WO2020233079A1 - 石墨烯生发装置 - Google Patents

石墨烯生发装置 Download PDF

Info

Publication number
WO2020233079A1
WO2020233079A1 PCT/CN2019/122431 CN2019122431W WO2020233079A1 WO 2020233079 A1 WO2020233079 A1 WO 2020233079A1 CN 2019122431 W CN2019122431 W CN 2019122431W WO 2020233079 A1 WO2020233079 A1 WO 2020233079A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
parts
powder
nano
adhesive layer
Prior art date
Application number
PCT/CN2019/122431
Other languages
English (en)
French (fr)
Inventor
杨晓川
龚月望
Original Assignee
东莞市雅思电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞市雅思电子有限公司 filed Critical 东莞市雅思电子有限公司
Publication of WO2020233079A1 publication Critical patent/WO2020233079A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H23/00Percussion or vibration massage, e.g. using supersonic vibration; Suction-vibration massage; Massage with moving diaphragms
    • A61H23/02Percussion or vibration massage, e.g. using supersonic vibration; Suction-vibration massage; Massage with moving diaphragms with electric or magnetic drive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0613Apparatus adapted for a specific treatment
    • A61N5/0616Skin treatment other than tanning
    • A61N5/0617Hair treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0613Apparatus adapted for a specific treatment
    • A61N5/0625Warming the body, e.g. hyperthermia treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/16Physical interface with patient
    • A61H2201/1602Physical interface with patient kind of interface, e.g. head rest, knee support or lumbar support
    • A61H2201/1604Head
    • A61H2201/1607Holding means therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2205/00Devices for specific parts of the body
    • A61H2205/02Head
    • A61H2205/021Scalp
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0658Radiation therapy using light characterised by the wavelength of light used
    • A61N2005/0659Radiation therapy using light characterised by the wavelength of light used infrared
    • A61N2005/066Radiation therapy using light characterised by the wavelength of light used infrared far infrared

Definitions

  • the invention belongs to the technical field of physical therapy products, and in particular relates to a graphene hair growth device.
  • the purpose of the present invention is to provide a graphene hair growth device, which aims to solve the technical problems that people in the prior art have hair detachment and cannot grow well.
  • a graphene hair-generating device provided by an embodiment of the present invention includes a housing, a circuit board and a graphene heating component.
  • the housing is provided with a head cavity that matches the shape of the head.
  • the graphene heating component and the circuit board are both arranged inside the housing, and the graphene heating component is electrically connected to the circuit board, and the side of the housing is provided with an electrical connection to the circuit board The electrical interface.
  • the above-mentioned one or more technical solutions in the graphene hair growth device provided by the embodiment of the present invention have at least one of the following technical effects: when in use, the housing is worn on the head of the human body, wherein the head shape provided on the housing The cavity is adapted to the wearer’s head, and the electrical interface is connected to an external power source through the power cord, so that the graphene heating component electrically connected to the electrical interface is powered, the graphene heating component can achieve rapid heating, and the graphene heating component
  • the far-infrared rays produced can produce warming and resonance effects on the human head, causing high-frequency vibrations in the scalp position of the head, which can deeply remove oxidized free radicals from the dermis to the epidermis, and promote blood circulation in the capillaries of the scalp. So as to reduce the occurrence of hair loss, and assist in better hair growth.
  • a graphene hair growth device which includes a housing, a circuit board, a battery, and a graphene heating component.
  • the housing is provided with a head that matches the shape of the head.
  • Cavity, the graphene heating component, the battery, and the circuit board are all arranged inside the casing, the graphene heating component is electrically connected to the circuit board, and the battery is connected to the circuit board Electric connection.
  • the above-mentioned one or more technical solutions in the graphene hair growth device provided by the embodiment of the present invention have at least one of the following technical effects: when in use, the housing is worn on the head of the human body, wherein the head shape provided on the housing The cavity is adapted to the wearer’s head.
  • the battery supplies power to the graphene heating component.
  • the graphene heating component can achieve rapid temperature rise, and the far infrared rays generated by the graphene heating component can produce warming and resonance effects on the human head ,
  • To produce high-frequency vibrations in the head scalp position from the dermis layer to the epidermal layer to remove oxidized free radicals, promote the blood circulation of the scalp capillaries, thereby reducing the occurrence of hair loss, and assisting in better hair growth.
  • FIG. 1 is a schematic structural diagram of a graphene hair growth device provided by an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of the graphene hair growth device in FIG. 1 from another perspective.
  • FIG. 3 is a schematic diagram of the structure of the graphene hair growth device in FIG. 1 after the upper cover is hidden.
  • Fig. 4 is an enlarged schematic diagram of a partial structure at A in Fig. 3.
  • FIG. 5 is a schematic diagram of structural decomposition of the graphene hair growth device in FIG. 1.
  • Fig. 6 is a schematic structural diagram of a fixing seat of a graphene hair growth device provided by an embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of the graphene heating component of the graphene hair growth device provided by an embodiment of the present invention.
  • FIG. 8 is an exploded view of the graphene heating component of the graphene hair growth device provided by the embodiment of the present invention.
  • Component body 2 Graphene heating composite material 10—Shell
  • FIGS. 1 to 8 are exemplary, and are intended to explain the embodiments of the present invention, and should not be understood as limiting the present invention.
  • a graphene hair growth device which includes a housing 10, a circuit board 70, and a graphene heating component 20.
  • the housing 10 is provided with a head A head cavity 101 with a matching shape.
  • the head cavity 101 has a structure similar to a semicircle.
  • the head cavity 101 covers the head of the human body to stably place the entire graphene hair growth device.
  • the graphene heating component 20 and the circuit board 70 are both arranged inside the casing 10, and the casing 10 can accommodate the graphene heating component 20 and the circuit board 70, and can support graphene heating The component 20 and the circuit board 70.
  • the graphene heating component 20 is electrically connected to the circuit board 70, and an electrical interface 40 electrically connected to the circuit board 70 is provided on the side of the housing 10.
  • the electrical interface 40 can be connected to an external power source through a power cord, so that the graphene heating component 20 can be powered.
  • the housing 10 is worn on the head of the human body, wherein the head cavity 101 provided on the housing 10 is adapted to the wearer’s head, and the electrical interface 40 is connected to an external power source through a power cord, so that the graphene heating component 20 electrically connected to the electrical interface 40 is powered, the graphene heating component 20 can achieve rapid heating, and the far infrared rays generated by the graphene heating component 20 can be in the human body
  • the head produces warming and resonance effects, which cause high-frequency vibrations in the scalp position of the head, which can deeply remove oxidized free radicals from the dermis to the epidermis, promote blood circulation in the scalp capillaries, and reduce hair loss. And help to make hair grow better.
  • the graphene heating component 20 provided by the embodiment of the present invention has uniform heating, high electrothermal conversion efficiency, fast heating speed, and high heating efficiency, and the first adhesive layer can improve the stability of the adhesion between the entire graphene heating composite material and the component body
  • the second adhesive layer improves the bonding stability between the conductive sheet and the substrate.
  • the two adhesive layers block the heat, and the heat insulation effect can reduce the heat generated by the heat to the component body and Its internal transmission reduces heat loss and avoids the influence of heat on the internal components of the module body, and plays a role in insulating the heat generated by the graphene-copper composite conductive sheet and heating circuit, and reducing heat transfer loss; and the conductive sheet
  • the heating circuit layer is arranged on the periphery of the graphene heating component 20, and the heat generated after the electrothermal conversion is obvious to the touch, and the heating and heating are obvious; and the outermost package insulating layer plays an insulating role to avoid conductive sheets and heating
  • the current and voltage of the circuit layer cause electric shock, which improves the safety of the graphene heating component 20.
  • the heating circuit layer is made by printing the graphene heating paste in a "return” shape, a "Z” shape, a snake shape, etc.
  • the component body can be rod-shaped, flat-shaped, etc., laminated with graphene heating composite materials to make heating rods, heating films, heating pads and other electric heating products.
  • the substrate layer is one of PET film, PVC film, PE film, PC film, PEN film, and PP film whose outer and inner surfaces have been corona treated;
  • the first adhesive layer and The second adhesive layer can be one of organic silicone adhesive layer, epoxy resin adhesive layer, polyurethane adhesive layer, polyamide hot melt adhesive layer, polyolefin hot melt adhesive layer and EVA hot melt adhesive layer;
  • the packaging insulating layer includes 40-60 parts of glass powder, 15-25 parts of silicon dioxide, 3-8 parts of hydroxyethyl cellulose, and 60-80 parts of terpineol.
  • the adhesion of the first adhesive layer and the second adhesive layer to the substrate layer can be improved, and the adhesion between the first adhesive layer and the The bonding stability between the substrate layers, the second adhesive layer and the substrate layer; while using PET film, PVC film, PE film, PC film, PEN film or PP film as the raw material of the substrate layer, heat High stability, small shrinkage, and has the mechanical properties of the tripod's strength, toughness, impact resistance, etc., high adhesion to the first and second adhesive layers, stable adhesion, and not easy to separate or delamination ;
  • the organic silicone adhesive layer, epoxy resin adhesive layer, polyurethane adhesive layer, polyamide hot melt adhesive layer, polyolefin hot melt adhesive layer and EVA hot melt adhesive layer are used, with high bonding strength and thermal stability High, it can be stably bonded to the surface of the module body, the substrate layer, and the conductive sheet, and it is not easy to separate between the layers. It has
  • the use of glass powder, silicon dioxide, hydroxyethyl cellulose and terpineol as the raw materials of the encapsulation insulating layer can improve the current and voltage insulation of the heating circuit and the conductive sheet, avoid electric shock and cause safety accidents; among them,
  • the glass powder used is small in particle size, disordered in structure, high in chemical stability, and has strong steric hindrance. It can be uniformly dispersed in the insulating layer system to improve the flame retardancy, insulation, weather resistance and resistance of the insulating layer. Scratchability and other properties; and the silica silica glass used has excellent electrical insulation properties. At room temperature, the resistance is 100 times that of ordinary glass, the dielectric loss for all frequencies is very small, and the insulation strength is large.
  • the packaging insulation effect is good; and the hydroxyethyl cellulose used can increase the viscosity of the insulation layer system, improve the dispersion and adhesion between the raw materials, so that a colloidal insulation layer is formed, which is stable to the heating circuit and the conductive sheet. ⁇ Joined.
  • the terpineol used can promote the dispersion and mixing of the raw materials of the insulating layer, and improve the uniformity of the dispersion of the insulating material.
  • the graphene-copper composite conductive sheet includes the following raw materials in parts by weight: 15-20 parts of inkene nano powder, 30-40 parts of nano metal powder, 50-60 parts of methyl vinyl silicone rubber, hydroxyl terminated 0.5-1.5 parts of polydimethylsiloxane, 4-8 parts of vinyl trimethoxysilane, 3-8 parts of precipitated white carbon black, 5-10 parts of conductive carbon black, 0.5-1.0 parts of hydroxy silicone oil, 0.5 parts of vulcanizing agent -1.0 copies.
  • the conductive metal is mixed and embedded in the silicone rubber matrix, the bonding strength of the two is high, the pressure resistance is strong, the metal powder does not fall, and the prepared conductive metal
  • the sheet has high flexibility, high conductivity, high electron mobility, high strength, and good impact resistance.
