JPS62280257A - Low-viscosity varnish - Google Patents

Low-viscosity varnish

Info

Publication number
JPS62280257A
JPS62280257A JP12338486A JP12338486A JPS62280257A JP S62280257 A JPS62280257 A JP S62280257A JP 12338486 A JP12338486 A JP 12338486A JP 12338486 A JP12338486 A JP 12338486A JP S62280257 A JPS62280257 A JP S62280257A
Authority
JP
Japan
Prior art keywords
formula
integer
oligomer
group
varnish
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12338486A
Other languages
Japanese (ja)
Inventor
Takao Miwa
崇夫 三輪
Shunichi Numata
俊一 沼田
Koji Fujisaki
藤崎 康二
Takae Ikeda
池田 孝栄
Tokuyuki Kaneshiro
徳幸 金城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Hitachi Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP12338486A priority Critical patent/JPS62280257A/en
Publication of JPS62280257A publication Critical patent/JPS62280257A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PURPOSE:To provide a low-viscosity varnish which has a high concn. and gives a lowly expanded resin material by a heat treatment, by mixing two oligomers having specified structures in equal amounts. CONSTITUTION:An oligomer (a) is mixed with an equal amount of another oligomer (b). Said oligomer (a) is one having acid anhydride groups at terminals (a compd. of formula VII), obtd. by reacting an acid anhydride of formula I [wherein Ar is a group of formula II, III or IV; R is a member selected from the group consisting of a fluoroalkyl, a fluoroalkoxy, an acyl and a halogen; lis an integer of 0-2; m is an integer of 0-3; and n is an integer of 0-4] with a diamine of the formula H2N-Ar'-NH2 [wherein Ar' is a group of V or VI; R is a member selected from the group consisting of an alkyl, a fluoroalkyl, an alkoxyl, a fluoroalkoxy, an acyl and a halogen; and n is an integer of 0-4]. Said oligomer (b) is, e.g., a compd. of formula VIII, obtd. by reacting an acid anhydride of formula I with an excess of said diamine.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、特定の化学構造をもち、加熱処理することに
より低熱膨張樹脂材料を与える、高濃度の低粘度ワニス
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a highly concentrated, low viscosity varnish having a specific chemical structure and which upon heat treatment provides a low thermal expansion resin material.

〔従来の技術〕[Conventional technology]

従来の低熱膨張ポリイミドは、特開昭60−21242
8号公報に記載のように、低熱膨張性ポリイミドを与え
るイビ学構造はもっていても、いかにして個々の製品に
適合した性質を与えるかについては、言及されていなか
った。
Conventional low thermal expansion polyimide is disclosed in Japanese Patent Application Laid-Open No. 60-21242.
As described in Publication No. 8, even though it has an organic structure that provides a polyimide with low thermal expansion, there is no mention of how to provide properties suitable for individual products.

従来のオリゴマー化技術は、単に、低粘度ワニスを与え
ることを目的としたものであり、低熱膨張性の発現や、
オリゴマを高分子量化し良質のフィルムを得る方法につ
いては言及されていなかった。
Conventional oligomerization technology is simply aimed at providing a low viscosity varnish, and the purpose is to develop low thermal expansion and
There was no mention of a method for obtaining high-quality films by increasing the molecular weight of oligomers.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

