WO2020233242A1 - 发光二极管模组及其制造方法、显示装置 - Google Patents

发光二极管模组及其制造方法、显示装置 Download PDF

Info

Publication number
WO2020233242A1
WO2020233242A1 PCT/CN2020/082400 CN2020082400W WO2020233242A1 WO 2020233242 A1 WO2020233242 A1 WO 2020233242A1 CN 2020082400 W CN2020082400 W CN 2020082400W WO 2020233242 A1 WO2020233242 A1 WO 2020233242A1
Authority
WO
WIPO (PCT)
Prior art keywords
emitting diode
light
light emitting
manufacturing
color
Prior art date
Application number
PCT/CN2020/082400
Other languages
English (en)
French (fr)
Inventor
岳晗
闫俊伟
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2020233242A1 publication Critical patent/WO2020233242A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements

Definitions

  • the embodiments of the present disclosure relate to a light emitting diode module, a manufacturing method thereof, and a display device.
  • LED display technology is a display technology based on LEDs forming pixel units.
  • OLED organic light-emitting diodes
  • QLEDs Quantum Dot Light-Emitting Diodes
  • At least one embodiment of the present disclosure provides a method for manufacturing a light-emitting diode module, including: providing a back plate, the back plate including a plurality of first electrodes; providing an epitaxial wafer, the epitaxial wafer includes a substrate and formed on the A light emitting diode epitaxial structure on a substrate; combining the epitaxial wafer with the backplane, the light emitting diode epitaxial structure of the epitaxial wafer facing the plurality of first electrodes of the backplane; peeling off the epitaxial
  • the substrate of the sheet allows the LED epitaxial structure to be retained on the back plate; the LED epitaxial structure retained on the back plate is patterned to form a contact with the plurality of first A plurality of light-emitting diode chips respectively connected to the electrodes; and a second electrode is formed on a side of the plurality of light-emitting diode chips away from the back plate.
  • peeling off the substrate of the epitaxial wafer includes: peeling off the substrate of the epitaxial wafer by light.
  • the epitaxial wafer further includes a buffer layer disposed between the substrate and the light-emitting diode epitaxial structure; light is used to peel off the liner of the epitaxial wafer
  • the bottom includes: using light to separate the substrate and the buffer layer.
  • the manufacturing method further includes: patterning the patterned light-emitting diode The diode epitaxial structure is annealed.
  • the manufacturing method before forming the second electrode, further includes: filling the gaps between the plurality of light-emitting diode chips with a fixing material.
  • the color of the fixing material is black.
  • the material of the second electrode includes a transparent conductive material.
  • the second electrode is a common electrode of the plurality of light-emitting diode chips.
  • the manufacturing method before combining the epitaxial wafer with the back plate, the manufacturing method further includes: cutting the epitaxial wafer into the same shape as the back plate .
  • the backplane further includes a driving circuit connected to the plurality of first electrodes for controlling the plurality of light emitting diode chips to emit light.
  • the light emitting diode epitaxial structure includes a light emitting layer, and the light emitting layer includes a quantum dot light emitting layer or a quantum well light emitting layer.
  • the light emitting diode chip includes an inorganic light emitting diode chip.
  • the light-emitting color of the inorganic light-emitting diode includes any one of red, green, and blue.
  • At least one embodiment of the present disclosure further provides a light emitting diode module manufactured according to the manufacturing method provided by any embodiment of the present disclosure.
  • the maximum dimension of the light emitting diode chip in a direction parallel to the backplane is 1-50 ⁇ m.
  • the maximum dimension of the light-emitting diode chip in a direction parallel to the backplane is 5-30 ⁇ m.
  • the distance between adjacent light emitting diode chips is 5-30 ⁇ m.
  • the distance between adjacent light emitting diode chips is 5-20 ⁇ m.
  • At least one embodiment of the present disclosure further provides a display device including the light-emitting diode module provided by any embodiment of the present disclosure.
  • the display device further includes: a color conversion array, wherein the color conversion array includes a plurality of color conversion layers corresponding to the plurality of light-emitting diode chips, and the plurality of colors
  • the conversion layer includes a first color conversion layer, a second color conversion layer, and a third color conversion layer.
  • the first color conversion layer is configured to convert the color of the light emitted by the corresponding light-emitting diode chip into a first color or configuration.
  • the second color conversion layer is configured to convert the color of the light emitted by the corresponding light-emitting diode chip into a second color
  • the third color conversion layer It is configured to convert the color of the light emitted by the corresponding light-emitting diode chip into a third color
  • FIG. 1 is a flowchart of a method for manufacturing a light emitting diode module provided by at least one embodiment of the present disclosure
  • FIG. 1 are cross-sectional views showing the flow of the manufacturing method of the light emitting diode module shown in FIG. 1;
  • FIG. 3 is a schematic structural diagram of an epitaxial wafer provided by at least one embodiment of the present disclosure.
  • FIG. 4 is a schematic plan view of a light emitting diode module provided by at least one embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of a display device provided by at least one embodiment of the present disclosure.
  • a method of using LEDs for backlight and display includes: LED chip manufacturers ship with LED chips, chip manufacturers test and sort the LED chips, arrange them on the blue film, and ship them to downstream module manufacturers. (For example, panel manufacturers) use various die-bonding equipment to bond the LED chips and the subsequent processes.
  • panel manufacturers use various die-bonding equipment to bond the LED chips and the subsequent processes.
  • the inventor of this application noticed that the epitaxial wafer growth process in the LED chip manufacturing process requires equipment and processes with a temperature of about 1000°C. After the epitaxial wafer growth is completed, the highest temperature of the subsequent process in the chip manufacturing process The temperature is about 200°C, and the post-processes include annealing, photolithography, etching, metal electrode evaporation, etc.; on the other hand, the glass backplane for display can withstand a temperature of about 230°C after the drive circuit is completed. Therefore, in terms of temperature tolerance, it is feasible to perform the above-mentioned post-process of the chip manufacturing process on the glass backplane. At the same time, panel manufacturers also have mature equipment and processes for annealing, photolithography, etching, metal electrode evaporation, etc., so that the process is also feasible.
  • At least one embodiment of the present disclosure provides a method for manufacturing a light emitting diode module.
  • the manufacturing method includes: providing a backplane, the backplane including a plurality of first electrodes; providing an epitaxial wafer, the epitaxial wafer including a substrate and a light emitting diode epitaxial structure formed on the substrate; Combined with the backplane, the light emitting diode epitaxial structure of the epitaxial wafer faces the plurality of first electrodes of the backplane; the substrate of the epitaxial wafer is peeled off to make the light emitting diode epitaxial structure Retained on the backplane; patterning the LED epitaxial structure retained on the backplane to form a plurality of LED chips connected to the plurality of first electrodes; and A side of the plurality of light-emitting diode chips away from the back plate forms a second electrode.
  • Some embodiments of the present disclosure also provide light emitting diode modules and display devices corresponding to the above-mentioned manufacturing methods.
  • At least one embodiment of the present disclosure provides a method for manufacturing a light-emitting diode module, by combining an epitaxial wafer with a substrate with a backplane, and then peeling off the substrate, and completing the light-emitting diode (LED) chip and the second
  • the electrode manufacturing process can not only effectively solve the problems of alignment accuracy and transfer efficiency during the bonding process, but also facilitate the formation of small-pitch LEDs, Mini LEDs, and Micro LEDs for display.
  • FIG. 1 is a flowchart of a method for manufacturing a light emitting diode module provided by at least one embodiment of the present disclosure
  • FIGS. 2A to 2F are cross-sectional views showing the flow of the method for manufacturing the light emitting diode module shown in FIG. 1.
  • the method of manufacturing the light emitting diode module shown in FIG. 1 will be described in detail with reference to FIGS. 2A to 2F.
  • the manufacturing method of the light emitting diode module includes steps S10 to S60.
  • Step S10 Provide a backplane, which includes a plurality of first electrodes.
  • the backplane includes a substrate 100 and a plurality of first electrodes 110 disposed on the substrate 100.
  • the material of the substrate 100 may include, but is not limited to, glass and the like.
  • the first electrode may be columnar.
  • the material of the first electrode 110 may include a conductive material, such as a metal material.
  • the material of the first electrode 110 may include a combination or at least one of gold, silver, copper, aluminum, molybdenum, gold alloy, silver alloy, copper alloy, aluminum alloy, molybdenum alloy, etc., which is the embodiment of the present disclosure. No restrictions.
  • the backplane may further include a driving circuit 115 connected to the plurality of first electrodes 110, and the driving circuit 115 is disposed on the substrate 100.
  • the driving circuit 115 can be used to control the light-emitting diode chips subsequently formed on the plurality of first electrodes 110 to emit light.
