WO2020233358A1 - 量子点复合物及其制备方法、发光器件及其制备方法 - Google Patents

量子点复合物及其制备方法、发光器件及其制备方法 Download PDF

Info

Publication number
WO2020233358A1
WO2020233358A1 PCT/CN2020/087257 CN2020087257W WO2020233358A1 WO 2020233358 A1 WO2020233358 A1 WO 2020233358A1 CN 2020087257 W CN2020087257 W CN 2020087257W WO 2020233358 A1 WO2020233358 A1 WO 2020233358A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dot
layer
electron transport
core
composite
Prior art date
Application number
PCT/CN2020/087257
Other languages
English (en)
French (fr)
Inventor
梅文海
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2020233358A1 publication Critical patent/WO2020233358A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • the embodiments of the present disclosure relate to a quantum dot composite and a preparation method thereof, a light emitting device and a preparation method thereof.
  • Quantum dot is an important low-dimensional semiconductor material, and its three dimensions are not more than twice the exciton Bohr radius of its corresponding semiconductor material. Quantum dots are generally spherical or quasi-spherical, and their diameter is often between 2-20 nm. As a new type of luminescent material, quantum dots have the advantages of high light color purity, high luminous quantum efficiency, adjustable luminous color, and long service life. They have become the current research hotspot of new LED luminescent materials. Therefore, quantum dot light-emitting diodes (QLEDs) using quantum dot materials as the light-emitting layer have become the main research direction of new display devices.
  • QLEDs quantum dot light-emitting diodes
  • the embodiments of the present disclosure provide a quantum dot composite and a preparation method thereof, a light emitting device and a preparation method thereof.
  • At least one embodiment of the present disclosure provides a quantum dot composite, comprising a core-shell quantum dot and an electron transport material layer disposed outside the core-shell quantum dot, a part of the core-shell quantum dot is covered by the electron transport material The other part of the core-shell quantum dot is exposed.
  • the core-shell quantum dots are wrapped by the electron transport material layer, and the rest of the core-shell quantum dots are exposed.
  • the core-shell quantum dots are wrapped by the electron transport material layer, and about 1/2 of the core-shell quantum dots are exposed.
  • the material of the electron transport material layer is a metal oxide.
  • the core-shell quantum dot includes a core material and a shell material that wraps the core material.
  • the side where the electron transport layer material is not provided has a hydrophilic quantum dot ligand
  • the side where the electron transport layer material is provided has a lipophilic quantum dot ligand
  • the lipophilic quantum dot ligand and the atoms of the electron transport material layer are connected in the form of coordination bonds
  • the hydrophilic quantum dot ligand and the atoms of the core-shell quantum dots are connected in the form of coordination bonds.
  • At least one embodiment of the present disclosure also provides a method for preparing a quantum dot composite, including: forming an electron transport material layer that wraps all the core-shell quantum dots on the outer side of the core-shell quantum dot to form a semi-finished product of the composite; The non-polar solvent and the polar solvent are mixed to form a phase-separated solution; the semi-finished compound is dissolved in the non-polar solvent; a part of the semi-finished compound is in the polar solvent, and the semi-finished compound is The other part is in a non-polar solvent; the electron transport material layer of the part of the semi-finished composite is etched so that the core-shell quantum dots of the part of the semi-finished composite are exposed.
  • the etching the electron transport material layer of the part of the semi-finished composite product includes: adding a weak acid to the polar solvent, and transporting electrons to the part of the semi-finished composite composite through the weak acid The material layer is etched.
  • the weak acid includes one or a combination of hypochlorous acid, boric acid, metasilicic acid, and phenol.
  • placing the part of the semi-finished composite product in a polar solvent and the other part of the semi-finished composite product in a non-polar solvent includes: adding a hydrophilic quantum dot ligand to the polar solvent , So that the hydrophilic quantum dot ligand interacts with the quantum dot complex that moves to the interface of the two polar solutions, and makes a part of the quantum dot complex in the polar solvent.
  • the semi-finished composite compound and the non-polar solvent are mixed in a mass ratio of about 1:100 to about 1:2.
  • the polar solvent and the non-polar solvent are mixed in a volume ratio of about 1:10 to about 10:1.
  • hydrophilic quantum dot ligand and the polar solvent are mixed in a mass ratio of about 1:10 to about 3:1.
  • the side where the electron transport layer material is not provided has a hydrophilic quantum dot ligand, and the side where the electron transport layer material is provided has a lipophilic quantum dot ligand. body.
  • the hydrophilic quantum dot ligand is a strongly polar group
  • the strongly polar group includes a carboxyl group, a hydroxyl group, a mercapto group or an aldehyde group.
  • the hydrophilic quantum dot ligand includes 1-mercapto n-hexanol; the lipophilic quantum dot ligand includes hexanthiol.
  • At least one embodiment of the present disclosure further provides a light-emitting device, including a light-emitting layer, an electron transport layer, and an interface layer between the light-emitting layer and the electron transport layer, the interface layer including the quantum dot composite .
  • the electron transport material layer of the quantum dot composite is located on the side of the core-shell quantum dot of the quantum dot composite away from the light-emitting layer.
  • the side of the interface layer close to the light-emitting layer has a hydrophilic quantum dot ligand
  • the hydrophilic quantum dot ligand includes: 1-mercapto-6hexanol.
  • At least one embodiment of the present disclosure further provides a method for preparing the light-emitting device, including: forming the light-emitting layer; forming a hydrophilic interface on the surface of the light-emitting layer; The interface layer is formed on the sexual interface, so that the electron transport material layer of the quantum dot composite in the interface layer is located on the side of the core-shell quantum dot of the quantum dot composite away from the light-emitting layer And forming the electron transport layer on the interface layer.
  • FIG. 1 is a schematic diagram of the structure of a quantum dot composite according to an embodiment of the disclosure
  • FIG. 2 is a schematic diagram of the structure of the core-shell quantum dots formed during the preparation of the quantum dot composite according to the embodiment of the disclosure
  • 3 is a schematic diagram of the structure of the semi-finished product formed during the preparation of the quantum dot composite of this embodiment of the disclosure
  • FIG. 5 is a schematic diagram of the structure after adding the semi-finished composite compound to the phase separation solution during the preparation process of the quantum dot composite in this embodiment of the disclosure
  • FIG. 6 is a schematic diagram of the structure in which part of the semi-finished product of the composite is placed in a polar solvent during the preparation process of the quantum dot composite of this embodiment of the disclosure;
  • FIG. 7 is a schematic diagram of the structure after etching the electron transport material layer of part of the semi-finished product of the composite during the preparation process of the quantum dot composite of this embodiment of the disclosure;
  • FIG. 8 is a schematic structural diagram of a light emitting device according to another embodiment of the disclosure.
  • FIG. 9 is a schematic diagram of the structure after the hydrophilic interface is formed on the substrate during the preparation process of the light-emitting device according to another embodiment of the disclosure.
  • FIG. 10 is a schematic diagram of the structure after depositing the first core-shell quantum dot layer on the hydrophilic interface during the preparation process of the light-emitting device according to another embodiment of the disclosure;
  • FIG. 11 is a schematic diagram of the structure of the second embodiment of the present disclosure after the second layer of core-shell quantum dots is deposited on the hydrophilic interface during the preparation of the light-emitting device;
  • FIG. 12 is a schematic diagram of the structure after forming an interface layer on the hydrophilic interface of the light-emitting layer during the manufacturing process of the light-emitting device according to another embodiment of the disclosure;