有機ポリマの熱膨張係数(線膨張係数)は、ガラス転移
温度以下の温度領域でも、はとんどのものが4X10−
3に一1以上と、金属や無機物に比べてはるかに大きな
値である。有機物の線膨張係数が大きいことに起因する
問題は、極めて多く、有機ポリマの用途展開が思うよう
に進行しない理由がすべてここにあると言っても過言で
はない程である。例えば、フィルムと導体とからなるフ
レキシブルプリント基板(FPC)では、金属箔に可撓
性フィルム材料をコートあるいは熱圧着して得られるフ
ィルムが望まれるが、コーテイング後、高温で硬化、乾
燥、あるいは、熱圧着しなければならないため、室温に
冷却後熱膨張係数に差に起因する熱応力のため、カール
してしまう問題がある。
The thermal expansion coefficient (linear expansion coefficient) of most organic polymers is 4X10- even in the temperature range below the glass transition temperature.
At more than 1 in 3, this is a much larger value than metals and inorganic materials. There are many problems caused by the large coefficient of linear expansion of organic materials, and it is no exaggeration to say that these are all the reasons why the use of organic polymers has not progressed as expected. For example, in a flexible printed circuit board (FPC) consisting of a film and a conductor, a film obtained by coating or heat-pressing a flexible film material on a metal foil is desired, but after coating, it is hardened at high temperature, dried, or Since thermocompression bonding is required, there is a problem that curling occurs due to thermal stress caused by a difference in thermal expansion coefficient after cooling to room temperature.

通常、この現象を起こさないように、低温硬化可能な接
着剤を張り合わせて使用している。しかし、耐熱性を要
求されるFPCの場合、一般に低温硬化可能な接着剤は
耐熱性が劣るため、基材にポリミドフィルム等の耐熱フ
ィルムを使用しても、本来の耐熱性を発渾出来ない。ま
た、塗膜の場合、通常の有機ポリマに比べて非常に熱膨
張係数が小さい金属板や無機質材の上に塗布すると、熱
膨張係数の差に起因する熱応力によって、変形、膜のク
ラック、ばくり、基材の破壊などが起こる。例えば、L
SIやICの保護膜としてシリコンウェハ上にコート膜
を形成すると、ウェハがそって、パターニングのための
フォトリングラフィが出来なかったり、あるいは、解像
度が極めて悪くなる問題や、熱応力が大きい場合、パッ
シベーション膜をはくすしたり、シリコンウェハ自体に
へき開破壊を起こさせることもある。
Usually, to prevent this phenomenon from occurring, an adhesive that can be cured at low temperature is used to attach the parts together. However, in the case of FPCs that require heat resistance, adhesives that can be cured at low temperatures generally have poor heat resistance, so even if heat-resistant films such as polymide films are used as the base material, the original heat resistance cannot be developed. . In addition, in the case of coating films, if they are applied onto metal plates or inorganic materials whose coefficient of thermal expansion is much smaller than that of ordinary organic polymers, thermal stress caused by the difference in coefficient of thermal expansion may cause deformation, cracks in the film, or Exposure and destruction of the base material may occur. For example, L
When a coating film is formed on a silicon wafer as a protective film for SI or IC, the wafer may warp, making it impossible to perform photolithography for patterning, or when the resolution becomes extremely poor, or when thermal stress is large. This may destroy the passivation film or cause cleavage damage to the silicon wafer itself.

このように、有機ポリマの線膨張係数が大きいための問
題点は極めて多く、低膨張係数の有機ポリマはかなり前
から強く望まれていた。
As described above, there are many problems due to the large coefficient of linear expansion of organic polymers, and organic polymers with low coefficients of expansion have been strongly desired for quite some time.

このような要求に応えた発明が、本発明である。The present invention is an invention that meets such demands.

この低熱膨張性ポリイミドによって、有機ポリマの用途
は大巾に拡大した。更に、今後、電子素子への飛躍的な
利用拡大が期待できる。有望な分野には、LSI多層配
線や薄膜磁気ヘッド等の層間絶縁膜があげられる。眉間
絶縁膜の特性は、低熱膨張性による無機物とのマツチン
グの他に、ワニス塗布面の平坦化性能が大きな要因を占
める。本発明は、加熱処理により、ワニス塗布面の平坦
化性能の優れた低熱膨張ポリイミド膜を得る。低粘度ワ
ニスを提供し、電子材料、主に層間絶縁膜への利用をは
かるものである。
This low thermal expansion polyimide has greatly expanded the applications of organic polymers. Furthermore, it is expected that its use in electronic devices will expand dramatically in the future. Promising fields include interlayer insulating films such as LSI multilayer wiring and thin film magnetic heads. The characteristics of the glabella insulating film are mainly due to its ability to flatten the varnished surface, in addition to its ability to match with inorganic substances due to its low thermal expansion. The present invention obtains a low thermal expansion polyimide film with excellent flattening performance on a varnished surface by heat treatment. The company provides a low-viscosity varnish that can be used in electronic materials, primarily interlayer insulation films.

