WO2020233415A1 - 激光雷达及其抗干扰方法 - Google Patents

激光雷达及其抗干扰方法 Download PDF

Info

Publication number
WO2020233415A1
WO2020233415A1 PCT/CN2020/089140 CN2020089140W WO2020233415A1 WO 2020233415 A1 WO2020233415 A1 WO 2020233415A1 CN 2020089140 W CN2020089140 W CN 2020089140W WO 2020233415 A1 WO2020233415 A1 WO 2020233415A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
echo
lidar
laser radar
jitter
Prior art date
Application number
PCT/CN2020/089140
Other languages
English (en)
French (fr)
Inventor
杨少东
Original Assignee
深圳市速腾聚创科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市速腾聚创科技有限公司 filed Critical 深圳市速腾聚创科技有限公司
Priority to EP20809106.6A priority Critical patent/EP3964867A4/en
Priority to US17/098,233 priority patent/US20210063538A1/en
Publication of WO2020233415A1 publication Critical patent/WO2020233415A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/4804Auxiliary means for detecting or identifying lidar signals or the like, e.g. laser illuminators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/495Counter-measures or counter-counter-measures using electronic or electro-optical means

Definitions

  • the invention relates to the technical field of laser radar, in particular to a laser radar and an anti-interference method thereof.
  • the ranging of lidar is mainly based on the analysis of the return time of its own pulse, such as pulsed lidar.
  • the designed pulse is usually a unified single pulse or a limited sequence of coded pulses.
  • the contours of the pulses emitted by all devices are similar or even the same, which is difficult to distinguish and easily leads to crosstalk.
  • An anti-jamming method for lidar includes:
  • the echo includes the expected echo and unexpected echo of the lidar machine, and the unexpected echo includes other laser radar crosstalk Machine echo
  • the interference echo is identified and removed according to the correlation.
  • the injected random time jitter is pseudo-random time jitter.
  • the step of modulating the launch time of the lidar by injecting random time jitter in the launch time interval includes:
  • the launch time of the laser radar is modulated, thereby re-determining the launch time of the laser radar.
  • the step of injecting random time jitter into the time interval of the emission time sequence is to inject pseudo-random time jitter in the time interval of the emission time sequence of each lidar, and the pseudo-random time jitter injected by each lidar is different.
  • the unexpected echo also includes the echo received when the laser radar itself occasionally interferes with the laser emission.
  • the step of identifying the interference echo according to the correlation according to the transmission time of the local laser radar and the receiving time of the echo received by the local laser radar includes:
  • the method further includes the step of performing laser pulse encoding on the laser radar to modulate the laser pulse of the laser radar.
  • the injecting random time jitter in the transmission time interval is used to modulate the laser radar after the encoding. Launch time.
  • the step of causing the lidar to emit laser pulses according to the modulated emission time is to emit the laser pulses using a multiple emission mechanism.
  • the above-mentioned anti-jamming method of lidar modulates the launch time of the lidar by injecting random time jitter into the time interval of the launch time sequence, and then makes the lidar emit laser pulses according to the modulated launch time.
  • the echo includes the expected echo of the lidar machine and the unexpected echo of other lidars. Because the laser emission pulse of the lidar machine does not inject random time jitter, the transmission time is the same as the receiving time of the expected echo.
  • a lidar which includes a controller, a transmitting module, and a receiving module; the controller is connected to the transmitting module and the receiving module respectively;
  • the controller is used to modulate the launch time of the lidar by injecting random time jitter into the time interval of the launch time sequence, and make the launch module emit laser according to the modulated launch time;
  • the receiving module is used to obtain the receiving time of the echo received by the lidar; the echo includes the expected echo and the unexpected echo of the laser radar, and the unexpected echo includes other Echoes from other aircraft from Lidar crosstalk;
  • the controller is used for identifying and removing interference echoes according to the correlation according to the transmission time of the local laser radar and the receiving time of the echo received by the local laser radar.
  • the controller includes FPGA or ASIC.
  • the controller modulates the laser radar's transmission time by injecting random time jitter into the time interval of the transmission time sequence, and then makes the transmitting module emit laser pulses according to the modulated transmission time.
  • the echo includes the expected echo of the laser radar and the unexpected echo of other laser radars.
  • the lidar mentioned above is used for multiple lidars in the same scene
  • the situation that causes crosstalk can combat crosstalk to a certain extent.
  • FIG. 1 is a schematic flowchart of an anti-jamming method for lidar in an embodiment
  • Figure 2 is a schematic diagram of the transmitting and receiving effects of the lidar in a specific embodiment
  • Fig. 3 is a schematic diagram of a pseudo-random time jitter sequence generated in a specific embodiment
  • FIG. 4 is a schematic diagram of laser pulse emission and reception effects after injection time injection of pseudo-random time jitter in a specific embodiment
  • FIG. 5 is a schematic diagram showing the effect of transmitting and receiving laser pulses after injection of pseudo-random time jitter in another specific embodiment
  • FIG. 6 is a schematic diagram of a ranging effect in a specific embodiment in which the transmission time interval of the lidar is not injected with pseudo-random time jitter;
  • FIG. 7 is a schematic diagram of the ranging effect in which pseudo-random time jitter is injected into the transmission time interval of the lidar in a specific embodiment
  • FIG. 8 is a schematic diagram of a ranging effect after removing a ranging sequence with a lower correlation in a specific embodiment
  • FIG. 9 is a schematic diagram of the structure of a lidar in an embodiment
  • FIG. 10 is a schematic diagram of the structure of a lidar in another embodiment.
  • Fig. 1 is a schematic flowchart of an anti-jamming method for lidar in an embodiment. Please refer to Fig. 1. The method includes steps 102 to 108:
  • Step 102 Modulate the launch time of the lidar by injecting pseudo-random time jitter into the time interval of the launch time sequence.
  • Figure 2 shows a certain launch time point of the lidar, and the launch time point is the 50th ms.
  • the launch time of lidar can be a time sequence, that is, there are more than two launch time points. Injecting pseudo-random time jitter is to insert time points in each time interval in the launch time sequence, and these inserted time points are in the original launch time. The corresponding amount of jitter at a point is defined as the pseudo-random time jitter.
  • the transmission time interval may be fixed.
  • step 102 includes: establishing a timing launch strategy of the lidar to determine the launch time of the lidar, and also determine the launch time of the lidar; and then based on the timing launch strategy, establishing the pseudo-random of the lidar Dithering strategy; then by injecting pseudo-random time jitter into the time interval of the lidar's launch time sequence to modulate the launch time of the lidar, thereby re-determining the launch time of the lidar. Subsequent lidars emit lasers according to the launch time injected with pseudo-random time jitter, that is, lidars also emit lasers at various pseudo-random time points.
  • Figure 3 is a pseudo-random time jitter strategy established based on the laser radar's first to Nth launch time in a specific embodiment.
  • the ordinate represents the amount of pseudo-random time jitter injected, that is, how much time is ahead or lags behind the corresponding launch time .
