WO2020233656A1 - 声波换能器及驱动方法 - Google Patents

声波换能器及驱动方法 Download PDF

Info

Publication number
WO2020233656A1
WO2020233656A1 PCT/CN2020/091496 CN2020091496W WO2020233656A1 WO 2020233656 A1 WO2020233656 A1 WO 2020233656A1 CN 2020091496 W CN2020091496 W CN 2020091496W WO 2020233656 A1 WO2020233656 A1 WO 2020233656A1
Authority
WO
WIPO (PCT)
Prior art keywords
array element
unit group
acoustic wave
unit
signal
Prior art date
Application number
PCT/CN2020/091496
Other languages
English (en)
French (fr)
Inventor
段立业
侯孟军
卢尧
刘宗民
Original Assignee
京东方科技集团股份有限公司
北京京东方技术开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方技术开发有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/266,445 priority Critical patent/US11904360B2/en
Publication of WO2020233656A1 publication Critical patent/WO2020233656A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/0207Driving circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B3/00Methods or apparatus specially adapted for transmitting mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B3/04Methods or apparatus specially adapted for transmitting mechanical vibrations of infrasonic, sonic, or ultrasonic frequency involving focusing or reflecting
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/704Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/875Further connection or lead arrangements, e.g. flexible wiring boards, terminal pins
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N39/00Integrated devices, or assemblies of multiple devices, comprising at least one piezoelectric, electrostrictive or magnetostrictive element covered by groups H10N30/00 – H10N35/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/0292Electrostatic transducers, e.g. electret-type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0622Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements on one surface

