WO2020235422A1 - ガス保安装置 - Google Patents

ガス保安装置 Download PDF

Info

Publication number
WO2020235422A1
WO2020235422A1 PCT/JP2020/019151 JP2020019151W WO2020235422A1 WO 2020235422 A1 WO2020235422 A1 WO 2020235422A1 JP 2020019151 W JP2020019151 W JP 2020019151W WO 2020235422 A1 WO2020235422 A1 WO 2020235422A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
gas
unit
pressure sensor
flow rate
Prior art date
Application number
PCT/JP2020/019151
Other languages
English (en)
French (fr)
Inventor
行徳 太一
憲司 安田
健太 内田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202080034874.2A priority Critical patent/CN113811745B/zh
Priority to EP20808824.5A priority patent/EP3971538A4/en
Priority to US17/599,538 priority patent/US11714434B2/en
Publication of WO2020235422A1 publication Critical patent/WO2020235422A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/72Devices for measuring pulsing fluid flows
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/001Means for regulating or setting the meter for a predetermined quantity
    • G01F15/002Means for regulating or setting the meter for a predetermined quantity for gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/005Valves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L15/00Devices or apparatus for measuring two or more fluid pressure values simultaneously
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/28Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds
    • G01M3/2807Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds for pipes
    • G01M3/2815Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds for pipes using pressure measurements

