WO2020235601A1 - Polyamic acid solution, method for preparing same, polyamide film, laminate, method for producing said laminate, and flexible device - Google Patents

Polyamic acid solution, method for preparing same, polyamide film, laminate, method for producing said laminate, and flexible device Download PDF

Info

Publication number
WO2020235601A1
WO2020235601A1 PCT/JP2020/019978 JP2020019978W WO2020235601A1 WO 2020235601 A1 WO2020235601 A1 WO 2020235601A1 JP 2020019978 W JP2020019978 W JP 2020019978W WO 2020235601 A1 WO2020235601 A1 WO 2020235601A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamic acid
acid solution
ring
general formula
tetracarboxylic dianhydride
Prior art date
Application number
PCT/JP2020/019978
Other languages
French (fr)
Japanese (ja)
Inventor
隆之介 滝
隆宏 秋永
越生 堀井
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to KR1020217041419A priority Critical patent/KR20220013387A/en
Priority to JP2021520821A priority patent/JP7470681B2/en
Publication of WO2020235601A1 publication Critical patent/WO2020235601A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/106Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a polyamic acid solution and a method for producing the same. Furthermore, the present invention relates to a polyimide film obtained from the polyamic acid solution, a laminate in which a polyimide film is closely laminated on a substrate, and a device provided with an electronic element on the polyimide film.
  • a glass substrate is used as a substrate for electronic devices such as flat panel displays and electronic paper, but from the viewpoint of thinning, weight reduction, flexibility, etc., replacement of glass with a polymer film is being considered.
  • polyimide is suitable because it has excellent heat resistance and dimensional stability.
  • a laminate in which a polyimide film is closely laminated on a rigid substrate such as glass is produced, an element is formed on the polyimide film, and then the element is formed.
  • a method of peeling the polyimide film from the rigid substrate has been proposed.
  • a laminate in which a polyimide film is closely laminated on a rigid substrate is formed by applying a solution of polyamic acid, which is a precursor of polyimide, on the rigid substrate and dehydrating and cyclizing (imidizing) the polyamic acid by heating. Will be done.
  • Polyamic acid which is a precursor of polyimide, is obtained by an addition reaction between tetracarboxylic dianhydride and diamine.
  • the polyamic acid solution tends to change in viscosity due to polymerization or depolymerization over time, and storage stability may not be sufficient.
  • Patent Document 1 proposes a method of sealing the ends of the polyamic acid with a non-reactive functional group.
  • the polyimide film used as a substrate for flexible devices and the like is required to have sufficient mechanical strength, it is preferable that the polyimide constituting the film has a high molecular weight.
  • a method for obtaining a high molecular weight polyimide it is common to increase the molecular weight of the precursor polyamic acid.
  • the above problem can be solved by the polyamic acid having a predetermined terminal structure.
  • the polyamic acid solution of one embodiment of the present invention contains a polyamic acid having a terminal structure represented by the general formula (1) and a polyamic acid having a terminal structure represented by the general formula (2).
  • X is a tetravalent organic group which is a tetracarboxylic dianhydride residue
  • Y is a divalent organic group which is a diamine residue.
  • the weight average molecular weight of the polyamic acid is preferably 5000 or more and 45000 or less.
  • the water content of the polyamic acid solution is preferably 1500 ppm or less.
  • the imidization ratio of the polyamic acid in the polyamic acid solution is preferably 5 mol% or less.
  • the solid content concentration of the polyamic acid solution is preferably 10% by weight or more.
  • the ratio log ⁇ / D of the log ⁇ of the viscosity ⁇ (unit: poise) of the polyamic acid solution at the temperature of 23 ° C. to the solid content concentration D (unit: weight%) of the polyamic acid is preferably 0.12 or less.
  • tetracarboxylic dianhydride is hydrocyclic to form a ring-opened body, and a mixture of tetracarboxylic dianhydride and the ring-opened body thereof is reacted with diamine to form a polyamide. Obtained by polymerizing an acid. Hydrocyclic ringing of the tetracarboxylic dianhydride is carried out, for example, at a temperature of 50 to 100 ° C. in a solution containing 2 to 10 mol% of water with respect to the total amount of the tetracarboxylic dianhydride.
  • the amount of one-sided ring-opened body produced by water-opening is preferably 1 to 15 mol% based on the total amount of tetracarboxylic acid.
  • the amount of both ring-opened bodies produced by water-opening may be 0.1 to 5 mol% with respect to the total amount of tetracarboxylic acid.
  • the total amount of tetracarboxylic acid (total number of moles) is the number of moles of unopened tetracarboxylic dianhydride x 1 , the number of moles of single-opened ring x 2, and the number of moles of bi-opened ring x 3 .
  • the total is x 1 + x 2 + x 3 .
  • the polyamic acid solution may further contain a polyamic acid having a terminal structure represented by the general formula (5).
  • R 1 is a divalent organic group
  • R 2 is an alkyl group having 1 to 5 carbon atoms.
  • Polyimide can be obtained by the dehydration cyclization reaction of the above polyamic acid. For example, by applying a polyamic acid solution on a substrate and dehydrating and cyclizing the polyamic acid by heating to imidize, a laminate in which a polyimide film is closely laminated on the substrate can be obtained. A polyimide film can be obtained by peeling the polyimide film from the substrate.
  • a flexible device can be manufactured by providing an electronic element on a polyimide film.
  • An electronic element may be provided on the polyimide film before the polyimide film is peeled from the laminate, and then the polyimide film may be peeled from the laminate.
  • the polyamic acid solution of the present invention has a low viscosity and is excellent in storage stability, so that it is easy to handle.
  • the polyimide film produced by using the polyamic acid solution has excellent mechanical strength and is suitably used as a substrate for a flexible device or the like.
  • Polyamic acid solution Polyamic acid is a polyaddition reaction product of tetracarboxylic dianhydride and diamine.
  • the tetracarboxylic dianhydride is a compound represented by the following general formula (A)
  • the diamine is a compound represented by the following general formula (B).
  • the polyamic acid has a repeating unit of the following general formula (P).
  • X is a residue of tetracarboxylic dianhydride.
  • the residue of tetracarboxylic dianhydride is a portion other than the two acid anhydride groups (-CO-O-CO-) in the compound of the general formula (A), and is a tetravalent organic group.
  • tetracarboxylic dianhydride two of the four carbonyl groups bonded to X form a pair, and together with X and an oxygen atom, form a five-membered ring.
  • Y is a diamine residue. The residue of the diamine is a portion other than the two amino groups (-NH 2 ) in the compound of the general formula (B), and is a divalent organic group.
  • the general polyamic acid obtained by the reaction of tetracarboxylic dianhydride and diamine has a terminal structure (amine terminal) represented by the following general formula (Q) and a terminal represented by the following general formula (R). It has a structure (acid anhydride terminal).
  • the polyamic acid solution of the embodiment of the present invention has one characteristic in the terminal structure of the polyamic acid, and the terminal structure represented by the general formula (1) (the acid dianhydride group at the terminal is hydrocyclic. Polyamic acid) and a terminal structure represented by the general formula (2) (amine-terminated polyamic acid).
  • the polyamic acid solution may further contain a compound (tetracarboxylic acid) represented by the general formula (3).
  • X in the general formulas (1) to (3) is a residue of tetracarboxylic dianhydride, and Y is a residue of diamine.
  • the terminal structure of the general formula (2) is an amine terminal contained in a general polyamic acid (same as the above general formula (Q)), but the hydrocyclic ring-opened terminal structure of the general formula (1) is a tetracarboxylic acid. It is a structure not contained in polyamic acid obtained only by the reaction of dianhydride and diamine. That is, the polyamic acid solution of the embodiment of the present invention contains the polyamic acid having the terminal structure represented by the general formula (1) in addition to the polyamic acid having an amine terminal contained in the general polyamic acid. It is one of the features.
  • the structure of both ends of the polyamic acid molecule may be the same or different. Although it depends on the charging ratio of the raw materials and the reaction conditions, the polyamic acid is generally a mixture of a polyamic acid having the same terminal structure and a polyamic acid having a different terminal structure. That is, the polyamic acid solution contains a polyamic acid having both ends represented by the general formula (1); a polyamic acid having both ends represented by the general formula (2); and one end. It contains a polyamic acid having a structure represented by (1) and having a structure represented by (2) at the other end.
  • the polyamic acid may contain the terminal structure (acid anhydride terminal) of the above general formula (R) in addition to the terminal structure of the general formula (1) and the terminal structure of the general formula (2).
  • the terminal structure of the general formula (1) is formed, for example, by the reaction of the amine terminal of the polyamic acid or the diamine with the single ring-opened ring of the tetracarboxylic dianhydride.
  • the ratio of the terminal structure of the general formula (1) to all the terminals of the polyamic acid is preferably 1 mol% or more.
  • the polyamic acid solution of the present embodiment preferably has a polyamic acid having a weight average molecular weight of 5000 to 45000.
  • the water content of the polyamic acid solution may be 1500 ppm or less.
  • the solid content concentration of the polyamic acid solution is preferably 10% by weight or more.
  • the polyamic acid contained in the polyamic acid solution may be partially imidized, but the imidization ratio is preferably 5 mol% or less.
  • polyamic acid solution preparation of polyamic acid solution
  • polyamic acid is obtained by an addition reaction of tetracarboxylic dianhydride and diamine.
  • ⁇ Tetracarboxylic dianhydride examples include 3,3', 4,4'-biphenyltetracarboxylic dianhydride (hereinafter, may be abbreviated as BPDA), pyromellitic dianhydride, 3,3',.
  • BPDA 4,4'-biphenyltetracarboxylic dianhydride
  • pyromellitic dianhydride 3,3'
  • 4,4'-benzophenonetetracarboxylic dianhydride 2,3,3', 4'-biphenyltetracarboxylic dianhydride, 3,3', 4,4'-diphenylsulfonetetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 4, 4'-oxydiphthalic dianhydride, 9,9-bis (3,4-dicarboxyphenyl) fluorene dianhydride, 9,9'-bis [4- (3,4-dicarboxyphenoxy) phenyl] fluorene dianhydride , 3,3', 4,4'-biphenyl ethertetracarboxylic dianhydride, 2,3,5,6-pyridinetetracarboxylic dianhydride,
  • the tetracarboxylic dianhydride may be an alicyclic tetracarboxylic dianhydride.
  • examples of the alicyclic tetracarboxylic acid dianhydride include cyclohexanetetracarboxylic acid dianhydride, bicyclo [2.2.2] octane-2,3,5,6-tetracarboxylic acid dianhydride, and 5- (dioxo).
  • Tetrahydrofuryl-3-methyl-3-cyclohexene-1,2-dicarboxylic acid anhydride 4- (2,5-dioxo tetrahydrofuran-3-yl) -tetraline-1,2-dicarboxylic acid anhydride, tetrahydrofuran -2,3,4,5-Tetracarboxylic acid dianhydride, bicyclo-3,3', 4,4'-tetracarboxylic acid dianhydride, 1,2,3,4-cyclopentanetetracarboxylic acid dianhydride , 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride, 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic acid dianhydride, 1,4-dimethyl-1,2, Examples thereof include 3,4-cyclobutanetetracarboxylic acid dianhydride.
  • Two or more types of tetracarboxylic dianhydride may be used in combination.
  • the residue X of the tetracarboxylic dianhydride has a rigid structure. Therefore, it is preferable to use an aromatic ring-type tetracarboxylic dianhydride as a raw material for the polyamic acid, and it is preferable that 95 mol% or more of the tetracarboxylic dianhydride is an aromatic ring type.
  • BPDA aromatic ring-type tetracarboxylic dianhydrides
  • BPDA pyromellitic dianhydride
  • BPDA is particularly preferable because the rigidity is high and the coefficient of linear thermal expansion of the polyimide film can be lowered. It is preferable that 95 mol% or more of the tetracarboxylic dianhydride is BPDA.
  • Examples of the diamine include paraphenylenediamine (hereinafter sometimes abbreviated as PDA), 4,4'-diaminobenzidine, 4,4 "-diaminoparatelphenyl, 4,4'-diaminodiphenyl ether, and 3,4'-diamino.
  • Two or more types of diamines may be used in combination.
  • the residue Y of the diamine has a rigid structure. Therefore, it is preferable to use an aromatic ring diamine as a raw material for the polyamic acid, and it is preferable that 95 mol% or more of the diamine is an aromatic diamine.
  • the aromatic ring-type diamines PDA or 4,4 "-diaminoparaterphenyl is preferable, and PDA is particularly preferable because the rigidity is high and the coefficient of linear thermal expansion of the polyimide film can be lowered.
  • 95 mol% or more of the diamine is PDA. Is preferable.
  • polycarboxylic acid is obtained by reacting tetracarboxylic dianhydride and diamine in an organic solvent.
  • the polyamic acid having the terminal structure (amine terminal) of the general formula (2) is also contained in the general polyamic acid, and is produced by the reaction of tetracarboxylic acid dianhydride and diamine.
  • the terminal structure (ring-opening acid terminal) of the general formula (1) is formed by the reaction of an amine terminal or diamine of polyamic acid with a single ring-opening body of tetracarboxylic dianhydride, or ring opening of the acid anhydride terminal. Will be done. From the viewpoints of controlling the molecular weight of polyamic acid, controlling the amount of water in the composition, suppressing imidization of polyamic acid, and storing stability of the solution, a monocyclic ring of tetracarboxylic acid dianhydride as a polymerization monomer of polyamic acid. The method using is preferable.
  • a mixture of the tetracarboxylic dianhydride and the ring-opened body is reacted with diamine to obtain the terminal structure of the general formula (1).
  • a composition (polyamic acid solution) containing the polyamic acid having the polyamic acid and the polyamic acid having the terminal structure of the general formula (2) can be obtained.
  • tetracarboxylic dianhydride When tetracarboxylic dianhydride is hydrocyclic, only one of the two acid anhydride portions is ring-opened to form a dicarboxylic acid, and the other remains an acid anhydride (single ring compound). ..
  • a compound in which both of the two acid anhydride moieties are ring-opened (bicyclic ring-opened compound) is generally produced.
  • the single ring-opened body is represented by the general formula (4)
  • the double ring-opened body is represented by the general formula (3).
  • X in the general formula (3) and the general formula (4) is a tetracarboxylic dianhydride residue.
  • the hydrocyclic ring of the tetracarboxylic dianhydride is preferably carried out in an organic solvent in which water is present.
  • an organic solvent a polar solvent having miscibility with water is preferable, and the same organic solvent as the organic solvent used for the polymerization of polyamic acid is preferable.
  • amide-based solvents such as N, N-dimethylformamide, N, N-dimethylacetamide and N-methyl-2-pyrrolidone are preferable.
  • N-methyl-2-pyrrolidone is used as the organic solvent, the storage stability of the polyamic acid solution tends to be high.
  • the hydrocyclic ring may be carried out in either a state in which only the tetracarboxylic dianhydride is present or after the tetracarboxylic dianhydride and the diamine are mixed.
  • diamine the addition reaction of tetracarboxylic dianhydride and diamine (polymerization reaction of polyamic acid) and the ring-opening of tetracarboxylic acid competitively occur, but the former tends to be prioritized and the ring-opened body. Tends to be insufficient, and it tends to be difficult to control the amount of ring-opened body produced. Therefore, it is preferable to carry out the hydrocyclic ring-opening of the tetracarboxylic acid before mixing with the diamine.
  • the concentration of the acid dianhydride is preferably 3 to 40% by weight, more preferably 5 to 35% by weight, still more preferably 7 to 30% by weight.
  • the concentration of tetracarboxylic dianhydride may be 10% by weight or more, 15% by weight or more, or 17% by weight or more.
  • the water content in the water-opening reaction system is preferably 200 to 5000 ppm, more preferably 300 to 4000 ppm, further preferably 400 to 3500 ppm, and particularly preferably 500 to 3000 ppm.
  • the water content may be 700 ppm or more or 1000 ppm or more.
  • the amount of water in the hydrocyclic ring-opening reaction system is preferably 1 to 15 mol%, more preferably 2 to 12 mol%, based on the tetracarboxylic dianhydride. It may be 3 to 11 mol%, 5 to 10 mol% or 6 to 9 mol%.
  • organic solvents generally contain tens to hundreds of ppm of water. Water contained in the organic solvent can be used as it is for hydrolysis, but water contained in the organic solvent alone may not sufficiently produce a ring-opened body. Therefore, it is preferable to add water to the organic solvent to adjust the water content within the above range.
  • the hydrocyclic ring-opening reaction of the tetracarboxylic dianhydride proceeds even at room temperature, but it is preferably carried out under heating from the viewpoint of shortening the reaction time and controlling the amount of ring-opened body produced.
  • the reaction temperature is preferably 50 to 100 ° C., more preferably 60 to 95 ° C., and may be 65 to 90 ° C. or 70 to 85 ° C. From the viewpoint of improving reactivity (ring-opening body formation efficiency), it is preferable that the reaction temperature is high, but when the temperature exceeds 100 ° C. (boiling point of water), the water content of the system sharply decreases and ring-opening body is formed. The amount tends to decrease.
  • the reaction time (heating time) is about 20 minutes to 24 hours, more preferably 1 to 12 hours, still more preferably 2 to 5 hours.
  • the hydrocyclic ring opens the acid anhydride portion of the tetracarboxylic acid dianhydride, but the residue X of the tetracarboxylic acid dianhydride does not change before and after the reaction. Therefore, the total number of moles x of the tetracarboxylic dianhydride residue X is equal to the amount of the tetracarboxylic dianhydride charged (the total number of moles of the tetracarboxylic dianhydride before the hydrocyclic ring), and the water is added.
  • the ratio of the number of moles (x 2 ) of the single-open ring to the total number of moles (x 1 + x 2 + x 3 ) is preferably 0.01 to 0.15 (1 to 15 mol%), and 0.02 to 0.02 to It is more preferably 0.12 (2 to 12 mol%), and may be 0.03 to 0.10 (3 to 10 mol%) or 0.04 to 0.09 (4 to 9 mol%).
  • Polyamic acid is obtained by reacting tetracarboxylic dianhydride and diamine in an organic solvent.
  • a mixture of tetracarboxylic dianhydride obtained by ring-opening and a ring-opening product thereof is reacted with diamine.
  • the reaction between the tetracarboxylic acid and the diamine may be carried out by mixing the tetracarboxylic acid solution after the ring-opening and the diamine.
  • a diamine solution previously dissolved in an organic solvent and a tetracarboxylic acid solution after ring-opening may be mixed.
  • a tetracarboxylic dianhydride that has not undergone a water-opening reaction may be added.
  • x / y is in the above range
  • the ratio of the terminal structure of the general formula (1) to the terminal structure of the general formula (2) and the molecular weight of the polyamic acid in the polyamic acid are in the appropriate range, and the polyamic acid solution has storage stability. It is easy to obtain a polyimide film having excellent mechanical strength because the molecular weight tends to increase at the time of imidization.
  • the concentration of polyamic acid in the polyamic acid solution is preferably 5 to 45% by weight, more preferably 10 to 35% by weight, further preferably 13 to 30% by weight, and 15% by weight. % Or more or 17% by weight or more.
  • the reaction system contains a single ring-opened dianhydride of tetracarboxylic dianhydride, an excessive increase in molecular weight of the polyamic acid is suppressed, and an excessive viscosity of the reaction solution viscosity is suppressed even when the charged concentration is high. It can suppress the rise and gelation.
  • the reaction temperature is preferably 0 ° C. to 70 ° C., more preferably 20 ° C. to 65 ° C., and may be 30 to 60 ° C. ..
  • the reaction temperature is excessively high, in addition to the decrease in molecular weight due to the depolymerization of the polyamic acid, dehydration cyclization (imidization) of the polyamic acid is likely to occur, and the water content increases accordingly, so that the polyamic acid solution Storage stability may decrease. Therefore, it is preferable to control the temperature at the time of polymerization to around 50 ° C.
  • the obtained polyamic acid solution may be held at about 70 to 100 ° C. to carry out hydrolysis (depolymerization) of the polyamic acid.
  • the time for heating to 70 ° C. or higher is preferably 3 hours or less, more preferably 1 hour or less.
  • a low molecular weight polyamic acid can be obtained by using a single ring-opened dianhydride tetracarboxylic dianhydride.
  • the polyamic acid of the embodiment of the present invention may contain other terminal structures in addition to the terminal structures of the general formulas (1) and (2).
  • the polyamic acid composition may have a terminal structure (alkoxysilane terminal) represented by the general formula (5) in addition to the terminal structures of the general formulas (1) to (3). ..
  • R 1 in the general formula (5) is a divalent organic group, preferably a phenylene group or an alkylene group having 1 to 5 carbon atoms.
  • R 2 is an alkyl group, X is a residue of tetracarboxylic dianhydride, and Y is a residue of diamine.
  • the polyamic acid having the terminal structure represented by the general formula (5) can be obtained by reacting an alkoxysilane compound containing an amino group with the polyamic acid in a solution.
  • the terminal may be modified by adding an alkoxysilane compound containing an amino group to the polyamic acid composition having the terminal structures represented by the general formulas (1) and (2).
  • the reaction temperature for modification with the alkoxysilane compound containing an amino group is preferably 0 to 80 ° C, more preferably 20 to 60 ° C.
  • the alkoxysilane compound containing an amino group is represented by the following general formula (6).
  • R 1 and R 2 in the general formula (6) are the same as those in the general formula (5).
  • R 1 may be a divalent organic group, but a phenylene group or an alkylene group having 1 to 5 carbon atoms is preferable because of its high reactivity with the acid anhydride group of the polyamic acid, and among them, 1 to 1 to 5 carbon atoms.
  • An alkylene group of 5 is preferred.
  • R 2 may be an alkyl group having 1 to 5 carbon atoms, but is preferably a methyl group or an ethyl group, and a methyl group is preferable from the viewpoint of improving the adhesion between the polyamic acid and the glass.
  • alkoxysilane compound having an amino group examples include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropylmethyldimethoxysilane, 3-aminopropylmethyldiethoxysilane, and 3-aminopropyl.
  • examples thereof include methyldimethoxysilane, 3- (2-aminoethyl) aminopropyltrimethoxysilane, 3-phenylaminopropyltrimethoxysilane, 2-aminophenyltrimethoxysilane, and 3-aminophenyltrimethoxysilane.
  • the ratio ⁇ / x of the total number of moles ⁇ of the alkoxysilane compound having an amino group to the total number of moles of the tetracarboxylic dian x is preferably 0.0001 to 0.0050, more preferably 0.0005 to 0.0050, and 0. More preferably, it is 0010 to 0.0030.
  • ⁇ / x is 0.0001 or more, the adhesion between the inorganic substrate such as glass and the polyimide film is improved, and there is an effect that natural peeling is suppressed.
  • ⁇ / x is 0.0100 or less, the molecular weight of polyamic acid can be maintained, so that the storage stability of the polyamic acid solution is excellent and the mechanical strength of the polyimide film can be secured.
  • the polyamic acid solution may contain various additives.