  • the graphene nano powder and nano metal powder have low resistivity, which makes the silicone rubber matrix have high conductivity ,
  • conductive carbon black can improve the antistatic performance of the conductive sheet, and avoid the influence of static electricity on the transmission of electric current.
  • conductive carbon black and graphene nano powder, nano metal powder are used together, and the spacing between particles becomes smaller.
  • the probability of contact with each other is increased and the conductivity of silicone rubber is increased.
  • the superconducting carbon black is used as the conductive carbon black of antistatic silicone rubber.
  • the particle size is small. When used with acetylene carbon black, the spacing between particles becomes smaller, The probability of mutual contact is increased, and the conductive performance of the silicone rubber matrix is increased, so that the conductive sheet has a higher conductivity.
  • the hydroxy-terminated polydimethylsiloxane can prevent the structure of the silicone rubber matrix from hardening, low plasticity, and reduced processing performance, and improve the stability of the silicone rubber matrix.
  • Oxyane reacts with the Si-OH group on the surface of the precipitated white carbon black to make it hydrophobized, which improves the dispersion of graphene nano powder, nano metal powder and conductive carbon black in the silicone rubber system, and inhibits the structure of the silicone rubber
  • the prepared conductive sheet can have higher strength, impact resistance and other mechanical properties.
  • the amount is too much, the flexibility of the conductive sheet will be reduced , The hardness is too large, the plasticity and processability are low; and if the amount is too small, the dispersion and adhesion of the conductive raw materials will be reduced, and structuring will easily occur.
  • the vinyl trimethoxysilane used can promote the cross-linking and coupling reaction of the conductive sheet material, and make the surface of the prepared conductive sheet non-sticky, so that the heating circuit paste is easy to spread on the surface of the conductive sheet, and the adhesion is high.
  • the adhesion between the two is stable; and the precipitated silica used can be used as a filler for the silicone rubber matrix, and can improve the mechanical strength of the silicone rubber matrix with high stability, but if the traditional fumed silica is used, it will reduce
  • the flexibility of silicone rubber makes it too hard, which reduces the flexibility and processability of the conductive sheet; and the hydroxy silicone oil used can improve the powder (graphene nano powder, nano metal powder, precipitated white carbon black, conductive carbon Black) dispersibility in the silicone rubber matrix, and can inhibit the structuring of the silicone rubber matrix, and improve the plasticity and processing performance of the conductive sheet; the vulcanizing agent used can promote the formation of the conductive sheet with high stability .
  • the nano metal powder is a mixture composed of nano copper powder and nano nickel powder in a weight ratio of 5-6:1-2:2-3, and the nano copper powder is a spherical surface coated with nano silver powder.
  • Silver-coated copper powder the vinyl content of the methyl vinyl silicone rubber is 0.14-0.18%, and the molecular weight is 550,000-650,000; the hydroxyl content of the hydroxy silicone oil is 4-8%; the vulcanizing agent is 2 ,5-Dimethyl-2,5-di-tert-butylperoxyhexane.
  • the resistivity is small, the conductivity is high, and the particle size is fine.
  • the three-dimensional bead chain structure of the nano-nickel powder can make the silicone rubber matrix form a stable
  • the conductive network makes the silicone rubber matrix have high conductivity, and the nano-copper powder is coated with nano-silver powder on its surface.
  • the volume resistivity of the silver layer coated on the surface is low, which effectively reduces the entire spherical silver-coated copper
  • the volume resistivity of the particles increases the conductivity of the conductive sheet.
  • the intermolecular force is relatively large, so that the prepared conductive sheet has Better mechanical strength and processing moldability; and strict control of the hydroxyl content of the hydroxy silicone oil can make the hydroxy silicone oil have a lower viscosity, can inhibit the structuring of the silicone rubber matrix, and combine the activity of the terminal hydroxyl groups to improve the powder in the system.
  • the dispersion of the body by strictly controlling the vinyl content and molecular weight of methyl vinyl silicone rubber, taking advantage of its high molecular weight and main chain length, the intermolecular force is relatively large, so that the prepared conductive sheet has Better mechanical strength and processing moldability; and strict control of the hydroxyl content of the hydroxy silicone oil can make the hydroxy silicone oil have a lower viscosity, can inhibit the structuring of the silicone rubber matrix, and combine the activity of the terminal hydroxyl groups to improve the powder in the system.
  • the dispersion of the body by strictly controlling the vinyl content and molecular weight of methyl vinyl silicone rubber, taking advantage of its high molecular weight and main chain
  • the vulcanization and crosslinking effect of the silicone rubber matrix can be improved, the vulcanization time can be significantly shortened, and the molded silicone rubber Mechanical strength and stability such as tensile strength, elongation at break, and tear strength.
  • the graphene-copper composite conductive sheet is prepared by the following steps;
  • Step A According to parts by weight, the methyl vinyl silicone rubber is stirred and banned to obtain material A;
  • Step B According to parts by weight, add one third of the amount of precipitated silica to the material A prepared in step A, and then add hydroxyl-terminated polydimethylsiloxane and vinyltrimethoxysilane in sequence With hydroxy silicone oil, each raw material is added and mixed and stirred until the raw materials are evenly dispersed, then the remaining precipitated white carbon black is added in two parts, mixed and stirred evenly to obtain material B;
  • Step C According to parts by weight, add graphene nano powder, nano metal powder and conductive carbon black to the material B prepared in step B, stir and mix the materials to form a mass to obtain material C;
  • Step D The material C obtained by mixing the materials in step C into a dough is heated and mixed, and the material is discharged, and the smelting is uniform, and then the vulcanizing agent is added, stirred evenly, rolled down, and cut to obtain the graphene-copper composite conductive sheet .
  • the time for stirring and banburying is 5-15 min; in the step D, the specific steps of the temperature-rising rubber mixing are: heating the material C prepared after mixing the materials in step C to 90-100°C , And then carry out vacuum treatment to obtain the kneaded material, and then carry out the subsequent discharging process; the time of the vacuum treatment is 120-130min, and the vacuum degree is -0.06MPa ⁇ -0.08MPa.
  • the graphene-copper composite conductive sheet is prepared by adopting the above steps, and the parameters of each step are strictly controlled.
  • the operation and control are convenient, the quality is stable, the production efficiency is high, and the production cost is low.
  • the composite conductive sheet has low electrical resistivity and high electrical conductivity, good electrical conductivity, and better mechanical properties such as tensile strength, elongation at break and tear strength, high stability, and large-scale industrialization Production; among them, by strictly controlling the addition order and processing parameters of other materials, first add precipitated silica in batches and equal amounts to improve the dispersibility of precipitated silica in the silicone rubber matrix and improve the mechanical strength of the silicone rubber matrix , And then adding hydroxy-terminated polydimethylsiloxane and release agent can prevent the precipitation of white carbon black when improving the mechanical properties of silicone rubber, making silicone rubber prone to structuring, and inhibiting the structuring of silicone rubber; at the same time, Vinyl trimethoxysilane and hydroxy silicone oil are added to the silicone rubber
  • the graphene heating slurry includes the following raw materials in parts by weight: 20-40 parts of modified graphene oxide nano powder, 10-15 parts of nano copper powder, 30-50 parts of epoxy resin, epoxy acrylate , 20-25 parts, 1-3 parts of methylimidazole, 1-3 parts of silane coupling agent, 0.5-2.0 parts of curing agent, 50-60 parts of solvent.
  • the heating circuit obtained can have better electrical conductivity and thermal conductivity, and can be easily coated on the surface of the conductive sheet, and has good ductility.
  • the heating element generates heat uniformly; among them, the modified graphene oxide nano-powder used can interact with the graphene nano-powder of the conductive sheet, and the electron migration rate is similar, which can promote the migration and flow of electrons, so that the current is in the conductive sheet and The migration and flow between the heating circuits is smooth, the conductive bonding strength between the conductive sheet and the heating circuit is realized, the conductive performance is excellent, and the heating efficiency is high.
  • the slurry can have better adhesion, ductility and fluidity, and can be uniformly and stably attached to the conductive sheet, so that the heating circuit has a better Good electrical and thermal conductivity, uniform heating, high heating efficiency
  • the epoxy resin used in the molecular structure contains one or more epoxy groups, which can form a stable three-dimensional network structure system after being cross-linked with the curing agent , Improve the stability of the prepared heating circuit, and at the same time, the epoxy resin system after curing and crosslinking contains more reactive epoxy groups, hydroxyl groups, ether bonds, amine bonds, ester bonds and other polar groups to improve
  • the cured and cross-linked graphene heating paste has excellent adhesion, stable adhesion to the conductive sheet, and low shrinkage; the epoxy acrylate has high reactivity and high cross-linking density, and is compatible with epoxy resin Crosslinking can improve the conductivity and stability of the graphene heating paste, and it is
  • graphene oxide As a two-dimensional nanomaterial, graphene oxide is difficult to disperse uniformly in epoxy resin, and it is prone to agglomeration, which reduces the uniformity of the extension of graphene heating slurry. Therefore, by modifying the surface groups of graphene oxide, it can Improve its dispersion uniformity in the epoxy resin-epoxy acrylate system, and combine the use of nano copper powder to jointly improve the conductivity and heating efficiency of the graphene heating paste; the methyl imidazole used can promote graphene The fluidity and uniformity of the extension of the heating paste can avoid sagging during the printing process on the conductive sheet.
  • the silane coupling agent used can promote the cross-linking coupling between epoxy resin and epoxy acrylate, and the cross-linking coupling between epoxy resin-epoxy acrylate and curing agent, Improve the stability of the graphene heating paste; the solvent used improves the solubility of the raw materials, and promotes the solubility of the modified graphene oxide nano powder and nano copper powder in the epoxy resin-epoxy acrylate system.
  • the modified graphene oxide nanopowder is prepared by the following steps:
  • Step (1) Disperse the graphene oxide nano powder in an alcohol solvent, stir and mix uniformly to obtain a graphene oxide dispersion
  • Step (2) Add 1-pyrene butyric acid dropwise to the graphene oxide dispersion obtained in step (1), add dropwise while stirring, and prepare a reaction liquid after the dropwise addition is completed;
  • Step (3) Add hydrazine hydrate to the reaction solution prepared in step (2), heat and stir in a nitrogen atmosphere for 20-30 minutes, and finally vacuum filter to obtain modified graphene oxide nanopowder.
  • the mixing ratio of the graphene oxide nanopowder and the alcohol solvent is 3-8:10, and the alcohol solvent is at least one of n-butanol, methanol, ethanol and isopropanol.
  • the mixing ratio of 1-pyrene butyric acid and graphene oxide dispersion liquid is 2:3-4; in the step (3), the mixing ratio of hydrazine hydrate and the reaction liquid is 1 :2-5.
