WO2020234251A1 - Verfahren zur regelung der verdampfung eines verdampfers in einem inhalator - Google Patents

Verfahren zur regelung der verdampfung eines verdampfers in einem inhalator Download PDF

Info

Publication number
WO2020234251A1
WO2020234251A1 PCT/EP2020/063856 EP2020063856W WO2020234251A1 WO 2020234251 A1 WO2020234251 A1 WO 2020234251A1 EP 2020063856 W EP2020063856 W EP 2020063856W WO 2020234251 A1 WO2020234251 A1 WO 2020234251A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
evaporator
transition point
determined
measurement series
Prior art date
Application number
PCT/EP2020/063856
Other languages
English (en)
French (fr)
Inventor
Frank GOLDSCHMIDTBÖING
Uwe Pelz
Muhannad Ghanam
Peter Woias
Eiko Bäumker
Anjan BHAT KASHEKODI
Jan Jaklin
Original Assignee
Hauni Maschinenbau Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hauni Maschinenbau Gmbh filed Critical Hauni Maschinenbau Gmbh
Priority to KR1020217042033A priority Critical patent/KR20220011178A/ko
Priority to US17/612,456 priority patent/US12029253B2/en
Priority to JP2021568988A priority patent/JP2022533217A/ja
Priority to EP20729963.7A priority patent/EP3972435B1/de
Priority to CN202080037436.1A priority patent/CN113825422A/zh
Publication of WO2020234251A1 publication Critical patent/WO2020234251A1/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/53Monitoring, e.g. fault detection
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/57Temperature control
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0202Switches
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/0019Circuit arrangements
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors

Definitions

  • the present invention relates to a method for regulating the evaporation of an evaporator in an inhaler, the evaporator being heated by means of electrical resistance heating and an electronic control device regulating the flow of current through the evaporator.
  • a resistive evaporator is electrically connected to an energy store via an electronic switching element so that when the switching element is closed, the voltage of the energy store is applied to the evaporator and a heating current flows.
  • the switch is usually operated by the electronic control device.
  • the temperature at the evaporator is typically determined using a temperature-dependent electrical resistance of the evaporator.
  • the temperature of the evaporator can be set in a targeted manner through the relationship between temperature and the electrical resistance of the evaporator.
  • the temperature should not exceed a temperature determined by the liquid to be evaporated, since otherwise pollutants can arise, in particular if the evaporator falls dry.
  • the circuit of an evaporator or heater can be described in simplified form as a series circuit of electrical resistors. Elements of this series connection include an electrical resistance of the evaporator (evaporator resistance), a battery internal resistance and undesirable parasitic electrical resistances.
  • the parasitic resistances are given, for example, by the following resistances: an electrical resistor belonging to the electrical control device, a current measuring resistor, an electrical resistance of the supply lines, in particular through connecting wires, copper conductor tracks and / or soldering points and possibly an electrical resistance was a possible plug connection.
  • the parasitic resistance is neither constant over time nor reproducible, since, for example, plug connections, depending on the state of aging, contamination and / or deformation, have an influence on the parasitic resistance that can only be measured with considerable effort.
  • Temperature measurement errors due to parasitic resistances can lead to overheating of the liquid to be evaporated, which can lead to nucleate boiling or the formation of pollutants. Due to the various errors caused by measurements and parasitic currents, the evaporator can only be insufficiently controlled with known methods.
  • the object of the invention is to provide a method with which the evaporation can be effectively and reliably controlled and overheating of the liquid to be evaporated can be reliably avoided.
  • the method comprises the following steps: Time-sequential recording of measured values of the current applied to the evaporator from a starting point. From the starting point, a current flows through the evaporator. The evaporator heats up due to the flow of current and the temperature-dependent electrical resistance of the evaporator. Due to the As the evaporator warms up, the temperature-dependent electrical resistance of the evaporator changes.
  • the measurement can advantageously be switched on by a demand request from a user of the inhaler, in particular by pulling on an electronic cigarette. Accordingly, the measurement can be switched off after the request has ended.
  • a transition point between a range of low and in particular up to no evaporation and a range of high evaporation, in particular during consumption is determined in a time-dependent current measurement series corresponding to the measured values.
  • the transition point marks the point in time at which evaporation occurs and the evaporator is not heated significantly further.
  • the invention has recognized that from the transition point evaporation takes place to such a high degree that no or hardly any further heating of the evaporator takes place.
  • the energy provided by the flow of current at the evaporator is converted into energy for evaporating the liquid and not at all or only to a small extent in heating the evaporator. Therefore, from the transition point, the temperature of the evaporator changes to a lesser extent than at the time before the transition point.
  • the transition point in the current measurement series can thus be understood as a kink point in the relationship between current and measurement point or time.
  • a current value I v corresponding to the transition point is determined from the transition point, at which a reliable evaporation takes place.
  • a current interval [li; b] as a function of the determined current value l v and a regulation of the Current flow within the specified current interval [h; l 2 ]. This allows the power of the evaporator to be precisely regulated.
  • the method according to the invention has the advantage that the evaporator temperature does not have to be known and the value, in particular of the parasitic electrical resistance, does not need to be determined in real time and for each individual evaporator.
  • the decisive factor is at which current or which heating power the evaporation occurs through the respective evaporator.
  • the occurrence of evaporation is determined on the basis of the series of measurements and thus determines the heating current to be applied within the current interval [h; l 2 ].
  • the transition point is advantageously determined on the basis of a regression along the current measurement series in order to be able to determine the transition point reliably and effectively.
  • a regression is based on a plurality of measured values, with which measurement errors and / or statistical errors can be minimized.
  • the regression is advantageous compared to, for example, a finite difference method, in which only two adjacent measured values in particular are considered and a measurement inaccuracy has a particularly strong effect on the result.
  • the transition point of at least one best-fit straight line and / or at least one best-fit polynomial on the current measurement series is preferably determined in order to provide a numerically effective determination of the transition point.
  • one or more regression lines and / or in particular square regression curves can be determined at different measurement points in the measurement series. From the temporal The transition point can be determined with the course of the rises associated with the regression lines or the curvatures associated with the regression curves.
  • the curvature can in particular be determined from a coefficient of a quadratic term of the compensation polynomial.
  • the transition point is preferably determined by a jump and / or the reaching of a threshold value of the rise or the gradient (1st derivative) of the current measurement series in order to further improve the identification of the transition point.
  • the transition point is determined for this purpose by means of an ext rem value of the curvature of the current measurement series.
  • Two successive measured values are preferably less than 1 0 ms, preferably less than 5 ms, more preferably less than 2 ms apart, in order to be able to resolve the transition point well in time and to record an advantageous number of measured values over the duration of a train can.
  • the recorded measured values are preferably recorded over at least 10%, advantageously at least 30%, further advantageously at least 50% of a train length.
  • the lower threshold h and / or the upper threshold b is set so that the lower threshold is less than the current value lv and / or the current value lv is less than the upper threshold l 2 , so that the heating current is reliable. Allowable by the current value lv in the current interval [L; l] can be regulated. If the lower threshold h is less than the current value lv, the evaporator can be prevented from falling dry, since the evaporator does not evaporate with a current between the lower threshold h and the current value lv, but heats the evaporator and / or the liquid.
  • the current flow through the evaporator is preferably pulsed, the pulse duty factor being increased from above when the lower threshold h is reached and / or reduced from below when the upper threshold l 2 is reached.
  • a reduction in the input power and an increase in the running time of a battery supplying the evaporator with electrical current can thus be achieved.
  • the lower threshold h and / or the upper threshold l 2 is advantageously established as a function of an analysis of the average square current I L 2 over a defined time interval. If the average square current I L 2 falls below a predetermined threshold value, which can be determined, for example, from the current measurement series from a time interval after the starting point, this is to be interpreted as a sign of reduced contact between the evaporator and the liquid. In this case, the lower threshold h and / or the upper threshold l 2 should be shifted to lower currents.
  • the current interval [h; l 2 ] and / or at least one of the thresholds h; l 2 shifted to lower flows in the course of time in order to prevent the evaporator from falling dry.
  • the current interval [h; l 2 ] and / or at least one of the thresholds h; l 2 can also be adapted to a specified time function in order to effectively control the evaporation and a Adaptation to processes of differential distillation to enable.
  • data relating to a plurality of time-dependent current measurement series are stored in a data memory and are compared with one another and / or with fixed parameters. This makes it possible to save the current measured values and transition points that occurred during the process.
  • An automatic analysis can, for example, examine the point in time at which the evaporation flow lv was reached. If this point in time is reached later than a predetermined threshold value, this is an indication of an excessively high electrical resistance.
  • the average square of the current can be evaluated during the evaporation process. If this is lower than a predetermined threshold value, conclusions can be drawn about the consumption of the liquid.
  • the ambient temperature is preferably measured and the current interval [h; l 2 ] and / or at least one of its thresholds h, l 2 is fixed and / or adapted as a function of the measured ambient temperature in order to be able to take possible influences of the ambient temperature into account.
  • the current flow is advantageously regulated by switching on and / or maintaining the current flow through the evaporator when the current is less than an upper threshold value I2, or by switching off the current flow through the evaporator when the current is greater than a lower threshold value l effective control method within the current interval [h; l 2 ] to be able to provide.
  • Fig. 1 is a schematic representation of an inhaler
  • Fig. 4 shows an exemplary series of current measurements with a transition point
  • Fig. 6 the determination of a transition point based on the curvature of a series of current measurements.
  • FIG. 1 shows schematically an inhaler 10 or an electronic cigarette product.
  • the inhaler 1 0 comprises a housing 1 1 in which an air duct 30 or chimney between at least one air inlet opening 231 and an air outlet opening 24 at a mouth end 32 of the cigarette product 10 is provided.
  • the mouth end 32 of the inhaler 10 denotes the end at which the consumer pulls for the purpose of inhalation, thereby applying a negative pressure to the inhaler 10 and generating an air flow 34 in the air duct 30.
  • the inhaler 10 advantageously consists of a base part 16 and an evaporator tank unit 20, which comprises an evaporator device 1 with an evaporator 60, which can be regulated by the method according to the invention, and a liquid reservoir 18.