  • the polyamic acid solution may contain a surface conditioner for the purpose of defoaming the solution and improving the smoothness of the surface of the polyimide film.
  • the surface conditioner one that exhibits appropriate compatibility with polyamic acid and polyimide and has antifoaming property may be selected.
  • Acrylic compounds, silicon compounds and the like are preferable because harmful substances are less likely to be generated during high-temperature heating, and acrylic compounds are particularly preferable because they are excellent in recoatability.
  • the surface conditioner composed of an acrylic compound examples include DISPARLON LF-1980, LF-1983, LF-1985 (manufactured by Kusumoto Kasei Co., Ltd.), BYK-3440, BYK-3441, BYK-350, BYK- 361N, (manufactured by Big Chemie Japan Co., Ltd.) and the like.
  • the amount of the surface conditioner added is preferably 0.0001 to 0.1 parts by weight, more preferably 0.001 to 0.1 parts by weight, based on 100 parts by weight of the polyamic acid.
  • the surface conditioner may be added to the polyamic acid solution as it is, or may be diluted with a solvent before being added.
  • the timing of adding the surface conditioner is not particularly limited, and may be added at the time of polymerization or terminal modification of the polyamic acid.
  • a surface conditioner may be added after the alkoxysilane modification.
  • the polyamic acid solution may contain inorganic fine particles and the like.
  • the inorganic fine particles include fine particle silicon dioxide (silica) powder, inorganic oxide powder such as aluminum oxide powder, fine particle calcium carbonate powder, and inorganic salt powder such as calcium phosphate powder.
  • silicon dioxide silicon dioxide
  • inorganic oxide powder such as aluminum oxide powder
  • fine particle calcium carbonate powder fine particle calcium carbonate powder
  • inorganic salt powder such as calcium phosphate powder.
  • the presence of coarse particles in which the fine particles are agglomerated can cause defects in the polyimide film, so it is preferable that the inorganic fine particles are uniformly dispersed in the solution.
  • the polyamic acid solution may contain an imidization catalyst.
  • the imidization catalyst a tertiary amine is preferable, and a heterocyclic tertiary amine is particularly preferable.
  • Preferred specific examples of the heterocyclic tertiary amine include pyridine, 2,5-diethylpyridine, picoline, quinoline, isoquinoline and the like.
  • the amount of the imidization catalyst used is about 0.01 to 2.00 equivalents with respect to the amide group of the polyamic acid which is the polyimide precursor, and 0.02 to 1.20 equivalents. It is preferable to have.
  • an imidization catalyst may be added to the polyamic acid solution immediately before the use of the polyamic acid solution (coating on the substrate).
  • the amount of the tetracarboxylic dianhydride residue X in the polycarboxylic acid is the total number of moles of the tetracarboxylic acid x (single-open ring of the tetracarboxylic acid anhydride and the tetracarboxylic dianhydride and the tetracarboxylic acid. Equal to the sum of the dianhydride and the bicyclic ring). Further, the amount of diamine residue Y is equal to the total number of moles y of diamine.
  • the number of moles z of the terminal structure represented by the general formula (1) in the polyamic acid is substantially equal to the number of moles x 2 of the single ring-opened ring body.
  • the ratio z / x of the number of moles z of the terminal structure represented by the general formula (1) in the polyamic acid to the total number of moles x of the tetracarboxylic dianhydride residue X is 0.01 to 0.15.
  • 0.02 to 0.12 is more preferable, and it may be 0.03 to 0.10 or 0.04 to 0.09.
  • z / x is substantially equal to the production rate x 2 / x pieces open annulus in the tetracarboxylic acid after hydrolysis ring opening.
  • z / x is in this range, the viscosity of the polyamic acid solution can be kept low, and the molecular weight is sufficiently increased during imidization, so that a polyimide film having excellent mechanical strength can be obtained.
  • by adjusting the ratio of the one-sided ring-opened body produced by water ring-opening before polymerization of the polyamic acid it is possible to produce a polyimide film having a low viscosity of the polyamic acid solution and excellent mechanical strength. It will be possible.
  • the weight average molecular weight of the polyamic acid in the polyamic acid solution is preferably 5000 to 45000, more preferably 10000 to 40,000, further preferably 15000 to 32000, and may be 20000 to 30000.
  • the weight average molecular weight is 5000 or more, the characteristics of the polyimide film obtained by imidization of the polyamic acid tend to be improved.
  • the weight average molecular weight is 45,000 or less, the solution viscosity can be kept low even when the solid content concentration is high, and the change in molecular weight when the polyamic acid solution is stored for a long period of time tends to be suppressed.
  • the number average molecular weight of the polyamic acid is preferably 3000 to 25000, more preferably 5000 to 22000, and even more preferably 10000 to 20000.
  • the solid content concentration of the polyamic acid composition is preferably 10% by weight or more, more preferably 13% by weight or more, still more preferably 15% by weight or more.
  • the upper limit of the solid content concentration is not particularly limited, but the solid content concentration of the solution is preferably 40% by weight or less, more preferably 35% by weight or less in order to obtain a viscosity suitable for coating on a substrate.
  • the solid content concentration may be adjusted by adding or volatilizing a solvent.
  • the viscosity of the polyamic acid solution at a temperature of 23 ° C. is preferably 1 to 150 poise, more preferably 3 to 100 poise.
  • the viscosity of the solution tends to increase exponentially as the solid content concentration increases, but as described above, the solid content concentration of the solution is 15% by weight or more or 20% by weight due to the low molecular weight of polyamic acid. Even if it is%, the viscosity can be adjusted within the above range.
  • the solid content concentration D of the polyamic acid is preferably 0.12 or less, more preferably 0.11 or less, and 0.10 or less. Is even more preferable.
  • the unit of viscosity ⁇ is poise, and the unit of solid content concentration D is% by weight.
  • the imidization ratio of the polyamic acid in the polyamic acid solution is preferably 5 mol% or less, more preferably 4 mol% or less. Due to the low imidization rate, the viscosity of the solution is kept low, and the change in viscosity during storage of the polyamic acid solution tends to be suppressed. In addition, since the water content in the polyamic acid solution is small due to the low imidization rate, the change in viscosity due to hydrolysis of the polyamic acid during long-term storage (storage) of the polyamic acid solution is suppressed and stored. Increased stability.
  • the imidization of the polyamic acid can be suppressed.
  • a method for lowering the molecular weight of the polyamic acid it is generally performed to hydrolyze (depolymerize) the polyamic acid by raising the polymerization temperature or raising the temperature after the polymerization (for example, 70 ° C. or higher). ..
  • imidization also proceeds by heating for hydrolysis, it may cause an increase in the viscosity of the solution and a decrease in storage stability.
  • the hydroopened ring terminal represented by the general formula (1) is produced, so that the molecular weight is increased. It does not rise excessively and does not require high temperature heating for depolymerization. Therefore, imidization due to heating is suppressed, and the storage stability of the polyamic acid solution tends to be improved.
  • the water content of the polyamic acid solution is preferably 1500 ppm or less.
  • the water content of the polyamic acid solution may be 1300 ppm or less, 1200 ppm or less, or 1100 ppm or less. The smaller the water content in the polyamic acid solution, the better the storage stability tends to be.
  • the main sources of water in the polyamic acid solution are (A) water contained in the raw material, (B) water produced by dehydration cyclization (imidization) of polyamic acid, and (C) water mixed from the environment. By reducing these water content, a polyamic acid solution having a low water content can be obtained.
  • the water content of the polyamic acid solution can be reduced by drying the raw material or treating it under reduced pressure.
  • the water content of the polyamic acid can be reduced even if these treatments are not performed, and the cost is low. It is possible to prepare a polyamic acid solution having a small water content and excellent storage stability.
  • the inorganic substrate is preferable as the substrate.
  • the inorganic substrate include a glass substrate and various metal substrates.
  • the glass substrate include soda lime glass, borosilicate glass, non-alkali glass and the like. In particular, non-alkali glass generally used in the manufacturing process of thin film transistors is preferable.
  • the thickness of the inorganic substrate is preferably about 0.4 to 5.0 mm from the viewpoint of substrate handleability, heat capacity, and the like.
  • known coating methods such as gravure coating method, spin coating method, silk screen method, dip coating method, bar coating method, knife coating method, roll coating method, and die coating method can be applied.
  • the imidization may be either chemical imidization using a dehydration ring closure agent (imidization catalyst) or thermal imidization in which the imidization reaction proceeds only by heating without the action of the dehydration ring closure agent or the like.
  • Thermal imidization is preferable because impurities such as a dehydration ring closure agent are less likely to remain.
  • the heating temperature and heating time in thermal imidization can be appropriately determined, and may be, for example, as follows.
  • the solvent in order to volatilize the solvent, it is heated at a temperature of 100 to 200 ° C. for 3 to 120 minutes.
  • the heating can be performed under air, under reduced pressure, or in an inert gas such as nitrogen.
  • a hot air oven, an infrared oven, a vacuum oven, a hot plate or the like may be used.
  • After volatilizing the solvent it is heated at a temperature of 200 to 500 ° C. for 3 to 300 minutes in order to further imidize.
  • the heating temperature is preferably from low temperature to gradually high temperature, and the maximum temperature is preferably in the range of 300 to 500 ° C. When the maximum temperature is 300 ° C. or higher, thermal imidization tends to proceed, and the mechanical strength of the obtained polyimide film tends to improve. When the maximum temperature is 500 ° C. or lower, thermal deterioration of polyimide can be suppressed.
  • the thickness of the polyimide film is preferably 3 to 50 ⁇ m. When the thickness of the polyimide film is 3 ⁇ m or more, the mechanical strength required for the substrate film can be secured. When the thickness of the polyimide film is 50 ⁇ m or less, the natural peeling of the polyimide film from the inorganic substrate tends to be suppressed.
  • the polyamic acid composition having the terminal structures of the above general formulas (1) and (2) tends to have a high molecular weight due to thermal imidization, a polyimide film having high mechanical strength even when the molecular weight of the polyamic acid is small. Is obtained.
  • the water-opened ring terminal of the general formula (1) hardly reacts with the amine terminal of the general formula (2) in the storage environment of the polyamic acid solution. Therefore, the polyamic acid solution is excellent in storage stability.
  • the hydrous ring terminal of the general formula (1) is dehydrated and ring-closed by heating at the time of thermal imide to become an acid anhydride group, reacts with the amine terminal of the general formula (2) to form an amide bond, and is dehydrated and cyclized. An imide bond is formed. That is, at the time of thermal imidization, the polyamic acid having the terminal structure of the general formula (1) reacts with the polyamic acid having the terminal structure of the general formula (2) to increase the molecular weight. Therefore, even when the molecular weight of polyamic acid is low, a polyimide film having excellent mechanical strength can be obtained by increasing the molecular weight during thermal imidization.
  • the double ring-opened body represented by the general formula (3) also dehydrates and closes the ring during thermal imidization and reacts with the amine terminal of the general formula (2), so that it can contribute to the increase in molecular weight during thermal imidization. ..
  • a polyimide film can be obtained by peeling the polyimide film from a laminate of a substrate such as glass and a polyimide film. From the viewpoint of suppressing deformation of the polyimide film and the elements formed on the polyimide film due to the tension at the time of peeling, the peel strength when the polyimide film is peeled from the laminate of the glass substrate and the polyimide film is 1, 1 N / cm or less is preferable, 0.5 N / cm or less is more preferable, and 0.3 N / cm or less is further preferable.
  • the peel strength is preferably 0.01 N / cm or more, more preferably 0.3 N / cm or more, still more preferably 0.5 N / cm or more.
  • the breaking strength of the polyimide film is preferably 350 MPa or more, more preferably 400 MPa or more, and even more preferably 450 MPa or more. When the breaking strength is within the above range, even if the film thickness is small, it is possible to prevent the polyimide film from breaking in a process such as transportation or peeling from an inorganic substrate. From the same viewpoint, the elongation at the breaking point of the polyimide film is preferably 15% or more, more preferably 20% or more, still more preferably 25% or more. The break point elongation may be 30% or more. The upper limit of the breaking strength and the breaking point elongation of the polyimide film is not particularly limited. The breaking strength may be 700 MPa or less. The break point elongation may be 80% or less or 60% or less.
  • the coefficient of linear thermal expansion of the polyimide film is preferably 10 ppm / ° C or less.
  • the coefficient of linear thermal expansion of the polyimide film may be 9 ppm / ° C. or lower, or 8 ppm / ° C. or lower.
  • the coefficient of linear thermal expansion of the polyimide film may be 1 ppm / ° C. or higher.
  • an electronic element is formed on the polyimide film.
  • An electronic element may be formed on the polyimide film before the polyimide film is peeled from an inorganic substrate such as glass. That is, it is flexible by forming an electronic element on a laminated polyimide film in which a polyimide film is closely laminated on an inorganic substrate such as glass, and then peeling the polyimide film on which the electronic element is formed from the inorganic substrate. You get the device.
  • This process has the advantage that the production equipment using the existing inorganic substrate can be used as it is, is useful for manufacturing electronic devices such as flat panel displays and electronic paper, and is also suitable for mass production.
  • the method of peeling the polyimide film from the inorganic substrate is not particularly limited. For example, it may be peeled off by hand, or it may be peeled off using a mechanical device such as a drive roll or a robot.
  • a release layer may be provided between the inorganic substrate and the polyimide film, and before the release, a treatment for reducing the adhesion between the inorganic substrate and the polyimide film is performed by contact with a liquid or irradiation with laser light. May be good.
  • the method of reducing the adhesion are a method of forming a silicon oxide film on an inorganic substrate having a large number of grooves and peeling it off by infiltrating an etching solution; and an amorphous silicon layer on the inorganic substrate.
  • a method of separating by a provided laser beam can be mentioned.
  • ⁇ Viscosity> The viscosity was measured according to JIS K7117-2: 1999 using a viscometer (“RE-215 / U” manufactured by Toki Sangyo Co., Ltd.). The attached constant temperature bath was set to 23 ° C., and the measurement temperature was always constant.
  • the molecular weight was measured by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • GPC KD-806M 8 mm ⁇ x 30 cm
  • RI was used as the detector.
  • eluent a solution in which 30 mM LiBr and 30 mM phosphoric acid were dissolved in DMF was used.
  • Measurement was performed under the conditions of a solution concentration of 0.4% by weight, an injection volume of 30 ⁇ L, an injection pressure of about 1.3 to 1.7 MPa, a flow rate of 0.6 mL / min, and a column temperature of 40 ° C., and a calibration curve prepared using polyethylene oxide as a standard sample. Based on the line, the weight average molecular weight (Mw) and the number average molecular weight (Mn) were calculated.
  • a polyimide film was cut into a width of 15 mm and a length of 150 mm to prepare a test piece, and two parallel marking lines 50 mm apart were attached to the center of the test piece.
  • a tensile tester (“UBFA-1 AGS-J” manufactured by Shimadzu Corporation)
  • a tensile test was conducted at a tensile speed of 10 mm / min according to JIS K7127: 1999, and the stress (breaking strength) when the test piece broke.
  • elongation breaking point elongation
  • thermomechanical analyzer (“TMA / SS120CU” manufactured by SII Nanotechnology) is used to load a sample with a load of 29.4 mN on the long side.
  • TMA / SS120CU thermomechanical analyzer
  • thermomechanical analysis was performed by the tensile load method.
  • the temperature was raised from 20 ° C. to 500 ° C. at 100 ° C./min (first temperature rise), cooled to 20 ° C., and then raised to 500 ° C. at 10 ° C./min (second temperature rise).
  • the amount of change in the strain of the sample per unit temperature in the range of 100 to 300 ° C. at the time of the second temperature rise was defined as the coefficient of linear thermal expansion.
  • Example 1 ⁇ Hydro-opening of tetracarboxylic dianhydride> 425 g of N-methyl-2-pyrrolidone (NMP) was placed in a glass separable flask equipped with a stirrer with a seal stopper made of polytetrafluoroethylene, a stirring blade and a nitrogen introduction tube.
  • the water content in NMP was 300 ppm.
  • 0.342 g of water and 109.5 g of 3,3', 4,4'-biphenyltetracarboxylic dianhydride (BPDA) were added, and the mixture was stirred under a nitrogen atmosphere for 150 minutes while heating at 80 ° C. A part of BPDA was hydrocyclic. After the reaction, the solution was cooled to 50 ° C.
  • the amount of water contained in NMP is 1.9% in molar ratio with respect to BPDA, and the amount of water added is 5.1% in molar ratio with respect to BPDA.
  • the total amount of water in the water was 7.0% in molar ratio with respect to BPDA.
  • the resulting solution contained unring-opened BPDA, a single ring-opened body of BPDA, and a bi-ring-opened body of BPDA in a molar ratio of 94.53: 5.19: 0.28.
  • ⁇ Modification with alkoxysilane compound The above polyamic acid solution is heated to 50 ° C., 7.48 g of a 1% NMP solution of 3-aminopropyltriethoxysilane ( ⁇ -APS) is added, and the mixture is stirred for 3 hours to have a viscosity of 5.8 poisons at 23 ° C. A solution of alkoxysilane-modified polyamic acid was obtained. The ratio ⁇ / x of the total number of moles ( ⁇ ) of the alkoxysilane compound to the total number of moles (x) of the tetracarboxylic dian was 0.001.
  • an acrylic surface conditioner (“BYK-361N” manufactured by Big Chemie Japan) was added to 100 parts by weight of the solid content of the alkoxysilane-modified polyamic acid, and the mixture was uniformly dispersed.
  • an acrylic surface conditioner (“BYK-361N” manufactured by Big Chemie Japan) was added to 100 parts by weight of the solid content of the alkoxysilane-modified polyamic acid, and the mixture was uniformly dispersed.
  • Example 2 and Example 3 Ring-opening of BPDA was carried out in the same manner as in Example 1 except that the amounts of NMP, BPDA and water charged were changed as shown in Table 1. After that, polymerization of polyamic acid and terminal modification by ⁇ -APS were carried out in the same manner as in Example 1 except that the amounts of PDA, ODA and NMP charged and the amount of ⁇ -APS charged were changed as shown in Table 2. To obtain an alkoxysilane-modified polyamic acid solution containing a surface conditioner.
  • ⁇ Modification with alkoxysilane compound> The temperature of the above polyamic acid solution was adjusted to about 50 ° C. Next, 1.30 g of a 1% NMP solution of ⁇ -APS was added, and the mixture was stirred for 3 hours to obtain a solution of alkoxysilane-modified polyamic acid having a viscosity of 170 poise at 23 ° C. NMP was added to this solution to dilute it so that the solid content concentration was 10% by weight. The viscosity of the diluted solution at 23 ° C. was 40 poise. To this solution, 0.02 parts by weight of an acrylic surface conditioner was added to 100 parts by weight of the solid content of polyamic acid to obtain an alkoxysilane-modified polyamic acid solution containing the surface conditioner.
  • a polyamic acid solution is applied on a square non-alkali glass plate for FPD (“Eagle XG” manufactured by Corning Inc.) with a thickness of 0.7 mm and a side of 150 mm after drying with a spin coater so that the thickness becomes about 10 ⁇ m. Then, it was dried in a hot air oven at 120 ° C. for 30 minutes. Then, in a nitrogen atmosphere, the temperature was raised from 20 ° C. to 120 ° C. at 7 ° C./min, the temperature was raised from 120 ° C. to 450 ° C. at 7 ° C./min, and heated at 450 ° C. for 10 minutes. A laminate of plates was obtained. In any of Examples 1 to 3 and Comparative Examples 1 to 4, the polyimide film has an appropriate peeling strength with respect to the non-alkali glass plate, does not peel off naturally during heating, and It was possible to peel off the polyimide film from the glass plate.
  • Table 1 shows the conditions for hydro-opening of the tetracarboxylic dianhydride in Examples 1 to 3 and the amounts of single-opened ring and bi-opened ring-formed bodies produced.
  • Table 2 shows the ratio of ring-opened bodies x 2 / x), the temperature of the polymerization reaction, the solid content concentration D of the polyamic acid solution after the polymerization reaction and the polyamic acid solution after the alkoxysilane modification, and the solution viscosity ⁇ .
  • Table 3 shows the evaluation results of the molecular weight of the polyamic acid in the polyamic acid solution after the alkoxysilane modification, the water content of the solution and the storage stability, and the evaluation results of the polyimide film.
  • Examples 1 to 3 in which a part of BPDA was hydroopened and then mixed with diamine to polymerize the polyamic acid even if the molecular weight of the polyamic acid was 30,000 or less and the solid content concentration D of the solution was 15% by weight or more. It was possible to use it for producing a film without diluting it as it was.
  • the imidization ratio of the polyamic acid in the polyamic acid solution of Example 2 was 3 mol%.
  • Comparative Example 1 in which BPDA was reacted with diamine without hydro-opening, the molecular weight of polyamic acid was significantly increased and the solution viscosity was high as compared with Examples 1 to 3, so that when a film was produced, , It was necessary to dilute with NMP to reduce the solid content concentration.
  • Comparative Examples 2 and 3 in which the polymerization temperature of the polyamic acid was raised to 80 ° C., the molecular weight of the polyamic acid was lower than that of Comparative Example 1, but the molecular weight was higher and the solid content concentration was higher than that of Examples 1 to 3. Was less than 15%, and the solution viscosity had to be adjusted.
  • Comparative Examples 2 to 4 in which the polymerization reaction was carried out at 80 ° C., the water content of the polyamic acid solution was increased and the storage stability was lowered.
  • the imidization ratio of the polyamic acid in the polyamic acid solution of Comparative Example 2 was 17 mol%. From these results, in Comparative Examples 2 to 4, although the polyamic acid was depolymerized by heating at 80 ° C. and the molecular weight decreased, imidization by dehydration ring closure proceeded in parallel with this, and the water content in the solution. It is considered that the storage stability of the solution decreased due to the increase in.
  • the polyamic acid solution obtained by hydroopening the tetracarboxylic dianhydride and then reacting with the diamine has a low molecular weight, a low viscosity even at a high solid content concentration, and excellent storage stability. I understand. Further, it can be seen that the polyimide film produced by using the polyamic acid exhibits excellent mechanical strength similar to that in the case of using a high molecular weight polyamic acid solution.