Definitions

  • the present disclosure relates to a gas security device that measures a gas flow rate and shuts off a gas passage when an abnormal flow rate is measured to ensure safety in using gas.
  • a gas safety device in which a gas meter that measures the amount of gas used determines that it is abnormal and shuts off the gas passage to ensure safety (see Patent Document 1).
  • This gas safety device includes an ultrasonic sensor, an ultrasonic flow rate measuring unit in which a circuit board including an ultrasonic sensor drive circuit is integrated, and a pressure sensor for measuring the differential pressure between the supply pressure side and the atmospheric pressure. .. Further, when it is determined that the differential pressure between the supply pressure side and the atmospheric pressure measured by the pressure sensor is abnormal, it has a control function of shutting off the flow path to stop the gas supply and a function of notifying.
  • the pressure sensor built into the gas security device is a differential pressure measurement type that measures the pressure of the gas based on the atmospheric pressure, it has a through hole for introducing the gas into the pressure sensor, and the area around the gas security device is very large. If the temperature becomes high, gas may leak from the through hole. Therefore, as a configuration that does not require a through hole, there is a means for measuring a change in gas supply pressure from the difference between the measured values of the absolute pressure pressure sensor that measures the atmospheric pressure and the absolute pressure pressure sensor that measures the gas pressure.
  • the gas security device in the present disclosure is arranged inside a flow path for flowing gas, a flow rate measuring unit for measuring the flow rate of gas flowing through the flow path, and a third, and measures the absolute pressure of gas.
  • the transition state of the absolute pressure measured by the first pressure sensor, the second pressure sensor arranged outside the flow path and measuring the absolute pressure of atmospheric pressure, the first pressure sensor, or the second pressure sensor. It is provided with a pressure value transition detection unit for detecting.
  • the sensor drive control unit that controls the drive of the first pressure sensor or the second pressure sensor according to the transition value of the pressure value transition detection unit, and the first pressure sensor and the second pressure sensor are both driven.
  • a gas pressure determination unit that calculates the gas supply pressure from the difference in the pressure values measured at the time of operation.
  • shutoff valve that shuts off the flow path and the flow rate measurement unit are controlled, and when the flow rate measured by the flow rate measurement section or the gas supply pressure calculated by the gas pressure determination section is judged to be abnormal, the flow path is blocked by the shutoff valve.
  • a control circuit for shutting off is provided.
  • FIG. 1 is a configuration diagram of a gas security device according to the first embodiment.
  • FIG. 2 is an operation explanatory view of the gas security device according to the first embodiment.
  • FIG. 3 is a block diagram of the gas security device according to the second embodiment.
  • FIG. 4 is an operation explanatory view of the gas security device according to the second embodiment.
  • the gas safety device 100 includes a flow path 101 through which gas flows, a shutoff valve 102 that shuts off the flow path 101, a flow rate measuring unit 103 that measures the flow rate of gas flowing through the flow path 101, and a flow rate measuring unit 103.
  • a control circuit 104 that integrates the amount of gas used using the flow rate measurement data measured in 1 is provided.
  • the gas safety device 100 includes a gas side absolute pressure pressure sensor 105 which is a first pressure sensor for measuring the absolute pressure of gas, and an atmospheric side absolute pressure pressure which is a second pressure sensor for measuring the absolute pressure of the atmosphere.
  • the gas security device 100 includes a sensor 106, an electronic circuit 107 installed in a gas atmosphere, and a pressure value transition detection unit 108 that detects an absolute pressure transition state measured by the gas side absolute pressure pressure sensor 105.
  • the gas security device 100 includes a sensor drive control unit 109 that controls the drive of the atmospheric side absolute pressure pressure sensor 106 according to the pressure value transition state detected by the pressure value transition detection unit 108, and a gas side absolute pressure pressure sensor 105.
  • the gas pressure determination unit 110 that calculates the gas supply pressure from the difference between the two pressure values measured by the atmospheric side absolute pressure pressure sensor 106.
  • the gas-side absolute pressure pressure sensor 105 which is the first pressure sensor, is mounted as an electronic component on the electronic circuit 107 installed in the gas atmosphere inside the flow path 101, and is a signal from the control circuit 104.
  • the absolute pressure of the gas in the flow path 101 is measured.
  • the atmospheric side absolute pressure pressure sensor 106 which is the second pressure sensor, is mounted as an electronic component on the control circuit 104 installed on the atmospheric side outside the flow path 101, and the signal from the control circuit 104.
  • the absolute pressure of the atmosphere is applied.
  • FIG. 2 shows changes in the absolute pressure on the gas side and the absolute pressure on the atmosphere side during the same period, the gas side absolute pressure pressure sensor 105 which is the first pressure sensor, and the atmosphere side absolute pressure pressure sensor which is the second pressure sensor.
  • An example of the measurement timing of 106 is shown.
  • the gas side absolute pressure pressure sensor 105 is always driven at a predetermined interval (for example, 2 seconds to 10 seconds) to perform measurement. That is, the predetermined interval is the interval of the measurement timing of the gas side absolute pressure pressure sensor 105.
  • the gas side pressure value transition detection unit 108 detects that the absolute pressure measured by the gas side absolute pressure pressure sensor 105 has changed by a predetermined value (for example, 2 kPa) or more
  • the sensor drive control unit 109 detects the atmospheric side absolute pressure.
  • the pressure sensor 106 is driven to measure the pressure on the atmospheric side.
  • the change in the absolute pressure measured by the gas side absolute pressure pressure sensor 105 is less than a predetermined value, the atmospheric side absolute pressure pressure sensor 106 is not driven and the measurement is stopped.
  • the pressure change at predetermined intervals is less than 2 kPa, so that the atmospheric side absolute pressure pressure sensor 106 is not driven.
  • the pressure difference ⁇ Pgn between the absolute pressure Pgn-1 at the measurement timing Tn-1 and the absolute pressure Pgn at the measurement timing Tn is 2 kPa or more, and at the measurement timing Tn, the atmospheric side absolute pressure pressure sensor 106 is driven to drive the atmosphere.
  • the absolute pressure Pan on the side is being measured.
  • the pressure difference ⁇ Pgn + 1 between the absolute pressure Pgn of the measurement timing Tn by the gas side absolute pressure pressure sensor 105 and the absolute pressure Pgn + 1 of the measurement timing Tn + 1 is less than 2 kPa, so that the atmospheric side absolute pressure pressure sensor
  • the drive of 106 is stopped.
  • the driving of the atmospheric side absolute pressure pressure sensor 106 is stopped.
  • the gas pressure determination unit 110 measures this by measuring the absolute pressure Pgn on the gas side by the gas side absolute pressure pressure sensor 105 and the atmospheric side absolute pressure Pan by the atmosphere side absolute pressure pressure sensor 106.
  • the gas supply pressure can be calculated from the difference between the two pressure values.
  • the control circuit 104 determines the flow rate measurement data measured by the flow rate measuring unit 103, the gas supply pressure and its change, determines whether or not there is an abnormality such as a gas leak, and if it is determined to be abnormal, the shutoff valve 102 is used.
  • the flow path 101 is cut off to stop the gas supply.
  • a pressure change of a predetermined value or more is detected by measuring the absolute pressure on the gas side only by the gas side absolute pressure pressure sensor 105, which is usually the first pressure sensor. It controls the drive / stop of the atmospheric side absolute pressure pressure sensor 106, which is the second pressure sensor.
  • a differential pressure measurement type pressure sensor is used to detect fluctuations in the gas supply pressure using the difference between two absolute pressure and pressure sensors that can suppress power consumption and measure absolute pressure. It is possible to realize a highly safe gas security device by eliminating the need for a through hole required when using the gas.
  • the pressure value transition detection unit 108 employs a method of detecting the pressure difference between the measurement timings by the gas side absolute pressure pressure sensor 105, but the pressure difference between the distant measurement timings and the pressure difference A method of detecting a pressure transition based on an average pressure difference between a plurality of measurement timings or a change pattern may be adopted.
  • the configuration has been described in which the pressure is measured by the gas side absolute pressure pressure sensor 105 to control the stop / drive of the atmospheric side absolute pressure pressure sensor 106, but the atmospheric side absolute pressure pressure sensor 106 has been described. Needless to say, the same can be achieved with a configuration in which the stop / drive of the gas side absolute pressure pressure sensor 105 is controlled based on the pressure measurement.
  • the same can be achieved even if the flow rate measuring unit 103 is used for ultrasonic flow rate measurement.
  • the gas side absolute pressure pressure sensor 105 has been described as being mounted on the electronic circuit 107 installed in the gas atmosphere inside the flow path 101, but anywhere in the flow path. Needless to say, it may be implemented in. Further, although the configuration has been described in which the atmospheric pressure absolute pressure sensor 106 is mounted on the control circuit 104 installed on the atmospheric side outside the flow path 101, there is no limitation on the mounting location as long as the atmospheric pressure can be measured.
  • FIG. 3 the same components described with reference to FIG. 1 are designated by the same number and the description thereof will be omitted.
  • the gas safety device 200 uses the flow rate 101, the shutoff valve 102, the flow rate measuring unit 103 for measuring the flow rate of the gas flowing through the flow path 101, and the flow rate measurement data measured by the flow rate measuring unit 103.
  • the control circuit 204 for integrating the above is provided.
  • the gas security device 200 includes a gas side absolute pressure pressure sensor 105 which is a first pressure sensor, an atmospheric side absolute pressure pressure sensor 106 which is a second pressure sensor, and an electronic circuit installed in a gas atmosphere. It includes 107, a sensor drive control unit 209 that controls the drive of the gas side absolute pressure pressure sensor 105 and the atmosphere side absolute pressure pressure sensor 106.
  • the gas safety device 200 collects the pressure value measured by the gas side absolute pressure pressure sensor 105 n times and the gas side pressure value sampling unit 201, and the pressure value measured by the atmosphere side absolute pressure pressure sensor 106 n times. It is provided with an atmospheric pressure value sampling unit 202 for sampling. Further, the gas safety device 200 is obtained by the gas side previous value comparison unit 220 and the atmospheric side pressure value collection unit 202 that compare the previous pressure value obtained by the gas side pressure value collection unit 201 with the current pressure value.