  • the driving circuit 115 may have a relatively simple circuit structure, which can control each light-emitting diode chip to emit light or not; for example, in other examples, the driving circuit 115 may have a more complicated circuit structure. (For example, a gate drive circuit and/or pixel circuit similar to a common OLED display panel, etc.), each light-emitting diode chip can be controlled to display different gray levels.
  • the specific circuit structure of the driving circuit 115 on the backplane can be set according to actual needs, which is not limited in the embodiments of the present disclosure.
  • Step S20 Provide an epitaxial wafer, which includes a substrate and a light emitting diode epitaxial structure formed on the substrate.
  • an epitaxial wafer as shown in FIG. 2B may be provided, and the epitaxial wafer includes a substrate 200 and a light emitting diode epitaxial structure 210 formed on the substrate.
  • the material of the substrate 200 may include, but is not limited to, sapphire and the like.
  • the light emitting diode epitaxial structure may include an electron injection layer, a light emitting layer, a hole injection layer, etc. (not shown in FIG. 2B) stacked in sequence, for example, the light emitting layer may include a quantum well light emitting layer or a quantum dot light emitting layer, etc. .
  • the epitaxial wafer may also include The buffer layer between the bottom 200 and the light emitting epitaxial structure 210 (not shown in FIG. 2B).
  • an epitaxial wafer that can form a gallium nitride (GaN)-based LED is taken as an example to illustrate the structure of the epitaxial wafer.
  • the epitaxial wafer includes a sapphire (Sapphire) substrate, a buffer layer u-GaN (undoped gallium nitride) and an electron injection layer n-GaN (N-type doped gallium nitride) formed on the sapphire substrate in sequence.
  • GaN/InGaN MQW gallium nitride/indium gallium nitride superlattice structure, where GaN serves as a barrier and InGaN as a potential well
  • p-GaN P-type doped gallium nitride
  • the substrate of the epitaxial wafer can be selected according to actual needs, and the specific structure of the light emitting diode epitaxial structure formed on the substrate can also be set according to actual needs, and the embodiments of the present disclosure do not limit this. .
  • Step S30 Combine the epitaxial wafer with the backplane, and the light-emitting diode epitaxial structure of the epitaxial wafer faces the multiple first electrodes of the backplane.
  • the epitaxial wafer shown in FIG. 2B is combined with the backplane shown in FIG. 2A, wherein the light emitting diode epitaxial structure 210 of the epitaxial wafer faces the plurality of first electrodes 110 of the backplane.
  • the LED epitaxial structure 210 is in contact with the plurality of first electrodes 110.
  • the substrate 100 is on the bottom and the substrate 200 is on the top, so that the substrate 200 is peeled off in the subsequent step S40, and the LED epitaxial structure 210 is left on the backplane.
  • the epitaxial wafer may be cut into the same shape as the back plate, so as to facilitate the cutting of the epitaxial wafer and the back plate. Carry out splicing to the box.
  • the central area of the epitaxial wafer is generally a high yield area (that is, the growth quality of the light-emitting diode epitaxial structure in the central area is higher)
  • the peripheral area of the epitaxial wafer can be removed, and the The central area of the epitaxial wafer to ensure the quality of the LED module being manufactured.
  • Step S40 Peel off the substrate of the epitaxial wafer, so that the light-emitting diode epitaxial structure remains on the backplane.
  • the remaining structure is shown in FIG. 2D.
  • the LED epitaxial structure 210 remains on the plurality of first electrodes 110.
  • the substrate 200 of the epitaxial wafer may be peeled off by light, for example, the substrate 200 of the epitaxial wafer may be peeled off by using laser light.
  • the epitaxial wafer includes a buffer layer disposed between the substrate 200 and the light emitting diode epitaxial structure 210, light may be used to separate the substrate 200 and the buffer layer to achieve peeling off the substrate of the epitaxial wafer. purpose.
  • the basic principle of peeling off the substrate of the epitaxial wafer by light is explained.
  • the substrate is sapphire with a higher band gap energy (about 9.9 eV), and the band gap energy of GaN is about 3.3 eV, so that a suitable wavelength ultraviolet laser can be used to lift the epitaxial layer.
  • Piece of sapphire substrate For example, a krypton fluoride (KrF) excimer laser with a wavelength of 248 nm (photon energy is about 5 eV) can be used.
  • KrF krypton fluoride
  • sapphire is transparent to the 248 nm laser, and GaN can strongly absorb the energy of the 248 nm laser.
  • the basic principle of the above-mentioned light stripping of the substrate of the epitaxial wafer is illustrative.
  • the appropriate wavelength can be selected based on the material of the substrate, the material of the buffer layer, and the material of the light-emitting diode epitaxial structure.
  • the laser is used to peel off the substrate, which is not limited in the embodiments of the present disclosure.
  • Step S50 Perform a patterning process on the light-emitting diode epitaxial structure remaining on the backplane to form a plurality of light-emitting diode chips respectively connected to a plurality of first electrodes.
  • the LED epitaxial structure 210 remaining on the backplane is patterned to form a plurality of LED chips 215 respectively connected to the plurality of first electrodes 110.
  • the epitaxial wafer when the epitaxial wafer includes a buffer layer disposed between the substrate 200 and the light emitting diode epitaxial structure 210, after peeling off the substrate 200 of the epitaxial wafer, the light emitting diode epitaxial structure 210 is far away from the first electrode. There may be a buffer layer remaining on one side of 110. In this case, the remaining buffer layer can be removed by selective etching.
  • the patterning process for the LED epitaxial structure 210 remaining on the backplane may include processes such as photolithography and etching.
  • the foregoing processes can refer to common semiconductor processes, and will not be repeated here.
  • the patterned LED epitaxial structure 210 may also be annealed to reduce the amount of light-emitting diode chips 215 formed. The defect improves the luminous efficiency of the LED chip 215.
  • the material of the light emitting diode epitaxial structure 210 may include inorganic materials, so that the formed light emitting diode chip 215 may include an inorganic light emitting diode chip, such as a GaN-based inorganic light emitting diode chip obtained from the epitaxial wafer shown in FIG. 3 ,
  • the present disclosure includes but is not limited to this.
  • the light emission of the inorganic light emitting diode chip may be monochromatic light, and the light emission color thereof may include but not limited to red, green, yellow, blue, ultraviolet (for example, near ultraviolet), and the like.
  • the emission wavelength of the quantum well light-emitting layer can be adjusted by adjusting the parameters of the quantum well light-emitting layer (such as barrier material, potential well material, potential well width, etc.).
  • the specific control method and principle can refer to the common manufacturing method and process of GaN-based LED, which is not limited in the embodiments of the present disclosure.
  • the light-emitting color of the light-emitting diode chip formed by the quantum dot light-emitting layer can also be adjusted by adjusting the parameters of the quantum dot light-emitting layer (such as quantum dot materials, etc.).
  • the embodiment of the present disclosure does not limit the light-emitting color and light-emitting mechanism of the light-emitting diode epitaxial structure 210.
  • an epitaxial structure with a suitable light-emitting diode epitaxial structure 210 can be selected according to the needs of the light-emitting color. sheet.
  • the gap between the plurality of light-emitting diode chips 215 may also be filled with the fixing material 150.
  • the fixing material 150 may be a glue commonly used for fixing LEDs, which is not limited in the embodiment of the present disclosure.
  • the color of the fixing material 150 may be black, so that the light emitted from the side of the light emitting diode chip 215 can be absorbed, and the mutual crosstalk between the light emitting diode chips 215 can be prevented.
  • the fixing material 150 is generally arranged between the light-emitting diode chips 215 (and between the first electrodes 110 corresponding to the light-emitting diode chips 215), and is not arranged on the side of the light-emitting diode chips 215 away from the first electrodes 110. On the surface, the electrical connection between the second electrode to be formed later and the light emitting diode chip 215 will not be affected.
  • Step S60 forming a second electrode on the side of the plurality of light-emitting diode chips away from the backplane.
  • the second electrode 220 is formed on the side of the plurality of light emitting diode chips 215 away from the backplane.
  • the second electrode 220 may directly contact the LED chip 215 to form an electrical connection.
  • the light emitting diode chip 215 can form a current path through the first electrode 110 and the second electrode 220 for display.
  • the material of the second electrode 220 may include a transparent conductive material, so that the manufactured light emitting diode module may emit light from the side of the second electrode 220 away from the back plate.
  • the material of the second electrode 220 may include a transparent conductive oxide, such as a combination of indium tin oxide, indium zinc oxide, zinc oxide, indium oxide, and indium gallium oxide, or at least one, which is not limited in the embodiment of the present disclosure .
  • the material of the second electrode 110 can also be a metal material, and the second electrode 220 can be made very thin so that the second electrode 220 can become transparent. It should be noted that the embodiment of the present disclosure does not limit the material of the second electrode 220.
  • the second electrode 220 may be a common electrode of a plurality of light-emitting diode chips 215, for example, it may be a whole surface electrode, and each light-emitting diode chip 215 is electrically connected to the surface electrode. .
