WO2020235441A1 - 広帯域パルス光源装置、分光測定装置及び分光測定方法 - Google Patents

広帯域パルス光源装置、分光測定装置及び分光測定方法 Download PDF

Info

Publication number
WO2020235441A1
WO2020235441A1 PCT/JP2020/019251 JP2020019251W WO2020235441A1 WO 2020235441 A1 WO2020235441 A1 WO 2020235441A1 JP 2020019251 W JP2020019251 W JP 2020019251W WO 2020235441 A1 WO2020235441 A1 WO 2020235441A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
wavelength
light
wideband
fiber
Prior art date
Application number
PCT/JP2020/019251
Other languages
English (en)
French (fr)
Inventor
寿一 長島
祐 山崎
Original Assignee
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウシオ電機株式会社 filed Critical ウシオ電機株式会社
Publication of WO2020235441A1 publication Critical patent/WO2020235441A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/365Non-linear optics in an optical waveguide structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating

Definitions

  • the invention of this application relates to a light source device that emits wideband pulsed light, and also relates to a device and method for measuring the spectral characteristics of an object using wideband pulsed light.
  • a typical pulsed light source is a pulsed laser (pulse laser).
  • pulse laser pulse laser
  • SC light supercontinuum light
  • SC light is light obtained by passing light from a pulsed laser source through a non-linear element such as a fiber and widening the wavelength by a non-linear optical effect such as self-phase modulation or optical solitons.
  • the above-mentioned broadband pulsed light is extended as a wavelength range, but remains narrow as a pulse width (time width).
  • the pulse width can also be extended by utilizing the group delay in a transmission element such as a fiber.
  • the pulse can be extended in a state where the time (elapsed time) in the pulse and the wavelength have a one-to-one correspondence.
  • the correspondence between time and wavelength in the wideband pulsed light (hereinafter referred to as wideband stretched pulsed light) pulse-stretched in this way can be effectively used for spectroscopic measurement.
  • the temporal change in the light intensity detected by the receiver corresponds to the light intensity of each wavelength, that is, the spectrum. Therefore, the temporal change of the output data of the receiver can be converted into a spectrum, and spectroscopic measurement can be performed without using a special dispersion element such as a diffraction grating.
  • the spectral characteristics (for example, spectral transmittance) of the object can be known by irradiating the object with broadband extended pulsed light, receiving the light from the object with a receiver, and measuring the temporal change thereof. You will be able to do it.
  • wideband extended pulsed light is considered to be particularly useful in fields such as spectroscopic measurement.
  • the invention of this application is based on such studies, and an object of the present invention is to provide a practical light source device that emits wideband extended pulsed light and to contribute to the development of spectroscopic measurement technology.
  • the broadband pulse light source device has a one-to-one correspondence between the pulse width of the wideband pulse light source and the wideband pulse light from the wideband pulse light source in terms of the elapsed time in the pulse and the wavelength. It is provided with an extension element that extends so as to.
  • the stretching element is a single-mode fiber having a wavelength dispersion value of ⁇ 30 picoseconds / nm / km or less in the wavelength range of 900 nm or more and 1300 nm or less.
  • the extension element may have a core made of quartz glass and a clad made of fluorine-added quartz glass.
  • the extension element may be a fiber having a core diameter of 1 ⁇ m or more and 5 ⁇ m or less.
  • the wideband pulse light source may be a supercontinuum light source.
  • the broadband pulse light source may be a supercontinuum light source that outputs continuous light over a wavelength width of at least 10 nm in a wavelength range of 900 nm or more and 1300 nm or less. Further, in order to solve the above problems, in the spectroscopic measurement device according to the invention of the present application, light from the wide band pulse light source device and an object irradiated with the wide band pulse light emitted from the wide band pulse light source device is incident.
  • the spectroscopic measurement method according to the invention of the present application includes an irradiation step of irradiating an object with wideband pulsed light emitted from the wideband pulse light source device, and a wideband pulsed light is irradiated in the irradiation step. It includes a light receiving step in which the light from the object is received by the light receiver, and a calculation step in which the output signal from the light receiver is converted into a spectrum by a calculation means.
  • a single mode fiber having a wavelength dispersion value of -30 picoseconds / nm / km or less in a wavelength range of 900 nm or more and 1300 nm or less is used as an extension element. Therefore, it is possible to emit wideband pulsed extended pulsed light having a one-to-one correspondence between time and wavelength and to which a large difference in delay time depending on the wavelength is given. Further, since the extension element is a single mode fiber, it is possible to prevent the uniqueness of time vs. wavelength from being lowered.
  • the extension element is a fiber having a core diameter of 1 ⁇ m or more and 5 ⁇ m or less
  • the drawback of easy operation in multi-mode is solved, the intensity of emitted light is lowered, and an unintended nonlinear optical effect is likely to occur. There is no problem.
  • the broadband pulse light source is a supercontinuum light source, it is possible to obtain light having a continuous spectrum over a wider wavelength range and having a large delay time difference depending on the wavelength.
  • the broadband pulse light source is a light source that outputs continuous light over a wavelength width of at least 10 nm in a wavelength range of 900 nm or more and 1300 nm or less, it is suitable for use in analysis of an object by near infrared spectroscopy. The effect that it can be used is obtained. Further, according to the spectroscopic measurement device or the spectroscopic measurement method according to the invention of the present application, since spectroscopic measurement is performed using such a broadband pulse light source, spectroscopic measurement at a higher speed and a higher SN ratio can be performed as compared with a conventional spectroscope. It will be possible.
  • the wavelength resolution can be made higher while avoiding the loss becoming larger than the limit, for example, even an object having a large absorption can be subjected to spectroscopic measurement by irradiating light with sufficient illuminance, and the measurement can be performed with high resolution. A finer spectrum can be obtained.
  • FIG. 1 is a schematic view of the broadband pulse light source device of the embodiment.
  • the broadband pulse light source device shown in FIG. 1 includes a wideband pulse light source 1 and an extension element 2.
  • the stretching element 2 is an element that pulse-stretches the light from the broadband pulse light source 1 so that the relationship between the elapsed time in one pulse and the wavelength is 1: 1.
  • the broadband pulse light source 1 is a light source that emits light having a continuous spectrum over a wavelength width of at least 10 nm in the range of 900 nm to 1300 nm.
  • the point in the range of 900 nm to 1300 nm is that the light source device of the embodiment is used for light measurement in this wavelength range.
  • Light having a continuous spectrum over a wavelength width of at least 10 nm is typically SC light. Therefore, in this embodiment, the wideband pulse light source 1 is an SC light source.
  • other broadband pulse light sources such as SLD (Superluminescent Diode) light sources may be used.
  • the spectrum of the broadband pulse light source 1 is more preferably continuous over a wavelength width of at least 50 nm, and even more preferably continuous over at least 100 nm.
  • the wideband pulse light source 1 which is an SC light source includes an ultrashort pulse laser 11 and a non-linear element 12.
  • the ultrashort pulse laser 11 a gain switch laser, a microchip laser, a fiber laser, or the like can be used.
  • a fiber is often used for the nonlinear element 12.
  • a photonic crystal fiber or other non-linear fiber can be used as the non-linear element 12.