Definitions

  • the present disclosure belongs to the technical field of acoustic wave transducers, and particularly relates to an acoustic wave transducer and a driving method of the acoustic wave transducer.
  • the acoustic wave transducer is used to detect acoustic wave signals such as ultrasonic or infrasonic waves, and convert the acoustic wave signals into electrical signals. Taking the ultrasound transducer as an example, it can be applied to clinical medical imaging.
  • the present disclosure provides an acoustic wave transducer including: a plurality of unit groups, at least some of the unit groups each include a plurality of acoustic wave transducer units, and the multiple acoustic wave transducer units are configured to perform the same Operation, each acoustic wave transducer unit is configured to perform at least one of the following: converting acoustic waves into electric signals, and converting electric signals into acoustic wave signals; a plurality of array element signal terminals, among the plurality of array element signal terminals Each of the array element signal ends is connected to at least two adjacent unit groups, the array element signal ends are connected to different unit groups through different switching devices, and each switching device is configured to control the connected array element signal ends and units For the on-off between groups, some of the unit groups in the unit groups connected to the signal ends of any two adjacent array elements are the same.
  • the plurality of unit groups are arranged along a first direction, and the plurality of acoustic wave transducer units included in the at least part of the unit groups are arranged along a second direction, and the second direction intersects the first direction .
  • the unit group connected to the signal ends of the at least two array elements is a multiplexing unit group; each multiplexing unit group is connected to different array elements of the signal ends of the at least two array elements through different switching devices. Signal terminal.
  • the multiplexing unit group includes a unit group signal terminal, all the acoustic wave transducer units included in the multiplexing unit group are connected to the one unit group signal terminal, and the unit group signal terminals are respectively Different array element signal ends of the at least two array element signal ends are connected through different switching devices.
  • the multiplexing unit group includes at least two unit group signal terminals, and all the acoustic wave transducer units included in the multiplexing unit group are connected to each of the at least two unit group signal terminals , Each of the at least two unit group signal ends is connected to a corresponding one of the at least two array element signal ends through a corresponding switch device.
  • the acoustic wave transducer includes a plurality of multiplexing unit groups, wherein the multiple multiplexing unit groups are adjacent to each other, except for the multiple multiplexing unit groups
  • the other unit groups are located on both sides of the multiple multiplexing unit groups along the first direction, and each is connected to the corresponding array element signal terminal through a switch device.
  • each array element is connected to the adjacent M unit groups through M switching devices, each of the switching devices corresponds to a unit group, M ⁇ 2, any two adjacent unit groups
  • the number of the same unit groups in the unit groups connected to the signal end of the array element are all N, 1 ⁇ N ⁇ M.
  • M is an even number
  • N M/2.
  • the acoustic wave transducer unit is a capacitive micromachined ultrasonic transducer
  • the capacitive micromachined ultrasonic transducer further includes a first electrode and a second electrode opposite to each other, and the second electrode is connected to
  • the first electrodes of the capacitive micromachined ultrasonic transducers in each unit group are connected together, and are further connected to the corresponding array element signal terminals through corresponding switching devices.
  • the switch device is a micro-machining switch
  • the micro-machining switch includes a control terminal, a first terminal, and a second terminal
  • the control terminal is connected to a control signal terminal
  • the first terminal is electrically connected to
  • the second end is electrically connected to the corresponding array element signal end.
  • the present disclosure also provides a driving method of an acoustic wave transducer, which is the acoustic wave transducer according to the present disclosure.
  • the driving method includes: providing a turn-on control signal or a turn-off control signal to each of the switching devices, so that at least part of the plurality of switching devices connected to the signal terminals of each of the array elements are turned on, and Each unit group is only connected with one array element signal terminal.
  • each array element signal terminal is connected with the same number of unit groups.
  • each array element is connected to multiple adjacent unit groups.
  • the plurality of array element signal ends include adjacent first array element signal ends and second array element signal ends; at the same time, the unit groups connected with the first array element signal ends and The unit group connected with the signal end of the second array element is adjacent.
  • the plurality of unit groups are arranged along the first direction
  • the first unit group in the first direction in the unit group connected with the signal end of any array element at the first time and the unit group connected with the signal end of the array element at the second time are in the first party.
  • the first unit group upward is adjacent.
  • Fig. 1 is a schematic structural diagram of an acoustic wave transducer according to an embodiment of the present disclosure
  • Fig. 2 is a schematic structural diagram of an acoustic wave transducer according to an embodiment of the present disclosure.
  • FIG. 3 is a driving timing diagram of the acoustic wave transducer according to an embodiment of the present disclosure.
  • acoustic wave transducer unit The smallest unit of the acoustic wave transducer is called the acoustic wave transducer unit, or Cell for short.
  • Common units include capacitive micromachined ultrasonic transducer (referred to as cMUT) and piezoelectric micromachined ultrasonic transducer (referred to as pMUT).
  • Capacitive micromachined ultrasonic transducers (cMUT) are extremely small diaphragm-shaped devices that have electrodes that convert the acoustic vibrations of received ultrasonic signals into modulated capacitance. In order to transmit, it is necessary to modulate the electric charge of the capacitor to make the diaphragm of the device vibrate, thus sending out sound waves.
  • the basic structure of a capacitive micromachined ultrasonic transducer is a conductive film or diaphragm structure suspended on a conductive electrode with a small gap.
  • a voltage is applied between the conductive film or diaphragm and the electrode, the Coulomb force attracts the conductive film or diaphragm to the conductive electrode. If the applied voltage changes with time, the position of the conductive film or diaphragm will also change with time.
  • the conductive film or diaphragm moves, acoustic energy is generated, which is radiated from the surface of the device.
  • the acoustic wave energy that can be emitted and detected by a single unit of the acoustic wave transducer is limited.
  • a plurality of units arranged in an array can be taken as a whole (referred to as an array element), and they work together to obtain a larger transmit power and receive signal.
  • the connection mode of the electrodes of each unit in the array element is the same.
  • the array elements are arranged in one direction. During normal labor, multiple array elements work together in time to emit directional sound waves. If all the array elements emit sound waves at the same time, since the mechanical structure of the sound wave transducer is fixed, the sound wave focus position is also fixed.
  • the number of focus positions of the sound waves is also limited because the position of each array element is fixed. Therefore, the adjustment of the focus position of the acoustic wave transducer may not be fine enough.
  • the first element is adjacent to the second element means that there are no other elements between the first element and the second element.
  • two adjacent array element signal ends means that there are no other array element signal ends between the two array element signal ends;
  • two adjacent unit groups mean that there are no other unit groups between the two unit groups.
  • the first element is connected to the second element means that the first element and the second element are in an electrically conductive state, however, “the first element is connected to the second element” does not mean that the first element is connected. In a state of electrical conduction with the second element, "the first element is connected to the second element” includes the case where the first element and the second element are connected through a switching device.
  • the embodiment of the present disclosure provides an acoustic wave transducer, which includes a plurality of array element signal terminals and a plurality of unit groups. At least some of the plurality of unit groups each include a plurality of acoustic wave transducing units, and the multiple acoustic wave transducing units are configured to be connected to the same signal terminal (for example, the unit group signal terminal) to perform the same operation.
  • Each of the plurality of array element signal ends is connected to at least two adjacent unit groups, and the array element signal ends are connected to different unit groups through different switching devices.
  • Each switch device is configured to control the on-off between the connected array element signal terminal and the unit group, and any two adjacent array element signal terminals have the same part of the unit group.
  • Fig. 1 is a schematic structural diagram of an acoustic wave transducer according to an embodiment of the present disclosure.
  • the acoustic wave transducer includes 3 array element signal ends (first array element signal end E1, second array element signal end E2, third array element signal end E3) and 16 unit groups (the first One unit group C1 to the sixteenth unit group C16).
  • Each unit group C1-C16 includes multiple acoustic wave transducer units c.
  • the number and arrangement of the acoustic wave transducer units c in each unit group are the same.
  • the unit group is the smallest unit that is independently controlled.
  • the unit group signal terminal p of the unit group is used as a unified signal interface for the smallest unit.
  • the acoustic wave transducer unit c as the smallest unit of energy conversion of the acoustic wave transducer, can convert sound waves into electrical signals, and can also convert electrical signals into acoustic wave signals.
  • the unit group signal terminal p can output the electric signal detected by each acoustic wave transducer unit c in the unit group to the array element signal terminal, and can also input the electric signal provided on the array element signal terminal to each connected unit. Acoustic wave transducing units c, thereby controlling these acoustic wave transducing units c to generate acoustic wave vibrations according to a unified electrical signal.
  • each acoustic wave transducer unit is a capacitive micromachined ultrasonic transducer
  • the first electrodes of each acoustic wave transducer unit c are electrically connected together, and their electrical status is equal, and each acoustic wave
  • the second electrode of the transducer unit c is connected to the common signal terminal.
  • the unit group signal terminal p is electrically connected to the first electrode of one acoustic wave transducer unit c in the unit group, the reading and writing of all acoustic wave transducer units c in the unit group can be realized.
  • Each acoustic wave transducer unit c in the unit group performs the same action, for example, emits the same acoustic wave or converts the acoustic wave signal in a relatively small area into an electrical signal and provides it to the corresponding unit group signal terminal p.
  • the unit group signal terminal p of a unit group can be one (as shown in Figure 1) or multiple (as shown in Figure 2), but their electrical status is equal, that is, they are electrically connected to together.
  • the unit groups are arranged along the first direction DR1.
  • the arrangement of the unit groups is one-dimensional.
  • the first direction DR1 is the row direction.
  • each unit group can also be arranged in two intersecting directions, for example, in a plane; or, each unit group can also be arranged in three intersecting directions, for example, in a three-dimensional space Arranged within. The embodiments of the present disclosure do not limit this.
  • each array element signal terminal is connected to a plurality of unit groups (that is, connected to the unit group signal terminal p of each unit group) through a switching device.
  • Each array element signal terminal can select one or any multiple unit groups from multiple unit groups to communicate with it.
  • each switching device (for example, the switching devices S1 to S16 and S5a to S12a in FIG. 1) is correspondingly connected to a unit group signal terminal p.
  • the composition of the array elements is adjusted in units of unit groups.
  • the unit group connected with the signal end of the array element can be changed. Therefore, the shape and position of the array element corresponding to the signal end of a certain array element can be flexibly adjusted.
  • each element has been greatly improved, so that the number of possible focus positions of the acoustic wave transducer has increased, and the flexibility of adjusting the focus position of the acoustic wave transducer has also been greatly improved. Improved to achieve more precise focus position adjustment.
  • the array elements are adjacent to each other (that is, there are no other unit groups between adjacent array elements). In order to ensure that when the shape and position of the array elements are adjusted, the array elements are still kept adjacent to each other, it is necessary that some of the unit groups in the unit groups connected to the signal ends of the adjacent array elements are the same.
  • the first element signal terminal E1 is connected to the first cell group C1 to the eighth cell group C8 through the switching devices S1 to S8, and the second element signal terminal E2 is connected through the switching devices S5a to S8a and S9, respectively.
  • To S12 are connected to the fifth cell group C5 to the eighth cell group C8, and the third element signal terminal E3 is connected to the ninth cell group C9 to the sixteenth cell group C16 through the switching devices S9a to S12a and S13 to S16, respectively.
  • the first array element signal terminal E1 is connected with the first unit group C1 to the fourth unit group C4, the second array element signal terminal E2 is connected with the fifth unit group C5 to the eighth unit group C8, and the third array
  • the meta signal terminal is connected with the ninth unit group C9 to the twelfth unit group C12. This is a state of array element distribution.
  • the aforementioned connected state can be achieved by controlling the on and off of each switching device.
  • the first element signal terminal E1 is connected to the second cell group C2 to the fifth cell group C5, and the second element signal terminal E2 is connected to the sixth cell group C6 to the ninth cell group.
  • C9 is connected, and the third element signal terminal E3 is connected with the tenth unit group C10 to the thirteenth unit group C13. This is another distribution state of array elements.
  • the unit group includes a plurality of acoustic wave transducer units c arranged along a second direction DR2, and the second direction DR2 is a direction intersecting the first direction DR1.
  • each unit group is composed of a row of acoustic wave transducer units c arranged in the same number in the column direction. Since the width of the unit group is made as narrow as possible, the minimum distance of focus adjustment can also be made as small as possible.