  • FIG. 13 is a schematic diagram of the structure after forming an electron transport layer on the interface layer during the manufacturing process of the light-emitting device according to another embodiment of the disclosure.
  • quantum dot light-emitting diodes usually include a light-emitting layer with multiple cadmium selenide nanocrystals.
  • the cadmium selenide layer is sandwiched between the electron transport layer and the hole transport layer, and the quantum dot light emitting diode applies an electric field to move electrons and holes into the cadmium selenide layer.
  • electrons and holes are trapped in quantum dots and recombine to emit photons.
  • the prior art quantum dot light-emitting diode has a short service life and low performance, and cannot meet the needs of users.
  • Quantum dots have some unique characteristics, such as adjustable emission wavelength, narrow emission spectrum, and high emission stability. In recent years, they have become the focus of research and development. Quantum dot light-emitting diodes have the advantages of high luminous efficiency, wider color range, more realistic color reproduction, and lower energy consumption. However, related technology quantum dot light-emitting diodes have a shorter life span, mainly due to the easy excitons formed by electrons and holes. It is quenched at the interface between the light-emitting layer and the electron transport layer.
  • Embodiments of the present disclosure provide a quantum dot composite, including a core-shell quantum dot and an electron transport material layer disposed on the outer side of the core-shell quantum dot, the electron transport material layer wrapping a part of the core-shell quantum dot, and The other part of the core-shell quantum dot is exposed.
  • the quantum dot composite is used to form an interface layer between the light-emitting layer and the electron transport layer, so that the interface between the light-emitting layer and the electron transport layer forms a non-heterogeneous structure, and solves the excitons formed by electrons and holes in the quantum dot light-emitting diode
  • the problem of being easily quenched at the interface between the light-emitting layer and the electron transport layer can prolong the service life of the quantum dot light-emitting diode and improve the performance of the quantum dot light-emitting diode.
  • FIG. 1 is a schematic diagram of the structure of a quantum dot composite according to an embodiment of the disclosure.
  • the quantum dot composite of the embodiment of the present disclosure includes a core-shell quantum dot 1 and an electron transport material layer 2 disposed outside the core-shell quantum dot 1.
  • the electron transport material layer 2 wraps a part of the core-shell quantum dot 1. And the other part of the core-shell quantum dot 1 is exposed.
  • the core-shell quantum dot 1 includes a core material 101 and a shell material 102 that wraps the core material 101.
  • the core material 101 includes cadmium selenide, cadmium sulfide, or indium phosphide.
  • the core-shell quantum dot 1 in the embodiment of the present disclosure uses cadmium selenide (CdSe) as the core material 101 and zinc sulfide (ZnS) as the shell material 102.
  • the material of the electron transport material layer 2 is metal oxide.
  • the material of the electron transport material layer 2 is zinc oxide (ZnO), which is formed by oxidizing the shell material 102 and then etching.
  • ZnO zinc oxide
  • the quantum dot composite in this embodiment is used as the interface layer between the electron transport layer and the hole transport layer in the quantum dot light-emitting diode, so that the interface between the light-emitting layer and the electron transport layer forms a non-heterogeneous structure to solve the problem of quantum dot luminescence
  • the problem that excitons formed by electrons and holes in the diode are easily quenched at the interface between the light-emitting layer and the electron transport layer can prolong the service life of the quantum dot light-emitting diode and improve the performance of the quantum dot light-emitting diode.
  • the quantum dot composite may also use other materials as the core material, shell material, and electron transport material layer, and the embodiments of the present disclosure are not limited thereto.
  • the electron transport material layer 2 wraps about 1/3 to about 2/3 of the core-shell quantum dots 1.
  • the electron transport material layer 2 wraps about 1/2 of the core-shell quantum dots 1 and exposes the other about 1/2 of the core-shell quantum dots 1.
  • Figures 2-7 are schematic diagrams of the preparation process of the quantum dot composite of this embodiment.
  • the figures schematically show the use of cadmium selenide (CdSe) as the core material, zinc sulfide as the shell material, and zinc oxide (ZnO) as the electron transport material layer.
  • the preparation method of the quantum dot composite includes the following operations.
  • the core-shell quantum dots 1 are formed.
  • the formation of core-shell quantum dots 1 includes: using cadmium selenide (CdSe) as the core material 101 and zinc sulfide (ZnS) as the shell material 102, that is, using the shell material 102 to wrap all the cadmium selenide (CdSe), as shown in Figure 2 Shown.
  • the preparation method of core-shell quantum dots is a mature preparation process, and implementation can refer to related technologies.
  • the formation of the composite semi-finished product 3 includes: oxidizing the shell material 102 outside the core material 101, oxidizing part of the shell material 102 to form the electron transport material layer 2 through oxidation, and the material of the electron transport material layer 2 is zinc oxide (ZnO). That is, the core-shell quantum dots 1 form cadmium selenide (CdSe)/zinc sulfide (ZnS)/zinc oxide (ZnO) nanoparticles, as shown in FIG. 3.
  • the method of oxidizing zinc sulfide (ZnS) includes: placing zinc sulfide in nitrogen, and then injecting a small amount of oxygen, at a temperature of about 700 degrees, after holding for 2 hours, cooling to room temperature, and completing the vulcanization Oxidation treatment of zinc (ZnS).
  • the preparation of the phase separation solution includes: mixing the polar solvent 4 and the non-polar solvent 5 in a volume ratio of about 1:10 to about 10:1 to form a phase separation solution.
  • a phase separation solution taking water as the polar solvent 4 and hexane as the non-polar solvent 5 as an example, water and hexane are mixed in a volume ratio of about 1:1 to form a phase separation solution, as shown in the figure 4 shown.
  • Adding the aforementioned composite semi-finished product includes: mixing the aforementioned composite semi-finished product 3 and the non-polar solvent 5 in a mass ratio of about 1:100 to about 1:2.
  • about 100 mg of the above-mentioned semi-finished compound 3 is dissolved in about 200 mg of hexane solvent, as shown in FIG. 5.
  • a part of the semi-finished composite is in a polar solvent, and another part of the semi-finished composite is in a non-polar solvent.
  • Putting a part of the semi-finished composite product in a polar solvent and another part of the semi-finished composite product in a non-polar solvent includes: adding hydrophilic quantum dot ligands to the polar solvent, hydrophilic quantum dot ligands and polarity
  • the solvents are mixed in a mass ratio of about 1:10 to about 3:1. In this embodiment, about 30 mg of hydrophilic quantum dot ligand 401 is added to water.
  • the hydrophilic quantum dot ligand 401 uses mercaptopropionic acid; the semi-finished compound is placed in a polar solvent 4 and a non-polar solvent 5
  • the part of the semi-finished product 3 with the lipophilic quantum dot ligand 301 is in the polar solvent 4 at the interface of, and the ligand exchanges with the hydrophilic quantum dot ligand 401 in the polar solvent 4, and the other part is compounded
  • the semi-finished product 3 is in a non-polar solvent 5.
  • the ligand exchange degree of the partial complex semi-finished product 3 is controlled to control the volume of the complex semi-finished product 3 in the polar solvent 4. As shown in Figure 6.
  • quantum dots in non-polar solvents will move to the polar-non-polar solvent interface due to the principle of molecular motion.
  • the hydrophilic quantum dot ligands in the organic solvent contact, and then ligand exchange occurs.
  • the process of ligand exchange is: the quantum dots in the non-polar solvent and the ligands in the polar solvent are uniformly distributed in each part of the solvent, and there are quantum dots and hydrophilic ligands on both sides of the interface. Exist, because the molecule is constantly in motion, the quantum dots and hydrophilic ligands on both sides of the interface may be in contact. After contact, the hydrophilic ligand 401 can replace the lipophilic ligand 301.