  • the time unit can be milliseconds. For example, -20 milliseconds means that the injected pseudo-random time amount is 20 milliseconds ahead of a certain transmission time, and 20 milliseconds means that the injected pseudo-random time jitter is delayed by 20 milliseconds relative to a certain transmission time.
  • the lidar to be anti-interference in the embodiment of the present application may be two or more lidars set in the same scene, that is, each lidar in the same scene must counter interference from other aircraft.
  • the same scene can specifically mean that two or more lidars are in the same geographic area, or it can mean that two or more lidars measure the same object.
  • the random jitter mode is different or the seed for generating random numbers is different, that is, the pseudo-random time jitter injected by different lidars is different.
  • the next step is to make each lidar emit laser according to the emission time injected with the corresponding pseudo-random time jitter, so that two or more lidars in the same scene can simultaneously counter multi-machine interference.
  • Device A has to counter the crosstalk of devices B and C
  • device B has to resist the crosstalk of devices A and C
  • device C has to fight the crosstalk of devices A and B because of three
  • the pseudo-random time jitter injected by each device is different, so the jitter of the local transmission time of each device is different from the jitter of the echo time of other devices, so the local transmission time of each device is different from the echo time of other devices.
  • the correlation is destroyed, so three lidars can be used to counter multi-machine interference at the same time.
  • the pseudo-random sequence is different. Therefore, in this embodiment, different seeds can be selected to realize the injection of different pseudo-random time jitters. Compared with general random jitter, pseudo-random time jitter is easier to achieve different amounts of jitter emitted by different lidars.
  • Step 104 Make the lidar emit laser pulses according to the modulated emission time.
  • the transmission time injected with pseudo-random time jitter is the re-determined transmission time.
  • Step 106 Obtain the receiving time of the echo received by the lidar; the echo includes the expected echo and the unexpected echo of the lidar local machine, and the unexpected echo includes the crosstalk of other lidars.
  • the unintended echo also includes the echo received when the laser radar itself occasionally interferes with the laser emission.
  • the lidar machine it is the lidar that needs to remove the interference echo.
  • the lidar machine it is the lidar that needs to remove the interference echo.
  • the laser radar machine is device A, and device B and device C are other laser radars.
  • the local echo reception time is the reception time corresponding to the laser emission time of the lidar's local machine
  • the other machine's echo reception time is the reception time of the other machine's echo received by this machine.
  • the received echoes are all meaningful echoes.
  • a meaningful echo may be an echo meeting a certain amplitude or a certain pulse width, and the receiving time of each echo may be the time when each echo peak appears.
  • Figure 4 shows the injection of the pseudo-random time jitter shown in Figure 3 into the time interval of the laser radar launch time sequence, and a schematic diagram of the part of the launch time and the local echo receiving time after the laser pulse is launched;
  • Figure 4 Lines in different formats indicate different times of receiving and sending laser pulses. Because the transmission time of the lidar is injected with pseudo-random time jitter, the receiving time of the local echo also has a corresponding pseudo-random time jitter. Therefore, for the transmission time of the lidar and the receiving time of the local echo, there is no difference in time between them. The injection of pseudo-random time jitter is the same.
  • Figure 5 also shows another specific example of the injection of the pseudo-random time jitter shown in Figure 3 into the time interval of the laser radar transmission time sequence, and the schematic diagram of the partial transmission time and the local echo receiving time after the laser pulse is transmitted.
  • the lines in the different formats in the line indicate different times of laser pulse sending and receiving;
  • Figure 5 shows that the difference in time between each laser pulse sending and receiving is the same. Therefore, for the laser radar launch time and the local echo receiving time, the schematic diagram of the launch and reception effect can finally be equivalent to Figure 2.
  • Step 108 According to the transmission time of the local laser radar and the receiving time of the echo received by the local laser radar, identify and remove the interference echo according to the correlation.
  • the interference echo removed in this step includes at least the interference echo of another machine. For the unexpected echo, it also includes the echo received when the laser radar itself occasionally interferes with launching laser.
  • the interference echo removed in this step includes the interference echo from other aircraft and the occasional interference echo from the camera itself.
  • an abnormal point detection algorithm can be used to identify the interference echo.
  • a removal algorithm can be used to remove interference echoes.
  • step 108 includes: obtaining a time difference sequence according to the transmission time of the local lidar machine and the receiving time of the received echo, counting the spatial correlation of the time difference, and identifying from the time difference sequence that the spatial correlation is lower than For the interference time difference of the preset value, the echo corresponding to the interference time difference is identified as the interference echo; the time difference sequence includes the inherent time difference between the laser radar's local transmission time and the local echo receiving time, and the laser radar's local transmission time and other devices.
  • the interference time difference of the echo reception time even includes the interference time difference between the laser radar's local launch time and the time of the local interference echo.
  • pseudo-random time jitter is injected into the transmission time of the local machine, the time difference sequence with the echo receiving time of the local machine is still fixed; but because the transmission time of the local machine is injected pseudo-random time jitter, the local transmission time The distribution of the time difference between the time and the receiving time of the echo from another machine is random, so the pseudo-random time jitter destroys the correlation of the time difference between the transmitting time of the local machine and the receiving time of the echo from the other machine.
  • the transmission time of the lidar has jitter, so in the same way, the corresponding echo time of the local machine has corresponding jitter. If the object under test remains stationary, the laser transmission and reception of each group of the machine The time difference is fixed, and the correlation is very high; and the time difference between the launch time of the laser radar and the receiving time of other aircraft's echo will not be fixed, which destroys the laser radar launch time and the receiving time of other aircraft's echo. The correlation of the time difference.
  • step 108 includes: performing ranging according to the transmitting time of the local machine and the receiving time of the echo received by the local machine to obtain the ranging sequence, counting the correlation of the ranging sequence, and identifying An interference ranging sequence whose spatial correlation is lower than a preset value in the ranging sequence is identified, the echo corresponding to the interference ranging sequence is identified as an interference echo, and the interference echo is removed.
  • the transmission time is injected with pseudo-random time jitter, the distribution of the time difference between the transmission time and the reception time of the echo of another machine is random, and the interference time difference between the transmission time of the local machine and the reception time of the echo of the other machine is different.