  • the evaporator-tank unit can in particular be designed in the form of an exchangeable cartridge.
  • the liquid reservoir 18 can be refillable by the user of the inhaler 10.
  • the air sucked in through the air inlet opening 231 is conducted in the air duct 30 to the at least one evaporator 60.
  • the evaporator 60 is connected or can be connected to the liquid reservoir 18 in which at least one liquid 50 is stored.
  • a porous and / or capillary, liquid-conducting element 19 is advantageously arranged on an inlet side 61 of the evaporator 60.
  • An advantageous volume of the liquid reservoir 18 is in the range between 0.1 ml and 5 ml, preferably between 0.5 ml and 3 ml, more preferably between 0.7 ml and 2 ml or 1.5 ml.
  • the evaporator 60 evaporates liquid 50, which is supplied to the evaporator 60 from the liquid reservoir 1 8 by the porous element 19 by means of capillary forces and / or which is stored in the porous element 19, and gives the evaporated liquid as an aerosol / vapor to a Outlet side 64 to the air flow 34.
  • the inhaler 10 further comprises an electrical energy store 14 and an electronic control device 15.
  • the energy store 14 is usually arranged in the base part 16 and can in particular be an electrochemical disposable battery or a rechargeable electrochemical battery, for example a lithium-ion battery, his.
  • the evaporator tank unit 20 is arranged between tween the energy store 14 and the mouth end 32.
  • the electronic control device 15 comprises at least one digital data processing device, in particular a microprocessor and / or microcontroller, in the base part 1 6 (as shown in FIG. 1) and / or in the evaporator-tank unit 20
  • a sensor for example a pressure sensor or a pressure or flow switch, is advantageously arranged in the housing 11, the control device 15 being able to determine on the basis of a sensor signal output by the sensor that a consumer is moving at the mouth end 32 of the cigarette product 10 to inhale.
  • the control device 1 5 controls the evaporator 60 in order to add liquid 50 from the liquid storage device 18 as an aerosol / vapor into the air stream 34.
  • the at least one evaporator 60 is arranged in a part of the evaporator-tank unit 20 facing away from the mouth end 32.
  • the air flow 34 advantageously leads through an air duct 30 running axially through the liquid reservoir 18 to the air outlet opening 24.
  • the liquid 50 to be dosed stored in the liquid reservoir 18 is, for example, a mixture of 1,2-propylene glycol, glycerine, water, and preferably at least one flavor and / or at least one active ingredient, in particular nicotine.
  • the specified components of the liquid 50 are, however, not mandatory.
  • aromas and / or active ingredients, in particular nicotine can be dispensed with.
  • FIG. 2 a schematic circuit for current heating of the evaporator 60 is shown.
  • the evaporator 60 is an electric resistance heater that can be heated by an electric current due to its electric resistance.
  • the evaporator 60 can have at least one resistance element, for example a heating wire, for example a spiral wire or one or a plurality of wire lines arranged parallel to one another.
  • the evaporator 60 can alternatively be used as a micro
  • Electromechanical system be designed, for example se with line or microchannels, as described in DE 1 0 2016 1 20 803 A1, the disclosure content of which is included in the present application.
  • Bionic or capillary-like heating structures such as bionic networks, are also possible for the evaporator 60.
  • Evaporators 60 with heating structures as described in DE 1 0 201 7 1 1 1 1 1 9 A1 are also possible, the disclosure content of which is included in the present application.
  • the invention is not tied to a specific type of evaporator 60.
  • the evaporator tank unit 20 is preferably verbun and / or connectable to a heating current source 71 controllable by the control device 1 5, which is connected to the evaporator 60 via electrical lines 25, so that an electrical heating current Ih generated by the heating current source 71 flows through the evaporator 60 flows. Due to the ohmic resistance of the electrically conductive evaporator 60, the flow of current leads to heating of the evaporator 60 and therefore to an evaporation of liquid present at the evaporator 60. Generated this way
  • the evaporation temperature is preferably in the range between 100 ° C and 400 ° C, more preferably between 150 ° C and 350 ° C, even more preferably between 190 ° C and 290 ° C.
  • the evaporator-tank unit 20 is set so that a liquid quantity preferably in the range between 1 pl and 20 pl, more preferably between 2 ml and 10 ml, even more preferably between 3 ml and 5 ml, typically 4 ml per Train of the consumer, is added.
  • the evaporator-tank unit can with regard to the amount of liquid / vapor per puff, i. H. can be set from 1 s to 3 s for each pulling time.
  • the control frequency of the evaporator 60 generated by the heating current source 71 is generally advantageously in the range from 1 Hz to 50 kHz, preferably in the range from 30 Hz to 30 kHz, even more advantageously in the range from 100 Hz to 25 kHz.
  • the evaporator 60 can be replaced if it is dirty, defective or used up, so that a separable electrical connection can be provided between the evaporator 60 and the base part 16.
  • This connection can be designed as, for example, spring pins, plug-in or screw connections.
  • FIG. 3 shows a schematic current measurement series 100, indicated by a bold black curve, with a determined transition point 101 at a current I v , this illustration being a Example of a current measurement series 100 for an evaporator 60 with a negative temperature coefficient shows.
  • the current I is plotted against the time t and is shown as continuous for the sake of illustration only.
  • the evaporator 60 At the beginning of a train at a starting point 1 10, which is determined for example by detecting the train by means of a pressure sensor or by being switched on by a consumer, the evaporator 60 is switched on and heated with a heating current. Measurement values 1 08 (shown schematically as a curve in FIG. 3) of the current I applied to the evaporator 60 from the starting point 1 1 0 onwards are then recorded in chronological order. The evaporator 60 heats up relatively quickly, so the measured current I falls from.
  • the temporal current measurement series 100 has a transition point 101 which is recognizable as a kink point or at least a strong flattening which is determined as transition point 101 as soon as evaporation begins. This is followed by two-point control as a function of a current lv belonging to the transition point 101 with the lower threshold h and the upper threshold h, the current I in the current interval [h; 12] is regulated: as soon as the determined current flow I exceeds the upper threshold h, the current source is switched off or the current flow is reduced; as soon as the determined current flow I falls below the lower threshold b, the current source is switched on or the current flow is increased.
  • the difference between the upper threshold B to the current lv at the transition point 102, and the difference of the current lv at the transition point 1 02 to the un direct threshold h is advantageously less than the current l v at the transition point 102, since no or only a small excess temperature at Evaporator 60 should occur and thus only a small change in current occurs.
  • the advantage of the previously described method for regulating is illustrated using the lower current measurement series 200 in FIG.
  • the lower current measurement series 200 shows a current curve for an evaporator 60 which differs in one or more points from the evaporator 60 of the bold current measurement series 100: the battery voltage is different, in particular due to the state of discharge or internal resistance; the heating resistance of the Ver evaporator 60 is different, in particular zen through production tolerances; other electrical resistances are present.
  • the method according to the invention results in a temperature error which is one order of magnitude smaller than in the case of the resistive temperature determination according to the prior art. Since it is advantageous if the amount of the current interval 11 2 -j is less than 50%, advantageously less than 25%, further advantageously less than 10% of the amount of the current value I v .
  • the process does not regulate to a fixed temperature, but to a current that corresponds to the evaporation temperature or a temperature slightly above the evaporation temperature. Since the evaporation temperature depends on the composition of the substrate or, in particular, the liquid, the temperature is not solut, but the current l v leading to the evaporation is determined.
  • the current measurement series 100 comprises several measured values 108 recorded one after the other, which are represented by a corresponding number of points, each point representing a measured value 108 with an associated current I at a time t.
  • the control device 15 calculates a best-fit straight line 102 from the measured values 108, for example by linear regression.
  • two different best-fit straight lines 102 are shown at the times t 1 and t 2.
  • the time course of the rise 109 of the best fit straight line 102 thus obtained is shown in FIG.
  • the regression has the advantage that the transition point 1 01 can be easily localized, even if the current measurement series 100 is superimposed with noise.
  • the regression thus smooths the increase 1 09 and offers an improvement over finite differences.
  • FIG. 5 shows a determination of a transition point 101 on the basis of the rise 109 of the current measurement series 100 shown in FIG.
  • the transition point 101 can be detected in real time by evaluating the first or second time derivative of the current I.
  • the rise 1 09 is the rise of the regression line 10 02 determined by regression on the current measurement series 1 00 and is plotted against time t. If, for example, the amount of the increase 109 falls below a threshold value 103, it can be concluded that evaporation has started.
  • the transition point 1 01 is located where the amount of the rise 109 of the best-fit straight line 1 02 is less than a threshold value 103 of 0.002 A / s in this example.
  • the threshold value 103 can be determined empirically for the evaporator 60. From the time to, at which the rise 109 exceeds the threshold value 1 03, the evaporation current lv can be determined using the current measurement series 100, here for example approx. 2.6 A (see FIG. 4).
  • FIG. 6 shows a determination of a transition point 1 01 based on the curvature 106 of the current measurement series 100 shown in FIG. 4.
  • An extreme value 10 7 in the second derivative in particular a maximum, characterizes the transition point 101.
  • the transition point 101 or the evaporation point of the current measurement series 101 can also be found via the curvature 1 06 of the current measurement series 100.
  • a polynomial in particular of the second order, is locally fitted to a plurality of successive measured values 108 of the current measurement series 100 along the current measurement series 100.
  • the coefficient of the quadratic term of the polynomial is determined as curvature 1 06 and plotted against time t.
  • An algorithm for finding an extreme value 1 07 finds the extreme value 107 at a point in time t 0 , which corresponds to the point in time at which the current measurement series 100 has the transition point 101.