  • the method for manufacturing a light-emitting diode module combines an epitaxial wafer with a substrate with a backplane, and then peels off the substrate, and completes the light-emitting diode (LED) chip and the second electrode on the backplane.
  • the manufacturing process omits the alignment and transfer process in the bonding process, thereby avoiding the problems of alignment accuracy and transfer efficiency during the bonding process; in addition, because the light-emitting diode chip is directly obtained through patterning, the light-emitting diode
  • the size and pitch of the chip are related to the accuracy of the patterning process, which facilitates the formation of small-pitch LEDs, Mini LEDs and Micro LEDs for display.
  • At least one embodiment of the present disclosure further provides a light-emitting diode module, which can be manufactured according to the manufacturing method of the light-emitting diode module provided in the foregoing embodiments of the present disclosure.
  • 4 is a schematic plan view of a light emitting diode module provided by at least one embodiment of the disclosure.
  • the light emitting diode module may be as shown in FIG. 2F, and may include a substrate 100, a first electrode 110, a driving circuit 115, a light emitting diode chip 215, a second electrode 220, and a fixing material 150.
  • a substrate 100 a first electrode 110
  • a driving circuit 115 a light emitting diode chip 215, a second electrode 220
  • a fixing material 150 a fixing material 150.
  • each light-emitting diode chip 215 in a plane parallel to the backplane can be any shape such as a rectangle, a circle, a pentagon, etc. (the light-emitting diode in FIG. 4
  • the square shape of the chip is exemplary), which is not limited in the embodiments of the present disclosure.
  • the maximum dimension of the light-emitting diode chip 215 in the direction parallel to the backplane may be, for example, 1- 100 ⁇ m, such as 1-50 ⁇ m, such as 5-50 ⁇ m, such as 5-30 ⁇ m.
  • the embodiment of the present disclosure does not limit the maximum size of the light emitting diode chip 215 in the direction parallel to the backplane.
  • the upper limit of the maximum size may be greater than 100 ⁇ m, and the lower limit of the maximum size is related to the patterning process. Precision is related.
  • the distance between adjacent light-emitting diode chips 215, that is, the shortest distance between adjacent light-emitting diode chips 215, as shown by the solid double arrow line in FIG. 4, may be, for example, 1-100 ⁇ m. , For example, 1-50 ⁇ m, for example, 5-50 ⁇ m, for example, 5-30 ⁇ m, for example, 5-20 ⁇ m. It should be noted that the embodiment of the present disclosure does not limit the distance between adjacent LED chips 215. For example, the upper limit of the distance may be greater than 100 ⁇ m, and the lower limit of the distance is related to the accuracy of the patterning process.
  • the display device may include the light-emitting diode module provided by any of the above-mentioned embodiments of the present disclosure, and may also include a power supply module.
  • the structure of the light emitting diode module can refer to the light emitting diode module shown in FIG. 2F.
  • the light emitting diode module in the display device may include the aforementioned relatively simple driving circuit, so that the display device can perform monochrome black and white display.
  • Black-and-white display means that each light-emitting diode chip in the display device has only two states: light-emitting (white) and non-light-emitting (black).
  • the display device can perform black and white display of any color such as red, green, blue, etc., which is not limited in the embodiments of the present disclosure.
  • the light emitting diode module in the display device may include the aforementioned relatively complicated driving circuit, so that the display device can perform monochrome grayscale display.
  • FIG. 5 is a schematic diagram of a display device provided by at least one embodiment of the present disclosure.
  • the display device may include the light-emitting diode module shown in FIG. 2F, and the structure of the light-emitting diode module may refer to the corresponding description in the manufacturing method of the light-emitting diode module shown in FIGS. 2A-2F. , I won’t repeat it here.
  • the display device may further include a color conversion array 300 arranged on the light emitting side of the light emitting diode module (for example, the side of the second electrode away from the back plate).
  • the color conversion array 300 includes a plurality of color conversion layers 310 corresponding to a plurality of light-emitting diode chips 215 one-to-one.
  • the color conversion array 300 may also include a black matrix 320 arranged between the plurality of color conversion layers 310.
  • the structure of the color conversion array can refer to the structure of a common color filter substrate, which will not be repeated here.
  • the light-emitting color of the light-emitting diode chip 215 is defined as the zeroth color for convenience of description.
  • the display device shown in FIG. 5 can perform monochrome display (based on the drive circuit, monochrome black and white display can be performed, and monochrome grayscale display can also be performed).
  • the color conversion layer 310 is configured to convert the zeroth color light into the first color light, so that the display device can perform the superposition of the zeroth color light and the first color light (the naked eye is still regarded as a single color). Light) monochrome display.
  • the zeroth color light may be blue light
  • the color conversion layer 310 includes yellow phosphor, which can be excited by the blue light to emit yellow light (first color light); the superposition of blue light and yellow light can synthesize white light, thereby displaying
  • the device can perform white light monochrome display; it should be noted that the present disclosure includes but is not limited to this situation.
  • the display device may further include a first color filter (which can filter the zeroth color light) disposed on the side of the color conversion layer 310 away from the light emitting diode module, so that the display The device can perform monochrome display of the first color light.
  • the display device shown in FIG. 5 can also perform color display.
  • the plurality of color conversion layers 310 may include a first color conversion layer 311, a second color conversion layer 312, and a third color conversion layer 313.
  • the first color conversion layer 311 is configured to convert the color of the light emitted by the corresponding light-emitting diode chip 215 into a first color or is configured to maintain the color of the light emitted by the corresponding light-emitting diode chip (for example, , Keep the zeroth color)
  • the second color conversion layer 312 is configured to convert the color of the light emitted by the corresponding LED chip 215 into the second color
  • the third color conversion layer 313 is configured to emit the corresponding LED chip 215 The color of the light is converted to the third color.
  • the zeroth color light may be ultraviolet light (for example, near ultraviolet light);
  • the first color conversion layer 311 may include blue phosphor, which may be excited by the ultraviolet light to emit blue light (first color Light);
  • the second color conversion layer 312 may include green phosphor, which can be excited by the ultraviolet light to emit green light (second color light);
  • the third color conversion layer 313 may include red phosphor, which can be excited by the ultraviolet light Instead, red light (third color light) is emitted; thus, the display device can perform RGB (red, green, and blue) color display.
  • the embodiments of the present disclosure include but are not limited thereto.
  • the second color conversion layer may also include yellow phosphor, which can be excited by the ultraviolet light to emit yellow light (second color light), so that the The display device can perform RYB (red, yellow and blue) color display.
  • the zeroth color light may be blue light;
  • the first color conversion layer may include a blue color filter or a transparent material layer that is transparent to blue light, or may not include other material structures. Therefore, the color of the light emitted by the corresponding light-emitting diode chip 215 is maintained, that is, blue;
  • the second color conversion layer may include green phosphor, which can be excited by the blue light to emit green light (second color light);
  • third The color conversion layer may include red phosphor, which can be excited by the blue light to emit red light (third color light); thus, the display device can perform RGB (red, green, and blue) color display.
  • the embodiments of the present disclosure include but are not limited thereto.
  • the second color conversion layer may also include yellow phosphor, which can be excited by the blue light to emit yellow light (second color light), so that the The display device can perform RYB (red, yellow and blue) color display.
  • the arrangement of the first color conversion layer 311, the second color conversion layer 312, and the third color conversion layer 313 in the color conversion array 300 shown in FIG. 5 is exemplary, and each of the color conversion array 300
  • the arrangement of the color conversion layer can refer to a common pixel arrangement structure, which is not limited in the embodiment of the present disclosure.
  • the display device shown in FIG. 5 may also include other components, such as a timing controller, a signal decoding circuit, a voltage conversion circuit, etc. These components, for example, may adopt conventional components or structures, and details are not described herein again.
  • the display device in this embodiment may be any product or component with a display function, such as a display, a TV, an electronic paper display device, a mobile phone, a tablet computer, a notebook computer, a digital photo frame, a navigator, etc.
  • the display device may also include other conventional components or structures.
  • a person skilled in the art can set other conventional components or structures according to specific application scenarios. This is not limited.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