  • the correlation is destroyed, so the correlation of the interference ranging sequence obtained according to the interference time difference is also destroyed. Therefore, the obtained ranging sequence also has a ranging sequence with lower correlation.
  • This embodiment is essentially based on the correlation of the time difference. To identify the echo interference of other machines.
  • the time interval of the transmission time sequence is injected with pseudo-random time jitter, and the correlation between the time difference between the transmission time of the local machine and the reception time of the echo of the other machine is destroyed, so the obtained ranging sequence also has a low correlation ranging sequence.
  • the low-correlation ranging sequence includes the interference ranging sequence caused by the interference echo of other aircraft, and then these low-correlation ranging sequences are removed to obtain the ranging sequence shown in Figure 8.
  • each lidar's launch time sequence can inject pseudo-random time jitter, but each lidar
  • the injected pseudo-random time jitter is different; it can also be configured to inject pseudo-random time jitter into the time interval of the launch time sequence of the lidar that needs anti-interference, and no pseudo-random time jitter is injected into the time interval of the launch time sequence of other lidars.
  • Random time jitter it is also possible to configure that one of the lidars does not inject pseudo-random time jitter into the time interval of the launch time sequence, while the other aircraft’s launch time sequence injects pseudo-random time jitter.
  • Pseudo-random time jitter is different; all of the above methods can make anti-jamming laser equipment required.
  • the time difference between the local transmission time and the reception time of the echo from the other machine is not fixed, so the transmission time of the local machine and the reception of the other machine's echo are not fixed
  • the correlation of the time difference is destroyed; then, the time difference where the correlation is destroyed is identified, and the echo corresponding to the time difference is the interference echo of another machine.
  • the traditional multi-machine interference countermeasures strategy is to adopt pulse code transmission strategy or multiple pulse transmission strategy.
  • the laser emitted by pulse coding may not reach the light emission threshold, which may reduce the light output efficiency and detection efficiency of the laser radar; the use of multiple pulse emission strategies takes more time and will lead to detection The efficiency is reduced and the lidar is required to have higher performance.
  • the anti-jamming method in the embodiment of the present application may not use the multi-machine interference countermeasure strategy of laser pulse encoding and multiple pulse transmission, and the pseudo-random time jitter injection strategy can effectively counter multi-machine interference without affecting the performance of the lidar. Light extraction efficiency and detection efficiency.
  • the anti-jamming method in the embodiments of the present application adopts a pseudo-random time jitter injection strategy to combat multi-interference and will not conflict with laser pulse encoding and multiple pulse transmission mechanisms, and can even use laser pulse encoding or multiple pulse transmission mechanisms at the same time To fight interference.
  • the following describes how to use laser pulse encoding or multiple pulse transmission mechanisms to combat interference at the same time:
  • the anti-interference method in the embodiment of the present application further includes the step of performing laser pulse encoding on the laser radar to modulate the laser pulse of the laser radar, and the step of injecting random time into the time interval of the transmission time sequence Jitter is used to modulate the transmission time of the laser radar after the encoding.
  • the step of causing the lidar to emit laser pulses according to the modulated emission time is to emit the laser pulses by using a multiple emission mechanism.
  • the anti-jamming method of lidar in the embodiment of the present application modulates the launch time of the lidar by injecting random time jitter into the time interval of the launch time sequence, and then makes the lidar emit laser pulses according to the modulated launch time , So, for the case where the echo received by the lidar includes the expected echo of the lidar machine and the unintended echo of other lidars, since the laser pulse of the lidar machine is injected with random time jitter, the emission time It is related to the receiving time of the expected echo.
  • the embodiment of the application also proposes a laser radar.
  • the lidar may be a pulsed lidar, such as a TOF (Time Of Flight) lidar.
  • FIG. 9 is a schematic structural diagram of a lidar in an embodiment. Please refer to FIG. 9.
  • the lidar includes a controller 910, a transmitting module 920, and a receiving module 930; the controller 910 and the transmitting module 920 are respectively , The receiving module 930 is connected;
  • the controller 910 is configured to modulate the laser radar emission time by injecting random time jitter in the emission time interval, and make the emission module 920 emit laser light according to the modulated emission time;
  • the receiving module 930 is used to obtain the receiving time of the echo received by the lidar; the echo includes the expected echo and the unexpected echo of the laser radar, and the unexpected echo includes Other aircraft echoes from other Lidar crosstalk;
  • the controller 910 is configured to identify and remove interference echoes according to the correlation according to the transmission time of the local laser radar and the receiving time of the echo received by the local laser radar.
  • the lidar further includes an analog-to-digital converter 940, and the controller 910 is connected to the receiving module 930 through the analog-to-digital converter 940.
  • the receiving module 930 obtains the echo received by the lidar, and converts the receiving time of the echo into a numerical sequence to the controller 910.
  • the controller 910 includes a Field Programmable Gate Array (FPGA for short) or an Application Specific Integrated Circuit (ASIC for short).
  • the controller 910 further includes an ARM CPU (Advanced RISC Machines Central Processing Unit, an embedded processor), a PC (personal computer, personal computer), a DSP (Digital Signal Processing, digital signal processor), or an MCU (Microcontroller Unit, Microcontroller Unit).
  • FPGA Field Programmable Gate Array
  • ASIC Application Specific Integrated Circuit
  • the controller 910 further includes an ARM CPU (Advanced RISC Machines Central Processing Unit, an embedded processor), a PC (personal computer, personal computer), a DSP (Digital Signal Processing, digital signal processor), or an MCU (Microcontroller Unit, Microcontroller Unit).
  • ARM CPU Advanced RISC Machines Central Processing Unit, an embedded processor
  • PC personal computer, personal computer
  • DSP Digital Signal Processing, digital signal processor
  • MCU Microcontroller Unit, Microcontroller Unit
  • the controller 910 modulates the laser radar emission time by injecting random time jitter into the time interval of the emission time sequence, and then makes the transmitting module 920 emit laser pulses according to the modulated emission time.
  • the laser emission pulse of the laser radar itself does not inject random time jitter, the emission time is the same as expected
  • the receiving time of the echo is all related, but the launch time of the laser radar is injected with random time jitter, which may destroy the correlation between the local launch time of the laser radar and the echo receiving time of other aircraft; therefore, for multiple laser radars in the same
  • the use of the lidar in the embodiments of the present application can combat crosstalk to a certain extent.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种激光雷达及其抗干扰方法,包括:通过在发射时间序列的时间间隔上注入随机时间抖动来调制激光雷达的发射时间(102);令激光雷达设备按照调制后的发射时间发射激光脉冲(104);获取激光雷达接收到的回波的接收时间,该回波包括激光雷达本机的预期回波和非预期回波,该非预期回波包括其他激光雷达串扰而来的它机回波(106);根据激光雷达设备本机的发射时间和激光雷达设备本机接收到的回波的接收时间,按照相关性识别并移除干扰回波。对于多个激光雷达在同一场景使用导致串扰的情形,利用该方法,一定程度上可以对抗串扰。