〔問題点を解決するための手段〕[Means for solving problems]

凹凸面上に塗布したワニスの硬化後の平坦化性能は、ワ
ニスの濃度と、硬化時のメルトフロー特性を左右される
。すなわち、ワニスの濃度が高いほど、硬化時のワニス
体積の収縮が小さく、また。
The flattening performance of a varnish applied on an uneven surface after curing depends on the concentration of the varnish and the melt flow characteristics during curing. That is, the higher the concentration of the varnish, the smaller the shrinkage of the varnish volume during curing;

メルトフローすることにより体積収縮によって生じた段
差を解消できるためである。低熱膨張性ポリイミドを与
える構造のワニスでは、分子鎖が剛直で硬イヒ時のメル
トフロー性は期待できない、一方、現在一般に利用され
ている低熱膨張性ポリイミドを与える構造のワニスの濃
度は重量分率で十数%であり、ワニスの高濃度化による
凹凸面の平坦化性能の向上が期待できる0本発明は、こ
の考えに従って、ワニスの高濃度化をはかり、平坦化性
能の向上を図ったものである。
This is because melt flow can eliminate the level difference caused by volumetric contraction. In a varnish with a structure that provides a low thermal expansion polyimide, the molecular chain is rigid and melt flow properties cannot be expected when it hardens.On the other hand, the concentration of a varnish with a structure that provides a low thermal expansion polyimide that is currently commonly used is based on the weight fraction. According to this idea, the present invention aims to improve the flattening performance by increasing the concentration of the varnish. It is.

しかし、高分子濃厚溶液の濃度と粘度の間には、式(1
2) %式%(12) φはポリマの体積分率 の関係が提案されている。つまり、ワニスの濃度を増加
させると、その粘度は急激に大きくなり作業性能が著し
劣り、事実上、ワニスとしての利用は不可能となる。本
発明は、ワニスの低分子量化を進め、この問題を解決す
ることによって得られたものである。すなわち、式(1
)に提案されているように、ワニスの粘度は、ワニスの
中のポリマの重合度が低くなると大巾に低下することを
利用用して、高濃度で、かつ、低粘度2作業性能にすぐ
れたワニスを得ることに成功した。
However, the relationship between the concentration and viscosity of a concentrated polymer solution is expressed by the equation (1
2) % Formula % (12) It has been proposed that φ is related to the volume fraction of the polymer. In other words, when the concentration of the varnish is increased, its viscosity increases rapidly, resulting in extremely poor working performance, making it virtually impossible to use it as a varnish. The present invention was achieved by solving this problem by reducing the molecular weight of varnish. That is, the formula (1
As proposed in succeeded in obtaining a varnish.

酸無水分とジアミンを当量比からずらして反応させるこ
とにより、式(2)、 (3)に示す酸無水物過剰の場
合は、両末端が酸無水物であるオリゴマを、また、逆に
ジアミン過剰の場合は、両末端がアミノ基であるオリゴ
マをそれぞれ得られる。この場合、重合度の調節は、等
1点からのずれを変化させることにより自由に行える。
By reacting acid anhydride and diamine while shifting the equivalence ratio, in the case of excess acid anhydride as shown in formulas (2) and (3), oligomers having acid anhydride at both ends, or conversely diamine In the case of excess, oligomers having amino groups at both ends can be obtained. In this case, the degree of polymerization can be freely adjusted by changing the deviation from one point.

この時、オリゴマの粘度も重合度の低下とともに大巾に
下がり、充分な作業性を示すようになる。
At this time, the viscosity of the oligomer also decreases significantly as the degree of polymerization decreases, and it comes to exhibit sufficient workability.