  • the modified graphene oxide nanopowder is prepared through the above steps, and the material mixing ratio of each step is strictly controlled, which can improve the solubility of graphite oxide in the epoxy resin-epoxy acrylate system, and has a higher Good electrical conductivity; among them, first disperse the graphene oxide nanopowder in an alcohol solvent to promote the dissolution of the graphene oxide nanopowder, and then use the combination of 1-pyrene butyric acid and graphene oxide with a large ⁇ -conjugated system ⁇ - ⁇ bond interaction, non-covalent bond modification, improve the dispersibility of graphene oxide in the solution system, promote its dispersion and dissolution in the epoxy resin-epoxy acrylate system, and use hydrazine hydrate to perform Reduction, vacuum filtration, to improve the conductivity and toughness of graphene oxide, so that the graphene heating paste prepared further has better flexibility, easy to print on the conductive sheet, improve the electron mobility and conductivity, and improve the
  • each part of the silane coupling agent includes 2-3 parts of ⁇ -aminopropyltriethoxysilane, 2-3 parts of methyltriethoxysilane, 1-2 parts of pyrophosphate titanate and 4-5 parts of vinyl tris ( ⁇ -methoxyethoxy) silane;
  • the curing agent is triethanolamine, 2-methylimidazole and epoxybutyl ether adduct, diaminodiphenyl sulfone, At least one of phenylenediamine and ⁇ -hydroxyethyl ethylene diamine;
  • the solvent is at least one of acetone, xylene, and isopropanol.
  • the above-mentioned silane coupling agent used can improve the wettability and dispersibility of the material in the graphene heating paste, and promote the cross-linking coupling between epoxy resin and epoxy acrylate.
  • the cross-linking coupling between resin-epoxy acrylate and curing agent, epoxy resin-epoxy acrylate and conductive powder improves the stability of graphene heating paste; among them, ⁇ -aminopropyl is used
  • Triethoxysilane contains two different active groups-amino and ethoxy, which can effectively improve epoxy resin-epoxy acrylate and conductive powder (modified graphene oxide nano powder and nano copper powder)
  • the cross-linking coupling between the two enhances the adhesion between the two and improves the dispersion uniformity of the conductive powder; the vinyl tris ( ⁇ -methoxyethoxy) silane can effectively improve the epoxy resin-epoxy acrylic acid
  • Cross-linking coupling between ester and conductive powder modified graphene oxide nano
  • the above curing agent used can be cured and cross-linked with epoxy resin and epoxy acrylate to improve the curing efficiency and curing stability of the graphene heating paste.
  • the amine group in the triethanolamine used can be compared with the system
  • the epoxy group is cross-linked to form a stable three-dimensional network structure system, which improves the stability of the prepared heating circuit; and the adduct of 2-methylimidazole and epoxybutyl ether is easy to interact with epoxy resin and epoxy acrylate Combination, while promoting the solidification of the system materials, it can also improve the strength and corrosion resistance of the graphene heating slurry, with excellent electrical properties;
  • the used diaminodiphenyl sulfone and m-phenylenediamine can improve the graphene heating slurry Conductivity and heat resistance, excellent corrosion resistance; the used ⁇ -hydroxyethyl ethylene diamine and epoxy group have a faster cross-linking and curing reaction, which can effectively improve the curing efficiency of graphene heating paste.
  • the graphene heating paste is prepared by the following steps:
  • Step 1 Add epoxy resin, epoxy acrylate, silane coupling agent and curing agent to the solvent in parts by weight, mix and stir, and after uniform dispersion, add the modified graphene oxide nanopowder to it, Under the condition of a frequency of 15000-18000HZ, ultrasonic stirring is used for 2-5h to prepare a mixture;
  • Step 2 According to parts by weight, the nano copper powder and methyl imidazole are added to the mixture obtained in step 1, mixed and stirred, and dispersed uniformly to obtain a graphene heating slurry.
  • the graphene heating paste is prepared through the above steps, and the cross-linking coupling degree of the epoxy resin and epoxy acrylate is improved by the silane coupling agent, and the formation of a stable resin paste system is promoted.
  • the agent cross-links and cures the epoxy resin and epoxy acrylate, improves the cross-linking degree of the system, and promotes the curing and molding of the heating circuit, and then the modified graphene oxide nanopowder is added to the resin system with good dispersibility , It has high solubility, and interacts with the graphene component in the conductive sheet to improve the mobility and smoothness of current electrons in the conductive sheet and heating circuit, improve the conductivity and heating efficiency, and finally combine the nano copper powder and methyl imidazole Add to it to improve the dispersibility and conductivity of the material, so that the obtained graphene heating paste has better fluidity and uniformity of extension, no sagging phenomenon occurs during the printing process on the conductive sheet, and it can coordinate the epoxy
  • the curing of resin cross-link
  • the embodiment of the present invention also provides a method for preparing the graphene heating component 20, which includes the following steps:
  • Step 1 Print the graphene heating paste on the outer surface of the conductive sheet, and obtain a heating circuit layer after curing;
  • Step 2 Take a package insulating layer and cover it on the outer surface of the heating circuit layer to obtain a composite layer;
  • Step 3 Take a substrate layer, corona treatment on both sides of the substrate layer, and then apply adhesive on both sides of the substrate layer to prepare the first adhesive layer and the second adhesive layer respectively. Adhesively connect the inner surface of the composite layer with the outer surface of the second adhesive layer, and connect the outer surface of the component body with the inner surface of the first adhesive layer. After hot pressing and curing, the graphene heating element is prepared 20.
  • the curing temperature of the graphene heating paste is 110-120°C, and the curing time is 15-25s; in the step 3, the temperature of the hot pressing is 130-150°C, and the pressing pressure It is 2-4KPa, and the pressing time is 6-12s.
  • the graphene heating element 20 is prepared through the above steps, and the parameters of each step are strictly controlled.
  • the operation is simple, the control is convenient, the production cost is reduced, the product quality is high, and the obtained graphene heating element 20 generates uniform heat. , It has high heating efficiency, and has high mechanical properties such as high strength and impact resistance.
  • corona treatment of the substrate layer it can effectively improve the adhesion of the first adhesive layer and the second adhesive layer to the substrate layer.
  • the preparation method of the graphene heating component 20 in the embodiment of the present invention has simple operation, convenient control, reduced production costs, high product quality, and uniform heating of the obtained graphene heating component 20, high heating efficiency, and high
  • the mechanical properties such as the strength and impact strength of the substrate layer can be effectively improved by corona treatment of the substrate layer, which can effectively improve the bonding strength of the first adhesive layer and the second adhesive layer to the substrate layer, and improve the performance of the graphene heating composite material.
  • the interlayer adhesion stability avoids the phenomenon of interlayer separation, and the graphene heating composite material and the component body are bonded stably by thermocompression bonding, so that the performance of the graphene heating component 20 is stable, and the heating composite material is not easy to fall off. Stable and can be used for mass production.
  • a graphene heating component 20, comprising a component body 1 and a graphene heating composite material 2 provided on the outer surface of the component body 1.
  • the graphene heating composite material 2 includes a first adhesive layer 21 sequentially arranged from the inside to the outside , The base material layer 22, the second adhesive layer 23, the conductive sheet 24, the heating circuit layer 25 and the packaging insulating layer 26, the inner surface of the first adhesive layer 21 is adhesively connected to the outer surface of the component body 1
  • the conductive sheet 24 is a graphene-copper composite conductive sheet, and the heating circuit layer 25 is made of graphene heating paste printing.
  • the base material layer 22 is a PVC film whose outer and inner surfaces have been corona treated; the first adhesive layer 21 and the second adhesive layer 23 are both polyolefin hot melt adhesive layers; the packaging insulating layer 26 includes 40 parts of glass powder, 15 parts of silicon dioxide, 3 parts of hydroxyethyl cellulose and 60 parts of terpineol.
  • the graphene-copper composite conductive sheet includes the following raw materials by weight: 15 parts of graphene nano powder, 30 parts of nano metal powder, 50 parts of methyl vinyl silicone rubber, and 0.5 parts of hydroxyl-terminated polydimethylsiloxane , 4 parts of vinyl trimethoxysilane, 3 parts of precipitated white carbon black, 5 parts of conductive carbon black, 0.5 parts of hydroxy silicone oil and 0.5 parts of vulcanizing agent.
  • the nano metal powder is a mixture composed of nano copper powder and nano nickel powder in a weight ratio of 5:1-2:2, and the nano copper powder is a spherical silver-coated copper powder whose surface is coated with nano silver powder;
  • the vinyl content of the methyl vinyl silicone rubber is 0.14% and the molecular weight is 550,000;
  • the hydroxyl content of the hydroxy silicone oil is 4%;
  • the vulcanizing agent is 2,5-dimethyl-2,5-di-tert Butyl peroxide hexane.
  • a graphene heating component 20, comprising a component body 1 and a graphene heating composite material 2 provided on the outer surface of the component body 1.
  • the graphene heating composite material 2 includes a first adhesive layer 21 sequentially arranged from the inside to the outside , The base material layer 22, the second adhesive layer 23, the conductive sheet 24, the heating circuit layer 25 and the packaging insulating layer 26, the inner surface of the first adhesive layer 21 is adhesively connected to the outer surface of the component body 1
  • the conductive sheet 24 is a graphene-copper composite conductive sheet, and the heating circuit layer 25 is made of graphene heating paste printing.
  • the base material layer 22 is a PE film whose outer surface and inner surface have been corona treated; the first adhesive layer 21 and the second adhesive layer 23 are both polyamide hot melt adhesive layers; the package insulation Layer 26 includes 45 parts of glass powder, 18 parts of silicon dioxide, 4 parts of hydroxyethyl cellulose, and 65 parts of terpineol.
  • the graphene-copper composite conductive sheet includes the following raw materials in parts by weight: 16 parts of graphene nano powder, 32 parts of nano metal powder, 52 parts of methyl vinyl silicone rubber, and 0.8 parts of hydroxyl-terminated polydimethylsiloxane , 5 parts of vinyl trimethoxysilane, 4 parts of precipitated white carbon black, 6 parts of conductive carbon black, 0.6 parts of hydroxy silicone oil, 0.6 parts of vulcanizing agent.
  • the nano metal powder is a mixture composed of nano copper powder and nano nickel powder in a weight ratio of 5.2:1-2:2.2, and the nano copper powder is a spherical silver-coated copper powder whose surface is coated with nano silver powder;
  • the vinyl content of the methyl vinyl silicone rubber is 0.15% and the molecular weight is 580,000; the hydroxyl content of the hydroxy silicone oil is 5%;
  • the vulcanizing agent is 2,5-dimethyl-2,5-di-tert Butyl peroxide hexane.
  • a graphene heating component 20, comprising a component body 1 and a graphene heating composite material 2 provided on the outer surface of the component body 1.
  • the graphene heating composite material 2 includes a first adhesive layer 21 sequentially arranged from the inside to the outside , The base material layer 22, the second adhesive layer 23, the conductive sheet 24, the heating circuit layer 25 and the packaging insulating layer 26, the inner surface of the first adhesive layer 21 is adhesively connected to the outer surface of the component body 1
  • the conductive sheet 24 is a graphene-copper composite conductive sheet, and the heating circuit layer 25 is made of graphene heating paste printing.
  • the base material layer 22 is a PET film or a PP film whose outer and inner surfaces have been corona treated; the first adhesive layer 21 and the second adhesive layer 23 are both polyurethane adhesive layers; the package insulation Layer 26 includes 50 parts of glass powder, 20 parts of silicon dioxide, 5 parts of hydroxyethyl cellulose, and 70 parts of terpineol.