  • a single unit group can also be composed of two rows of acoustic wave transducer units c arranged in the second direction DR2. Or, the arrangement of the acoustic wave transducer units in the unit group may be irregular.
  • the second direction DR2 in FIG. 1 is perpendicular to the first direction DR1.
  • the second direction DR2 and the first direction DR1 may also be non-vertical.
  • the unit group connected to at least two array element signal ends is a multiplexing unit group.
  • Each multiplexing unit group is connected to different array element signal ends of the at least two array element signal ends through different switching devices.
  • the multiplexing unit group can selectively communicate with one of the at least two array element signal ends.
  • the fifth unit group C5 to the twelfth unit group C12 are multiplexing unit groups, each multiplexing unit group includes two unit group signal terminals p, and each multiplexing unit group includes all the acoustic wave transducer units c is connected to each of the two unit group signal terminals p, and each of the two unit group signal terminals p is connected to one of the two array element signal terminals through a switching device.
  • each multiplexing unit group includes a unit group signal terminal p
  • each multiplexing unit group includes all the acoustic wave transducer units c Both are connected to the one unit group signal terminal p, and the unit group signal terminal p is respectively connected to two different array element signal terminals through two switching devices.
  • Each multiplexing unit group is adjacent to each other in pairs, and the remaining unit groups except the multiplexing unit group are located on both sides of the multiplexing unit group along the first direction, and each is connected to the corresponding array element signal terminal through a switch device .
  • the 4 unit groups on the left side of the multiplexing unit group and the 4 unit groups on the right side of the multiplexing unit group are respectively connected to the first element signal terminal E1 or only the third element signal terminal E3 through the switching device. .
  • each array element signal terminal is respectively connected to adjacent M unit groups through M switching devices, and each switching device corresponds to a unit group, M ⁇ 2, any two adjacent array element signal terminals
  • the number of the same unit groups in the connected unit groups are all N, 1 ⁇ N ⁇ M.
  • the unit groups connected to the signal terminals of adjacent array elements are staggered from each other by a fixed number of unit groups. In the case where the array elements are required to be adjacent to each other and the number of unit groups included in each array element is the same, the number of array elements can be configured to the maximum in this configuration.
  • each element signal terminal E1-E3 is connected to 8 adjacent unit groups, and 4 of the unit groups connected to the adjacent element signal terminals are the same.
  • an array element is formed by 4 adjacent unit groups (that is, 4 adjacent unit groups are connected with the new end of the same array element to form an array element), and there is no unit group between adjacent array elements
  • the first element signal terminal E1 is connected to the first unit group C1, the second unit group C2, the third unit group C3, and the fourth unit group C4;
  • the first element signal terminal E1 is connected with the second unit group C2, the third unit group C3, the fourth unit group C4, and the fifth unit group C5;
  • the first element signal terminal E1 is connected to the The three unit group C3, the fourth unit group C4, the fifth unit group C5, and the sixth unit group C6 are connected;
  • the fourth type the first element signal terminal E1 is connected to the fourth unit group C4, the fifth unit group
  • M is an even number
  • the number of unit groups overlapping the signal ends of adjacent array elements can also be flexibly set.
  • the acoustic wave transducer unit c is a capacitive micromachined ultrasonic transducer.
  • the capacitive micromachined ultrasonic transducer includes a first electrode and a second electrode opposite to each other.
  • the second electrode is a ground electrode, and the ground electrode is connected to
  • the first electrodes of the capacitive micromachined ultrasonic transducers in each unit group are connected together, and are further connected to the corresponding array element signal terminals through corresponding switching devices.
  • other types of acoustic wave transducer units c for example, piezoelectric micromachined ultrasonic transducers, etc.
  • Each small disc shown in FIG. 1 represents the first electrode of the capacitive micromachined ultrasonic transducer, and the ground electrode opposite to it is not shown.
  • the vibration of the sound wave will cause the vibration of the first electrode of the capacitive micromachined ultrasonic transducer, thereby changing its capacitance.
  • the strength of the sound wave can be calculated by detecting the change of the capacitance.
  • the switching device is a micromachined switch.
  • the micro-machined switching device can be manufactured by a semiconductor process, and the on-state resistance (that is, the resistance in the on-state) is sufficiently small.
  • the micro-machining switch has a control terminal, a first terminal and a second terminal. According to the voltage of the control terminal, the first terminal and the second terminal are in an on or off state.
  • the control signal terminal it is necessary to set the control signal terminal to provide the control signal for the control terminal of the micro-machining switch, the first terminal is electrically connected with the corresponding unit group signal terminal, and the second terminal is electrically connected with the corresponding array element signal terminal.
  • other types of light switching devices can also be applied to the above-mentioned acoustic wave transducer.
  • 5 ⁇ M 5 ⁇ M ⁇ 10.
  • factors such as the area occupied by the switching device and the area occupied by the trace need to be considered for design.
  • the number of unit groups that can be connected to the signal end of each array element can be 5-10.
  • the present disclosure also provides a driving method applied to the acoustic wave transducer according to the present disclosure, which includes: providing each switching device with a turn-on control signal or a turn-off control signal, so that a plurality of At least some of the switching devices are turned on, and each unit group is only connected with one array element signal terminal.
  • Providing a turn-on control signal or turn-off control signal to each switching device means to independently control the on and off between each unit group and the corresponding array element signal terminal, and then independently configure the array element corresponding to each array element signal terminal ( That is, the shape (for example, it is composed of several unit groups, whether adjacent unit groups are in close proximity, etc.) and position of the array element formed by the unit group connected with the signal end of the array element.
  • each element can be flexibly adjusted, the focus position of the acoustic wave transducer can also be flexibly adjusted. Since whether the signal end of the array element is connected to the unit group can also be flexibly configured (that is, whether the signal end of the array element forms an array element is flexibly configured), the number of array elements can also be flexibly adjusted. This further improves the flexibility of focusing adjustment of the acoustic wave transducer.
  • each array element signal terminal is connected with the same number of unit groups. In some embodiments, at the same moment, the signal end of each array element is connected to multiple adjacent unit groups.
  • the plurality of array element signal ends include adjacent first array element signal ends and second array element signal ends.
  • the unit groups connected with the first array element signal ends and The unit group connected with the signal end of the second array element is adjacent.
  • the shape and relative positional relationship of the unit group connected to the signal end of each array element remain unchanged; the unit group connected to the signal end of any array element at the first time is in the first The first unit group in the direction DR1 is adjacent to the first unit group in the first direction DR1 among the unit groups connected with the signal end of the array element at the second time.
  • the shape of the unit group connected with the signal end of each array element (that is, the number of unit groups connected with the signal end of each array element and the distance between each other) are unchanged.
  • the relative positional relationship of the unit groups connected with the signal ends of each array element remains unchanged. That is, for the adjacent first array element signal end and second signal end, the first unit group along the first direction DR1 and the second array element signal in the unit group connected with the first array element signal end.
  • the positional relationship between the first unit group along the first direction DR1 in the unit groups connected by the ends remains unchanged. For example, the two always keep 2 unit groups apart.
  • the first element signal terminal E1 is connected to the first unit group C1, the second unit group C2, and the third unit group C3, and the corresponding switching devices (ie, the switching devices S1-S3) are in Conduction state;
  • the second element signal terminal E2 is connected to the fifth unit group C5, the sixth unit group C6, and the seventh unit group C7, and the corresponding switching devices (ie, the switching devices S5a-S7a) are in the conductive state; the remaining switches The device is in the off state.
  • the first unit group C1, the second unit group C2, and the third unit group C3 constitute the first array element
  • the fifth unit group C5, the sixth unit group C6, and the seventh unit group C7 constitute the second array element.
  • the number of unit groups connected to the signal end of the array element may not be equal, and the unit groups connected to the signal end of the array element may not be adjacent to each other. Those skilled in the art can flexibly adjust according to the actual situation.
  • the signal ends of each array element are connected with the same number of adjacent unit groups.
  • the first element signal terminal E1 is connected to the first unit group C1, the second unit group C2, and the third unit group C3, and the corresponding switching devices (switching devices S1-S3) are in conduction.
  • the signal terminal E2 of the second array element is connected with the fifth unit group C5, the sixth unit group C6, and the seventh unit group C7, and the corresponding switching devices (switching devices S5a-S7a) are in the on state; the third array element
  • the signal terminal E3 is connected with the ninth unit group C9, the tenth unit group C10, and the eleventh unit group C11, and the corresponding switching devices (switching devices S9a-S10a) are in the on state; the other switching devices are in the off state.
  • the first unit group C1, the second unit group C2, and the third unit group C3 constitute the first array element
  • the fifth unit group C5, the sixth unit group C6, and the seventh unit group C7 constitute the second array element
  • the ninth unit group C9, the tenth unit group C10, and the eleventh unit group C11 constitute the third array element.
  • the spacing between adjacent elements is equal.
  • the shape of the array elements is fixed, but their positions move in units of a unit group at two moments before and after.
  • the focus position is also moved by the size of a unit group.
  • the first unit group in the first direction DR1 in the unit group connected with the signal end of any array element at the first time and the unit group connected with the signal end of the array element at the second time thereafter The first unit group in the first direction DR1 is adjacent.
  • the shape and position of the array element at the previous time may be different from the shape and position of the array element at the next time. In order to achieve focus adjustment.
  • the following describes a focus adjustment method based on the acoustic wave transducer according to the present disclosure in conjunction with FIG. 3.
  • the high-level signal in Figure 3 is an effective signal.
  • the switching devices S1-S4 are turned on, and the first cell group C1-fourth cell group C4 is connected to the signal terminal E1 of the first array element to form the first array element; the switching devices S5a-S8a conduct The fifth unit group C5-eighth unit group C8 is connected with the signal terminal E2 of the second array element to form a second array element; the switching devices S9a-S12a are turned on, and the ninth unit group C9-the twelfth unit group C12 is connected with The signal terminal E3 of the third element is connected to form the third element.
  • the switching devices S2-S5 are turned on, and the second cell group C2-fifth cell group C5 is connected to the signal terminal E1 of the first element to form the first element; the switching devices S6a-S8a and S9
  • the sixth unit group C6-ninth unit group C9 is connected to the signal terminal E2 of the second array element to form a second array element; the switching devices S10a-S12a and S13 are turned on, and the tenth unit group C10-thirteenth unit Group C13 is connected with the signal terminal E3 of the third element to form the third element.
  • the switching devices S3-S6 are turned on, and the third cell group C3-sixth cell group C6 is connected to the signal terminal E1 of the first element to form the first element; the switching devices S7a-S8a and S9 -S10 is turned on, the seventh cell group C7 to the tenth cell group C10 is connected with the signal terminal E2 of the second element to form the second element; the switching devices S11a-S12a and S13-S14 are turned on, and the eleventh cell group C11 -The fourteenth unit group C14 is connected with the signal terminal E3 of the third element to form the third element.
  • the switching devices S4-S7 are turned on, and the fourth cell group C4-seventh cell group C7 is connected to the first element signal terminal E1 to form the first element; the switching devices S8a and S9-S11 Conduction, the eighth unit group C8-Eleventh unit group C11 communicates with the signal terminal E2 of the second array element to form a second array element; the switching devices S12a and S13-S15 are turned on, and the twelfth unit group C12-tenth The five-unit group C15 is connected with the signal terminal E3 of the third element to form the third element.
  • the switching devices S5-S8 are turned on, and the fifth cell group C5-eighth cell group C8 is connected with the first array element signal terminal E1 to form the first array element; the switching devices S9-S12 are turned on , The ninth unit group C9-the twelfth unit group C12 is connected with the second array element signal terminal E2 to form the second array element; the switching devices S13-S16 are turned on, and the thirteenth unit group C13-the sixteenth unit group C16 Connect with the signal terminal E3 of the third element to form a third element.
  • the acoustic wave transducer includes three array element signal terminals as an example for description, and the number of array element signal terminals in the actual acoustic wave transducer may be tens or hundreds.
  • a fourth array element signal terminal can be further added, and the fourth array element signal terminal is respectively connected to the thirteenth unit group C13 to the sixteenth unit group C16 through switching devices. If you drive according to the driving mode shown in Figure 3, that is, each array element is required to be composed of 4 adjacent unit groups, and there is no unit group between adjacent array elements, then in the first time period, the thirteenth unit Group C13-the sixteenth unit group C16 can form an array element. That is, in the first time period, 4 array elements can be configured, and only 3 array elements can be configured in the remaining time period.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