  • the fiber mode is often a single mode, but it can be used as the non-linear element 12 as long as it exhibits sufficient non-linearity even in the multi-mode.
  • FIG. 2 is a schematic view showing the principle of pulse elongation of wideband pulsed light.
  • a fiber having a specific wavelength dispersion characteristic can be used as an element for extending the pulse width of wideband pulsed light such as SC light.
  • SC light L1 having a continuous spectrum in a certain wavelength range
  • the pulse width is extended. That is, as shown in FIG. 2, in the SC light L1, although it is an ultrashort pulse, the longest wavelength ⁇ 1 exists at the beginning of one pulse, and the light having a gradually shorter wavelength exists over time. At the end of the pulse there is light with the shortest wavelength ⁇ n .
  • the light having a shorter wavelength propagates later in the normally dispersed fiber 20, so that the time difference within one pulse is increased, and when the light is emitted from the fiber 20, it is shorter.
  • Wavelength light will be further delayed compared to long wavelength light.
  • the emitted SC light L2 becomes light whose pulse width is extended while the uniqueness of time vs. wavelength is ensured. That is, as shown on the lower side of FIG. 2, the times t 1 to t n are pulse-extended in a state of having a one-to-one correspondence with the wavelengths ⁇ 1 to ⁇ n . Therefore, if the light intensity is obtained by specifying the time, it indicates the light intensity (spectrum) of the wavelength corresponding to the time. This means that spectroscopic measurements can be performed without using a special element such as a diffraction grating.
  • wavelength resolution how fine the spectrum can be divided to measure light is an important indicator of the performance of the spectroscopic measuring device.
  • a Fourier transform infrared spectroscope or a diffraction grating spectrometer (scanning type or multi-channel type) is used in the spectroscopic measurement in the near infrared region in the range of 900 to 1300 nm, which is often performed for material analysis.
  • a spectrometer measurement is possible with a wavelength resolution of about 5 to 20 nm. Therefore, even when the above-mentioned wideband extended pulsed light is applied to spectroscopic measurement, it is presumed that it will not be practical as a measuring device unless this level of wavelength resolution can be realized.
  • ⁇ / ⁇ t indicates the magnitude of the change in wavelength with respect to the change in time.
  • ⁇ t may be reduced in order to increase the wavelength resolution.
  • ⁇ t corresponds to the detection speed (signal payout cycle) of the receiver, and there is a limit to reducing ⁇ t. Therefore, it is necessary to reduce ⁇ at the minimum ⁇ t, which means that the gradient of ⁇ / ⁇ t needs to be small (gentle).
  • ⁇ at the minimum ⁇ t is the wavelength resolution here. Reducing ⁇ / ⁇ t means reducing the change in wavelength with respect to time.
  • the fact that the change in wavelength is small with respect to the change in time means that it is necessary to increase the amount of wavelength dispersion (absolute value of dispersion value).
  • single-mode fiber for optical communication has zero dispersion near 1310 nm, and the dispersion value is negative at wavelengths shorter than that. Therefore, in the range of about 900 to 1300 nm, the single mode fiber for optical communication can be used as an extension element for the time being.
  • the single-mode fiber for optical communication has a small amount of dispersion (absolute value of the dispersion value) in the wavelength range of about 900 to 1300 nm, and it is difficult to obtain a sufficiently high wavelength resolution.
  • a dispersion shift fiber in which the wavelength of 0 dispersion is shifted to the long wavelength side has also been developed.
  • the zero dispersion in the dispersion shift fiber is around 1550 nm, and the dispersion value is negative on the shorter wavelength side. Therefore, in the range of 900 to 1300 nm, the amount of dispersion is relatively larger than that of single-mode fiber for optical communication.
  • the amount of dispersion is still small, and it is difficult to obtain a sufficiently high wavelength resolution.
  • a dispersion compensation fiber that compensates for waveform distortion due to cumulative wavelength dispersion.
  • the dispersion compensating fiber has a negative dispersion value having a large absolute value for compensation of anomalous dispersion (positive dispersion value) in the single mode fiber.
  • the dispersion compensation fiber is a fiber that performs dispersion compensation in a band of about 1550 nm, which is a main wavelength band of optical communication, and the amount of dispersion is small at 900 to 1300 nm.
  • wavelength dispersion causes distortion of a waveform (transmission signal), and it is required to make it as small as possible. Therefore, the idea of increasing the amount of wavelength dispersion does not exist in the field of optical communication. Dispersion compensation is also to compensate for the variance that still occurs after keeping it small, not the idea of increasing the variance as a whole.
  • the value of wavelength dispersion is a value obtained by standardizing the group delay time by the wavelength size (nm) and the fiber length (km). That is, it is a value indicating how much difference in delay time occurs per 1 km when the wavelengths differ by 1 nm. Therefore, in the range of 900 to 1300 nm, -30 picoseconds / nm / km means that a delay time difference of 30 picoseconds or more per 1 km occurs due to a wavelength difference of 1 nm. To be precise, since it is a negative value, it means that when the wavelength is shortened by 1 nm, it is delayed by 30 picoseconds or more per 1 km.
  • the transmission loss it is necessary to consider the transmission loss. If the fiber is lengthened to obtain the amount of dispersion as a whole, the emitted light becomes too weak, which makes it unusable for practical use.
  • the fiber generally has a loss of about 1 to several dB per 1 km.
  • a dispersion characteristic of -30 picoseconds / nm / km or less is required to emit a wideband extended pulsed light of sufficient intensity.
  • a fiber having a dispersion characteristic of ⁇ 30 picoseconds / nm / km or less is referred to as a “highly dispersed fiber”. Since there is no idea of increasing the dispersion, the term highly dispersed fiber does not exist, but for convenience, it is expressed in this way.
  • the broadband pulse light source device of the embodiment uses the highly dispersed fiber 21 as the extension element 2.
  • the core may be made of quartz glass and the clad may be made of fluorine-added quartz glass.
  • the amount of fluorine added to the clad is about 0.5 mol% to 6 mol% by weight.
  • the size of the wavelength dispersion is also affected by the core diameter (diameter), but the core diameter is, for example, about 2 to 4 mm.
  • FIG. 3 is a diagram showing the wavelength dispersion characteristics of the highly dispersed fiber in the apparatus of the embodiment. As shown in FIG. 3, this fiber is -80 picoseconds / nm / km to -40 picoseconds / nm / km in the range of 900 to 1300 nm, indicating that it is a highly dispersed fiber. ..
  • Such highly dispersed fibers are manufactured by obtaining a preform and drawing a wire.
  • Several companies are known to provide fiber materials in the state of preforms, and request the production of preforms for each of the above materials that will be the core and clad. Then, the provided preform is heated and drawn to produce the above-mentioned highly dispersed fiber.
  • FIG. 4 is a schematic view of the spectroscopic measuring device of the embodiment.
  • the spectroscopic measurement device shown in FIG. 4 is irradiated with a wideband pulse light source device 10, an irradiation optical system 3 that irradiates an object S with wideband extended pulse light emitted from the wideband pulse light source 10, and wideband extended pulse light. It includes a light receiver 4 that receives light from the object S, and a calculation means 5 that performs a calculation for converting an output signal from the light receiver 4 into a spectrum.
  • the device of the above-described embodiment is used.
  • the object S is arranged on the transparent receiving plate 6. Since the measurement wavelength band is in the near infrared region of about 900 to 1300 nm, the receiving plate 6 is made of a material having good transmittance in this band.
  • the irradiation optical system 3 includes a beam expander 31 in this embodiment.
  • the light from the highly dispersed fiber 21 as the extending element 2 is a time-extended wideband pulsed light, it is light from an ultrashort pulse laser source 11, considering that the beam diameter is small.