  • a contact angle less than 90 degrees is a hydrophilic quantum dot ligand; a contact angle greater than or equal to 90 degrees is a lipophilic quantum dot ligand.
  • the ligand and the metal atoms of the outermost material of the quantum dot are connected in the form of coordination bonds, as shown in Figure 1.
  • the sulfur atoms of the upper half of the distributor are connected to the zinc atoms of the shell material, and the sulfur atoms of the lower half of the distributor are connected to the cadmium atoms of the core material.
  • the ligand materials of quantum dots are hydrophilic materials, also called hydrophilic quantum dot ligand materials, which contain strong polar groups, including but not limited to carboxyl, hydroxyl, sulfhydryl or aldehyde groups, etc., which can promote quantum dots A material that can be dissolved in an aqueous solvent.
  • the hydrophilic quantum dot ligand materials include dihydroxypropylamine, trihydroxypentylamine, dicarboxypropylamine and the like.
  • the material of the hydrophilic quantum dot ligand is 1-mercapto-6hexanol.
  • the embodiments of the present disclosure are not limited thereto.
  • the electron transport material layer of the part of the semi-finished composite product is etched so that the core-shell quantum dots of the part of the semi-finished composite composite are exposed.
  • Etching the electron transport material layer of the part of the semi-finished composite product so that the core-shell quantum dots of the part of the semi-finished composite composite are exposed includes: adding a weak acid to the polar solvent 4 and passing the weak acid
  • the electron transport material layer 2 of the part of the semi-finished composite 3 is etched so that the core-shell quantum dots 1 of the semi-finished composite 3 in the polar solvent 4 are exposed to complete the quantum dot composite Preparation.
  • the mass ratio of the weak acid to the semi-finished compound is about 1:100 to about 100:1, as shown in Figure 7.
  • the hydrophilic quantum dot ligands will not be etched away, and after the outer shell layer is etched away, the hydrophilic quantum dot ligands will re-select to connect to the inner shell layer or core material.
  • the side where the electron transport layer material is not provided has a hydrophilic quantum dot ligand 401, also known as a hydrophilic ligand, and the electron transport layer material is provided
  • a hydrophilic quantum dot ligand 401 also known as a hydrophilic ligand
  • the electron transport layer material is provided
  • a lipophilic quantum dot ligand 301 also known as lipophilic ligand.
  • the lipophilic quantum dot ligand may be hexyl mercaptan.
  • hypochlorous acid hypochlorous acid
  • boric acid metasilicic acid
  • phenol acidity of hypochlorous acid, boric acid, metasilicic acid and phenol
  • the structure and preparation method of the quantum dot composites of the embodiments of the present disclosure are not limited to the above content.
  • the structure of the existing quantum dots is applicable to the embodiments of the present disclosure, and will not be repeated here.
  • the quantum dot composite of the embodiments of the present disclosure is used as the interface layer between the electron transport layer and the hole transport layer in the quantum dot light-emitting diode, and solves the problem that the excitons formed by electrons and holes are easily at the interface between the light emitting layer and the electron transport layer
  • the problem of being quenched causes the interface of the light-emitting layer and the electron transport layer to form a non-heterogeneous structure, which prolongs the service life of the quantum dot light-emitting diode and improves the performance of the quantum dot light-emitting diode.
  • FIG. 8 is a schematic structural diagram of a light emitting device according to a second embodiment of the disclosure.
  • the light-emitting device includes a substrate 6, a light-emitting layer 7 disposed on the substrate 6, an electron transport layer 9, and an interface layer 8 between the light-emitting layer 7 and the electron transport layer 9.
  • the interface layer 8 includes the aforementioned quantum dot composite.
  • the electron transport material layer 2 of the quantum dot composite in the interface layer 8 is located on the side of the core-shell quantum dot of the quantum dot composite away from the light-emitting layer 7.
  • the light-emitting device of the embodiment of the present disclosure forms an interface layer through a quantum dot composite, which solves the problem that excitons formed by electrons and holes in the light-emitting device are easily quenched at the interface between the light-emitting layer and the electron transport layer, so that the light-emitting layer and electrons
  • the interface of the transmission layer forms a non-heterogeneous structure, thereby prolonging the service life of the light-emitting device and improving the performance of the light-emitting device.
  • FIGS 9 to 13 are schematic diagrams of the manufacturing process of the light-emitting device of this embodiment, and the figures illustrate the manufacturing process of using the quantum dot composite of the first embodiment to form an interface layer.
  • the manufacturing method of the light emitting device includes the following operations.
  • a hydrophilic interface is formed on the substrate.
  • the formation of a hydrophilic interface on the substrate includes: depositing a zinc oxide nanoparticle layer on the substrate 6. After the deposition is completed, the hydrophilic ligand is used for ligand exchange with the zinc oxide nanoparticle layer to make the zinc oxide nanoparticle layer hydrophilic Sexual interface 601, as shown in Figure 9.
  • the formation of the light-emitting layer includes: depositing a first core-shell quantum dot layer 701 on the hydrophilic interface 601, and using mercaptopropionic acid to perform ligand exchange on the hydrophobic ligand of the first core-shell quantum dot layer 701, so that the first The surface of a core-shell quantum dot layer 701 forms a hydrophilic interface, and a second core-shell quantum dot layer 702 is deposited on the hydrophilic interface, and so on, the core-shell quantum dot layer is continuously deposited until the target thickness is reached , Form a light-emitting layer.
  • these core-shell quantum dot layers use cadmium selenide (CdSe) as the core material and zinc sulfide as the shell material, as shown in Figs. 10 and 11.
  • a hydrophilic interface is formed on the surface of the light-emitting layer.
  • Forming a hydrophilic interface on the surface of the light-emitting layer includes: using mercaptopropionic acid to perform ligand exchange for the hydrophobic ligands of the core-shell quantum dots in the light-emitting layer to form a hydrophilic interface on the surface of the light-emitting layer.
  • the embodiments of the present disclosure are not limited to this.
  • An interface layer is formed on the hydrophilic interface of the light-emitting layer.
  • Forming an interface layer on the hydrophilic interface of the light-emitting layer includes depositing a quantum dot composite 801 on the hydrophilic interface of the light-emitting layer to form the interface layer 8.
  • the part of the quantum dot composite 801 that exposes the core-shell quantum dot 1 has a hydrophilic ligand, it attracts each other with the hydrophilic interface of the light-emitting layer, so that the electron transport material layer 2 in the quantum dot composite 801 is located in the quantum dot composite 801.
  • the core-shell quantum dot 1 of the dot composite 801 is far away from the light-emitting layer 7 to prevent the electron transport material layer 2 from blocking holes, as shown in FIG. 12 and referring to FIG. 1.
  • An electron transport layer 9 is formed on the interface layer 8, as shown in FIG.
  • the embodiments of the present disclosure provide a quantum dot composite and a preparation method thereof, a light-emitting device and a preparation method thereof.
  • the electron transport material layer is formed on the outside of a part of the core-shell quantum dot so that the electron transport material layer wraps the core-shell quantum This part of the dot and the other part of the core-shell quantum dot are exposed.
  • the quantum dot composite is used to form the interface layer between the light-emitting layer and the electron transport layer, which solves the problem that the excitons formed by electrons and holes are easy to emit light.
  • the problem of quenching the interface between the layer and the electron transport layer causes the interface between the light emitting layer and the electron transport layer to form a non-heterogeneous structure, thereby prolonging the service life of the quantum dot light emitting diode and improving the performance of the quantum dot light emitting diode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Abstract