一方、一般に高分子の柔軟性や耐熱性は分子量が大きく
なるほど優れた値を示すようになる。この点で、式(8
)、 (9)に示したオリゴマをそのまま硬化させて実
用上利用しうる樹脂を得ることは困難であり、塗布後、
何らかの方法で分子量を増大させる必要がある。この目
的は、式(8)、 (9)に示した。オリゴマを等量混
合することによって達成できる。混合により、式(9)
の電子吸引基により、活性化された無水物末端と式(8
)のアミノ基末端が反応し、高重合度のポリアミック酸
を得る。この際、この高分子量化に要する時間は、室温
で、混合後士数分以上であり、この間にワニスの塗布等
の作業の多くは完了できる。更に、作業時間を要する場
合、もしくは、−液性のワニスとしての使用が望ましい
場合は、式(8)に示した酸無水物末端を水素化、また
は、エステル化したオリゴマ式(io)、(11)と式
(9)のアミノ基末端をもつオリゴマとを混合すること
により、冷蔵庫温度で安定な低粘度ワニスを得ることが
できる。このワニスの室温での反応時間は長く、充分な
作業時間を得られる。ワニスの高分子量化は1作業終了
後、100〜2oo℃程度に加熱することにより、電子
吸引基により、活性化されたカルボニル炭素が式(12
)の反応を生じさせることによって達成される。
On the other hand, in general, the flexibility and heat resistance of polymers show better values as the molecular weight increases. At this point, the formula (8
), (9) It is difficult to cure the oligomer shown in (9) as it is to obtain a resin that can be used for practical purposes.
It is necessary to increase the molecular weight in some way. This purpose is shown in equations (8) and (9). This can be achieved by mixing equal amounts of oligomers. By mixing, formula (9)
The electron-withdrawing group of the activated anhydride terminal and the formula (8
) reacts to obtain a polyamic acid with a high degree of polymerization. At this time, the time required for increasing the molecular weight is several minutes or more after mixing at room temperature, and most of the work such as varnish application can be completed during this time. Furthermore, in cases where working time is required or when use as a -liquid varnish is desired, oligomers of formula (io), in which the acid anhydride terminal shown in formula (8) is hydrogenated or esterified, may be used. By mixing 11) with the amino-terminated oligomer of formula (9), a low-viscosity varnish that is stable at refrigerator temperature can be obtained. This varnish has a long reaction time at room temperature, providing sufficient working time. To increase the molecular weight of the varnish, after completing one operation, the activated carbonyl carbon is converted into the formula (12
) reaction.

このようにして得られた、高分子量のポリアミック酸を
硬化させることにより、凹凸平坦化性能に優れ、低熱膨
張性のポリイミド膜を得ることとなる。
By curing the high molecular weight polyamic acid thus obtained, a polyimide film having excellent unevenness flattening performance and low thermal expansion property can be obtained.

〔作用〕[Effect]

式(1)で示した、酸無水物は、Arに含まれる電子吸
引性基によって、カルボニル基の炭素のδ土性が大きく
アミノ基の窒素による求核反応を受けやすい状態にある
。同様のことが、無水物末端をもつオリゴマについても
言える。この高い反応性によって、アミノ基末端をもつ
オリゴマとの反応を完結させ高分子量のポリアミラミ酸
を得ることができる。
The acid anhydride represented by the formula (1) is in a state where the carbon of the carbonyl group has a large δ-earth property due to the electron-withdrawing group contained in Ar, making it susceptible to a nucleophilic reaction by the nitrogen of the amino group. The same is true for oligomers with anhydride ends. Due to this high reactivity, it is possible to complete the reaction with an oligomer having an amino group terminal and obtain a high molecular weight polyamic acid.