  • a scanning mechanism such as a galvano mirror may be provided to cover a wide irradiation area by beam scanning.
  • the receiver 4 is arranged on the light emitting side of the receiving plate 6.
  • a photodiode is used.
  • a high-speed photodiode receiver of about 1 to 10 GHz can be preferably used.
  • a general-purpose PC provided with the processor 51 and the storage 52 can be used.
  • Spectroscopic measurement software is installed in the storage 52, which includes a measurement program 53 that converts a temporal change in the output from the receiver 4 into a spectrum, and a reference spectrum used for conversion into a spectrum. Data 54 and the like are included.
  • An AD converter 7 is provided between the receiver 4 and the general-purpose PC, and the output signal of the receiver 4 is converted into digital data by the AD converter 7 and input to the general-purpose PC.
  • FIG. 5 is a schematic view showing the configuration of a measurement program included in the spectroscopic measurement software.
  • the example of FIG. 5 is an example of a configuration for measuring an absorption spectrum (spectral absorption rate).
  • the reference spectrum data 54 is a value for each wavelength that serves as a reference for calculating the absorption spectrum.
  • the reference spectrum data 54 is acquired by causing the light from the broadband pulse light source device 10 to enter the light receiver 4 without passing through the object S. That is, the light is directly incident on the receiver 4 without passing through the object S, the output of the receiver 4 is input to the general-purpose PC via the AD converter 7, and the value for each time resolution ⁇ t is acquired.
  • Each value is stored as the reference intensity of each time (t 1 , t 2 , t 3 , ..., Hereinafter referred to as the time in the pulse) for each ⁇ t in the pulse (V 1 , V 2 , V 3). , .
  • the relationship between the in-pulse time t 1 , t 2 , t 3 , ... And the wavelength has been investigated in advance, and the values of each in-pulse time V 1 , V 2 , V 3 , ... Are ⁇ 1 , respectively. It is treated as a value of ⁇ 2 , ⁇ 3 , ...
  • the output from the receiver 4 passes through the AD converter 7 and similarly, the values of the in-pulse times t 1 , t 2 , t 3 , ... It is stored in the memory as (measured value) (v 1 , v 2 , v 3 , ).
  • Each measurement is compared to reference spectrum data 54 (v 1 / V 1 , v 2 / V 2 , v 3 / V 3 , ). Then, if necessary, the logarithm of each reciprocal is taken and used as the calculation result of the absorption spectrum.
  • the measurement program 53 is programmed to perform the above arithmetic processing.
  • the ratio of the components of the object can be analyzed or the object can be identified by examining the absorption spectrum. Sometimes.
  • FIG. 6 is a schematic view showing an example of wavelength resolution in the spectroscopic measuring apparatus of the embodiment.
  • FIG. 6 shows the wavelength resolution when the quartz glass-based fiber in which fluorine is added to the clad is used as the highly dispersed fiber 21 as described above.
  • the signal payout cycle ⁇ t of the receiver 2 is 0.2 nanoseconds.
  • the wavelength resolution in the range of 900 to 1300 nm is 2 to 4 nm. This resolution is comparable to that of currently popular Fourier transform spectroscopes and diffraction grating spectrometers, and in some cases, it has a higher wavelength resolution.
  • the broadband pulse light source device 10 is operated in a state where the object S is not arranged, the output signal from the receiver 4 is processed, and the reference spectrum data 54 is acquired in advance. To do. Then, the object S is arranged on the receiving plate 7, and the broadband pulse light source device 10 is operated again. Then, the output signal from the light receiver 4 is input to the calculation means 5 via the AD converter 7, converted into a spectrum by the measurement program 53, and the absorption spectrum is calculated.
  • the wideband pulsed light from the wideband pulse light source 1 is stretched by the stretching element 2 so that the time and the wavelength have a one-to-one correspondence, and this light is extended to the object S. Since the spectroscopic measurement is performed by irradiating, spectroscopic measurement at a higher speed and a higher SN ratio is possible as compared with a conventional spectroscope. In the case of spatial spectroscopy using a diffraction grating, the light incident on the receiver tends to be weak due to the loss when it is dispersed in the space, and the scanning of the diffraction grating is repeated to measure the high SN ratio.
  • the Fourier transform spectroscope also needs to scan the mirror, and multiple scans are required to secure the amount of light. According to the spectroscopic measuring device and the spectroscopic measuring method of the embodiment, such a scan is unnecessary, and a sufficient amount of light can be incident on the detector even in a short time. Therefore, high-speed and high SN ratio measurement becomes possible.
  • the wavelength resolution can be further increased while avoiding the loss becoming larger than the limit. Therefore, for example, even for an object S having a large absorption, spectroscopic measurement can be performed by irradiating light with sufficient illuminance, and a finer spectrum can be obtained by high-resolution measurement.
  • the high-dispersion fiber 21 is a single-mode fiber has the significance of preventing the uniqueness of time-to-wavelength from deteriorating and maintaining the accuracy of spectroscopic measurement higher.
  • a multimode fiber is used as the extension element 2
  • dispersion between modes may occur.
  • the uniqueness of time vs. wavelength is broken in the extended wideband pulsed light, and the spectral measurement accuracy is lowered.
  • the highly dispersed fiber 21 is a single mode fiber, there is no such problem.
  • the highly dispersed fiber 21 has a core made of quartz glass and a clad made of fluorine-added quartz glass, but other configurations may be possible.
  • a fiber having a core made of germanium oxide-added quartz glass and a clad made of quartz glass can be used as a highly dispersed fiber.
  • the core may be made of quartz glass to which germanium oxide is added, and the clad may be made of quartz glass to which fluorine is added.
  • the high-dispersion fiber 21 is a single-mode fiber as described above, but from this viewpoint, the core diameter is preferably 5 ⁇ m or less.
  • the core diameter of the highly dispersed fiber 21 is preferably 1 ⁇ m or more.
  • the light propagating in the core in the fiber repeats total internal reflection at the interface between the core and the clad, but part of the light seeps into the clad during total reflection. Therefore, if the clad diameter is made excessively small, the light that seeps from the core to the clad is dissipated from the side surface of the fiber to the outside of the fiber and does not return to the core, resulting in a decrease in the amount of optical transmission. It becomes a factor to make it. Further, bending the optical fiber promotes this exudation.
  • the clad diameter is preferably four times or more the core diameter. Further, considering light leakage due to bending of the fiber, the clad diameter is preferably 10 times or more the core diameter.
  • the receiver 4 is calibrated periodically. Calibration also includes reacquisition of reference spectrum data 54.
  • a calibration method may be adopted in which the optical path is divided into two by a beam splitter or the like on the exit side of the extension element 2, and the reference spectrum data is acquired in real time 54 for one for measurement and the other for reference.
  • the wideband pulse light source device may have various uses other than the above-mentioned spectroscopic measurement.
  • the broadband pulse light source device of the above embodiment can be used for an application such as a microscope in which an object is irradiated with light for observation, or an application in which light is irradiated to measure a distance.
  • the continuous spectrum over a certain wavelength width included in the wavelength range of 900 to 1300 nm is significant to make it suitable for light measurement in the near infrared region, which is particularly effective for material analysis and the like.
  • the spectroscopic measuring device and the spectroscopic measuring method are not limited to this wavelength range.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Nonlinear Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Lasers (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