一种量子点复合物及其制备方法、发光器件及其制备方法,该量子点复合物包括核壳量子点(1)以及设置于所述核壳量子点(1)外侧的电子传输材料层(2),所述核壳量子点(1)的一部分被所述电子传输材料层(2)包裹,所述核壳量子点的另一部分被暴露。

Description

量子点复合物及其制备方法、发光器件及其制备方法
相关申请的交叉引用
本申请要求于2019年05月20日向CNIPA提交的名称为“量子点复合物及其制备方法、发光器件及其制备方法”的中国专利申请No.201910418265.6的优先权,其全文通过引用为所有目的合并于本文。
技术领域
本公开的实施例涉及一种量子点复合物及其制备方法、发光器件及其制备方法。
背景技术
量子点(QD)是一种重要的低维半导体材料,其三个维度上的尺寸都不大于其对应的半导体材料的激子玻尔半径的两倍。量子点一般为球形或类球形,其直径常在2-20nm之间。量子点作为新型的发光材料,具有光色纯度高、发光量子效率高、发光颜色可调、使用寿命长等优点,成为目前新型LED发光材料的研究热点。因此,以量子点材料作为发光层的量子点发光二极管(QLED)成为了目前新型显示器件研究的主要方向。
发明内容
本公开的实施例提供一种量子点复合物及其制备方法、发光器件及其制备方法。
本公开的至少一个实施例提供一种量子点复合物,包括核壳量子点以及设置于所述核壳量子点外侧的电子传输材料层,所述核壳量子点的一部分被所述电子传输材料层包裹,所述核壳量子点的另一部分被暴露。
例如,约1/3-约2/3的所述核壳量子点被所述电子传输材料层包裹,所述核壳量子点的其余部分被暴露。
例如,约1/2的所述核壳量子点被所述电子传输材料层包裹,并另约1/2的所述核壳量子点被暴露。
例如,所述电子传输材料层的材料采用金属氧化物。
例如,所述核壳量子点包括核心材料以及将核心材料包裹的壳材料。
例如,不设置所述电子传输层材料的一侧具有亲水性量子点配体,以及 设置所述电子传输层材料的一侧具有亲油性量子点配体。
例如,所述亲油性量子点配体与电子传输材料层的原子以配位键形式连接,以及所述亲水性量子点配体与所述核壳量子点的原子以配位键形式连接。
本公开的至少一个实施例还提供一种量子点复合物的制备方法,包括:在核壳量子点的外侧形成将所述核壳量子点全部包裹的电子传输材料层,形成复合物半成品;将非极性溶剂和极性溶剂混合形成分相溶液;将所述复合物半成品溶入所述非极性溶剂内;使所述复合物半成品的一部分处于极性溶剂内,所述复合物半成品的另一部分处于非极性溶剂内;对所述复合物半成品的所述部分的电子传输材料层进行刻蚀,使得所述复合物半成品的所述部分的所述核壳量子点暴露。
例如,所述将所述复合物半成品的所述部分的所述电子传输材料层进行刻蚀,包括:向极性溶剂内加入弱酸,通过弱酸对所述复合物半成品的所述部分的电子传输材料层进行刻蚀。
例如,所述弱酸包括次氯酸、硼酸、偏硅酸和苯酚中的一种或几种组合。
例如,使所述复合物半成品的所述部分处于极性溶剂内,所述复合物半成品的所述另一部分处于非极性溶剂内,包括:向极性溶剂内加入亲水性量子点配体,使得亲水性量子点配体与运动到两种极性溶液界面处的量子点复合物发生配体作用,以及使得量子点复合物的一部分处于极性溶剂中。
例如,所述复合物半成品与所述非极性溶剂按照质量比为约1:100-约1:2的比例进行混合。
例如,所述极性溶剂与所述非极性溶剂按照体积比为约1:10-约10:1的比例进行混合。
例如,所述亲水性量子点配体与所述极性溶剂按照质量比为约1:10-约3:1的比例进行混合。
例如,在形成的所述量子点复合物中,不设置所述电子传输层材料的一侧具有亲水性量子点配体,以及设置所述电子传输层材料的一侧具有亲油性量子点配体。
例如,所述亲水性量子点配体为强极性基团,所述强极性集团包括羧基,羟基、巯基或醛基。
例如,所述亲水性量子点配体包括1-巯基正己醇;所述亲油性量子点配体包括己硫醇。
本公开的至少一个实施例还提供一种发光器件,包括发光层、电子传输层以及位于所述发光层和所述电子传输层之间的界面层,所述界面层包括所述量子点复合物。
例如,所述量子点复合物的所述电子传输材料层位于所述量子点复合物的核壳量子点远离所述发光层的一侧。
例如,所述界面层靠近发光层的一侧具有亲水性量子点配体,所述亲水性量子点配体包括:1-巯基-6己醇。
本公开的至少一个实施例还提供一种所述发光器件的制备方法,包括:形成所述发光层;在所述发光层的表面形成亲水性界面;在所述发光层的所述亲水性界面上形成所述界面层,使所述界面层中所述量子点复合物的所述电子传输材料层位于所述量子点复合物的所述核壳量子点远离所述发光层的一侧;以及在所述界面层上形成所述电子传输层。
附图说明
以下将结合附图对本公开的实施例进行更详细的说明,以使本领域普通技术人员更加清楚地理解本公开的实施例,其中:
图1为本公开实施例量子点复合物的结构示意图;
图2为本公开实施例量子点复合物制备过程中形成核壳量子点的结构示意图;
图3为本公开该实施例量子点复合物制备过程中形成复合物半成品的结构示意图;
图4为本公开该实施例量子点复合物制备过程中分相溶液的结构示意图;
图5为本公开该实施例量子点复合物制备过程中向分相溶液中加入复合物半成品后的结构示意图;
图6为本公开该实施例量子点复合物制备过程中使部分复合物半成品处于极性溶剂内的结构示意图;
图7为本公开该实施例量子点复合物制备过程中将部分复合物半成品的电子传输材料层刻蚀后的结构示意图;
图8为本公开另一实施例发光器件的结构示意图;
图9为本公开该另一实施例发光器件制备过程中基底上形成亲水性界面后的结构示意图;
图10为本公开该另一实施例发光器件制备过程中在亲水性界面上沉积第一层核壳量子点层后的结构示意图;
图11为本公开该另一实施例发光器件制备过程中在亲水性界面上沉积第二层核壳量子点层后的结构示意图;
图12为本公开该另一实施例发光器件制备过程中在发光层的亲水性界面上形成界面层后的结构示意图;
图13为本公开该另一实施例发光器件制备过程中在界面层上形成电子传输层后的结构示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本公开一部分实施例,并不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在无需做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。需要注意的是,自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本公开,而不能理解为对本公开的限制。