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Measuring Volume Flow (AREA)
  • Control Of Resistance Heating (AREA)

Abstract

Ein Verfahren zur Regelung der Verdampfung eines Verdampfers (60) in einem Inhalator (10), wobei der Verdampfer (60) mittels elektrischer Widerstands heizung geheizt wird, und wobei eine elektronische Steuerungseinrichtung (15) den Stromfluss durch den Verdampfer (60) regelt, umfasst folgende Schritte: Feststellung eines Anfangspunktes (110) entsprechend dem Beginn eines Zuges durch einen Konsumenten; zeitlich aufeinanderfolgendes Aufnehmen von Messwerten (108) des an dem Verdampfer (60) anliegenden Stroms ab dem Anfangspunkt (110); Bestimmung eines Übergangspunkts (101) zwischen einem Bereich geringer Verdampfung und einem Bereich hoher Verdampfung in einer den Messwerten (108) entsprechenden zeitabhängigen Strommessreihe (100); Ermittlung eines dem Übergangspunkt (101) entsprechenden Stromwerts (lv); Festlegen eines Stromintervalls [I1; I2] in Abhängigkeit von dem ermittelten Stromwert (lv); und Regelung des Stromflusses innerhalb des festgelegten Stromintervalls [I1; l2].

Description

Verfahren zur Regelung der Verdampfung eines
Verdampfers in einem Inhalator
Die vorliegende Erfindung betrifft Verfahren zur Regelung der Ver dampfung eines Verdampfers in einem I nhalator, wobei der Ver dampfer mittels elektrischer Widerstandsheizung geheizt wird , und wobei eine elektronische Steuerungseinrichtung den Stromfluss durch den Verdampfer regelt.
Typischerweise wird ein resistiver Verdampfer über ein elektronisches Schaltelement mit einem Energiespeicher elektrisch verbun den, sodass bei geschlossenem Schaltelement die Spannung des Energiespeichers am Verdampfer anliegt und ein Heizstrom fließt. Der Schalter wird üblicherweise durch die elektronische Steuereinrichtung betrieben.
Die Temperatur am Verdampfer wird typischerweise mithilfe eines temperaturabhängigen elektrischen Widerstands des Verdampfers ermittelt. Durch die Beziehung zwischen Temperatur und dem elektrischen Widerstand des Verdampfers kann die Temperatur des Verdampfers gezielt eingestellt werden. Die Temperatur sollte dabei eine durch die zu verdampfende Flüssigkeit bestimmte Temperatur nicht übersteigen, da sonst Schadstoffe entstehen können, insbesondere durch ein Trockenfallen des Verdampfers.
Der Stromkreis eines Verdampfers bzw. Heizers lässt sich vereinfacht als eine Reihenschaltung von elektrischen Widerständen be schreiben. Elemente dieser Reihenschaltung umfassen einen elektrischen Widerstand des Verdampfers (Verdampferwiderstand), einen Batterieinnenwiderstand sowie unerwünschte parasitäre elek trische Widerstände. Die parasitären Widerstände sind beispielsweise durch folgende Widerstände gegeben: einen zu der elektrischen Steuerungseinrichtung gehörigen elektrischen Widerstand, einen Strommesswiderstand, einen elektrischen Widerstand der Zuleitungen, insbesondere durch Verbindungsdrähte, Kupferleitbahnen und/oder Lötstellen und gegebenenfalls einen elektrischen Wider stand einer möglichen Steckverbindung. Der parasitäre Widerstand ist weder zeitlich konstant noch reproduzierbar, da beispielsweise Steckverbindungen je nach Alterungszustand, Verschmutzung und/oder Verformung einen nur mit erheblichem Aufwand messbaren Einfluss auf den parasitären Widerstand haben.
Temperaturmessfehler aufgrund parasitärer Widerstände können zu einer Überhitzung der zu verdampfende Flüssigkeit führen, was zu Blasensieden oder Schadstoffentstehung führen kann. Aufgrund der vielfältigen , durch Messung und parasitäre Ströme bedingten Fehler kann der Verdampfer nur unzureichend mit bekannten Verfahren geregelt werden .
Es ist die Aufgabe der Erfindung, ein Verfahren bereitzustellen, mit dem die Verdampfung effektiv und zuverlässig geregelt und eine Überhitzung der zu verdampfende Flüssigkeit sicher vermieden wer den kann.
Erfindungsgemäß umfasst das Verfahren folgende Schritte: Zeitlich aufeinanderfolgendes Aufnehmen von Messwerten des an dem Ver dampfer anliegenden Stroms ab einem Anfangspunkt. Ab dem Anfangspunkt fließt ein Strom durch den Verdampfer. Durch den Stromfluss und den temperarturabhängigen elektrischen Widerstand des Verdampfers erwärmt sich der Verdampfer. Aufgrund der Er- wärmung des Verdampfers verändert sich der temperarturabhängige elektrische Widerstand des Verdampfers.
Die Messung kann vorteilhaft durch eine Bedarfsanforderung eines Benutzers des Inhalators eingeschaltet werden , insbesondere durch ein Ziehen an einer elektronischen Zigarette. Entsprechend kann die Messung nach Beendigung der Anforderung ausgeschaltet werden.
Nachfolgend wird ein Übergangspunkts zwischen einem Bereich geringer und insbesondere bis hin zu keiner Verdampfung und einem Bereich hoher Verdampfung insbesondere während des Konsums in einer den Messwerten entsprechenden zeitabhängigen Strommessreihe bestimmt. Der Übergangspunkt markiert den Zeitpunkt, zu der die Verdampfung eintritt und der Verdampfer nicht wesentlich weiter erwärmt wird. Die Erfindung hat erkannt, dass ab dem Übergangs punkt Verdampfung in einem solchen hohen Maße stattfindet, dass keine oder kaum eine weitere Erwärmung des Verdampfers mehr stattfindet. Die durch den Stromfluss am Verdampfer bereitgestellte Energie wird in Energie zur Verdampfung der Flüssigkeit und nicht oder nur zu geringen Anteilen in die Erwärmung des Verdampfers umgewandelt. Daher ändert sich ab dem Übergangspunkt die Tem peratur des Verdampfers in einem geringeren Maß als zu der Zeit vor dem Übergangspunkt. Damit kann der Übergangspunkt in der Strommessreihe als ein Knickpunkt in der Abhängigkeit zwischen Strom und Messpunkt beziehungsweise Zeit verstanden werden.
Aus dem Übergangspunkt erfolgt eine Ermittlung eines dem Übergangspunkt entsprechenden Stromwerts lv, bei dem eine zuverlässi ge Verdampfung stattfindet. Zur Regelung der Heizleistung über den Stromfluss folgt ein Festlegen eines Stromintervalls [li ; b] in Abhängigkeit von dem ermittelten Stromwert lv und eine Regelung des Stromflusses innerhalb des festgelegten Stromintervalls [h ; l2]. Da mit kann die Leistung des Verdampfers präzise geregelt werden .
Das erfindungsgemäße Verfahren hat den Vorteil, dass die Ver- dampfertemperatur nicht bekannt sein muss und der Wert insbeson dere des parasitären elektrischen Widerstands nicht in Echtzeit und für jeden individuellen Verdampfer bestimmt zu werden braucht. Mit dem erfindungsgemäßen Verfahren ist entscheidend, bei welchem jeweiligen Strom beziehungsweise welcher Heizleistung die Ver- dampfung durch den jeweiligen Verdampfer eintritt. Der Eintritt der Verdampfung wird anhand der Messreihe bestimmt und bestimmt somit den anzulegenden Heizstrom innerhalb des Stromintervalls [h ; l 2] . Vorteilhaft wird der Übergangspunkt anhand einer Regression ent lang der Strommessreihe ermittelt, um den Übergangspunkt zuverlässig und effektiv bestimmen zu können. Einer Regression liegen eine Mehrzahl von Messwerten zu Grunde, womit Messfehler und/oder statistische Fehler minimiert werden können. Die Regres- sion ist vorteilhaft gegenüber beispielsweise einer Finite Differen- zen-Methode, bei der lediglich insbesondere zwei benachbarte Messwerte betrachtet werden und sich so eine Messungenauigkeit besonders stark auf das Ergebnis auswirkt. Vorzugsweise wird der Übergangspunkts mindestens einer Aus gleichsgeraden und/oder mindestens eines Ausgleichspolynoms an die Strommessreihe ermittelt, um eine numerisch effektive Ermittlung des Übergangspunkts bereitzustellen . Beispielsweise können ein oder mehrere Ausgleichsgeraden und/oder insbesondere quad- ratische Ausgleichskurven an verschiedenen Messpunkten der Messreihe durch die Regression ermittelt werden. Aus dem zeitli- chen Verlauf der zu den Ausgleichsgeraden gehörigen Anstiege beziehungsweise den zu den Ausgleichskurven gehörigen Krümmun gen kann der Übergangspunkt ermittelt werden . Die Krümmung kann dabei insbesondere aus einem Koeffizienten eines quadratischen Terms des Ausgleichspolynoms bestimmt werden.
Bevorzugt wird der Übergangspunkt durch einen Sprung und/oder das Erreichen eines Schwellwerts des Anstiegs bzw. der Steigung ( 1 . Ableitung) der Strommessreihe ermittelt, um die Identifizierung des Übergangspunkts weiter zu verbessern. I n einer vorteilhaften Ausführungsform wird dazu der Übergangspunkt durch einen Ext remwert der Krümmung der Strommessreihe ermittelt.
Vorzugsweise sind zwei zeitlich aufeinanderfolgende Messwerte weniger als 1 0 ms, vorzugsweise weniger als 5 ms, weiter vorzugs weise weniger als 2 ms zeitlich voneinander beabstandet, um den Übergangspunkt zeitlich gut auflösen zu können und über die Dauer eines Zuges eine vorteilhafte Anzahl an Messwerten aufnehmen zu können. Dazu werden bevorzugt die aufgenommenen Messwerte wenigstens über 10%, vorteilhaft wenigstens 30% , weiter vorteilhaft wenigstens 50% einer Zuglänge aufgenommen .
Vorteilhaft ist die Länge des Stromintervalls [h ; h] kleiner als 50%, vorteilhaft kleiner als 25% , weiter vorteilhaft kleiner als 10% des Betrages des Stromwerts lv, damit der Heizstrom möglichst genau geregelt werden kann.