【課題】 広帯域伸長パルス光を出射する実用的な光源装置を提供する。 【解決手段】 広帯域パルス光源1からの広帯域パルス光のパルス幅をパルス内の経過時間と波長とが1対1で対応するように伸長する伸長素子2は、900nm以上1300nm以下の波長範囲において波長分散値が-30ピコ秒/nm/km以下のシングルモードファイバである。伸長された広帯域パルス光が対象物Sに照射され、対象物Sを透過した光が受光器4で受光され、演算手段5によりスペクトルに変換される。

Description

広帯域パルス光源装置、分光測定装置及び分光測定方法
 この出願の発明は、広帯域パルス光を出射する光源装置に関するものであり、また広帯域パルス光を利用して対象物の分光特性を測定する装置や方法に関するものである。
 パルス光源の典型的なものは、パルス発振のレーザ(パルスレーザ)である。近年、パルスレーザの波長を広帯域化させる研究が盛んに行われており、その典型が、非線形光学効果を利用したスーパーコンティニウム光(以下、SC光という。)の生成である。SC光は、パルスレーザ源からの光をファイバのような非線形素子に通し、自己位相変調や光ソリトンのような非線形光学効果により波長を広帯域化させることで得られる光である。
特開2013-205390号公報
 上述した広帯域パルス光は、波長域としては伸長されているが、パルス幅(時間幅)としては狭いままである。しかし、ファイバのような伝送素子における群遅延を利用するとパルス幅も伸長することができる。この際、適切な波長分散特性を持つ素子を選択すると、パルス内の時間(経過時間)と波長とが1対1に対応した状態でパルス伸長することができる。
 このようにパルス伸長させた広帯域パルス光(以下、広帯域伸長パルス光という。)における時間と波長との対応関係は、分光測定に効果的に利用することが可能である。広帯域伸長パルス光をある受光器で受光した場合、受光器が検出した光強度の時間的変化は、各波長の光強度即ちスペクトルに対応している。したがって、受光器の出力データの時間的変化をスペクトルに変換することができ、回折格子のような特別な分散素子を用いなくても分光測定が可能になる。つまり、広帯域伸長パルス光を対象物に照射してその対象物からの光を受光器で受光してその時間的変化を測定することで、その対象物の分光特性(例えば分光透過率)を知ることができるようになる。
 このように、広帯域伸長パルス光は分光測定等の分野で特に有益と考えられる。この出願の発明は、このような検討に基づくものであり、広帯域伸長パルス光を出射する実用的な光源装置を提供し、分光測定の技術の発展に貢献することを目的としている。
 上記課題を解決するため、この出願の発明に係る広帯域パルス光源装置は、広帯域パルス光源と、広帯域パルス光源からの広帯域パルス光のパルス幅をパルス内の経過時間と波長とが1対1で対応するように伸長する伸長素子とを備えている。伸長素子は、900nm以上1300nm以下の波長範囲において波長分散値が-30ピコ秒/nm/km以下のシングルモードファイバである。
 また、上記課題を解決するため、伸長素子は、コアが石英ガラス製であり、クラッドがフッ素添加の石英ガラス製であり得る。
 また、上記課題を解決するため、伸長素子は、コアの直径が1μm以上5μm以下のファイバであり得る。
 また、上記課題を解決するため、広帯域パルス光源は、スーパーコンティニウム光源であり得る。
 また、上記課題を解決するため、広帯域パルス光源は、900nm以上1300nm以下の波長域において少なくとも10nmの波長幅に亘って連続している光を出力するスーパーコンティニウム光源であり得る。
 また、上記課題を解決するため、この出願の発明に係る分光測定装置は、上記広帯域パルス光源装置と、この広帯域パルス光源装置から出射された広帯域パルス光が照射された対象物からの光が入射する位置に配置された受光器と、受光器からの出力信号をスペクトルに変換する演算を行う演算手段とを備えている。
 また、上記課題を解決するため、この出願の発明に係る分光測定方法は、上記広帯域パルス光源装置から出射された広帯域パルス光を対象物に照射する照射ステップと、照射ステップにおいて広帯域パルス光が照射された対象物からの光を受光器で受光する受光ステップと、受光器からの出力信号を演算手段によりスペクトルに変換する処理を行う演算ステップとを備えている。
 以下に説明する通り、この出願の発明に係る広帯域パルス光源装置によれば、900nm以上1300nm以下の波長範囲において波長分散値が-30ピコ秒/nm/km以下のシングルモードファイバを伸長素子として使用するので、時間と波長とが1対1で対応している広帯域伸張パルス光であって且つ波長に応じた遅延時間の差が大きく付与されている広帯域パルス伸長パルス光を出射させることができる。また、伸長素子はシングルモードファイバであるので、時間対波長の一意性が低下するのが防止される。
 また、伸長素子がコアの直径が1μm以上5μm以下のファイバである場合、マルチモードで動作し易くなる欠点が解消され、また出射光の強度が低下したり意図しない非線形光学効果が生じ易くなったりする問題が生じない。
 また、広帯域パルス光源がスーパーコンティニウム光源である場合、より広い波長範囲に亘って連続スペクトルである光であって波長に応じた遅延時間差の大きな光を得ることができるという効果が得られる。
 また、広帯域パルス光源が900nm以上1300nm以下の波長域において少なくとも10nmの波長幅に亘って連続している光を出力する光源である場合、近赤外分光法による対象物の分析の用途に好適に使用することができるという効果が得られる。
 また、この出願の発明に係る分光測定装置又は分光測定方法によれば、このような広帯域パルス光源を使用して分光測定するので、従来の分光計に比べて高速且つ高SN比の分光測定が可能となる。そして、損失が限度以上に大きくなるのを回避しつつ波長分解能をより高くできるため、例えば吸収の大きな対象物についても十分な照度で光を照射して分光測定が行え、且つ高分解能の測定によってより細かいスペクトルを得ることができる。
実施形態の広帯域パルス光源装置の概略図である。 広帯域パルス光のパルス伸長の原理について示した概略図である。 実施形態の装置における高分散ファイバの波長分散特性を示す図である。 実施形態の分光測定装置の概略図である。 分光測定ソフトウェアに含まれる測定プログラムの構成について示した概略図である。 実施形態の分光測定装置における波長分解能の例について示した概略図である。
 次に、この出願の発明を実施するための形態(実施形態)について説明する。