  • the graphene-copper composite conductive sheet includes the following raw materials by weight: 18 parts of graphene nano powder, 35 parts of nano metal powder, 55 parts of methyl vinyl silicone rubber, and 1.0 part of hydroxy-terminated polydimethylsiloxane , 6 parts of vinyl trimethoxysilane, 5 parts of precipitated white carbon black, 8 parts of conductive carbon black, 0.8 parts of hydroxy silicone oil, 0.8 parts of vulcanizing agent.
  • the nano metal powder is a mixture composed of nano copper powder and nano nickel powder in a weight ratio of 5.5:1-2:2.5, and the nano copper powder is a spherical silver-coated copper powder whose surface is coated with nano silver powder;
  • the vinyl content of the methyl vinyl silicone rubber is 0.16% and the molecular weight is 600,000; the hydroxyl content of the hydroxy silicone oil is 6%;
  • the vulcanizing agent is 2,5-dimethyl-2,5-di-tert Butyl peroxide hexane.
  • a graphene heating component 20, comprising a component body 1 and a graphene heating composite material 2 provided on the outer surface of the component body 1.
  • the graphene heating composite material 2 includes a first adhesive layer 21 sequentially arranged from the inside to the outside , The base material layer 22, the second adhesive layer 23, the conductive sheet 24, the heating circuit layer 25 and the packaging insulating layer 26, the inner surface of the first adhesive layer 21 is adhesively connected to the outer surface of the component body 1
  • the conductive sheet 24 is a graphene-copper composite conductive sheet, and the heating circuit layer 25 is made of graphene heating paste printing.
  • the substrate layer 22 is a PC film whose outer surface and inner surface are both corona treated; the first adhesive layer 21 and the second adhesive layer 23 are both organic silicone adhesive layers or epoxy resin adhesive layers;
  • the packaging insulating layer 26 includes 55 parts of glass powder, 23 parts of silicon dioxide, 6 parts of hydroxyethyl cellulose, and 75 parts of terpineol.
  • the graphene-copper composite conductive sheet includes the following raw materials in parts by weight: 19 parts of graphene nano powder, 38 parts of nano metal powder, 58 parts of methyl vinyl silicone rubber, and 1.3 parts of hydroxyl-terminated polydimethylsiloxane , 7 parts of vinyl trimethoxysilane, 7 parts of precipitated white carbon black, 9 parts of conductive carbon black, 0.9 parts of hydroxy silicone oil, 0.9 parts of vulcanizing agent.
  • the nano metal powder is a mixture composed of nano copper powder and nano nickel powder in a weight ratio of 5.8:1-2:2.8, and the nano copper powder is a spherical silver-coated copper powder whose surface is coated with nano silver powder;
  • the vinyl content of the methyl vinyl silicone rubber is 0.17% and the molecular weight is 630,000; the hydroxyl content of the hydroxy silicone oil is 7%; the vulcanizing agent is 2,5-dimethyl-2,5-di-tert Butyl peroxide hexane.
  • a graphene heating component 20, comprising a component body 1 and a graphene heating composite material 2 provided on the outer surface of the component body 1.
  • the graphene heating composite material 2 includes a first adhesive layer 21 sequentially arranged from the inside to the outside , The base material layer 22, the second adhesive layer 23, the conductive sheet 24, the heating circuit layer 25 and the packaging insulating layer 26, the inner surface of the first adhesive layer 21 is adhesively connected to the outer surface of the component body 1
  • the conductive sheet 24 is a graphene-copper composite conductive sheet, and the heating circuit layer 25 is made of graphene heating paste printing.
  • the substrate layer 22 is a PEN film whose outer and inner surfaces have been corona treated; the first adhesive layer 21 and the second adhesive layer 23 are both EVA hot melt adhesive layers; the packaging insulating layer 26 It includes 60 parts of glass powder, 25 parts of silicon dioxide, 8 parts of hydroxyethyl cellulose, and 80 parts of terpineol.
  • the graphene-copper composite conductive sheet includes the following raw materials by weight: 20 parts of graphene nano powder, 40 parts of nano metal powder, 60 parts of methyl vinyl silicone rubber, and 1.5 parts of hydroxyl-terminated polydimethylsiloxane , 8 parts of vinyl trimethoxysilane, 8 parts of precipitated white carbon black, 10 parts of conductive carbon black, 1.0 part of hydroxy silicone oil, 1.0 part of vulcanizing agent.
  • the nano metal powder is a mixture composed of nano copper powder and nano nickel powder in a weight ratio of 6:1-2:3, and the nano copper powder is a spherical silver-coated copper powder whose surface is coated with nano silver powder;
  • the vinyl content of the methyl vinyl silicone rubber is 0.18% and the molecular weight is 650,000;
  • the hydroxyl content of the hydroxy silicone oil is 8%;
  • the vulcanizing agent is 2,5-dimethyl-2,5-di-tert Butyl peroxide hexane.
  • Comparative example 1 The difference between this comparative example and the above-mentioned example 3 is that the conductive sheet includes the following raw materials in parts by weight: 35 parts of nano metal powder, 55 parts of methyl vinyl silicone rubber, and hydroxyl-terminated polydimethylsiloxane 1.0 part of alkane, 6 parts of vinyltrimethoxysilane, 5 parts of precipitated white carbon black, 8 parts of conductive carbon black, 0.8 part of hydroxy silicone oil, 0.8 part of vulcanizing agent.
  • Comparative example 2 The difference between this comparative example and the above example 3 is that the graphene-copper composite conductive sheet includes the following raw materials by weight: 18 parts of graphene nano powder, 35 parts of nano metal powder, and methyl vinyl Silicone rubber, 55 parts, 1.0 part of hydroxy-terminated polydimethylsiloxane, 6 parts of vinyl trimethoxysilane, 5 parts of precipitated white carbon black, 8 parts of conductive carbon black, 0.8 parts of hydroxy silicone oil, 0.8 parts of vulcanizing agent.
  • the nano metal powder is a mixture composed of nano copper powder and nano nickel powder in a weight ratio of 5.5:1-2:2.5, and the surface of the nano copper powder is not covered by the nano silver powder.
  • Comparative example 3 The difference between this comparative example and the above-mentioned example 3 is that the graphene heating slurry includes the following raw materials by weight: 30 parts of graphene oxide nano powder, 13 parts of nano copper powder, and 40 parts of epoxy resin , 23 parts of epoxy acrylate, 2 parts of methyl imidazole, 2 parts of silane coupling agent, 1.3 parts of curing agent, 55 parts of solvent.
  • the graphene heating composite material prepared by the present invention has an electron mobility as high as 18630-19200 cm 2 /(V ⁇ s), a resistivity of 7.2-8.3 ( ⁇ cm), and a conductivity of 1.33*10 6 ⁇ 1.46*10 6 (s/m), the thermal conductivity is as high as 5780-5950W/(m ⁇ K), indicating that the present invention adopts the conductive sheet 24 containing graphene nano-powder and the heating element containing modified graphene oxide nano-powder The circuit interacts, and the electrons promoted by the graphene component of the two migrate and flow between the conductive sheet 24 and the heating circuit layer 25, which improves the conductivity and heating efficiency.
  • Comparative Example 1 has no graphene nano-powder in the conductive sheet 24, and the electron mobility, electrical conductivity, and thermal conductivity are significantly reduced, and the resistivity increases, indicating that no graphene nano-powder is added.
  • the electron transfer efficiency between the conductive sheet 24 of the powder composition and the heating circuit layer 25 is significantly reduced, which also shows that the conductive sheet of the present invention adopts the graphene nano-powder, and can be compared with the heating containing the modified graphene oxide nano-powder.
  • the circuit functions, the graphene components of the two can promote the migration and flow of electrons between the conductive sheet 24 and the heating circuit layer 25, and improve the conductivity and heating efficiency.
  • the invention uses nano silver powder to coat the surface of the nano copper powder.
  • the volume resistivity of the silver layer on the surface is low, which can effectively reduce the volume resistivity of the surface of the nano copper powder, increase the conductivity of the conductive sheet, and improve the conductivity and heating efficiency.
  • Comparative Example 3 uses graphene oxide in the graphene heating slurry of Comparative Example 3 instead of modified graphene oxide modified by ⁇ - ⁇ bonds.
  • the electron mobility The electrical conductivity and thermal conductivity both decreased significantly, and the electrical resistivity increased, indicating that graphene oxide without ⁇ - ⁇ bond modification has a low solubility in the epoxy system of the slurry, which in turn reduces the electrical conductivity, thermal conductivity and other properties.
  • the present invention can improve the uniformity of dispersion in the epoxy resin-epoxy acrylate system by using modified graphene oxide nanopowder as one of the raw material of the slurry of the heating circuit layer, and combined with the nano copper Powder, together to improve the conductivity and heating efficiency of graphene heating paste.
  • the graphene-copper composite conductive sheet prepared by the present invention has good compatibility with conductive metal powder and has better mechanical properties such as tensile strength, resilience, elongation at break, and tear strength. Performance, processing formability, easy processing and forming to prepare graphene heating composite materials and heating components, and high stability.
  • the electrical interface 40 of the graphene hair growth device is a magnetic interface or a USB interface.
  • the electrical interface 40 is mainly connected with a power cord and connected to an external power source, controller, or mobile terminal, so that the graphene heating component 20 can be energized and the graphene heating component 20 can be controlled and the graphene heating component 20 can be heated.
  • a magnetic interface or a USB interface can be selected as the electrical interface 40 of the ink olefin generating device of this embodiment.
  • the housing 10 of the graphene hair growth device is provided with a fixing seat 50, and the circuit board 70 is clamped On the fixing base 50.
  • the setting of the fixing seat 50 can facilitate the installation and fixing of the circuit board 70, so that when the graphene hair growth device is used, even if the casing 10 is constantly shaken or the casing 10 is subjected to a certain external force, there is still no need to worry about the The circuit board 70 is loose or falls off, so that the stability and reliability of the connection between the circuit board 70 and the graphene heating component 20 are ensured.
  • the housing 10 of the graphene hair growth device provided is further provided with a battery 60, the battery 60 and the circuit board 70 Electric connection.
  • the arrangement of the battery 60 can directly supply power to the graphene heating element 20, so that the graphene hair-generating device can be operated without using a power cord to connect to the electrical interface 40, and the graphene hair-generating device can be reduced when using the graphene hair-generating device.
  • the interference caused by the power cord to the user improves the comfort of use.
  • the battery 60 of the graphene hair growth device is a dry battery 60.
  • the dry battery 60 is used as the battery 60, which is convenient to use, and the dry battery 60 can be quickly replaced to ensure the battery life of the graphene hair-generating device.
  • the battery 60 of the graphene hair-generating device is a rechargeable battery 60, and the rechargeable battery 60 can be charged after the power cord is connected to the electrical port.
  • the fixing seat 50 of the graphene hair growth device provided is provided with a battery cavity 51, and the battery 60 is embedded in the battery cavity 51 Inside.
  • the arrangement of the battery 60 cavity can accommodate and fix the battery 60 to ensure the stability of the battery 60 after installation.
  • the stability of the position of the battery 60 after installation is maintained to ensure the stability of the output power of the battery 60.