I n einer bevorzugten Ausführungsform wird die untere Schwelle h und/oder die obere Schwelle b so festgelegt, dass die untere Schwelle kleiner als der Stromwert lv und/oder der Stromwert lv kleiner als die obere Schwelle l2 sind, damit der Heizstrom zuver- lässig um den Stromwert lv in dem Stromintervall [L ; l ] geregelt werden kann. Ist die untere Schwelle h kleiner als der Stromwert lv, kann ein Trockenfallen des Verdampfers verhindert werden, da der Verdampfer mit einem Strom zwischen der unteren Schwelle h und dem Stromwert lv nicht verdampft, sondern den Verdampfer und/oder die Flüssigkeit heizt.
Vorzugsweise wird der Stromfluss durch den Verdampfer gepulst, wobei das Tastverhältnis bei Erreichen der unteren Schwelle h von oben erhöht und/oder bei Erreichen der oberen Schwelle l2 von un ten reduziert wird. Damit kann eine Reduktion der Eingangsleistung und eine Verlängerung der Laufzeit einer den Verdampfer mit elektrischem Strom versorgenden Batterie erzielt werden.
Vorteilhaft wird die untere Schwelle h und/oder die obere Schwelle l2 in Abhängigkeit einer Analyse des durchschnittlichen quadratischen Stroms IL2 über ein definiertes Zeitintervall festgelegt. Fällt der durchschnittlichen quadratischen Strom IL2 unter einen vorge gebenen Schwellwert, der beispielsweise aus der Strommessreihe aus einem Zeitintervall nach dem Anfangspunkt bestimmt werden kann , so ist dies als Zeichen für einen verringerten Kontakt zwi schen dem Verdampfer und der Flüssigkeit zu werten. In diesem Fall sollten die untere Schwelle h und/oder die obere Schwelle l2 zu niedrigeren Strömen verschoben werden.
Bevorzugt wird das Stromintervall [h ; l2] und/oder mindestens eine der Schwellen h ; l2 im Laufe der Zeit zu niedrigeren Strömen ver schoben, um einem Trockenfallen des Verdampfers vorzubeugen. Das Stromintervall [h ; l2] und/oder mindestens eine der Schwellen h ; l2 können auch an eine vorgegebene Zeitfunktion angepasst wer den , um die Verdampfung effektiv kontrollieren zu können und eine Anpassung an Vorgänge der differenziellen Destillation zu ermögli chen.
In einer vorteilhaften Ausführungsform werden Daten bezüglich mehrerer zeitabhängiger Strommessreihen in einem Datenspeicher gespeichert und miteinander und/oder mit festen Parametern vergli chen. Damit ist es möglich, die im Laufe des Verfahrens angefalle nen Strommesswerte und Übergangspunkte zu speichern. Eine automatische Analyse kann beispielsweise untersuchen, zu welchem Zeitpunkt der Verdampfungsstrom lv erreicht wurde. Wird dieser Zeitpunkt später als ein vorgegebener Schwellwert erreicht, so ist dies ein Hinweis auf einen zu hohen elektrischen Widerstand. Weiterhin kann das durchschnittliche Stromquadrat während des Ver dampfungsvorgangs ausgewertet werden. Ist dies niedriger als ein vorgegebener Schwellwert, so kann auf den Verbrauch der Flüssig keit zurückgeschlossen werden.
Vorzugsweise wird die Umgebungstemperatur gemessen, und das Stromintervall [h ; l2] und/oder wenigstens eine seiner Schwellen h , l2 wird in Abhängigkeit der gemessenen Umgebungstemperatur fest gelegt und/oder angepasst, um mögliche Einflüsse der Umgebungs temperatur berücksichtigt zu können.
Vorteilhaft erfolgt die Regelung des Stromflusses durch ein Ein schalten und/oder Beibehalten des Stromflusses durch den Verdampfer bei einem Strom von weniger als einem oberen Schwellwert I2, oder Ausschalten des Stromflusses durch den Verdampfer bei einem Strom mehr als einem unteren Schwellwert l· , um ein effektives Regelverfahren innerhalb des Stromintervalls [h ; l2] bereitstel len zu können. Die Erfindung wird im Folgenden anhand bevorzugter Ausführungs formen unter Bezugnahme auf die beigefügten Figuren erläutert. Dabei zeigt
Fig . 1 eine schematische Darstellung eines I nhalators;
Fig. 2 eine vereinfachte Schaltung zur Stromheizung eines Verdampfers;
Fig. 3 eine schematische Strommessreihe mit einem ermittelten Übergangspunkt;
Fig . 4 eine exemplarische Strommessreihe mit einem Übergangs punkt;
Fig. 5 die Ermittlung eines Übergangspunkts anhand des Anstiegs einer Strommessreihe; und
Fig . 6 die Ermittlung eines Übergangspunkts anhand der Krümmung einer Strommessreihe.
Figur 1 zeigt schematisch einen Inhalator 10 beziehungsweise ein elektronisches Zigarettenprodukt. Der Inhalator 1 0 umfasst ein Ge häuse 1 1 , in dem ein Luftkanal 30 beziehungsweise Schlot zwischen mindestens einer Lufteinlassöffnung 231 und einer Luftauslassöffnung 24 an einem Mundende 32 des Zigarettenprodukts 10 vorge sehen ist. Das Mundende 32 des I nhalators 1 0 bezeichnet dabei das Ende, an dem der Konsument zwecks I nhalation zieht, und dadurch den Inhalator 1 0 mit einem Unterdrück beaufschlagt und einen Luftstrom 34 in dem Luftkanal 30 erzeugt. Der Inhalator 10 besteht vorteilhaft aus einem Basisteil 16 und einer Verdampfer-Tank-Einheit 20, die eine Verdampfervorrichtung 1 mit einem Verdampfer 60, der durch das erfindungsgemäße Verfahren regelbar ist, und einen Flüssigkeitsspeicher 18 umfasst. Die Ver- dampfer-Tank-Einheit kann insbesondere in Form einer auswech selbaren Kartusche ausgebildet sein. Der Flüssigkeitsspeicher 1 8 kann von dem Nutzer des Inhalators 10 nachfüllbar sein. Die durch die Lufteinlassöffnung 231 angesaugte Luft wird in dem Luftkanal 30 zu dem mindestens einen Verdampfer 60 geleitet. Der Verdampfer 60 ist mit dem Flüssigkeitsspeicher 1 8 verbunden oder verbindbar, in dem mindestens eine Flüssigkeit 50 gespeichert ist. Dazu ist vorteilhaft an einer Einlassseite 61 des Verdampfers 60 ein poröses und/oder kapillares, flüssigkeitsleitendes Element 19 angeordnet.
Ein vorteilhaftes Volumen des Flüssigkeitsspeichers 18 liegt im Bereich zwischen 0, 1 ml und 5 ml, vorzugsweise zwischen 0,5 ml und 3 ml , weiter vorzugsweise zwischen 0,7 ml und 2 ml oder 1 ,5 ml.
Der Verdampfer 60 verdampft Flüssigkeit 50, die dem Verdampfer 60 aus dem Flüssigkeitsspeicher 1 8 von dem porösen Element 1 9 mittels Kapillarkräften zugeführt wird und/oder die in dem porösen Element 1 9 gespeichert ist, und gibt die verdampfte Flüssigkeit als Aerosol/Dampf an einer Auslassseite 64 den Luftstrom 34 zu.
Der Inhalator 10 umfasst des Weiteren einen elektrischen Energiespeicher 14 und eine elektronische Steuerungsvorrichtung 15. Der Energiespeicher 14 ist in der Regel in dem Basisteil 16 angeordnet und kann insbesondere eine elektrochemische Einweg-Batterie oder ein wiederaufladbarer elektrochemischer Akku, beispielsweise ein Lithium-Ionen-Akku, sein. Die Verdampfer-Tank-Einheit 20 ist zwi schen dem Energiespeicher 14 und dem Mundende 32 angeordnet. Die elektronische Steuerungsvorrichtung 15 umfasst mindestens eine digitale Datenverarbeitungseinrichtung, insbesondere Mikroprozessor und/oder Microcontroller, in dem Basisteil 1 6 (wie in Figur 1 gezeigt) und/oder in der Verdampfer-Tank-Einheit 20
In dem Gehäuse 1 1 ist vorteilhaft ein Sensor, beispielsweise ein Drucksensor oder ein Druck- oder Strömungsschalter, angeordnet, wobei die Steuerungsvorrichtung 15 auf der Grundlage eines von dem Sensor ausgegebenen Sensorsignals feststellen kann, dass ein Konsument am Mundende 32 des Zigarettenprodukts 10 zieht, um zu inhalieren. In diesem Fall steuert die Steuerungsvorrichtung 1 5 den Verdampfer 60 an, um Flüssigkeit 50 aus dem Flüssigkeitsspei cher 1 8 als Aerosol/Dampf in den Luftstrom 34 zuzugeben.
Der mindestens eine Verdampfer 60 ist in einem dem Mundende 32 abgewandten Teil der Verdampfer-Tank-Einheit 20 angeordnet. Da mit sind eine effektive elektrische Kopplung insbesondere mit dem Basisteil 16 und Ansteuerung des Verdampfers 60 möglich. Der Luftstrom 34 führt vorteilhaft durch einen axial durch den Flüssigkeitsspeicher 1 8 laufenden Luftkanal 30 zu der Luftauslassöffnung 24.
Die in dem Flüssigkeitsspeicher 18 gespeicherte, zu dosierende Flüssigkeit 50 ist beispielsweise eine Mischung aus 1 ,2-Propylen- glykol, Glycerin, Wasser, und vorzugsweise mindestens einem Aroma (Flavour) und/oder mindestens einem Wirkstoff, insbesondere Nikotin. Die angegebenen Bestandteile der Flüssigkeit 50 sind je doch nicht zwingend. Insbesondere kann auf Aroma- und/oder Wirkstoffe, insbesondere Nikotin, verzichtet werden. I n Figur 2 ist eine schematische Schaltung zur Stromheizung des Verdampfers 60 gezeigt. Der Verdampfer 60 ist ein elektrischer Widerstandsheizer, der durch einen elektrischen Strom aufgrund seines elektrischen Widerstands erwärmt werden kann. Der Verdamp fer 60 kann mindestens ein Widerstandselement, beispielsweise einen Heizdraht aufweisen, beispielsweise einen Spiraldraht oder einen oder eine Mehrzahl parallel zueinander angeordneter Drahtlei ter. Der Verdampfer 60 kann alternativ als mikro
elektromechanisches System (M EMS) ausgeführt sein, beispielswei se mit Leitungs- oder Mikrokanälen, wie in der DE 1 0 2016 1 20 803 A1 beschrieben , deren Offenbarungsgehalt insoweit in die vorlie gende Anmeldung aufgenommen wird. Auch bionische oder kapillarartige Heizstrukturen, wie bionische Netze, sind für den Verdampfer 60 möglich. Es sind auch Verdampfer 60 mit Heizstrukturen wie in der DE 1 0 201 7 1 1 1 1 1 9 A1 beschrieben möglich, deren Offenba rungsgehalt insoweit in die vorliegende Anmeldung aufgenommen wird. Generell ist die Erfindung nicht an einen bestimmten Typ von Verdampfer 60 gebunden.
Die Verdampfer-Tank-Einheit 20 ist vorzugsweise mit einer von der Steuerungsvorrichtung 1 5 steuerbaren Heizstromquelle 71 verbun den und/oder verbindbar, die über elektrische Leitungen 25 mit dem Verdampfer 60 verbunden ist, so dass ein von der Heizstromquelle 71 erzeugter elektrischer Heizstrom Ih durch den Verdampfer 60 fließt. Aufgrund des ohmschen Widerstands des elektrisch leitenden Verdampfers 60 führt der Stromfluss zu einer Erhitzung des Verdampfers 60 und daher zu einer Verdampfung von an dem Verdampfer 60 anliegender Flüssigkeit. Auf diese Weise erzeugter