Description

激光雷达及其抗干扰方法
本申请要求于2019年5月17日提交中国专利局,申请号为CN201910410468.0、发明名称为“激光雷达及其抗干扰方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及激光雷达技术领域,特别是涉及一种激光雷达及其抗干扰方法。
背景技术
激光雷达的测距主要基于针对自身发射脉冲的返回时间的分析,例如脉冲型激光雷达。出于保证人眼安全及确保激光雷达探测效率的考虑,设计的脉冲通常是统一的单脉冲或者是有限序列的编码脉冲。但是对于多个激光雷达在同一场景使用,尤其均采用单脉冲发射激光时,所有设备发出的脉冲轮廓近似甚至相同,难以进行区分,容易导致串扰。
发明内容
基于此,有必要提供一种激光雷达及其抗干扰方法。
一种激光雷达的抗干扰方法,包括:
通过在发射时间序列的时间间隔上注入随机时间抖动来调制激光雷达的发射时间;
令所述激光雷达按照调制后的发射时间发射激光脉冲;
获取所述激光雷达接收到的回波的接收时间;所述回波包括所述激光雷达本机的预期回波和非预期回波,所述非预期回波包括其他激光雷达串扰而来的它机回波;
根据激光雷达本机的发射时间和激光雷达本机接收到的回波的接收时间,按照相关性识别并移除干扰回波。
在其中一个实施例中,注入的随机时间抖动为伪随机时间抖动。
在其中一个实施例中,所述通过在发射时间间隔上注入随机时间抖动来调制激光雷达的发射时间的步骤包括:
建立激光雷达的定时发射策略,以确定所述激光雷达的发射时间;
基于所述定时发射策略,建立所述激光雷达的伪随机抖动策略;
通过在激光雷达的发射时间序列的时间间隔上注入伪随机时间抖动来调制激光雷达的发射时间,从而重新确定激光雷达的发射时间。
在其中一个实施例中,激光雷达包括两个以上,且均在同一场景使用;
所述在发射时间序列的时间间隔上注入随机时间抖动的步骤为在各个激光雷达的发射时间序列的时间间隔中均注入伪随机时间抖动,且各个激光雷达注入的伪随机时间抖动不同。
在其中一个实施例中,所述非预期回波还包括激光雷达本机的自身偶发干扰发射激光时对应接收到的回波。
在其中一个实施例中,所述根据激光雷达本机的发射时间和激光雷达本机接收到的回波的接收时间,按照相关性识别干扰回波步骤包括:
根据所述本机的发射时间和所述本机接收到的回波的接收时间进行测距;
统计测距序列的空间相关性,识别空间相关性低于预设值的干扰测距序列,识别所述干扰测距序列对应的回波为干扰回波。
在其中一个实施例中,还包括对激光雷达进行激光脉冲编码来调制激光雷达的激光脉冲的步骤,所述通过在发射时间间隔上注入随机时间抖动是用于调制激光雷达的经过所述编码后的发射时间。
在其中一个实施例中,所述令所述激光雷达按照调制后的发射时间发射激光脉冲的步骤是采用多次发射机制发射所述激光脉冲。
上述激光雷达的抗干扰方法,通过在发射时间序列的时间间隔上注入随机时间抖动来调制激光雷达的发射时间,然后令激光雷达按照调制后的发射时间发射激光脉冲,如此,对于激光雷达接收到的回波包括激光雷达本机的预期回波和其他激光雷达的非预期回波的情况,由于激光雷达本机的激光发射脉冲不论是否注入随机时间抖动,发射时间与预期回波的接收时间都是相关的,但激光雷达的发射时间注入随机时间抖动,则可能破坏该激光雷达本机发射时间与它机回波接收时间的相关性;因此对于多个激光雷达在同一场景使用导致串扰的情形,利用上述激光雷达的抗干扰方法,一定程度上可以对抗串扰。
还提出一种激光雷达,包括控制器、发射模组、接收模组;所述控制器分别与所述发射模组、所述接收模组连接;
所述控制器用于通过在发射时间序列的时间间隔上注入随机时间抖动来调制激光雷达的发射时间,并令发射模组按照调制后的发射时间发射激光;
所述接收模组用于获取所述激光雷达接收到的回波的接收时间;所述回波包括所述激光雷达本机的预期回波和非预期回波,所述非预期回波包括其他激光雷达串扰而来的它机回波;
所述控制器用于根据所述激光雷达本机的发射时间和激光雷达本机接收到的回波的接收时间,按照相关性识别并移除干扰回波。
在其中一个实施例中,所述控制器包括FPGA或ASIC。
上述激光雷达,控制器通过在发射时间序列的时间间隔上注入随机时间抖动来调制激光雷达的发射时间,然后令发射模组按照调制后的发射时间发射激光脉冲,如此,对于激光雷达接收到的回波包括激光雷达本机的预期回波和其 他激光雷达的非预期回波的情况,由于激光雷达本机的激光发射脉冲不论是否注入随机时间抖动,发射时间与预期回波的接收时间都是相关的,但激光雷达的发射时间注入随机时间抖动,则可能破坏该激光雷达本机发射时间与它机回波接收时间的相关性;因此采用上述激光雷达,对于多个激光雷达在同一场景使用导致串扰的情形,一定程度上可以对抗串扰。
附图说明
图1为一个实施例中的激光雷达的抗干扰方法的流程示意图;
图2为一个具体实施例中激光雷达的发射接收效果示意图;
图3为一个具体实施例中生成的伪随机时间抖动序列示意图;
图4为一个具体实施例中发射时间注入伪随机时间抖动后的激光脉冲发射与接收效果示意图;
图5为另一个具体实施例中发射时间注入伪随机时间抖动后的激光脉冲发射与接收效果示意图;
图6为一个具体实施例中激光雷达的发射时间间隔不注入伪随机时间抖动的测距效果示意图;
图7为一个具体实施例中激光雷达的发射时间间隔注入了伪随机时间抖动的测距效果示意图;
图8为一个具体实施例中移除了相关性较低的测距序列后的测距效果示意图;
图9为一个实施例中的激光雷达的结构示意图;
图10为另一个实施例中的激光雷达的结构示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本申请实施例提出一种激光雷达的抗干扰方法,该激光雷达可以是脉冲型激光雷达,例如TOF(Time Of Flight)激光雷达。以下以注入伪随机时间抖动为例,描述本申请实施例的激光雷达的抗干扰方法。图1为一个实施例中的激光雷达的抗干扰方法的流程示意图,请参阅图1,该方法包括步骤102至步骤108:
步骤102,通过在发射时间序列的时间间隔上注入伪随机时间抖动来调制激光雷达的发射时间。
如图2所示,图2示出了激光雷达的某一次的发射时间点,该发射时间点为第50ms。激光雷达的发射时间可以是一个时间序列,即有两个以上的发射时间点,注入伪随机时间抖动是在发射时间序列中的各个时间间隔上插入时间点,这些插入的时间点在原有发射时间点上的相应抖动量定义为所述伪随机时间抖动。具体地,发射时间间隔可以是固定的。
在其中一个实施例中,步骤102包括:建立激光雷达的定时发射策略,以确定激光雷达的发射时间,还可以确定激光雷达的发射时间;然后基于所述定时发射策略,建立激光雷达的伪随机抖动策略;然后通过在激光雷达的发射时间序列的时间间隔上注入伪随机时间抖动来调制激光雷达的发射时间,从而重新确定激光雷达的发射时间。后续激光雷达则是按照注入了伪随机时间抖动的发射时间发射激光,即激光雷达在各个伪随机时间点也要发射激光。图3为一个具体实施例中基于激光雷达第1至第N次发射时间,建立的伪随机时间抖动 策略,纵坐标表示注入的伪随机时间抖动量,即相对于对应发射时间超前或滞后多少时间,时间单位可以是毫秒。例如,-20毫秒表示注入的伪随机时间量相对于某次发射时间提前20毫秒,20毫秒则表示注入的伪随机时间抖动相对于某次发射时间延迟了20毫秒。