本公开提供一种声波换能器及驱动方法,属于声波换能器技术领域,其可至少部分解决现有的声波换能器的聚焦位置调整精度不高的问题。本公开的声波换能器包括多个单元组,所述多个单元组中至少部分单元组各自包括多个声波换能单元,所述多个声波换能单元构造为执行相同的操作,每个声波换能单元构造为执行以下中的至少一者:将声波转化为电信号,以及将电信号转化为声波信号;多个阵元信号端,所述多个阵元信号端中的每一个阵元信号端连接相邻的至少两个单元组,该阵元信号端通过不同的开关器件与不同的单元组连接,每个开关器件构造为控制与其相连的阵元信号端和单元组之间的通断,任意两个相邻阵元信号端所连接的单元组中的部分单元组相同。

Description

声波换能器及驱动方法
相关申请的交叉引用
本申请要求于2019年5月22日提交的中国专利申请No.201910430497.3的优先权,其内容通过引用方式整体并入本文。
技术领域
本公开属于声波换能器技术领域,具体涉及一种声波换能器以及一种声波换能器的驱动方法。
背景技术
声波换能器用于检测超声波或次声波等声波信号,并将该声波信号转换为电信号。以超声换能器为例,其可应用于临床医学成像。
发明内容
本公开提供一种声波换能器,包括:多个单元组,所述多个单元组中至少部分单元组各自包括多个声波换能单元,所述多个声波换能单元构造为执行相同的操作,每个声波换能单元构造为执行以下中的至少一者:将声波转化为电信号,以及将电信号转化为声波信号;多个阵元信号端,所述多个阵元信号端中的每一个阵元信号端连接相邻的至少两个单元组,该阵元信号端通过不同的开关器件与不同的单元组连接,每个开关器件构造为控制与其相连的阵元信号端和单元组之间的通断,任意两个相邻阵元信号端所连接的单元组中的部分单元组相同。
在一些实施例中,所述多个单元组沿第一方向排列,所述至少部分单元组包括的多个声波换能单元沿第二方向排列,所述第二方向与所述第一方向相交。
在一些实施例中,与至少两个阵元信号端相连的单元组为复用单元组;每个复用单元组通过不同的开关器件连接所述至少两 个阵元信号端中的不同阵元信号端。
在一些实施例中,所述复用单元组包括一个单元组信号端,所述复用单元组包括的所有声波换能单元均与所述一个单元组信号端连接,所述单元组信号端分别通过不同的开关器件连接所述至少两个阵元信号端中的不同阵元信号端。
在一些实施例中,所述复用单元组包括至少两个单元组信号端,所述复用单元组包括的所有声波换能单元均与所述至少两个单元组信号端中的每一个连接,所述至少两个单元组信号端中的每一个通过对应的开关器件连接所述至少两个阵元信号端中的对应一个阵元信号端。
在一些实施例中,所述声波换能器包括多个复用单元组,其中,所述多个复用单元组彼此相邻,所述多个单元组中除所述多个复用单元组以外的单元组位于所述多个复用单元组的沿第一方向的两侧,并且各自通过一个开关器件与对应的阵元信号端相连。
在一些实施例中,每个阵元信号端通过M个开关器件分别连接相邻的M个所述单元组,每个所述开关器件对应一个单元组,M≥2,任意两个相邻的所述阵元信号端所连接的所述单元组中相同的单元组的数量均为N,1≤N<M。
在一些实施例中,M为偶数,且N=M/2。
在一些实施例中,所述声波换能单元为电容式微机械超声换能器,所述电容式微机械超声换能器还包括彼此相对的第一电极和第二电极,所述第二电极连接至公共信号端,每个单元组内的电容式微机械超声换能器的第一电极连接在一起,并进一步通过相应的开关器件连接至相应的阵元信号端。
在一些实施例中,所述开关器件为微机械加工开关,所述微机械加工开关包括控制端、第一端和第二端,所述控制端连接控制信号端,所述第一端电连接对应的单元组,所述第二端电连接对应的阵元信号端。
在一些实施例中,5≤M≤10。
本公开还提供一种声波换能器的驱动方法,所述声波换能器 是根据本公开所述的声波换能器。所述驱动方法包括:向各所述开关器件提供导通控制信号或关断控制信号,以使得与每个所述阵元信号端连接的多个开关器件中的至少部分开关器件导通,并且每个单元组仅与一个阵元信号端连通。
在一些实施例中,在同一时刻,每个阵元信号端与相同数量的单元组连通。
在一些实施例中,在同一时刻,每个阵元信号端与彼此相邻的多个单元组连通。
在一些实施例中,所述多个阵元信号端包括相邻的第一阵元信号端和第二阵元信号端;在同一时刻,与所述第一阵元信号端连通的单元组和与所述第二阵元信号端连通的单元组相邻。
在一些实施例中,所述多个单元组沿第一方向排列;
在第一时刻和随后的第二时刻,与每个阵元信号端所连通的单元组的个数不变;
在第一时刻与任一阵元信号端连通的单元组中在所述第一方向上的第一个单元组与在第二时刻与该阵元信号端连通的单元组中在所述第一方向上的第一个单元组相邻。
附图说明
图1为根据本公开的实施例的声波换能器的结构示意图;
图2为根据本公开的实施例的声波换能器的结构示意图;以及
图3为根据本公开的实施例的声波换能器的驱动时序图。
具体实施方式
为使本领域技术人员更好地理解本公开的技术方案,下面结合附图和具体实施方式对本公开作进一步详细描述。
声波换能器的最小单位称为声波换能单元,简称单元(Cell)。常见的单元有电容式微机械超声换能器(简称cMUT)和压电式微机械超声换能器(简称pMUT)。电容式微机械超声换能器 (cMUT)是极小的膜片状器件,其具有电极,该电极将接收的超声信号的声振动转换成已调制电容量。为了进行传输,需要对电容的电荷进行调制,以使器件的膜片振动,从而发送声波。电容式微机械超声换能器(cMUT)的基本结构是以小间隙悬浮在导电电极之上的导电薄膜或膜片结构。当电压施加到导电薄膜或膜片与电极之间时,库仑力将导电薄膜或膜片吸引到导电电极上。如果所施加电压随时间改变,则导电薄膜或膜片的位置也会随时间改变,在导电薄膜或膜片移动位置时,产生声能,所述声能从器件表面辐射。
声波换能器的单个单元所能发射以及所能检测的声波能量有限。通常,可以将阵列排布的多个单元作为一个整体(称为阵元),它们共同工作以得到较大的发射功率和接收信号。阵元内的各单元的电极的连接方式均相同。各个阵元沿一个方向排列。正产工作时,多个阵元在时间上配合工作,可以发出带有指向性的声波。若全部阵元同时发射声波,由于声波换能器的机械结构是固定的,声波聚焦位置也是固定的。若部分阵元发射声波,而部分阵元不发射声波,同样由于各阵元的位置是固定的,声波聚焦位置的数量也是有限的。因此,声波换能器的聚焦位置的调整可能不够精细。
可以理解的是,在本文中,第一元件与第二元件相邻是指第一元件与第二元件之间不存在其他元件。例如,相邻的两个阵元信号端是指两个阵元信号端之间不存在其他阵元信号端;相邻的两个单元组是指两个单元组之间不存在其他单元组。此外,在本文中,“第一元件与第二元件连通”是指第一元件和第二元件处于电导通的状态,然而,“第一元件与第二元件连接”并不意味着第一元件与第二元件处于电导通的状态,“第一元件与第二元件连接”包括第一元件与第二元件通过开关器件连接的情况。
本公开实施例提供一种声波换能器,包括多个阵元信号端以及多个单元组。所述多个单元组中至少部分单元组各自包括多个声波换能单元,所述多个声波换能单元构造为连接同一信号端子 (例如,单元组信号端)以执行相同的操作。所述多个阵元信号端中中的每一个阵元信号端连接相邻的至少两个单元组,该阵元信号端通过不同的开关器件与不同的单元组连接。每个开关器件构造为控制与其相连的阵元信号端和单元组之间的通断,任意两个相邻阵元信号端所连接的单元组中的部分单元组相同。
图1为根据本公开的实施例的声波换能器的结构示意图。如图1所示,该声波换能器包括3个阵元信号端(第一阵元信号端E1、第二阵元信号端E2、第三阵元信号端E3)以及16个单元组(第一单元组C1至第十六单元组C16)。