一种发光二极管模组及其制造方法、显示装置。该发光二极管模组的制造方法包括:提供背板,该背板包括多个第一电极;提供外延片,该外延片包括衬底和形成在衬底上的发光二极管外延结构;将外延片与背板结合,该外延片的发光二极管外延结构面向该背板的所述多个第一电极;剥离外延片的衬底,使发光二极管外延结构保留在背板上;对保留在背板上的发光二极管外延结构进行图案化处理,形成与多个第一电极分别连接的多个发光二极管芯片;以及在多个发光二极管芯片远离背板的一侧形成第二电极。该发光二极管模组的制造方法可以有效解决绑定工艺过程中的对位精度和转移效率的问题,还便于形成小间距LED、迷你LED和微型LED以用于显示。

Description

发光二极管模组及其制造方法、显示装置
本申请要求于2019年5月20日递交的中国专利申请第201910419429.7号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开的实施例涉及一种发光二极管模组及其制造方法、显示装置。
背景技术
发光二极管(Light-Emitting Diode,LED)显示技术是基于LED形成像素单元的显示技术。在LED显示技术中,有机发光二极管(OLED)在手机、平板电脑、数码相机等显示领域的应用越来越广泛,此外,小间距LED、迷你发光二极管(Mini LED)和微型发光二极管(Micro LED)、量子点发光二极管(QLED)等在显示领域同样具有良好的市场前景,因而也越来越受到产业界的重视。
发明内容
本公开至少一实施例提供一种发光二极管模组的制造方法,包括:提供背板,所述背板包括多个第一电极;提供外延片,所述外延片包括衬底和形成在所述衬底上的发光二极管外延结构;将所述外延片与所述背板结合,所述外延片的所述发光二极管外延结构面向所述背板的所述多个第一电极;剥离所述外延片的所述衬底,使所述发光二极管外延结构保留在所述背板上;对保留在所述背板上的所述发光二极管外延结构进行图案化处理,形成与所述多个第一电极分别连接的多个发光二极管芯片;以及在所述多个发光二极管芯片远离所述背板的一侧形成第二电极。
例如,在本公开一些实施例提供的制造方法中,剥离所述外延片的所述衬底,包括:通过光照剥离所述外延片的所述衬底。
例如,在本公开一些实施例提供的制造方法中,所述外延片还包括设置在所述衬底和所述发光二极管外延结构之间的缓冲层;使用光照剥离所述外延片的所述衬底包括:使用光照分离所述衬底和所述缓冲层。
例如,在本公开一些实施例提供的制造方法中,在对保留在所述背板上的所述发光二极管外延结构进行图案化处理之后,所述制造方法还包括:对图案化的所述发光二极管外延结构进行退火处理。
例如,在本公开一些实施例提供的制造方法中,在形成所述第二电极之前,所述制造方法还包括:向所述多个发光二极管芯片之间的间隙中填充固定材料。
例如,在本公开一些实施例提供的制造方法中,所述固定材料的颜色为黑色。
例如,在本公开一些实施例提供的制造方法中,所述第二电极的材料包括透明导电材料。
例如,在本公开一些实施例提供的制造方法中,所述第二电极为所述多个发光二极管芯片的公共电极。
例如,在本公开一些实施例提供的制造方法中,在将所述外延片与所述背板结合之前,所述制造方法还包括:将所述外延片切割成与所述背板相同的形状。
例如,在本公开一些实施例提供的制造方法中,所述背板还包括与所述多个第一电极连接的驱动电路,用于控制所述多个发光二极管芯片发光。
例如,在本公开一些实施例提供的制造方法中,所述发光二极管外延结构包括发光层,所述发光层包括量子点发光层或量子阱发光层。
例如,在本公开一些实施例提供的制造方法中,所述发光二极管芯片包括无机发光二极管芯片。
例如,在本公开一些实施例提供的制造方法中,所述无机发光二极管的发光颜色包括红色、绿色、蓝色中任意一种。
本公开至少一实施例还提供一种根据本公开任一实施例提供的制造方法制作的发光二极管模组。
例如,在本公开一些实施例提供的发光二极管模组中,所述发光二极管芯片沿平行于所述背板的方向的最大尺寸为1-50μm。
例如,在本公开一些实施例提供的发光二极管模组中,所述发光二极管芯片沿平行于所述背板的方向的最大尺寸为5-30μm。
例如,在本公开一些实施例提供的发光二极管模组中,相邻的所述发光二极管芯片之间的间距为5-30μm。
例如,在本公开一些实施例提供的发光二极管模组中,相邻的所述发光二极管芯片之间的间距为5-20μm。
本公开至少一实施例还提供一种显示装置,包括本公开任一实施例提供的发光二极管模组。
例如,本公开一些实施例提供的显示装置,还包括:颜色转换阵列,其中,所述颜色转换阵列包括与所述多个发光二极管芯片一一对应的多个颜色转换层,所述多个颜色转换层包括第一颜色转换层、第二颜色转换层和第三颜色转换层,所述第一颜色转换层配置为将对应的所述发光二极管芯片发出的光线的颜色转换为第一颜色或者配置为保持对应的所述发光二极管芯片发出的光线的颜色,所述第二颜色转换层配置为将对应的所述发光二极管芯片发出的光线的颜色转换为第二颜色,所述第三颜色转换层配置为将对应的所述发光二极管芯片发出的光线的颜色转换为第三颜色。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为本公开至少一实施例提供的一种发光二极管模组的制造方法的流程图;
图2A至图2F为示出图1所示的发光二极管模组的制造方法的流程的截面图;
图3为本公开至少一实施例提供的一种外延片的结构示意图;
图4为本公开至少一实施例提供的一种发光二极管模组的平面示意图;以及
图5为本公开至少一实施例提供的一种显示装置的示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所 有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
下面通过几个具体的实施例对本公开进行说明。为了保持本公开实施例的以下说明清楚且简明,可省略已知功能和已知部(元)件的详细说明。当本公开实施例的任一部(元)件在一个以上的附图中出现时,该部(元)件在每个附图中由相同或类似的参考标号表示。
一种LED用于背光、显示的方法流程包括:LED芯片厂家以LED芯片出货,芯片厂家将LED芯片测试和分选后,排列到蓝膜上出货到下游模组厂家,下游模组厂家(例如,面板厂商)利用各种固晶设备对LED芯片进行绑定(bonding)工艺及后段制程。该方法流程应用于Mini LED和Micro LED时,由于Mini LED和Micro LED的尺寸较小,其在绑定工艺中的转移效率和转移中的对位精度难以突破,从而限制了Mini LED模组和Micro LED模组的制造速度。
在研究中,本申请的发明人注意到:LED芯片制作流程中外延片的生长过程中要求温度1000℃左右的设备和工艺,外延片生长完成后,芯片制作流程中的后段工艺的最高温度为200℃左右,所述后段工艺包括退火、光刻、刻蚀、金属电极蒸镀等;另一方面,用于显示的玻璃背板在完成驱动电路制作后可耐受温度约230度,故从温度承受方面而言,在玻璃背板上进行芯片制作流程的上述后段工艺具有可行性。同时,面板厂商也具有成熟的设备和工艺以进行退火、光刻、刻蚀、金属电极蒸镀等,从而工艺上亦具有可行性。
本公开至少一实施例提供一种发光二极管模组的制造方法。该制造方法包括:提供背板,所述背板包括多个第一电极;提供外延片,所述外延片包括衬 底和形成在所述衬底上的发光二极管外延结构;将所述外延片与所述背板结合,所述外延片的所述发光二极管外延结构面向所述背板的所述多个第一电极;剥离所述外延片的所述衬底,使所述发光二极管外延结构保留在所述背板上;对保留在所述背板上的所述发光二极管外延结构进行图案化处理,形成与所述多个第一电极分别连接的多个发光二极管芯片;以及在所述多个发光二极管芯片远离所述背板的一侧形成第二电极。
本公开的一些实施例还提供对应于上述制造方法的发光二极管模组及显示装置。
本公开的至少一实施例提供的发光二极管模组的制造方法,通过将带衬底的外延片与背板结合,然后剥离衬底,并在背板上完成发光二极管(LED)芯片及第二电极的制作工艺,不仅可以有效解决绑定工艺过程中的对位精度和转移效率的问题,还便于形成小间距LED、Mini LED和Micro LED以用于显示。
下面结合附图对本公开的一些实施例及其示例提供的发光二极管模组及其制造方法、显示装置进行详细说明。
本公开至少一实施例提供一种发光二极管模组的制造方法。图1为本公开至少一实施例提供的一种发光二极管模组的制造方法的流程图,图2A至图2F为示出图1所示的发光二极管模组的制造方法的流程的截面图。以下,结合图2A至图2F对图1所示的发光二极管模组的制造方法进行详细说明。
如图1所示,该发光二极管模组的制造方法包括步骤S10至步骤S60。