  • a drive stop determination unit 205 for determining the drive stop of the absolute pressure pressure sensor 106 is provided. Further, the gas safety device 200 calculates the gas supply pressure from the difference between the absolute pressure value collected by the gas side pressure value collecting unit 201 and the absolute pressure value collected by the atmospheric pressure value collecting unit 202. A unit 110 is provided.
  • the pressure measurement by the gas pressure determination unit 110 is periodically executed at a predetermined time interval T (for example, 2 seconds to 10 seconds).
  • the pressure measurement times T1 and T2 indicate the timing of pressure measurement.
  • the gas side pressure value sampling unit 201 has a maximum nth pressure value from the first pressure value Pg (1) measured at predetermined intervals (for example, 5 ms) by the gas side absolute pressure pressure sensor 105. Collect the absolute pressure value up to Pg (n).
  • the atmospheric side pressure value sampling unit 202 has a maximum nth pressure value Pa (n) from the first pressure value Pa (1) measured by the atmospheric side absolute pressure pressure sensor 106 at the same timing as the gas side absolute pressure pressure sensor 105. Collect the absolute pressure value up to.
  • the gas side previous value comparison unit 220 compares the first pressure value Pg (1) with the second pressure value Pg (2). After that, each time the measured value is collected, it is compared with the previous value.
  • the atmospheric side previous value comparison unit 221 collects the pressure value Pa (2) for the second time by the atmospheric side pressure value collection unit 202, the atmospheric side previous value comparison unit 221 receives the first pressure value Pa. (1) is compared with the pressure value Pa (2) for the second time, and thereafter, the pressure value is compared with the previous pressure value every time the pressure value is collected.
  • the pressure value on the gas side is compared with the pressure value Pg (k) on the gas side in the kth measurement and the pressure value Pg (k + 1) on the gas side in the k + first measurement. It is judged to be stable, and the pressure value Pa (k) on the atmosphere side in the kth measurement on the atmosphere side and the pressure value Pa (k + 1) on the atmosphere side in the k + 1st measurement are compared. If it is determined that the pressure value is stable, the k + second and subsequent measurements will be stopped.
  • Whether or not the pressure value is stably measured is determined when the difference between the pressure value acquired this time and the pressure value acquired last time is smaller than the predetermined value.
  • the predetermined value may be the same value on the gas side and the atmosphere side, or may be set individually.
  • the gas pressure determination unit 110 sets the gas side pressure value and the atmospheric pressure value in the k + 1th measurement by the gas side pressure value sampling unit 201 when the measured pressure value is determined to be stable.
  • the gas supply pressure is calculated from the difference in the pressure value on the atmospheric side in the k + 1th measurement acquired by the sampling unit 202.
  • the control circuit 204 determines the flow rate measurement data measured by the flow rate measuring unit 103, the gas supply pressure and its change, determines whether or not there is an abnormality such as a gas leak, and if it is determined to be abnormal, the shutoff valve.
  • the flow path 101 is shut off at 102 to stop the gas supply.
  • the pressure measurement time T1 is the result of comparison between the gas side previous value comparison unit 220 and the atmosphere side previous value comparison unit 221 and it is determined that the pressure value is not stable even after repeating n times, the result is In the pressure measurement time T1, the gas supply pressure is not calculated from the difference between the two absolute pressure values in the gas pressure determination unit 110. Further, the same operation as described above is performed at the pressure measurement time T2.
  • the gas side absolute pressure pressure sensor 105 which is the first pressure sensor and the atmosphere side which is the second pressure sensor
  • Absolute pressure and pressure sensors 106 are driven to perform measurement, but the stable state of the pressure values measured by the two absolute pressure and pressure sensors is determined, and the drive and stop of the two absolute pressure and pressure sensors are controlled. Therefore, the power consumption can be suppressed.
  • the accurate pressure value can be measured by measuring until it stabilizes, and noise due to external factors is temporarily generated.
  • the number of times the absolute pressure and pressure sensor is driven in one pressure measurement time can be reduced, so that the power consumption can be significantly reduced.
  • the gas side previous value comparison unit 220 and the atmosphere side previous value comparison unit 221 have been described as a method of comparing the two measurement results of the previous time and the current time. Needless to say, the same thing can be achieved even if the sensor drive control is performed by the drive stop determination unit 205 by comparing the average value and the measured value this time.
  • the gas side absolute pressure pressure sensor 105 is mounted on the electronic circuit 107 installed in the gas atmosphere inside the flow path 101, but it may be inside the flow path 101. Needless to say, it can be implemented anywhere. Further, although the configuration has been described in which the atmospheric pressure absolute pressure sensor 106 is mounted on the control circuit 104 installed on the atmospheric side outside the flow path 101, there is no limitation on the mounting location as long as the atmospheric pressure can be measured.
  • a flow path for flowing a gas a flow rate measuring unit for measuring the flow rate of the gas flowing through the flow path, and a flow rate measuring unit arranged inside the flow path, the absolute pressure of the gas is measured.
  • a first pressure sensor for measuring and a second pressure sensor arranged outside the flow path for measuring the absolute pressure of atmospheric pressure are provided.
  • the pressure value transition detection unit that detects the absolute pressure transition state measured by the first pressure sensor or the second pressure sensor, and the first pressure sensor or the first pressure sensor or the pressure value transition detection unit depending on the transition value of the pressure value transition detection unit.
  • a sensor drive control unit that controls the drive of the second pressure sensor is provided.
  • a gas pressure determination unit that calculates the gas supply pressure from the difference in pressure values measured when both the first pressure sensor and the second pressure sensor are driven, a shutoff valve that shuts off the flow path, and a flow rate.
  • a control circuit that shuts off the flow path with a shutoff valve when an abnormality is determined by the flow rate measured by the flow rate measuring unit or the gas supply pressure calculated by the gas pressure determining unit.
  • the drive of the absolute pressure sensor on the atmospheric side can be suppressed and the power consumption can be reduced.
  • the through hole required when using a differential pressure measurement type pressure sensor is no longer necessary, and it is possible to prevent gas from being ejected even when the surroundings of the gas security device become hot, making the gas security device more safe. realizable.
  • the second disclosure particularly in the first disclosure, is that the flow rate measuring unit has a measuring circuit arranged inside the flow path, the first pressure sensor is configured on the measuring circuit, and the control circuit is outside the flow path.
  • the second pressure sensor may be arranged and arranged on the control circuit.
  • the flow rate measuring unit includes an ultrasonic flow measuring unit that integrates an ultrasonic sensor and a measuring circuit that drives the ultrasonic sensor to measure the flow rate.
  • the ultrasonic flow measuring unit By installing the ultrasonic flow measuring unit in a gas atmosphere, providing the ultrasonic flow measuring unit with a first pressure sensor, and controlling the ultrasonic flow measuring unit with a control circuit, the first on the ultrasonic sensor drive circuit.
  • the pressure sensor may also be controlled.
  • the fourth disclosure is a flow path for flowing a gas, a flow rate measuring unit for measuring the flow rate of the gas flowing through the flow path, and a first pressure arranged inside the flow path for measuring the absolute pressure of the gas. It includes a sensor and a second pressure sensor that is arranged outside the flow path and measures the absolute pressure of atmospheric pressure.
  • a first pressure value collecting unit that collects n absolute pressures measured by the first pressure sensor and a second pressure value collecting unit that collects n absolute pressures measured by the second pressure sensor.
  • the first pressure previous value comparison unit that compares the current and previous measurement values obtained by the first pressure value collection unit, and the current and previous measurement values obtained by the second pressure value collection unit.
  • the second pressure previous value comparison unit, the first pressure previous value comparison unit, and the second pressure previous value comparison unit are provided with a drive stop determination unit for determining the drive stop of the sensor from the results of the second pressure previous value comparison unit. Further, a gas pressure determination unit that calculates the gas supply pressure from the difference in absolute pressure measured by the first pressure value collection unit and the second pressure value collection unit, a shutoff valve that shuts off the flow path, and a flow rate measurement unit. A control circuit for shutting off the flow path with a shutoff valve when an abnormality is determined by the flow rate measured by the flow rate measuring unit or the gas supply pressure calculated by the gas pressure determining unit is provided.
  • the fifth disclosure particularly in the fourth disclosure, is that the flow rate measuring unit has a measuring circuit arranged inside the flow path, the first pressure sensor is configured on the measuring circuit, and the control circuit is outside the flow path.
  • the second pressure sensor may be arranged and arranged on the control circuit.
  • the flow rate measuring unit includes an ultrasonic flow measuring unit that integrates an ultrasonic sensor and a measuring circuit that drives the ultrasonic sensor to measure the flow rate.
  • the ultrasonic flow measuring unit By installing the ultrasonic flow measuring unit in a gas atmosphere, providing the ultrasonic flow measuring unit with a first pressure sensor, and controlling the ultrasonic flow measuring unit with a control circuit, the first on the ultrasonic sensor drive circuit.
  • the pressure sensor may also be controlled.
  • the gas security device can not only improve the safety, but also realize a cheaper gas security device, and can be applied to applications such as general household and commercial gas meters.
  • Gas security device 101 Flow path 102 Shutoff valve 103 Flow measurement unit 104, 204 Control circuit 105 Gas side absolute pressure pressure sensor (first pressure sensor) 106 Atmospheric side absolute pressure pressure sensor (second pressure sensor) 107 Electronic circuit (measurement circuit) 108 Pressure value transition detection unit 109, 209 Sensor drive control unit 110 Gas pressure determination unit 201 Gas side pressure value collection unit (first pressure value collection unit) 202 Atmospheric pressure value collection unit (second pressure value collection unit) 205 Drive stop judgment unit 220 Gas side previous value comparison unit 221 Atmosphere side previous value comparison unit