每个单元组C1-C16包括多个声波换能单元c。各单元组中的声波换能单元c的数量和排列方式均相同。单元组作为独立受控的最小单位。单元组的单元组信号端p作为该最小单位对外统一的信号接口。声波换能单元c作为声波换能器的能量转换的最小单位,其可以将声波转化为电信号,也可将电信号转化为声波信号。
单元组信号端p可以将其所在单元组内的各声波换能单元c检测到的电信号输出至阵元信号端,也可以将阵元信号端上提供的电信号输入至其所连接的各声波换能单元c,从而控制这些声波换能单元c按照统一的电信号产生声波振动。例如,在每个声波换能单位是电容式微机械超声换能器的情况下,每个声波换能单元c的第一电极电连接在一起,它们在电学上的地位是相等的,每个声波换能单元c的第二电极连接至公共信号端。在该情况下,单元组信号端p只要与单元组内的一个声波换能单元c的第一电极电连接,即可实现对单元组内所有声波换能单元c的读写。单元组内的各声波换能单元c执行相同的动作,例如发出相同的声波或者将在一个相对小的面积区域内的声波信号转换为电信号提供给对应的单元组信号端p。一个单元组的单元组信号端p可以是一个(如图1所示),也可以是多个(如图2所示),但它们在电学上的地位是相等的,即它们是电连接在一起的。
在本公开实施例中,如图1和图2所示,各单元组沿第一方 向DR1排列。单元组的排列方式是一维的。在图1和图2中,第一方向DR1为行方向。需要说明的是,各单元组也可以是沿相交的两个方向排列的,例如,在一个平面内排列;或者,各单元组也可以沿相交的三个方向排列,例如,在3维立体空间内排列。本公开实施例对此不作限制。
在本公开实施例中,每个阵元信号端通过开关器件连接多个单元组(即,连接到各个单元组的单元组信号端p上)。每个阵元信号端可以从多个单元组中选择其中一个或任意多个单元组与其相连通。在一些实施例中,每个开关器件(例如,图1中的开关器件S1至S16以及S5a至S12a)对应连接一个单元组信号端p。以单元组为单位对阵元的组成进行调整。与阵元信号端连通的单元组是可以改变的,因此,某个阵元信号端所对应的阵元的形状和位置是可以灵活调整的。每个阵元的配置方式的灵活性得到了极大的提高,从而声波换能器的可能的聚焦位置的数量增多,对声波换能器的聚焦位置的调整的灵活性也得到了极大的提高,能够实现更加精细的聚焦位置调整。
在多数情况下,阵元是彼此相邻的(即,相邻阵元的彼此靠近的单元组之间没有其他单元组)。为了保证在对阵元的形状和位置进行调整的情况下,仍保持阵元是彼此相邻的,需要相邻阵元信号端各自所连接的单元组中的部分单元组相同。
如图1所示,第一阵元信号端E1分别通过开关器件S1至S8与第一单元组C1至第八单元组C8连接,第二阵元信号端E2分别通过开关器件S5a至S8a以及S9至S12与第五单元组C5至第八单元组C8连接,第三阵元信号端E3分别通过开关器件S9a至S12a以及S13至S16与第九单元组C9至第十六单元组C16连接。
在第一时刻,第一阵元信号端E1与第一单元组C1至第四单元组C4连通,第二阵元信号端E2与第五单元组C5至第八单元组C8连通,第三阵元信号端与第九单元组C9至第十二单元组C12连通。这是一种阵元的分布状态。可以通过控制各开关器件的导通与关断来实现上述连通状态。
在紧接着第一时刻的第二时刻,第一阵元信号端E1与第二单元组C2至第五单元组C5连通,第二阵元信号端E2与第六单元组C6至第九单元组C9连通,第三阵元信号端E3与第十单元组C10至第十三单元组C13连通。这是另一种阵元的分布状态。
可以看出以上两种状态下,声波聚焦的位置是以一列单元组的宽度为单位进行微小的调整的。这种精细的聚焦调整在现有技术的方案中是无法实现的。
在一些实施例中,单元组包括沿第二方向DR2排列的多个声波换能单元c,第二方向DR2为与第一方向DR1相交的方向。例如,如图1所示,每个单元组由相同数量的沿列方向排列的一列声波换能单元c构成。由于单元组的宽度做的尽量窄,因此聚焦调整的最小距离也能做的尽量小。单个单元组也可以由2列沿第二方向DR2排列的声波换能单元c构成。或者,单元组中声波换能单元的排列方式可以是不规则的。图1中第二方向DR2与第一方向DR1垂直,当然第二方向DR2与第一方向DR1之间也可以是非垂直的。
与至少两个阵元信号端相连的单元组为复用单元组。每个复用单元组通过不同的开关器件连接所述至少两个阵元信号端中的不同阵元信号端。复用单元组能够选择性地与所述至少两个阵元信号端中的一个阵元信号端连通。
参照图2,第五单元组C5至第十二单元组C12为复用单元组,每个复用单元组包括两个单元组信号端p,每个复用单元组包括的所有声波换能单元c均与该两个单元组信号端p中的每一个连接,该两个单元组信号端p中的每一个通过一个开关器件连接至两个阵元信号端中的一个。
参照图1,第五单元组C5至第十二单元组C12为复用单元组,每个复用单元组包括一个单元组信号端p,每个复用单元组包括的所有声波换能单元c均与所述一个单元组信号端p连接,该单元组信号端p通过两个开关器件分别连接至不同的两个阵元信号端。
各复用单元组两两相邻,除复用单元组外的其余单元组位于 所述复用单元组的沿第一方向的两侧,并且各自通过一个开关器件与对应的阵元信号端相连。
参照图1,复用单元组左侧的4个单元组和复用单元组右侧的4个单元组分别通过开关器件只连接第一阵元信号端E1或只连接第三阵元信号端E3。
在一些实施例中,每个阵元信号端通过M个开关器件分别连接相邻的M个单元组,每个开关器件对应一个单元组,M≥2,任意两个相邻的阵元信号端所连接的单元组中相同的单元组的数量均为N,1≤N<M。在这种实施方式中,与相邻阵元信号端连接的单元组彼此错开固定数量单元组。对于需要各阵元彼此相邻且各阵元中包含的单元组数量相同的情况,这种配置下阵元的配置方式的数量能够达到最大。
如图1所示,每个阵元信号端E1-E3连接相邻的8个单元组,相邻阵元信号端所连接的单元组中有4个是相同的。如此,在以4个相邻单元组构成一个阵元(即,4个相邻单元组与同一个阵元新号端连通以构成一个阵元),并且相邻阵元之间没有单元组的情况下,存在以下5种配置阵元的方案:第一种,第一阵元信号端E1与第一单元组C1、第二单元组C2、第三单元组C3、第四单元组C4连通;第二种,第一阵元信号端E1与第二单元组C2、第三单元组C3、第四单元组C4、第五单元组C5连通;第三种,第一阵元信号端E1与第三单元组C3、第四单元组C4、第五单元组C5、第六单元组C6连通;第四种,第一阵元信号端E1与第四单元组C4、第五单元组C5、第六单元组C6、第七单元组C7连通;第五种,第一阵元信号端E1与第五单元组C5、第六单元组C6、第七单元组C7、第八单元组C8连通。
在一些实施例中,M为偶数,且N=M/2。即如上述例子所示的实施方式。当然每个阵元信号端所连接的单元组数也可以是奇数,相邻阵元信号端交叠的单元组的数量也是可以灵活设置。
在一些实施例中,声波换能单元c为电容式微机械超声换能器,电容式微机械超声换能器包括彼此相对的第一电极和第二电 极,第二电极为接地电极,接地电极连接至公共信号端,每个单元组内的电容式微机械超声换能器的第一电极连接在一起,并进一步通过相应的开关器件连接至相应的阵元信号端。当然,其他类型的声波换能单元c(例如压电式微机械超声换能器等)同样可以按照上述方法进行连接,实现聚焦的精细调整。图1中示出的每个小圆片代表电容式微机械超声换能器的第一电极,与其相对的接地电极未示出。声波的振动会带来电容式微机械超声换能器的第一电极的振动,进而改变其电容。通过检测该电容的变化可以计算出声波的强弱。