步骤S10:提供背板,该背板包括多个第一电极。
例如,可以提供给如图2A所示的背板,该背板包括基板100和设置在基板100上的多个第一电极110。例如,基板100的材料可以包括但不限于玻璃等。例如,第一电极可以为柱状。例如,第一电极110的材料可以包括导电材料,例如金属材料等。例如,第一电极110的材料可以包括金、银、铜、铝、钼、金合金、银合金、铜合金、铝合金、钼合金等中的组合或至少一种,本公开的实施例对此不作限制。
例如,背板上还可以包括与多个第一电极110连接的驱动电路115,该驱动电路115设置在基板100上。该驱动电路115可以用于控制后续形成在多个第一电极110上的发光二极管芯片发光。例如,在一些示例中,该驱动电路115可以具有相对简单的电路结构,可以控制每个发光二极管芯片发光或者不发光;例如,在另一些示例中,该驱动电路115可以具有较为复杂的电路结构(例 如,与常见的OLED显示面板类似的栅极驱动电路和/或像素电路等),可以控制每个发光二极管芯片显示不同的灰阶。需要说明的是,背板上的驱动电路115的具体电路结构可以根据实际需要进行设置,本公开的实施例对此不作限制。
步骤S20:提供外延片,该外延片包括衬底和形成在衬底上的发光二极管外延结构。
例如,可以提供如图2B所示的外延片,该外延片包括衬底200和形成在衬底上的发光二极管外延结构210。例如,衬底200的材料可以包括但不限于蓝宝石等。例如,发光二极管外延结构可以包括依次层叠设置的电子注入层、发光层和空穴注入层等(图2B中未示出),例如,该发光层可以包括量子阱发光层或量子点发光层等。例如,在一些示例中,为了减小异质外延时晶格失配产生的影响(例如,导致发光二极管外延结构210中形成缺陷从而影响其发光效率),该外延片还可以包括设置在衬底200和发光外延结构210之间的缓冲层(图2B中未示出)。以下,以一种可以形成氮化镓(GaN)基LED的外延片为例对外延片的结构进行示例性说明。
图3为本公开至少一实施例提供的一种外延片的结构示意图。如图3所示,该外延片包括蓝宝石(Sapphire)衬底,依次形成在蓝宝石衬底上的缓冲层u-GaN(未掺杂的氮化镓)、电子注入层n-GaN(N型掺杂的氮化镓)、量子阱发光层GaN/InGaN MQW(氮化镓/氮化铟镓超晶格结构,其中,GaN作为势垒,InGaN作为势阱)和空穴注入层p-GaN(P型掺杂的氮化镓)。需要说明的是,图3所示的外延片结构是示例性的,本公开包括但不限于此。
还需要说明的是,外延片的衬底可以根据实际需要进行选择,形成在衬底上的发光二极管外延结构的具体结构也可以根据实际需要进行设置,本公开的实施例对此均不做限制。
步骤S30:将外延片与背板结合,该外延片的发光二极管外延结构面向该背板的多个第一电极。
例如,如图2C所示,将图2B所示的外延片与图2A所示的背板结合,其中,该外延片的发光二极管外延结构210面向该背板的多个第一电极110。例如,如图2C所示,发光二极管外延结构210与多个第一电极110接触。例如,如图2C所示,基板100在下,衬底200在上,以便于后续步骤S40剥离衬底200,且使发光二极管外延结构210保留在背板上。
例如,在一些示例中,在进行步骤S30之前,即在将外延片与背板结合之 前,还可以先将外延片切割成与背板相同的形状,以便于将切割得到的外延片与背板进行拼接对盒。例如,由于外延片的中心区域一般为良率较高的区域(即中心区域的发光二极管外延结构的生长质量较高),在对外延片进行切割时,可以去除外延片的周边区域,而保留外延片的中心区域,从而确保正在制造的发光二极管模组的质量。
步骤S40:剥离外延片的衬底,使发光二极管外延结构保留在背板上。
例如,图2C所示的结构,在剥离外延片的衬底200之后,剩余的结构如图2D所示。例如,如图2D所示,发光二极管外延结构210保留在多个第一电极110上。
例如,可以通过光照剥离外延片的衬底200,例如,可以采用激光光照剥离外延片的衬底200。例如,在一些示例中,外延片包括设置在衬底200和发光二极管外延结构210之间的缓冲层时,可以使用光照分离该衬底200和该缓冲层,以实现剥离外延片的衬底的目的。以下,以图3所示的外延片结构为例,说明光照剥离外延片的衬底的基本原理。
对于图3所示的外延片结构,其衬底为具有较高带隙能量(约9.9eV)的蓝宝石,而GaN的带隙能量约为3.3eV,从而可以选用合适波长的紫外激光剥离该外延片的蓝宝石衬底。例如,可以选用波长为248nm的氟化氪(KrF)准分子激光(光子能量约为5eV),其中,蓝宝石对于248nm的激光而言是透明的,而GaN则可以强烈吸收248nm的激光的能量。从而,当248nm的激光穿过蓝宝石到达缓冲层u-GaN时,蓝宝石和缓冲层分界面处会产生局部的爆炸冲击波,使得在分界面处的GaN与蓝宝石分离(即缓冲层与衬底分离),从而实现了剥离外延片的衬底的目的。
需要说明的是,上述光照剥离外延片的衬底的基本原理是示意性的,对于不同的外延片,可以基于衬底的材料、缓冲层的材料以及发光二极管外延结构的材料等选择合适波长的激光,进行衬底的剥离,本公开的实施例对此不作限制。
步骤S50:对保留在背板上的所述发光二极管外延结构进行图案化处理,形成与多个第一电极分别连接的多个发光二极管芯片。
例如,结合图2D和图2E所示,对保留在背板上的发光二极管外延结构210进行图案化处理,以形成与多个第一电极110分别连接的多个发光二极管芯片215。
例如,在一些示例中,外延片包括设置在衬底200和发光二极管外延结构210之间的缓冲层时,在剥离外延片的衬底200之后,在发光二极管外延结构210远离所述第一电极110的一侧可能还残留有缓冲层,此时,可以通过选择性刻蚀将残留的缓冲层去除。
例如,对保留在背板上的发光二极管外延结构210进行图案化处理可以包括光刻和刻蚀等工艺,上述工艺可以参考常见的半导体工艺,在此不再赘述。
例如,在一些示例中,在对保留在背板上的发光二极管外延结构210进行图案化处理之后,还可以对图案化的发光二极管外延结构210进行退火处理,以减少形成的发光二极管芯片215中的缺陷,改善发光二极管芯片215的发光效率。
例如,在一些示例中,发光二极管外延结构210的材料可以包括无机材料,从而形成的发光二极管芯片215可以包括无机发光二极管芯片,例如根据图3所示的外延片得到的GaN基无机发光二极管芯片,本公开包括但不限于此。例如,在一些示例中,该无机发光二极管芯片的发光可以为单色光,其发光颜色可以包括但不限于红色、绿色、黄色、蓝色、紫外(例如,近紫外)等。
例如,以图3所示的外延片结构为例,可以通过调控量子阱发光层的参数(例如势垒材料、势阱材料、势阱宽度等)而调控量子阱发光层的发光波长,进而可以控制由该外延片形成的发光二极管芯片的发光颜色,具体的调控方法和原理可以参考常见的GaN基LED的制作方法和流程,本公开的实施例对此不作限制。类似地,发光二极管外延结构210中的发光层为量子点发光层时,也可以通过调控量子点发光层的参数(例如量子点材料等)而调控由其形成的发光二极管芯片的发光颜色。需要说明的是,本公开的实施例对发光二极管外延结构210的发光颜色及发光机制不作限制,在本公开的实施例中,可以根据发光颜色的需要选用具有合适的发光二极管外延结构210的外延片。
例如,在一些示例中,如图2E所示,在进行后续的步骤S60之前,还可以向多个发光二极管芯片215之间的间隙中填充固定材料150。例如,该固定材料150可以为通常用于固定LED的胶材,本公开的实施例对此不作限制。例如,在一些示例中,该固定材料150的颜色可以为黑色,从而可以吸收发光二极管芯片215从侧面发出的光,防止发光二极管芯片215之间的相互串扰。需要说明的是,固定材料150一般设置在发光二极管芯片215之间(以及发光二极管芯片215对应的第一电极110之间),而不设置在发光二极管芯片215 远离第一电极110的一侧的表面上,从而不会影响后续将要形成的第二电极与发光二极管芯片215之间的电连接。
步骤S60:在多个发光二极管芯片远离背板的一侧形成第二电极。
例如,如图2F所示,在多个发光二极管芯片215远离背板的一侧形成第二电极220。例如,该第二电极220可以与发光二极管芯片215直接接触,从而形成电连接。由此,发光二极管芯片215可以通过第一电极110和第二电极220形成电流通路,以用于显示。
例如,第二电极220的材料可以包括透明导电材料,从而制作得到的发光二极管模组可以从第二电极220的远离背板的一侧出光。例如,第二电极220的材料可以包括透明导电氧化物,例如氧化铟锡、氧化铟锌、氧化锌、氧化铟和氧化铟镓中的组合或至少一种,本公开的实施例对此不作限制。例如,第二电极110的材料也可以选用金属材料,且第二电极220可以制作的很薄以使第二电极220可以变为透明。需要说明的是,本公开的实施例对第二电极220的材料不作限制。