除非另外定义,此处使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“上”、“下”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
下面结合附图和实施例对本公开的具体实施方式作进一步详细描述。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
发明人注意到:量子点发光二极管通常包括具有多个硒化镉纳米晶体的发光层。硒化镉层夹设在电子传输层和空穴传输层之间,向量子点发光二极管施加电场,使电子和空穴移动至硒化镉层中。在硒化镉层中,电子和空穴困在量子点中并复合以发射光子。现有技术的量子点发光二极管使用寿命短,性能低,无法满足用户的需求。
量子点具有一些独特的特点,例如发射波长可调、发射光谱窄、以及发射稳定性高等特点,近年来已成为研发重点。量子点发光二极管具有发光效率高、颜色范围较宽、色彩再现较真实、以及能耗较低的优势,然而相关技术量子点发光二极管寿命较短,主要是由于电子和空穴形成的激子容易在发光层和电子传输层的界面被淬灭。
本公开的实施例提供一种量子点复合物,包括核壳量子点以及设置于所述核壳量子点外侧的电子传输材料层,所述电子传输材料层包裹核壳量子点的一部分,并将核壳量子点的另一部分暴露。该量子点复合物用于形成位于发光层和电子传输层之间的界面层,使发光层和电子传输层的界面形成非异质结构,解决量子点发光二极管中电子和空穴形成的激子容易在发光层和电子传输层的界面被淬灭的问题,延长量子点发光二极管的使用寿命,提升量子点发光二极管的性能。
下面通过一些示例实施例,详细说明本公开的技术方案。
图1为本公开实施例量子点复合物的结构示意图。如图1所示,本公开实施例量子点复合物包括核壳量子点1以及设置于核壳量子点1外侧的电子传输材料层2,电子传输材料层2包裹核壳量子点1的一部分,并将核壳量子点1的另一部分暴露。
如图1所示,核壳量子点1包括核心材料101以及将核心材料101包裹的壳材料102,核心材料101包括硒化镉、硫化镉或磷化铟等。本公开实施例中的核壳量子点1采用硒化镉(CdSe)为核心材料101,采用硫化锌(ZnS)为壳材料102。
如图1所示,电子传输材料层2的材料采用金属氧化物,本实施例中电子传输材料层2的材料采用氧化锌(ZnO),是通过将壳材料102氧化后刻蚀而成。本实施例中的量子点复合物用于作为量子点发光二极管中电子传输层和空穴传输层之间的界面层,使发光层和电子传输层的界面形成非异质结构,解决量子点发光二极管中电子和空穴形成的激子容易在发光层和电子传输层的界面被淬灭的问题,延长量子点发光二极管的使用寿命,提升量子点发光二极管的性能。
在一些实施例中,量子点复合物也可以采用其他材料作为核心材料、壳材料以及电子传输材料层,本公开实施例并不限于此。
进一步的,例如,电子传输材料层2将约1/3-约2/3的核壳量子点1包裹。例如,电子传输材料层2将约1/2的核壳量子点1包裹,并将另约1/2 的核壳量子点1暴露。
图2~7为本实施例量子点复合物制备过程的示意图,图中示意显示采用硒化镉(CdSe)为核心材料,采用硫化锌为壳材料,采用氧化锌(ZnO)为电子传输材料层材料的量子点复合物的制备过程。量子点复合物的制备方法包括如下操作。
形成核壳量子点1。形成核壳量子点1包括:用硒化镉(CdSe)做为核心材料101,硫化锌(ZnS)做为壳材料102,即用壳材料102将硒化镉(CdSe)全部包裹,如图2所示。核壳量子点的制备方法是成熟的制备工艺,实施可参见相关技术。
形成复合物半成品3。形成复合物半成品3包括:对上述核心材料101外侧的壳材料102进行氧化处理,通过氧化使部分壳材料102氧化形成电子传输材料层2,电子传输材料层2的材料为氧化锌(ZnO)。即将核壳量子点1形成硒化镉(CdSe)/硫化锌(ZnS)/氧化锌(ZnO)的纳米粒子,如图3所示。将硫化锌(ZnS)进行氧化处理的方法包括:将硫化锌置于氮气中,然后通入少量氧气,在温度为约700度的条件下,保温处理2小时后,冷却至室温,完成对硫化锌(ZnS)的氧化处理。
制备分相溶液。制备分相溶液包括:将极性溶剂4与非极性溶剂5按照体积比为约1:10-约10:1的比例进行混合,制成分相溶液。本实施例中,以水为极性溶剂4,以己烷为非极性溶剂5为例,将水和己烷按照体积比为约1:1的比例进行混合,制成分相溶液,如图4所示。
加入上述复合物半成品。加入上述复合物半成品包括:将上述复合物半成品3与非极性溶剂5按照质量比为约1:100-约1:2的比例进行混合。本实施例中,将约100mg上述复合物半成品3溶入约200mg己烷溶剂内,如图5所示。
使复合物半成品的一部分处于极性溶剂内,复合物半成品的另一部分处于非极性溶剂内。使复合物半成品的一部分处于极性溶剂内,复合物半成品的另一部分处于非极性溶剂内包括:向极性溶剂内加入亲水性量子点配体,亲水性量子点配体与极性溶剂按照质量比为约1:10-约3:1的比例进行混合。本实施例中,向水内加入约30mg亲水性量子点配体401,例如,亲水性量子点配体401采用巯基丙酸;使复合物半成品处于极性溶剂4与非极性溶剂5的界面处,即带有亲油性量子点配体301的部分复合物半成品3处于极性溶剂4内,与极性溶剂4内的亲水性量子点配体401进行配体交换,另一部分 复合物半成品3处于非极性溶剂5内。本实施例根据极性溶剂4内的亲水性量子点配体401的含量,控制所述部分复合物半成品3的配体交换程度,以控制复合物半成品3处于极性溶剂4内的体积,如图6所示。
需要说明的是,非极性溶剂中的量子点由于分子运动原理,带有亲油性量子点配体301的量子点会运动到极性-非极性溶剂的界面处,在界面处会与极性溶剂中的亲水性量子点配体接触,继而发生配体交换。配体交换发生的过程为:在非极性溶剂中的量子点和极性溶剂中配体都是均匀分布在溶剂的每一处,在界面两侧就有量子点和亲水性配体的存在,因为分子是不断运动的,界面两侧的量子点和亲水性配体有几率会接触到,接触到之后可以发生亲水性配体401取代亲油性配体301的现象,交换完之后,因为已经交换了部分亲水性配体,亲水性配体和极性溶剂的作用力使得量子点被固定在界面处,继而继续发生配体交换,直到交换至亲水性配体与极性溶剂作用力和亲油性配体和非极性溶剂作用力相等时,不再发生配体交换;当靠近界面处的量子点都被固定到界面处时,靠近界面处的区域量子点数量变少,那么远离界面处的区域的量子点就会向量子点分布少的区域运动,运动至靠近界面处稳定存在,继而因为随机运动至界面处发生配体交换。