在一些实施例中,开关器件为微机械加工开关。微机械加工开关器件可通过半导体工艺制造,并且开态电阻(即导通状态下的电阻)足够小。微机械加工开关具有控制端、第一端和第二端。根据控制端的电压的不同,第一端和第二端之间处于导通或关断状态。当然需要设置控制信号端为微机械加工开关的控制端提供控制信号,该第一端与对应的单元组信号端电连接,该第二端与对应的阵元信号端电连接。当然,其他类型的开光器件也可以应用于上述声波换能器中。
在一些实施例中,5≤M≤10。实际应用中,需考虑开关器件所占的面积、走线所占的面积等因素来进行设计。每个阵元信号端所能够连通的单元组的数目可以为5-10个。
本公开还提供一种应用于根据本公开的声波换能器的驱动方法,包括:向各开关器件提供导通控制信号或关断控制信号,以使得与每个阵元信号端连接的多个开关器件中的至少部分开关器件导通,并且每个单元组仅与一个阵元信号端连通。
向各开关器件提供导通控制信号或关断控制信号意味着独立控制每个单元组与对应阵元信号端之间的通断,进而独立地配置每个阵元信号端所对应的阵元(即,与阵元信号端连通的单元组构成的阵元)的形状(例如由几个单元组组成、相邻单元组是否紧邻等形状特征)与位置。
由于每个阵元的形状和位置都是能够灵活调整的,从而声波换能器的聚焦位置也是能够灵活调整的。由于阵元信号端是否连通单元组也是可以灵活配置的(也就是阵元信号端是否形成一个阵元是灵活配置的),那么阵元的数量也是能够灵活调整的。这进一步提高了声波换能器聚焦调整的灵活性。
由于同一个单元组不能同时归属于两个不同的阵元,故在控制各开关器件的通断时,需保证与各阵元信号端所连通的单元组无交叠。
在一些实施例中,在同一时刻,每个阵元信号端与相同数量的单元组连通。在一些实施例中,在同一时刻,每个阵元信号端与彼此相邻的多个单元组连通。
在一些实施例中,所述多个阵元信号端包括相邻的第一阵元信号端和第二阵元信号端,在同一时刻,与所述第一阵元信号端连通的单元组和与所述第二阵元信号端连通的单元组相邻。在第一时刻和随后的第二时刻,与每个阵元信号端所连通的单元组的形状及相对位置关系不变;在第一时刻与任一阵元信号端连通的单元组中在第一方向DR1上的第一个单元组与在第二时刻与该阵元信号端连通的单元组中在第一方向DR1上的第一个单元组相邻。
与各阵元信号端所连通的单元组的形状(即,与各阵元信号端所连通的的单元组的数量以及彼此的间距)不变。与各阵元信号端所连通的单元组的相对位置关系不变。即,对于相邻的第一阵元信号端和第二信号端,与第一阵元信号端所连通的单元组中的沿第一方向DR1的第一个单元组和与第二阵元信号端所连通的单元组中的沿第一方向DR1的第一个单元组之间的位置关系不变。例如二者始终保持相距2个单元组。
参照图1,例如在某一时刻,第一阵元信号端E1与第一单元组C1、第二单元组C2、第三单元组C3连通,对应的开关器件(即开关器件S1-S3)处于导通状态;第二阵元信号端E2与第五单元组C5、第六单元组C6、第七单元组C7连通,对应的开关器件(即开关器件S5a-S7a)处于导通状态;其余开关器件处于关断状态。 在该情况下,第一单元组C1、第二单元组C2、第三单元组C3构成第一阵元,第五单元组C5、第六单元组C6、第七单元组C7构成第二阵元。
需要说明的是,阵元信号端所连通的单元组的数量可以是不相等的,阵元信号端所连通的单元组也可以是彼此不相邻的。本领域技术人员可以根据实际情况灵活调整。
在一些实施例中,在同一时刻,每个阵元信号端均连通相同数量且彼此相邻的单元组。
参照图1,例如在某一时刻,第一阵元信号端E1与第一单元组C1、第二单元组C2、第三单元组C3连通,对应的开关器件(开关器件S1-S3)处于导通状态;第二阵元信号端E2与第五单元组C5、第六单元组C6、第七单元组C7连通,对应的开关器件(开关器件S5a-S7a)处于导通状态;第三阵元信号端E3与第九单元组C9、第十单元组C10、第十一单元组C11连通,对应的开关器件(开关器件S9a-S10a)处于导通状态;其余开关器件处于关断状态。在该情况下,第一单元组C1、第二单元组C2、第三单元组C3构成第一阵元,第五单元组C5、第六单元组C6、第七单元组C7构成第二阵元,第九单元组C9、第十单元组C10、第十一单元组C11构成第三阵元。该例子中相邻阵元之间的间距是相等的。当然,出于聚焦调整的需要,也可以通过控制各开关器件的导通与关断,使得相邻阵元之间的间距是不相等的。
按照上述实施方式,阵元的形状是固定的,但是在前后两个时刻它们的位置是按照一个单元组为单位移动的。当然,聚焦的位置也是以一个单元组的尺寸为单位移动的。
在一些实施例中,在第一时刻与任一阵元信号端连通的单元组中在第一方向DR1上的第一个单元组与在随后的第二时刻与该阵元信号端连通的单元组中在第一方向DR1上的第一个单元组相邻。基于根据本公开的声波换能器,在前一时刻阵元的形状和位置与在下一个时刻阵元的形状和位置可以是不同。从而实现聚焦的调整。
以下结合图3介绍基于根据本公开的声波换能器的一种聚焦调整方式。图3中高电平信号为有效信号。
在第一个时间段t1内,开关器件S1-S4导通,第一单元组C1-第四单元组C4与第一阵元信号端E1连通,形成第一阵元;开关器件S5a-S8a导通,第五单元组C5-第八单元组C8与第二阵元信号端E2连通,形成第二阵元;开关器件S9a-S12a导通,第九单元组C9-第十二单元组C12与第三阵元信号端E3连通,形成第三阵元。
在第二个时段t2内,开关器件S2-S5导通,第二单元组C2-第五单元组C5与第一阵元信号端E1连通,形成第一阵元;开关器件S6a-S8a以及S9导通,第六单元组C6-第九单元组C9与第二阵元信号端E2连通,形成第二阵元;开关器件S10a-S12a以及S13导通,第十单元组C10-第十三单元组C13与第三阵元信号端E3连通,形成第三阵元。
在第三个时段t3内,开关器件S3-S6导通,第三单元组C3-第六单元组C6与第一阵元信号端E1连通,形成第一阵元;开关器件S7a-S8a以及S9-S10导通,第七单元组C7-第十单元组C10与第二阵元信号端E2连通,形成第二阵元;开关器件S11a-S12a以及S13-S14导通,第十一单元组C11-第十四单元组C14与第三阵元信号端E3连通,形成第三阵元。
在第四个时段t4内,开关器件S4-S7导通,第四单元组C4-第七单元组C7与第一阵元信号端E1连通,形成第一阵元;开关器件S8a以及S9-S11导通,第八单元组C8-第十一单元组C11与第二阵元信号端E2连通,形成第二阵元;开关器件S12a以及S13-S15导通,第十二单元组C12-第十五单元组C15与第三阵元信号端E3连通,形成第三阵元。
在第五个时段t5内,开关器件S5-S8导通,第五单元组C5-第八单元组C8与第一阵元信号端E1连通,形成第一阵元;开关器件S9-S12导通,第九单元组C9-第十二单元组C12与第二阵元信号端E2连通,形成第二阵元;开关器件S13-S16导通,第十三 单元组C13-第十六单元组C16与第三阵元信号端E3连通,形成第三阵元。
需要说明的是,以上各示例中均以声波换能器包括3个阵元信号端为例进行说明,实际的声波换能器中阵元信号端的数量可以是数十个或数百个。
需要说明的是,以图1为例,还可以进一步增加第四阵元信号端,第四阵元信号端通过开关器件分别与第十三单元组C13-第十六单元组C16连接。如果按照图3所示的驱动方式进行驱动,即要求每个阵元由相邻的4个单元组构成,相邻阵元之间没有单元组,那么在第一个时段内,第十三单元组C13-第十六单元组C16能够形成一个阵元。即在第一个时段内,能够配置出4个阵元,其余时间段内仅能配置出3个阵元。
当阵元信号端的数量足够多时,例如100个阵元与101个阵元对于声波探测的影响的差异是可以接受的。故以图1为例,是否增加第四阵元信号端影响并不大。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (16)