Dampf/Aerosol entweicht aus dem Verdampfer 60 und wird dem Luftstrom 34 beigemischt. Genauer steuert bei Feststellung eines durch Ziehen des Konsumenten verursachten Luftstroms 34 durch den Luftkanal 30 die Steuerungsvorrichtung 1 5 die Heizstromquelle 71 an, wobei durch spontane Erhitzung die an dem Verdampfer 60 anliegende Flüssigkeit in Form von Dampf/Aerosol ausgegeben wird.
Die Verdampfungstemperatur liegt vorzugsweise im Bereich zwi schen 100 °C und 400 °C, weiter bevorzugt zwischen 150 °C und 350 °C, noch weiter bevorzugt zwischen 1 90 °C und 290 °C.
Die Verdampfer-Tank-Einheit 20 ist so eingestellt, dass eine Flüs sigkeitsmenge vorzugsweise im Bereich zwischen 1 pl und 20 pl, weiter vorzugsweise zwischen 2 mI und 1 0 mI, noch weiter vorzugs weise zwischen 3 mI und 5 mI, typischerweise 4 mI pro Zug des Konsumenten, zudosiert wird. Vorzugsweise kann die Verdampfer-Tank- Einheit hinsichtlich der Flüssigkeits-/Dampfmenge pro Zug, d. h. je Zugdauer von 1 s bis 3 s, einstellbar sein.
Die von der Heizstromquelle 71 erzeugte Ansteuerfrequenz des Verdampfers 60 liegt im Allgemeinen vorteilhaft im Bereich von 1 Hz bis 50 kHz, bevorzugt im Bereich von 30 Hz bis 30 kHz, noch weiter vorteilhaft im Bereich von 1 00 Hz bis 25 kHz.
Vorteilhaft kann der Verdampfer 60 bei Verschmutzung , Defekt oder aufgebrauchtem Substrat ersetzbar sein , sodass eine trennbare elektrische Verbindung zwischen dem Verdampfer 60 dem Basisteil 16 vorgesehen sein kann. Diese Verbindung kann als beispielsweise Federstifte, Steck- oder Schraubverbindung ausgeführt sein.
Figur 3 zeigt eine durch eine fette schwarze Kurve angedeutete schematische Strommessreihe 1 00 mit einem ermittelten Über gangspunkt 101 bei einem Strom lv, wobei diese Darstellung ein Beispiel einer Strommessreihe 100 für einen Verdampfer 60 mit einem negativen Temperaturkoeffizienten zeigt. In Figur 3 ist der Strom I gegen die Zeit t aufgetragen und nur zur Anschauung als kontinuierlich dargestellt.
Zu Beginn eines Zuges an einem Anfangspunkt 1 10, der beispielsweise durch das Feststellen des Zuges mittels eines Drucksensors ermittelt oder durch ein Einschalten durch einen Konsumenten be stimmt wird, wird der Verdampfer 60 eingeschaltet und mit einem Heizstrom beheizt. Nun folgt ein zeitlich aufeinanderfolgendes Aufnehmen von Messwerten 1 08 (in Figur 3 schematisch als Kurve ge zeichnet) des an dem Verdampfer 60 anliegenden Stroms I ab dem Anfangspunkt 1 1 0. Der Verdampfer 60 heizt sich relativ schnell auf, daher fällt der gemessene Strom I ab.
Die zeitliche Strommessreihe 100 weist einen als Knickpunkt er kenntlichen Übergangspunkt 101 oder zumindest aber eine starke Abflachung auf, die als Übergangspunkt 101 bestimmt wird, sobald die Verdampfung einsetzt. Es folgt eine Zweipunktregelung in Ab hängigkeit von einem zum Übergangspunkt 101 gehörigen Strom lv mit der unteren Schwelle h und der oberen Schwelle h, wobei der Strom I in dem Stromintervall [h ; 12] geregelt wird: sobald der ermit telte Stromfluss I die obere Schwelle h überschreitet, wird die Stromquelle ausgeschaltet oder der Stromfluss reduziert; sobald der ermittelte Stromfluss I die untere Schwelle b unterschreitet, wird die Stromquelle eingeschaltet oder der Stromfluss erhöht. Die Differenz der oberen Schwelle b zu dem Strom lv am Übergangspunkt 102 und die Differenz des Stroms lv am Übergangspunkt 1 02 zu der un teren Schwelle h ist vorteilhaft kleiner als der Strom lv am Über gangspunkt 102, da keine oder nur eine geringe Übertemperatur am Verdampfer 60 auftreten soll und somit auch nur eine geringe Stromänderung auftritt.
Der Vorteil des zuvor beschriebenen Verfahrens zur Regelung wird anhand der unteren Strommessreihe 200 in Figur 3 verdeutlicht. Die untere Strommessreihe 200 zeigt einen Stromverlauf für einen Verdampfer 60 der sich in einem oder mehreren Punkten vom Verdamp fer 60 der fett gedruckten Strommessreihe 100 unterscheidet: die Batteriespannung ist eine andere, insbesondere durch den Entladungszustand oder Innenwiderstand; der Heizwiderstand des Ver dampfers 60 ist ein anderer, insbesondere durch Fertigungstoleran zen; andere elektrische Widerstände liegen vor.
Somit ergibt sich für die untere Strommessreihe 200 ein Übergangs punkt 201 bei einem anderen Strom lw, der jedoch wieder beim Einsetzen der Verdampfung entsteht. In diesem Beispiel können leicht eine untere Schwelle \ Ί und eine obere Schwelle l2 gewählt werden, innerhalb denen der Strom I geregelt wird, damit der Verdampfer 60 zuverlässig und effektiv Flüssigkeit verdampft.
Mit dem erfindungsgemäßen Verfahren ergibt sich ein Temperatur fehler, der um eine Größenordnung geringer ist als im Fall der re- sistiven Temperaturbestimmung gemäß dem Stand der Technik. Da bei ist es von Vorteil, wenn der Betrag des Stromintervalls 112— j kleiner als 50 %, vorteilhaft kleiner als 25 %, weiter vorteilhaft klei ner als 10 % des Betrages des Stromwerts lv ist. Das Verfahren regelt nicht auf eine feste Temperatur, sondern auf einen Strom, der der Verdampfungstemperatur oder einer Temperatur etwas oberhalb der Verdampfungstemperatur entspricht. Da die Verdampfungstem peratur von der Zusammensetzung des Substrats beziehungsweise insbesondere der Flüssigkeit abhängt, ist die Temperatur nicht ab- solut, sondern der zur Verdampfung führende Strom lv wird be stimmt.
Figur 4 zeigt eine exemplarische Strommessreihe 1 00 einer möglichen Messkurve mit einem Übergangspunkt 101 bei einer Zeit von etwa t = 201 ms und einem realistischen Rauschen des Stromsig nals. Die Strommessreihe 100 umfasst mehrere zeitlich aufeinanderfolgend aufgenommene Messwerte 108, die durch eine entsprechende Anzahl von Punkten dargestellt sind, wobei jeder Punkt ei nem Messwert 1 08 mit einem zugehörigen Strom I zu einer Zeit t repräsentiert.
Sobald n Werte aufgenommen sind, berechnet die Steuerungsein richtung 1 5 aus den Messwerten 108 beispielsweise per linearer Regression eine Ausgleichsgerade 102. In diesem Beispiel sind zwei verschiedene Ausgleichsgeraden 1 02 zu den Zeitpunkten ti und t2 gezeigt. Der zeitliche Verlauf des Anstiegs 109 der damit er mittelten Ausgleichsgeraden 102 ist in Figur 5 gezeigt.
Die Regression hat den Vorteil, dass sich der Übergangspunkt 1 01 gut lokalisieren lässt, selbst wenn die Strommessreihe 100 mit Rau schen überlagert ist. Die Regression glättet somit den Anstieg 1 09 und bietet eine Verbesserung gegenüber Finiten Differenzen.
Figur 5 zeigt eine Ermittlung eines Übergangspunkts 101 anhand des Anstiegs 109 der in Figur 4 gezeigten Strommessreihe 1 00.
Der Übergangspunkt 101 kann durch Auswertung der ersten oder zweiten zeitlichen Ableitung des Stroms I in Echtzeit detektiert werden. Der Anstieg 1 09 ist der Anstieg der durch Regression an der Strommessreihe 1 00 ermittelten Ausgleichsgeraden 1 02 und ist in gegen die Zeit t aufgetragen. Fällt beispielsweise der Betrag des Anstiegs 1 09 unter einen Schwellwert 103, kann auf ein Einsetzen der Verdampfung geschlossen werden. In diesem Beispiel befindet sich der Übergangspunkt 1 01 dort, wo der Betrag des Anstiegs 109 der Ausgleichsgeraden 1 02 kleiner als ein Schwellwert 103 von in diesem Beispiel 0,002 A/s ist. Der Schwellwert 103 kann empirisch für den Verdampfer 60 bestimmt werden. Aus der Zeit to, zu der der Anstieg 109 den Schwellwert 1 03 überschreitet, kann anhand der Strommessreihe 100 der Verdampfungsstrom lv bestimmt werden, hier beispielsweise ca. 2,6 A (vergleiche Figur 4).
Figur 6 zeigt eine Ermittlung eines Übergangspunkts 1 01 anhand der Krümmung 106 der in Figur 4 gezeigten Strommessreihe 100. Ein Extremwert 1 07 in der zweiten Ableitung, insbesondere ein Ma ximum, kennzeichnet den Übergangspunkt 101 . Der Übergangspunkt 101 bzw. der Verdampfungspunkt der Strommessreihe 101 kann auch über die Krümmung 1 06 der Strommessreihe 1 00 gefun- den werden. Dafür wird entlang der Strommessreihe 100 anstelle einer Ausgleichsgeraden 1 02 ein Polynom, insbesondere zweiter Ordnung, an eine Mehrzahl aufeinanderfolgender Messwerte 108 der Strommessreihe 100 lokal gefittet. Der Koeffizient des quadrati schen Terms des Polynoms wird als Krümmung 1 06 bestimmt und gegen die Zeit t aufgetragen. Ein Algorithmus zum Auffinden eines Extremwerts 1 07 findet den Extremwert 107 bei einem Zeitpunkt t0, der dem Zeitpunkt entspricht, an dem die Strommessreihe 1 00 den Übergangspunkt 101 aufweist. Bezugszeichenliste:
I Verdampfervorrichtung 4 Träger
10 Inhalator
I I Gehäuse
14 Energiespeicher
1 5 Steuerungseinrichtung
16 Basisteil
18 Flüssigkeitsspeicher
19 Dochtstruktur
20 Verdampfer-Tank-Einheit 24 Luftauslassöffnung
30 Luftkanal
32 Mundende
34 Luftstrom
50 Flüssigkeit
60 Verdampfer
61 Einlassseite
62 Flüssigkeitskanal 64 Auslassseite
71 Heizstromquelle
1 00, 200 Strommessreihe 101 , 201 Übergangspunkt
102 Ausgleichsgerade
1 03 Schwellwert
104 Durchgangsöffnung 1 05a, 105b elektrische Leitung
1 06 Krümmung
107 Extremwert
1 08 Messwert 109 Anstieg
110 Anfangspunkt 131 Kontaktbereich 231 Lufteinlassöffnung
I, lv, IwStromwert
untere Schwelle
I2 obere Schwelle to, ti, t2 Zeitpunkt