本申请实施例中要进行抗干扰的激光雷达,可以是设于同一场景的两个以上的激光雷达,即同一场景各个激光雷达都要对抗它机干扰。同一场景具体可以指两个以上激光雷达处于同一地理区域,或者可以指两个以上激光雷达对同一个物体进行测距。对于不同的激光雷达,建立伪随机抖动策略时,随机抖动模式不同或者生成随机数的种子不同,即不同的激光雷达注入的伪随机时间抖动是不同的。后续步骤是令各个激光雷达均按照注入了相应伪随机时间抖动的发射时间发射激光,可以实现同一场景的两个以上的激光雷达同时对抗多机干扰。例如,同一场景存在A设备、B设备和C设备,A设备要对抗B、C设备的串扰,B设备要多抗A、C设备的串扰,C设备要对抗A、B设备的串扰,因为三个设备注入的伪随机时间抖动各不相同,所以每个设备的本机发射时间的抖动与它机回波时间的抖动都不同,所以每个设备的本机发射时间与它机回波时间的相关性都被破坏,所以可以令三个激光雷达同时对抗多机干扰。
若选择的种子不同,伪随机序列就不同,因此本实施例中可以选择不同种子来实现不同伪随机时间抖动的注入。相比于一般的随机抖动,伪随机时间抖动更加容易实现不同激光雷达发射抖动量的不同。
步骤104,令所述激光雷达按照调制后的发射时间发射激光脉冲。
本步骤,注入了伪随机时间抖动的发射时间为重新确定的发射时间。
步骤106,获取所述激光雷达接收到的回波的接收时间;所述回波包括所述激光雷达本机的预期回波和非预期回波,所述非预期回波包括其他激光雷达串 扰而来的它机回波。具体地,非预期回波还包括激光雷达本机的自身偶发干扰发射激光时对应接收到的回波。对于激光雷达本机,就是需要去除干扰回波的那一台激光雷达。例如,同一场景存在A设备、B设备和C设备,要对抗干扰的设备为A设备,那么激光雷达本机是A设备,B设备和C设备就是其他激光雷达。
对于各个激光雷达而言,本机回波接收时间就是激光雷达本机激光发射时间对应的接收时间,它机回波接收时间是本机接收到的它机回波的接收时间。
具体地,接收到的回波均为有意义的回波,有意义的回波可以是满足一定幅值或一定脉宽的回波,各个回波的接收时间可以是各回波峰值出现的时间。
请参阅图4,图4示出了激光雷达发射时间序列的时间间隔中注入图3所示的伪随机时间抖动,发射激光脉冲后部分发射时间与本机回波接收时间的示意图;图4中不同格式的线条表示不同次的激光脉冲收发。因为激光雷达的发射时间注入了伪随机时间抖动,本机回波的接收时间也存在相应的伪随机时间抖动,因此对于激光雷达发射时间和本机回波接收时间而言,它们的时间差跟没有注入伪随机时间抖动时无异。图5也示出了另一个具体实例中激光雷达发射时间序列的时间间隔中注入图3所示的伪随机时间抖动,发射激光脉冲后部分发射时间与本机回波接收时间的示意图,图5中不同格式的线条表示不同次的激光脉冲收发;图5可以看出每一次的激光的收发时间差相同。因此对于激光雷达发射时间和本机回波接收时间而言,发射和接收效果示意图最终可以等效为图2。
步骤108,根据激光雷达本机的发射时间和激光雷达本机接收到的回波的接收时间,按照相关性识别并移除干扰回波。
本步骤移除的干扰回波至少包括它机干扰回波。对于非预期回波还包括激光雷达本机的自身偶发干扰发射激光时对应接收到的回波的情况,本步骤移除 的干扰回波包括它机干扰回波和本机自身偶发干扰回波。
具体地,可以采用异常点检测算法识别所述干扰回波。具体地,可以采用移除算法移除干扰回波。
在其中一个实施例中,步骤108包括:根据激光雷达本机的发射时间和接收到的回波的接收时间,得到时间差序列,统计时间差的空间相关性,从时间差序列中识别空间相关性低于预设值的干扰时间差,干扰时间差对应的回波识别为干扰回波;所述时间差序列包括激光雷达本机发射时间与本机回波接收时间的固有时间差以及激光雷达本机发射时间与它机回波接收时间的干扰时间差,甚至还包括激光雷达本机发射时间与本机偶发干扰回波时间的干扰时间差。本实施例中,本机发射时间虽然注入了伪随机时间抖动,但与本机回波接收时间的时间差序列依然是固定的;但因本机发射时间注入了伪随机时间抖动,因此本机发射时间与它机回波的接收时间的时间差的分布是随机的,因此伪随机时间抖动破坏了本机发射时间与它机回波的接收时间的时间差的相关性。
本实施例中,激光雷达的发射时间具备抖动,那么同理,接收到相应的本机回波时间也具备相应的抖动,如果被测物体保持不动,所以本机各组激光发射与接收的时间差就是固定的,相关性很高;而激光雷达的发射时间本机发射时间与它机回波的接收时间的时间差将不固定,这就破坏了激光雷达发射时间与它机回波的接收时间的时间差的相关性。
在其中一个实施例中,步骤108包括:根据所述本机的发射时间和所述本机接收到的回波的接收时间进行测距,得到测距序列,统计测距序列的相关性,识别测距序列中空间相关性低于预设值的干扰测距序列,识别所述干扰测距序列对应的回波为干扰回波,移除该干扰回波。本实施例中,因为发射时间注入了伪随机时间抖动,因此发射时间与它机回波的接收时间的时间差的分布是随 机的,本机发射时间与它机回波的接收时间的干扰时间差的相关性被破坏,所以根据该干扰时间差得到的干扰测距序列相关性也被破坏,所以得到的测距序列也存在相关性较低的测距序列,本实施例实质上也是根据时间差的相关性来识别它机回波干扰。
分别对激光雷达的发射时间序列的时间间隔不注入伪随机时间抖动以及注入伪随机时间抖动,相应得到如图6和图7所示的N次测距序列结果图。从图6可知,发射时间序列的时间间隔不注入伪随机时间抖动,得到的测距序列都是相关的,很难判断哪些是因它机干扰回波导致的干扰测距序列;而图7因为发射时间序列的时间间隔注入伪随机时间抖动,本机发射时间与它机回波的接收时间的时间差的相关性被破坏,所以得到的测距序列也存在相关性较低的测距序列,这些相关性较低的测距序列就包括因它机干扰回波导致的干扰测距序列,然后移除这些相关性较低的测距序列,得到图8所示的测距序列。
对于同一场景具备两个以上激光雷达的情况,如果获取到只有其中一个激光雷达需要进行抗干扰,那么可以配置各个激光雷达的发射时间序列的时间间隔上均注入伪随机时间抖动,但各个激光雷达注入的伪随机时间抖动是不同的;也可以只配置需要进行抗干扰的激光雷达的发射时间序列的时间间隔上注入伪随机时间抖动,其他激光雷达的发射时间序列的时间间隔上均不注入伪随机时间抖动;也可以配置所述其中一个激光雷达的发射时间序列的时间间隔上不注入伪随机时间抖动,而它机的发射时间序列的时间间隔上均注入伪随机时间抖动,它机注入的伪随机时间抖动是不同的;以上方式均能令需要进行抗干扰激光设备,其本机发射时间与它机回波的接收时间的时间差不固定,从而本机发射时间与它机回波的接收时间的时间差的相关性被破坏;然后,识别相关性被破坏的时间差,该时间差对应的回波便是它机干扰回波。
传统的多机干扰对抗策略是采用脉冲编码发射策略或者多次脉冲发射策略。然而由于激光雷达硬件本身的限制,采用脉冲编码发射出来的激光不一定能达到出光门限,可能会降低激光雷达的出光效率和探测效率;采用多次脉冲发射策略,花费时间较多,会导致探测效率降低,且要求激光雷达要有较高的性能。而本申请实施例中的抗干扰方法,可以不采用激光脉冲编码、多次脉冲发射的多机干扰对抗策略,采用伪随机时间抖动注入策略就能够有效的对抗多机干扰,不影响激光雷达的出光效率和探测效率。但本申请实施例中的抗干扰方法,采用伪随机时间抖动注入策略来对抗多干扰也不会与激光脉冲编码、多次脉冲发射机制冲突,甚至可以同时使用激光脉冲编码或多次脉冲发射机制来对抗干扰。以下介绍同时使用激光脉冲编码或多次脉冲发射机制来对抗干扰的实现方式:
在其中一个实施例中,本申请实施例中的抗干扰方法,还包括对激光雷达进行激光脉冲编码来调制激光雷达的激光脉冲的步骤,所述通过在发射时间序列的时间间隔上注入随机时间抖动是用于调制激光雷达的经过所述编码后发射时间。在另一个实施例中,本申请实施例中的抗干扰方法,所述令所述激光雷达按照调制后的发射时间发射激光脉冲的步骤是采用多次发射机制发射所述激光脉冲。
在这两个实施例中,采用发射时间注入伪随机抖动并同时使用激光脉冲编码或使用多次脉冲发射机制来对抗干扰时,虽然一定程度牺牲了激光雷达的探测精度和探测效率,但却可以进一步提高激光雷达的抗干扰效果。
