidence of stray light on the optical path. Said photoelectric sensor to reduce noise.
  • FIG. 5A shows a schematic diagram of a photosensor array 12 according to an embodiment of the present invention. It is schematically shown that the photoelectric sensor array includes 8 APDs, of which there are a total of 8 photoelectric sensor arrays, and each array is, for example, the packaging method shown in FIG. 4.
  • FIG. 5A the number and arrangement shown in FIG. 5A are only illustrative.
  • the number of APDs can be 16, 32, 64, 128, for example.
  • the number of APDs included in each package is not limited to 8, and can be based on actual needs. To adjust accordingly.
  • the readout chip includes a DAC voltage regulator, and the output terminal of the DAC voltage regulator is coupled to the photoelectric sensor, so that the photoelectric sensor can be adjusted to provide a bias voltage.
  • the number of the DAC voltage regulators corresponds to the number of the photoelectric sensors, so that the bias voltage can be adjusted individually for each photoelectric sensor, so as to control its gain coefficient.
  • An embodiment of the present invention also relates to a laser radar, including the receiving module 10 described above.
  • only one receiving module is included in the lidar.
  • all the photoelectric sensors and readout chips can be integrated on a PCB substrate, so that each channel of the lidar has a higher consistency of distance measurement.
  • the photoelectric sensors are located on the same PCB substrate, and the temperature is relatively uniform, so that the temperature gradient between each other can be reduced, so that the gain of each photoelectric sensor is as consistent as possible.
  • the embodiments of the present invention have the advantages of multi-function and modularization, and comprehensively consider and optimize a series of functions, such as packaging reliability, volume, cost, electromagnetic compatibility, light filtering, optical crosstalk between channels, assembly and adjustment, heat dissipation, etc. problem.
  • the solution of the present invention can be adapted to a variety of scanning laser radar system solutions, such as: mechanical scanning type, rotating mirror scanning type, galvanometer scanning type.
  • the solution of the embodiment of the present invention has the characteristics of easy production and easy assembly and adjustment.
  • the precise position arrangement of photoelectric sensors such as APD can be automated by machines; APD arrays can be assembled and adjusted as a whole, reducing the difficulty and cost of assembly and adjustment.
  • the embodiment of the present invention has the characteristics of high signal-to-noise ratio and low crosstalk, which can suppress crosstalk and stray light.
  • the photoelectric sensor array and the readout chip are arranged on two sides of the same PCB substrate On the side, the leads can be arranged through the PCB substrate. The leads are short, so they have low parasitic capacitance, which brings high bandwidth and low circuit noise.
  • the readout chip fully considers the APD layout and optimizes the chip pin layout. There are DC leads between the chip pins between adjacent channels. Pins are isolated, which can also increase the distance between adjacent traces.
  • the traces from the APD to the transimpedance amplifier can go directly from the front to the back of the PCB board, and there is no need to detour in the middle, which greatly shortens the parallel travel. The line length and crosstalk between channels can be significantly improved.
  • the gain and bandwidth consistency between the channels of the readout chip can be far better than that of discrete devices, which makes the receiving end have a good long-distance consistency.
  • the reduced position of the circuit board has a larger space, and heat dissipation and heat distribution structures can be installed to reduce the temperature gradient of multiple APDs;
  • the introduction of the readout chip enables the APD array to have a better use value.
  • the APD array on the front and the input pins of the self-developed chip on the back can be in one-to-one correspondence.
  • the traces are not crossed and extremely short.
  • the APD is used.
  • the array can greatly simplify the assembly and adjustment process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种可用于激光雷达的接收模组(10),包括:PCB基板(11),PCB基板(11)具有第一侧和第二侧;光电传感器阵列(12),包括多个光电传感器,光电传感器阵列(12)设置在PCB基板(11)的第一侧;和读出芯片(13),读出芯片(13)设置在PCB基板(11)的第二侧,并耦接到光电传感器阵列(12),配置成可接收并读取光电传感器阵列(12)中的光电传感器的输出。