Abstract

This polyamic acid solution includes: a polyamic acid having a terminal structure represented by general formula (1); and a polyamic acid having a terminal structure represented by general formula (2). For example, a polyamic acid solution can be prepared by hydrolytically ring-opening a tetracarboxylic acid dianhydride to form a ring-opening body, and by reacting diamine with a mixture of the tetracarboxylic acid dianhydride and the ring-opening body. In general formulae (1) and (2), X is a tetravalent organic group which is a tetracarboxylic acid dianhydride residue, and Y is a divalent organic group which is a diamine residue.

Description

ポリアミド酸溶液およびその製造方法、ポリイミドフィルム、積層体およびその製造方法、ならびにフレキシブルデバイスPolyamic acid solution and its manufacturing method, polyimide film, laminate and its manufacturing method, and flexible device
 本発明は、ポリアミド酸溶液およびその製造方法に関する。さらに、本発明は当該ポリアミド酸溶液から得られるポリイミドフィルム、および基板上にポリイミドフィルムが密着積層された積層体、ならびにポリイミドフィルム上に電子素子を備えるデバイスに関する。 The present invention relates to a polyamic acid solution and a method for producing the same. Furthermore, the present invention relates to a polyimide film obtained from the polyamic acid solution, a laminate in which a polyimide film is closely laminated on a substrate, and a device provided with an electronic element on the polyimide film.
 フラットパネルディスプレイ、電子ペーパー等の電子デバイスの基板としてガラス基板が用いられているが、薄型化、軽量化、フレキシブル化等の観点から、ガラスからポリマーフィルムへの置き換えが検討されている。電子デバイス用のポリマーフィルム材料としては、耐熱性や寸法安定性に優れることから、ポリイミドが適している。 A glass substrate is used as a substrate for electronic devices such as flat panel displays and electronic paper, but from the viewpoint of thinning, weight reduction, flexibility, etc., replacement of glass with a polymer film is being considered. As a polymer film material for electronic devices, polyimide is suitable because it has excellent heat resistance and dimensional stability.
 ポリイミドフィルム基板を用いた電子デバイスを効率的に製造する方法として、ガラス等の剛性基板上にポリイミドフィルムが密着積層された積層体を作製し、ポリイミドフィルム上に素子を形成した後、素子が形成されたポリイミドフィルムを剛性基板から剥離する方法が提案されている。剛性基板上にポリイミドフィルムが密着積層された積層体は、剛性基板上に、ポリイミドの前駆体であるポリアミド酸の溶液を塗布し、加熱によりポリアミド酸を脱水環化(イミド化)することにより形成される。 As a method for efficiently manufacturing an electronic device using a polyimide film substrate, a laminate in which a polyimide film is closely laminated on a rigid substrate such as glass is produced, an element is formed on the polyimide film, and then the element is formed. A method of peeling the polyimide film from the rigid substrate has been proposed. A laminate in which a polyimide film is closely laminated on a rigid substrate is formed by applying a solution of polyamic acid, which is a precursor of polyimide, on the rigid substrate and dehydrating and cyclizing (imidizing) the polyamic acid by heating. Will be done.
 ポリイミドの前駆体であるポリアミド酸は、テトラカルボン酸二無水物とジアミンとの付加反応により得られる。ポリアミド酸溶液は、経時的に重合または解重合して粘度が変化しやすく、貯蔵安定性が十分ではない場合がある。ポリアミド酸溶液の貯蔵安定性を高める試みとして、特許文献1には、ポリアミド酸の末端を非反応性の官能基で封止する方法が提案されている。 Polyamic acid, which is a precursor of polyimide, is obtained by an addition reaction between tetracarboxylic dianhydride and diamine. The polyamic acid solution tends to change in viscosity due to polymerization or depolymerization over time, and storage stability may not be sufficient. As an attempt to improve the storage stability of the polyamic acid solution, Patent Document 1 proposes a method of sealing the ends of the polyamic acid with a non-reactive functional group.
国際公開第2012/093586号International Publication No. 2012/03586
 フレキシブルデバイス等の基板として用いられるポリイミドフィルムは、十分な機械強度を有することが求められるため、フィルムを構成するポリイミドは高分子量であることが好ましい。高分子量のポリイミドを得る方法として、前駆体であるポリアミド酸の分子量を高めることが一般的である。 Since the polyimide film used as a substrate for flexible devices and the like is required to have sufficient mechanical strength, it is preferable that the polyimide constituting the film has a high molecular weight. As a method for obtaining a high molecular weight polyimide, it is common to increase the molecular weight of the precursor polyamic acid.
 しかし、ポリアミド酸の分子量を高めると溶液の粘度が高くなり、ハンドリング性が低下する。高分子量のポリアミド酸溶液を、基板上への塗布に適した粘度とするためには、溶液の固形分濃度を低くする必要があり、使用する溶媒量の増加に伴う生産効率の低下や、溶液の貯蔵安定性の低下の原因となる。 However, if the molecular weight of polyamic acid is increased, the viscosity of the solution increases and the handleability decreases. In order for the high molecular weight polyamic acid solution to have a viscosity suitable for coating on a substrate, it is necessary to lower the solid content concentration of the solution, resulting in a decrease in production efficiency due to an increase in the amount of solvent used and a solution. It causes a decrease in storage stability of.
 このように、ポリイミドフィルムに高い機械特性を持たせることと、その前駆体であるポリアミド酸溶液を低粘度化・高固形分濃度化して溶液の貯蔵安定性を高めることとは、一般にトレードオフの関係にある。これらに鑑み、本発明は、固形分濃度が高い場合でも溶液の粘度が低く貯蔵安定性に優れ、かつポリイミドフィルムを形成した際には十分な機械強度を有するポリアミド酸の提供を目的とする。 In this way, it is generally a trade-off between giving a polyimide film high mechanical properties and increasing the storage stability of the solution by lowering the viscosity and increasing the solid content of the polyamic acid solution that is the precursor thereof. There is a relationship. In view of these, it is an object of the present invention to provide a polyamic acid having a low viscosity of a solution, excellent storage stability even when the solid content concentration is high, and having sufficient mechanical strength when a polyimide film is formed.
 所定の末端構造を有するポリアミド酸により、上記の課題を解決し得る。本発明の一実施形態のポリアミド酸溶液は、一般式(1)で表される末端構造を有するポリアミド酸、および一般式(2)で表される末端構造を有するポリアミド酸を含む。Xはテトラカルボン酸二無水物残基である4価の有機基であり、Yはジアミン残基である2価の有機基である。 The above problem can be solved by the polyamic acid having a predetermined terminal structure. The polyamic acid solution of one embodiment of the present invention contains a polyamic acid having a terminal structure represented by the general formula (1) and a polyamic acid having a terminal structure represented by the general formula (2). X is a tetravalent organic group which is a tetracarboxylic dianhydride residue, and Y is a divalent organic group which is a diamine residue.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 ポリアミド酸の重量平均分子量は、5000以上45000以下が好ましい。ポリアミド酸溶液の水分率は、1500ppm以下が好ましい。ポリアミド酸溶液におけるポリアミド酸のイミド化率は5モル%以下が好ましい。 The weight average molecular weight of the polyamic acid is preferably 5000 or more and 45000 or less. The water content of the polyamic acid solution is preferably 1500 ppm or less. The imidization ratio of the polyamic acid in the polyamic acid solution is preferably 5 mol% or less.
 ポリアミド酸溶液の固形分濃度は、10重量%以上が好ましい。ポリアミド酸溶液の温度23℃における粘度η(単位:ポイズ)の対数logηと、ポリアミド酸の固形分濃度D(単位:重量%)との比logη/Dは、0.12以下が好ましい。 The solid content concentration of the polyamic acid solution is preferably 10% by weight or more. The ratio logη / D of the log η of the viscosity η (unit: poise) of the polyamic acid solution at the temperature of 23 ° C. to the solid content concentration D (unit: weight%) of the polyamic acid is preferably 0.12 or less.
 上記のポリアミド酸溶液は、例えば、テトラカルボン酸二無水物を加水開環して開環体を生成させ、テトラカルボン酸二無水物およびその開環体の混合物と、ジアミンとを反応させてポリアミド酸を重合することにより得られる。テトラカルボン酸二無水物の加水開環は、例えば、テトラカルボン酸二無水物の全量に対して、2~10モル%の水を含む溶液中、温度50~100℃で行われる。 In the above-mentioned polyamic acid solution, for example, tetracarboxylic dianhydride is hydrocyclic to form a ring-opened body, and a mixture of tetracarboxylic dianhydride and the ring-opened body thereof is reacted with diamine to form a polyamide. Obtained by polymerizing an acid. Hydrocyclic ringing of the tetracarboxylic dianhydride is carried out, for example, at a temperature of 50 to 100 ° C. in a solution containing 2 to 10 mol% of water with respect to the total amount of the tetracarboxylic dianhydride.
 加水開環により、下記一般式(4)で表される片開環体が生成する。加水開環により、さらに下記一般式(3)で表される両開環体が生成してもよい。 By water ring opening, a single ring opening represented by the following general formula (4) is produced. By water-opening, a bicyclic ring represented by the following general formula (3) may be further produced.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 加水開環による片開環体の生成量は、テトラカルボン酸全量に対して1~15モル%が好ましい。加水開環による両開環体の生成量は、テトラカルボン酸全量に対して、0.1~5モル%であってもよい。テトラカルボン酸全量(総モル数)とは、未開環のテトラカルボン酸二無水物のモル数xと、片開環体のモル数xと、両開環体のモル数xとの合計x+x+xである。 The amount of one-sided ring-opened body produced by water-opening is preferably 1 to 15 mol% based on the total amount of tetracarboxylic acid. The amount of both ring-opened bodies produced by water-opening may be 0.1 to 5 mol% with respect to the total amount of tetracarboxylic acid. The total amount of tetracarboxylic acid (total number of moles) is the number of moles of unopened tetracarboxylic dianhydride x 1 , the number of moles of single-opened ring x 2, and the number of moles of bi-opened ring x 3 . The total is x 1 + x 2 + x 3 .
 ポリアミド酸溶液は、さらに、一般式(5)で表される末端構造を有するポリアミド酸を含んでいてもよい。Rは2価の有機基であり、Rは炭素数1~5のアルキル基である。 The polyamic acid solution may further contain a polyamic acid having a terminal structure represented by the general formula (5). R 1 is a divalent organic group, and R 2 is an alkyl group having 1 to 5 carbon atoms.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 アルコキシシラン化合物とポリアミド酸とを反応させて、ポリアミド酸の末端をアルコキシシラン変性することにより、上記一般式(5)で表される末端構造を有するポリアミド酸が生成する。 By reacting the alkoxysilane compound with the polyamic acid and modifying the terminal of the polyamic acid with an alkoxysilane, a polyamic acid having a terminal structure represented by the above general formula (5) is produced.
 上記のポリアミド酸の脱水環化反応によりポリイミドが得られる。例えば、ポリアミド酸溶液を、基板上に塗布し、加熱によりポリアミド酸を脱水環化してイミド化することにより、基板上にポリイミドフィルムが密着積層している積層体が得られる。基板からポリイミドフィルムを剥離することにより、ポリイミドフィルムが得られる。 Polyimide can be obtained by the dehydration cyclization reaction of the above polyamic acid. For example, by applying a polyamic acid solution on a substrate and dehydrating and cyclizing the polyamic acid by heating to imidize, a laminate in which a polyimide film is closely laminated on the substrate can be obtained. A polyimide film can be obtained by peeling the polyimide film from the substrate.
 ポリイミドフィルム上に電子素子を設けることにより、フレキシブルデバイスを作製できる。積層体からポリイミドフィルムを剥離する前に、ポリイミドフィルム上に電子素子を設け、その後に、積層体からポリイミドフィルムを剥離してもよい。 A flexible device can be manufactured by providing an electronic element on a polyimide film. An electronic element may be provided on the polyimide film before the polyimide film is peeled from the laminate, and then the polyimide film may be peeled from the laminate.
 本発明のポリアミド酸溶液は低粘度であり、貯蔵安定性に優れるため、取り扱いが容易である。当該ポリアミド酸溶液を用いて作製したポリイミドフィルムは、優れた機械強度を有し、フレキシブルデバイス用基板等として好適に用いられる。 The polyamic acid solution of the present invention has a low viscosity and is excellent in storage stability, so that it is easy to handle. The polyimide film produced by using the polyamic acid solution has excellent mechanical strength and is suitably used as a substrate for a flexible device or the like.
[ポリアミド酸溶液]
 ポリアミド酸は、テトラカルボン酸二無水物とジアミンとの重付加反応物である。テトラカルボン酸二無水物は下記の一般式(A)で表される化合物であり、ジアミンは下記の一般式(B)で表される化合物である。ポリアミド酸は、下記一般式(P)の繰り返し単位を有する。
[Polyamic acid solution]
Polyamic acid is a polyaddition reaction product of tetracarboxylic dianhydride and diamine. The tetracarboxylic dianhydride is a compound represented by the following general formula (A), and the diamine is a compound represented by the following general formula (B). The polyamic acid has a repeating unit of the following general formula (P).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 一般式(A)および(P)において、Xはテトラカルボン酸二無水物の残基である。テトラカルボン酸二無水物の残基とは、一般式(A)の化合物における2つの酸無水物基(-CO-O-CO-)以外の部分であり、4価の有機基である。テトラカルボン酸二無水物は、Xに結合する4つのカルボニル基のうちの2つずつが対をなし、Xおよび酸素原子とともに五員環を形成している。一般式(B)および(P)において、Yはジアミンの残基である。ジアミンの残基とは、一般式(B)の化合物における2つのアミノ基(-NH)以外の部分であり、2価の有機基である。 In the general formulas (A) and (P), X is a residue of tetracarboxylic dianhydride. The residue of tetracarboxylic dianhydride is a portion other than the two acid anhydride groups (-CO-O-CO-) in the compound of the general formula (A), and is a tetravalent organic group. In tetracarboxylic dianhydride, two of the four carbonyl groups bonded to X form a pair, and together with X and an oxygen atom, form a five-membered ring. In the general formulas (B) and (P), Y is a diamine residue. The residue of the diamine is a portion other than the two amino groups (-NH 2 ) in the compound of the general formula (B), and is a divalent organic group.
 テトラカルボン酸二無水物とジアミンとの反応により得られる一般的なポリアミド酸は、下記一般式(Q)で表される末端構造(アミン末端)、および下記一般式(R)で表される末端構造(酸無水物末端)を有する。 The general polyamic acid obtained by the reaction of tetracarboxylic dianhydride and diamine has a terminal structure (amine terminal) represented by the following general formula (Q) and a terminal represented by the following general formula (R). It has a structure (acid anhydride terminal).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 本発明の実施形態のポリアミド酸溶液は、ポリアミド酸の末端構造に1つの特徴を有しており、一般式(1)で表される末端構造(末端の酸二無水物基が加水開環したポリアミド酸)、および一般式(2)で表される末端構造(アミン末端のポリアミド酸)を含む。 The polyamic acid solution of the embodiment of the present invention has one characteristic in the terminal structure of the polyamic acid, and the terminal structure represented by the general formula (1) (the acid dianhydride group at the terminal is hydrocyclic. Polyamic acid) and a terminal structure represented by the general formula (2) (amine-terminated polyamic acid).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 ポリアミド酸溶液は、さらに一般式(3)で表される化合物(テトラカルボン酸)を含んでいてもよい。 The polyamic acid solution may further contain a compound (tetracarboxylic acid) represented by the general formula (3).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 一般式(1)~(3)におけるXはテトラカルボン酸二無水物の残基であり、Yはジアミンの残基である。 X in the general formulas (1) to (3) is a residue of tetracarboxylic dianhydride, and Y is a residue of diamine.
 一般式(2)の末端構造は、一般的なポリアミド酸に含まれるアミン末端(上記一般式(Q)と同一)であるが、一般式(1)の加水開環末端構造は、テトラカルボン酸二無水物とジアミンとの反応のみから得られるポリアミド酸には含まれない構造である。すなわち、本発明の実施形態のポリアミド酸溶液は、一般的なポリアミド酸に含まれるアミン末端を有するポリアミド酸に加えて、一般式(1)で表される末端構造を有するポリアミド酸を含むことを1つの特徴とする。 The terminal structure of the general formula (2) is an amine terminal contained in a general polyamic acid (same as the above general formula (Q)), but the hydrocyclic ring-opened terminal structure of the general formula (1) is a tetracarboxylic acid. It is a structure not contained in polyamic acid obtained only by the reaction of dianhydride and diamine. That is, the polyamic acid solution of the embodiment of the present invention contains the polyamic acid having the terminal structure represented by the general formula (1) in addition to the polyamic acid having an amine terminal contained in the general polyamic acid. It is one of the features.
 ポリアミド酸分子の両末端の構造は同一でも異なっていてもよい。原料の仕込み比や反応条件にも依存するが、一般には、ポリアミド酸は、同一の末端構造を有するポリアミド酸と異なる末端構造を有するポリアミド酸の混合物である。すなわち、ポリアミド酸溶液は、両方の末端が一般式(1)で表される構造を有するポリアミド酸;両方の末端が一般式(2)で表される構造を有するポリアミド酸;および一方の末端が(1)で表される構造を有し、他方の末端が(2)で表される構造を有するポリアミド酸、を含む。ポリアミド酸は、一般式(1)の末端構造および一般式(2)の末端構造に加えて、上記の一般式(R)の末端構造(酸無水物末端)を含んでいてもよい。 The structure of both ends of the polyamic acid molecule may be the same or different. Although it depends on the charging ratio of the raw materials and the reaction conditions, the polyamic acid is generally a mixture of a polyamic acid having the same terminal structure and a polyamic acid having a different terminal structure. That is, the polyamic acid solution contains a polyamic acid having both ends represented by the general formula (1); a polyamic acid having both ends represented by the general formula (2); and one end. It contains a polyamic acid having a structure represented by (1) and having a structure represented by (2) at the other end. The polyamic acid may contain the terminal structure (acid anhydride terminal) of the above general formula (R) in addition to the terminal structure of the general formula (1) and the terminal structure of the general formula (2).
 一般式(1)の末端構造は、例えば、ポリアミド酸のアミン末端またはジアミンとテトラカルボン酸二無水物の片開環体との反応により形成される。ポリアミド酸溶液において、ポリアミド酸の全末端に対する一般式(1)の末端構造の比率は、1モル%以上が好ましい。 The terminal structure of the general formula (1) is formed, for example, by the reaction of the amine terminal of the polyamic acid or the diamine with the single ring-opened ring of the tetracarboxylic dianhydride. In the polyamic acid solution, the ratio of the terminal structure of the general formula (1) to all the terminals of the polyamic acid is preferably 1 mol% or more.
 本実施形態のポリアミド酸溶液は、ポリアミド酸の重量平均分子量が5000~45000であることが好ましい。ポリアミド酸溶液の水分率は1500ppm以下であってもよい。ポリアミド酸溶液の固形分濃度は10重量%以上が好ましい。ポリアミド酸溶液に含まれるポリアミド酸は、一部がイミド化していてもよいが、イミド化率は5モル%以下が好ましい。 The polyamic acid solution of the present embodiment preferably has a polyamic acid having a weight average molecular weight of 5000 to 45000. The water content of the polyamic acid solution may be 1500 ppm or less. The solid content concentration of the polyamic acid solution is preferably 10% by weight or more. The polyamic acid contained in the polyamic acid solution may be partially imidized, but the imidization ratio is preferably 5 mol% or less.
[ポリアミド酸溶液の調製]
 以下、ポリアミド酸の製造方法を参照しながら、ポリアミド酸の構造についてより詳細に説明する。上述のように、ポリアミド酸は、テトラカルボン酸二無水物とジアミンとの付加反応により得られる。
[Preparation of polyamic acid solution]
Hereinafter, the structure of the polyamic acid will be described in more detail with reference to the method for producing the polyamic acid. As described above, polyamic acid is obtained by an addition reaction of tetracarboxylic dianhydride and diamine.
<テトラカルボン酸二無水物>
 テトラカルボン酸二無水物としては、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(以下、BPDAと略記することがある)、ピロメリット酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、4,4’-オキシジフタル酸無水物、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二無水物、9,9’-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]フルオレン二無水物、3,3’,4,4’-ビフェニルエーテルテトラカルボン酸二無水物、2,3,5,6-ピリジンテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、4,4’-スルホニルジフタル酸二無水物、パラテルフェニル-3,4,3’,4’-テトラカルボン酸二無水物、メタテルフェニル-3,3’,4,4’-テトラカルボン酸二無水物、3,3’,4,4’-ジフェニルエーテルテトラカルボン酸二無水物等の芳香環式テトラカルボン酸二無水物が挙げられる。テトラカルボン酸二無水物の芳香環は、アルキル基、ハロゲン、ハロゲン置換アルキル基等の置換基を有していてもよい。
<Tetracarboxylic dianhydride>
Examples of the tetracarboxylic dianhydride include 3,3', 4,4'-biphenyltetracarboxylic dianhydride (hereinafter, may be abbreviated as BPDA), pyromellitic dianhydride, 3,3',. 4,4'-benzophenonetetracarboxylic dianhydride, 2,3,3', 4'-biphenyltetracarboxylic dianhydride, 3,3', 4,4'-diphenylsulfonetetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 4, 4'-oxydiphthalic dianhydride, 9,9-bis (3,4-dicarboxyphenyl) fluorene dianhydride, 9,9'-bis [4- (3,4-dicarboxyphenoxy) phenyl] fluorene dianhydride , 3,3', 4,4'-biphenyl ethertetracarboxylic dianhydride, 2,3,5,6-pyridinetetracarboxylic dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride Anhydride, 4,4'-sulfonyldiphthalic acid dianhydride, paraterphenyl-3,4,3', 4'-tetracarboxylic dianhydride, metaterphenyl-3,3', 4,4' Examples thereof include aromatic ring-type tetracarboxylic dianhydrides such as -tetracarboxylic dianhydride and 3,3', 4,4'-diphenyl ether tetracarboxylic dianhydride. The aromatic ring of the tetracarboxylic dianhydride may have a substituent such as an alkyl group, a halogen, or a halogen-substituted alkyl group.