酸無水物の末端を水素化またはエステル化した場合、一
般には、カルボニル暴戻のδ土性が小さくなり、アミノ
基の窒素による攻撃を受けにくくなり、加熱によっても
高分子量のポリアミック酸を得ることはできない。本発
明は、この問題をArに高い電子吸引性を与えることに
より、更に必要に応じて、エステル基にも電子吸引性を
与え、カルボニル炭素のδ土性を高め、加熱により容易
にアミノ基との反応が進み高分子量化を達成しうるよう
にしたものである。
When the terminal of an acid anhydride is hydrogenated or esterified, the δ earth property of carbonyl reversion generally becomes smaller, making the amino group less susceptible to attack by nitrogen, and making it possible to obtain a high molecular weight polyamic acid even by heating. I can't. The present invention solves this problem by imparting high electron-withdrawing properties to Ar and, if necessary, also imparting electron-withdrawing properties to ester groups, increasing the δ-earth property of carbonyl carbon and easily converting it into amino groups by heating. The reaction progresses and it is possible to achieve high molecular weight.

〔実施例〕〔Example〕

ワニスの合成は次のように行った。 The varnish was synthesized as follows.

1)酸無水物末端をもつオリゴマ(濃度30%)2.3
,5.6−ペンゾトリフルオライドテトカルボン酸二無
水分0.156moffと140gのN−メチルピロリ
1−ンを四つロフラスコに装入し。
1) Oligomer with acid anhydride end (concentration 30%) 2.3
, 5.6-penzotrifluoridetetocarboxylic acid dianhydride 0.156 moff and 140 g of N-methylpyrroline were placed in a four-hole flask.

フラスコ内を窒素置換し、30℃で攪拌溶解した後、P
−フェニレンジアミン(P−PDA)0.133 mo
(lを、攪拌下、少量ずつ約一時間にわたり添加した。
After purging the inside of the flask with nitrogen and stirring and dissolving at 30°C, P
-Phenylenediamine (P-PDA) 0.133 mo
(1) was added in small portions over about an hour under stirring.

P−フェニレンジアミンの添加終了後、更に、二・時間
反応させ、その後、80°Cで二時間、攪拌し、目的と
するオリゴマaを得る。溶液の粘度は、25℃で28ポ
アズであった。
After the addition of P-phenylenediamine is completed, the reaction is further continued for 2 hours, and then stirred at 80°C for 2 hours to obtain the desired oligomer a. The viscosity of the solution was 28 poise at 25°C.

2)ジアミン末端をもつオリゴマ(′e3度30%)P
−フェニレンジアミン0.177 moQ、と140g
のN−メチルピロリドンを四つロフラスコに装入し、フ
ラスコ内を窒素置換し、30℃で攪拌溶解した後、3.
3’、4.4’−ビフェニルテトラカルボン酸二無水物
(S  BPDA) 0.147m。
2) Oligomer with diamine end ('e3 degree 30%) P
- phenylenediamine 0.177 moQ, and 140 g
3. N-methylpyrrolidone was charged into a four-hole flask, the inside of the flask was purged with nitrogen, and the mixture was stirred and dissolved at 30°C.
3',4.4'-Biphenyltetracarboxylic dianhydride (S BPDA) 0.147m.

Qを少量ずつ約一時間にわたり添加した。添加終了後、
更に数時間反応させ、その後、80℃で数時間反応させ
た目的とするオリゴマbを得た。溶液の粘度は25℃で
12ポアズであった。
Q was added in small portions over about an hour. After addition,
The reaction was continued for several hours, and then at 80° C. for several hours to obtain the desired oligomer b. The viscosity of the solution was 12 poise at 25°C.

3)エステル化された末端をもつオリゴマ(f:A度3
2.5%) 5−BPDA O,163moQとP−P
DA O,136moQと140gのNMPを用い、(
1)と同様にして酸無水物末端をもつオリゴマ(C)を
1!)る。この溶液を80℃に加熱し、攪拌下P−ニト
ロフェノール0.054mo Qを加え、二時間反応さ
せ、目的とするオリゴマ(a’)を得る。
3) Oligomer with esterified end (f: A degree 3)
2.5%) 5-BPDA O,163moQ and P-P
Using DA O, 136moQ and 140g of NMP, (
In the same manner as in 1), oligomer (C) having an acid anhydride end was added to 1! ). This solution is heated to 80°C, 0.054 mo Q of P-nitrophenol is added under stirring, and the mixture is reacted for 2 hours to obtain the desired oligomer (a').