Description

接收模组以及包括其的激光雷达 技术领域
本发明涉及光电技术领域,尤其涉及一种接收模组以及包括其的激光雷达。
背景技术
激光雷达系统目前被广泛地用在无人驾驶领域,包括激光发射系统和探测接收系统,发射激光遇到目标后反射并被探测系统所接收,通过测量激光往返的时间可测量相应目标点的距离(如时间飞行法),当对整个目标区域扫描探测后,则最终可实现三维成像。激光雷达系统在无人驾驶系统中有着重要应用,在该应用中需要激光雷达具有高成像帧频、高分辨率、远测距能力、小体积、高可靠性、低成本,传统激光雷达系统很难满足这些性能。
目前的激光雷达中,通常采用分立器件来构造探测接收系统,例如64线的激光雷达有64路APD,就需要64路TIA跨阻电路,采用分立器件需要较大的PCB板面积进行布线,考虑到雷达本身的体积要求,使用一块大的PCB并不合理,当前使用多块板通过接插件连接的方案来增加布线面积,这带来一系列技术缺陷。
以64线激光雷达为例,接插件引脚间距较小,64路APD到跨阻放大器的走线需要先汇聚到接插件上,经过接插件后再发散到接收板1和接收板2上,一方面,引脚本身电隔离度较低,另一方面,引脚对应的走线线距无法拉大,平行走线长度很长,导致较低的走线隔离度,会带来雷达不同通道间的串扰问题。
另外,64路APD读出电路的走线不尽相同,导致对于不同通道在PCB板上的寄生参数不同,从而影响各通道的响应特性,导致64个通道具有较高的测远不一致性。
同时,雪崩光电二极管APD的增益对温度很敏感,接收板上的64个APD 位于板上较为分散的位置,在雷达工作时,这些位置的温度并不相等,存在一定梯度,良好的散热或均热结构能够有效降低这样的梯度,而4块PCB板组成的接收模组占用空间很大,很难安装散热或均热结构,不可避免地存在较高的增益不一致性。
背景技术部分的内容仅仅是发明人所知晓的技术,并不当然代表本领域的现有技术。
发明内容
本发明提供一种可用于激光雷达的接收模组,包括:
PCB基板,所述PCB基板具有第一侧和第二侧;
光电传感器阵列,包括多个光电传感器,所述光电传感器阵列设置在所述PCB基板的第一侧;和
读出芯片,所述读出芯片设置在所述PCB基板的第二侧,配置成可接收并读取所述光电传感器阵列中的光电传感器的输出。
根据本发明的一个方面,所述的接收模组还包括第二级放大器,所述第二级放大器设置在所述PCB基板的第二侧上,并且与所述读出芯片耦接,配置成可对所述读出芯片的输出进行放大,
所述读出芯片与光电传感器阵列之间的引线穿过所述PCB基板。
根据本发明的一个方面,所述读出芯片包括封装的N路跨阻放大电路和N选1的开关,其中每个跨阻放大电路的输入端耦接到其中一个光电传感器,输出端耦接到所述N选1开关,所述N选1开关配置成可选通并输出其中一个跨阻放大电路的输出。
根据本发明的一个方面,所述N选1开关配置成可将其中一个跨阻放大电路的输出耦接到所述第二级放大器的输入端。
根据本发明的一个方面,所述接收模组包括多个所述读出芯片,所述光电传感器为APD。
根据本发明的一个方面,所述光电传感器阵列共包括64个光电传感器, 所述接收模组包括4个读出芯片,每个读出芯片包括16路跨阻放大电路和16选1的开关;或者,所述光电传感器阵列共包括128个光电传感器,所述接收模组包括8个读出芯片,每个读出芯片包括16路跨阻放大电路和16选1的开关。
根据本发明的一个方面,所述的接收模组还包括支架,所述PCB基板支撑在所述支架上。
根据本发明的一个方面,所述的接收模组还包括散热片,所述散热片包括导热部和散热部,其中所述导热部配置成可接收所述光电传感器阵列和/或所述读出芯片的热量,所述散热部配置成可消散所述热量。
根据本发明的一个方面,所述散热部包括多个散热鳍片。
根据本发明的一个方面,所述光电传感器阵列包括陶瓷管壳、滤光片和光阑,其中所述光电传感器贴附在所述陶瓷管壳上,所述滤光片设置在所述光电传感器上,以过滤杂散光,所述光阑设置在所述滤光片上以限制入射到所述光电传感器上的光束。
根据本发明的一个方面,所述读出芯片包括DAC电压调节器,所述DAC电压调节器的输出端耦接到所述光电传感器,从而可调节所述光电传感器提供偏置电压。
本发明还涉及一种激光雷达,包括如上所述的接收模组。
根据本发明的一个方面,所述激光雷达包括一个所述接收模组。
通过本发明的实施例的技术方案,读出芯片各通道间的增益和带宽一致性可以做到远好于分立器件,这使得接收端有很好的测远一致性;减少的电路板的位置得到了较大的空间,可以加装散热和均热结构,降低多个APD的温度梯度;APD阵列能够有更好的使用价值,可以使正面的APD阵列和背面的自研芯片输入引脚的位置一一对应,走线无交叉且极致短,此外,使用APD阵列可以大大简化装调过程。