综上,本申请实施例中的激光雷达的抗干扰方法,通过在发射时间序列的时间间隔上注入随机时间抖动来调制激光雷达的发射时间,然后令激光雷达按照调制后的发射时间发射激光脉冲,如此,对于激光雷达接收到的回波包括激光雷达本机的预期回波和其他激光雷达的非预期回波的情况,由于激光雷达本 机的激光发射脉冲不论是否注入随机时间抖动,发射时间与预期回波的接收时间都是相关的,但激光雷达的发射时间注入随机时间抖动,则可能破坏该激光雷达本机发射时间与它机回波接收时间的相关性;因此对于多个激光雷达在同一场景使用导致串扰的情形,利用上述激光雷达的抗干扰方法,一定程度上可以对抗串扰。
本申请实施例还提出一种激光雷达。该激光雷达可以是脉冲型激光雷达,例如TOF(Time Of Flight)激光雷达。图9为一个实施例中的激光雷达的结构示意图,请参阅图9,该激光雷达包括控制器910、发射模组920和接收模组930;所述控制器910分别与所述发射模组920、所述接收模组930连接;
所述控制器910用于通过在发射时间间隔上注入随机时间抖动来调制激光雷达的发射时间,并令发射模组920按照调制后的发射时间发射激光;
所述接收模组930用于获取所述激光雷达接收到的回波的接收时间;所述回波包括所述激光雷达本机的预期回波和非预期回波,所述非预期回波包括其他激光雷达串扰而来的它机回波;
所述控制器910用于根据所述激光雷达本机的发射时间和激光雷达本机接收到的回波的接收时间,按照相关性识别并移除干扰回波。
具体地,请参阅图10,该激光雷达还包括模数转换器940,所述控制器910通过模数转换器940与接收模组930连接。接收模组930获取激光雷达接收到的回波,并将回波的接收时间转换为数值序列给控制器910。
具体地,所述控制器910包括现场可编辑门阵列(Field Programmable Gate Array,简称FPGA)或专用集成电路(Application Specific Integrated Circuit,简称ASIC)。其他实施例中,控制器910还包括ARM CPU(Advanced RISC Machines Central Processing Unit,一种嵌入式处理器)、PC(personal computer,个 人计算机)、DSP(Digital Signal Processing,数字信号处理器)或MCU(Microcontroller Unit,微控制单元)。
本申请实施例中的激光雷达,控制器910通过在发射时间序列的时间间隔上注入随机时间抖动来调制激光雷达的发射时间,然后令发射模组920按照调制后的发射时间发射激光脉冲,如此,对于激光雷达接收到的回波包括激光雷达本机的预期回波和其他激光雷达的非预期回波的情况,由于激光雷达本机的激光发射脉冲不论是否注入随机时间抖动,发射时间与预期回波的接收时间都是相关的,但激光雷达的发射时间注入随机时间抖动,则可能破坏该激光雷达本机发射时间与它机回波接收时间的相关性;因此对于多个激光雷达在同一场景使用导致串扰的情形,采用本申请实施例中的激光雷达,一定程度上可以对抗串扰。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种激光雷达的抗干扰方法,其特征在于,所述方法包括:
    通过在发射时间序列的时间间隔上注入随机时间抖动来调制激光雷达的发射时间;
    令所述激光雷达按照调制后的发射时间发射激光脉冲;
    获取所述激光雷达接收到的回波的接收时间;所述回波包括所述激光雷达本机的预期回波和非预期回波,所述非预期回波包括其他激光雷达串扰而来的它机回波;
    根据激光雷达本机的发射时间和激光雷达本机接收到的回波的接收时间,按照相关性识别并移除干扰回波。
  2. 根据权利要求1所述的方法,其特征在于,注入的随机时间抖动为伪随机时间抖动。
  3. 根据权利要求1所述的方法,其特征在于,所述通过在发射时间序列中的时间间隔上注入随机时间抖动来调制激光雷达的发射时间的步骤包括:
    建立激光雷达的定时发射策略,以确定所述激光雷达的发射时间;
    基于所述定时发射策略,建立所述激光雷达的伪随机抖动策略;
    通过在激光雷达的发射时间序列的时间间隔上注入伪随机时间抖动来调制激光雷达的发射时间,从而重新确定激光雷达的发射时间。
  4. 根据权利要求1所述的方法,其特征在于,激光雷达包括两个以上,且均在同一场景使用;
    所述在发射时间序列的时间间隔上注入随机时间抖动的步骤为在各个激光雷达的发射时间序列的时间间隔中均注入伪随机时间抖动,且各个激光雷达注 入的伪随机时间抖动不同。
  5. 根据权利要求2所述的方法,其特征在于,所述非预期回波还包括激光雷达本机的自身偶发干扰发射激光时对应接收到的回波。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述根据激光雷达本机的发射时间和激光雷达本机接收到的回波的接收时间,按照相关性识别干扰回波步骤包括:
    根据所述激光雷达本机的发射时间和本机接收到的回波的接收时间进行测距;
    统计测距序列的空间相关性,识别空间相关性低于预设值的干扰测距序列,识别所述干扰测距序列对应的回波为干扰回波。
  7. 根据权利要求6所述的方法,其特征在于,还包括对激光雷达进行激光脉冲编码来调制激光雷达的激光脉冲的步骤,所述通过在发射时间序列的时间间隔上注入随机时间抖动是用于调制激光雷达的经过所述编码后的发射时间。
  8. 根据权利要求6所述的方法,其特征在于,所述令所述激光雷达按照调制后的发射时间发射激光脉冲的步骤是采用多次发射机制发射所述激光脉冲。
  9. 一种激光雷达,其特征在于,所述激光雷达包括:
    控制器、发射模组、接收模组;所述控制器分别与所述发射模组、所述接收模组连接;
    所述控制器用于通过在发射时间序列的时间间隔上注入随机时间抖动来调制激光雷达的发射时间,并令发射模组按照调制后的发射时间发射激光;
    所述接收模组用于获取所述激光雷达接收到的回波的接收时间;所述回波包括所述激光雷达本机的预期回波和非预期回波,所述非预期回波包括其他激光雷达串扰而来的它机回波;
    所述控制器用于根据所述激光雷达本机的发射时间和激光雷达本机接收到的回波的接收时间,按照相关性识别并移除干扰回波。
  10. 根据权利要求9所述的激光雷达,其特征在于,所述控制器包括FPGA或ASIC。
PCT/CN2020/089140 2019-05-17 2020-05-08 激光雷达及其抗干扰方法 WO2020233415A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20809106.6A EP3964867A4 (en) 2019-05-17 2020-05-08 LASER RADAR AND ASSOCIATED ANTIJAMMING PROCESS
US17/098,233 US20210063538A1 (en) 2019-05-17 2020-11-13 Lidar and anti-interference method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910410468.0A CN110208814B (zh) 2019-05-17 2019-05-17 激光雷达及其抗干扰方法
CN201910410468.0 2019-05-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/098,233 Continuation US20210063538A1 (en) 2019-05-17 2020-11-13 Lidar and anti-interference method therefor