25℃における、この溶液の粘度は、3oポアズであっ
た。
The viscosity of this solution at 25°C was 3 o poise.

ポリイミドフィルムの作成 1)オリゴ7(a)113gとオリゴマ(b)100g
を室温で混合攪拌した後、ガラス基板上へアプリケータ
、を用いて均一に塗布した。アプリケータのギャップは
200μとした。次にこれを、窒素気流下、乾燥硬化し
、フィルムを得た。熱膨張係数は、  1.53 X 
I O−’/degであった。
Preparation of polyimide film 1) 113 g of oligo 7 (a) and 100 g of oligomer (b)
After mixing and stirring at room temperature, the mixture was uniformly applied onto a glass substrate using an applicator. The applicator gap was 200μ. Next, this was dried and cured under a nitrogen stream to obtain a film. The coefficient of thermal expansion is 1.53
It was IO-'/deg.

2)オリゴマ(a′)113gとオリゴマ(b)100
gを1と同様にして、フィルムを得た。
2) 113 g of oligomer (a') and 100 g of oligomer (b)
A film was obtained by changing g in the same manner as in 1.

熱膨張係数は、1.31X10−5788gであった。The coefficient of thermal expansion was 1.31 x 10-5788 g.

〔発明の効果〕〔Effect of the invention〕

Claims (1)