附图说明
构成本发明的一部分的附图用来提供对本发明的进一步理解,本发明的 示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了根据本发明一个实施例的接收模组;
图2示出了根据本发明一个优选实施例的读出芯片的示意图;
图3A示出了根据本发明一个优选实施例的接收模组;
图3B示出了PCB基板、支架以及散热部的装配视图;
图4示出了根据本发明一个优选实施例的光电传感器阵列的示意图;
图5A和5B示出了根据本发明一个优选实施例的光电传感器阵列以及读出芯片的示意图
具体实施方式
在下文中,仅简单地描述了某些示例性实施例。正如本领域技术人员可认识到的那样,在不脱离本发明的精神或范围的情况下,可通过各种不同方式修改所描述的实施例。因此,附图和描述被认为本质上是示例性的而非限制性的。
在本发明的描述中,需要理解的是,术语"中心"、"纵向"、"横向"、"长度"、"宽度"、"厚度"、"上"、"下"、"前"、"后"、"左"、"右"、"坚直"、"水平"、"顶"、"底"、"内"、"外"、"顺时针"、"逆时针"等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语"第一"、"第二"仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有"第一"、"第二"的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的描述中,"多个"的含义是两个或两个以上,除非另有明确具体的限定。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语"安装"、"相连"、"连接"应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接:可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之"上"或之"下"可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征"之上"、"上方"和"上面"包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征"之下"、"下方"和"下面"包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度小于第二特征。
下文的公开提供了许多不同的实施方式或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
以下结合附图对本发明的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本发明,并不用于限定本发明。
图1示出了根据本发明一个实施例的接收模组10,例如可用于激光雷达中,用于接收来自激光雷达外部障碍物反射的回波光束。下面参考图1详细描述。如图1所示,接收模组10包括PCB基板11、光电传感器阵列12以及 读出芯片13。其中,PCB基板11用作机械支撑基底以及电路基底,其上可布置接收模组10的其他光电部件。如图1中所示,PCB基板11为薄板状,具有第一侧和第二侧,图1中所示的为其左侧和右侧。接收模组10可包括一个或多个设置在所述PCB基板11的第一侧上的光电传感器阵列12,每个光电传感器阵列12中包括多个光电传感器。光电传感器例如为光电二极管,优选是雪崩式光电二极管APD或者SiPM。当其接收到入射的光束或者光子时,会根据入射的光束强度或者光子的数目,产生相对应的电信号,电信号经过采集、放大、滤波之后,可用于后续的数据处理,生成激光雷达的点云数据。图1中示出了PCB基板11上设置有四个光电传感器阵列12,本领域技术人员容易理解,本发明不限于此,光电传感器阵列12的数目可以根据需要而任意的决定,或者根据光电传感器12的排布位置和方式来决定,例如在图5A中示出了在PCB基板11上设置有8个光电传感器阵列12,每个光电传感器阵列中包括8个光电传感器。另外,每个光电传感器阵列12中所包括的光电传感器的数目,也可以根据需要来选择。例如,当应用于64线的激光雷达时,可以选择设置四组光电传感器阵列,每个光电传感器阵列包括16个光电传感器。这些都在本发明的保护范围内。