  1. 一种声波换能器,包括:
    多个单元组,所述多个单元组中至少部分单元组各自包括多个声波换能单元,所述多个声波换能单元构造为执行相同的操作,每个声波换能单元构造为执行以下中的至少一者:将声波转化为电信号,以及将电信号转化为声波信号;以及
    多个阵元信号端,所述多个阵元信号端中的每一个阵元信号端连接相邻的至少两个单元组,该阵元信号端通过不同的开关器件与不同的单元组连接,每个开关器件构造为控制与其相连的阵元信号端和单元组之间的通断,任意两个相邻阵元信号端所连接的单元组中的部分单元组相同。
  2. 根据权利要求1所述的声波换能器,其中,所述多个单元组沿第一方向排列,所述至少部分单元组包括的多个声波换能单元沿第二方向排列,所述第二方向与所述第一方向相交。
  3. 根据权利要求2所述的声波换能器,其中,与至少两个阵元信号端相连的单元组为复用单元组;
    每个复用单元组通过不同的开关器件连接所述至少两个阵元信号端中的不同阵元信号端。
  4. 根据权利要求3所述的声波换能器,其中,所述复用单元组包括一个单元组信号端,所述复用单元组包括的所有声波换能单元均与所述一个单元组信号端连接,所述单元组信号端分别通过不同的开关器件连接所述至少两个阵元信号端中的不同阵元信号端。
  5. 根据权利要求3所述的声波换能器,其中,所述复用单元组包括至少两个单元组信号端,所述复用单元组包括的所有声波 换能单元均与所述至少两个单元组信号端中的每一个连接,所述至少两个单元组信号端中的每一个通过对应的开关器件连接所述至少两个阵元信号端中的对应一个阵元信号端。
  6. 根据权利要求3所述的声波换能器,包括多个复用单元组,其中,所述多个复用单元组彼此相邻,所述多个单元组中除所述多个复用单元组以外的单元组位于所述多个复用单元组的沿第一方向的两侧,并且各自通过一个开关器件与对应的阵元信号端相连。
  7. 根据权利要求1所述的声波换能器,其中,每个阵元信号端通过M个开关器件分别连接相邻的M个所述单元组,每个所述开关器件对应一个单元组,M≥2,任意两个相邻的所述阵元信号端所连接的所述单元组中相同的单元组的数量均为N,1≤N<M。
  8. 根据权利要求7所述的声波换能器,其中,M为偶数,且N=M/2。
  9. 根据权利要求1至8中任一项所述的声波换能器,其中,所述声波换能单元为电容式微机械超声换能器,所述电容式微机械超声换能器还包括彼此相对的第一电极和第二电极,所述第二电极连接至公共信号端,每个单元组内的电容式微机械超声换能器的第一电极连接在一起,并进一步通过相应的开关器件连接至相应的阵元信号端。
  10. 根据权利要求1至8中任一项所述的声波换能器,其中,所述开关器件为微机械加工开关,所述微机械加工开关包括控制端、第一端和第二端,所述控制端连接控制信号端,所述第一端电连接对应的单元组,所述第二端电连接对应的阵元信号端。
  11. 根据权利要求7所述的声波换能器,其中,5≤M≤10。
  12. 一种声波换能器的驱动方法,所述声波换能器是根据权利要求1至11中任一项所述的声波换能器,所述驱动方法包括:
    向各所述开关器件提供导通控制信号或关断控制信号,以使得与每个所述阵元信号端连接的多个开关器件中的至少部分开关器件导通,并且每个单元组仅与一个阵元信号端连通。
  13. 根据权利要求12所述的驱动方法,其中,在同一时刻,每个阵元信号端与相同数量的单元组连通。
  14. 根据权利要求12所述的驱动方法,其中,在同一时刻,每个阵元信号端与彼此相邻的多个单元组连通。
  15. 根据权利要求14所述的驱动方法,其中,所述多个阵元信号端包括相邻的第一阵元信号端和第二阵元信号端;
    在同一时刻,与所述第一阵元信号端连通的单元组和与所述第二阵元信号端连通的单元组相邻。
  16. 根据权利要求12至14中任一项所述的驱动方法,其中,所述多个单元组沿第一方向排列;
    在第一时刻和随后的第二时刻,与每个阵元信号端所连通的单元组的个数不变;
    在第一时刻与任一阵元信号端连通的单元组中在所述第一方向上的第一个单元组与在第二时刻与该阵元信号端连通的单元组中在所述第一方向上的第一个单元组相邻。
PCT/CN2020/091496 2019-05-22 2020-05-21 声波换能器及驱动方法 WO2020233656A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/266,445 US11904360B2 (en) 2019-05-22 2020-05-21 Acoustic wave transducer and driving method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910430497.3 2019-05-22
CN201910430497.3A CN110142194B (zh) 2019-05-22 2019-05-22 声波换能器及驱动方法