 テトラカルボン酸二無水物は、脂環式テトラカルボン酸二無水物でもよい。脂環式テトラカルボン酸二無水物としては、シクロヘキサンテトラカルボン酸二無水物、ビシクロ[2.2.2]オクタン-2,3,5,6-テトラカルボン酸二無水物、5-(ジオキソテトラヒドロフリル-3-メチル-3-シクロへキセン-1,2-ジカルボン酸無水物、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-テトラリン-1,2-ジカルボン酸無水物、テトラヒドロフラン-2,3,4,5-テトラカルボン酸二無水物、ビシクロ-3,3’,4,4’-テトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,4-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物等を例示できる。 The tetracarboxylic dianhydride may be an alicyclic tetracarboxylic dianhydride. Examples of the alicyclic tetracarboxylic acid dianhydride include cyclohexanetetracarboxylic acid dianhydride, bicyclo [2.2.2] octane-2,3,5,6-tetracarboxylic acid dianhydride, and 5- (dioxo). Tetrahydrofuryl-3-methyl-3-cyclohexene-1,2-dicarboxylic acid anhydride, 4- (2,5-dioxo tetrahydrofuran-3-yl) -tetraline-1,2-dicarboxylic acid anhydride, tetrahydrofuran -2,3,4,5-Tetracarboxylic acid dianhydride, bicyclo-3,3', 4,4'-tetracarboxylic acid dianhydride, 1,2,3,4-cyclopentanetetracarboxylic acid dianhydride , 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride, 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic acid dianhydride, 1,4-dimethyl-1,2, Examples thereof include 3,4-cyclobutanetetracarboxylic acid dianhydride.
 テトラカルボン酸二無水物は、2種以上を併用してもよい。低線膨張係数のポリイミドフィルムを得るためには、テトラカルボン酸二無水物の残基Xが剛直な構造を有することが好ましい。そのため、ポリアミド酸の原料として芳香環式テトラカルボン酸二無水物を用いることが好ましく、テトラカルボン酸二無水物の95モル%以上が芳香環式であることが好ましい。芳香環式テトラカルボン酸二無水物の中でも、剛直性が高く、ポリイミドフィルムの熱線膨張係数を低くできることから、BPDAまたはピロメリット酸二無水物が好ましく、BPDAが特に好ましい。テトラカルボン酸二無水物の95モル%以上がBPDAであることが好ましい。 Two or more types of tetracarboxylic dianhydride may be used in combination. In order to obtain a polyimide film having a low coefficient of linear expansion, it is preferable that the residue X of the tetracarboxylic dianhydride has a rigid structure. Therefore, it is preferable to use an aromatic ring-type tetracarboxylic dianhydride as a raw material for the polyamic acid, and it is preferable that 95 mol% or more of the tetracarboxylic dianhydride is an aromatic ring type. Among the aromatic ring-type tetracarboxylic dianhydrides, BPDA or pyromellitic dianhydride is preferable, and BPDA is particularly preferable because the rigidity is high and the coefficient of linear thermal expansion of the polyimide film can be lowered. It is preferable that 95 mol% or more of the tetracarboxylic dianhydride is BPDA.
<ジアミン>
 ジアミンとしては、パラフェニレンジアミン(以下PDAと略記することがある)、4,4’-ジアミノベンジジン、4,4”-ジアミノパラテルフェニル、4,4’‐ジアミノジフェニルエーテル、3,4’‐ジアミノジフェニルエーテル、4,4’‐ジアミノジフェニルスルホン、1,5‐ビス(4‐アミノフェノキシ)ペンタン、1,3‐ビス(4‐アミノフェノキシ)‐2,2‐ジメチルプロパン、2,2‐ビス(4‐アミノフェノキシフェニル)プロパン、ビス[4‐(4‐アミノフェノキシ)フェニル]スルホン、ビス[4‐(3‐アミノフェノキシ)フェニル]スルホン、2,2-ビス(トリフルオロメチル)ベンジジン、4,4’-ジアミノベンズアニリド、9,9’-(4-アミノフェニル)フルオレン、9,9’-(4-アミノ-3-メチルフェニル)フルオレン等の芳香環式ジアミン;および1,4-シクロヘキサンジアミン、4,4’-メチレンビス(シクロヘキサンアミン)等の脂環式ジアミンを例示できる。
<Diamine>
Examples of the diamine include paraphenylenediamine (hereinafter sometimes abbreviated as PDA), 4,4'-diaminobenzidine, 4,4 "-diaminoparatelphenyl, 4,4'-diaminodiphenyl ether, and 3,4'-diamino. Diphenyl ether, 4,4'-diaminodiphenylsulfone, 1,5-bis (4-aminophenoxy) pentane, 1,3-bis (4-aminophenoxy) -2,2-dimethylpropane, 2,2-bis (4) -Aminophenoxyphenyl) propane, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] sulfone, 2,2-bis (trifluoromethyl) benzidine, 4,4 Aromatic diamines such as'-diaminobenzidine, 9,9'-(4-aminophenyl) fluorene, 9,9'-(4-amino-3-methylphenyl) fluorene; and 1,4-cyclohexanediamine, An alicyclic diamine such as 4,4'-methylenebis (cyclohexaneamine) can be exemplified.
 ジアミンは、2種以上を併用してもよい。低線膨張係数のポリイミドフィルムを得るためには、ジアミンの残基Yが剛直な構造を有することが好ましい。そのため、ポリアミド酸の原料として芳香環式ジアミンを用いることが好ましく、ジアミンの95モル%以上が芳香環式であることが好ましい。芳香環式ジアミンの中でも、剛直性が高く、ポリイミドフィルムの熱線膨張係数を低くできることから、PDAまたは4,4”-ジアミノパラテルフェニルが好ましく、PDAが特に好ましい。ジアミンの95モル%以上がPDAであることが好ましい。 Two or more types of diamines may be used in combination. In order to obtain a polyimide film having a low coefficient of linear expansion, it is preferable that the residue Y of the diamine has a rigid structure. Therefore, it is preferable to use an aromatic ring diamine as a raw material for the polyamic acid, and it is preferable that 95 mol% or more of the diamine is an aromatic diamine. Among the aromatic ring-type diamines, PDA or 4,4 "-diaminoparaterphenyl is preferable, and PDA is particularly preferable because the rigidity is high and the coefficient of linear thermal expansion of the polyimide film can be lowered. 95 mol% or more of the diamine is PDA. Is preferable.
[ポリアミド酸の製造方法]
 上述のように、テトラカルボン酸二無水物とジアミンとを、有機溶媒中で反応させることにより、ポリアミド酸が得られる。一般式(2)の末端構造(アミン末端)を有するポリアミド酸は、一般的なポリアミド酸にも含まれており、テトラカルボン酸二無水物とジアミンとの反応により生成する。
[Method for producing polyamic acid]
As described above, polycarboxylic acid is obtained by reacting tetracarboxylic dianhydride and diamine in an organic solvent. The polyamic acid having the terminal structure (amine terminal) of the general formula (2) is also contained in the general polyamic acid, and is produced by the reaction of tetracarboxylic acid dianhydride and diamine.
 一般式(1)の末端構造(開環酸末端)は、ポリアミド酸のアミン末端もしくはジアミンとテトラカルボン酸二無水物の片開環体との反応、または酸無水物末端の開環等により形成される。ポリアミド酸の分子量制御、組成物中の水分量の制御、ポリアミド酸のイミド化の抑制、溶液の貯蔵安定性等の観点から、ポリアミド酸の重合モノマーとしてテトラカルボン酸二無水物の片開環体を用いる方法が好ましい。 The terminal structure (ring-opening acid terminal) of the general formula (1) is formed by the reaction of an amine terminal or diamine of polyamic acid with a single ring-opening body of tetracarboxylic dianhydride, or ring opening of the acid anhydride terminal. Will be done. From the viewpoints of controlling the molecular weight of polyamic acid, controlling the amount of water in the composition, suppressing imidization of polyamic acid, and storing stability of the solution, a monocyclic ring of tetracarboxylic acid dianhydride as a polymerization monomer of polyamic acid. The method using is preferable.
 一実施形態では、テトラカルボン酸二無水物を加水開環した後、テトラカルボン酸の二無水物と開環体との混合物を、ジアミンと反応させることにより、一般式(1)の末端構造を有するポリアミド酸および一般式(2)の末端構造を有するポリアミド酸を含む組成物(ポリアミド酸溶液)が得られる。 In one embodiment, after hydrocyclic ringing of the tetracarboxylic dianhydride, a mixture of the tetracarboxylic dianhydride and the ring-opened body is reacted with diamine to obtain the terminal structure of the general formula (1). A composition (polyamic acid solution) containing the polyamic acid having the polyamic acid and the polyamic acid having the terminal structure of the general formula (2) can be obtained.
<テトラカルボン酸二無水物の加水開環>
 テトラカルボン酸二無水物を加水開環すると、2つの酸無水物部分のうちの一方のみが開環してジカルボン酸となり他方が酸無水物のままである化合物(片開環体)が生成する。テトラカルボン酸二無水物の加水開環では、一般に、片開環体に加えて、2つの酸無水物部分の両方が開環した化合物(両開環体)が生成する。片開環体は一般式(4)で表され、両開環体は一般式(3)で表される。一般式(3)および一般式(4)におけるXはテトラカルボン酸二無水物残基である。
<Hydro-opening of tetracarboxylic dianhydride>
When tetracarboxylic dianhydride is hydrocyclic, only one of the two acid anhydride portions is ring-opened to form a dicarboxylic acid, and the other remains an acid anhydride (single ring compound). .. In the hydrocyclic ring-opening of a tetracarboxylic dianhydride, in addition to the single ring-opened compound, a compound in which both of the two acid anhydride moieties are ring-opened (bicyclic ring-opened compound) is generally produced. The single ring-opened body is represented by the general formula (4), and the double ring-opened body is represented by the general formula (3). X in the general formula (3) and the general formula (4) is a tetracarboxylic dianhydride residue.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 テトラカルボン酸二無水物の加水開環は、水が存在する有機溶媒中で実施することが好ましい。有機溶媒としては、水との混和性を有する極性溶媒が好ましく、ポリアミド酸の重合に用いる有機溶媒と同一の有機溶媒が好ましい。テトラカルボン酸の加水開環およびポリアミド酸の重合に用いられる有機溶媒としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等のアミド系溶媒が好ましい。有機溶媒としてN-メチル-2-ピロリドンを用いた場合に、ポリアミド酸溶液の貯蔵安定性が高くなる傾向がある。 The hydrocyclic ring of the tetracarboxylic dianhydride is preferably carried out in an organic solvent in which water is present. As the organic solvent, a polar solvent having miscibility with water is preferable, and the same organic solvent as the organic solvent used for the polymerization of polyamic acid is preferable. As the organic solvent used for hydrocyclic ring-opening of tetracarboxylic acid and polymerization of polyamic acid, amide-based solvents such as N, N-dimethylformamide, N, N-dimethylacetamide and N-methyl-2-pyrrolidone are preferable. When N-methyl-2-pyrrolidone is used as the organic solvent, the storage stability of the polyamic acid solution tends to be high.
 加水開環は、テトラカルボン酸二無水物のみが存在する状態、およびテトラカルボン酸二無水物とジアミンとを混合後のいずれに実施してもよい。ジアミンの存在下では、テトラカルボン酸二無水物とジアミンとの付加反応(ポリアミド酸の重合反応)とテトラカルボン酸の加水開環が競争的に起こるが、前者が優先的となりやすく、開環体の生成が不十分となったり、開環体の生成量の制御が困難となる傾向がある。そのため、テトラカルボン酸の加水開環は、ジアミンとの混合前に実施することが好ましい。 The hydrocyclic ring may be carried out in either a state in which only the tetracarboxylic dianhydride is present or after the tetracarboxylic dianhydride and the diamine are mixed. In the presence of diamine, the addition reaction of tetracarboxylic dianhydride and diamine (polymerization reaction of polyamic acid) and the ring-opening of tetracarboxylic acid competitively occur, but the former tends to be prioritized and the ring-opened body. Tends to be insufficient, and it tends to be difficult to control the amount of ring-opened body produced. Therefore, it is preferable to carry out the hydrocyclic ring-opening of the tetracarboxylic acid before mixing with the diamine.
 有機溶媒に対するテトラカルボン酸二無水物の溶解性(または分散性)を確保しつつ、系に含まれる水を有効に利用して加水開環を行う観点から、加水開環の反応系におけるテトラカルボン酸二無水物の濃度は、3~40重量%が好ましく、5~35重量%がより好ましく、7~30重量%がさらに好ましい。テトラカルボン酸二無水物の濃度は、10重量%以上、15重量%以上または17重量%以上であってもよい。 From the viewpoint of effectively utilizing the water contained in the system to perform hydrocyclic ring while ensuring the solubility (or dispersibility) of tetracarboxylic dianhydride in an organic solvent, tetracarboxylic in the hydrocyclic ring reaction system. The concentration of the acid dianhydride is preferably 3 to 40% by weight, more preferably 5 to 35% by weight, still more preferably 7 to 30% by weight. The concentration of tetracarboxylic dianhydride may be 10% by weight or more, 15% by weight or more, or 17% by weight or more.
 加水開環の反応系における水分量は、200~5000ppmが好ましく、300~4000ppmがより好ましく、400~3500ppmがさらに好ましく、500~3000ppmが特に好ましい。水分量は、700ppm以上または1000ppm以上であってもよい。開環体の生成量を制御する観点から、加水開環の反応系における水の量は、テトラカルボン酸二無水物に対して、1~15モル%が好ましく、2~12モル%がより好ましく、3~11モル%、5~10モル%または6~9モル%であってもよい。 The water content in the water-opening reaction system is preferably 200 to 5000 ppm, more preferably 300 to 4000 ppm, further preferably 400 to 3500 ppm, and particularly preferably 500 to 3000 ppm. The water content may be 700 ppm or more or 1000 ppm or more. From the viewpoint of controlling the amount of ring-opened body produced, the amount of water in the hydrocyclic ring-opening reaction system is preferably 1 to 15 mol%, more preferably 2 to 12 mol%, based on the tetracarboxylic dianhydride. It may be 3 to 11 mol%, 5 to 10 mol% or 6 to 9 mol%.
 工業的に利用可能な有機溶媒は、一般に数十から数百ppmの水を含んでいる。有機溶媒に含まれる水をそのまま加水分解に利用することができるが、有機溶媒に含まれる水のみでは開環体が十分に生成しない場合がある。そのため、有機溶媒に水を添加して水分量を上記範囲に調整することが好ましい。 Industrially available organic solvents generally contain tens to hundreds of ppm of water. Water contained in the organic solvent can be used as it is for hydrolysis, but water contained in the organic solvent alone may not sufficiently produce a ring-opened body. Therefore, it is preferable to add water to the organic solvent to adjust the water content within the above range.
 テトラカルボン酸二無水物の加水開環反応は室温でも進行するが、反応時間の短縮および開環体の生成量制御の観点から、加熱下で実施することが好ましい。反応温度は、50~100℃が好ましく、60~95℃がより好ましく、65~90℃、70~85℃であってもよい。反応性(開環体の生成効率)向上の観点からは反応温度は高い方が好ましいが、100℃(水の沸点)を超えると、系の水分量が急激に低下し、開環体の生成量が減少する傾向がある。反応時間(加熱時間)は、20分~24時間程度であり、1~12時間がより好ましく、2~5時間がさらに好ましい。 The hydrocyclic ring-opening reaction of the tetracarboxylic dianhydride proceeds even at room temperature, but it is preferably carried out under heating from the viewpoint of shortening the reaction time and controlling the amount of ring-opened body produced. The reaction temperature is preferably 50 to 100 ° C., more preferably 60 to 95 ° C., and may be 65 to 90 ° C. or 70 to 85 ° C. From the viewpoint of improving reactivity (ring-opening body formation efficiency), it is preferable that the reaction temperature is high, but when the temperature exceeds 100 ° C. (boiling point of water), the water content of the system sharply decreases and ring-opening body is formed. The amount tends to decrease. The reaction time (heating time) is about 20 minutes to 24 hours, more preferably 1 to 12 hours, still more preferably 2 to 5 hours.
 加水開環により、テトラカルボン酸二無水物の酸無水物部分が加水開環するが、テトラカルボン酸二無水物の残基Xは反応前後で変化しない。したがって、テトラカルボン酸二無水物残基Xの総モル数xは、テトラカルボン酸二無水物の仕込み量(加水開環前のテトラカルボン酸二無水物の総モル数)に等しく、かつ、加水開環反応後における、テトラカルボン酸二無水物(未開環体)のモル数x、片開環体のモル数x、および両開環体のモル数xの合計(x+x+x)に等しい。 The hydrocyclic ring opens the acid anhydride portion of the tetracarboxylic acid dianhydride, but the residue X of the tetracarboxylic acid dianhydride does not change before and after the reaction. Therefore, the total number of moles x of the tetracarboxylic dianhydride residue X is equal to the amount of the tetracarboxylic dianhydride charged (the total number of moles of the tetracarboxylic dianhydride before the hydrocyclic ring), and the water is added. After the ring-opening reaction, the sum of the number of moles of tetracarboxylic dianhydride (unopened ring) x 1 , the number of moles of single-opened ring x 2 , and the number of moles of both ring-opened bodies x 3 (x 1 + x 2). Equal to + x 3 ).
 加水開環による片開環体の生成量が多いほど、重合後のポリアミド酸の分子量が小さくなる傾向がある。加水開環後のテトラカルボン酸の総モル数、すなわち、未開環のテトラカルボン酸二無水物と、テトラカルボン酸二無水物の開環体と、テトラカルボン酸二無水物の両開環体とのモル数の合計(x+x+x)に対する片開環体のモル数(x)の比は、0.01~0.15(1~15モル%)が好ましく、0.02~0.12(2~12モル%)がより好ましく、0.03~0.10(3~10モル%)または0.04~0.09(4~9モル%)であってもよい。テトラカルボン酸の総モル数(x+x+x)に対する両開環体のモル数(x)の比:x/(x+x+x)は、例えば、0.0001~0.05(0.01~5モル%)程度であり、0.0005~0.02(0.05~2モル%)または0.001~0.1(0.1~1モル%)であってもよい。 The larger the amount of one-sided ring-opened body produced by water-opening, the smaller the molecular weight of polyamic acid after polymerization tends to be. The total number of moles of tetracarboxylic dian after hydrocyclic ring, that is, the unopened tetracarboxylic dianhydride, the ring-opened tetracarboxylic dianhydride, and the bicyclic dianhydride. The ratio of the number of moles (x 2 ) of the single-open ring to the total number of moles (x 1 + x 2 + x 3 ) is preferably 0.01 to 0.15 (1 to 15 mol%), and 0.02 to 0.02 to It is more preferably 0.12 (2 to 12 mol%), and may be 0.03 to 0.10 (3 to 10 mol%) or 0.04 to 0.09 (4 to 9 mol%). The ratio of the total number of moles of tetracarboxylic acid (x 1 + x 2 + x 3) the number of moles of both open annulus for (x 3): x 3 / (x 1 + x 2 + x 3) , for example, from 0.0001 to 0 It is about 0.05 (0.01 to 5 mol%), 0.0005 to 0.02 (0.05 to 2 mol%) or 0.001 to 0.1 (0.1 to 1 mol%). You may.
 テトラカルボン酸(未開環の二無水物および開環体を含む)とジアミンとの反応において、アミン末端にテトラカルボン酸二無水物の片開環体が反応すると、一般式(1)で表される加水開環末端が生成する。重合反応において、テトラカルボン酸二無水物の両開環体は、ほとんど反応しない。そのため、ポリアミド酸溶液は、テトラカルボン酸二無水物の両開環体を含んでいてもよい。したがって、ポリアミド酸溶液におけるテトラカルボン酸二無水物の両開環体のモル数は、加水開環後のテトラカルボン酸のモル数xに略等しい。 In the reaction between a tetracarboxylic acid (including an unopened dianhydride and a ring-opened body) and a diamine, when a single-opened ring of the tetracarboxylic dianhydride reacts at the amine terminal, it is represented by the general formula (1). A hydrocyclic terminal is produced. In the polymerization reaction, both ring-opened dianhydrides of tetracarboxylic dianhydride hardly react. Therefore, the polyamic acid solution may contain a bicyclic ring of tetracarboxylic dianhydride. Therefore, the number of moles of both ring-opened tetracarboxylic dianhydrides in the polyamic acid solution is substantially equal to the number of moles x 3 of the tetracarboxylic acid after water ring-opening.
<ポリアミド酸の重合>
 テトラカルボン酸二無水物とジアミンとを、有機溶媒中で反応させることにより、ポリアミド酸が得られる。本実施形態においては、加水開環により得られたテトラカルボン酸二無水物およびその開環体との混合物と、ジアミンとを反応させる。テトラカルボン酸とジアミンとの反応は、加水開環後のテトラカルボン酸溶液とジアミンとを混合すればよい。事前に有機溶媒に溶解させたジアミン溶液と加水開環後のテトラカルボン酸溶液とを混合してもよい。さらに加水開環反応を行っていないテトラカルボン酸二無水物を加えてもよい。
<Polymerization of polyamic acid>
Polyamic acid is obtained by reacting tetracarboxylic dianhydride and diamine in an organic solvent. In this embodiment, a mixture of tetracarboxylic dianhydride obtained by ring-opening and a ring-opening product thereof is reacted with diamine. The reaction between the tetracarboxylic acid and the diamine may be carried out by mixing the tetracarboxylic acid solution after the ring-opening and the diamine. A diamine solution previously dissolved in an organic solvent and a tetracarboxylic acid solution after ring-opening may be mixed. Further, a tetracarboxylic dianhydride that has not undergone a water-opening reaction may be added.
 ジアミンの総モル数(y)に対するテトラカルボン酸の総モル数(x=x+x+x)の比x/yは、0.950~1.050が好ましく、0.970~1.030がより好ましく、0.990~1.010がさらに好ましい。x/yが上記範囲であれば、ポリアミド酸における一般式(1)の末端構造と一般式(2)の末端構造の比率およびポリアミド酸の分子量が適切な範囲となり、ポリアミド酸溶液が貯蔵安定性に優れるとともに、イミド化時に分子量が増大しやすく、機械強度に優れるポリイミドフィルムが得られやすい。 The ratio x / y of the total number of moles of the tetracarboxylic acid (x = x 1 + x 2 + x 3 ) to the total number of moles (y) of the diamine is preferably 0.950 to 1.050, preferably 0.970 to 1.030. Is more preferable, and 0.990 to 1.010 is even more preferable. When x / y is in the above range, the ratio of the terminal structure of the general formula (1) to the terminal structure of the general formula (2) and the molecular weight of the polyamic acid in the polyamic acid are in the appropriate range, and the polyamic acid solution has storage stability. It is easy to obtain a polyimide film having excellent mechanical strength because the molecular weight tends to increase at the time of imidization.
 ポリアミド酸溶液中のポリアミド酸の濃度(ジアミンとテトラカルボン酸の合計仕込み濃度)は、5~45重量%が好ましく、10~35重量%がより好ましく、13~30重量%がさらに好ましく、15重量%以上または17重量%以上であってもよい。仕込み濃度を上記範囲とすることにより、重合反応が進行しやすく、かつ未溶解の原料の異常重合に起因するゲル化が抑制される。本実施形態では、反応系にテトラカルボン酸二無水物の片開環体が含まれているため、ポリアミド酸の過度の分子量増大が抑制され、仕込み濃度が高い場合でも反応溶液粘度の過度の粘度上昇やゲル化を抑制できる。 The concentration of polyamic acid in the polyamic acid solution (total concentration of diamine and tetracarboxylic acid) is preferably 5 to 45% by weight, more preferably 10 to 35% by weight, further preferably 13 to 30% by weight, and 15% by weight. % Or more or 17% by weight or more. By setting the charging concentration within the above range, the polymerization reaction is likely to proceed, and gelation due to abnormal polymerization of the undissolved raw material is suppressed. In the present embodiment, since the reaction system contains a single ring-opened dianhydride of tetracarboxylic dianhydride, an excessive increase in molecular weight of the polyamic acid is suppressed, and an excessive viscosity of the reaction solution viscosity is suppressed even when the charged concentration is high. It can suppress the rise and gelation.