读出芯片13设置在所述PCB基板11的第二侧上,与所述光电传感器阵列12相反,并耦接到所述光电传感器阵列12,配置成可接收并读取所述光电传感器阵列12中的光电传感器的输出。如图1所述,光电传感器阵列12与读出芯片13分别设置在PCB基板11的相反的两侧上,因此根据本发明的一个优选实施例,可以使得连接所述读出芯片13与光电传感器阵列12之间的引线穿过所述PCB基板11内部,可以减少或者避免在PCB11的外部走线。减小平行走线的长度,提高走线隔离度,降低激光雷达的不同通道之间的串扰问题。
图2示出了根据本发明一个优选实施例的读出芯片13的示意图。读出芯 片13例如是多通道的读出芯片,设置在所述PCB基板的第二侧上。如图2所示,所述读出芯片13包括封装的N路跨阻放大电路(TIA 1,TIA2,…,TIA N)和N选1的开关。其中每个跨阻放大电路的输入端耦接到其中一个光电传感器,例如APD,从而可以接收光电传感器的电信号,并进行信号放大和输出。每个跨阻放大电路的输出端耦接到所述N选1开关,所述N选1开关配置成可选通并输出其中一个跨阻放大电路的输出。
根据本发明的一个优选实施例,所述读出芯片13可以与所述光电传感器阵列相对应,从而使得读出芯片13的数目与光电传感器阵列的数目相同,例如均为4、3、2、或1。举例来说,对于64线激光雷达,可以包括4个光电传感器阵列12,每个光电传感器阵列12中包括16个APD。与此相对应的,接收模组10包括4个读出芯片13,每个读出芯片13中包括16个跨阻放大电路和一个16选1的开关。因此,一个读出芯片相当于16路的分立TIA跨阻电路和16选1的模拟开关,只需使用4片读出芯片,优选的加上第二级放大电路即可实现与原来接收系统相同的功能,这使得接收端仅需使用一块与原来面积相同的PC板即可完成走线。可替换的,读出芯片13的数目与光电传感器阵列的数目也可以不相同。图5A和5B示出了这样一个实施例。如图5A所示,PCB基板11的第一侧上设置有8个光电传感器阵列12;如图5B所示,PCB基板11的第二侧上设置有四个读出芯片13,每个读出芯片13与一个或多个光电传感器阵列12耦接并读取其输出。另外优选的,读出芯片13与光电传感器阵列12的连接关系可以根据其位置分布而决定,以尽量减小走线长度。例如图5A中,包括8个光电传感器阵列12,分别为12-1、12-2、…、12-8,其中,光电传感器12-2、12-3、12-4位置相互靠近,光电传感器12-5、12-6、12-7位置相互靠近,其他两个光电传感器12-1和12-8的位置相互独立。与此相对应的,在PCB基板11第二侧上设置的四个读出芯片13,其位置分别与光电传感器的位置相对应。例如读出芯片13-1的位置大致对应于光 电传感器12-1,读出芯片13-2的位置大致对应于光电传感器12-2、12-3、12-4,读出芯片13-3的位置大致对应于光电传感器12-5、12-6、12-7,读出芯片13-4的位置大致对应于光电传感器12-8。通过这样的设置,能够进一步减小连接所述读出芯片13与光电传感器阵列12之间的引线的长度,提高走线隔离度,降低激光雷达的不同通道之间的串扰问题。
或者对于128线激光雷达来说,可以包括8个光电传感器阵列,共128个光电传感器,所述接收模组包括8个读出芯片,每个读出芯片包括16路跨阻放大电路和16选1的开关。
另外,根据本发明的一个优选实施例,如图1所示,所述的接收模组1还包括第二级放大器16,所述第二级放大器16设置在所述PCB基板的第二侧上,与所述读出芯片13位于同一侧上。第二级放大器16与所述读出芯片13耦接,从而对所述读出芯片13输出的信号进行二次放大。
结合图1和图2的实施例,所述N选1开关配置成可将其中一个跨阻放大电路的输出耦接到所述第二级放大器的输入端。所述N选1开关例如具有N个输入通道,其选通选通其中一个输入通道,将该输入通道的输入进行输出。
图3A示出了根据本发明一个优选实施例的接收模组10,其中还包括支架14,所述PCB基板11支撑在所述支架14上。支架14通常可由强度更高的金属制成,用于安装固定接收模组,例如固定在激光雷达的基座上。另外,图3A中的接收模组10还包括散热片15,所述散热片15包括导热部(或吸热部)151和散热部152,其中所述导热部151由导热系数较高的材料制成,例如与光电传感器阵列12和/或读出芯片13相接触或者靠近,从而可接收所述光电传感器阵列和/或所述读出芯片的热量。所吸收的热量传导到散热部152,通过散热部152进行热量的散发。优选的,可以在所述散热部152附近布置一风扇或者其他的可促进空气流动的装置,从而有助于散热。如图2所 示,散热部152包括多个散热鳍片。后者可替换的,散热部152包括螺旋排列的散热壁,以增大散热面积,强化散热效果。