Publications (1)

Publication Number Publication Date
WO2020233415A1 true WO2020233415A1 (zh) 2020-11-26

Family

ID=67787381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089140 WO2020233415A1 (zh) 2019-05-17 2020-05-08 激光雷达及其抗干扰方法

Country Status (4)

Country Link
US (1) US20210063538A1 (zh)
EP (1) EP3964867A4 (zh)
CN (1) CN110208814B (zh)
WO (1) WO2020233415A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115825930A (zh) * 2021-12-31 2023-03-21 深圳市速腾聚创科技有限公司 激光雷达抗干扰方法、装置、存储介质及激光雷达

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110208814B (zh) * 2019-05-17 2022-07-08 深圳市速腾聚创科技有限公司 激光雷达及其抗干扰方法
CN110609267B (zh) * 2019-09-19 2022-07-08 深圳奥锐达科技有限公司 一种激光雷达系统及其抗干扰方法
CN110764097B (zh) * 2019-11-14 2023-03-21 深圳市镭神智能系统有限公司 激光雷达的防干扰方法、装置、激光雷达和存储介质
CN110780306B (zh) * 2019-11-19 2023-03-21 深圳市镭神智能系统有限公司 一种激光雷达抗干扰方法及激光雷达
EP3923028A4 (en) * 2020-03-25 2022-04-13 Shenzhen Goodix Technology Co., Ltd. TIME-OF-FLIGHT BASED RANGE MEASURING PROCEDURE AND SYSTEM
CN114391112A (zh) * 2020-08-21 2022-04-22 深圳市大疆创新科技有限公司 激光测距方法、测距装置和可移动平台
CN112711004B (zh) * 2020-12-18 2022-12-02 上海星秒光电科技有限公司 一种激光测距抗干扰方法、装置、激光测距设备及可读存储介质
CN112904312B (zh) * 2021-01-25 2024-01-30 深圳煜炜光学科技有限公司 一种激光雷达抗干扰的方法与装置
EP4365630A1 (en) * 2021-06-30 2024-05-08 Suteng Innovation Technology Co., Ltd Signal processing method and apparatus, and terminal device
WO2023004629A1 (zh) * 2021-07-28 2023-02-02 深圳市速腾聚创科技有限公司 激光雷达抗干扰方法、装置、可读存储介质及终端设备
CN113805191A (zh) * 2021-09-16 2021-12-17 梁平 一种激光雷达防多机串扰方法、装置及存储介质
CN113759340B (zh) * 2021-11-10 2022-02-18 北京一径科技有限公司 回波信号处理方法及装置、激光雷达及存储介质
CN115079145B (zh) * 2022-08-18 2022-11-11 深圳煜炜光学科技有限公司 一种提高激光雷达抗干扰能力的方法和装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101236253A (zh) * 2008-03-07 2008-08-06 中国科学院上海光学精密机械研究所 高精度测速测距激光雷达系统及测速测距方法
CN104457452A (zh) * 2014-10-20 2015-03-25 上海电机学院 一种伪随机码体制激光引信系统及其目标识别方法
CN104931973A (zh) * 2015-06-17 2015-09-23 浙江理工大学 用于激光雷达系统的非对称相位编码测距方法
CN106125067A (zh) * 2015-05-07 2016-11-16 通用汽车环球科技运作有限责任公司 阵列激光雷达系统中的伪随机序列
CN107300705A (zh) * 2017-06-11 2017-10-27 西安飞芯电子科技有限公司 基于载波调制的激光雷达测距系统及测距方法
CN108519604A (zh) * 2018-03-08 2018-09-11 北京理工大学 一种基于伪随机码调制解调的固态面阵激光雷达测距方法
US20190004177A1 (en) * 2017-06-30 2019-01-03 Waymo Llc Light Detection and Ranging (LIDAR) Device Range Aliasing Resilience by Multiple Hypotheses
CN109164454A (zh) * 2018-08-23 2019-01-08 武汉大学 一种基于伪随机码调制的中远程高频激光雷达测距模糊求解方法
CN109490851A (zh) * 2018-11-27 2019-03-19 重庆秦嵩科技有限公司 一种基于脉间伪随机码的抗干扰方法
CN110208814A (zh) * 2019-05-17 2019-09-06 深圳市速腾聚创科技有限公司 激光雷达及其抗干扰方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5075863A (en) * 1988-02-09 1991-12-24 Nkk Corporation Distance measuring method and apparatus therefor
US5790475A (en) * 1996-10-28 1998-08-04 Multispec Corporation Process and apparatus for improved interference suppression in echo-location and imaging systems
US6522644B2 (en) * 1998-06-25 2003-02-18 Telefonaktiebolaget Lm Ericsson (Publ) Method for decorrelating background interference in a time-synchronized mobile communications system
JP3899708B2 (ja) * 1998-10-16 2007-03-28 株式会社デンソー 距離測定装置
JP2005017143A (ja) * 2003-06-26 2005-01-20 Toshiba Corp 気象レーダ信号処理装置
CN103926590B (zh) * 2014-04-01 2016-03-30 中国科学院合肥物质科学研究院 一种不等间距的激光多脉冲测距方法及其测距装置
US10908287B2 (en) * 2016-05-10 2021-02-02 Texas Instruments Incorporated Methods and apparatus for LIDAR operation with narrowband intensity modulation
US20180059220A1 (en) * 2016-08-30 2018-03-01 Qualcomm Incorporated Laser ranging device with beam signature and signature recognition