  • the front side of the fixing base 50 is provided with two embedding grooves 53 with corresponding positions and spaced apart, and the two sides of the circuit board 70 can be respectively installed in the front of the two embedding grooves 53.
  • the embedding groove 53 is a long strip structure, so that when the circuit board 70 is inserted into the embedding groove 53, the circuit board 70 is pushed to slide a certain distance relative to the fixing base 50, thereby increasing the contact area between the embedding groove 53 and the circuit board 70 Then the circuit board 70 can be stably fixed.
  • the fixing seat 50 of the graphene hair growth device is provided at a front side position inside the housing 10, and a front side of the inner side of the housing 10 is provided.
  • the side position refers to the front position when the graphene hair growth device is worn on the head of the human body, and the direction that is aligned with the forehead position of the human head is the front position.
  • the battery 60 and the circuit board 70 are also arranged at the front position, and the electrical interface 40 connected to the circuit board 70 can also be arranged at the front position, so that it is convenient for the user to hold the power cord and plug in the electrical interface 40.
  • it has the advantage of convenience.
  • the housing 10 of the graphene hair growth device is provided with two elastic clamping posts 1221 arranged at intervals, preferably two elastic
  • the clamping posts 1221 are all arranged at the front side inside the housing 10.
  • two opposite sides of the fixing seat 50 are provided with bumps 52, and the distance between the two bumps 52 is close to the value of the distance between the two elastic clamping posts 1221, so as to ensure that the fixing seat 50 is set at When between the two elastic clamping posts 1221, the two protrusions 52 are respectively clamped with the two elastic clamping posts 1221.
  • the two elastic clamping studs 1221 have a certain deformation elasticity, so that when the fixing seat 50 is installed, the two elastic clamping studs 1221 can be first yielded to deform them, so that the fixing seat 50 is set on the two elastic clamping studs. Between 1221, after removing the force that yields the deformation of the two elastic clamping columns 1221, the elastic clamping columns 1221 are reset under the action of their own elastic force, so that they are respectively clamped with the two protrusions 52 to realize the installation of the fixing seat 50 And positioning.
  • the housing 10 of the graphene hair growth device is provided with ear avoidance positions 102, there are two ear avoidance positions 102, and two ear avoidance positions 102 are respectively located on both sides of the head cavity 101, and the two ear avoidance positions 102 are both used to avoid the ear avoidance positions 102 of the ear.
  • the shape of the ear avoidance 102 is an arc shape, which can ensure that when the graphene hair growth device is worn on the head, the bottom edge of the housing 10 will not press against the human ear, thereby improving the comfort of using the graphene hair growth device Sex.
  • the housing 10 of the graphene hair growth device includes an inner liner 12 and an upper cover 11, and a head adapted to the shape of the head
  • the cavity 101 is arranged at the bottom of the inner container 12, and the inner container 12 is connected with the upper cover 11 to form a housing 10 with a cavity inside.
  • the circuit board 70, the graphene heating component 20 and the battery 60 can all be arranged in the housing 10 Internal chamber.
  • the connection between the inner container 12 and the upper cover 11 may be a fixed connection or a detachable connection. For example, it can be bonding, ultrasonic welding, or fastener connection.
  • the inner liner 12 of the housing 10 of the graphene hair growth device provided can be made of soft plastic, so that the inner liner 12 is in soft contact with the head of the human body. Improve the comfort of the head when using the graphene hair growth device.
  • the inner liner 12 of the casing 10 of the graphene hair growth device includes an inner liner 12 main body and a bottom periphery of the main body of the inner liner 12
  • the upper cover 11 fits in contact with the outer periphery of the ring 122, so that the inner bladder 12 and the upper cover 11 are connected to form a housing 10 with a cavity inside.
  • the elastic locking column 1221 is arranged at a position where the annular retaining edge 122 is located on the front side.
  • an escape hole 1222 is provided at the bottom of the annular retaining edge 122, and the escape hole 1222 is used for the button 71 to be accommodated and exposed, so that the user can operate and press the button 71.
  • the ear avoidance positions 102 are provided at the two bottom positions corresponding to the annular retaining edge 122.
  • FIGS. 1 to 5 Another embodiment of the present invention provides a graphene hair-growth device, as shown in FIGS. 1 to 5, which includes a housing 10, a circuit board 70, a battery 60, and a graphene heating component 20.