图3B示出了PCB基板11、支架14以及散热部15装配视图。
光电传感器阵列12中可以包括多个分立的光电传感器。但优选的,光电传感器阵列12中的多个光电传感器进行适当的分组和封装,下面参考图4、图5A和图5B描述。
图4示出了根据本发明一个优选实施例的光电传感器阵列12的示意图。如图4所示,除了多个光电传感器,例如APD裸片,光电传感器阵列12还包括陶瓷管壳122和滤光片123,其中所述APD裸片贴附在所述陶瓷管壳122上,所述滤光片123设置在所述APD裸片上,以过滤杂散光。从而可形成一个封装好的APD线阵,可供直接安装在激光雷达的接收模组10上。另外可选的,所述光电传感器阵列中还可包括光阑结构,设置在所述光电传感器的光路上游,例如设置在所述滤光片123上,同样可用于阻止或者减少杂散光入射到所述光电传感器上,以降低噪声。
图4中示出了多个APD排列封装成APD线阵。本领域技术人员容易理解,本发明的保护范围不限于此,也可以是单粒APD封装,或者以其他的二维图案进行排列封装,另外也可以采用单个或多个APD阵列在PCB基板上进一步排列组合出线阵或面阵。这些都在本发明的保护范围内。例如图5A示出了根据本发明一个实施例的光电传感器阵列12的示意图。其中示意性示出了光电传感器阵列包括8个APD,其中共8个光电传感器阵列,每个阵列例如是图4所示的封装方式。当然,图5A所示的数目和排布方式仅为示意性的,APD的数量例如可以是16、32、64、128,每组封装所包括的APD的数目不限于8个,可以根据实际需要来进行相应的调整。
另外,根据本发明的一个方面,所述读出芯片包括DAC电压调节器,所述DAC电压调节器的输出端耦接到所述光电传感器,从而可调节所述光电传 感器提供偏置电压。优选的,所述DAC电压调节器的数目对应于所述光电传感器的数目,从而可以对每个光电传感器单独地调节偏置电压,从而控制器其增益系数。
本发明的一个实施例还涉及一种激光雷达,包括如上所述的接收模组10。
另外,根据本发明的一个实施例,在激光雷达中,只包括一个所述接收模组。通过这样的方式,可以将全部的光电传感器以及读出芯片集成到一个PCB基板上,使得激光雷达的各个通道具有较高的测远一致性。另外,光电传感器位于同一块PCB基板上,温度较为均匀,因而能够降低相互之间的温度梯度,使得各个光电传感器的增益尽可能保持一致。
本发明的实施例具有多功能、模块化的优点,综合考虑并优化了一系列功能,例如包括封装可靠性、体积、成本、电磁兼容性、滤光、通道间光串扰、装调、散热等问题。另外,本发明的方案可适应多种扫描式激光雷达的系统方案,例如:机械扫描式、旋转镜扫描式、振镜扫描式。
另外,本发明的实施例的方案具有易生产、易装调的特点。诸如APD的光电传感器的精确位置排布可以通过机器实现自动化;APD面阵可以整体装调,降低装调难度和成本。通过滤光片以及光阑,本发明的实施例中具有高信噪比和低串扰的特点,能够抑制串扰和杂散光,同时,由于光电传感器阵列和读出芯片设置在同一块PCB基板的两侧上,可以穿过PCB基板来布置引线,引线较短,因此具有低寄生电容,带来高带宽和低电路噪声。
同时,通过采用金属结构来制造支架、光阑和散热片等结构,可以对敏感的前端探测器和电路形成屏蔽,保护其不受干扰,因此具有较强的电磁兼容性。
本发明实施例的优点包括但不限于:
可以减少或者不必使用接插件。一方面,不存在引脚间距造成的电隔离度限制,同时,读出芯片充分考虑了APD的排布进行了芯片引脚排布的优化,相邻通道间的芯片引脚之间有直流引脚进行隔离,这也可以增大相邻走线的 间距,另一方面,APD到跨阻放大器的走线可以直接从PCB板的正面走到背面,中间不需要绕行,大大缩短了平行走线长度,通道间的串扰问题可以明显改善。
读出芯片各通道间的增益和带宽一致性可以做到远好于分立器件,这使得接收端有很好的测远一致性。
减少的电路板的位置得到了较大的空间,可以加装散热和均热结构,降低多个APD的温度梯度;
读出芯片的引入,使得APD阵列能够有更好的使用价值,可以使正面的APD阵列和背面的自研芯片输入引脚的位置一一对应,走线无交叉且极致短,此外,使用APD阵列可以大大简化装调过程。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (13)