Claims

Ansprüche:
1 . Verfahren zur Regelung der Verdampfung eines Verdampfers (60) in einem I nhalator ( 10), wobei der Verdampfer (60) mittels elektrischer Widerstandsheizung geheizt wird, und wobei eine elektronische Steuerungseinrichtung (1 5) den Stromfluss durch den Verdampfer (60) regelt, gekennzeichnet durch folgende Schritte:
- zeitlich aufeinanderfolgendes Aufnehmen von Messwerten (1 08) des an dem Verdampfer (60) anliegenden Stroms ab einem Anfangspunkt (1 10);
- Bestimmung eines Übergangspunkts (1 01 ) zwischen einem Bereich geringer Verdampfung und einem Bereich hoher Ver dampfung in einer den Messwerten (108) entsprechenden zeit- abhängigen Strommessreihe (100);
- Ermittlung, vorzugsweise in Echtzeit, eines dem Übergangs punkt (101 ) entsprechenden Stromwerts lv;
- Festlegen eines Stromintervalls [h ; h] in Abhängigkeit von dem ermittelten Stromwert lv; und
- Regelung des Stromflusses innerhalb des festgelegten
Stromintervalls [ ; l2].
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass - der Übergangspunkts (1 01 ) anhand einer Regression an die Strommessreihe ( 100) ermittelt wird.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass - der Übergangspunkts (1 01 ) anhand mindestens einer Ausgleichsgerade und/oder mindestens eines Ausgleichspolynoms an die Strommessreihe (1 00) ermittelt wird.
4. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass
- der Übergangspunkt (1 01 ) durch einen Sprung und/oder das Erreichen eines Schwellwerts (103) des Anstiegs (1 09) der Strommessreihe (1 00) ermittelt wird.
5. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass
- der Übergangspunkt ( 101 ) durch einen Extremwert ( 107) der Krümmung (1 06) der Strommessreihe (100) ermittelt wird.
6. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass
- zwei zeitlich aufeinanderfolgende Messwerte (108) weniger als 10 ms, vorzugsweise weniger als 5 ms, weiter vorzugsweise weniger als 2 ms zeitlich voneinander beabstandet sind.
7. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass
- die aufgenommenen Messwerte (108) wenigstens über 1 0%, vorteilhaft wenigstens 30% , weiter vorteilhaft wenigstens 50% einer Zuglänge aufgenommen werden.
8. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass
- der Betrag des Stromintervalls 112— 111 kleiner als 50 %, vorteilhaft kleiner als 25 % , weiter vorteilhaft kleiner als 10 % des Betrages des Stromwerts lv ist.
9. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass - die untere Schwelle l· und/oder die obere Schwelle l2 so fest gelegt werden, dass die untere Schwelle kleiner als der Stromwert lv und/oder der Stromwert lv kleiner als die obere Schwelle l2 sind.
1 0. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass
- der Stromfluss durch den Verdampfer (60) gepulst wird, wobei das Tastverhältnis bei Erreichen der unteren Schwelle h von oben erhöht und/oder bei Erreichen der oberen Schwelle l2 von unten reduziert wird.
1 1 . Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass
- die untere Schwelle h und/oder die obere Schwelle l2 in Abhängigkeit einer Analyse des durchschnittlichen quadratischen Stroms IL2 über ein definiertes Zeitintervall festgelegt wird.
12. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass
- das Stromintervall [h ; l2] und/oder seine Schwellen li und/oder l2 im Laufe der Zeit zu niedrigeren Strömen verscho ben werden.
1 3. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass
- Daten bezüglich mehrerer zeitabhängiger Strommessreihen (1 00) in einem Datenspeicher gespeichert und miteinander und/oder mit festen Parametern verglichen werden.
14. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass
- die Umgebungstemperatur gemessen wird und das Stromin tervall [11 ; 12] und/oder wenigstens eine seiner Schwellen h , l2 in Abhängigkeit der gemessenen Umgebungstemperatur fest gelegt und/oder angepasst wird.
1 5. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass
- der Stromfluss durch ein Einschalten und/oder Beibehalten des Stromflusses durch den Verdampfer (60) bei einem Strom von weniger als einem oberen Schwellwert l2, oder Ausschal ten des Stromflusses durch den Verdampfer (60) bei einem Strom mehr als einem unteren Schwellwert h geregelt wird.
PCT/EP2020/063856 2019-05-22 2020-05-18 Verfahren zur regelung der verdampfung eines verdampfers in einem inhalator WO2020234251A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020217042033A KR20220011178A (ko) 2019-05-22 2020-05-18 흡입기에서 증기화기의 증기화를 조절하기 위한 방법
US17/612,456 US12029253B2 (en) 2019-05-22 2020-05-18 Method for regulating the vaporisation of a vaporiser in an inhaler
JP2021568988A JP2022533217A (ja) 2019-05-22 2020-05-18 吸入器内の気化器の気化を制御する方法
EP20729963.7A EP3972435B1 (de) 2019-05-22 2020-05-18 Verfahren zur regelung der verdampfung eines verdampfers in einem inhalator
CN202080037436.1A CN113825422A (zh) 2019-05-22 2020-05-18 用于对吸入器中的蒸发器的蒸发进行调节的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019113645.8A DE102019113645B4 (de) 2019-05-22 2019-05-22 Verfahren zur Regelung der Verdampfung eines Verdampfers in einem Inhalator
DE102019113645.8 2019-05-22