例如,在一些示例中,如图2F所示,第二电极220可以为多个发光二极管芯片215的公共电极,例如可以为一整面的面电极,各发光二极管芯片215与该面电极电连接。
本公开的实施例提供的发光二极管模组的制造方法,通过将带衬底的外延片与背板结合,然后剥离衬底,并在背板上完成发光二极管(LED)芯片及第二电极的制作工艺,省略了绑定工艺中的对位和转移的过程,从而避免了绑定工艺过程中的对位精度和转移效率的问题;另外,由于发光二极管芯片直接通过图案化处理得到,发光二极管芯片的尺寸和间距与图案化工艺的精度有关,便于形成小间距LED、Mini LED和Micro LED以用于显示。
本公开至少一实施例还提供一种发光二极管模组,该发光二极管模组可以根据本公开前述实施例提供的发光二极管模组的制造方法制作而成。图4为本公开至少一实施例提供的一种发光二极管模组的平面示意图。
例如,该发光二极管模组可以如图2F所示,可以包括基板100、第一电极110、驱动电路115、发光二极管芯片215、第二电极220和固定材料150。需要说明的是,为了清楚和简洁,图4的平面示意图中仅示出了该发光二极管模组中的发光二极管芯片215,该发光二极管模组中的基板100、第一电极110、驱动电路115、第二电极220和固定材料150等结构可以参考图2F所示,在此 不再赘述。
例如,如图4所示,在该发光二极管模组中,发光二极管芯片可以呈阵列排布。例如,每个发光二极管芯片215在平行于背板(即包括基板100和第一电极110的背板)的平面内,可以为矩形、圆形、五边形等任意形状(图4中发光二极管芯片为正方形是示例性的),本公开的实施例对此不作限制。
例如,在一些示例中,发光二极管芯片215在平行于背板的方向的最大尺寸,即恰好包括该发光二极管芯片215的圆的直径,如图4中双箭头虚线所示,可以为例如1-100μm,例如1-50μm,例如5-50μm,例如5-30μm。需要说明的是,本公开的实施例对发光二极管芯片215在平行于背板的方向的最大尺寸不作限制,例如,该最大尺寸的上限可以大于100μm,而该最大尺寸的下限与图案化工艺的精度有关。
例如,在一些示例中,相邻的发光二极管芯片215之间的间距,即相邻的发光二极管芯片215之间的最短距离,如图4中双箭头实线所示,可以为例如1-100μm,例如1-50μm,例如,5-50μm,例如5-30μm,例如5-20μm。需要说明的是,本公开的实施例对相邻的发光二极管芯片215之间的间距不作限制,例如,该间距的上限可以大于100μm,而该间距的下限与图案化工艺的精度有关。
本公开的实施例提供的发光二极管模组的技术效果可以参考前述实施例中关于发光二极管模组的制造方法的相应描述,在此不再赘述。
本公开至少一实施例还提供一种显示装置。例如,该显示装置可以包括本公开上述任一实施例提供的发光二极管模组,还可以包括电源模块等。例如,该发光二极管模组的结构可以参考图2F所示的发光二极管模组。
例如,在一些示例中,显示装置中的发光二极管模组可以包括前述的相对简单的驱动电路,从而,该显示装置可以进行单色的黑白显示。黑白显示是指显示装置中的每个发光二极管芯片只有发光(白)和不发光(黑)两种状态。例如,根据发光二极管芯片的发光颜色,显示装置可以进行红色、绿色、蓝色等任一颜色的黑白显示,本公开的实施例对此不作限制。例如,在另一些示例中,显示装置中的发光二极管模组可以包括前述的较为复杂的驱动电路,从而该显示装置可以进行单色的灰度显示。
图5为本公开至少一实施例提供的一种显示装置的示意图。如图5所示,该显示装置可以包括图2F所示的发光二极管模组,该发光二极管模组的结构 可以参考前述图2A-图2F所示的发光二极管模组的制造方法中的相应描述,在此不在赘述。
如图5所示,该显示装置还可以包括设置在发光二极管模组的出光侧(例如,第二电极的远离背板的一侧)的颜色转换阵列300。例如,如图5所示,该颜色转换阵列300包括与多个发光二极管芯片215一一对应的多个颜色转换层310。例如,如图5所示,该颜色转换阵列300还可以包括设置在多个颜色转换层310之间的黑矩阵320。例如,该颜色转换阵列的结构可以参考常见的彩膜基板的结构,在此不再赘述。以下,定义发光二极管芯片215的发光颜色为第零颜色以方便说明。
例如,图5所示的显示装置,可以进行单色显示(基于驱动电路,可以进行单色的黑白显示,也可以进行单色的灰度显示)。例如,在一些示例中,颜色转换层310配置为将第零颜色光转换为第一颜色光,从而,该显示装置可以进行第零颜色光和第一颜色光的叠加(肉眼仍视为单色光)的单色显示。例如,第零颜色光可以为蓝色光,颜色转换层310包括黄色荧光粉,可以被蓝色光激发而发出黄色光(第一颜色光);蓝色光和黄色光的叠加可以合成白光,从而,显示装置可以进行白光的单色显示;需要说明的是,本公开包括但不限于此种情形。例如,在另一些示例中,该显示装置还可以包括设置在颜色转换层310的远离发光二极管模组的一侧的第一颜色滤色片(可以滤除第零颜色光),从而,该显示装置可以进行第一颜色光的单色显示。
例如,图5所示的显示装置,还可以进行彩色显示。例如,如图5所示,多个颜色转换层310可以包括第一颜色转换层311、第二颜色转换层312和第三颜色转换层313。例如,在一些示例中,第一颜色转换层311配置为将对应的发光二极管芯片215发出的光线的颜色转换为第一颜色或者配置为保持对应的所述发光二极管芯片发出的光线的颜色(例如,保持为第零颜色),第二颜色转换层312配置为将对应的发光二极管芯片215发出的光线的颜色转换为第二颜色,第三颜色转换层313配置为将对应的发光二极管芯片215发出的光线的颜色转换为第三颜色。
例如,在一些示例中,第零颜色光可以为紫外光(例如,近紫外光);第一颜色转换层311可以包括蓝色荧光粉,可以被该紫外光激发而发出蓝色光(第一颜色光);第二颜色转换层312可以包括绿色荧光粉,可以被该紫外光激发而发出绿色光(第二颜色光);第三颜色转换层313可以包括红色荧光粉,可 以被该紫外光激发而发出红色光(第三颜色光);从而,该显示装置可以进行RGB(红绿蓝)彩色显示。需要说明的是,本公开的实施例包括但不限于此,例如,第二颜色转换层也可以包括黄色荧光粉,可以被该紫外光激发而发出黄色光(第二颜色光),从而,该显示装置可以进行RYB(红黄蓝)彩色显示。
例如,在另一些示例中,第零颜色光可以为蓝色光;第一颜色转换层可以包括蓝色滤色片或者对于蓝色光而言是透明的透明材料层,也可以不包括其他材料结构,从而保持对应的发光二极管芯片215发出的光线的颜色,即保持为蓝色;第二颜色转换层可以包括绿色荧光粉,可以被该蓝色光激发而发出绿色光(第二颜色光);第三颜色转换层可以包括红色荧光粉,可以被该蓝色光激发而发出红色光(第三颜色光);从而,该显示装置可以进行RGB(红绿蓝)彩色显示。需要说明的是,本公开的实施例包括但不限于此,例如,第二颜色转换层也可以包括黄色荧光粉,可以被该蓝色光激发而发出黄色光(第二颜色光),从而,该显示装置可以进行RYB(红黄蓝)彩色显示。
需要说明的是,图5所示的颜色转换阵列300中的第一颜色转换层311、第二颜色转换层312和第三颜色转换层313的排列方式是示例性的,颜色转换阵列300中各颜色转换层的排布方式可以参考常见的像素排列结构,本公开的实施例对此不作限制。
需要说明的是,图5所示的显示装置还可以包括其他部件,例如时序控制器、信号解码电路、电压转换电路等,这些部件例如可以采用常规部件或结构,在此不再赘述。
例如,本实施例中的显示装置可以为:显示器、电视、电子纸显示装置、手机、平板电脑、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。需要说明的是,该显示装置还可以包括其他常规部件或结构,例如,为实现显示装置的必要功能,本领域技术人员可以根据具体应用场景设置其他的常规部件或结构,本公开的实施例对此不作限制。
本公开的实施例提供的显示装置的技术效果可以参考上述实施例中关于发光二极管模组的制造方法的相应描述,在此不再赘述。
对于本公开,有以下几点需要说明:
(1)本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)为了清晰起见,在用于描述本公开的实施例的附图中,层或区域的 厚度被放大或缩小,即这些附图并非按照实际的比例绘制。
(3)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上所述仅是本公开的示范性实施方式,而非用于限制本公开的保护范围,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围由所附的权利要求确定。