 まず、広帯域パルス光源装置の発明の実施形態について説明する。図1は、実施形態の広帯域パルス光源装置の概略図である。図1に示す広帯域パルス光源装置は、広帯域パルス光源1と、伸長素子2とを備えている。伸長素子2は、広帯域パルス光源1からの光を1パルス内の経過時間と波長との関係が1対1になるようパルス伸長する素子である。
 広帯域パルス光源1は、900nmから1300nmの範囲において少なくとも10nmの波長幅に亘って連続したスペクトルの光を出射する光源である。900nmから1300nmの範囲とする点は、実施形態の光源装置がこの波長域における光測定を用途としているためである。
 少なくとも10nmの波長幅に亘って連続したスペクトルの光とは、典型的にはSC光である。したがって、この実施形態では、広帯域パルス光源1は、SC光源となっている。但し、SLD(Superluminescent Diode)光源のような他の広帯域パルス光源が使用される場合もある。広帯域パルス光源1におけるスペクトルは、少なくも50nmの波長幅に亘って連続しているとより好ましく、少なくとも100nmに亘って連続しているとさらに好ましい。
 SC光源である広帯域パルス光源1は、超短パルスレーザ11と、非線形素子12とを備えている。超短パルスレーザ11としては、ゲインスイッチレーザ、マイクロチップレーザ、ファイバレーザ等を用いることができる。また、非線形素子12には、ファイバが使用される場合が多い。例えば、フォトニッククリスタルファイバやその他の非線形ファイバが非線形素子12として使用できる。ファイバのモードとしてはシングルモードの場合が多いが、マルチモードであっても十分な非線形性を示すものであれば、非線形素子12として使用できる。
 図2は、広帯域パルス光のパルス伸長の原理について示した概略図である。SC光のような広帯域パルス光のパルス幅を伸長させる素子としては、特定の波長分散特性を有するファイバを使用することができる。例えば、ある波長範囲において連続スペクトルであるSC光L1を当該波長範囲で正の波長分散特性を有するファイバ20に通すと、パルス幅が伸長される。即ち、図2に示すように、SC光L1においては、超短パルスではあるものの、1パルスの初期に最も長い波長λが存在し、時間が経過すると徐々に短い波長の光が存在し、パルスの終期には最も短い波長λの光が存在する。この光を、正常分散のファイバ20に通すと、正常分散のファイバ20では、波長の短い光ほど遅れて伝搬するので、1パルス内の時間差が増長され、ファイバ20を出射する際には、短い波長の光は長い波長の光に比べてさらに遅れるようになる。この結果、出射するSC光L2は、時間対波長の一意性が確保された状態でパルス幅が伸長された光となる。即ち、図2の下側に示すように、時刻t~tは、波長λ~λに対してそれぞれ1対1で対応した状態でパルス伸長される。したがって、時間を特定して光強度を求めれば、それは、その時間に対応する波長の光強度(スペクトル)を示すことになる。これは、回折格子のような特別な素子を使用しなくても分光測定が行えるできることを意味する。
 しかしながら、発明者の研究によると、現状の要素技術における発想では、分光測定用の広帯域パルス光源装置の分野においては、十分に高い測定精度で且つ十分に高い分解能を実現することは難しいことが判ってきた。以下、この点について説明する。
 上述した分散補償ファイバに見られるように、現在市販されている殆どのファイバが光通信用である。したがって、広帯域パルス光源装置における伸長素子としても、光通信用のものを転用して利用せざるを得ない状況である。
 一方、分光測定における主要な技術課題の一つは、波長分解能である。どれくらい細かなスペクトルに分けて光を測定できるかが、分光測定装置の性能を示す重要な指標となっている。例えば、材料分析のためにしばしば行われる900~1300nm程度の範囲の近赤外域の分光測定では、フーリエ変換分光計や回折格子分光計(走査型又はマルチチャンネル型)が使用される。このような分光計では、5~20nm程度の波長分解能で測定が可能となっている。したがって、前述した広帯域伸長パルス光を分光測定に応用する場合も、この程度の波長分解能を実現できないと、測定装置としては実用的なものにならないと推測される。
 図2において、Δλ/Δtは時間の変化に対する波長の変化の大きさを示している。図2から解るように、波長分解能を高くするにはΔtを小さくすれば良い。しかしながら、Δtは受光器の検出速度(信号払い出し周期)に相当しており、Δtを小さくすることには限界がある。したがって、最小のΔtにおいてΔλを小さくすることが必要で、これはΔλ/Δtの勾配を小さく(緩やかに)する必要があることを意味する。最小のΔtにおけるΔλが、ここでの波長分解能である。Δλ/Δtを小さくするということは、時間の変化に対する波長の変化を小さくするということである。時間の変化に対して波長の変化が小さいということは、言い換えれば、波長分散の量(分散値の絶対値)を多くすることが必要ということである。
 しかしながら、光通信用のファイバの転用を前提として考えると、前述した5~20nm程度の波長分解能(20nm以下の波長分解能)を達成することは、分散の量が少なく、難しい。周知のように、光通信用のシングルモードファイバは、1310nm付近でゼロ分散となっており、それより短い波長では分散値は負となっている。したがって、900~1300nm程度の範囲では、光通信用のシングルモードファイバは、伸長素子として一応使用可能である。しかしながら、発明者の検討によると、光通信用のシングルモードファイバは、900~1300nm程度の波長範囲において分散の量(分散値の絶対値)が少なく、十分に高い波長分解能を得ることは難しい。
 また、光通信用のファイバとして、0分散の波長を長波長側にシフトさせた分散シフトファイバも開発されている。分散シフトファイバにおけるゼロ分散は1550nm付近であり、それより短波長側では分散値は負である。したがって、900~1300nmの範囲では、光通信用のシングルモードファイバよりも分散の量が比較的多い。しかしながら、発明者の検討によると、それでもまだ分散の量が少なく、十分に高い波長分解能を得ることが難しい。
 さらに、光通信用のファイバとして、累積波長分散による波形の歪みを補償する分散補償ファイバが知られている。分散補償ファイバは、シングルモードファイバにおける異常分散(正の分散値)の補償のため、絶対値の大きな負の分散値を有している。しかしながら、分散補償ファイバは、光通信の主要な波長帯域である1550nm前後の帯域において分散補償を行うファイバであり、900~1300nmでは分散の量は少なくなってしまっている。