Publications (1)

Publication Number Publication Date
WO2020234251A1 true WO2020234251A1 (de) 2020-11-26

Family

ID=70968908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/063856 WO2020234251A1 (de) 2019-05-22 2020-05-18 Verfahren zur regelung der verdampfung eines verdampfers in einem inhalator

Country Status (6)

Country Link
EP (1) EP3972435B1 (de)
JP (1) JP2022533217A (de)
KR (1) KR20220011178A (de)
CN (1) CN113825422A (de)
DE (1) DE102019113645B4 (de)
WO (1) WO2020234251A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020107091B4 (de) 2020-03-16 2023-01-26 Körber Technologies Gmbh Verfahren zum Bestimmen mindestens eines Parameters für die Verdampfung in einem Inhalator, und Inhalator
DE102021114281A1 (de) 2021-06-02 2022-12-08 Körber Technologies Gmbh Verdampfungsvorrichtung für einen Inhalator

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2468117A1 (de) * 2010-12-24 2012-06-27 Philip Morris Products S.A. Aerosolerzeugungssystem mit Mitteln zur Bestimmung der Erschöpfung eines Flüssigsubstrats
US20140270727A1 (en) * 2013-03-15 2014-09-18 R. J. Reynolds Tobacco Company Heating control arrangement for an electronic smoking article and associated system and method
DE102016120803A1 (de) 2016-11-01 2018-05-03 Hauni Maschinenbau Gmbh Verdampfereinheit für einen Inhalator und Verfahren zum Steuern einer Verdampfereinheit
WO2018122410A1 (en) * 2016-12-30 2018-07-05 Jt International S.A. Electrically operated aerosol generation system
DE102017205625A1 (de) * 2017-04-03 2018-10-04 Bayerische Motoren Werke Aktiengesellschaft Verfahren sowie elektronische Baugruppe zur Bestimmung einer Temperatur zumindest eines elektronischen Schaltelements
DE102017111119A1 (de) 2017-05-22 2018-11-22 Hauni Maschinenbau Gmbh Verdampfereinheit für einen Inhalator
WO2019072960A1 (de) * 2017-10-13 2019-04-18 Hauni Maschinenbau Gmbh Inhalator, insbesondere elektronisches zigarettenprodukt und computerprogrammprodukt

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL308092A (en) * 2016-08-05 2023-12-01 Juul Labs Inc Anemometer-assisted control of a vaporizer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2468117A1 (de) * 2010-12-24 2012-06-27 Philip Morris Products S.A. Aerosolerzeugungssystem mit Mitteln zur Bestimmung der Erschöpfung eines Flüssigsubstrats
US20140270727A1 (en) * 2013-03-15 2014-09-18 R. J. Reynolds Tobacco Company Heating control arrangement for an electronic smoking article and associated system and method
DE102016120803A1 (de) 2016-11-01 2018-05-03 Hauni Maschinenbau Gmbh Verdampfereinheit für einen Inhalator und Verfahren zum Steuern einer Verdampfereinheit
WO2018122410A1 (en) * 2016-12-30 2018-07-05 Jt International S.A. Electrically operated aerosol generation system
DE102017205625A1 (de) * 2017-04-03 2018-10-04 Bayerische Motoren Werke Aktiengesellschaft Verfahren sowie elektronische Baugruppe zur Bestimmung einer Temperatur zumindest eines elektronischen Schaltelements
DE102017111119A1 (de) 2017-05-22 2018-11-22 Hauni Maschinenbau Gmbh Verdampfereinheit für einen Inhalator
WO2019072960A1 (de) * 2017-10-13 2019-04-18 Hauni Maschinenbau Gmbh Inhalator, insbesondere elektronisches zigarettenprodukt und computerprogrammprodukt

Also Published As

Publication number Publication date
JP2022533217A (ja) 2022-07-21
DE102019113645B4 (de) 2020-12-03
US20220218039A1 (en) 2022-07-14
EP3972435B1 (de) 2023-07-19
KR20220011178A (ko) 2022-01-27
EP3972435A1 (de) 2022-03-30
DE102019113645A1 (de) 2020-11-26
CN113825422A (zh) 2021-12-21

Similar Documents

Publication Publication Date Title
EP3886619A1 (de) Verfahren und vorrichtung zur temperaturregelung eines verdampfers für einen inhalator, insbesondere ein elektronisches zigarettenprodukt
DE102016114718B4 (de) Inhalator
EP3407677B1 (de) Verdampfereinheit für einen inhalator und verfahren zum steuern einer verdampfereinheit
EP3972435B1 (de) Verfahren zur regelung der verdampfung eines verdampfers in einem inhalator
AT507188B1 (de) Inhalator
DE102017111119B4 (de) Verdampfereinheit für einen Inhalator
DE212017000291U1 (de) Inhalationsvorrichtung
EP3446579B1 (de) Inhalator und verfahren zum steuern eines inhalators
DE102015115527B3 (de) Dampfinhalationsgerät und auswechselbare Wechselbaugruppe für ein solches
EP3694349B1 (de) Inhalator, insbesondere elektronisches zigarettenprodukt
WO2017001270A1 (de) Verfahren zum betreiben eines dampfinhalationsgeräts und dampfinhalationsgerät
DE102009029768A1 (de) Vorrichtung zur Abgabe von Nikotin
DE3123678A1 (de) Verfahren und vorrichtung zur steuerung von lungenventilatoren
DE202013010986U1 (de) Elektronische Zigarette mit einer Leistungselektronik zur Regelung der Heizleistung eines Heizelementes
DE102007011544B3 (de) Verfahren zur Regelung eines Beatmungsanfeuchters sowie zugeordnete Vorrichtung
EP2318853A1 (de) Verfahren zur berechnung des ladezustandes einer batterie
WO2012062247A1 (de) Elektrischer inhalator
WO2020078801A1 (de) Zusammenstellung einer mehrzahl von flüssigkeitstanks, inhalator, station und verfahren zum testen des geschmacks einer flüssigkeitsmischung
DE102020107091B4 (de) Verfahren zum Bestimmen mindestens eines Parameters für die Verdampfung in einem Inhalator, und Inhalator
DE102017123172A1 (de) Rauchvorrichtung
DE102021114281A1 (de) Verdampfungsvorrichtung für einen Inhalator
DE102020110258B4 (de) Inhalator
DE102014115868A1 (de) Verfahren und Vorrichtung zur Steuerung eines Behandlungsvorgangs
DE102020108614A1 (de) Elektrochirurgie-Generator, Elektrochirurgiesystem und Verfahren zum Betreiben eines Elektrochirurgie-Generators
WO2022218992A1 (de) Wechselbares mundstück für einen inhalator, kartuschensystem, inhalationssystem und verfahren zum ermitteln eines systemzustandes eines inhalators

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20729963

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021568988

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217042033

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020729963

Country of ref document: EP

Effective date: 20211222