Claims (20)

  1. 一种发光二极管模组的制造方法,包括:
    提供背板,所述背板包括多个第一电极;
    提供外延片,所述外延片包括衬底和形成在所述衬底上的发光二极管外延结构;
    将所述外延片与所述背板结合,所述外延片的所述发光二极管外延结构面向所述背板的所述多个第一电极;
    剥离所述外延片的所述衬底,使所述发光二极管外延结构保留在所述背板上;
    对保留在所述背板上的所述发光二极管外延结构进行图案化处理,形成与所述多个第一电极分别连接的多个发光二极管芯片;以及
    在所述多个发光二极管芯片远离所述背板的一侧形成第二电极。
  2. 根据权利要求1所述的制造方法,其中,剥离所述外延片的所述衬底,包括:通过光照剥离所述外延片的所述衬底。
  3. 根据权利要求2所述的制造方法,其中,所述外延片还包括设置在所述衬底和所述发光二极管外延结构之间的缓冲层;
    使用光照剥离所述外延片的所述衬底包括:使用光照分离所述衬底和所述缓冲层。
  4. 根据权利要求1-3任一项所述的制造方法,其中,在对保留在所述背板上的所述发光二极管外延结构进行图案化处理之后,所述制造方法还包括:
    对图案化的所述发光二极管外延结构进行退火处理。
  5. 根据权利要求1-4任一项所述的制造方法,其中,在形成所述第二电极之前,所述制造方法还包括:
    向所述多个发光二极管芯片之间的间隙中填充固定材料。
  6. 根据权利要求5所述的制造方法,其中,所述固定材料的颜色为黑色。
  7. 根据权利要求1-6任一项所述的制造方法,其中,所述第二电极的材料包括透明导电材料。
  8. 根据权利要求7所述的制造方法,其中,所述第二电极为所述多个发光二极管芯片的公共电极。
  9. 根据权利要求1-8任一项所述的制造方法,其中,在将所述外延片与 所述背板结合之前,所述制造方法还包括:
    将所述外延片切割成与所述背板相同的形状。
  10. 根据权利要求1-9任一项所述的制造方法,其中,所述背板还包括与所述多个第一电极连接的驱动电路,用于控制所述多个发光二极管芯片发光。
  11. 根据权利要求1-10任一项所述的制造方法,其中,所述发光二极管外延结构包括发光层,所述发光层包括量子点发光层或量子阱发光层。
  12. 根据权利要求1-11任一项所述的制造方法,其中,所述发光二极管芯片包括无机发光二极管芯片。
  13. 根据权利要求12所述的制造方法,其中,所述无机发光二极管芯片的发光颜色包括红色、绿色、蓝色中任意一种。
  14. 一种根据权利要求1-13任一项所述的制造方法制作的发光二极管模组。
  15. 根据权利要求14所述的发光二极管模组,其中,所述发光二极管芯片沿平行于所述背板的方向的最大尺寸为1-50μm。
  16. 根据权利要求15所示的发光二极管模组,其中,所述发光二极管芯片沿平行于所述背板的方向的最大尺寸为5-30μm。
  17. 根据权利要求14-16任一项所述的发光二极管模组,其中,相邻的所述发光二极管芯片之间的间距为5-30μm。
  18. 根据权利要求17所述的发光二极管模组,其中,相邻的所述发光二极管芯片之间的间距为5-20μm。
  19. 一种显示装置,包括根据权利要求14-18任一项所述的发光二极管模组。
  20. 根据权利要求19所述的显示装置,还包括:颜色转换阵列,其中,
    所述颜色转换阵列包括与所述多个发光二极管芯片一一对应的多个颜色转换层,所述多个颜色转换层包括第一颜色转换层、第二颜色转换层和第三颜色转换层,
    所述第一颜色转换层配置为将对应的所述发光二极管芯片发出的光线的颜色转换为第一颜色或者配置为保持对应的所述发光二极管芯片发出的光线的颜色,所述第二颜色转换层配置为将对应的所述发光二极管芯片发出的光线的颜色转换为第二颜色,所述第三颜色转换层配置为将对应的所述发光二极管芯片发出的光线的颜色转换为第三颜色。
PCT/CN2020/082400 2019-05-20 2020-03-31 发光二极管模组及其制造方法、显示装置 WO2020233242A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910419429.7A CN110112148A (zh) 2019-05-20 2019-05-20 发光二极管模组及其制造方法、显示装置
CN201910419429.7 2019-05-20