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Measuring Volume Flow (AREA)

Abstract

流路(101)と、流路(101)を遮断する遮断弁(102)と、ガスの流量を測定する流量計測部(103)と、ガスの絶対圧力を測定するガス側絶対圧圧力センサ(105)と、大気圧の絶対圧力を測定する大気側絶対圧圧力センサ(106)と、ガス側絶対圧圧力センサ(105)で計測された絶対圧力の遷移状態を検知する圧力値遷移検知部(108)と、を備える。また、圧力値遷移検知部(108)において圧力の遷移の値によって大気側絶対圧圧力センサ(106)の駆動を制御するセンサ駆動制御部(109)と、2つのセンサが駆動している時に計測された圧力値の差からガス供給圧を算出するガス圧力判定部(110)と、を備える。さらに、流量計測部(103)で測定した流量やガス圧力判定部(110)で算出したガス供給圧で異常と判定した場合に遮断弁(102)で流路(101)を遮断する制御回路(104)とを備える。

Description

ガス保安装置
 本開示は、ガス流量を計測し、異常流量が計測された場合にはガス通路を遮断し、ガス使用上の安全性を確保するガス保安装置に関する。
 従来、ガスの使用量を測定するガスメータが、異常と判定してガス通路を遮断し、安全性を確保するガス保安装置が提案されている(特許文献1参照)。このガス保安装置は、超音波センサと、超音波センサ駆動回路が構成された回路基板を一体とした超音波流量計測部と、供給圧側と、大気圧の差圧を測定する圧力センサとを備える。さらに、圧力センサで測定した供給圧側と大気圧の差圧が異常であると判断した場合は、流路を遮断してガスの供給を停止する制御機能と、通報する機能を備える。
特開2014-98563号公報
 ガス保安装置に内蔵された圧力センサはガスの圧力を大気圧基準として測定する差圧測定型であるため、ガスを圧力センサに導入する貫通孔を有しており、ガス保安装置周辺が非常に高温になった場合、貫通孔からガスが漏れ出す可能性がある。そこで、貫通孔が不要な構成として、大気圧を測定する絶対圧圧力センサとガスの圧力を測定する絶対圧圧力センサの測定値の差からガス供給圧の変化を測定する手段がある。
 しかしながら、2個のセンサを駆動させるため消費電力が多くなり、通常電池で駆動するガス保安装置において電池の容量を大きくする必要があるという課題がある。
 本開示におけるガス保安装置は、ガスを流すための流路と、流路を流れるガスの流量を測定するための流量計測部と、流路の内部に配置され、ガスの絶対圧力を測定する第1の圧力センサと、流路の外部に配置され、大気圧の絶対圧力を測定する第2の圧力センサと、第1の圧力センサもしくは、第2の圧力センサで計測された絶対圧力の遷移状態を検知する圧力値遷移検知部と、を備える。また、圧力値遷移検知部の遷移の値によって第1の圧力センサもしくは、第2の圧力センサの駆動を制御するセンサ駆動制御部と、第1の圧力センサと第2の圧力センサが共に駆動している時に計測された圧力値の差からガス供給圧を算出するガス圧力判定部と、を備える。さらに、流路を遮断する遮断弁と、流量計測部を制御すると共に、流量計測部で測定した流量やガス圧力判定部で算出したガス供給圧で異常と判定した場合に遮断弁で流路を遮断する制御回路と、を備える。
 本開示は、ガス保安装置周辺が高温になってもガスが噴出することのないガス保安装置において、2つの絶対圧圧力センサを備えた構成でも消費電力の抑制することができる。
図1は、第1の実施の形態におけるガス保安装置の構成図である。 図2は、第1の実施の形態におけるガス保安装置の動作説明図である。 図3は、第2の実施の形態におけるガス保安装置の構成図である。 図4は、第2の実施の形態におけるガス保安装置の動作説明図である。
 以下、図面を参照しながら実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。
 (第1の実施の形態)
 以下、第1の実施の形態について、図1~図2を用いて説明する。
 図1において、ガス保安装置100は、ガスが流れる流路101と、流路101を遮断する遮断弁102と、流路101に流れるガスの流量を計測する流量計測部103と、流量計測部103で計測した流量測定データを用いてガスの使用量を積算する制御回路104と、を備える。また、ガス保安装置100は、ガスの絶対圧力を測定する第1の圧力センサであるガス側絶対圧圧力センサ105と、大気の絶対圧力を測定する第2の圧力センサである大気側絶対圧圧力センサ106と、ガス雰囲気中に設置されている電子回路107と、ガス側絶対圧圧力センサ105で計測された絶対圧力遷移状態を検知する圧力値遷移検知部108とを備える。さらに、ガス保安装置100は、圧力値遷移検知部108において検知された圧力値の遷移状態によって大気側絶対圧圧力センサ106の駆動を制御するセンサ駆動制御部109と、ガス側絶対圧圧力センサ105と大気側絶対圧圧力センサ106で計測された2つの圧力値の差分からガス供給圧を算出するガス圧力判定部110を備える。
 第1の圧力センサであるガス側絶対圧圧力センサ105は、流路101の内部のガス雰囲気中に設置されている電子回路107上に電子部品として実装されており、制御回路104からの信号で流路101内のガスの絶対圧力を測定する。また、第2の圧力センサである大気側絶対圧圧力センサ106は、流路101の外部の大気側に設置されている制御回路104上に電子部品として実装されており、制御回路104からの信号で大気の絶対圧力をする。
 次に、図2を用いて、圧力値遷移検知部108とセンサ駆動制御部109の具体的な動作説明を行う。
 図2は、同一期間におけるガス側の絶対圧力と大気側の絶対圧力の変化と、第1の圧力センサであるガス側絶対圧圧力センサ105、第2の圧力センサである大気側絶対圧圧力センサ106の測定タイミングの一例を示したものである。
 図に示す様に、ガス側絶対圧圧力センサ105は、常に所定間隔(例えば、2秒から10秒)で駆動して測定を行っている。すなわち、所定間隔はガス側絶対圧圧力センサ105の測定タイミングの間隔である。ガス側の圧力値遷移検知部108は、ガス側絶対圧圧力センサ105で計測した絶対圧力が所定値(例えば、2kPa)以上変化したことを検知した場合、センサ駆動制御部109によって大気側絶対圧圧力センサ106を駆動して大気側の圧力を測定する。そして、ガス側絶対圧圧力センサ105で計測した絶対圧力の変化が所定値未満の場合、大気側絶対圧圧力センサ106の駆動は行わず測定を停止する。