例如,接触角小于90度为亲水性量子点配体;接触角大于等于90度为亲油性量子点配体。
例如,配体和量子点最外层材料的金属原子以配位键形式连接,如图1所示。例如,上半部分配体的硫原子与壳层材料的锌原子连接,下半部分配体的硫原子与核材料镉原子连接。
量子点的配体材料为亲水性材料,又称为亲水性量子点配体材料,含有强极性基团,包括但不限于羧基,羟基,巯基或醛基等,是能够促使量子点能够溶解于水相溶剂中的材料。例如,该亲水性量子点配体材料包括二羟基丙胺,三羟基戊胺,二羧基丙胺等。又例如,该亲水性量子点配体的材料为1-巯基-6己醇。但本公开的实施例并不限于此。
对所述复合物半成品的所述部分的电子传输材料层进行刻蚀,使得所述复合物半成品的所述部分的核壳量子点暴露。将所述复合物半成品的所述部分的所述电子传输材料层进行刻蚀,使得所述复合物半成品的所述部分的核壳量子点暴露包括:向极性溶剂4内加入弱酸,通过弱酸对所述复合物半成品3的所述部分的所述电子传输材料层2进行刻蚀,使得处于极性溶剂4内的所述复合物半成品3的核壳量子点1暴露,完成量子点复合物的制备。其 中,弱酸与复合物半成品的质量比为约1:100-约100:1,如图7所示。
例如,在刻蚀过程中,亲水性量子点配体不会被刻蚀掉,外壳层被刻蚀掉之后,亲水性量子点配体会重新选择连接到内部壳层或者核材料上。
例如,在形成的所述量子点复合物中,不设置所述电子传输层材料的一侧具有亲水性量子点配体401,又称亲水性配体,而设置所述电子传输层材料的一侧具有亲油性量子点配体301,又称亲油性配体。
例如,所述亲油性量子点配体可以为己硫醇。
本实施例中,为了避免向极性溶剂内加入的弱酸继续对暴露于极性溶剂内的核壳量子点进行刻蚀,需要选用比氢硫酸弱的酸,向极性溶剂内加入的弱酸采用次氯酸、硼酸、偏硅酸和苯酚中的一种或几种组合,其中,次氯酸、硼酸、偏硅酸和苯酚的酸性强弱为:HClO(次氯酸)>H 3BO 3(硼酸)>H 2SiO 3(偏硅酸)>C 6H 5OH(苯酚)。
虽然前面以界面刻蚀的方式说明了本公开实施例的技术方案,但本公开实施例量子点复合物的结构和制备方法不限于上述内容。实际上,现有量子点的结构形式均适用于本公开实施例,这里不再赘述。
本公开实施例的量子点复合物用于作为量子点发光二极管中电子传输层和空穴传输层之间的界面层,解决电子和空穴形成的激子容易在发光层和电子传输层的界面被淬灭的问题,使发光层和电子传输层的界面形成非异质结构,延长量子点发光二极管的使用寿命,提升量子点发光二极管的性能。
图8为本公开第二实施例发光器件的结构示意图。如图8所示,基于前述实施例的技术构思,本公开的实施例还提供了一种发光器件。该发光器件包括基底6,设置于基底6上的发光层7、电子传输层9以及位于发光层7和电子传输层9之间的界面层8,界面层8包括前述量子点复合物。其中,界面层8中的量子点复合物的电子传输材料层2位于量子点复合物的核壳量子点远离发光层7的一侧。
本公开实施例的发光器件通过量子点复合物形成界面层,解决了发光器件中电子和空穴形成的激子容易在发光层和电子传输层的界面被淬灭的问题,使发光层和电子传输层的界面形成非异质结构,从而延长发光器件的使用寿命,提升发光器件的性能。
图9~13为本实施例的发光器件制备过程的示意图,图中示意采用第一实施例的量子点复合物形成界面层的制备过程。发光器件的制备方法包括 以下操作。
在基底上形成亲水性界面。在基底上形成亲水性界面包括:在基底6上沉积氧化锌纳米粒子层,沉积完成后用亲水性配体与氧化锌纳米粒子层进行配体交换,使氧化锌纳米粒子层形成亲水性界面601,如图9所示。
形成发光层。形成发光层包括:在所述亲水性界面601上沉积第一层核壳量子点层701,使用巯基丙酸对第一层核壳量子点层701的疏水配体进行配体交换,使第一层核壳量子点层701的表面形成亲水性界面,在该亲水性界面上沉积第二层核壳量子点层702,以此类推,继续沉积核壳量子点层,直至达到目标厚度,形成发光层。其中,这些核壳量子点层采用硒化镉(CdSe)为核心材料,采用硫化锌为壳材料,如图10和图11所示。
在发光层的表面形成亲水性界面。在发光层的表面形成亲水性界面包括:使用巯基丙酸对发光层中核壳量子点的疏水配体进行配体交换,使发光层的表面形成亲水性界面。但是本公开的实施例并不限于此。
在发光层的亲水性界面上形成界面层。在发光层的亲水性界面上形成界面层包括:在发光层的亲水性界面上沉积量子点复合物801,形成界面层8。其中,由于量子点复合物801中暴露核壳量子点1的部分具有亲水性配体,与发光层的亲水性界面相互吸引,使得量子点复合物801中的电子传输材料层2位于量子点复合物801的核壳量子点1远离发光层7的一侧,避免电子传输材料层2阻挡空穴,如图12所示并参见图1。
在界面层8上形成电子传输层9,如图13所示。
本公开的实施例提供了一种量子点复合物及其制备方法、发光器件及其制备方法,通过在核壳量子点的一部分的外侧形成电子传输材料层,使电子传输材料层包裹核壳量子点的该部分,并将核壳量子点的另一部分暴露,该量子点复合物用于形成位于发光层与电子传输层之间的界面层,解决了电子和空穴形成的激子容易在发光层和电子传输层的界面被淬灭的问题,使发光层和电子传输层的界面形成非异质结构,从而延长量子点发光二极管的使用寿命,提升量子点发光二极管的性能。
实施本公开实施例的任一产品或方法并不必需要同时达到以上所述的所有优点。
以下几点需要说明:
(1)本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例,而这些新的实施例都应属于本公开的范围。
以上所述,仅为本公开的示例实施例,本公开的保护范围并不局限于此,任何熟悉本技术领域的普通技术人员在本公开实施例揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本公开的保护范围之内。