Publications (1)

Publication Number Publication Date
WO2020233242A1 true WO2020233242A1 (zh) 2020-11-26

Family

ID=67491117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/082400 WO2020233242A1 (zh) 2019-05-20 2020-03-31 发光二极管模组及其制造方法、显示装置

Country Status (2)

Country Link
CN (1) CN110112148A (zh)
WO (1) WO2020233242A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115207186A (zh) * 2022-09-15 2022-10-18 江西兆驰半导体有限公司 一种Mini-LED芯片及其制备方法
CN116387419A (zh) * 2023-05-29 2023-07-04 惠科股份有限公司 Led灯珠的巨量转移方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110112148A (zh) * 2019-05-20 2019-08-09 京东方科技集团股份有限公司 发光二极管模组及其制造方法、显示装置
CN110690241B (zh) * 2019-09-20 2021-12-28 深圳市华星光电半导体显示技术有限公司 显示装置的制作方法及显示装置
CN112864290B (zh) * 2020-04-09 2022-04-22 镭昱光电科技(苏州)有限公司 微型led显示器及其制造方法
CN112102740B (zh) * 2020-09-29 2022-05-03 厦门天马微电子有限公司 显示面板及其驱动方法、显示装置
CN113629095B (zh) * 2021-07-19 2022-09-27 深圳市华星光电半导体显示技术有限公司 发光显示装置以及发光显示装置的制作方法
CN113782553A (zh) * 2021-09-01 2021-12-10 吉安市木林森显示器件有限公司 巨量转移Micro LED模块、显示屏及制造方法
CN116759493A (zh) * 2022-10-21 2023-09-15 福建兆元光电有限公司 一种彩色Micro LED的光色转换模组及其制造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110133137A (ko) * 2010-06-04 2011-12-12 세종대학교산학협력단 고휘도 마이크로 어레이 발광 다이오드 소자의 구조 및 그 제조 방법
CN105826435A (zh) * 2016-04-28 2016-08-03 歌尔声学股份有限公司 红光微发光二极管的形成方法、制造方法、背板及电子设备
CN107910414A (zh) * 2017-11-21 2018-04-13 歌尔股份有限公司 Led显示器制备方法及led显示器
WO2018111752A1 (en) * 2016-12-13 2018-06-21 Hong Kong Beida Jade Bird Display Limited Mass transfer of micro structures using adhesives
CN108447795A (zh) * 2018-04-16 2018-08-24 歌尔股份有限公司 Led晶片的键合方法
CN108735865A (zh) * 2018-05-26 2018-11-02 矽照光电(厦门)有限公司 一种显示结构生产方法
CN208240671U (zh) * 2018-02-26 2018-12-14 山东晶泰星光电科技有限公司 一种具有虚拟隔离区的rgb-led封装模组及其显示屏
CN109742200A (zh) * 2019-01-11 2019-05-10 京东方科技集团股份有限公司 一种显示面板的制备方法、显示面板及显示装置
CN110112148A (zh) * 2019-05-20 2019-08-09 京东方科技集团股份有限公司 发光二极管模组及其制造方法、显示装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107507845A (zh) * 2016-06-14 2017-12-22 群创光电股份有限公司 显示装置
CN107731864B (zh) * 2017-11-20 2020-06-12 开发晶照明(厦门)有限公司 微发光二极管显示器和制作方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110133137A (ko) * 2010-06-04 2011-12-12 세종대학교산학협력단 고휘도 마이크로 어레이 발광 다이오드 소자의 구조 및 그 제조 방법
CN105826435A (zh) * 2016-04-28 2016-08-03 歌尔声学股份有限公司 红光微发光二极管的形成方法、制造方法、背板及电子设备
WO2018111752A1 (en) * 2016-12-13 2018-06-21 Hong Kong Beida Jade Bird Display Limited Mass transfer of micro structures using adhesives
CN107910414A (zh) * 2017-11-21 2018-04-13 歌尔股份有限公司 Led显示器制备方法及led显示器
CN208240671U (zh) * 2018-02-26 2018-12-14 山东晶泰星光电科技有限公司 一种具有虚拟隔离区的rgb-led封装模组及其显示屏
CN108447795A (zh) * 2018-04-16 2018-08-24 歌尔股份有限公司 Led晶片的键合方法
CN108735865A (zh) * 2018-05-26 2018-11-02 矽照光电(厦门)有限公司 一种显示结构生产方法
CN109742200A (zh) * 2019-01-11 2019-05-10 京东方科技集团股份有限公司 一种显示面板的制备方法、显示面板及显示装置
CN110112148A (zh) * 2019-05-20 2019-08-09 京东方科技集团股份有限公司 发光二极管模组及其制造方法、显示装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115207186A (zh) * 2022-09-15 2022-10-18 江西兆驰半导体有限公司 一种Mini-LED芯片及其制备方法
CN116387419A (zh) * 2023-05-29 2023-07-04 惠科股份有限公司 Led灯珠的巨量转移方法
CN116387419B (zh) * 2023-05-29 2023-08-11 惠科股份有限公司 Led灯珠的巨量转移方法

Also Published As

Publication number Publication date
CN110112148A (zh) 2019-08-09

Similar Documents

Publication Publication Date Title
WO2020233242A1 (zh) 发光二极管模组及其制造方法、显示装置
JP7490110B2 (ja) 表示装置
US10644195B2 (en) Manufacturing method of light emitting diode device and light emitting diode device having light emitting units with each light emitting unit including second sub light emitting unit in tandem with first sub light emitting unit
JP6740374B2 (ja) 表示装置および製造方法
US10833220B2 (en) Micro light emitting diode device
US10685945B2 (en) Illuminated faceplate and method for producing such an illuminated faceplate
US20210134878A1 (en) System and Method for Making Micro LED Display
WO2019223567A1 (zh) 显示基板、显示装置以及显示基板的制作方法
KR102597018B1 (ko) 표시 장치 및 표시 장치의 제조 방법
KR102625489B1 (ko) 마이크로 led 표시 패널 및 그 제조 방법
TWI642047B (zh) 可撓性微發光二極體顯示模組
CN111048497B (zh) 一种有源矩阵彩色显示器件的制造方法
CN110993647B (zh) 一种有源矩阵显示器件的制造方法
US11855062B2 (en) Method for manufacturing display array
KR102495758B1 (ko) 플립칩 타입의 led 소자, 플립칩 타입의 led 소자의 제조 방법 및 플립칩 타입의 led 소자를 포함하는 디스플레이 장치
JP2022190184A (ja) ディスプレイパネル作製方法
WO2020238395A1 (zh) LED芯片及其制备方法、芯片晶圆、Micro-LED显示装置
TW202226633A (zh) 用於同軸多色led之系統和方法
TWI811680B (zh) 發光二極體微型顯示裝置
US20230037052A1 (en) Led display apparatus and manufacturing method of the same
KR20190117968A (ko) 디스플레이 장치 및 그의 제조 방법
US11605668B2 (en) Pixel architectures for low power micro light-emitting diode displays
KR20220043742A (ko) 마이크로 led 및 이를 구비한 디스플레이 모듈
CN110993761A (zh) 有源矩阵彩色显示器件
US20190355785A1 (en) Display array

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20810160

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20810160

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20810160

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 12.08.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20810160

Country of ref document: EP

Kind code of ref document: A1