 即ち、ガス側絶対圧圧力センサ105の測定タイミングTn-1までは、所定間隔毎の圧力変化が2kPa未満であるので、大気側絶対圧圧力センサ106の駆動を行っていない。しかし、測定タイミングTn-1の絶対圧力Pgn-1と測定タイミングTnの絶対圧力Pgnとの圧力差ΔPgnが2kPa以上となっており、測定タイミングTnでは大気側絶対圧圧力センサ106を駆動して大気側の絶対圧力Panを測定している。そして、次の測定タイミングTn+1では、ガス側絶対圧圧力センサ105による測定タイミングTnの絶対圧力Pgnと測定タイミングTn+1の絶対圧力Pgn+1との圧力差ΔPgn+1が2kPa未満であるため、大気側絶対圧圧力センサ106の駆動を停止する。その後、ガス側絶対圧圧力センサ105の測定タイミング毎の圧力変化が2kPa未満であるので、大気側絶対圧圧力センサ106の駆動が停止した状態となる。
 従って、測定タイミングTnにおいて、ガス側絶対圧圧力センサ105によるガス側の絶対圧力Pgnと大気側絶対圧圧力センサ106による大気側の絶対圧力Panを測定することで、ガス圧力判定部110はこの計測された2つの圧力値の差からガス供給圧を算出できる。制御回路104は、流量計測部103で計測した流量測定データやガス供給圧やその変化を判定し、ガス漏れ等の異常がないかを判定し、異常と判断した場合には、遮断弁102で流路101を遮断して、ガスの供給を停止する。
 以上のように、本実施の形態においては、通常は第1の圧力センサであるガス側絶対圧圧力センサ105のみでガス側の絶対圧力を測定し、所定以上の圧力変化が検知されるか否かで第2の圧力センサである大気側絶対圧圧力センサ106の駆動・停止を制御している。このような構成とすることで、消費電力の抑制ができ、かつ絶対圧力を測定できる2つの絶対圧圧力センサの差分を用いてガス供給圧の変動を検知するため、差圧測定型の圧力センサを用いる場合に必要な貫通孔が不要となり、安全性の高いガス保安装置が実現できる。
 なお、本実施の形態では、圧力値遷移検知部108は、ガス側絶対圧圧力センサ105による測定タイミング間の圧力差を検知する方法を採用しているが、離れた測定タイミング間の圧力差や複数の測定タイミングの平均の圧力差、或いは、変化パターンなどで圧力遷移を検知する方法を採用してもよい。
 また、本実施の形態において、ガス側絶対圧圧力センサ105で圧力の測定を行い、大気側絶対圧圧力センサ106の停止・駆動を制御する構成で説明したが、大気側絶対圧圧力センサ106の圧力測定に基づいて、ガス側絶対圧圧力センサ105の停止・駆動を制御する構成でも同等なことができることは言うまでもない。
 なお、本実施の形態において、流量計測部103を超音波流量計測として使用しても同等なことができることは言うまでもない。
 なお、本実施の形態において、ガス側絶対圧圧力センサ105を流路101の内部のガス雰囲気中に設置されている電子回路107上に実装する構成で説明したが、流路内であれば何処に実装してもよいことはいうまでも無い。また、大気側絶対圧圧力センサ106を流路101の外部の大気側に設置されている制御回路104上に実装する構成で説明したが、大気圧を測定できれば実装する場所に制限は無い。
 (第2の実施の形態)
 以下、第2の実施の形態について、図3~図4を用いて説明する。なお、図3おいて、図1で説明した同一の構成要素については同一番号を付して説明を省略する。
 ガス保安装置200は、流路101と、遮断弁102と、流路101に流れるガスの流量を計測する流量計測部103と、流量計測部103で計測した流量測定データを用いてガスの使用量を積算する制御回路204と、を備える。また、ガス保安装置200は、第1の圧力センサであるガス側絶対圧圧力センサ105と、第2の圧力センサである大気側絶対圧圧力センサ106と、ガス雰囲気中に設置されている電子回路107と、ガス側絶対圧圧力センサ105と大気側絶対圧圧力センサ106の駆動を制御するセンサ駆動制御部209と、を備える。また、ガス保安装置200は、ガス側絶対圧圧力センサ105で測定された圧力値をn回採取するガス側圧力値採取部201と、大気側絶対圧圧力センサ106で測定された圧力値をn回採取する大気側圧力値採取部202と、を備える。また、ガス保安装置200は、ガス側圧力値採取部201で得られた前回の圧力値と今回の圧力値を比較するガス側前回値比較部220と、大気側圧力値採取部202で得られた前回の圧力値と今回の圧力値を比較する大気側前回値比較部221と、ガス側前回値比較部220と大気側前回値比較部221の結果からガス側絶対圧圧力センサ105と大気側絶対圧圧力センサ106の駆動停止を判断する駆動停止判定部205と、を備える。さらに、ガス保安装置200は、ガス側圧力値採取部201で採取された絶対圧力値と、大気側圧力値採取部202で採取された絶対圧力値の差分からガス供給圧を算出するガス圧力判定部110を備える。
 次に、図4を用いて、具体的な動作説明を行う。なお、図1、図3で説明した同一の構成要素については同一番号で示す。
 図に示すように、ガス圧力判定部110による圧力測定は、予め定めた時間間隔T(例えば、2秒から10秒)で定期的に実行される。図4において、圧力測定時間T1、T2は圧力測定のタイミングを示している。圧力測定時間T1において、ガス側圧力値採取部201は、ガス側絶対圧圧力センサ105で所定間隔(例えば、5ms)毎に測定された最初の圧力値Pg(1)から最大n回目の圧力値Pg(n)までの絶対圧力値を採取する。大気側圧力値採取部202は、ガス側絶対圧圧力センサ105と同じタイミングで大気側絶対圧圧力センサ106で測定された最初の圧力値Pa(1)から最大n回目の圧力値Pa(n)までの絶対圧力値を採取する。
 ガス側前回値比較部220は、ガス側圧力値採取部201で2回目の圧力値の採取がされると、最初の圧力値Pg(1)と2回目の圧力値Pg(2)を比較し、以降、計測値の採取がされる毎に前回値との比較を行う。同様に、大気側前回値比較部221は、大気側圧力値採取部202で2回目の圧力値Pa(2)の採取がされると、大気側前回値比較部221は、最初の圧力値Pa(1)と2回目の圧力値Pa(2)を比較し、以降、圧力値の採取がされる毎に前回の圧力値との比較を行う。
 駆動停止判定部205は、ガス側前回値比較部220と大気側前回値比較部221による比較の結果で、ガス側と大気側の圧力値が共に安定して測定できていると判断された場合は、ガス側絶対圧圧力センサ105と大気側絶対圧圧力センサ106の駆動の停止を行なう。
 即ち、n回の計測の途中において、k回目の測定におけるガス側の圧力値Pg(k)とk+1回目の測定におけるガス側の圧力値Pg(k+1)の比較でガス側の圧力値が安定していると判断され、かつ、大気側のk回目の測定における大気側の圧力値Pa(k)とk+1回目の測定における大気側の圧力値Pa(k+1)の比較で大気側の圧力値が安定していると判断された場合には、k+2回目以降の計測が停止されることになる。
 なお、圧力値が、安定して測定されているかどうかは、今回取得された圧力値と前回取得された圧力値との差が所定の値より小さい場合で判断している。所定の値は、ガス側と大気側で同じ値でも良いし、個別の値を設定しても良い。