 このような状況は、光通信用のファイバ技術としては至極当然のことである。つまり、光通信において波長分散は波形(伝送信号)の歪みをもたらすものであり、極力小さくすることが求められる。したがって、波長分散の量を大きくするという発想は、光通信の分野には存在しない。分散補償も、小さく抑えた上でそれでも生じる分散を補償するということであり、分散を全体として大きくするという発想ではない。
 本願の発明者は、このような状況の下、分光測定用という異なる用途、技術分野のため、逆転の発想に立ち、分散の量を多くし、それによって高い波長分可能の得るという技術思想を相当するに至った。そして、さらに鋭意研究を重ねた結果、900~1300nmの範囲において-30ピコ秒/nm/km以下の分散値を有するファイバを伸長素子2として使用することが好適であることが判明した。「-30ピコ秒/nm/km以下」とは、自明であるが、分散値が負でその絶対値が30ピコ秒/nm/kmより大きいという意味である。
 周知のように、波長分散の値は、群遅延時間を波長の大きさ(nm)とファイバの長さ(km)で規格化した値である。つまり、波長が1nm違った際に1kmあたりにどの程度の遅延時間の差が生じるかを示す値である。したがって、900~1300nmの範囲において-30ピコ秒/nm/kmとは、波長1nm違うことに1kmあたり30ピコ秒以上の遅延時間の差が生じることを意味する。正確には、負の値であるから、波長が1nm短くなると1kmあたり30ピコ秒以上より遅れるということを意味する。
 分散の量を全体として多くするには、より長いファイバを使用するという発想もあり得る。例えば、-30ピコ秒/nm/kmのファイバを1kmの長さで使用した場合と、-15ピコ秒/nm/kmのファイバを2kmの長さで使用した場合とで、全体の分散の量は同じである。しかしながら、ファイバの場合には伝送損失を考慮する必要がある。ファイバを長くして全体としての分散の量を得ようとすると、出射する光があまりにも弱くなってしまい、実用に耐えないことになる。ファイバは、一般的には、1kmあたり1~数dB程度の損失がある。これを前提にして十分な強度の広帯域伸長パルス光を出射させるには、-30ピコ秒/nm/km以下の分散特性が必要であるというのが、発明者による検討結果である。以下、この明細書において、-30ピコ秒/nm/km以下の分散特性を有するファイバを、「高分散ファイバ」と呼ぶ。分散を大きくするという発想が存在しないので、高分散ファイバという用語は存在しないが、便宜上、このように表現する。
 このような検討の下、実施形態の広帯域パルス光源装置は、伸長素子2として高分散ファイバ21を使用している。高分散ファイバ21としては、例えば、コアが石英ガラス製、クラッドはフッ素添加の石英ガラス製のものとすることができる。クラッドにおけるフッ素の添加量は、重量比で0.5mol%~6mol%程度である。波長分散の大きさはコア径(直径)も影響するが、コア径は例えば2~4mm程度である。
 図3は、実施形態の装置における高分散ファイバの波長分散特性を示す図である。図3に示すように、このファイバは、900~1300nmの範囲において、-80ピコ秒/nm/km~-40ピコ秒/nm/kmとなっており、高分散ファイバであることを示している。
 このような高分散ファイバは、プリフォームを入手し、線引きすることで製造される。プリフォームの状態でファイバ材料を提供している会社が幾つか知られており、コア及びクラッドとなる上記各材料でプリフォームの製造を依頼する。そして、提供されたプリフォームを加熱して線引きすることで、上記高分散ファイバが製造される。
 次に、このような広帯域パルス光源装置を搭載した分光測定装置について説明する。図4は、実施形態の分光測定装置の概略図である。
 図4に示す分光測定装置は、広帯域パルス光源装置10と、広帯域パルス光源10からの出射された広帯域伸長パルス光を対象物Sに照射する照射光学系3と、広帯域伸長パルス光が照射された対象物Sからの光を受光する受光器4と、受光器4からの出力信号をスペクトルに変換する演算を行う演算手段5とを備えている。
 広帯域パルス光源装置10には、上述した実施形態のものが使用されている。この実施形態では、対象物Sの透過光を分光測定することが想定されているため、対象物Sは透明な受け板6上に配置される。測定波長帯域は900~1300nm程度の近赤外域となっているため、受け板6は、この帯域において良好な透過率を有する材質のものが使用される。
 照射光学系3は、この実施形態では、ビームエキスパンダ31を含んでいる。伸長素子2としての高分散ファイバ21からの光は、時間伸長された広帯域パルス光ではあるものの、超短パルスレーザ源11からの光であり、ビーム径が小さいことを考慮したものである。この他、ガルバノミラーのようなスキャン機構を設け、ビームスキャンにより広い照射領域をカバーする場合もある。
 受光器4は、受け板6の光出射側に配置されている。受光器4としては、フォトダイオードによるものが使用される。1~10GHz程度の高速フォトダイオード受光器が好適に使用できる。
 演算手段5としては、プロセッサ51及びストレージ52を備えた汎用PCが使用できる。ストレージ52には、分光測定ソフトウェアがインストールされており、これには、受光器4からの出力の時間的変化をスペクトルに変換する測定プログラム53や、スペクトルへの変換の際に使用される基準スペクトルデータ54等が含まれている。尚、受光器4と汎用PCとの間にはAD変換器7が設けられており、受光器4の出力信号は、AD変換器7によりデジタルデータに変換されて汎用PCに入力される。
 図5は、分光測定ソフトウェアに含まれる測定プログラムの構成について示した概略図である。図5の例は、吸収スペクトル(分光吸収率)を測定するための構成の例となっている。基準スペクトルデータ54は、吸収スペクトルを算出するための基準となる波長毎の値である。基準スペクトルデータ54は、広帯域パルス光源装置10からの光を対象物Sを経ない状態で受光器4に入射させることで取得する。即ち、対象物Sを経ないで光を受光器4に直接入射させ、受光器4の出力をAD変換器7経由で汎用PCに入力させ、時間分解能Δtごとの値を取得する。各値は、パルス内のΔtごとの各時刻(t,t,t,・・・,以下、パルス内時刻という。)の基準強度として記憶される(V,V,V,・・・)。
 各パルス内時刻t,t,t,・・・での基準強度V,V,V,・・・は、対応する各波長λ,λ,λ,・・・の強度である。パルス内時刻t,t,t,・・・と波長との関係が予め調べられており、各パルス内時刻の値V,V,V,・・・が各λ,λ,λ,・・・の値であると取り扱われる。