【特許請求の範囲】 1、ワニスの合成に際して、過剰の式(1)▲数式、化
学式、表等があります▼ の構造をもつ酸無水物と(式中、Rはフッ素化アルキル
基、フッ素化アルコキシル基、アシル基、ハロゲンから
選ばれ、lは0〜2の整数、mは0〜3の整数、nは0
〜4の整数である。)式(5) ▲数式、化学式、表等があります▼ の構造を有するジアミン(式中、Rはアルキル基フッ素
化アルキル基、アルコキシル基、フッ素化アルコキシル
基、アシル基、ハロゲンから選ばれ、nは0〜4の整数
である。)を反応させて得られる。酸無水物末端をもつ
オリゴマ(a)と式(8) ▲数式、化学式、表等があります▼ 式(1)の構造をもつ酸無水物と過剰の式(5)の構造
をもつジアミンを反応させて得られるオリゴマ(b)式
(9) とを等量混合することによって得られる低粘度ワニス。 2、特許請求の範囲第1項において、 オリゴマ(a)の末端を、水素化または、エステル化す
ることによって得られる式(10)の構造を有するオリ
ゴマ(a′)を用いることによって得られる低粘度ワニ
ス。 ▲数式、化学式、表等があります▼ 3、特許請求の範囲第1項において、 式(8)、(9)の構造をもつオリゴマ(a)、(b)
を用いた低粘度ワニス(式中nは0〜20、n′は2〜
20の整数の組合せ、又はnは2〜20、n′は0〜2
0の整数の組合せ)。 4、特許請求の範囲第2項において、 式(11) ▲数式、化学式、表等があります▼ の構造をもつオリゴマ(a″)を用いて得る低粘度ワニ
ス(式中R_1、R_2は、それぞれ水素、フッ素化ア
ルキル、▲数式、化学式、表等があります▼から選ばれ
、R_5はメチル基、フッ素、ニトロ基から選ばれる。 Oは0〜5の整数)。 5、特許請求の範囲第2項において、 式(8)、(9)の構造をもつオリゴマ(a)、(b)
を用いて得られる低粘度ワニス(式中nは0〜20の整
数と、n′は2〜20の整数の組合せ、又はnは2〜2
0、0〜20の整数の組合せ)。 6、特許請求の範囲第四項において、 式(8)、式(11)の構造をもつオリゴマ(b)、(
a″)を用いて得られる低粘度ワニス(式中nは0〜2
0までの整数と、n′は2〜20までの整数の組合せ、
又はnは2〜20までの整数とnは0〜20までの整数
の組合せ)。
[Claims] 1. When synthesizing varnish, excess acid anhydride having the structure of formula (1) ▲ Numerical formula, chemical formula, table, etc. ▼ (wherein R is a fluorinated alkyl group, fluorinated selected from alkoxyl group, acyl group, halogen, l is an integer of 0 to 2, m is an integer of 0 to 3, n is 0
It is an integer of ~4. ) Formula (5) ▲There are mathematical formulas, chemical formulas, tables, etc.▼ Diamine having the structure (wherein R is an alkyl group, a fluorinated alkyl group, an alkoxyl group, a fluorinated alkoxyl group, an acyl group, a halogen, and n is an integer from 0 to 4). Oligomer (a) with an acid anhydride end and formula (8) ▲Mathematical formulas, chemical formulas, tables, etc. are available▼ React the acid anhydride with the structure of formula (1) and excess diamine with the structure of formula (5) A low viscosity varnish obtained by mixing equal amounts of oligomer (b) obtained by formula (9). 2. In claim 1, a low-carbon compound obtained by using an oligomer (a') having the structure of formula (10) obtained by hydrogenating or esterifying the terminal of the oligomer (a) viscosity varnish. ▲There are mathematical formulas, chemical formulas, tables, etc.▼ 3. In claim 1, oligomers (a) and (b) having the structures of formulas (8) and (9)
Low viscosity varnish using (in the formula, n is 0 to 20, n' is 2 to
A combination of 20 integers, or n is 2 to 20, n' is 0 to 2
combination of integers of 0). 4. In the second claim, a low viscosity varnish obtained using an oligomer (a″) having the structure of formula (11) ▲There are mathematical formulas, chemical formulas, tables, etc.▼ (in the formula, R_1 and R_2 are respectively selected from hydrogen, fluorinated alkyl, ▲numerical formula, chemical formula, table, etc.▼, and R_5 is selected from methyl group, fluorine, and nitro group. O is an integer from 0 to 5). 5. Claim 2 In terms, oligomers (a) and (b) having the structures of formulas (8) and (9)
A low viscosity varnish obtained using
0, a combination of integers from 0 to 20). 6. In the fourth claim, oligomers (b), (
a'') obtained using a low viscosity varnish (in the formula, n is 0 to 2
A combination of integers up to 0 and n' is an integer from 2 to 20,
or n is a combination of an integer from 2 to 20 and an integer from 0 to 20).
JP12338486A 1986-05-30 1986-05-30 Low-viscosity varnish Pending JPS62280257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12338486A JPS62280257A (en) 1986-05-30 1986-05-30 Low-viscosity varnish

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12338486A JPS62280257A (en) 1986-05-30 1986-05-30 Low-viscosity varnish

Publications (1)

Publication Number Publication Date
JPS62280257A true JPS62280257A (en) 1987-12-05

Family

ID=14859245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12338486A Pending JPS62280257A (en) 1986-05-30 1986-05-30 Low-viscosity varnish

Country Status (1)

Country Link
JP (1) JPS62280257A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0372528A (en) * 1988-08-08 1991-03-27 Nippon Telegr & Teleph Corp <Ntt> Fluorinated polyimide and its manufacture
US5175367A (en) * 1991-08-27 1992-12-29 E. I. Du Pont De Nemours And Company Fluorine-containing diamines, polyamides, and polyimides
JPH06157753A (en) * 1992-11-18 1994-06-07 Sumitomo Bakelite Co Ltd Partially imidated polyamic acid composition
JP2001164183A (en) * 1999-12-09 2001-06-19 Unitika Ltd Insulating coating, method for preparign the same, and insulating film obtainable from the same
JP2016151020A (en) * 2015-02-19 2016-08-22 日立金属株式会社 Polyimide coating material and insulated wire
WO2020235601A1 (en) * 2019-05-22 2020-11-26 株式会社カネカ Polyamic acid solution, method for preparing same, polyamide film, laminate, method for producing said laminate, and flexible device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60212428A (en) * 1984-04-06 1985-10-24 Mitsui Toatsu Chem Inc Preparation of prepolymer solution of polyimide resin
JPS6160725A (en) * 1984-08-31 1986-03-28 Hitachi Ltd Low-thermal expansion resin and composite molding