 重合反応速度を高めるとともに、解重合反応を抑制する観点から、反応温度(溶液の温度)は0℃~70℃が好ましく、20℃~65℃がより好ましく、30~60℃であってもよい。反応温度が過度に高い場合は、ポリアミド酸の解重合による分子量の低下に加えて、ポリアミド酸の脱水環化(イミド化)が生じやすく、これに伴って水分率が上昇し、ポリアミド酸溶液の貯蔵安定性が低下する場合がある。そのため、重合時の温度を50℃付近に制御して、ポリアミド酸のイミド化による水分率の増大を抑制することが好ましい。ポリアミド酸の分子量調整等を目的として、得られたポリアミド酸溶液を、70~100℃程度に保持して、ポリアミド酸の加水分解(解重合)を実施してもよい。ただし、イミド化による水分率の上昇を抑制する観点から、70℃以上に加熱する時間は、3時間以下が好ましく、1時間以下がより好ましい。 From the viewpoint of increasing the polymerization reaction rate and suppressing the depolymerization reaction, the reaction temperature (solution temperature) is preferably 0 ° C. to 70 ° C., more preferably 20 ° C. to 65 ° C., and may be 30 to 60 ° C. .. When the reaction temperature is excessively high, in addition to the decrease in molecular weight due to the depolymerization of the polyamic acid, dehydration cyclization (imidization) of the polyamic acid is likely to occur, and the water content increases accordingly, so that the polyamic acid solution Storage stability may decrease. Therefore, it is preferable to control the temperature at the time of polymerization to around 50 ° C. to suppress an increase in the water content due to imidization of the polyamic acid. For the purpose of adjusting the molecular weight of the polyamic acid, the obtained polyamic acid solution may be held at about 70 to 100 ° C. to carry out hydrolysis (depolymerization) of the polyamic acid. However, from the viewpoint of suppressing an increase in the water content due to imidization, the time for heating to 70 ° C. or higher is preferably 3 hours or less, more preferably 1 hour or less.
 テトラカルボン酸二無水物、ならびにその片開環体および両開環体の混合物と、ジアミンとの反応では、主に、テトラカルボン酸二無水物および片開環体の酸二無水物部分とジアミンのアミノ基とが反応し、片開環体および両開環体の開環ジカルボン酸はジアミンのアミノ基とはほとんど反応しない。ジアミンのアミノ基と片開環体の酸二無水物部分とが反応すると、一般式(1)の加水開環末端を有するポリアミド酸が生成し、それ以上は重合が進まない。そのため、テトラカルボン酸二無水物の片開環体を用いることにより、低分子量のポリアミド酸が得られる。片開環体の比(x/x)が大きいほど、ポリアミド酸の分子量が小さくなる傾向がある。両開環体はジアミンとはほとんど反応しないため、両開環体を含むポリアミド酸溶液が得られる。 In the reaction of tetracarboxylic dianhydride and its mixture of hemicyclic and bicyclics with diamine, mainly tetracarboxylic dianhydride and the acid dianhydride moiety of hemicyclic and diamine Reacts with the amino groups of diamines, and the ring-opening dicarboxylic acids of the single-ring and bi-rings hardly react with the amino groups of diamine. When the amino group of the diamine reacts with the acid dianhydride portion of the single ring-opening body, a polyamic acid having a hydrocyclic ring end of the general formula (1) is produced, and polymerization does not proceed any further. Therefore, a low molecular weight polyamic acid can be obtained by using a single ring-opened dianhydride tetracarboxylic dianhydride. The larger the ratio of single ring-opened bodies (x 2 / x), the smaller the molecular weight of polyamic acid tends to be. Since both ring-opened bodies hardly react with diamine, a polyamic acid solution containing both ring-opened bodies can be obtained.
<アルコキシシラン末端の導入>
 本発明の実施形態のポリアミド酸は、一般式(1)(2)の末端構造に加えて、他の末端構造を含んでいてもよい。一実施形態において、ポリアミド酸組成物は、一般式(1)~(3)の末端構造に加えて、一般式(5)で表される末端構造(アルコキシシラン末端)を有していてもよい。
<Introduction of alkoxysilane terminal>
The polyamic acid of the embodiment of the present invention may contain other terminal structures in addition to the terminal structures of the general formulas (1) and (2). In one embodiment, the polyamic acid composition may have a terminal structure (alkoxysilane terminal) represented by the general formula (5) in addition to the terminal structures of the general formulas (1) to (3). ..
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 一般式(5)におけるRは2価の有機基であり、好ましくはフェニレン基または炭素数1~5のアルキレン基である。Rはアルキル基であり、Xはテトラカルボン酸二無水物の残基であり、Yはジアミンの残基である。 R 1 in the general formula (5) is a divalent organic group, preferably a phenylene group or an alkylene group having 1 to 5 carbon atoms. R 2 is an alkyl group, X is a residue of tetracarboxylic dianhydride, and Y is a residue of diamine.
 一般式(5)で表される末端構造を有するポリアミド酸は、アミノ基を含有するアルコキシシラン化合物とポリアミド酸とを溶液中で反応させることにより得られる。一般式(1)および(2)で表される末端構造を有するポリアミド酸組成物に、アミノ基を含有するアルコキシシラン化合物を添加して、末端を変性してもよい。 The polyamic acid having the terminal structure represented by the general formula (5) can be obtained by reacting an alkoxysilane compound containing an amino group with the polyamic acid in a solution. The terminal may be modified by adding an alkoxysilane compound containing an amino group to the polyamic acid composition having the terminal structures represented by the general formulas (1) and (2).
 ポリアミド酸に、アミノ基を有するアルコキシシラン化合物を添加すると、ポリアミド酸溶液の粘度が低下する傾向がある。アミノ基を含有するアルコキシシラン化合物による変性の反応温度は、0~80℃が好ましく、20~60℃がより好ましい。 When an alkoxysilane compound having an amino group is added to the polyamic acid, the viscosity of the polyamic acid solution tends to decrease. The reaction temperature for modification with the alkoxysilane compound containing an amino group is preferably 0 to 80 ° C, more preferably 20 to 60 ° C.
 アミノ基を含むアルコキシシラン化合物は、下記の一般式(6)で表される。一般式(6)におけるRおよびRは、一般式(5)と同一である。 The alkoxysilane compound containing an amino group is represented by the following general formula (6). R 1 and R 2 in the general formula (6) are the same as those in the general formula (5).
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 Rは2価の有機基であればよいが、ポリアミド酸の酸無水物基との反応性が高いことから、フェニレン基または炭素数1~5のアルキレン基が好ましく、中でも、炭素数1~5のアルキレン基が好ましい。Rは炭素数1~5のアルキル基であればよいが、好ましくはメチル基またはエチル基であり、ポリアミド酸とガラスとの密着性向上の観点からはメチル基が好ましい。 R 1 may be a divalent organic group, but a phenylene group or an alkylene group having 1 to 5 carbon atoms is preferable because of its high reactivity with the acid anhydride group of the polyamic acid, and among them, 1 to 1 to 5 carbon atoms. An alkylene group of 5 is preferred. R 2 may be an alkyl group having 1 to 5 carbon atoms, but is preferably a methyl group or an ethyl group, and a methyl group is preferable from the viewpoint of improving the adhesion between the polyamic acid and the glass.
 アミノ基を有するアルコキシシラン化合物の具体例としては、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルメチルジメトキシシラン、3-アミノプロピルメチルジエトキシシラン、3-アミノプロピルメチルジメトキシシラン、3-(2-アミノエチル)アミノプロピルトリメトキシシラン、3-フェニルアミノプロピルトリメトキシシラン、2-アミノフェニルトリメトキシシラン、3-アミノフェニルトリメトキシシランが挙げられる。 Specific examples of the alkoxysilane compound having an amino group include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropylmethyldimethoxysilane, 3-aminopropylmethyldiethoxysilane, and 3-aminopropyl. Examples thereof include methyldimethoxysilane, 3- (2-aminoethyl) aminopropyltrimethoxysilane, 3-phenylaminopropyltrimethoxysilane, 2-aminophenyltrimethoxysilane, and 3-aminophenyltrimethoxysilane.
 アミノ基を有するアルコキシシラン化合物の総モル数αと、テトラカルボン酸総モル数xの比α/xは、0.0001~0.0050が好ましく、0.0005~0.0050がより好ましく、0.0010~0.0030がさらに好ましい。α/xが0.0001以上であれば、ガラス等の無機基板とポリイミドフィルムとの密着性が向上し、自然剥離が抑制される効果がある。α/xが0.0100以下であれば、ポリアミド酸の分子量を維持できるため、ポリアミド酸溶液の貯蔵安定性に優れるとともに、ポリイミドフィルムの機械強度を確保できる。 The ratio α / x of the total number of moles α of the alkoxysilane compound having an amino group to the total number of moles of the tetracarboxylic dian x is preferably 0.0001 to 0.0050, more preferably 0.0005 to 0.0050, and 0. More preferably, it is 0010 to 0.0030. When α / x is 0.0001 or more, the adhesion between the inorganic substrate such as glass and the polyimide film is improved, and there is an effect that natural peeling is suppressed. When α / x is 0.0100 or less, the molecular weight of polyamic acid can be maintained, so that the storage stability of the polyamic acid solution is excellent and the mechanical strength of the polyimide film can be secured.
<添加剤>
 ポリアミド酸溶液は、各種の添加剤含んでいてもよい。例えば、ポリアミド酸溶液は、溶液の消泡やポリイミドフィルム表面の平滑性向上等を目的として、表面調整剤を含有してもよい。表面調整剤としては、ポリアミド酸およびポリイミドとの適度な相溶性を示し、消泡性を有するものを選択すればよい。高温加熱時に有害物が発生し難いことから、アクリル系化合物、シリコン系化合物等が好ましく、リコート性に優れることから、アクリル系化合物が特に好ましい。
<Additives>
The polyamic acid solution may contain various additives. For example, the polyamic acid solution may contain a surface conditioner for the purpose of defoaming the solution and improving the smoothness of the surface of the polyimide film. As the surface conditioner, one that exhibits appropriate compatibility with polyamic acid and polyimide and has antifoaming property may be selected. Acrylic compounds, silicon compounds and the like are preferable because harmful substances are less likely to be generated during high-temperature heating, and acrylic compounds are particularly preferable because they are excellent in recoatability.
 アクリル系化合物から構成される表面調整剤の具体例としては、DISPARLON LF-1980、LF-1983、LF-1985(楠本化成株式会社製)、BYK-3440、BYK-3441、BYK-350、BYK-361N、(ビックケミー・ジャパン株式会社製)等が挙げられる。 Specific examples of the surface conditioner composed of an acrylic compound include DISPARLON LF-1980, LF-1983, LF-1985 (manufactured by Kusumoto Kasei Co., Ltd.), BYK-3440, BYK-3441, BYK-350, BYK- 361N, (manufactured by Big Chemie Japan Co., Ltd.) and the like.
 表面調整剤の添加量はポリアミド酸100重量部に対して、0.0001~0.1重量部が好ましく、0.001~0.1重量部がより好ましい。添加量が0.0001重量部以上であれば、ポリイミドフィルムの表面の平滑性改善に十分な効果を発揮し得る。添加量が0.1重量部以下であれば、ポリイミドフィルムに濁りが発生し難い。表面調整剤は、そのままポリアミド酸溶液に添加してもよく、溶媒で希釈してから添加してもよい。表面調整剤を添加するタイミングは特に制限されず、ポリアミド酸の重合または末端変性の際に添加してもよい。アルコキシキシシラン変性を行う場合は、アルコキシシラン変性後に表面調整剤を添加してもよい。 The amount of the surface conditioner added is preferably 0.0001 to 0.1 parts by weight, more preferably 0.001 to 0.1 parts by weight, based on 100 parts by weight of the polyamic acid. When the amount added is 0.0001 parts by weight or more, a sufficient effect can be exerted on improving the smoothness of the surface of the polyimide film. When the addition amount is 0.1 part by weight or less, the polyimide film is less likely to become turbid. The surface conditioner may be added to the polyamic acid solution as it is, or may be diluted with a solvent before being added. The timing of adding the surface conditioner is not particularly limited, and may be added at the time of polymerization or terminal modification of the polyamic acid. When performing alkoxysilane modification, a surface conditioner may be added after the alkoxysilane modification.
 ポリアミド酸溶液は、無機微粒子等を含んでいてもよい。無機微粒子としては、微粒子状の二酸化ケイ素(シリカ)粉末、酸化アルミニウム粉末等の無機酸化物粉末、微粒子状の炭酸カルシウム粉末、リン酸カルシウム粉末等の無機塩粉末が挙げられる。微粒子が凝集した粗大な粒が存在すると、ポリイミドフィルムにおける欠陥の原因となり得るため、無機微粒子は、溶液中に均一に分散していることが好ましい。 The polyamic acid solution may contain inorganic fine particles and the like. Examples of the inorganic fine particles include fine particle silicon dioxide (silica) powder, inorganic oxide powder such as aluminum oxide powder, fine particle calcium carbonate powder, and inorganic salt powder such as calcium phosphate powder. The presence of coarse particles in which the fine particles are agglomerated can cause defects in the polyimide film, so it is preferable that the inorganic fine particles are uniformly dispersed in the solution.
 化学イミド化によりポリアミド酸のイミド化を行う場合、ポリアミド酸溶液はイミド化触媒を含んでいてもよい。イミド化触媒としては第三級アミンが好ましく、中でも複素環式の第三級アミンが好ましい。複素環式の第三級アミンの好ましい具体例としては、ピリジン、2,5-ジエチルピリジン、ピコリン、キノリン、イソキノリン等が挙られる。触媒効果およびコストの観点から、イミド化触媒の使用量は、ポリイミド前駆体であるポリアミド酸のアミド基に対して0.01~2.00当量程度であり、0.02~1.20当量であることが好ましい。溶液の貯蔵安定性を高める観点から、ポリアミド酸溶液の使用(基板上への塗布)の直前に、ポリアミド酸溶液にイミド化触媒を添加してもよい。 When imidizing a polyamic acid by chemical imidization, the polyamic acid solution may contain an imidization catalyst. As the imidization catalyst, a tertiary amine is preferable, and a heterocyclic tertiary amine is particularly preferable. Preferred specific examples of the heterocyclic tertiary amine include pyridine, 2,5-diethylpyridine, picoline, quinoline, isoquinoline and the like. From the viewpoint of catalytic effect and cost, the amount of the imidization catalyst used is about 0.01 to 2.00 equivalents with respect to the amide group of the polyamic acid which is the polyimide precursor, and 0.02 to 1.20 equivalents. It is preferable to have. From the viewpoint of enhancing the storage stability of the solution, an imidization catalyst may be added to the polyamic acid solution immediately before the use of the polyamic acid solution (coating on the substrate).
[ポリアミド酸溶液の特性]
<ポリアミド酸の加水開環末端構造の存在比>
 ポリアミド酸の末端構造が制御されていることにより、ポリアミド酸溶液の貯蔵安定性および取り扱い性に優れ、かつ、イミド化の際に高分子量化するため、ポリイミドフィルムが優れた機械強度を有する。
[Characteristics of polyamic acid solution]
<Abundance ratio of hydrocyclic ring-opened terminal structure of polyamic acid>
Since the terminal structure of the polyamic acid is controlled, the polyamic acid solution is excellent in storage stability and handleability, and the high molecular weight is increased during imidization, so that the polyimide film has excellent mechanical strength.
 上述のように、ポリアミド酸におけるテトラカルボン酸無水物残基Xの量は、テトラカルボン酸の総モル数x(テトラカルボン酸無水物とテトラカルボン酸二無水物の片開環体とテトラカルボン酸二無水物の両開環体との合計)に等しい。また、ジアミン残基Yの量はジアミンの総モル数yに等しい。 As described above, the amount of the tetracarboxylic dianhydride residue X in the polycarboxylic acid is the total number of moles of the tetracarboxylic acid x (single-open ring of the tetracarboxylic acid anhydride and the tetracarboxylic dianhydride and the tetracarboxylic acid. Equal to the sum of the dianhydride and the bicyclic ring). Further, the amount of diamine residue Y is equal to the total number of moles y of diamine.
 ポリアミド酸の重合により、片開環体のほぼ全てが、一般式(1)で表される末端構造の形成に寄与する。そのため、ポリアミド酸における一般式(1)で表される末端構造のモル数zは、片開環体のモル数xと略等しい。ポリアミド酸における一般式(1)で表される末端構造のモル数zと、テトラカルボン酸二無水物残基Xの総モル数xとの比z/xは、0.01~0.15が好ましく、0.02~0.12がより好ましく、0.03~0.10または0.04~0.09であってもよい。上記の通り、z≒xであるから、z/xは、加水開環後のテトラカルボン酸における片開環体の生成率x/xに略等しい。z/xが当該範囲であることにより、ポリアミド酸溶液の粘度を低く抑えられるとともに、イミド化の際には十分に分子量が増大するため、機械強度に優れるポリイミドフィルムが得られる。換言すれば、ポリアミド酸の重合前の加水開環等により生成する片開環体の比率を調整することにより、ポリアミド酸溶液の粘度を低く抑え、かつ機械強度に優れるポリイミドフィルムを作製することが可能となる。 By the polymerization of polyamic acid, almost all of the single ring-opening bodies contribute to the formation of the terminal structure represented by the general formula (1). Therefore, the number of moles z of the terminal structure represented by the general formula (1) in the polyamic acid is substantially equal to the number of moles x 2 of the single ring-opened ring body. The ratio z / x of the number of moles z of the terminal structure represented by the general formula (1) in the polyamic acid to the total number of moles x of the tetracarboxylic dianhydride residue X is 0.01 to 0.15. Preferably, 0.02 to 0.12 is more preferable, and it may be 0.03 to 0.10 or 0.04 to 0.09. As described above, since a z ≒ x 2, z / x is substantially equal to the production rate x 2 / x pieces open annulus in the tetracarboxylic acid after hydrolysis ring opening. When z / x is in this range, the viscosity of the polyamic acid solution can be kept low, and the molecular weight is sufficiently increased during imidization, so that a polyimide film having excellent mechanical strength can be obtained. In other words, by adjusting the ratio of the one-sided ring-opened body produced by water ring-opening before polymerization of the polyamic acid, it is possible to produce a polyimide film having a low viscosity of the polyamic acid solution and excellent mechanical strength. It will be possible.
<ポリアミド酸の分子量>
 ポリアミド酸溶液におけるポリアミド酸の重量平均分子量は、5000~45000が好ましく、10000~40000がより好ましく、15000~32000がさらに好ましく、20000~30000であってもよい。重量平均分子量が5000以上であれば、ポリアミド酸のイミド化により得られるポリイミドフィルムの特性が向上する傾向がある。重量平均分子量が45000以下であれば、固形分濃度が高い場合でも溶液粘度を低く抑えられ、ポリアミド酸溶液を長期間保管した際の分子量の変化が抑制される傾向がある。ポリアミド酸の数平均分子量は、3000~25000が好ましく、5000~22000がより好ましく、10000~20000がさらに好ましい。
<Molecular weight of polyamic acid>
The weight average molecular weight of the polyamic acid in the polyamic acid solution is preferably 5000 to 45000, more preferably 10000 to 40,000, further preferably 15000 to 32000, and may be 20000 to 30000. When the weight average molecular weight is 5000 or more, the characteristics of the polyimide film obtained by imidization of the polyamic acid tend to be improved. When the weight average molecular weight is 45,000 or less, the solution viscosity can be kept low even when the solid content concentration is high, and the change in molecular weight when the polyamic acid solution is stored for a long period of time tends to be suppressed. The number average molecular weight of the polyamic acid is preferably 3000 to 25000, more preferably 5000 to 22000, and even more preferably 10000 to 20000.
<溶液の濃度および粘度>
 ポリアミド酸組成物の固形分濃度は、10重量%以上が好ましく、13重量%以上がより好ましく、15重量%以上がさらに好ましい。ポリアミド酸溶液の固形分濃度が高いほど、使用する溶媒量が少なく、生産効率向上、環境負荷の低減、コストダウン等に寄与し得る。固形分濃度の上限は特に限定されないが、基板上への塗布に適した粘度とするためには、溶液の固形分濃度は40重量%以下が好ましく、35重量%以下がより好ましい。ポリアミド酸の重合後に、溶媒の添加または揮発により固形分濃度を調整してもよい。
<Concentration and viscosity of solution>
The solid content concentration of the polyamic acid composition is preferably 10% by weight or more, more preferably 13% by weight or more, still more preferably 15% by weight or more. The higher the solid content concentration of the polyamic acid solution, the smaller the amount of solvent used, which can contribute to improvement of production efficiency, reduction of environmental load, cost reduction and the like. The upper limit of the solid content concentration is not particularly limited, but the solid content concentration of the solution is preferably 40% by weight or less, more preferably 35% by weight or less in order to obtain a viscosity suitable for coating on a substrate. After the polymerization of the polyamic acid, the solid content concentration may be adjusted by adding or volatilizing a solvent.
 基板上への塗布性の観点から、ポリアミド酸溶液の温度23℃における粘度は、1~150ポイズが好ましく、3~100ポイズがより好ましい。固形分濃度の上昇に伴って溶液粘度は指数関数的に増加する傾向があるが、上記のように、ポリアミド酸が低分子量であることにより、溶液の固形分濃度が15重量%以上または20重量%であっても、粘度を上記範囲内に調整可能である。ポリアミド酸溶液は、温度23℃における粘度ηの対数logηと、ポリアミド酸の固形分濃度Dとの比logη/Dは、0.12以下が好ましく、0.11以下がより好ましく、0.10以下がさらに好ましい。粘度ηの単位はポイズであり、固形分濃度Dの単位は重量%である。 From the viewpoint of coatability on the substrate, the viscosity of the polyamic acid solution at a temperature of 23 ° C. is preferably 1 to 150 poise, more preferably 3 to 100 poise. The viscosity of the solution tends to increase exponentially as the solid content concentration increases, but as described above, the solid content concentration of the solution is 15% by weight or more or 20% by weight due to the low molecular weight of polyamic acid. Even if it is%, the viscosity can be adjusted within the above range. In the polyamic acid solution, the ratio logη / D of the log η of the viscosity η at a temperature of 23 ° C. and the solid content concentration D of the polyamic acid is preferably 0.12 or less, more preferably 0.11 or less, and 0.10 or less. Is even more preferable. The unit of viscosity η is poise, and the unit of solid content concentration D is% by weight.
<ポリアミド酸のイミド化率>
 ポリアミド酸溶液におけるポリアミド酸のイミド化率は、5モル%以下が好ましく、4モル%以下がより好ましい。イミド化率が低いことにより、溶液粘度が低く抑えられ、ポリアミド酸溶液の貯蔵時の粘度変化が抑制される傾向がある。また、イミド化率が低いことにより、ポリアミド酸溶液中の水分率が小さくなるため、ポリアミド酸溶液を長期的に保管(貯蔵)した際の、ポリアミド酸の加水分解による粘度変化が抑制され、貯蔵安定性が高められる。
<Imidization rate of polyamic acid>