  1. 一种可用于激光雷达的接收模组,包括:
    PCB基板,所述PCB基板具有第一侧和第二侧;
    光电传感器阵列,包括多个光电传感器,所述光电传感器阵列设置在所述PCB基板的第一侧;和
    读出芯片,所述读出芯片设置在所述PCB基板的第二侧,配置成可接收并读取所述光电传感器阵列中的光电传感器的输出,所述读出芯片与所述光电传感器阵列之间的引线穿过所述PCB基板。
  2. 根据权利要求1所述的接收模组,还包括第二级放大器,所述第二级放大器设置在所述PCB基板的第二侧上,并且与所述读出芯片耦接,配置成可对所述读出芯片的输出进行放大。
  3. 根据权利要求2所述的接收模组,其中所述读出芯片包括封装的N路跨阻放大电路和N选1的开关,其中每个跨阻放大电路的输入端耦接到其中一个光电传感器,输出端耦接到所述N选1开关,所述N选1开关配置成可选通并输出其中一个跨阻放大电路的输出。
  4. 根据权利要求3所述的接收模组,其中所述N选1开关配置成可将其中一个跨阻放大电路的输出耦接到所述第二级放大器的输入端。
  5. 根据权利要求3或4所述的接收模组,其中所述接收模组包括多个所述读出芯片,所述光电传感器为APD。
  6. 根据权利要求5所述的接收模组,其中所述光电传感器阵列共包括64个光电传感器,所述接收模组包括4个读出芯片,每个读出芯片包括16路跨阻放大电路和16选1的开关;
    或者,所述光电传感器阵列共包括128个光电传感器,所述接收模组包 括8个读出芯片,每个读出芯片包括16路跨阻放大电路和16选1的开关。
  7. 根据权利要求1-4中任一项所述的接收模组,还包括支架,所述PCB基板支撑在所述支架上。
  8. 根据权利要求7所述的接收模组,还包括散热片,所述散热片包括导热部和散热部,其中所述导热部配置成可接收所述光电传感器阵列和/或所述读出芯片的热量,所述散热部配置成可消散所述热量。
  9. 根据权利要求8所述的接收模组,其中所述散热部包括多个散热鳍片。
  10. 根据权利要求1-4中任一项所述的接收模组,其中所述光电传感器阵列包括陶瓷管壳、滤光片和光阑,其中所述光电传感器贴附在所述陶瓷管壳上,所述滤光片设置在所述光电传感器上,以过滤杂散光,所述光阑设置在所述滤光片上,以限制入射到所述光电传感器的光束。
  11. 根据权利要求1-4中任一项所述的接收模组,其中所述读出芯片包括DAC电压调节器,所述DAC电压调节器的输出端耦接到所述光电传感器输出端,从而可调节所述光电传感器两端的偏置电压。
  12. 一种激光雷达,包括如权利要求1-11中任一项所述的接收模组。
  13. 根据权利要求12所述的激光雷达,其中所述激光雷达包括一个所述接收模组。
PCT/CN2020/122664 2019-11-07 2020-10-22 接收模组以及包括其的激光雷达 WO2021088648A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/565,190 US20220120870A1 (en) 2019-11-07 2021-12-29 Receiving device and laser radar including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911079332.2 2019-11-07
CN201911079332.2A CN110736975B (zh) 2019-11-07 2019-11-07 接收模组以及包括其的激光雷达