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60212428A (en) * 1984-04-06 1985-10-24 Mitsui Toatsu Chem Inc Preparation of prepolymer solution of polyimide resin
JPS6160725A (en) * 1984-08-31 1986-03-28 Hitachi Ltd Low-thermal expansion resin and composite molding

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0372528A (en) * 1988-08-08 1991-03-27 Nippon Telegr & Teleph Corp <Ntt> Fluorinated polyimide and its manufacture
US5175367A (en) * 1991-08-27 1992-12-29 E. I. Du Pont De Nemours And Company Fluorine-containing diamines, polyamides, and polyimides
US5286841A (en) * 1991-08-27 1994-02-15 E. I. Du Pont De Nemours And Company Fluorine-containing diamines, polyamides, and polyimides
JPH06157753A (en) * 1992-11-18 1994-06-07 Sumitomo Bakelite Co Ltd Partially imidated polyamic acid composition
JP2001164183A (en) * 1999-12-09 2001-06-19 Unitika Ltd Insulating coating, method for preparign the same, and insulating film obtainable from the same
JP2016151020A (en) * 2015-02-19 2016-08-22 日立金属株式会社 Polyimide coating material and insulated wire
WO2020235601A1 (en) * 2019-05-22 2020-11-26 株式会社カネカ Polyamic acid solution, method for preparing same, polyamide film, laminate, method for producing said laminate, and flexible device

Similar Documents

Publication Publication Date Title
DE60205161T2 (en) Solvent-free polyimide-siloxane resin compositions
JPH01217037A (en) Production of silicon-containing polyimide having low moisture absorption and high adhesiveness and precursor thereof
JP4498382B2 (en) Amine ester oligomer, precursor composition for polyimide resin containing the same, and use
JPS6160725A (en) Low-thermal expansion resin and composite molding
JPS5879018A (en) Highly soluble aromatic polyimide composition
JPH0291124A (en) Polyimide copolymer and preparation thereof
JP3934335B2 (en) Polyimide and method for producing the same
KR20090014123A (en) Precursor for polyimide and use thereof
KR20190057924A (en) Polyimide film for display substrates
JPS62280257A (en) Low-viscosity varnish
JP2006193691A (en) Photosensitive polyamic acid and photosensitive composition including the same
KR19980079256A (en) Polyimide precursor solution, preparation method thereof, film or film obtained from such solution and preparation method of film
JP2003213130A (en) Polyimide resin composition and fire-resistant adhesive
JPS5813631A (en) Preparation of siloxane-bond-containing polyhydrazide acid-amide acid and polyhydradiimide-siloxane-type copolymer resin
JPS61181829A (en) Low-thermal expansion resin material
JPS63264632A (en) Low-thermal expansion resin
JPS62236732A (en) Manufacture of substrate for flexible printed circuit
JP3001061B2 (en) Heat-resistant film with low linear expansion coefficient and method for producing the same
JPH0477587A (en) Low-viscosity varnish and production of electronic device using the same
JPS6384089A (en) Manufacture of flexible printed circuit substrate
JP6206446B2 (en) Polyimide precursor resin composition for forming flexible device substrate, method for producing flexible device using the same, flexible device
JPH0432289A (en) Board for flexible printed circuit and manufacture thereof
JPH03179026A (en) Thermosetting resin composition, resin sheet, prepreg, and laminate
JPS62200795A (en) Manufacture of laminate for flexible printed circuit
KR20230134405A (en) Novel diamine compound and polyimide polymer formed from the same