The imidization ratio of the polyamic acid in the polyamic acid solution is preferably 5 mol% or less, more preferably 4 mol% or less. Due to the low imidization rate, the viscosity of the solution is kept low, and the change in viscosity during storage of the polyamic acid solution tends to be suppressed. In addition, since the water content in the polyamic acid solution is small due to the low imidization rate, the change in viscosity due to hydrolysis of the polyamic acid during long-term storage (storage) of the polyamic acid solution is suppressed and stored. Increased stability.
 上記のように、ポリアミド酸の重合温度を低くすることにより(例えば、50℃程度)、ポリアミド酸のイミド化を抑制できる。ポリアミド酸の分子量を低下させる方法として、重合温度を高くするか、重合後に温度を上昇させて(例えば70℃以上)、ポリアミド酸を加水分解(解重合)することが一般的に行われている。しかし、加水分解のための加熱によりイミド化も進行するため、溶液の粘度上昇や貯蔵安定性の低下の要因となり得る。これに対して、本発明の実施形態では、テトラカルボン酸二無水物の片開環体を反応系に含めることにより、一般式(1)で表される加水開環末端が生成するため分子量が過度に上昇せず、解重合のための高温での加熱を必要としない。そのため、加熱に伴うイミド化が抑制され、ポリアミド酸溶液の貯蔵安定性が高められる傾向がある。 As described above, by lowering the polymerization temperature of the polyamic acid (for example, about 50 ° C.), the imidization of the polyamic acid can be suppressed. As a method for lowering the molecular weight of the polyamic acid, it is generally performed to hydrolyze (depolymerize) the polyamic acid by raising the polymerization temperature or raising the temperature after the polymerization (for example, 70 ° C. or higher). .. However, since imidization also proceeds by heating for hydrolysis, it may cause an increase in the viscosity of the solution and a decrease in storage stability. On the other hand, in the embodiment of the present invention, by including the single ring-opened dianhydride of tetracarboxylic dianhydride in the reaction system, the hydroopened ring terminal represented by the general formula (1) is produced, so that the molecular weight is increased. It does not rise excessively and does not require high temperature heating for depolymerization. Therefore, imidization due to heating is suppressed, and the storage stability of the polyamic acid solution tends to be improved.
<ポリアミド酸溶液の水分率>
 ポリアミド酸溶液の水分率は、1500ppm以下が好ましい。ポリアミド酸溶液の水分率は、1300ppm以下、1200ppm以下または1100ppm以下であってもよい。ポリアミド酸溶液中の水分が少ないほど貯蔵安定性が向上する傾向がある。
<Moisture content of polyamic acid solution>
The water content of the polyamic acid solution is preferably 1500 ppm or less. The water content of the polyamic acid solution may be 1300 ppm or less, 1200 ppm or less, or 1100 ppm or less. The smaller the water content in the polyamic acid solution, the better the storage stability tends to be.
 ポリアミド酸溶液の水分の主な由来は、(A)原料に含まれる水、(B)ポリアミド酸の脱水環化(イミド化)により生成する水、および(C)環境から混入する水であり、これらの水分を低減することにより、低水分率のポリアミド酸溶液が得られる。 The main sources of water in the polyamic acid solution are (A) water contained in the raw material, (B) water produced by dehydration cyclization (imidization) of polyamic acid, and (C) water mixed from the environment. By reducing these water content, a polyamic acid solution having a low water content can be obtained.
 (A)原料由来の水分の大半は、有機溶媒に含まれる水分である。ポリアミド酸の重合前にテトラカルボン酸二無水物の加水開環を実施することにより、有機溶媒中の水が消費されるため、ポリアミド酸溶液中の(A)原料由来の水分量が低減する。また、ポリアミド酸の重合温度を低くすることによりイミド化が抑制されるため、(B)イミド化に伴う水分の増大を抑制できる。特に、イミド化の抑制が水分率低下への寄与が大きい。 (A) Most of the water derived from the raw material is the water contained in the organic solvent. By carrying out hydrocyclic ringing of the tetracarboxylic dianhydride before the polymerization of the polyamic acid, the water in the organic solvent is consumed, so that the amount of water derived from the raw material (A) in the polyamic acid solution is reduced. Further, since imidization is suppressed by lowering the polymerization temperature of the polyamic acid, the increase in water content due to (B) imidization can be suppressed. In particular, the suppression of imidization greatly contributes to the decrease in water content.
 原料の乾燥や減圧下での処理等によっても、ポリアミド酸溶液の水分を低減可能であるが、本実施形態ではこれらの処理を実施しない場合でもポリアミド酸の水分率を低減可能であり、低コストで水分率の小さく貯蔵安定性に優れるポリアミド酸溶液を調製できる。 The water content of the polyamic acid solution can be reduced by drying the raw material or treating it under reduced pressure. However, in the present embodiment, the water content of the polyamic acid can be reduced even if these treatments are not performed, and the cost is low. It is possible to prepare a polyamic acid solution having a small water content and excellent storage stability.
[ポリイミドフィルム]
 ポリアミド酸溶液を基板上に塗布し、イミド化することにより、基板上にポリイミドフィルムが密着積層した積層体が得られる。基板としては無機基板が好ましい。無機基板としては、ガラス基板および各種金属基板が挙げられる。ポリイミドフィルムがフレキシブルデバイスの基板である場合は、従来のデバイス作製設備をそのまま利用できることから、ガラス基板が好ましい。ガラス基板としては、ソーダライムガラス、ホウ珪酸ガラス、無アルカリガラス等が挙げられる。特に、薄膜トランジスタの製造工程で一般的に使用されている無アルカリガラスが好ましい。無機基板の厚みは、基板のハンドリング性および熱容量等の観点から、0.4~5.0mm程度が好ましい。
[Polyimide film]
By applying the polyamic acid solution on the substrate and imidizing it, a laminate in which the polyimide film is closely laminated on the substrate can be obtained. An inorganic substrate is preferable as the substrate. Examples of the inorganic substrate include a glass substrate and various metal substrates. When the polyimide film is a substrate for a flexible device, a glass substrate is preferable because the conventional device manufacturing equipment can be used as it is. Examples of the glass substrate include soda lime glass, borosilicate glass, non-alkali glass and the like. In particular, non-alkali glass generally used in the manufacturing process of thin film transistors is preferable. The thickness of the inorganic substrate is preferably about 0.4 to 5.0 mm from the viewpoint of substrate handleability, heat capacity, and the like.
 溶液の塗布方法としては、グラビアコート法、スピンコート法、シルクスクリーン法、ディップコート法、バーコート法、ナイフコート法、ロールコート法、ダイコート法等の公知の塗布方法を適用できる。 As a solution coating method, known coating methods such as gravure coating method, spin coating method, silk screen method, dip coating method, bar coating method, knife coating method, roll coating method, and die coating method can be applied.
 イミド化は、脱水閉環剤(イミド化触媒)を用いた化学イミド化、および脱水閉環剤等を作用させずに加熱だけでイミド化反応を進行させる熱イミド化のいずれでもよい。脱水閉環剤等の不純物の残存が少ないことから、熱イミド化が好ましい。熱イミド化における加熱温度および加熱時間は適宜決めることができ、例えば、以下のようにすればよい。 The imidization may be either chemical imidization using a dehydration ring closure agent (imidization catalyst) or thermal imidization in which the imidization reaction proceeds only by heating without the action of the dehydration ring closure agent or the like. Thermal imidization is preferable because impurities such as a dehydration ring closure agent are less likely to remain. The heating temperature and heating time in thermal imidization can be appropriately determined, and may be, for example, as follows.
 まず、溶媒を揮発させるために、温度100~200℃で3~120分加熱する。加熱は、空気下、減圧下、または窒素等の不活性ガス中で行うことができる。加熱装置としては、熱風オーブン、赤外オーブン、真空オーブン、ホットプレート等を用いればよい。溶媒を揮発させた後、さらにイミド化を進めるため、温度200~500℃で3~300分加熱する。加熱温度は、低温から徐々に高温にすることが好ましく、最高温度は300~500℃の範囲が好ましい。最高温度が300℃以上であれば、熱イミド化が進行しやすく、得られたポリイミドフィルムの機械強度が向上する傾向がある。最高温度が500℃以下であれば、ポリイミドの熱劣化を抑制できる。 First, in order to volatilize the solvent, it is heated at a temperature of 100 to 200 ° C. for 3 to 120 minutes. The heating can be performed under air, under reduced pressure, or in an inert gas such as nitrogen. As the heating device, a hot air oven, an infrared oven, a vacuum oven, a hot plate or the like may be used. After volatilizing the solvent, it is heated at a temperature of 200 to 500 ° C. for 3 to 300 minutes in order to further imidize. The heating temperature is preferably from low temperature to gradually high temperature, and the maximum temperature is preferably in the range of 300 to 500 ° C. When the maximum temperature is 300 ° C. or higher, thermal imidization tends to proceed, and the mechanical strength of the obtained polyimide film tends to improve. When the maximum temperature is 500 ° C. or lower, thermal deterioration of polyimide can be suppressed.
 ポリイミドフィルムの厚みは、3~50μmが好ましい。ポリイミドフィルムの厚みが3μm以上であれば、基板フィルムとして必要な機械強度が確保できる。ポリイミドフィルムの厚みが50μm以下であれば、無機基板からのポリイミドフィルムの自然剥離が抑制される傾向がある。 The thickness of the polyimide film is preferably 3 to 50 μm. When the thickness of the polyimide film is 3 μm or more, the mechanical strength required for the substrate film can be secured. When the thickness of the polyimide film is 50 μm or less, the natural peeling of the polyimide film from the inorganic substrate tends to be suppressed.
 上記の一般式(1)(2)の末端構造を有するポリアミド酸組成物は、熱イミド化により高分子量化する傾向があるため、ポリアミド酸の分子量が小さい場合でも、高い機械強度を有するポリイミドフィルムが得られる。一般式(1)の加水開環末端は、ポリアミド酸溶液の貯蔵環境では、一般式(2)のアミン末端とはほとんど反応しない。そのため、ポリアミド酸溶液は貯蔵安定性に優れている。 Since the polyamic acid composition having the terminal structures of the above general formulas (1) and (2) tends to have a high molecular weight due to thermal imidization, a polyimide film having high mechanical strength even when the molecular weight of the polyamic acid is small. Is obtained. The water-opened ring terminal of the general formula (1) hardly reacts with the amine terminal of the general formula (2) in the storage environment of the polyamic acid solution. Therefore, the polyamic acid solution is excellent in storage stability.
 一般式(1)の加水開環末端は、熱イミド時の加熱により脱水閉環して酸無水物基となり、一般式(2)のアミン末端と反応してアミド結合を形成し、脱水環化によりイミド結合が生成する。すなわち、熱イミド化の際に、一般式(1)の末端構造を有するポリアミド酸と、一般式(2)の末端構造を有するポリアミド酸とが反応することにより、高分子量化する。そのため、ポリアミド酸の分子量が低い場合でも、熱イミド化時の高分子量化により、優れた機械強度を有するポリイミドフィルムが得られる。一般式(3)で表される両開環体も、熱イミド化の際に脱水閉環して一般式(2)のアミン末端と反応するため、熱イミド化時の高分子量化に寄与し得る。 The hydrous ring terminal of the general formula (1) is dehydrated and ring-closed by heating at the time of thermal imide to become an acid anhydride group, reacts with the amine terminal of the general formula (2) to form an amide bond, and is dehydrated and cyclized. An imide bond is formed. That is, at the time of thermal imidization, the polyamic acid having the terminal structure of the general formula (1) reacts with the polyamic acid having the terminal structure of the general formula (2) to increase the molecular weight. Therefore, even when the molecular weight of polyamic acid is low, a polyimide film having excellent mechanical strength can be obtained by increasing the molecular weight during thermal imidization. The double ring-opened body represented by the general formula (3) also dehydrates and closes the ring during thermal imidization and reacts with the amine terminal of the general formula (2), so that it can contribute to the increase in molecular weight during thermal imidization. ..
 ガラス等の基板とポリイミドフィルムとの積層体から、ポリイミドフィルムを剥離することにより、ポリイミドフィルムが得られる。剥離時の張力に起因して、ポリイミドフィルムやその上に形成された素子等が変形することを抑制する観点から、ガラス基板とポリイミドフィルムとの積層体からポリイミドフィルムを剥離する際のピール強度は、1N/cm以下が好ましく、0.5N/cm以下がより好ましく、0.3N/cm以下がさらに好ましい。一方、ガラス基板からのポリイミドフィルムの自然剥離を抑制する観点から、ピール強度は0.01N/cm以上が好ましく、0.3N/cm以上がより好ましく、0.5N/cm以上がさらに好ましい。 A polyimide film can be obtained by peeling the polyimide film from a laminate of a substrate such as glass and a polyimide film. From the viewpoint of suppressing deformation of the polyimide film and the elements formed on the polyimide film due to the tension at the time of peeling, the peel strength when the polyimide film is peeled from the laminate of the glass substrate and the polyimide film is 1, 1 N / cm or less is preferable, 0.5 N / cm or less is more preferable, and 0.3 N / cm or less is further preferable. On the other hand, from the viewpoint of suppressing the natural peeling of the polyimide film from the glass substrate, the peel strength is preferably 0.01 N / cm or more, more preferably 0.3 N / cm or more, still more preferably 0.5 N / cm or more.
 ポリイミドフィルムの破断強度は350MPa以上が好ましく、400MPa以上がより好ましく、450MPa以上がさらに好ましい。破断強度が上記範囲であれば、フィルムの厚みが小さい場合でも、搬送や無機基板からの剥離等のプロセスにおけるポリイミドフィルムの破断を防止できる。同様の観点から、ポリイミドフィルムの破断点伸びは、15%以上が好ましく、20%以上がより好ましく、25%以上がさらに好ましい。破断点伸びは30%以上であってもよい。ポリイミドフィルムの破断強度および破断点伸びの上限は特に限定されない。破断強度は700MPa以下であってもよい。破断点伸びは80%以下または60%以下であってもよい。 The breaking strength of the polyimide film is preferably 350 MPa or more, more preferably 400 MPa or more, and even more preferably 450 MPa or more. When the breaking strength is within the above range, even if the film thickness is small, it is possible to prevent the polyimide film from breaking in a process such as transportation or peeling from an inorganic substrate. From the same viewpoint, the elongation at the breaking point of the polyimide film is preferably 15% or more, more preferably 20% or more, still more preferably 25% or more. The break point elongation may be 30% or more. The upper limit of the breaking strength and the breaking point elongation of the polyimide film is not particularly limited. The breaking strength may be 700 MPa or less. The break point elongation may be 80% or less or 60% or less.
 ポリイミドフィルムの熱線膨張係数は10ppm/℃以下が好ましい。熱線膨張係数が10ppm/℃以下であれば、高温での素子の形成が行われるフレキシブルデバイスの基板としても好適に使用できる。ポリイミドフィルムの熱線膨張係数は9ppm/℃以下、または8ppm/℃以下であってもよい。ポリイミドフィルムの熱線膨張係数は1ppm/℃以上であってもよい。 The coefficient of linear thermal expansion of the polyimide film is preferably 10 ppm / ° C or less. When the coefficient of linear thermal expansion is 10 ppm / ° C. or less, it can be suitably used as a substrate for a flexible device in which an element is formed at a high temperature. The coefficient of linear thermal expansion of the polyimide film may be 9 ppm / ° C. or lower, or 8 ppm / ° C. or lower. The coefficient of linear thermal expansion of the polyimide film may be 1 ppm / ° C. or higher.
[ポリイミドフィルム上への電子素子の形成]
 ポリイミドフィルムをフレキシブルデバイス等の基板として用いる場合、ポリイミドフィルム上に電子素子を形成する。ガラス等の無機基板からポリイミドフィルムを剥離する前に、ポリイミドフィルム上に電子素子を形成してもよい。すなわち、ガラス等の無機基板上にポリイミドフィルムが密着積層された積層体のポリイミドフィルム上に、電子素子を形成し、その後、電子素子が形成されたポリイミドフィルムを無機基板から剥離することにより、フレキシブルデバイスが得られる。このプロセスは、既存の無機基板を使用した生産装置をそのまま使用できるという利点があり、フラットパネルディスプレイ、電子ペーパー等の電子デバイスの製造に有用であり、大量生産にも適している。
[Formation of electronic devices on polyimide film]
When a polyimide film is used as a substrate for a flexible device or the like, an electronic element is formed on the polyimide film. An electronic element may be formed on the polyimide film before the polyimide film is peeled from an inorganic substrate such as glass. That is, it is flexible by forming an electronic element on a laminated polyimide film in which a polyimide film is closely laminated on an inorganic substrate such as glass, and then peeling the polyimide film on which the electronic element is formed from the inorganic substrate. You get the device. This process has the advantage that the production equipment using the existing inorganic substrate can be used as it is, is useful for manufacturing electronic devices such as flat panel displays and electronic paper, and is also suitable for mass production.
 無機基板からポリイミドフィルムを剥離する方法は特に限定されない。例えば、手で引き剥がしてもよいし、駆動ロール、ロボット等の機械装置を用いて引き剥がしてもよい。無機基板とポリイミドフィルムとの間に剥離層を設けてもよく、剥離の前に、液体との接触やレーザー光の照射等により、無機基板とポリイミドフィルムとの密着力を低下させる処理を行ってもよい。密着力を低下させる方法の具体例としては、多数の溝を有する無機基板上に酸化シリコン膜を形成し、エッチング液を浸潤させることによって剥離する方法;および無機基板上に非晶質シリコン層を設けレーザー光によって分離させる方法が挙げられる。 The method of peeling the polyimide film from the inorganic substrate is not particularly limited. For example, it may be peeled off by hand, or it may be peeled off using a mechanical device such as a drive roll or a robot. A release layer may be provided between the inorganic substrate and the polyimide film, and before the release, a treatment for reducing the adhesion between the inorganic substrate and the polyimide film is performed by contact with a liquid or irradiation with laser light. May be good. Specific examples of the method of reducing the adhesion are a method of forming a silicon oxide film on an inorganic substrate having a large number of grooves and peeling it off by infiltrating an etching solution; and an amorphous silicon layer on the inorganic substrate. A method of separating by a provided laser beam can be mentioned.
 以下、本発明を実施例に基づいて具体的に説明する。ただし、本発明は、これらの実施例によって限定されるものではない。 Hereinafter, the present invention will be specifically described based on examples. However, the present invention is not limited to these examples.
[評価方法]
<水分率>
 容量滴定カールフィッシャー水分計(メトロームジャパン製「890タイトランド」)を用いて、JIS K0068の容量滴定法に準じて溶液中の水分率を測定した。ただし、滴定溶剤中に樹脂が析出する場合は、アクアミクロンGEX(三菱化学製)とN-メチルピロリドンとの1:4の混合溶液を滴定溶剤として用いた。
[Evaluation methods]
<Moisture content>
Volumetric titration A Karl Fischer titer (“890 Tightland” manufactured by Metrohm Japan) was used to measure the water content in the solution according to the volumetric titration method of JIS K0068. However, when the resin was precipitated in the titration solvent, a 1: 4 mixed solution of Aquamicron GEX (manufactured by Mitsubishi Chemical Corporation) and N-methylpyrrolidone was used as the titration solvent.
<粘度>
 粘度計(東機産業製「RE-215/U」)を用い、JIS K7117-2:1999に準じて粘度を測定した。付属の恒温槽を23℃に設定し、測定温度は常に一定にした。
<Viscosity>
The viscosity was measured according to JIS K7117-2: 1999 using a viscometer (“RE-215 / U” manufactured by Toki Sangyo Co., Ltd.). The attached constant temperature bath was set to 23 ° C., and the measurement temperature was always constant.
<分子量>
 分子量は、ゲル・パーミエーション・クロマトグラフィー(GPC)により測定した。CO-8020、SD-8022、DP-8020、AS-8020およびRI-8020(いずれも東ソー製)を備えるGPCシステムを用い、カラムにはShoudex:GPC KD-806M(8mmΦ×30cm)を2本、ガードカラムとして、GPC KD-G(4.6mmΦ×1cm)を1本用いた。検出器はRIを使用した。溶離液にはDMFに30mMのLiBrと30mMのリン酸を溶解させた溶液を使用した。溶液濃度0.4重量%、注入量30μL、注入圧約1.3~1.7MPa、流速0.6mL/min、カラム温度40℃の条件で測定を実施し、ポリエチレンオキサイドを標準試料として作成した検量線に基づいて、重量平均分子量(Mw)および数平均分子量(Mn)を算出した。
<Molecular weight>
The molecular weight was measured by gel permeation chromatography (GPC). A GPC system equipped with CO-8020, SD-8022, DP-8020, AS-8020 and RI-8020 (all manufactured by Toso) was used, and two Shoudex: GPC KD-806M (8 mmΦ x 30 cm) columns were used. As a guard column, one GPC KD-G (4.6 mmΦ × 1 cm) was used. RI was used as the detector. As the eluent, a solution in which 30 mM LiBr and 30 mM phosphoric acid were dissolved in DMF was used. Measurement was performed under the conditions of a solution concentration of 0.4% by weight, an injection volume of 30 μL, an injection pressure of about 1.3 to 1.7 MPa, a flow rate of 0.6 mL / min, and a column temperature of 40 ° C., and a calibration curve prepared using polyethylene oxide as a standard sample. Based on the line, the weight average molecular weight (Mw) and the number average molecular weight (Mn) were calculated.
<開環体の生成量>
 加水開環処理後のテトラカルボン酸のNMP溶液を、テトラカルボン酸濃度が0.1重量%となるようにメタノールで希釈し、60℃で1時間以上撹拌して、加水開環により生成したカルボン酸のメチルエステル化を行った。この溶液を高速液体クロマトグラフィー(島津製作所製)により、下記の条件により分析して、酸二無水物、片開環体のジエステル、および両開環体のテトラエステルの検出量から、加水開環反応後のテトラカルボン酸溶液における未開環の酸二無水物、片開環体および両開環体の存在比(開環体の生成量)を算出した。
  カラム: DAISOPAK SP-200-5-ODS-BP(4.6mmφ×250mm)
  カラム温度:40℃
  移動相:メタノール/水=45/55(0.1重量%のテトラフルオロ酢酸を含む)
  流速:0.8mL/分
  検出波長:275nm
<Amount of ring-opened body produced>
The NMP solution of tetracarboxylic acid after the hydrocyclic ring treatment was diluted with methanol so that the tetracarboxylic acid concentration was 0.1% by weight, stirred at 60 ° C. for 1 hour or more, and the carboxylic acid produced by the hydrocyclic ring opening. Acid methyl esterification was performed. This solution was analyzed by high-speed liquid chromatography (manufactured by Shimadzu Corporation) under the following conditions, and the amount of acid dianhydride, single-ring-opened diester, and double-ring-opened tetraester detected was added to the ring-opened ring. The abundance ratios of unopened acid dianhydride, single ring-opened body and double ring-opened body in the tetracarboxylic acid solution after the reaction (amount of ring-opened ring produced) were calculated.