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/565,190 Continuation US20220120870A1 (en) 2019-11-07 2021-12-29 Receiving device and laser radar including the same

Publications (1)

Publication Number Publication Date
WO2021088648A1 true WO2021088648A1 (zh) 2021-05-14

Family

ID=69272409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122664 WO2021088648A1 (zh) 2019-11-07 2020-10-22 接收模组以及包括其的激光雷达

Country Status (3)

Country Link
US (1) US20220120870A1 (zh)
CN (1) CN110736975B (zh)
WO (1) WO2021088648A1 (zh)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11609336B1 (en) 2018-08-21 2023-03-21 Innovusion, Inc. Refraction compensation for use in LiDAR systems
WO2018182812A2 (en) 2016-12-30 2018-10-04 Innovusion Ireland Limited Multiwavelength lidar design
US10942257B2 (en) 2016-12-31 2021-03-09 Innovusion Ireland Limited 2D scanning high precision LiDAR using combination of rotating concave mirror and beam steering devices
KR102569841B1 (ko) 2017-01-05 2023-08-24 이노뷰전, 인크. LiDAR를 인코딩 및 디코딩하기 위한 방법 및 시스템
US11009605B2 (en) 2017-01-05 2021-05-18 Innovusion Ireland Limited MEMS beam steering and fisheye receiving lens for LiDAR system
US11675050B2 (en) 2018-01-09 2023-06-13 Innovusion, Inc. LiDAR detection systems and methods
WO2019139895A1 (en) 2018-01-09 2019-07-18 Innovusion Ireland Limited Lidar detection systems and methods that use multi-plane mirrors
WO2019165130A1 (en) 2018-02-21 2019-08-29 Innovusion Ireland Limited Lidar detection systems and methods with high repetition rate to observe far objects
US11927696B2 (en) 2018-02-21 2024-03-12 Innovusion, Inc. LiDAR systems with fiber optic coupling
CN112292608A (zh) 2018-02-23 2021-01-29 图达通爱尔兰有限公司 用于lidar系统的二维操纵系统
WO2020013890A2 (en) 2018-02-23 2020-01-16 Innovusion Ireland Limited Multi-wavelength pulse steering in lidar systems
US11289873B2 (en) 2018-04-09 2022-03-29 Innovusion Ireland Limited LiDAR systems and methods for exercising precise control of a fiber laser
WO2019241396A1 (en) 2018-06-15 2019-12-19 Innovusion Ireland Limited Lidar systems and methods for focusing on ranges of interest
US11579300B1 (en) 2018-08-21 2023-02-14 Innovusion, Inc. Dual lens receive path for LiDAR system
US11614526B1 (en) 2018-08-24 2023-03-28 Innovusion, Inc. Virtual windows for LIDAR safety systems and methods
US11796645B1 (en) 2018-08-24 2023-10-24 Innovusion, Inc. Systems and methods for tuning filters for use in lidar systems
US11579258B1 (en) 2018-08-30 2023-02-14 Innovusion, Inc. Solid state pulse steering in lidar systems
CN114114606A (zh) 2018-11-14 2022-03-01 图达通爱尔兰有限公司 使用多面镜的lidar系统和方法
WO2020146493A1 (en) 2019-01-10 2020-07-16 Innovusion Ireland Limited Lidar systems and methods with beam steering and wide angle signal detection
US11486970B1 (en) 2019-02-11 2022-11-01 Innovusion, Inc. Multiple beam generation from a single source beam for use with a LiDAR system
US11977185B1 (en) 2019-04-04 2024-05-07 Seyond, Inc. Variable angle polygon for use with a LiDAR system
CN110736975B (zh) * 2019-11-07 2020-11-27 上海禾赛光电科技有限公司 接收模组以及包括其的激光雷达
WO2022000207A1 (zh) * 2020-06-29 2022-01-06 深圳市速腾聚创科技有限公司 一种激光接收装置和激光雷达
CN112702021B (zh) * 2020-12-10 2023-02-24 上海禾赛科技有限公司 获取光电二极管的击穿电压的电路及方法
US11422267B1 (en) 2021-02-18 2022-08-23 Innovusion, Inc. Dual shaft axial flux motor for optical scanners
US11789128B2 (en) 2021-03-01 2023-10-17 Innovusion, Inc. Fiber-based transmitter and receiver channels of light detection and ranging systems
US11555895B2 (en) 2021-04-20 2023-01-17 Innovusion, Inc. Dynamic compensation to polygon and motor tolerance using galvo control profile
US11614521B2 (en) 2021-04-21 2023-03-28 Innovusion, Inc. LiDAR scanner with pivot prism and mirror
CN117178199A (zh) 2021-04-22 2023-12-05 图达通智能美国有限公司 具有高分辨率和超宽视场的紧凑型光检测和测距设计
EP4314884A1 (en) 2021-05-21 2024-02-07 Innovusion, Inc. Movement profiles for smart scanning using galvonometer mirror inside lidar scanner
US11768294B2 (en) 2021-07-09 2023-09-26 Innovusion, Inc. Compact lidar systems for vehicle contour fitting
CN113702948B (zh) * 2021-08-09 2023-03-28 北京一径科技有限公司 一种跨阻放大器阵列、光接收装置及激光雷达接收器
CN116359885A (zh) * 2021-12-28 2023-06-30 上海禾赛科技有限公司 激光雷达的探测方法以及激光雷达
US11871130B2 (en) 2022-03-25 2024-01-09 Innovusion, Inc. Compact perception device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150340390A1 (en) * 2014-05-20 2015-11-26 Sensl Technologies Ltd. Semiconductor photomultiplier
CN205752136U (zh) * 2016-05-17 2016-11-30 歌尔股份有限公司 一种光学传感器封装结构及其集成板
WO2019060812A1 (en) * 2017-09-25 2019-03-28 Waymo Llc COMBINED PHOTODETECTOR ARRAYS FOR EXTENDED DYNAMIC RANGE
CN110244278A (zh) * 2019-05-23 2019-09-17 北醒(北京)光子科技有限公司 一种激光雷达散热装置
CN110376568A (zh) * 2019-08-13 2019-10-25 北京雷瑟瑞达科技有限公司 一种用于激光雷达的接收组件及系统
CN110736975A (zh) * 2019-11-07 2020-01-31 上海禾赛光电科技有限公司 接收模组以及包括其的激光雷达