  • the housing 10 is provided with A head cavity 101 with a matching head shape, the graphene heating component 20, the battery 60, and the circuit board 70 are all arranged inside the housing 10, and the graphene heating component 20 is
  • the circuit board 70 is electrically connected, and the battery 60 is electrically connected to the circuit board 70.
  • the housing 10 When the graphene hair growth device provided by the embodiment of the present invention is specifically used, the housing 10 is worn on the head of the human body, wherein the head cavity 101 provided on the housing 10 fits the wearer’s head, and the battery 60 Power is supplied to the graphene heating element 20, the graphene heating element 20 can achieve rapid temperature rise, and the far infrared rays generated by the graphene heating element 20 can produce a heating effect and a resonance effect on the human head, so that the head scalp position generates high frequency Vibration can deeply remove oxidized free radicals from the dermis to the epidermis, promote blood circulation in the capillaries of the scalp, thereby reducing the occurrence of hair loss and assisting in better hair growth.
  • the use of a power cord is not required, and when the graphene hair growth device is used, the interference caused by the power cord to the user can be reduced, and the comfort of use can be improved.

Landscapes

  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Rehabilitation Therapy (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Pain & Pain Management (AREA)
  • Epidemiology (AREA)
  • Biophysics (AREA)
  • Conductive Materials (AREA)

Abstract

本发明属于理疗产品技术领域,尤其涉及一种石墨烯生发装置,包括壳体、电路板和石墨烯发热组件,所述壳体设置有与头部形状相适配的头型腔,所述石墨烯发热组件和所述电路板均设置在所述壳体的内部,且所述石墨烯发热组件与所述电路板电连接,所述壳体的侧部设置有与所述电路板电连接的电接口。本发明的石墨烯生发装置在使用时,通电后,可以通过石墨烯发热组件产生的远红外线可以在人体的头部产生温热效应和共振效应,使头部头皮位置产生高频震动,可由真皮层到表皮层深层次地清除氧化的自由基,促进头皮微血管的血液循环,从而实现减少脱发的情况发生,以及辅助让头发更好地生长。

Description

石墨烯生发装置 技术领域
本发明属于理疗产品技术领域,尤其涉及一种石墨烯生发装置。
背景技术
现代社会,经常会因为生活、工作、学习过程中精神压力过大,精神紧张,经常熬夜等的原因,导致人们的休息时间减少,产生失眠焦虑,从而致使人们长期处于精神紧绷或失调的状态。而当人们长期处于精神紧绷或失调的状态时,还会造成头发的脱落,甚至影响头发的良好生长,进而进一步导致人们的精神更加紧绷或失调,长期如此,对人们的生活和工作都会造成极大的影响。
发明内容
本发明的目的在于提供一种石墨烯生发装置,旨在解决现有技术中的人们存在头发脱离以及无法良好生长的技术问题。
为实现上述目的,本发明实施例提供的一种石墨烯生发装置,包括壳体、电路板和石墨烯发热组件,所述壳体设置有与头部形状相适配的头型腔,所述石墨烯发热组件和所述电路板均设置在所述壳体的内部,且所述石墨烯发热组件与所述电路板电连接,所述壳体的侧部设置有与所述电路板电连接的电接口。
本发明实施例提供的石墨烯生发装置中的上述一个或多个技术方案至少具有如下技术效果之一:使用时,将壳体佩戴在人体的头部上,其中,壳体上设置的头型腔与佩戴者的头部相适配,电接口通过电源线与外界的电源连接,如此实现与电接口电连接的石墨烯发热组件供电,石墨烯发热组件可以实现快速升温,且石墨烯发热组件产生的远红外线可以在人体的头部产生温热效应和共 振效应,使头部头皮位置产生高频震动,可由真皮层到表皮层深层次地清除氧化的自由基,促进头皮微血管的血液循环,从而实现减少脱发的情况发生,以及辅助让头发更好地生长。
为实现上述目的,本发明另一实施例提供的一种石墨烯生发装置,其包括壳体、电路板、电池和石墨烯发热组件,所述壳体设置有与头部形状相适配的头型腔,所述石墨烯发热组件、所述电池和所述电路板均设置在所述壳体的内部,所述石墨烯发热组件与所述电路板电连接,所述电池与所述电路板电连接。
本发明实施例提供的石墨烯生发装置中的上述一个或多个技术方案至少具有如下技术效果之一:使用时,将壳体佩戴在人体的头部上,其中,壳体上设置的头型腔与佩戴者的头部相适配,电池为石墨烯发热组件供电,石墨烯发热组件可以实现快速升温,且石墨烯发热组件产生的远红外线可以在人体的头部产生温热效应和共振效应,使头部头皮位置产生高频震动,可由真皮层到表皮层深层次地清除氧化的自由基,促进头皮微血管的血液循环,从而实现减少脱发的情况发生,以及辅助让头发更好地生长。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的石墨烯生发装置的结构示意图。
图2为图1中的石墨烯生发装置的另一视角的结构示意图。
图3为图1中的石墨烯生发装置隐藏上盖后的结构示意图。
图4为图3中的A处的局部结构放大示意图。
图5为图1中的石墨烯生发装置的结构分解示意图。
图6为本发明实施例提供的石墨烯生发装置的固定座的结构示意图。
图7为本发明实施例提供的石墨烯生发装置的石墨烯发热组件的剖切图。
图8为本发明实施例提供的石墨烯生发装置的石墨烯发热组件的分解图。
其中,图中各附图标记:
1—组件本体       2—石墨烯发热复合材料  10—壳体
11—上盖          12—内胆               20—石墨烯发热组件
21—第一胶粘层    22—基材层             23—第二胶粘层
24—导电片        25—发热线路层         26—封装绝缘层
40—电接口        50—固定座             51—电池腔
52—凸块          53—嵌装槽             60—电池
70—电路板        71—按钮               101—头型腔
102—耳朵避让位   121—内胆主体          122—环形挡缘
1221—弹性卡柱    1222—避空孔。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图1~8描述的实施例是示例性的,旨在用于解释本发明的实施例,而不能理解为对本发明的限制。
在本发明的一个实施例中,如图1~5所示,提供一种石墨烯生发装置,包括壳体10、电路板70和石墨烯发热组件20,所述壳体10设置有与头部形状相适配的头型腔101,通常,该头型腔101为类似于半圆形的结构,其盖设在人体的头部可以稳定地放置该整个石墨烯生发装置。进一步地,所述石墨烯发热组件20和所述电路板70均设置在所述壳体10的内部,壳体10可以容置石墨烯发热组件20和电路板70,并且,可以支撑石墨烯发热组件20和和电路板70。进一步地,所述石墨烯发热组件20与所述电路板70电连接,所述壳体10的侧部设置有与所述电路板70电连接的电接口40。电接口40可以通过电源线连接 外界的电源,这样可以为石墨烯发热组件20实现供电。本发明实施例提供的石墨烯生发装置具体使用时,将壳体10佩戴在人体的头部上,其中,壳体10上设置的头型腔101与佩戴者的头部相适配,电接口40通过电源线与外界的电源连接,如此实现与电接口40电连接的石墨烯发热组件20供电,石墨烯发热组件20可以实现快速升温,且石墨烯发热组件20产生的远红外线可以在人体的头部产生温热效应和共振效应,使头部头皮位置产生高频震动,可由真皮层到表皮层深层次地清除氧化的自由基,促进头皮微血管的血液循环,从而实现减少脱发的情况发生,以及辅助让头发更好地生长。
本发明实施例提供的石墨烯发热组件20,其发热均匀,电热转换效率高,升温速度快,发热效率高,而第一粘胶层能提高石墨烯发热复合材料整体与组件本体的粘结稳定性,而第二粘胶层则提高导电片与基材之间的粘结稳定性,此外,两层胶层均对热量进行阻隔,其阻隔热量作用能减少发热产出的热量向组件本体及其内部传递,减少热量的损失,并避免热量对组件本体内部元部件造成影响,对石墨烯-铜复合导电片和发热线路所产生的热量起到保温、减少热量传递损失的作用;而导电片和发热线路层设置于石墨烯发热组件20的外围,其电热转换后产生的热量触感明显,发热、加热使用感明显;而最外层的封装绝缘层起到绝缘的作用,避免导电片和发热线路层的电流和电压造成触电现象,提高了石墨烯发热组件20的使用安全性。
其中,发热电路层由石墨烯发热浆料呈“回”形、“Z”形、蛇形等形状印刷制得。所述组件本体可以为棒状、平面状等,与石墨烯发热复合材料覆合,制成发热棒、发热膜、发热垫等电热产品。
优选地,所述基材层为外表面和内表面均经过电晕处理的PET薄膜、PVC薄膜、PE薄膜、PC薄膜、PEN薄膜和PP薄膜中的一种;所述第一胶粘层和第二胶粘层均可为有机硅胶粘层、环氧树脂胶粘层、聚氨酯胶粘层、聚酰胺热熔胶粘层、聚烯烃热熔胶层和EVA热熔胶层中的一种;所述封装绝缘层包括40-60份玻璃粉、15-25份二氧化硅、3-8份羟乙基纤维素和60-80份松油醇。
本发明实施例中,通过对基材层的两侧表面均进行电晕处理,能提高第一粘胶层和第二粘胶层分别对基材层的附着力,提高第一粘胶层与基材层之间、第二粘胶层与基材层之间的粘结稳定性;而采用PET薄膜、PVC薄膜、PE薄膜、PC薄膜、PEN薄膜或PP薄膜作为基材层的原料,热稳定性高,收缩率小,并具有脚架的强度、韧性、抗冲击强度等机械性能,与第一粘胶层、第二粘胶层的附着力高,粘合稳定,不易脱离或分层;而采用的有机硅胶粘层、环氧树脂胶粘层、聚氨酯胶粘层、聚酰胺热熔胶粘层、聚烯烃热熔胶层和EVA热熔胶层,粘结强度高,热稳定性高,能与组件本体表面、基材层、导电片稳定粘结,不易出现层间脱离的现象,且热传导率低,隔热效果佳,有效减少导热片和发热线路产生的热量向组件本体内部传递,减少热量的损失。