Claims (21)

  1. 一种量子点复合物,包括核壳量子点以及设置于所述核壳量子点外侧的电子传输材料层,所述核壳量子点的一部分被所述电子传输材料层包裹,所述核壳量子点的另一部分被暴露。
  2. 根据权利要求1所述的量子点复合物,其中,约1/3-约2/3的所述核壳量子点被所述电子传输材料层包裹,所述核壳量子点的其余部分被暴露。
  3. 根据权利要求1或2所述的量子点复合物,其中,约1/2的所述核壳量子点被所述电子传输材料层包裹,并另约1/2的所述核壳量子点被暴露。
  4. 根据权利要求1-3任一项所述的量子点复合物,其中,所述电子传输材料层的材料采用金属氧化物。
  5. 根据权利要求1-4任一项所述的量子点复合物,其中,所述核壳量子点包括核心材料以及将核心材料包裹的壳材料。
  6. 根据权利要求1-5任一项所述的量子点复合物,其中,不设置所述电子传输层材料的一侧具有亲水性量子点配体,以及设置所述电子传输层材料的一侧具有亲油性量子点配体。
  7. 根据权利要求1-6任一项所述的量子点复合物,其中,所述亲油性量子点配体与电子传输材料层的原子以配位键形式连接,以及所述亲水性量子点配体与所述核壳量子点的原子以配位键形式连接。
  8. 一种量子点复合物的制备方法,包括:
    在核壳量子点的外侧形成将所述核壳量子点全部包裹的电子传输材料层,形成复合物半成品;
    将非极性溶剂和极性溶剂混合形成分相溶液;
    将所述复合物半成品溶入所述非极性溶剂内;
    使所述复合物半成品的一部分处于极性溶剂内,所述复合物半成品的 另一部分处于非极性溶剂内;
    对所述复合物半成品的所述部分的电子传输材料层进行刻蚀,使得所述复合物半成品的所述部分的所述核壳量子点暴露。
  9. 根据权利要求8所述的量子点复合物的制备方法,其中,所述将所述复合物半成品的所述部分的所述电子传输材料层进行刻蚀,包括:
    向极性溶剂内加入弱酸,通过弱酸对所述复合物半成品的所述部分的电子传输材料层进行刻蚀。
  10. 根据权利要求9所述的量子点复合物的制备方法,其中,所述弱酸包括次氯酸、硼酸、偏硅酸和苯酚中的一种或几种组合。
  11. 根据权利要求8-10任一项所述的量子点复合物的制备方法,其中,所述使所述复合物半成品的所述部分处于极性溶剂内,所述复合物半成品的所述另一部分处于非极性溶剂内,包括:
    向极性溶剂内加入亲水性量子点配体,使得亲水性量子点配体与运动到极性溶剂和非极性溶剂界面处的量子点复合物发生配位作用,以及使得量子点复合物的一部分处于极性溶剂中。
  12. 根据权利要求8-11任一项所述的量子点复合物的制备方法,其中,所述复合物半成品与所述非极性溶剂按照质量比为约1:100-约1:2的比例进行混合。
  13. 根据权利要求8-12任一项所述的量子点复合物的制备方法,其中,所述极性溶剂与所述非极性溶剂按照体积比为约1:10-约10:1的比例进行混合。
  14. 根据权利要求11-13任一项所述的量子点复合物的制备方法,其中,所述亲水性量子点配体与所述极性溶剂按照质量比为约1:10-约3:1的比例进行混合。
  15. 根据权利要求14所述的量子点复合物的制备方法,其中,在形成 的所述量子点复合物中,不设置所述电子传输层材料的一侧具有亲水性量子点配体,以及设置所述电子传输层材料的一侧具有亲油性量子点配体。
  16. 根据权利要求11-15任一项所述的量子点复合物的制备方法,其中,所述亲水性量子点配体为强极性基团,所述强极性基团包括羧基,羟基、巯基或醛基。
  17. 根据权利要求16所述的量子点复合物的制备方法,其中,所述亲水性量子点配体包括1-巯基正己醇;所述亲油性量子点配体包括己硫醇。
  18. 一种发光器件,包括发光层、电子传输层以及位于所述发光层和所述电子传输层之间的界面层,所述界面层包括所述权利要求1-7任一所述的量子点复合物。
  19. 根据权利要求18所述的发光器件,其中,所述量子点复合物的所述电子传输材料层位于所述量子点复合物的核壳量子点远离所述发光层的一侧。
  20. 根据权利要求18所述的发光器件,其中,所述界面层靠近发光层的一侧具有亲水性量子点配体,所述亲水性量子点配体包括:1-巯基-6己醇。
  21. 一种如权利要求18所述的发光器件的制备方法,包括:
    形成所述发光层;
    在所述发光层的表面形成亲水性界面;
    在所述发光层的所述亲水性界面上形成所述界面层,使所述界面层中所述量子点复合物的所述电子传输材料层位于所述量子点复合物的所述核壳量子点远离所述发光层的一侧;以及
    在所述界面层上形成所述电子传输层。
PCT/CN2020/087257 2019-05-20 2020-04-27 量子点复合物及其制备方法、发光器件及其制备方法 WO2020233358A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910418265.6 2019-05-20
CN201910418265.6A CN110098343B (zh) 2019-05-20 2019-05-20 量子点复合物及其制备方法、发光器件及其制备方法