 そして、対象物を経た光を受光器4に入射させた際、受光器4からの出力はAD変換器7を経て同様に各パルス内時刻t,t,t,・・・の値(測定値)としてメモリに記憶される(v,v,v,・・・)。各測定値は、基準スペクトルデータ54と比較される(v/V,v/V,v/V,・・・)。そして、必要に応じて各逆数の対数を取り、吸収スペクトルの算出結果とする。
 上記のような演算処理をするよう、測定プログラム53はプログラミングされている。尚、図5の例では、吸収スペクトルを調べるだけのようになっているが、実際には、吸収スペクトルを調べることで、対象物の成分の比率を分析したり、対象物を同定したりすることもある。
 図6は、実施形態の分光測定装置における波長分解能の例について示した概略図である。図6には、一例として、前述したようにクラッドにフッ素添加をした石英ガラス系ファイバを高分散ファイバ21として使用した場合の波長分解能が示されている。この例では、受光器2の信号払い出し周期Δtは、0.2ナノ秒となっている。
 図6に示すように、実施形態の分光測定装置では、900~1300nmの範囲における波長分解能は2~4nmとなっている。この分解能は、現在普及しているフーリエ変換分光計や回折格子分光計と比べても遜色なく、場合によってはより高い波長分解能となっている。
 次に、上記分光測定装置の動作について説明する。以下の説明は、分光測定方法の実施形態の説明でもある。実施形態の分光測定装置を使用して分光測定する場合、対象物Sを配置しない状態で広帯域パルス光源装置10を動作させ、受光器4からの出力信号を処理して予め基準スペクトルデータ54を取得する。その上で、対象物Sを受け板7に配置し、広帯域パルス光源装置10を再び動作させる。そして、受光器4からの出力信号をAD変換器7を介して演算手段5に入力し、測定プログラム53によりスペクトルに変換して吸収スペクトルを算出する。
 このような分光測定装置又は分光測定方法によれば、広帯域パルス光源1からの広帯域パルス光を時間と波長が1対1で対応するように伸長素子2で伸長し、この光を対象物Sに照射して分光測定するので、従来の分光計に比べて高速且つ高SN比の分光測定が可能となる。回折格子を使用した空間的な分光の場合、空間に分散させる際の損失があるため、受光器に入射する光は微弱になり易く、高SN比の測定のためには回折格子のスキャンを繰り返して光量を確保する必要がある。また、フーリエ変換分光計でも、ミラーのスキャンが必要で、光量を確保するために複数回のスキャンが必要になっている。実施形態の分光測定装置及び分光測定方法によれば、このようなスキャンは不要であり、短い時間でも十分な量の光を検出器に入射させることができる。このため、高速且つ高SN比の測定が可能となる。
 加えて、伸長素子2として高分散ファイバ21を使用しているので、損失が限度以上に大きくなるのを回避しつつ波長分解能をより高くできる。このため、例えば吸収の大きな対象物Sについても十分な照度で光を照射して分光測定が行え、且つ高分解能の測定によりより細かいスペクトルを得ることができる。
 また、高分散ファイバ21がシングルモードファイバである点には、時間対波長の一意性が低下するのを防止し、分光測定の精度をより高く維持する意義がある。伸長素子2としてマルチモードファイバを使用した場合、モード間分散が生じ得る。モード間分散が生じると、同じ波長でも遅延時間に差が生じてしまう。この結果、伸長された広帯域パルス光において時間対波長の一意性が崩れ、分光測定精度が低下してしまう。この実施形態では、高分散ファイバ21はシングルモードファイバであるので、このような問題はない。
 尚、上記実施形態では、高分散ファイバ21は、コアが石英ガラス製でクラッドがフッ素添加の石英ガラス製であったが、他の構成もあり得る。例えば、コアを酸化ゲルマニウム添加の石英ガラス製とし、クラッドを石英ガラス製としたファイバを高分散ファイバとして用いることができる。また、コアが酸化ゲルマニウム添加の石英ガラス製でクラッドがフッ素添加の石英ガラス製であっても良い。
 また、高分散ファイバ21は、上記の通りシングルモードファイバであるが、この観点では、コア径は5μm以下とすることが好ましい。5μmを超えると、マルチモードでの動作がし易くなり、時間対波長の一意性が崩れ易くなるからである。但し、コア径があまりにも小さくなると、コアに入射して伝送される光の量が限度以上に低下してしまい、出射する光の強度が十分に得られなくなる恐れがある。また、コア径が小さくなると、意図しない非線形効果が生じ易くなる問題もある。これらを考慮すると、高分散ファイバ21のコア径は1μm以上とすることが好ましい。
 また、ファイバ中のコアを伝搬する光は、コアとクラッドの界面で全反射を繰り返しているが、全反射の際に光の一部はクラッドへと染み出している。このため、クラッド径を過度に小さくすると、コアからクラッドへと染み出した光は、ファイバの側面からファイバの外部へと散逸してしまい、コアへと戻らず、結果的に光伝送量を低下させる要因となる。さらに、光ファイバを曲げると、この染み出しは促進される。以上の事情から、900~1300nmの光の波長範囲における、シングルモードファイバのコアからクラッドへの光染み出しを考慮すると、クラッド径はコア径の4倍以上とすることが好ましい。さらに、ファイバの曲げによる光漏れ等も考慮すると、クラッド径はコア径の10倍以上であることが好ましい。
 上記実施形態において、受光器4は定期的に校正がされる。校正には、基準スペクトルデータ54の再取得も含まれる。この場合、伸長素子2の出射側においてビームスプリッタ等で光路を二つに分け、一方を測定用とし他方の参照用として基準スペクトルデータをリアルタイム54で取得する校正方法が採用されることもあり得る。
 また、広帯域パルス光源装置の用途としては、上述した分光測定以外にも、各種の用途があり得る。例えば、顕微鏡のように対象物に光照射して観察する用途や、光照射して距離を計測するような用途についても、上記実施形態の広帯域パルス光源装置を使用することができる。
 尚、900~1300nmの波長範囲に含まれるある波長幅に亘って連続スペクトルであることは、材料分析等に特に有効な近赤外域での光測定用として好適なものにする意義がある。但し、分光測定はこの波長範囲以外も種々のものがあり、分光測定装置や分光測定方法としては、この波長範囲に限られるものではない。
1 広帯域パルス光源
10 広帯域パルス光源装置
11 超短パルスレーザ
12 非線形素子
2 伸長素子
21 高分散ファイバ
3 照射光学系
4 受光器
5 演算手段
53 測定プログラム
6 受け板
S 対象物