Column: DAISOPAK SP-200-5-ODS-BP (4.6 mmφ x 250 mm)
Column temperature: 40 ° C
Mobile phase: Methanol / water = 45/55 (containing 0.1 wt% tetrafluoroacetic acid)
Flow velocity: 0.8 mL / min Detection wavelength: 275 nm
<イミド化率>
 ポリアミド酸溶液40mgを重DMSOで希釈し、H-NMRにより測定したフェニル基のプロトンピーク面積とアミド基のプロトンピーク面積の比からイミド化率を算出した。
<Imidization rate>
40 mg of the polyamic acid solution was diluted with heavy DMSO, and the imidization ratio was calculated from the ratio of the proton peak area of the phenyl group to the proton peak area of the amide group measured by 1 H-NMR.
<ポリアミド酸溶液の貯蔵安定性>
 ポリアミド酸溶液を50mLスクリュー瓶へ入れて密閉し、23℃55%RHの環境下で1週間保管し、初期と保管後の変化が5%以内のものをOK,粘度変化が5%を超えたものをNGとした。
<Storage stability of polyamic acid solution>
The polyamic acid solution was placed in a 50 mL screw bottle, sealed, and stored in an environment of 23 ° C. and 55% RH for 1 week. Those with an initial and post-storage change of 5% or less were OK, and the viscosity change exceeded 5%. The thing was NG.
<破断強度および破断点伸び>
 ポリイミドフィルムを、幅15mm、長さ150mmに切断して試験片を作製し、試験片の中央に、50mm離れて平行な2本の標線をつけた。引張試験機(島津製作所製「UBFA-1 AGS-J」)を用い、JIS K7127:1999にしたがって、引張速度10mm/minで引張試験を実施し、試験片が破断した際の応力(破断強度)および伸び(破断点伸び)を求めた。
<Breaking strength and breaking point elongation>
A polyimide film was cut into a width of 15 mm and a length of 150 mm to prepare a test piece, and two parallel marking lines 50 mm apart were attached to the center of the test piece. Using a tensile tester (“UBFA-1 AGS-J” manufactured by Shimadzu Corporation), a tensile test was conducted at a tensile speed of 10 mm / min according to JIS K7127: 1999, and the stress (breaking strength) when the test piece broke. And elongation (breaking point elongation) was determined.
<熱線膨張係数>
 ポリイミドフィルムを、幅3mm、長さ10mmに切断して試験片を作製し、熱機械分析装置(エスアイアイ・ナノテクノロジー製「TMA/SS120CU」)を用い、試料の長辺に29.4mNの荷重を加え、引張荷重法による熱機械分析を実施した。まず、100℃/minで20℃から500℃まで昇温し(1回目の昇温)、20℃まで冷却した後、10℃/minで500℃まで昇温した(2回目の昇温)。2回目の昇温時の100~300℃の範囲における単位温度あたりの試料の歪の変化量を熱線膨張係数とした。
<Coefficient of thermal expansion>
A polyimide film is cut into a width of 3 mm and a length of 10 mm to prepare a test piece, and a thermomechanical analyzer (“TMA / SS120CU” manufactured by SII Nanotechnology) is used to load a sample with a load of 29.4 mN on the long side. Was added, and thermomechanical analysis was performed by the tensile load method. First, the temperature was raised from 20 ° C. to 500 ° C. at 100 ° C./min (first temperature rise), cooled to 20 ° C., and then raised to 500 ° C. at 10 ° C./min (second temperature rise). The amount of change in the strain of the sample per unit temperature in the range of 100 to 300 ° C. at the time of the second temperature rise was defined as the coefficient of linear thermal expansion.
[実施例1]
<テトラカルボン酸二無水物の加水開環>
 ポリテトラフルオロエチレン製シール栓付き攪拌器、攪拌翼および窒素導入管を備えたガラス製セパラブルフラスコに、N-メチル-2-ピロリドン(NMP)を425g入れた。NMP中の水分率は300ppmであった。そこに、水を0.342g、3,3’,4,4’―ビフェニルテトラカルボン酸二無水物(BPDA)を109.5g加え、80℃に加熱しながら窒素雰囲気下で150分間撹拌し、BPDAの一部を加水開環した。反応後、溶液を50℃まで冷却した。
[Example 1]
<Hydro-opening of tetracarboxylic dianhydride>
425 g of N-methyl-2-pyrrolidone (NMP) was placed in a glass separable flask equipped with a stirrer with a seal stopper made of polytetrafluoroethylene, a stirring blade and a nitrogen introduction tube. The water content in NMP was 300 ppm. To this, 0.342 g of water and 109.5 g of 3,3', 4,4'-biphenyltetracarboxylic dianhydride (BPDA) were added, and the mixture was stirred under a nitrogen atmosphere for 150 minutes while heating at 80 ° C. A part of BPDA was hydrocyclic. After the reaction, the solution was cooled to 50 ° C.
 この反応系において、NMPに含まれる水の量は、BPDAに対してモル比で1.9%であり、添加した水の量は、BPDAに対してモル比で5.1%であり、系中の水の総量はBPDAに対してモル比で7.0%であった。得られた溶液は、開環していないBPDAと、BPDAの片開環体と、BPDAの両開環体とを、94.53:5.19:0.28のモル比で含んでいた。 In this reaction system, the amount of water contained in NMP is 1.9% in molar ratio with respect to BPDA, and the amount of water added is 5.1% in molar ratio with respect to BPDA. The total amount of water in the water was 7.0% in molar ratio with respect to BPDA. The resulting solution contained unring-opened BPDA, a single ring-opened body of BPDA, and a bi-ring-opened body of BPDA in a molar ratio of 94.53: 5.19: 0.28.
<ポリアミド酸の重合>
 上記で得られた一部が開環したBPDAの溶液に、NMPを425.0g加えて希釈し、パラフェニレンジアミン(PDA)を39.9g、および4,4’-ジアミノジフェニルエーテル(ODA)を0.62g加え、溶液を50℃で加熱しながら窒素雰囲気下で60分間攪拌した後、水浴で速やかに冷却して、ポリアミド酸溶液を得た。この反応溶液におけるジアミンおよびテトラカルボン酸の合計仕込み濃度は15重量%であり、テトラカルボン酸/ジアミンのモル比x/yは1.000であった。
<Polymerization of polyamic acid>
To the partially ring-opened BPDA solution obtained above, 425.0 g of NMP was added to dilute it, 39.9 g of paraphenylenediamine (PDA), and 0 of 4,4'-diaminodiphenyl ether (ODA). After adding .62 g and stirring the solution in a nitrogen atmosphere for 60 minutes while heating at 50 ° C., the solution was rapidly cooled in a water bath to obtain a polyamic acid solution. The total concentration of diamine and tetracarboxylic acid in this reaction solution was 15% by weight, and the molar ratio x / y of tetracarboxylic acid / diamine was 1.000.
<アルコキシシラン化合物による変性>
 上記のポリアミド酸溶液を50℃に加熱し、3-アミノプロピルトリエトキシシラン(γ-APS)の1%NMP溶液を7.48g加え、3時間攪拌して、23℃における粘度が5.8ポイズのアルコキシシラン変性ポリアミド酸の溶液を得た。アルコキシシラン化合物の総モル数(α)とテトラカルボン酸の総モル数(x)との比α/xは、0.001であった。
<Modification with alkoxysilane compound>
The above polyamic acid solution is heated to 50 ° C., 7.48 g of a 1% NMP solution of 3-aminopropyltriethoxysilane (γ-APS) is added, and the mixture is stirred for 3 hours to have a viscosity of 5.8 poisons at 23 ° C. A solution of alkoxysilane-modified polyamic acid was obtained. The ratio α / x of the total number of moles (α) of the alkoxysilane compound to the total number of moles (x) of the tetracarboxylic dian was 0.001.
 得られた溶液に、アクリル系表面調整剤(ビックケミー・ジャパン製「BYK-361N」)を、アルコキシシラン変性ポリアミド酸の固形分100重量部に対して0.02重量部添加し、均一に分散して、表面調整剤を含有するアルコキシシラン変性ポリアミド酸溶液を得た。 To the obtained solution, 0.02 part by weight of an acrylic surface conditioner (“BYK-361N” manufactured by Big Chemie Japan) was added to 100 parts by weight of the solid content of the alkoxysilane-modified polyamic acid, and the mixture was uniformly dispersed. To obtain an alkoxysilane-modified polyamic acid solution containing a surface conditioner.
[実施例2および実施例3]
 NMP、BPDAおよび水の仕込み量を表1に示す様に変更したこと以外は、実施例1と同様にしてBPDAの開環を行った。その後、PDA、ODAおよびNMPの仕込み量、ならびにγ-APSの仕込み量を表2に示す様に変更したこと以外は、実施例1と同様にして、ポリアミド酸の重合およびγ-APSによる末端変性を行い、表面調整剤を含有するアルコキシシラン変性ポリアミド酸溶液を得た。
[Example 2 and Example 3]
Ring-opening of BPDA was carried out in the same manner as in Example 1 except that the amounts of NMP, BPDA and water charged were changed as shown in Table 1. After that, polymerization of polyamic acid and terminal modification by γ-APS were carried out in the same manner as in Example 1 except that the amounts of PDA, ODA and NMP charged and the amount of γ-APS charged were changed as shown in Table 2. To obtain an alkoxysilane-modified polyamic acid solution containing a surface conditioner.
[比較例1]
<ポリアミド酸の重合>
 ポリテトラフルオロエチレン製シール栓付き攪拌器、攪拌翼および窒素導入管を備えたガラス製セパラブルフラスコに、NMPを170.0g入れた。そこに、PDA8.0gおよびODA0.19gを加え、溶液を50℃で加熱しながら窒素雰囲気下で30分間攪拌した。ジアミンが均一に溶解したことを確認した後、BPDA21.8gを加え、窒素雰囲気下で60分間攪拌した後、水浴で速やかに冷却して、ポリアミド酸溶液を得た。この反応系では、NMPに含まれる水分(BPDAに対してモル比で2.7%)以外には水を添加しなかった。ジアミンおよびテトラカルボン酸二無水物の仕込み濃度は15重量%であり、BPDA/ジアミンのモル比は、0.989であった。
[Comparative Example 1]
<Polymerization of polyamic acid>
170.0 g of NMP was placed in a glass separable flask equipped with a stirrer with a seal stopper made of polytetrafluoroethylene, a stirring blade and a nitrogen introduction tube. 8.0 g of PDA and 0.19 g of ODA were added thereto, and the solution was stirred under a nitrogen atmosphere for 30 minutes while heating at 50 ° C. After confirming that the diamine was uniformly dissolved, 21.8 g of BPDA was added, and the mixture was stirred under a nitrogen atmosphere for 60 minutes and then quickly cooled in a water bath to obtain a polyamic acid solution. In this reaction system, no water was added except for the water contained in NMP (2.7% by molar ratio with respect to BPDA). The charged concentration of diamine and tetracarboxylic dianhydride was 15% by weight, and the molar ratio of BPDA / diamine was 0.989.
<アルコキシシラン化合物による変性>
 上記のポリアミド酸溶液の温度を約50℃に調整した。次にγ―APSの1%NMP溶液を1.30g加え、3時間攪拌し、23℃における粘度が170ポイズのアルコキシシラン変性ポリアミド酸の溶液を得た。この溶液に、固形分濃度が10重量%となるようにNMPを添加して希釈した。希釈後の溶液の23℃における粘度は40ポイズであった。この溶液に、ポリアミド酸の固形分100重量部に対して0.02重量部のアクリル系表面調整剤を添加して、表面調整剤を含有するアルコキシシラン変性ポリアミド酸溶液を得た。
<Modification with alkoxysilane compound>
The temperature of the above polyamic acid solution was adjusted to about 50 ° C. Next, 1.30 g of a 1% NMP solution of γ-APS was added, and the mixture was stirred for 3 hours to obtain a solution of alkoxysilane-modified polyamic acid having a viscosity of 170 poise at 23 ° C. NMP was added to this solution to dilute it so that the solid content concentration was 10% by weight. The viscosity of the diluted solution at 23 ° C. was 40 poise. To this solution, 0.02 parts by weight of an acrylic surface conditioner was added to 100 parts by weight of the solid content of polyamic acid to obtain an alkoxysilane-modified polyamic acid solution containing the surface conditioner.
[比較例2および比較例3]
<ポリアミド酸の重合>
 NMP、BPDA、PDAおよびODAの仕込み量を表2に示す様に変更し、BPDA添加後に温度を80℃に昇温し、窒素雰囲気下で反応させた。比較例2では反応時間を10時間とし、比較例3では反応時間を9時間とした。これらの変更以外は比較例1と同様にして、ポリアミド酸の重合を行った。
[Comparative Example 2 and Comparative Example 3]
<Polymerization of polyamic acid>
The charged amounts of NMP, BPDA, PDA and ODA were changed as shown in Table 2, the temperature was raised to 80 ° C. after the addition of BPDA, and the reaction was carried out in a nitrogen atmosphere. In Comparative Example 2, the reaction time was 10 hours, and in Comparative Example 3, the reaction time was 9 hours. Except for these changes, polyamic acid was polymerized in the same manner as in Comparative Example 1.
<アルコキシシラン化合物による変性>
 γ-APSの添加量を表2に示す様に変更したこと以外は、比較例1と同様にしてアルコキシシラン変性を行い、表2に示す固形分濃度となるようにNMPを添加して希釈した後、アクリル系表面調整剤を添加して均一に分散させた。
<Modification with alkoxysilane compound>
Alkoxysilane modification was performed in the same manner as in Comparative Example 1 except that the amount of γ-APS added was changed as shown in Table 2, and NMP was added and diluted so as to have the solid content concentration shown in Table 2. After that, an acrylic surface conditioner was added and uniformly dispersed.
[比較例4]
 比較例2と同様に、NMP、PDAおよびODAを仕込み、BPDAを添加後に温度を80℃に昇温し、窒素雰囲気下で撹拌した。溶液が一様になった後、水を0.064g(BPDAに対してモル比で3.2%)添加し、9時間撹拌した。その後、比較例2と同様にアルコキシシラン変性を行い、表2に示す固形分濃度となるようにNMPを添加して希釈した後、アクリル系表面調整剤を添加して均一に分散させた。
[Comparative Example 4]
In the same manner as in Comparative Example 2, NMP, PDA and ODA were charged, the temperature was raised to 80 ° C. after adding BPDA, and the mixture was stirred under a nitrogen atmosphere. After the solution became uniform, 0.064 g of water (3.2% by molar ratio to BPDA) was added, and the mixture was stirred for 9 hours. Then, alkoxysilane modification was performed in the same manner as in Comparative Example 2, NMP was added to dilute the solid content concentration as shown in Table 2, and then an acrylic surface conditioner was added to uniformly disperse the mixture.
[ポリイミドフィルムの作製]
 ポリアミド酸溶液を、厚さ0.7mm、1辺が150mmの正方形のFPD用無アルカリガラス板(コーニング社製「イーグルXG」)上に、スピンコーターで乾燥後厚みが約10μmになるように塗布し、熱風オーブン内で120℃にて30分乾燥した。その後、窒素雰囲気下で20℃から120℃まで7℃/分で昇温し、120℃から450℃まで7℃/分で昇温し、450℃で10分間加熱し、ポリイミドフィルムと無アルカリガラス板の積層体を得た。実施例1~3および比較例1~4のいずれにおいても、ポリイミドフィルムが、無アルカリガラス板に対して適度の剥離強度を有しており、加熱中に自然に剥離することはなく、かつ、ガラス板からポリイミドフィルムを引き剥がすことが可能であった。
[Preparation of polyimide film]
A polyamic acid solution is applied on a square non-alkali glass plate for FPD (“Eagle XG” manufactured by Corning Inc.) with a thickness of 0.7 mm and a side of 150 mm after drying with a spin coater so that the thickness becomes about 10 μm. Then, it was dried in a hot air oven at 120 ° C. for 30 minutes. Then, in a nitrogen atmosphere, the temperature was raised from 20 ° C. to 120 ° C. at 7 ° C./min, the temperature was raised from 120 ° C. to 450 ° C. at 7 ° C./min, and heated at 450 ° C. for 10 minutes. A laminate of plates was obtained. In any of Examples 1 to 3 and Comparative Examples 1 to 4, the polyimide film has an appropriate peeling strength with respect to the non-alkali glass plate, does not peel off naturally during heating, and It was possible to peel off the polyimide film from the glass plate.
[製造条件および評価結果のまとめ]
 実施例1~3におけるテトラカルボン酸二無水物の加水開環の条件、ならびに片開環体および両開環体の生成量を表1に示す。
[Summary of manufacturing conditions and evaluation results]
Table 1 shows the conditions for hydro-opening of the tetracarboxylic dianhydride in Examples 1 to 3 and the amounts of single-opened ring and bi-opened ring-formed bodies produced.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 実施例および比較例のポリアミド酸の合成における原料の仕込み量、原料の仕込み比(テトラカルボン酸の総モルxとジアミンの総モル量yとの比x/yおよびテトラカルボン酸二無水物の片開環体の比率x/x)、重合反応の温度、重合反応後のポリアミド酸溶液およびアルコキシシラン変性後のポリアミド酸溶液の固形分濃度Dおよび溶液粘度ηを表2に示す。アルコキシシラン変性後のポリアミド酸溶液におけるポリアミド酸の分子量、溶液の水分率および貯蔵安定性の評価結果、ならびにポリイミドフィルムの評価結果を表3に示す。 Amount of raw material charged in the synthesis of polyamic acid of Examples and Comparative Examples, ratio of raw material charged (ratio x / y of total molar x of tetracarboxylic acid to total molar y of diamine) and a piece of tetracarboxylic acid dianhydride Table 2 shows the ratio of ring-opened bodies x 2 / x), the temperature of the polymerization reaction, the solid content concentration D of the polyamic acid solution after the polymerization reaction and the polyamic acid solution after the alkoxysilane modification, and the solution viscosity η. Table 3 shows the evaluation results of the molecular weight of the polyamic acid in the polyamic acid solution after the alkoxysilane modification, the water content of the solution and the storage stability, and the evaluation results of the polyimide film.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 BPDAの一部を加水開環した後にジアミンと混合してポリアミド酸を重合した実施例1~3では、ポリアミド酸の分子量が30000以下であり、溶液の固形分濃度Dが15重量%以上でも、そのまま希釈することなくフィルムの作製に用いることが可能であった。実施例2のポリアミド酸溶液におけるポリアミド酸のイミド化率は3モル%であった。 In Examples 1 to 3 in which a part of BPDA was hydroopened and then mixed with diamine to polymerize the polyamic acid, even if the molecular weight of the polyamic acid was 30,000 or less and the solid content concentration D of the solution was 15% by weight or more. It was possible to use it for producing a film without diluting it as it was. The imidization ratio of the polyamic acid in the polyamic acid solution of Example 2 was 3 mol%.
 BPDAを加水開環せずにジアミンと反応させた比較例1では、実施例1~3に比べてポリアミド酸の分子量が大幅に増大しており、溶液粘度が高かったため、フィルムを作製する際に、NMPで希釈して固形分濃度を低下させる必要があった。ポリアミド酸の重合温度を80℃に高めた比較例2,3では、比較例1に比べるとポリアミド酸の分子量が低くなっていたものの、実施例1~3に比べると分子量が高く、固形分濃度を15%未満として、溶液粘度を調整する必要があった。ポリアミド酸溶液に水を添加して加水分解を行った比較例4では、比較例2よりもさらにポリアミド酸の分子量が低下していたものの、実施例1~3に比べると、ポリアミド酸の分子量が高かった。 In Comparative Example 1 in which BPDA was reacted with diamine without hydro-opening, the molecular weight of polyamic acid was significantly increased and the solution viscosity was high as compared with Examples 1 to 3, so that when a film was produced, , It was necessary to dilute with NMP to reduce the solid content concentration. In Comparative Examples 2 and 3 in which the polymerization temperature of the polyamic acid was raised to 80 ° C., the molecular weight of the polyamic acid was lower than that of Comparative Example 1, but the molecular weight was higher and the solid content concentration was higher than that of Examples 1 to 3. Was less than 15%, and the solution viscosity had to be adjusted. In Comparative Example 4 in which water was added to the polyamic acid solution for hydrolysis, the molecular weight of the polyamic acid was further lower than that of Comparative Example 2, but the molecular weight of the polyamic acid was higher than that of Examples 1 to 3. it was high.
 比較例1~4では、分子量の増大を抑制するために、テトラカルボン酸二無水物とジアミンの仕込み比x/yを0.99とし、等モルから意図的に比率をずらしているが、実施例1~3よりも分子量が高く、溶液粘度が高いことが分かる。これらの結果から、テトラカルボン酸二無水物の一部を開環した後にジアミンと反応させることにより、低分子量で高固形分濃度でも粘度の低いポリアミド酸溶液が得られることが分かる。 In Comparative Examples 1 to 4, in order to suppress the increase in the molecular weight, the charging ratio x / y of the tetracarboxylic dianhydride and the diamine was set to 0.99, and the ratio was intentionally shifted from the equimolar. It can be seen that the molecular weight is higher and the solution viscosity is higher than in Examples 1 to 3. From these results, it can be seen that a polyamic acid solution having a low molecular weight and a high solid content concentration and a low viscosity can be obtained by ring-opening a part of the tetracarboxylic dianhydride and then reacting with the diamine.
 80℃で重合反応を行った比較例2~4では、ポリアミド酸溶液の水分量が増大しており、貯蔵安定性が低下していた。比較例2のポリアミド酸溶液におけるポリアミド酸のイミド化率は17モル%であった。これらの結果から、比較例2~4では、80℃での加熱によりポリアミド酸が解重合して分子量が低下するものの、これと平行して脱水閉環によるイミド化が進行し、溶液中の水分率が上昇したために、溶液の貯蔵安定性が低下したと考えられる。 In Comparative Examples 2 to 4 in which the polymerization reaction was carried out at 80 ° C., the water content of the polyamic acid solution was increased and the storage stability was lowered. The imidization ratio of the polyamic acid in the polyamic acid solution of Comparative Example 2 was 17 mol%. From these results, in Comparative Examples 2 to 4, although the polyamic acid was depolymerized by heating at 80 ° C. and the molecular weight decreased, imidization by dehydration ring closure proceeded in parallel with this, and the water content in the solution. It is considered that the storage stability of the solution decreased due to the increase in.
 実施例1~3では、比較例1~4に比べてポリアミド酸の分子量が低いにも関わらず、得られたポリイミドフィルムは、比較例1~4と同様の機械強度を示し、かつ低い熱線膨張係数を示した。これは、イミド化の際に、一般式(1)で表される加水開環末端が、イミド化の際に反応して高分子量化したとためであると考えられる。なお、実施例1~3では、加水開環による片開環体の生成率x/xが約0.05であるから、ポリアミド酸におけるテトラカルボン酸二無水物残基Xの総モル数xに対する加水開環末端のモル数zの比z/xも0.05(5%)程度であると推定される。 In Examples 1 to 3, although the molecular weight of the polyamic acid was lower than that in Comparative Examples 1 to 4, the obtained polyimide film exhibited the same mechanical strength as in Comparative Examples 1 to 4 and had low thermal expansion. The coefficients are shown. It is considered that this is because the hydrocyclic ring-opening terminal represented by the general formula (1) reacted at the time of imidization and became high molecular weight. In Examples 1 to 3, since the production rate x 2 / x of the single ring-opened body by water ring-opening is about 0.05, the total number of moles of the tetracarboxylic dianhydride residue X in the polyamic acid x It is estimated that the ratio z / x of the number of moles z at the ring-opening terminal to water is also about 0.05 (5%).
 これらの結果から、テトラカルボン酸二無水物を加水開環した後にジアミンと反応させたポリアミド酸溶液は、低分子量であり、高固形分濃度でも粘度が低く、かつ貯蔵安定性に優れていることが分かる。また、当該ポリアミド酸を用いて作製したポリイミドフィルムは、高分子量のポリアミド酸溶液を用いた場合と同様の優れた機械強度を示すことが分かる。