Publications (1)

Publication Number Publication Date
WO2020233358A1 true WO2020233358A1 (zh) 2020-11-26

Family

ID=67448618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/087257 WO2020233358A1 (zh) 2019-05-20 2020-04-27 量子点复合物及其制备方法、发光器件及其制备方法

Country Status (2)

Country Link
CN (1) CN110098343B (zh)
WO (1) WO2020233358A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110098343B (zh) * 2019-05-20 2021-10-19 京东方科技集团股份有限公司 量子点复合物及其制备方法、发光器件及其制备方法
CN112164741B (zh) * 2020-09-28 2022-02-01 深圳市华星光电半导体显示技术有限公司 电荷传输层及发光器件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000223776A (ja) * 1999-01-27 2000-08-11 Nec Corp 半導体発光素子
JP2000315654A (ja) * 1999-04-30 2000-11-14 Inst Of Physical & Chemical Res 位置制御された液滴エピタキシーによる窒化物半導体の量子ドットの形成方法、量子コンピュータにおける量子ビット素子構造および量子相関ゲート素子構造
JP2002217400A (ja) * 2001-01-22 2002-08-02 Japan Fine Ceramics Center 量子ドットの製造方法および量子ドット構造体
CN109256476A (zh) * 2018-09-19 2019-01-22 京东方科技集团股份有限公司 量子点发光层、量子点发光器件及制备方法
CN110098343A (zh) * 2019-05-20 2019-08-06 京东方科技集团股份有限公司 量子点复合物及其制备方法、发光器件及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10700236B2 (en) * 2016-03-17 2020-06-30 Apple Inc. Quantum dot spacing for high efficiency quantum dot LED displays
CN108376750A (zh) * 2018-03-05 2018-08-07 南方科技大学 一种量子点/氧化锌核壳结构的制备方法及其半导体器件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000223776A (ja) * 1999-01-27 2000-08-11 Nec Corp 半導体発光素子
JP2000315654A (ja) * 1999-04-30 2000-11-14 Inst Of Physical & Chemical Res 位置制御された液滴エピタキシーによる窒化物半導体の量子ドットの形成方法、量子コンピュータにおける量子ビット素子構造および量子相関ゲート素子構造
JP2002217400A (ja) * 2001-01-22 2002-08-02 Japan Fine Ceramics Center 量子ドットの製造方法および量子ドット構造体
CN109256476A (zh) * 2018-09-19 2019-01-22 京东方科技集团股份有限公司 量子点发光层、量子点发光器件及制备方法
CN110098343A (zh) * 2019-05-20 2019-08-06 京东方科技集团股份有限公司 量子点复合物及其制备方法、发光器件及其制备方法

Also Published As

Publication number Publication date
CN110098343B (zh) 2021-10-19
CN110098343A (zh) 2019-08-06

Similar Documents

Publication Publication Date Title
JP7335710B2 (ja) 電界発光素子及びこれを含む表示装置
WO2017140047A1 (zh) 发光器件及其制备方法、显示装置
EP2452372B1 (en) Stable and all solution processable quantum dot light-emitting diodes
WO2017118102A1 (zh) 电致发光二极管及其制备方法、显示装置
KR101695442B1 (ko) 황색 및 청색 양자점 이중층을 포함하는 백색 전기 발광 소자 및 그 제조방법
KR101686107B1 (ko) 양자점 발광 소자 및 이의 제조 방법
Qi et al. Research progress and challenges of blue light-emitting diodes based on II–VI semiconductor quantum dots
CN105206715B (zh) 一种激子限域结构的qled及其制备方法
WO2018068388A1 (zh) Qled显示装置的制作方法
WO2020233358A1 (zh) 量子点复合物及其制备方法、发光器件及其制备方法
US20180108871A1 (en) Manufacturing method for led display panel and led display panel
KR20120047481A (ko) 양자 발광 소자
KR20150107249A (ko) 고분자 표면 개질층을 이용한 양자점 단일층 발광 다이오드
JP2021506084A (ja) 量子ドット白色光ダイオード
KR101656927B1 (ko) 발광 소자 및 발광 소자용 전자수송층 제조 방법
CN111244298B (zh) 一种发光器件及显示器
CN105895815A (zh) 倒置蓝光量子点薄膜电致发光器件
CN105845840A (zh) 倒置绿光量子点薄膜电致发光器件
KR101549357B1 (ko) 이방성 금속 나노입자를 이용하는 고효율 전계발광소자
KR101560088B1 (ko) 발광 소자 및 발광 소자 제조 방법
CN110544746B (zh) 发光二极管及其制备方法
CN105845835A (zh) 倒置绿光量子点薄膜电致发光器件
KR101687637B1 (ko) 단일의 양자점으로 이루어지는 발광층과 컬러변환층을 이용한 백색광 발광소자
CN111883681A (zh) 发光器件及其制备方法和显示装置
WO2024033997A1 (ja) 発光素子およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20809829

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20809829

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14.03.2024)