而采用玻璃粉、二氧化硅、羟乙基纤维素和松油醇作为封装绝缘层的原料,能提高对发热线路和导电片中的电流电压绝缘作用,避免触电现象,造成安全事故;其中,采用的玻璃粉粒径小,结构无序,化学稳定性高,并具有较强的位阻能力,能均匀分散于绝缘层体系中,提高绝缘层的阻燃性、绝缘性、耐候性和抗刮性等性能;而采用的二氧化硅二氧化硅玻璃的电绝缘性能极佳,在常温下,电阻相当于普通玻璃100倍,对全部频率的介电损失很微小,绝缘耐压强度大,封装绝缘效果佳;而采用的羟乙基纤维素能提高绝缘层体系的粘度,提高各原料之间的分散性和粘合度,使得形成胶体状的绝缘层,与发热线路、导电片稳定粘合连接。而采用的松油醇能促进绝缘层各原料的分散性和混合度,提高绝缘材料的分散均匀性。
优选地,所述石墨烯-铜复合导电片包括如下重量份的原料:墨烯纳米粉体15-20份、纳米金属粉30-40份、甲基乙烯基硅橡胶50-60份、端羟基聚二甲基硅氧烷0.5-1.5份、乙烯基三甲氧基硅烷4-8份、沉淀白炭黑3-8份、导电炭黑5-10份、羟基硅油0.5-1.0份、硫化剂0.5-1.0份。
本发明实施例中,通过采用上述的原料作为导电片,导电金属混合、嵌入至硅橡胶基体中,两者的结合强度高,抗压能力强,金属粉体不掉落,且制得 的导电片柔性高,导电性高,电子迁移流通率高,强度高,抗冲击强度良好;其中,采用的石墨烯纳米粉体、纳米金属粉电阻率小,均使得硅橡胶基体具有较高的导电性能,而导电炭黑能提高导电片的抗静电性能,避免静电对电流的传输造成衰减等影响,同时导电炭黑与石墨烯纳米粉体、纳米金属粉并用,粒子间的间距变小,粒子间的相互接触几率增大,增加硅橡胶的导电性能,采用的超导电炭黑作为抗静电硅橡胶的导电炭黑,粒径小,与乙炔炭黑并用,粒子间的间距变小,粒子间的相互接触几率增大,增加硅橡胶基体的导电性能,使导电片具有较高的导电率。
而采用的端羟基聚二甲基硅氧烷能避免硅橡胶基体发生变硬、可塑性较低、加工性能降低等结构化现象,提高了硅橡胶基体的稳定性,且端羟基聚二甲基硅氧烷与沉淀白炭黑表面的Si-OH基反应,使之疏水化,更提高石墨烯纳米粉体、纳米金属粉和导电炭黑在硅橡胶体系中的分散性,并抑制硅橡胶的结构化;而通过严格控制端羟基聚二甲基硅氧烷的用量,能使制得的导电片具有较高的强度、抗冲击性等机械性能,若用量过多,则降低了导电片的柔性,硬度过大,可塑性和加工成型性较低;而若用量过少,则降低了导电原料的分散性和粘合结合性,容易出现结构化现象。
而采用的乙烯基三甲氧基硅烷能促进导电片原料的交联偶合反应,并使制得的导电片表面无黏附感,使得发热线路浆料在导电片表面易于延展开,附着力高,两者之间粘结稳定;而采用的沉淀白炭黑既能作为硅橡胶基体的填充剂,并能提高硅橡胶基体的机械强度,稳定性高,但若采用传统的气相白炭黑,会降低硅橡胶的柔软性,使其硬度过大,降低了导电片的柔性和加工成型性;而采用的羟基硅油能改善粉体(石墨烯纳米粉体、纳米金属粉、沉淀白炭黑、导电炭黑)在硅橡胶基体中的分散性,并能抑制硅橡胶基体的结构化,提高制得的导电片的可塑度和加工性能;而采用的硫化剂则能促进导电片的成型,稳定性高。
优选地,所述纳米金属粉是由纳米铜粉和纳米镍粉以重量比为5-6:1-2:2-3 组成的混合物,所述纳米铜粉是表面被纳米银粉包覆的球状银包覆铜粉;所述甲基乙烯基硅橡胶的乙烯基含量为0.14-0.18%,分子量为55-65万;所述羟基硅油的羟基含量为4-8%;所述硫化剂为2,5-二甲基-2,5-二叔丁基过氧化己烷。
本发明实施例中,通过采用纳米铜粉和纳米镍粉作为导电金属粉,电阻率小,导电率高,且粒度细,其中纳米镍粉的三维珠链状结构能使硅橡胶基体形成稳定的导电网络,使硅橡胶基体具有较高的导电率,而其中的纳米铜粉通过采用纳米银粉包覆其表面,表面所包覆的银层体积电阻率低,有效降低了球状银包覆铜整个颗粒的体积电阻率,增加导电片的导电性能。
而本发明实施例中,通过严格控制甲基乙烯基硅橡胶的乙烯基含量和分子量,利用其高分子量、主链长的特性,分子间的作用力较大,能使制得的导电片具有较佳的机械强度和加工成型性;而严格控制羟基硅油的羟基含量,能使羟基硅油具有较低的粘度,能抑制硅橡胶基体的结构化现象,并结合端羟基的活性,提高体系中粉体的分散性。而通过采用2,5-二甲基-2,5-二叔丁基过氧化己烷作为硫化剂,能提高硅橡胶基体的硫化交联作用,显著缩短硫化时间,提高成型后的硅橡胶的拉伸强度、扯断伸长率、撕裂强度等机械强度和稳定性。
优选地,所述石墨烯-铜复合导电片由如下步骤制得;
步骤A:按照重量份计,将甲基乙烯基硅橡胶进行搅拌密炼,制得物料A;
步骤B:按照重量份计,将三分之一的用量的沉淀白炭黑加入至步骤A制得的物料A中,然后依次加入端羟基聚二甲基硅氧烷、乙烯基三甲氧基硅烷和羟基硅油,每种原料加入混合搅拌至原料分散均匀,然后将剩余的沉淀白炭黑分两次加入,混合搅拌均匀,制得物料B;
步骤C:按照重量份计,将石墨烯纳米粉体、纳米金属粉和导电炭黑加入至步骤B制得的物料B中,搅拌混料成团,制得物料C;
步骤D:将步骤C混料成团后制得的物料C升温炼胶,出料,开炼均匀,然后加入硫化剂,搅拌均匀,下辊,裁切,制得石墨烯-铜复合导电片。
所述步骤A中,搅拌密炼的时间为5-15min;所述步骤D中,所述升温炼 胶具体步骤为:将步骤C混料成团后制得的物料C升温至90-100℃,然后进行抽真空处理,制得捏合料,再进行后续的出料工序;所述抽真空处理的时间为120-130min,真空度为-0.06MPa~-0.08MPa。
本发明实施例中,通过采用上述步骤制备石墨烯-铜复合导电片,并严格控制各步骤参数,操作控制方便,质量稳定,生产效率高,生产成本低,能使制得的墨烯-铜复合导电片具有较低的电阻率和较高的导电率,导电性能佳,同时具有较佳的拉伸强度、扯断伸长率和撕裂强度等机械性能,稳定性高,可大规模工业化生产;其中,通过严格控制其他物料的加入顺序及处理参数,先分批次等量加入沉淀白炭黑,能提高沉淀白炭黑在硅橡胶基体中的分散性,提高硅橡胶基体的机械强度,然后加入端羟基聚二甲基硅氧烷和脱模剂能避免沉淀白炭黑在提高硅橡胶机械性能的时候使硅橡胶易于出现结构化现象,抑制硅橡胶的结构化现象;同时,将乙烯基三甲氧基硅烷和羟基硅油加入至硅橡胶基体中,促进物料的交联聚合和混合体系的分散性,提高后续加入的导电金属粉体的分散均匀性,提高硅橡胶基体的导电率和加工成型性;最后再加入硫化剂促进硅橡胶各物料的硫化交联,提高硅橡胶基体的机械强度和稳定性。
优选地,所述石墨烯发热浆料包括如下重量份的原料:改性氧化石墨烯纳米粉体20-40份、纳米铜粉10-15份、环氧树脂30-50份、环氧丙烯酸酯、20-25份、甲基咪唑1-3份、硅烷偶联剂1-3份、固化剂0.5-2.0份、溶剂50-60份。
本发明实施例中,通过采用上述种类的原料制备石墨烯发热浆料,能使制得的发热线路具有较佳的导电性和导热性,且易于涂覆于导电片表面,延展性好,使发热体发热均匀;其中,通过采用的改性氧化石墨烯纳米粉体,能与导电片的石墨烯纳米粉体相作用,电子迁移速率相近,能促进电子的迁移流动,使得电流在导电片与发热线路之间迁移流动顺畅,实现导电片与发热线路之间的导电性结合强度,导电性能优异,发热效率高。
其中,通过采用环氧树脂和环氧丙烯酸酯作为浆料的主体,能使浆料具有较佳的附着力、延展性和流动性,能均匀而稳定地附着于导电片上,使得发热 线路具有较佳的导电性和导热性,发热均匀,发热效率高,其中采用的环氧树脂分子结构中含有一个或两个以上的环氧基,与固化剂交联后能形成稳定的三维网状结构体系,提高制得的发热线路的稳定性,同时,固化交联后的环氧树脂体系中,含有活性较大的环氧基、羟基以及醚键、胺键、酯键等极性基团,提高固化交联后的石墨烯发热浆料具有优异的附着力,与导电片稳定粘合粘结,且收缩率小;而其中的环氧丙烯酸酯反应活性高,交联密度大,与环氧树脂交联,能提高石墨烯发热浆料的导电性能和稳定性,且优选为酚醛环氧丙烯酸酯。
而氧化石墨烯作为二维纳米材料,在环氧树脂中难以分散均匀,容易发生团聚现象,降低石墨烯发热浆料的延展均匀性,因而通过对氧化石墨烯表面基团进行修饰改性,能提高其在环氧树脂-环氧丙烯酸酯体系中的分散均匀性,并结合采用的纳米铜粉,共同提高石墨烯发热浆料的导电性和发热效率;而采用的甲基咪唑能促进石墨烯发热浆料的流动性和延展均匀性,避免在导电片上印刷过程中出现流挂的现象,同时能协调环氧树脂和环氧丙烯酸酯的固化,弥补两者固化交联的不足,提高石墨烯发热浆料的稳定性;而采用的硅烷偶联剂能促进环氧树脂、环氧丙烯酸酯之间的交联耦合,以及环氧树脂-环氧丙烯酸酯与固化剂之间的交联耦合,提高石墨烯发热浆料的稳定性;而采用的溶剂则提高各原料的溶解性,促进改性氧化石墨烯纳米粉体和纳米铜粉在环氧树脂-环氧丙烯酸酯体系中的溶解度。
优选地,所述改性氧化石墨烯纳米粉体由如下步骤制得:
步骤(1):将氧化石墨烯纳米粉体分散于醇溶剂中,搅拌混合均匀,得到氧化石墨烯分散液;
步骤(2):往步骤(1)制得的氧化石墨烯分散液中滴加1-芘丁酸,边搅拌边滴加,滴加完毕后制得反应液;
步骤(3):往步骤(2)制得的反应液中加入水合联氨,在氮气保护氛围中保温搅拌20-30min,最后经真空抽滤,制得改性氧化石墨烯纳米粉体。
优选地,所述步骤(1)中,氧化石墨烯纳米粉体与醇溶剂的混合比例为 3-8:10,所述醇溶剂为正丁醇、甲醇、乙醇和异丙醇中的至少一种;所述步骤(2)中,1-芘丁酸与氧化石墨烯分散液的混合比例为2:3-4;所述步骤(3)中,水合联氨与反应液的混合比例为1:2-5。
本发明实施例中,通过上述步骤制备改性氧化石墨烯纳米粉体,并严格控制各步骤的物料混合比例,能提高氧化石墨在环氧树脂-环氧丙烯酸酯体系中的溶解度,并具有较佳的电导率;其中,先将氧化石墨烯纳米粉体分散于醇溶剂中,促进氧化石墨烯纳米粉体的溶解,然后利用具有大π共轭体系的1-芘丁酸与氧化石墨烯的π-π键相互作用,进行非共价键改性,提高氧化石墨烯在溶液体系中的分散性,促进其在环氧树脂-环氧丙烯酸酯体系中的分散溶解,并利用水合联氨进行还原,经真空抽滤,提高氧化石墨烯的导电率和韧性,使进一步制得的石墨烯发热浆料具有较佳的柔韧性,易于印刷于导电片上,提高电子迁移率和电导率,提高发热效率。
优选地,每份所述硅烷偶联剂包括2-3份γ-氨丙基三乙氧基硅烷、2-3份甲基三乙氧基硅烷、1-2份焦磷酸酯钛酸酯和4-5份乙烯基三(β-甲氧基乙氧基)硅烷;所述固化剂为三乙醇胺、2-甲基咪唑与环氧丁基醚加成物、二氨基二苯基砜、间苯二胺和β-羟乙基乙二胺中的至少一种;所述溶剂为丙酮、二甲苯、异丙醇中的至少一种。
本发明实施例中,采用的上述硅烷偶联剂能改善物料在石墨烯发热浆料中的润湿性和分散性,并促进环氧树脂、环氧丙烯酸酯之间的交联耦合、环氧树脂-环氧丙烯酸酯与固化剂之间、环氧树脂-环氧丙烯酸酯与导电粉体之间的交联耦合,提高石墨烯发热浆料的稳定性;其中,采用的γ-氨丙基三乙氧基硅烷含两种不同的活性基团——氨基和乙氧基,能有效提高环氧树脂-环氧丙烯酸酯与导电粉体(改性氧化石墨烯纳米粉体和纳米铜粉)之间的交联耦合,增强两者的粘结性,提高导电粉体的分散均匀性;采用的乙烯基三(β-甲氧基乙氧基)硅烷能有效提高环氧树脂-环氧丙烯酸酯与导电粉体(改性氧化石墨烯纳米粉体和纳米铜粉)之间的交联耦合。
而采用的上述固化剂能与环氧树脂和环氧丙烯酸酯固化交联,提高石墨烯发热浆料的固化效率和固化成型稳定性,其中,采用的三乙醇胺中的胺基能与体系中的环氧基交联,形成稳定的三维网状结构体系,提高制得的发热线路的稳定性;而2-甲基咪唑与环氧丁基醚加成物易于与环氧树脂、环氧丙烯酸酯结合,在促进体系物料固化的同时,并能提高石墨烯发热浆料的强度和耐腐蚀性,电性能优异;采用的二氨基二苯基砜和间苯二胺能提高石墨烯发热浆料的导电性和耐热性,耐腐蚀性能优异;采用的β-羟乙基乙二胺与环氧基的交联固化反应较快,能有效提高石墨烯发热浆料的固化效率。
优选地,所述石墨烯发热浆料由如下步骤制得:
步骤1:按照重量份计,将环氧树脂、环氧丙烯酸酯、硅烷偶联剂和固化剂加入至溶剂中,混合搅拌,分散均匀后将改性氧化石墨烯纳米粉体加入至其中,在频率为15000-18000HZ的条件下超声搅拌2-5h,制得混合料;
步骤2:按照重量份计,将纳米铜粉和甲基咪唑加入至步骤①制得的混合料中,混合搅拌,分散均匀后制得石墨烯发热浆料.