 
From these results, the polyamic acid solution obtained by hydroopening the tetracarboxylic dianhydride and then reacting with the diamine has a low molecular weight, a low viscosity even at a high solid content concentration, and excellent storage stability. I understand. Further, it can be seen that the polyimide film produced by using the polyamic acid exhibits excellent mechanical strength similar to that in the case of using a high molecular weight polyamic acid solution.

Claims (23)

  1.  一般式(1)で表される末端構造を有するポリアミド酸、および一般式(2)で表される末端構造を有するポリアミド酸を含む、ポリアミド酸溶液:
    Figure JPOXMLDOC01-appb-C000001
     Xはテトラカルボン酸二無水物残基である4価の有機基であり、Yはジアミン残基である2価の有機基である。
    Polyamic acid solution containing a polyamic acid having a terminal structure represented by the general formula (1) and a polyamic acid having a terminal structure represented by the general formula (2):
    Figure JPOXMLDOC01-appb-C000001
    X is a tetravalent organic group which is a tetracarboxylic dianhydride residue, and Y is a divalent organic group which is a diamine residue.
  2.  ポリアミド酸の重量平均分子量が5000以上45000以下である、請求項1に記載のポリアミド酸溶液。 The polyamic acid solution according to claim 1, wherein the polyamic acid has a weight average molecular weight of 5000 or more and 45000 or less.
  3.  前記一般式(1)で表される末端構造のモル数zと、前記テトラカルボン酸二無水物残基Xの総モル数xとの比z/xが、0.01~0.15である、請求項1または2に記載のポリアミド酸溶液。 The ratio z / x of the number of moles z of the terminal structure represented by the general formula (1) to the total number of moles x of the tetracarboxylic dianhydride residue X is 0.01 to 0.15. , The polyamic acid solution according to claim 1 or 2.
  4.  水分率が1500ppm以下である、請求項1~3のいずれか1項に記載のポリアミド酸溶液。 The polyamic acid solution according to any one of claims 1 to 3, which has a water content of 1500 ppm or less.
  5.  さらに、一般式(3)で表される化合物を含む、請求項1~4のいずれか1項に記載のポリアミド酸溶液。
    Figure JPOXMLDOC01-appb-C000002
    The polyamic acid solution according to any one of claims 1 to 4, further comprising a compound represented by the general formula (3).
    Figure JPOXMLDOC01-appb-C000002
  6.  前記一般式(3)で表される化合物のモル数xと、組成物中の前記テトラカルボン酸二無水物残基Xの総モル数xとの比x/xが、0.001~0.05である、請求項5に記載のポリアミド酸溶液。 The ratio x 3 / x of the number of moles x 3 of the compound represented by the general formula (3) to the total number of moles x of the tetracarboxylic dianhydride residue X in the composition is 0.001 to The polyamic acid solution according to claim 5, which is 0.05.
  7.  さらに、一般式(5)で表される末端構造を有するポリアミド酸を含む、請求項1~6のいずれか1項に記載のポリアミド酸溶液: 
    Figure JPOXMLDOC01-appb-C000003
     Rは2価の有機基であり、Rは炭素数1~5のアルキル基である。
    The polyamic acid solution according to any one of claims 1 to 6, further comprising a polyamic acid having a terminal structure represented by the general formula (5):
    Figure JPOXMLDOC01-appb-C000003
    R 1 is a divalent organic group, and R 2 is an alkyl group having 1 to 5 carbon atoms.
  8.  ポリアミド酸のイミド化率が5モル%以下である、請求項1~7のいずれか1項に記載のポリアミド酸溶液。 The polyamic acid solution according to any one of claims 1 to 7, wherein the imidization ratio of the polyamic acid is 5 mol% or less.
  9.  ポリアミド酸の固形分濃度が10重量%以上である、請求項1~8のいずれか1項に記載のポリアミド酸溶液。 The polyamic acid solution according to any one of claims 1 to 8, wherein the solid content concentration of the polyamic acid is 10% by weight or more.
  10.  温度23℃における粘度ηの対数logηと、ポリアミド酸の固形分濃度Dとの比logη/Dが、0.12以下である、請求項1~9のいずれか1項に記載のポリアミド酸溶液:
     ただし、粘度ηの単位はポイズであり、固形分濃度Dの単位は重量%である。
    The polyamic acid solution according to any one of claims 1 to 9, wherein the log η / D of the logarithmic log η of the viscosity η at a temperature of 23 ° C. and the solid content concentration D of the polyamic acid is 0.12 or less.
    However, the unit of viscosity η is poise, and the unit of solid content concentration D is% by weight.
  11.  ポリアミド酸溶液の製造方法であって、
     テトラカルボン酸二無水物を加水開環して、開環体を生成させる加水開環工程;および
     テトラカルボン酸二無水物およびその開環体の混合物と、ジアミンとを反応させてポリアミド酸を重合する重合工程、
     を含み、
     前記加水開環工程により、一般式(4)で表される片開環体が生成し、
    Figure JPOXMLDOC01-appb-C000004
     ポリアミド酸溶液は、一般式(1)で表される末端構造を有するポリアミド酸、および一般式(2)で表される末端構造を有するポリアミド酸を含む、ポリアミド酸溶液の製造方法:
    Figure JPOXMLDOC01-appb-C000005
     Xはテトラカルボン酸二無水物残基である4価の有機基であり、Yはジアミン残基である2価の有機基である。
    A method for producing a polyamic acid solution.
    A water ring-opening step in which a tetracarboxylic dianhydride is hydroopened to form a ring-opened body; and a mixture of the tetracarboxylic dianhydride and the ring-opened body thereof is reacted with a diamine to polymerize a polyamic acid. Polymerization process,
    Including
    By the water ring-opening step, a single ring-opened body represented by the general formula (4) is produced.
    Figure JPOXMLDOC01-appb-C000004
    The polyamic acid solution contains a polyamic acid having a terminal structure represented by the general formula (1) and a polyamic acid having a terminal structure represented by the general formula (2).
    Figure JPOXMLDOC01-appb-C000005
    X is a tetravalent organic group which is a tetracarboxylic dianhydride residue, and Y is a divalent organic group which is a diamine residue.
  12.  テトラカルボン酸二無水物の全量に対して、1~15モル%の水を含む溶液中で前記加水開環を実施する、請求項11に記載のポリアミド酸溶液の製造方法。 The method for producing a polyamic acid solution according to claim 11, wherein the water ring-opening is carried out in a solution containing 1 to 15 mol% of water with respect to the total amount of the tetracarboxylic dianhydride.
  13.  温度50~100℃で前記加水開環を実施する、請求項11または12に記載のポリアミド酸溶液の製造方法。 The method for producing a polyamic acid solution according to claim 11 or 12, wherein the water ring opening is carried out at a temperature of 50 to 100 ° C.
  14.  ポリアミド酸の重量平均分子量が5000以上45000以下である、請求項11~13のいずれか1項に記載のポリアミド酸溶液の製造方法。 The method for producing a polyamic acid solution according to any one of claims 11 to 13, wherein the weight average molecular weight of the polyamic acid is 5000 or more and 45000 or less.
  15.  重合工程後の組成物の水分率が1500ppm以下である、請求項11~14のいずれか1項に記載のポリアミド酸溶液の製造方法。 The method for producing a polyamic acid solution according to any one of claims 11 to 14, wherein the water content of the composition after the polymerization step is 1500 ppm or less.
  16.  重合工程後の組成物におけるイミド化率が5モル%以下である、請求項11~15のいずれか1項に記載のポリアミド酸溶液の製造方法。 The method for producing a polyamic acid solution according to any one of claims 11 to 15, wherein the imidization ratio in the composition after the polymerization step is 5 mol% or less.
  17.  前記加水開環後に、テトラカルボン酸二無水物の片開環体の量が、テトラカルボン酸全量に対して1~15モル%である、請求項11~16のいずれか1項に記載のポリアミド酸溶液の製造方法。 The polyamide according to any one of claims 11 to 16, wherein the amount of the single ring-opened tetracarboxylic dianhydride after the water-opening is 1 to 15 mol% with respect to the total amount of the tetracarboxylic acid. Method for producing an acid solution.
  18.  アルコキシシラン化合物とポリアミド酸とを反応させて、ポリアミド酸の末端をアルコキシシラン変性する工程をさらに有する、請求項11~17のいずれか1項に記載のポリアミド酸溶液の製造方法。 The method for producing a polyamic acid solution according to any one of claims 11 to 17, further comprising a step of reacting an alkoxysilane compound with a polyamic acid to modify the terminal of the polyamic acid with an alkoxysilane.
  19.  請求項1~10のいずれかに記載のポリアミド酸溶液に含まれるポリアミド酸の脱水環化物であるポリイミドを含む、ポリイミドフィルム。 A polyimide film containing a polyimide which is a dehydrated cyclized product of the polyamic acid contained in the polyamic acid solution according to any one of claims 1 to 10.
  20.  請求項19に記載のポリイミドフィルムが基板上に密着積層されている、積層体。 A laminate in which the polyimide film according to claim 19 is closely laminated on a substrate.
  21.  基板上にポリイミドフィルムが密着積層されている積層体の製造方法であって、
     請求項1~10のいずれか1項に記載のポリアミド酸溶液を基板上に塗布し、加熱によりポリアミド酸を脱水環化してイミド化する、積層体の製造方法。
    A method for manufacturing a laminate in which a polyimide film is closely laminated on a substrate.
    A method for producing a laminate, wherein the polyamic acid solution according to any one of claims 1 to 10 is applied onto a substrate, and the polyamic acid is dehydrated and cyclized by heating to be imidized.
  22.  基板上にポリイミドフィルムが密着積層されている積層体の製造方法であって、
     請求項11~18のいずれか1項に記載の方法によりポリアミド酸溶液を調製し、
     前記ポリアミド酸溶液を基板上に塗布し、加熱によりポリアミド酸を脱水環化してイミド化する、積層体の製造方法。
    A method for manufacturing a laminate in which a polyimide film is closely laminated on a substrate.
    A polyamic acid solution is prepared by the method according to any one of claims 11 to 18.
    A method for producing a laminate, in which the polyamic acid solution is applied onto a substrate, and the polyamic acid is dehydrated and cyclized by heating to be imidized.
  23.  請求項20に記載のポリイミドフィルム上に、電子素子が設けられている、フレキシブルデバイス。 A flexible device in which an electronic element is provided on the polyimide film according to claim 20.
PCT/JP2020/019978 2019-05-22 2020-05-20 Polyamic acid solution, method for preparing same, polyamide film, laminate, method for producing said laminate, and flexible device WO2020235601A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020217041419A KR20220013387A (en) 2019-05-22 2020-05-20 Polyamic acid solution and manufacturing method thereof, polyimide film, laminate and manufacturing method thereof, and flexible device
JP2021520821A JP7470681B2 (en) 2019-05-22 2020-05-20 Method for producing polyamic acid solution and method for producing laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019095678 2019-05-22
JP2019-095678 2019-05-22

Publications (1)

Publication Number Publication Date
WO2020235601A1 true WO2020235601A1 (en) 2020-11-26

Family

ID=73458505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/019978 WO2020235601A1 (en) 2019-05-22 2020-05-20 Polyamic acid solution, method for preparing same, polyamide film, laminate, method for producing said laminate, and flexible device

Country Status (3)

Country Link
KR (1) KR20220013387A (en)
TW (1) TW202106763A (en)
WO (1) WO2020235601A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4716979B1 (en) * 1967-05-29 1972-05-18
JPS62280257A (en) * 1986-05-30 1987-12-05 Hitachi Ltd Low-viscosity varnish
JP2009221398A (en) * 2008-03-18 2009-10-01 Ube Ind Ltd Polyamic acid solution composition, and polyimide film
JP2010001351A (en) * 2008-06-19 2010-01-07 Kaneka Corp New polyimide precursor composition, its use and method for producing the same
JP2013057051A (en) * 2011-08-17 2013-03-28 Fuji Xerox Co Ltd Polyamic acid composition, endless belt, method of producing the endless belt, and image forming apparatus
WO2014123045A1 (en) * 2013-02-07 2014-08-14 株式会社カネカ Alkoxysilane-modified polyamic acid solution, laminate and flexible device each produced using same, and method for producing laminate
WO2019131294A1 (en) * 2017-12-26 2019-07-04 株式会社カネカ Polyamide acid composition and method for producing same, polyimide film, laminate and method for producing same, and flexible device
JP2020019839A (en) * 2018-07-30 2020-02-06 東京応化工業株式会社 Composition, cured product, method for producing cured product, salt, and agents for inhibiting temporal change of polyimide film-forming composition and improving film formability

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5772601B2 (en) 2011-01-07 2015-09-02 東レ株式会社 Polyamic acid resin composition and method for producing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4716979B1 (en) * 1967-05-29 1972-05-18
JPS62280257A (en) * 1986-05-30 1987-12-05 Hitachi Ltd Low-viscosity varnish
JP2009221398A (en) * 2008-03-18 2009-10-01 Ube Ind Ltd Polyamic acid solution composition, and polyimide film
JP2010001351A (en) * 2008-06-19 2010-01-07 Kaneka Corp New polyimide precursor composition, its use and method for producing the same
JP2013057051A (en) * 2011-08-17 2013-03-28 Fuji Xerox Co Ltd Polyamic acid composition, endless belt, method of producing the endless belt, and image forming apparatus
WO2014123045A1 (en) * 2013-02-07 2014-08-14 株式会社カネカ Alkoxysilane-modified polyamic acid solution, laminate and flexible device each produced using same, and method for producing laminate
WO2019131294A1 (en) * 2017-12-26 2019-07-04 株式会社カネカ Polyamide acid composition and method for producing same, polyimide film, laminate and method for producing same, and flexible device
JP2020019839A (en) * 2018-07-30 2020-02-06 東京応化工業株式会社 Composition, cured product, method for producing cured product, salt, and agents for inhibiting temporal change of polyimide film-forming composition and improving film formability

Also Published As

Publication number Publication date
TW202106763A (en) 2021-02-16
JPWO2020235601A1 (en) 2020-11-26
KR20220013387A (en) 2022-02-04

Similar Documents

Publication Publication Date Title
JP6578424B2 (en) Alkoxysilane-modified polyamic acid solution, laminate and flexible device using the same, and method for producing laminate
JP7431039B2 (en) Polyamic acid composition and manufacturing method thereof, polyimide film, laminate and manufacturing method thereof, and flexible device
JPWO2019188265A1 (en) Polyamic acid, polyamic acid solution, polyimide, polyimide film, laminate and flexible device, and method for producing polyimide film.
KR101909803B1 (en) Alkoxysilane-modified polyamic acid solution, laminate and flexible device using same, polyimide film, and production method for laminate
JP6858900B2 (en) Alkoxysilane-modified polyamic acid solution manufacturing method, laminate manufacturing method, and flexible device manufacturing method
JP5650458B2 (en) LAMINATE MANUFACTURING METHOD AND FLEXIBLE DEVICE MANUFACTURING METHOD
JP6086118B2 (en) Polyamic acid solution composition and polyimide
JP6940507B2 (en) Polyamic acid, polyamic acid solution, polyimide, polyimide film, laminate and flexible device, and method for producing polyimide film.
TWI773889B (en) Polyimide precursor composition for improving adhesion property of polyimide film, polyimide film prepared therefrom and preparation method thereof, and electronic device comprising the same
TW202210556A (en) Poly(amic acid), poly(amic acid) solution, polyimide, polyimide film, layered product, method for producing layered product, and electronic device
JP6754607B2 (en) Alkoxysilane-modified polyimide precursor solution, laminate and flexible device manufacturing method
JP6336194B2 (en) Method for producing polyimide laminate and use thereof
JP2020164704A (en) Polyamic acid, polyamic acid solution, polyimide, polyimide film, laminate and flexible device, and method for manufacturing polyimide film
JP7470681B2 (en) Method for producing polyamic acid solution and method for producing laminate
WO2020235601A1 (en) Polyamic acid solution, method for preparing same, polyamide film, laminate, method for producing said laminate, and flexible device
TW202239889A (en) Polyimide precursor varnish and method for producing same, polyimide and method for producing same, flexible device, and laminate for wiring board
JP2024056753A (en) Polyamic acid composition and method for producing same, polyimide film, laminate and method for producing same, and flexible device
KR102472532B1 (en) Polyamic acid composition and polyimide comprising the same
KR102472528B1 (en) Polyamic acid composition and polyimide comprising the same
KR102472537B1 (en) Polyamic acid composition and polyimide comprising the same
WO2023234085A1 (en) Polyimide resin precursor and polyimide resin
JP2022068709A (en) Polyamic acid, polyamic acid solution, polyimide, polyimide film, laminate and flexible device, as well as production method of polyimide film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20809063

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021520821

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217041419

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20809063

Country of ref document: EP

Kind code of ref document: A1