 また、ガス圧力判定部110は、計測された圧力値が安定していると判断された時のガス側圧力値採取部201でのk+1回目の測定におけるガス側の圧力値と、大気側圧力値採取部202で取得されたk+1回目の測定における大気側の圧力値の差分からガス供給圧を算出する。そして、制御回路204は、流量計測部103で計測した流量測定データやガス供給圧やその変化を判定し、ガス漏れ等の異常がないかを判定し、異常と判断した場合には、遮断弁102で流路101を遮断して、ガスの供給を停止する。
 なお、圧力測定時間T1において、ガス側前回値比較部220と大気側前回値比較部221の比較の結果で、n回繰り返しても圧力値が安定していないと判断された場合は、結果として圧力測定時間T1では、ガス圧力判定部110における2つの絶対圧力値の差分からガス供給圧の算出は行われないことになる。また、圧力測定時間T2においても上記と同様な動作を行う。
 以上のように、本実施の形態においては、予め定めた時間間隔Tで2つの絶対圧圧力センサ(第1の圧力センサであるガス側絶対圧圧力センサ105と第2の圧力センサである大気側絶対圧圧力センサ106)を駆動して計測を行うが、2つの絶対圧圧力センサで測定された圧力値の安定状態を判断して、2つの絶対圧圧力センサの駆動・停止の制御を行うことで、消費電力を抑えることができる。
 つまり、ノイズ等の外的要因により測定値が安定しない場合は、安定するまで測定を行うことで正確な圧力値を測定できると共に、外的要因によるノイズ等は一時的に発生するので、ノイズ等がない通常の測定では、1つの圧力測定時間における絶対圧圧力センサの駆動回数を削減できるため、消費電力を大幅に削減することができる。
 また、差圧測定型の圧力センサを用いる場合に必要な貫通孔が不要となり、より安全性の高いガス保安装置が実現できる。
 なお、本実施の形態において、ガス側前回値比較部220と大気側前回値比較部221は、前回と今回の2つの測定結果を比較する方法として説明を行ったが、前回までの複数回の平均値と今回の測定値の比較により駆動停止判定部205によってセンサ駆動制御を行っても同様なことができることは言うまでもない。
 なお、本実施の形態において、ガス側絶対圧圧力センサ105を流路101の内部のガス雰囲気中に設置されている電子回路107上に実装する構成で説明したが、流路101の内部であれば何処に実装してもよいことはいうまでも無い。また、大気側絶対圧圧力センサ106を流路101の外部の大気側に設置されている制御回路104上に実装する構成で説明したが、大気圧を測定できれば実装する場所に制限は無い。
 以上説明したように、第1の開示は、ガスを流すための流路と、流路を流れるガスの流量を測定するための流量計測部と、流路内部に配置され、ガスの絶対圧力を測定する第1の圧力センサと、流路外部に配置され、大気圧の絶対圧力を測定する第2の圧力センサと、を備える。また、第1の圧力センサもしくは、第2の圧力センサで計測された絶対圧力の遷移状態を検知する圧力値遷移検知部と、圧力値遷移検知部の遷移の値によって第1の圧力センサもしくは、第2の圧力センサの駆動を制御するセンサ駆動制御部と、を備える。さらに、第1の圧力センサと第2の圧力センサが共に駆動している時に計測された圧力値の差からガス供給圧を算出するガス圧力判定部と、流路を遮断する遮断弁と、流量計測部を制御すると共に、流量計測部で測定した流量やガス圧力判定部で算出したガス供給圧で異常と判定した場合に遮断弁で流路を遮断する制御回路と、を備える。
 この構成により、大気側の絶対圧圧力センサの駆動を抑制し、消費電力の低減ができる。また、差圧測定型の圧力センサを用いる場合に必要な貫通孔が不要となり、ガス保安装置の周囲が高温になってもガスが噴出することを防止でき、より安全性の高いガス保安装置が実現できる。
 第2の開示は、特に第1の開示において、流量計測部は流路内部に配置された計測回路を有し、第1の圧力センサは計測回路上に構成され、制御回路は流路外部に配置され、第2の圧力センサは制御回路上に配置する構成でもよい。
 第3の開示は、特に第1または2の開示において、流量計測部は、超音波センサと超音波センサを駆動して流量計測を行う計測回路を一体とした超音波流量計測部を備え、超音波流量計測部をガス雰囲気中に設置するとともに、超音波流量計測部に第1の圧力センサを備え、制御回路で超音波流量計測部を制御することによって、超音波センサ駆動回路上の第1の圧力センサも制御する構成でもよい。
 第4の開示は、ガスを流すための流路と、流路を流れるガスの流量を測定するための流量計測部と、流路内部に配置され、ガスの絶対圧力を測定する第1の圧力センサと、流路外部に配置され、大気圧の絶対圧力を測定する第2の圧力センサと、を備える。また、第1の圧力センサで計測される絶対圧力をn個採取する第1の圧力値採取部と、第2の圧力センサで計測される絶対圧力をn個採取する第2の圧力値採取部と、を備える。また、第1の圧力値採取部での得られた今回と前回計測値を比較する第1の圧力前回値比較部と、第2の圧力値採取部での得られた今回と前回の計測値を比較する第2の圧力前回値比較部と第1の圧力前回値比較部と第2の圧力前回値比較部の結果からセンサの駆動停止を判断する駆動停止判定部と、を備える。さらに、第1の圧力値採取部と第2の圧力値採取部で計測された絶対圧力の差からガス供給圧を算出するガス圧力判定部と、流路を遮断する遮断弁と、流量計測部を制御すると共に、流量計測部で測定した流量やガス圧力判定部で算出したガス供給圧で異常と判定した場合に遮断弁で流路を遮断する制御回路と、を備える。
 この構成により、2つの絶対圧圧力センサの駆動を抑制し、消費電力の低減できる。また、差圧測定型の圧力センサを用いる場合に必要な貫通孔が不要となり、ガス保安装置の周囲が高温になってもガスが噴出することを防止でき、より安全性の高いガス保安装置が実現できる。
 第5の開示は、特に第4の開示において、流量計測部は流路内部に配置された計測回路を有し、第1の圧力センサは計測回路上に構成され、制御回路は流路外部に配置され、第2の圧力センサは制御回路上に配置する構成でもよい。
 第6の開示は、特に第4または5の開示において、流量計測部は、超音波センサと超音波センサを駆動して流量計測を行う計測回路を一体とした超音波流量計測部を備え、超音波流量計測部をガス雰囲気中に設置するとともに、超音波流量計測部に第1の圧力センサを備え、制御回路で超音波流量計測部を制御することによって、超音波センサ駆動回路上の第1の圧力センサも制御する構成でもよい。
 本開示は、ガス保安装置は、より安全性を向上できるだけでなく、より安価なガス保安装置が実現でき、一般家庭用及び業務用ガスメータ等の用途に適用できる。
 100、200 ガス保安装置
 101 流路
 102 遮断弁
 103 流量計測部
 104、204 制御回路
 105 ガス側絶対圧圧力センサ(第1の圧力センサ)
 106 大気側絶対圧圧力センサ(第2の圧力センサ)
 107 電子回路(計測回路)
 108 圧力値遷移検知部
 109、209 センサ駆動制御部
 110 ガス圧力判定部
 201 ガス側圧力値採取部(第1の圧力値採取部)
 202 大気側圧力値採取部(第2の圧力値採取部)
 205 駆動停止判定部
 220 ガス側前回値比較部
 221 大気側前回値比較部