Publications (1)

Publication Number Publication Date
WO2020233656A1 true WO2020233656A1 (zh) 2020-11-26

Family

ID=67592775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/091496 WO2020233656A1 (zh) 2019-05-22 2020-05-21 声波换能器及驱动方法

Country Status (3)

Country Link
US (1) US11904360B2 (zh)
CN (1) CN110142194B (zh)
WO (1) WO2020233656A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110142194B (zh) 2019-05-22 2021-01-29 京东方科技集团股份有限公司 声波换能器及驱动方法
CN113747981B (zh) * 2020-03-30 2022-12-16 京东方科技集团股份有限公司 声波换能器及其制备方法
CN111443132A (zh) * 2020-05-20 2020-07-24 京东方科技集团股份有限公司 一种超声波发射控制电路及超声波成像系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1686582A (zh) * 2005-05-19 2005-10-26 上海交通大学 自聚焦阵列超声换能器
JP2007244415A (ja) * 2006-03-13 2007-09-27 Fujifilm Corp 超音波プローブ、および超音波診断装置
US20080021324A1 (en) * 2006-07-18 2008-01-24 Fujifilm Coporation Ultrasonic examination apparatus
CN201518016U (zh) * 2009-10-30 2010-06-30 北京工业大学 板中超声换能器阵列激励接收多通道可控开关
CN102854256A (zh) * 2012-09-03 2013-01-02 北京理工大学 一种用于相控阵超声换能器特性测量的信号切换装置
CN105232146A (zh) * 2015-11-18 2016-01-13 郑州大学 一种具有超声定位功能的介入消融导管
CN110142194A (zh) * 2019-05-22 2019-08-20 京东方科技集团股份有限公司 声波换能器及驱动方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4803728B2 (ja) * 2006-03-13 2011-10-26 Necトーキン株式会社 超音波フェイズドアレイ送受波器
KR100781467B1 (ko) * 2006-07-13 2007-12-03 학교법인 포항공과대학교 공기중 파라메트릭 트랜스미팅 어레이를 이용한 초지향성초음파 거리측정을 위한 멤스 기반의 다공진 초음파트랜스듀서
EP2598255A2 (en) * 2010-07-30 2013-06-05 Koninklijke Philips Electronics N.V. Thin film ultrasound transducer
CN102505935B (zh) * 2011-10-20 2015-04-01 中国石油天然气集团公司 三维声波井下仪器换能器阵列的激励电路
US9454954B2 (en) * 2012-05-01 2016-09-27 Fujifilm Dimatix, Inc. Ultra wide bandwidth transducer with dual electrode
US9294839B2 (en) * 2013-03-01 2016-03-22 Clearone, Inc. Augmentation of a beamforming microphone array with non-beamforming microphones
JP5836537B2 (ja) * 2013-03-28 2015-12-24 富士フイルム株式会社 ユニモルフ型超音波探触子
EP3109650B1 (en) * 2015-06-25 2020-04-01 ABB Schweiz AG Signal handling for inaccessibly located power equipment
JP6429759B2 (ja) * 2015-10-24 2018-11-28 キヤノン株式会社 静電容量型トランスデューサ及びそれを備える情報取得装置
JP6724502B2 (ja) * 2016-04-06 2020-07-15 セイコーエプソン株式会社 超音波装置
US20180092630A1 (en) * 2016-09-30 2018-04-05 Robert Bosch Gmbh Combined mimo array and phased array for blood velocity detection
JP7127510B2 (ja) * 2018-11-22 2022-08-30 セイコーエプソン株式会社 超音波素子、及び超音波装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1686582A (zh) * 2005-05-19 2005-10-26 上海交通大学 自聚焦阵列超声换能器
JP2007244415A (ja) * 2006-03-13 2007-09-27 Fujifilm Corp 超音波プローブ、および超音波診断装置
US20080021324A1 (en) * 2006-07-18 2008-01-24 Fujifilm Coporation Ultrasonic examination apparatus
CN201518016U (zh) * 2009-10-30 2010-06-30 北京工业大学 板中超声换能器阵列激励接收多通道可控开关
CN102854256A (zh) * 2012-09-03 2013-01-02 北京理工大学 一种用于相控阵超声换能器特性测量的信号切换装置
CN105232146A (zh) * 2015-11-18 2016-01-13 郑州大学 一种具有超声定位功能的介入消融导管
CN110142194A (zh) * 2019-05-22 2019-08-20 京东方科技集团股份有限公司 声波换能器及驱动方法

Also Published As

Publication number Publication date
CN110142194A (zh) 2019-08-20
CN110142194B (zh) 2021-01-29
US11904360B2 (en) 2024-02-20
US20210291230A1 (en) 2021-09-23

Similar Documents

Publication Publication Date Title
WO2020233656A1 (zh) 声波换能器及驱动方法
JP6482539B2 (ja) 切換え動作モードを有する圧電超音波変換器アレイ
JP5473579B2 (ja) 静電容量型電気機械変換装置の制御装置、及び静電容量型電気機械変換装置の制御方法
CN101874312B (zh) 微机械超声换能器中的可变工作电压
CN106198724B (zh) 一种多稳态超声检测传感器
JP5947511B2 (ja) 電気機械変換装置
JP3977826B2 (ja) 超音波診断装置
CN104271264A (zh) 具有双电极的超宽带换能器
CN1527414A (zh) 使用显微机械加工的超声换能器的镶嵌式阵列
JP2015195351A (ja) 圧電素子、圧電デバイスおよびプローブ並びに電子機器および超音波画像装置
CN104281772A (zh) 换能器和对象信息获取装置
CN104470729B (zh) 用于驱动负载,尤其是驱动超声换能器的驱动器设备和驱动方法
CN104622512A (zh) 椭圆膜单元结构电容式微超声传感器环形阵列及电路系统
JP2014195495A (ja) 超音波トランスデューサー装置およびプローブ並びに電子機器および超音波画像装置
US11378670B2 (en) Ultrasonic device and ultrasonic apparatus
US11233188B2 (en) Ultrasonic wave sensor and ultrasonic wave device
JP6135184B2 (ja) 超音波トランスデューサーデバイス、ヘッドユニット、プローブ及び超音波画像装置
CN111317507B (zh) 面阵超声探头的声头以及面阵超声探头
CN114345673A (zh) 超声换能器及其制作方法、以及超声换能系统
US12015898B2 (en) Transducer and driving method thereof, and system
JP6723727B2 (ja) プローブ、及び被検体情報取得装置
CN107847980B (zh) 具有偏离声方向的路程相加的电声转换器
JP2017000792A (ja) 超音波トランスデューサー素子チップおよびプローブ並びに電子機器および超音波診断装置
JP5855142B2 (ja) 静電容量型トランスデューサの制御装置、及び静電容量型トランスデューサの制御方法
CN118151583A (zh) 换能器控制电路和换能器控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20810271

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20810271

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20810271

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/07/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20810271

Country of ref document: EP

Kind code of ref document: A1