Claims (7)

  1.  広帯域パルス光源と、
     広帯域パルス光源からの広帯域パルス光のパルス幅をパルス内の経過時間と波長とが1対1で対応するように伸長する伸長素子とを備えており、
     伸長素子は、900nm以上1300nm以下の波長範囲において波長分散値が-30ピコ秒/nm/km以下のシングルモードファイバであることを特徴とする広帯域パルス光源装置。
  2.  前記伸長素子は、コアが石英ガラス製であり、クラッドがフッ素添加の石英ガラス製であることを特徴とする請求項1記載の広帯域パルス光源装置。
  3.  前記伸長素子は、コアの直径が1μm以上5μm以下のファイバであることを特徴とする請求項1又は2記載の広帯域パルス光源装置。
  4.  前記広帯域パルス光源は、スーパーコンティニウム光源であることを特徴とする請求項1乃至3いずれかに記載の広帯域パルス光源装置。
  5.  前記広帯域パルス光源は、900nm以上1300nm以下の波長域において少なくとも10nmの波長幅に亘って連続している光を出力するスーパーコンティニウム光源であることを特徴とする請求項1乃至4いずれかに記載の広帯域パルス光源装置。
  6.  請求項1乃至5いずれかに記載の広帯域パルス光源装置と、
     この広帯域パルス光源装置から出射された広帯域パルス光が照射された対象物からの光が入射する位置に配置された受光器と、
     受光器からの出力信号をスペクトルに変換する演算を行う演算手段とを備えていることを特徴とする分光測定装置。
  7.  請求項1乃至5いずれかに記載の広帯域パルス光源装置から出射された広帯域パルス光を対象物に照射する照射ステップと、
     照射ステップにおいて広帯域パルス光が照射された対象物からの光を受光器で受光する受光ステップと、
     受光器からの出力信号を演算手段によりスペクトルに変換する処理を行う演算ステップとを備えていることを特徴とする分光測定方法。
PCT/JP2020/019251 2019-05-22 2020-05-14 広帯域パルス光源装置、分光測定装置及び分光測定方法 WO2020235441A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019096412A JP2020190498A (ja) 2019-05-22 2019-05-22 広帯域パルス光源装置、分光測定装置及び分光測定方法
JP2019-096412 2019-05-22

Publications (1)

Publication Number Publication Date
WO2020235441A1 true WO2020235441A1 (ja) 2020-11-26

Family

ID=73453668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/019251 WO2020235441A1 (ja) 2019-05-22 2020-05-14 広帯域パルス光源装置、分光測定装置及び分光測定方法

Country Status (2)

Country Link
JP (1) JP2020190498A (ja)
WO (1) WO2020235441A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114544010A (zh) * 2022-02-25 2022-05-27 中国科学院上海光学精密机械研究所 焦斑处超短激光脉冲宽度测量装置与方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023088595A (ja) * 2021-12-15 2023-06-27 浜松ホトニクス株式会社 計測装置及び計測方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008002815A (ja) * 2006-06-20 2008-01-10 Univ Nagoya 波長変化パルス光発生装置およびこれを用いた光断層計測装置
JP2009273550A (ja) * 2008-05-13 2009-11-26 Canon Inc 光断層画像撮像装置
JP2015041784A (ja) * 2013-08-20 2015-03-02 国立大学法人 東京大学 高速撮影システム及び方法
WO2018225799A1 (ja) * 2017-06-08 2018-12-13 ウシオ電機株式会社 分光測定方法、分光測定装置及び広帯域パルス光源ユニット
JP2018205546A (ja) * 2017-06-05 2018-12-27 日本電信電話株式会社 広帯域光発生装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008002815A (ja) * 2006-06-20 2008-01-10 Univ Nagoya 波長変化パルス光発生装置およびこれを用いた光断層計測装置
JP2009273550A (ja) * 2008-05-13 2009-11-26 Canon Inc 光断層画像撮像装置
JP2015041784A (ja) * 2013-08-20 2015-03-02 国立大学法人 東京大学 高速撮影システム及び方法
JP2018205546A (ja) * 2017-06-05 2018-12-27 日本電信電話株式会社 広帯域光発生装置
WO2018225799A1 (ja) * 2017-06-08 2018-12-13 ウシオ電機株式会社 分光測定方法、分光測定装置及び広帯域パルス光源ユニット

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114544010A (zh) * 2022-02-25 2022-05-27 中国科学院上海光学精密机械研究所 焦斑处超短激光脉冲宽度测量装置与方法
CN114544010B (zh) * 2022-02-25 2024-03-01 中国科学院上海光学精密机械研究所 焦斑处超短激光脉冲宽度测量装置与方法

Also Published As

Publication number Publication date
JP2020190498A (ja) 2020-11-26

Similar Documents

Publication Publication Date Title
JP7070567B2 (ja) 分光測定方法、分光測定装置及び広帯域パルス光源ユニット
JP7115387B2 (ja) 光測定用光源装置、分光測定装置及び分光測定方法
Tosi et al. Rayleigh scattering characterization of a low-loss MgO-based nanoparticle-doped optical fiber for distributed sensing
WO2020235441A1 (ja) 広帯域パルス光源装置、分光測定装置及び分光測定方法
JPH10186424A (ja) 超短光パルスの伝達装置、発生装置および伝達方法
JP7215060B2 (ja) 分光分析用光源、分光分析装置及び分光分析方法
Gray et al. Real-Time Modal Analysis via Wavelength-Swept Spatial and Spectral (${S}^{2}) $ Imaging
CN107064100A (zh) 基于色散时变的光纤拉曼光谱仪
US20100108886A1 (en) Method and apparatus for infrared spectrometry
WO2020196692A1 (ja) 広帯域パルス光源装置、分光測定装置及び分光測定方法
US10816720B2 (en) Optical fiber with specialized figure-of-merit and applications therefor
JP7147657B2 (ja) 広帯域パルス光源装置、分光測定装置及び分光測定方法
JP2739686B2 (ja) 単一モード光ファイバーの非線形屈折率を測定するための方法及び装置
Labonté et al. Experimental and numerical analysis of the chromatic dispersion dependence upon the actual profile of small core microstructured fibres
WO2021024890A1 (ja) 広帯域パルス光源装置、分光測定装置、分光測定方法及び分光分析方法
Wang et al. Dispersive Fourier transformation in the 800 nm spectral range
WO2022064875A1 (ja) アレイ導波路回折格子、広帯域光源装置及び分光測定装置
WO2022186383A1 (ja) 量子吸収分光システム
Liang et al. Dispersion measurement of large mode area Yb-doped double-clad fiber
JP2016173561A (ja) 伝送装置、これを用いた測定装置、装置及び伝送方法
Lee et al. Spectrum-sliced Fourier-domain low-coherence interferometry for measuring the chromatic dispersion of an optical fiber
JP2020159977A (ja) 広帯域パルス光源装置、分光測定装置及び分光測定方法
Ayesta Ereño et al. Characterization of Chromatic Dispersion and Refractive Index of Polymer Optical Fibers
JP2020159978A (ja) 分光測定装置及び分光測定方法
JPS63247645A (ja) 分光方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20809334

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20809334

Country of ref document: EP

Kind code of ref document: A1