US20180081041A1 (en) * 2016-09-22 2018-03-22 Apple Inc. LiDAR with irregular pulse sequence
JP7177065B2 (ja) * 2017-01-05 2022-11-22 イノビュージョン インコーポレイテッド ライダーを符号化および復号する方法およびシステム
JP6860459B2 (ja) * 2017-09-19 2021-04-14 株式会社東芝 距離計測装置
CN107728156B (zh) * 2017-09-29 2019-11-22 西安知微传感技术有限公司 一种增强激光雷达抗干扰性的方法及系统
CN109683171A (zh) * 2017-10-19 2019-04-26 上海禾赛光电科技有限公司 激光雷达及其测距方法
CN108717182B (zh) * 2018-05-02 2023-10-31 深圳市速腾聚创科技有限公司 激光雷达抗干扰的方法及抗干扰激光雷达
CN108919281A (zh) * 2018-04-10 2018-11-30 中国科学院上海技术物理研究所 基于波长时间量子态随机交织光脉冲序列的量子激光雷达
CN109116331B (zh) * 2018-06-27 2020-04-24 上海禾赛光电科技有限公司 一种编码激光收发装置、测距装置以及激光雷达系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101236253A (zh) * 2008-03-07 2008-08-06 中国科学院上海光学精密机械研究所 高精度测速测距激光雷达系统及测速测距方法
CN104457452A (zh) * 2014-10-20 2015-03-25 上海电机学院 一种伪随机码体制激光引信系统及其目标识别方法
CN106125067A (zh) * 2015-05-07 2016-11-16 通用汽车环球科技运作有限责任公司 阵列激光雷达系统中的伪随机序列
CN104931973A (zh) * 2015-06-17 2015-09-23 浙江理工大学 用于激光雷达系统的非对称相位编码测距方法
CN107300705A (zh) * 2017-06-11 2017-10-27 西安飞芯电子科技有限公司 基于载波调制的激光雷达测距系统及测距方法
US20190004177A1 (en) * 2017-06-30 2019-01-03 Waymo Llc Light Detection and Ranging (LIDAR) Device Range Aliasing Resilience by Multiple Hypotheses
CN108519604A (zh) * 2018-03-08 2018-09-11 北京理工大学 一种基于伪随机码调制解调的固态面阵激光雷达测距方法
CN109164454A (zh) * 2018-08-23 2019-01-08 武汉大学 一种基于伪随机码调制的中远程高频激光雷达测距模糊求解方法
CN109490851A (zh) * 2018-11-27 2019-03-19 重庆秦嵩科技有限公司 一种基于脉间伪随机码的抗干扰方法
CN110208814A (zh) * 2019-05-17 2019-09-06 深圳市速腾聚创科技有限公司 激光雷达及其抗干扰方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115825930A (zh) * 2021-12-31 2023-03-21 深圳市速腾聚创科技有限公司 激光雷达抗干扰方法、装置、存储介质及激光雷达
CN115825930B (zh) * 2021-12-31 2023-12-12 深圳市速腾聚创科技有限公司 激光雷达抗干扰方法、装置、存储介质及激光雷达

Also Published As

Publication number Publication date
EP3964867A1 (en) 2022-03-09
CN110208814B (zh) 2022-07-08
EP3964867A4 (en) 2022-06-22
US20210063538A1 (en) 2021-03-04
CN110208814A (zh) 2019-09-06

Similar Documents

Publication Publication Date Title
WO2020233415A1 (zh) 激光雷达及其抗干扰方法
US11947047B2 (en) Method and system for encoding and decoding LiDAR
US20210333360A1 (en) Anti-interference processing method and apparatus for multi-pulse laser radar system
CN106197692B (zh) 一种单光子探测器的测试装置及其测试方法
CN105871554B (zh) 使用距离认证的通信装置及其方法
CN107015233B (zh) 一体化光纤式伪随机码幅度调制偏移校正装置
US20130116971A1 (en) Method for generating a signal for a distance measurement and method and system for distance measurement between a transmitter and a receiver
CN110361715B (zh) 一种脉冲编码装置、编码方法及激光雷达系统
US20190346556A1 (en) Method for range ambiguity suppression based on multi-degree-of-freedom frequency modulation signal
CN112596042A (zh) 一种消除串扰的激光雷达装置及方法
WO2023083216A1 (zh) 回波信号处理方法及装置、激光雷达及存储介质
US10641870B1 (en) LIDAR system that is resistant to noise caused by nearby LIDAR systems
CN107831486B (zh) 一种激光制导抗干扰处理方法
Yu et al. FPGA-based dual-pulse anti-interference lidar system using digital chaotic pulse position modulation
CN116148807A (zh) 一种多脉冲抗干扰信号处理方法及装置
CN112929157B (zh) 量子密钥分发装置、方法及系统
CN1423419A (zh) 光电接近度开关
CN112731428A (zh) 一种测距装置及主动三维成像系统
CN110764097A (zh) 激光雷达的防干扰方法、装置、激光雷达和存储介质
KR101210421B1 (ko) 초광대역 레이더 및 초광대역 레이더 운용 방법
CN113805191A (zh) 一种激光雷达防多机串扰方法、装置及存储介质
CN116804764B (zh) 激光雷达测距方法及其相关设备
CN111162834B (zh) 光时域反射仪测试方法及光时域反射仪
JP7111170B2 (ja) 測距装置及び測距方法
KR20200082418A (ko) 지능형 라이다 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20809106

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020809106

Country of ref document: EP

Effective date: 20211201