Claims (6)

  1. ガスを流すための流路と、
    前記流路を流れるガスの流量を測定する流量計測部と、
    前記流路内部に配置され、前記ガスの絶対圧力を測定する第1の圧力センサと、
    前記流路外部に配置され、大気圧の絶対圧力を測定する第2の圧力センサと、
    前記第1の圧力センサもしくは、前記第2の圧力センサで計測された絶対圧力の遷移状態を検知する圧力値遷移検知部と、
    前記圧力値遷移検知部の遷移の値によって前記第1の圧力センサもしくは、前記第2の圧力センサの駆動を制御するセンサ駆動制御部と、
    前記第1の圧力センサと前記第2の圧力センサが共に駆動している時に計測された圧力値の差からガス供給圧を算出するガス圧力判定部と、
    前記流路を遮断する遮断弁と、
    前記流量計測部を制御すると共に、前記流量計測部で測定した流量や前記ガス圧力判定部で算出したガス供給圧で異常と判定した場合に前記遮断弁で前記流路を遮断する制御回路と、を備えたガス保安装置。
  2. 前記流量計測部は前記流路内部に配置された計測回路を有し、前記第1の圧力センサは前記計測回路上に構成され、
    前記制御回路は前記流路外部に配置され、前記第2の圧力センサは前記制御回路上に配置された請求項1に記載のガス保安装置。
  3. 前記流量計測部は、超音波センサと前記超音波センサを駆動して流量計測を行う計測回路を一体とした超音波流量計測部を備え、
    前記超音波流量計測部をガス雰囲気中に設置するとともに、前記超音波流量計測部に前記第1の圧力センサを備え、前記制御回路で前記超音波流量計測部を制御することによって、超音波センサ駆動回路上の前記第1の圧力センサも制御する請求項1または2のいずれか1つに記載のガス保安装置。
  4. ガスを流すための流路と、
    前記流路を流れるガスの流量を測定するための流量計測部と、
    前記流路内部に配置され、前記ガスの絶対圧力を測定する第1の圧力センサと、
    前記流路外部に配置され、大気圧の絶対圧力を測定する第2の圧力センサと、
    前記第1の圧力センサで計測される絶対圧力をn個採取する第1の圧力値採取部と、
    前記第2の圧力センサで計測される絶対圧力をn個採取する第2の圧力値採取部と、
    前記第1の圧力値採取部での得られた今回と前回の計測値を比較する第1の圧力前回値比較部と、
    前記第2の圧力値採取部での得られた今回と前回の計測値を比較する第2の圧力前回値比較部と
    前記第1の圧力前回値比較部と前記第2の圧力前回値比較部の結果からセンサの駆動停止を判断する駆動停止判定部と、
    前記第1の圧力値採取部と前記第2の圧力値採取部で計測された絶対圧力の差からガス供給圧を算出するガス圧力判定部と、
    前記流路を遮断する遮断弁と、
    前記流量計測部を制御すると共に、前記流量計測部で測定した流量や前記ガス圧力判定部で測定したガス供給圧で異常と判定した場合に前記遮断弁で前記流路を遮断する制御回路と、を備えたガス保安装置。
  5. 前記流量計測部は前記流路内部に配置された計測回路を有し、前記第1の圧力センサは前記計測回路上に構成され、
    前記制御回路は前記流路外部に配置され、前記第2の圧力センサは前記制御回路上に配置された請求項4に記載のガス保安装置。
  6. 前記流量計測部は、超音波センサと前記超音波センサを駆動して流量計測を行う計測回路を一体とした超音波流量計測部を備え、
    前記超音波流量計測部をガス雰囲気中に設置するとともに、前記超音波流量計測部に前記第1の圧力センサを備え、前記制御回路で前記超音波流量計測部を制御することによって、超音波センサ駆動回路上の前記第1の圧力センサも制御する請求項4または5のいずれか1つに記載のガス保安装置。
PCT/JP2020/019151 2019-05-17 2020-05-13 ガス保安装置 WO2020235422A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080034874.2A CN113811745B (zh) 2019-05-17 2020-05-13 燃气安全装置
EP20808824.5A EP3971538A4 (en) 2019-05-17 2020-05-13 GAS SAFETY DEVICE
US17/599,538 US11714434B2 (en) 2019-05-17 2020-05-13 Gas safety device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-093462 2019-05-17
JP2019093462A JP7390544B2 (ja) 2019-05-17 2019-05-17 ガス保安装置

Publications (1)

Publication Number Publication Date
WO2020235422A1 true WO2020235422A1 (ja) 2020-11-26

Family

ID=73220985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/019151 WO2020235422A1 (ja) 2019-05-17 2020-05-13 ガス保安装置

Country Status (5)

Country Link
US (1) US11714434B2 (ja)
EP (1) EP3971538A4 (ja)
JP (2) JP7390544B2 (ja)
CN (1) CN113811745B (ja)
WO (1) WO2020235422A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11525754B2 (en) * 2020-10-30 2022-12-13 Honeywell International Inc. Leak detection system and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006520901A (ja) * 2003-03-21 2006-09-14 ローズマウント インコーポレイテッド バスによってゲージ圧力計算回路に接続された絶対圧力センサおよび大気圧センサを有する圧力測定装置
JP2014098563A (ja) 2012-11-13 2014-05-29 Panasonic Corp 流量計測装置
JP2015145827A (ja) * 2014-02-03 2015-08-13 矢崎エナジーシステム株式会社 計測流路ユニット
JP2015145826A (ja) * 2014-02-03 2015-08-13 矢崎エナジーシステム株式会社 ガスメータ
JP2019502435A (ja) * 2015-12-02 2019-01-31 フィッシャー アンド ペイケル ヘルスケア リミテッド フロー療法装置用の流路検知