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5707606B2 (ja) * 2009-04-22 2015-04-30 株式会社フコク 回転式入力装置及び電子機器
CN201812046U (zh) * 2010-08-24 2011-04-27 威海华菱光电有限公司 棒状透镜阵列及其所构成的图像读取装置
CN107611249B (zh) * 2011-03-30 2021-11-30 阿姆巴托雷股份有限公司 由极低电阻材料形成的电气、机械、计算和/或其他设备
US8744418B2 (en) * 2012-08-31 2014-06-03 Analog Devices, Inc. Environment detection for mobile devices
CN104978052B (zh) * 2014-04-10 2018-03-27 原相科技股份有限公司 高静电防护的电子装置
CN205091027U (zh) * 2015-09-17 2016-03-16 广州华凌制冷设备有限公司 一种水位检测传感器和家电设备
EP3566078A1 (en) * 2017-01-03 2019-11-13 Innoviz Technologies Ltd. Lidar systems and methods for detection and classification of objects
CN106671613B (zh) * 2017-02-22 2018-08-24 禹涛林 全自动在线式pcb喷印系统及方法
CN207586427U (zh) * 2017-08-21 2018-07-06 深圳市镭神智能系统有限公司 一种多线激光雷达
CN109254365A (zh) * 2018-11-14 2019-01-22 珠海市本佳科技有限公司 光接收模组及其制作方法、光接收器件
CN209389446U (zh) * 2018-12-20 2019-09-13 北京万集科技股份有限公司 一种半导体激光器驱动电路及激光雷达

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150340390A1 (en) * 2014-05-20 2015-11-26 Sensl Technologies Ltd. Semiconductor photomultiplier
CN205752136U (zh) * 2016-05-17 2016-11-30 歌尔股份有限公司 一种光学传感器封装结构及其集成板
WO2019060812A1 (en) * 2017-09-25 2019-03-28 Waymo Llc COMBINED PHOTODETECTOR ARRAYS FOR EXTENDED DYNAMIC RANGE
CN110244278A (zh) * 2019-05-23 2019-09-17 北醒(北京)光子科技有限公司 一种激光雷达散热装置
CN110376568A (zh) * 2019-08-13 2019-10-25 北京雷瑟瑞达科技有限公司 一种用于激光雷达的接收组件及系统
CN110736975A (zh) * 2019-11-07 2020-01-31 上海禾赛光电科技有限公司 接收模组以及包括其的激光雷达

Also Published As

Publication number Publication date
CN110736975A (zh) 2020-01-31
US20220120870A1 (en) 2022-04-21
CN110736975B (zh) 2020-11-27

Similar Documents

Publication Publication Date Title
WO2021088648A1 (zh) 接收模组以及包括其的激光雷达
US10063849B2 (en) Optical system for collecting distance information within a field
KR102259759B1 (ko) 동시 입출력이 가능한 ROIC 구조와 이를 포함하는 Lidar ToF 센서
US20040119838A1 (en) Compact economical lidar system
US20070024840A1 (en) Ultraviolet, infrared, and near-infrared lidar system and method
CN108594206A (zh) 光传输模块、激光发射模块、激光雷达系统及车辆
JP6058310B2 (ja) 電子機器に対する放射線防護を備える直接変換x線検出器及びx線検出器の配置
WO2020107164A1 (zh) 激光二极管封装模块及距离探测装置、电子设备
KR20180054895A (ko) 거리 센서 및 거리 화상 센서
US20210382147A1 (en) Lidar and detection apparatus thereof
US20210389468A1 (en) Abstandsmesseinheit
US11940561B2 (en) Laser receiving device and LiDAR comprising a plurality of isolation parts for electromagnetic shielding between adjacent sensor groups and between adjacent amplifier groups
Hegblom et al. Column-addressable and matrix-addressable multi-junction VCSEL arrays for all electronic-scanning LiDAR
JP2012151661A (ja) 赤外線撮像装置
US11467260B2 (en) Hermetically sealed distance measuring apparatus
CN216646803U (zh) 光收发模组及激光雷达
CN110596675A (zh) 一种激光发射装置及激光雷达系统
WO2022198386A1 (zh) 激光测距装置、激光测距方法和可移动平台
JP2024514576A (ja) ソリッドステートライダー及びそれを用いて探知する方法
CN211858645U (zh) 光电传感器封装结构及包括该结构的激光雷达
JPH085747A (ja) シンチレーションカメラ
CN110753854B (zh) 激光雷达及智能感应设备
WO2021051721A1 (zh) 激光雷达
US11965989B2 (en) Copackaging photodetector and readout circuit for improved LiDAR detection
WO2023123984A1 (zh) 光收发模组及激光雷达

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20885558

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20885558

Country of ref document: EP

Kind code of ref document: A1