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5911238A (en) * 1996-10-04 1999-06-15 Emerson Electric Co. Thermal mass flowmeter and mass flow controller, flowmetering system and method
JP3508993B2 (ja) * 1998-11-19 2004-03-22 矢崎総業株式会社 流量計測方法及び装置並びに電子式ガスメータ
JP4292643B2 (ja) * 1999-09-09 2009-07-08 パナソニック株式会社 ガス圧力検知装置
JP2001264142A (ja) * 2000-03-16 2001-09-26 Tokyo Gas Co Ltd 流量計
JP2002054968A (ja) * 2000-08-09 2002-02-20 Yazaki Corp ガスメータ
JP2004077248A (ja) * 2002-08-14 2004-03-11 Tokyo Gas Co Ltd 低消費電力でサンプリングレートが高い流量測定装置及びそれを利用したガスメータ
JP2005233437A (ja) * 2004-02-17 2005-09-02 Tokyo Gas Co Ltd 圧力異常検知装置および圧力異常検知方法
JP4867738B2 (ja) * 2007-03-23 2012-02-01 パナソニック株式会社 ガス器具監視装置
JP5032951B2 (ja) * 2007-11-20 2012-09-26 大阪瓦斯株式会社 ガス漏洩検知方法
JP5140464B2 (ja) * 2008-03-12 2013-02-06 東光東芝メーターシステムズ株式会社 超音波ガスメータ
JP5252718B2 (ja) * 2008-10-23 2013-07-31 パナソニック株式会社 流体遮断装置
JP5590678B2 (ja) * 2009-01-26 2014-09-17 パナソニック株式会社 ガス遮断装置
JP5630075B2 (ja) * 2010-06-03 2014-11-26 パナソニック株式会社 ガス遮断装置
JP5867517B2 (ja) * 2012-02-03 2016-02-24 日立金属株式会社 流量制御装置及びプログラム
KR102116586B1 (ko) * 2012-03-07 2020-05-28 일리노이즈 툴 워크스 인코포레이티드 감쇠율 측정에서 열적으로 유도되는 에러를 최소화하도록 열 모델을 이용함으로써 질량 유량 제어기 또는 질량 유량계에서 실시간 정정을 위해 감쇠율 측정의 정확도를 개선하기 위한 시스템 및 방법
JP5960614B2 (ja) * 2012-03-29 2016-08-02 Ckd株式会社 流体制御システム、流体制御方法
US9605992B2 (en) * 2014-03-14 2017-03-28 Hitachi Metals, Ltd. On-tool mass flow controller diagnostic systems and methods
WO2015151647A1 (ja) * 2014-03-31 2015-10-08 日立金属株式会社 質量流量の測定方法、当該方法を使用する熱式質量流量計、及び当該熱式質量流量計を使用する熱式質量流量制御装置
KR20180102659A (ko) * 2016-01-22 2018-09-17 일리노이즈 툴 워크스 인코포레이티드 질량 유량 제어기에 저장된 데이터 값을 동적으로 구성하기 위한 시스템 및 방법
US11353352B2 (en) * 2016-09-19 2022-06-07 Flow Devices And Systems Inc. Apparatus and methods for self-correcting pressure based mass flow controller
WO2018079173A1 (ja) * 2016-10-28 2018-05-03 株式会社堀場エステック 流体制御弁用診断装置、流体制御装置、及び流体制御弁用診断プログラム
JP7245600B2 (ja) * 2016-12-15 2023-03-24 株式会社堀場エステック 流量制御装置、及び、流量制御装置用プログラム
US11105664B2 (en) * 2017-03-23 2021-08-31 Honeywell International Inc. Apparatus and method for creating inferential process flow measurements using flow restrictor and upstream and downstream pressure measurements
KR102250967B1 (ko) * 2017-03-28 2021-05-12 가부시키가이샤 후지킨 압력식 유량 제어 장치 및 유량 제어 방법
JP7012218B2 (ja) * 2018-03-30 2022-01-28 パナソニックIpマネジメント株式会社 ガス保安装置
WO2019202959A1 (ja) * 2018-04-19 2019-10-24 株式会社堀場エステック 流量制御装置、診断方法、及び、流量制御装置用プログラム
ES2930200T3 (es) 2018-06-08 2022-12-07 Panasonic Ip Man Co Ltd Dispositivo de seguridad de gas
CN109141774B (zh) * 2018-08-15 2020-02-21 山东拙诚智能科技有限公司 一种通过向燃气表注册用气设备实现燃气安全管理方法
US10705543B2 (en) * 2018-08-29 2020-07-07 Illinois Tool Works, Inc. Mass flow controller and controller algorithm
US11073845B2 (en) * 2019-08-26 2021-07-27 Hitachi Metals, Ltd. Parasitic flow correction method and apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006520901A (ja) * 2003-03-21 2006-09-14 ローズマウント インコーポレイテッド バスによってゲージ圧力計算回路に接続された絶対圧力センサおよび大気圧センサを有する圧力測定装置
JP2014098563A (ja) 2012-11-13 2014-05-29 Panasonic Corp 流量計測装置
JP2015145827A (ja) * 2014-02-03 2015-08-13 矢崎エナジーシステム株式会社 計測流路ユニット
JP2015145826A (ja) * 2014-02-03 2015-08-13 矢崎エナジーシステム株式会社 ガスメータ
JP2019502435A (ja) * 2015-12-02 2019-01-31 フィッシャー アンド ペイケル ヘルスケア リミテッド フロー療法装置用の流路検知

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3971538A1

Also Published As

Publication number Publication date
CN113811745A (zh) 2021-12-17
US11714434B2 (en) 2023-08-01
JP2020187082A (ja) 2020-11-19
JP2023101798A (ja) 2023-07-21
JP7426600B2 (ja) 2024-02-02
EP3971538A1 (en) 2022-03-23
JP7390544B2 (ja) 2023-12-04
CN113811745B (zh) 2024-02-06
US20220147069A1 (en) 2022-05-12
EP3971538A4 (en) 2022-07-13

Similar Documents

Publication Publication Date Title
KR102028372B1 (ko) 압력식 유량 제어 장치 및 그 이상 검지 방법
EP2995861A1 (en) Valve operation and diagnosis
US20200232873A1 (en) Flow rate control device and abnormality detection method using flow rate control device
DE60232506D1 (de) Strömungsmessung
JP7426600B2 (ja) ガス保安装置
EP3879239B1 (en) Gas meter
EP3779376B1 (en) Gas safety device
CA3001285A1 (en) Pump for portable gas detection instrument
JP2023101797A (ja) ガス保安装置
KR101951592B1 (ko) 메인터넌스 판단 지표 추정 장치, 유량 제어 장치 및 메인터넌스 판단 지표 추정 방법
EP3805712B1 (en) Gas safety device
KR20200047711A (ko) 유체 공급 라인의 이상 진단 방법
JP4832906B2 (ja) 流量計
JP5243843B2 (ja) 燃焼設備及び燃焼設備の異常診断方法
KR20060072707A (ko) 연료전지 차량용 수소누출 감시장치
JP2005267572A (ja) 流量制御の異常判定方法及び装置
JP4083367B2 (ja) ガス保安装置
US12013708B2 (en) Gas safety device
JP2677133B2 (ja) ガス圧力異常監視装置
JP3378129B2 (ja) ガスメータ
JP4470257B2 (ja) ガス計測装置
JP4296915B2 (ja) ガス遮断装置
JPH05273012A (ja) マイクロフローセンサ付フルイディック式ガスメータにおける復帰漏洩検査方法
JPH0727660A (ja) ガス漏れ検出方法
JPH0231125A (ja) 漏洩検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20808824

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2020808824

Country of ref document: EP