本发明实施例中,通过上述步骤制备石墨烯发热浆料,通过硅烷偶联剂提高环氧树脂、环氧丙烯酸酯两者的交联耦合度,促进形成稳定的树脂浆料体系,并通过固化剂对环氧树脂、环氧丙烯酸酯进行交联固化,提高体系的交联结合度,并促进发热线路的固化成型,然后将改性氧化石墨烯纳米粉体加入至树脂体系中,分散性好,溶解度高,并与导电片中的石墨烯成分相作用,提高电流电子在导电片和发热线路中的迁移率和流动顺畅性,提高导电率和发热效率,最后将纳米铜粉和甲基咪唑加入其中,提高物料的分散性、导电性,使制得的石墨烯发热浆料具有较佳的流动性和延展均匀性,在导电片上印刷过程中不出现流挂的现象,同时能协调环氧树脂和环氧丙烯酸酯的固化,弥补两者固化交联的不足,提高石墨烯发热浆料的稳定性。
本发明实施例还提供一种石墨烯发热组件20的制备方法,包括如下步骤:
步骤①:将石墨烯发热浆料印刷在导电片的外表面,经固化后制得发热线 路层;
步骤②:取一封装绝缘层,覆盖于发热线路层的外表面,制得复合层;
步骤③:取一基材层,分别对基材层的两侧进行电晕处理,然后分别在基材层两侧涂覆胶粘剂,分别制得第一胶粘层和第二胶粘层,同时将复合层的内表面与第二胶粘层的外表面粘合连接,将组件本体外表面与第一胶粘层的内表面粘合连接,经热压合、固化后制得石墨烯发热组件20。
优选地,所述步骤①中,石墨烯发热浆料的固化温度为110-120℃,固化时间为15-25s;所述步骤③中,热压合的温度为130-150℃,压合压力为2-4KPa,压合时间为6-12s。
本发明实施例中,通过上述步骤制备石墨烯发热组件20,并严格控制各步骤的参数,操作简单,控制方便,降低了生产成本,产品质量高,使制得的石墨烯发热组件20发热均匀,发热效率高,且具有较高的强度和抗冲击强度等机械性能,通过对基材层进行电晕处理能有效提高第一粘胶层和第二粘胶层分别与基材层的粘结强度,提高石墨烯发热复合材料的层间粘合稳定性,避免出现层间脱离等现象,并通过热压合方式将石墨烯发热复合材料与组件本体粘结稳定,使得石墨烯发热组件20性能稳定,发热复合材料不易脱落,质量稳定,可用于大规模生产。
本发明实施例中的石墨烯发热组件20的制备方法,操作简单,控制方便,降低了生产成本,产品质量高,使制得的石墨烯发热组件20发热均匀,发热效率高,且具有较高的强度和抗冲击强度等机械性能,通过对基材层进行电晕处理能有效提高第一粘胶层和第二粘胶层分别与基材层的粘结强度,提高石墨烯发热复合材料的层间粘合稳定性,避免出现层间脱离等现象,并通过热压合方式将石墨烯发热复合材料与组件本体粘结稳定,使得石墨烯发热组件20性能稳定,发热复合材料不易脱落,质量稳定,可用于大规模生产。
为了便于本领域技术人员的理解,下面结合具体的实施例及附图7~8对本发明作进一步的说明,实施方式提及的内容并非对本发明的限定。
实施例1
一种石墨烯发热组件20,包括组件本体1以及设置于组件本体1外表面的石墨烯发热复合材料2,所述石墨烯发热复合材料2包括由内至外依次设置的第一胶粘层21、基材层22、第二胶粘层23、导电片24、发热线路层25和封装绝缘层26,所述第一胶粘层21的内表面与所述组件本体1的外表面粘合连接;所述导电片24为石墨烯-铜复合导电片,所述发热线路层25由石墨烯发热浆料印刷制得。所述基材层22为外表面和内表面均经过电晕处理的PVC薄膜;所述第一胶粘层21和第二胶粘层23均为聚烯烃热熔胶层;所述封装绝缘层26包括40份玻璃粉、15份二氧化硅、3份羟乙基纤维素和60份松油醇。所述石墨烯-铜复合导电片包括如下重量份的原料:石墨烯纳米粉体15份、纳米金属粉30份、甲基乙烯基硅橡胶50份、端羟基聚二甲基硅氧烷0.5份、乙烯基三甲氧基硅烷4份、沉淀白炭黑3份、导电炭黑5份、羟基硅油0.5份硫化剂0.5份。所述纳米金属粉是由纳米铜粉和纳米镍粉以重量比为5:1-2:2组成的混合物,所述纳米铜粉是表面被纳米银粉包覆的球状银包覆铜粉;所述甲基乙烯基硅橡胶的乙烯基含量为0.14%,分子量为55万;所述羟基硅油的羟基含量为4%;所述硫化剂为2,5-二甲基-2,5-二叔丁基过氧化己烷。
实施例2
一种石墨烯发热组件20,包括组件本体1以及设置于组件本体1外表面的石墨烯发热复合材料2,所述石墨烯发热复合材料2包括由内至外依次设置的第一胶粘层21、基材层22、第二胶粘层23、导电片24、发热线路层25和封装绝缘层26,所述第一胶粘层21的内表面与所述组件本体1的外表面粘合连接;所述导电片24为石墨烯-铜复合导电片,所述发热线路层25由石墨烯发热浆料印刷制得。所述基材层22为外表面和内表面均经过电晕处理的PE薄膜;所述第一胶粘层21和第二胶粘层23均为聚酰胺热熔胶粘层;所述封装绝缘层26包括45份玻璃粉、18份二氧化硅、4份羟乙基纤维素和65份松油醇。所述石墨烯-铜复合导电片包括如下重量份的原料:石墨烯纳米粉体16份、纳米金属粉32 份、甲基乙烯基硅橡胶52份、端羟基聚二甲基硅氧烷0.8份、乙烯基三甲氧基硅烷5份、沉淀白炭黑4份、导电炭黑6份、羟基硅油0.6份、硫化剂0.6份。所述纳米金属粉是由纳米铜粉和纳米镍粉以重量比为5.2:1-2:2.2组成的混合物,所述纳米铜粉是表面被纳米银粉包覆的球状银包覆铜粉;所述甲基乙烯基硅橡胶的乙烯基含量为0.15%,分子量为58万;所述羟基硅油的羟基含量为5%;所述硫化剂为2,5-二甲基-2,5-二叔丁基过氧化己烷。
实施例3
一种石墨烯发热组件20,包括组件本体1以及设置于组件本体1外表面的石墨烯发热复合材料2,所述石墨烯发热复合材料2包括由内至外依次设置的第一胶粘层21、基材层22、第二胶粘层23、导电片24、发热线路层25和封装绝缘层26,所述第一胶粘层21的内表面与所述组件本体1的外表面粘合连接;所述导电片24为石墨烯-铜复合导电片,所述发热线路层25由石墨烯发热浆料印刷制得。所述基材层22为外表面和内表面均经过电晕处理的PET薄膜或PP薄膜;所述第一胶粘层21和第二胶粘层23均为聚氨酯胶粘层;所述封装绝缘层26包括50份玻璃粉、20份二氧化硅、5份羟乙基纤维素和70份松油醇。所述石墨烯-铜复合导电片包括如下重量份的原料:石墨烯纳米粉体18份、纳米金属粉35份、甲基乙烯基硅橡胶55份、端羟基聚二甲基硅氧烷1.0份、乙烯基三甲氧基硅烷6份、沉淀白炭黑5份、导电炭黑8份、羟基硅油0.8份、硫化剂0.8份。所述纳米金属粉是由纳米铜粉和纳米镍粉以重量比为5.5:1-2:2.5组成的混合物,所述纳米铜粉是表面被纳米银粉包覆的球状银包覆铜粉;所述甲基乙烯基硅橡胶的乙烯基含量为0.16%,分子量为60万;所述羟基硅油的羟基含量为6%;所述硫化剂为2,5-二甲基-2,5-二叔丁基过氧化己烷。
实施例4
一种石墨烯发热组件20,包括组件本体1以及设置于组件本体1外表面的石墨烯发热复合材料2,所述石墨烯发热复合材料2包括由内至外依次设置的第一胶粘层21、基材层22、第二胶粘层23、导电片24、发热线路层25和封装绝 缘层26,所述第一胶粘层21的内表面与所述组件本体1的外表面粘合连接;所述导电片24为石墨烯-铜复合导电片,所述发热线路层25由石墨烯发热浆料印刷制得。所述基材层22为外表面和内表面均经过电晕处理的PC薄膜;所述第一胶粘层21和第二胶粘层23均为有机硅胶粘层或环氧树脂胶粘层;所述封装绝缘层26包括55份玻璃粉、23份二氧化硅、6份羟乙基纤维素和75份松油醇。所述石墨烯-铜复合导电片包括如下重量份的原料:石墨烯纳米粉体19份、纳米金属粉38份、甲基乙烯基硅橡胶58份、端羟基聚二甲基硅氧烷1.3份、乙烯基三甲氧基硅烷7份、沉淀白炭黑7份、导电炭黑9份、羟基硅油0.9份、硫化剂0.9份。所述纳米金属粉是由纳米铜粉和纳米镍粉以重量比为5.8:1-2:2.8组成的混合物,所述纳米铜粉是表面被纳米银粉包覆的球状银包覆铜粉;所述甲基乙烯基硅橡胶的乙烯基含量为0.17%,分子量为63万;所述羟基硅油的羟基含量为7%;所述硫化剂为2,5-二甲基-2,5-二叔丁基过氧化己烷。
实施例5
一种石墨烯发热组件20,包括组件本体1以及设置于组件本体1外表面的石墨烯发热复合材料2,所述石墨烯发热复合材料2包括由内至外依次设置的第一胶粘层21、基材层22、第二胶粘层23、导电片24、发热线路层25和封装绝缘层26,所述第一胶粘层21的内表面与所述组件本体1的外表面粘合连接;所述导电片24为石墨烯-铜复合导电片,所述发热线路层25由石墨烯发热浆料印刷制得。所述基材层22为外表面和内表面均经过电晕处理的PEN薄膜;所述第一胶粘层21和第二胶粘层23均为EVA热熔胶层;所述封装绝缘层26包括60份玻璃粉、25份二氧化硅、8份羟乙基纤维素和80份松油醇。所述石墨烯-铜复合导电片包括如下重量份的原料:石墨烯纳米粉体20份、纳米金属粉40份、甲基乙烯基硅橡胶60份、端羟基聚二甲基硅氧烷1.5份、乙烯基三甲氧基硅烷8份、沉淀白炭黑8份、导电炭黑10份、羟基硅油1.0份、硫化剂1.0份。所述纳米金属粉是由纳米铜粉和纳米镍粉以重量比为6:1-2:3组成的混合物,所述纳米铜粉是表面被纳米银粉包覆的球状银包覆铜粉;所述甲基乙烯基硅橡胶的乙 烯基含量为0.18%,分子量为65万;所述羟基硅油的羟基含量为8%;所述硫化剂为2,5-二甲基-2,5-二叔丁基过氧化己烷。
对比例1:本对比例与上述实施例3的区别在于:所述导电片包括如下重量份的原料:纳米金属粉35份、甲基乙烯基硅橡胶55份、端羟基聚二甲基硅氧烷1.0份、乙烯基三甲氧基硅烷6份、沉淀白炭黑5份、导电炭黑8份、羟基硅油0.8份、硫化剂0.8份。对比例2:本对比例与上述实施例3的区别在于:所述石墨烯-铜复合导电片包括如下重量份的原料:石墨烯纳米粉体18份、纳米金属粉35份、甲基乙烯基硅橡胶、55份、端羟基聚二甲基硅氧烷1.0份、乙烯基三甲氧基硅烷6份、沉淀白炭黑5份、导电炭黑8份、羟基硅油0.8份、硫化剂0.8份。所述纳米金属粉是由纳米铜粉和纳米镍粉以重量比为5.5:1-2:2.5组成的混合物,纳米铜粉表面没有被纳米银粉包覆。对比例3:本对比例与上述实施例3的区别在于:所述石墨烯发热浆料包括如下重量份的原料:氧化石墨烯纳米粉体30份、纳米铜粉13份、环氧树脂40份、环氧丙烯酸酯23份、甲基咪唑2份、硅烷偶联剂2份、固化剂1.3份、溶剂55份。
将实施例1-5和对比例1-3制得的石墨烯发热复合材料进行电子迁移率、电导率、导热系数等性能测试,测试结果如下所示:
Figure PCTCN2019122431-appb-000001
由上述数据可知,本发明制得的石墨烯发热复合材料电子迁移率高达18630-19200cm 2/(V·s),电阻率为7.2-8.3(Ω·cm),电导率达1.33*10 6~1.46*10 6(s/m),导热系数高达5780-5950W/(m·K),说明本发明通过采用含石墨烯纳米粉体的导电片24与含有改性氧化石墨烯纳米粉体的发热线路相作用,两者的石墨烯成分促进的电子在导电片24与发热线路层25之间迁移流动,提高了电导率和发热效率。
而其中对比例1与实施例3相比,对比例1的导电片24中没有石墨烯纳米粉体,电子迁移率、电导率、导热系数均显著下降,电阻率上升,说明没有添加石墨烯纳米粉体成分的导电片24与发热线路层25之间的电子迁移效率显著降低,也说明了本发明通过采用石墨烯纳米粉体的导电片,能与含有改性氧化石墨烯纳米粉体的发热线路相作用,两者的石墨烯成分能促进电子在导电片24与发热线路层25之间迁移流动,提高电导率和发热效率。
而对比例2与实施例3相比,对比例2的导电片中,纳米铜粉表面没有被纳米银粉包覆,电子迁移率、电导率、导热系数均有所下降,电阻率上升,说明本发明通过采用纳米银粉对纳米铜粉表面进行包覆,表面的银层体积电阻率低,能有效降低纳米铜粉表面的体积电阻率,增加导电片的导电性能,提高电导率和发热效率。
而对比例3与实施例3相比,对比例3的石墨烯发热浆料中采用氧化石墨烯,并没有采用经过π-π键改性的改性氧化石墨烯,制得的电子迁移率、电导率、导热系数均显著下降,电阻率上升,说明没有进行π-π键改性的氧化石墨烯在浆料的环氧体系中溶解度较低,进而使得电导率、导热系数等性能下降,也说明了本发明通过采用改性氧化石墨烯纳米粉体作为发热线路层的浆料原料之一,能提高其在环氧树脂-环氧丙烯酸酯体系中的分散均匀性,并结合采用的纳米铜粉,共同提高石墨烯发热浆料的导电性和发热效率。
此外,同时对实施例1-5制得的石墨烯-铜复合导电片进行硬度、回弹率(柔软性)、拉伸强度、扯断伸长率、撕裂强度等机械物理性能测试,测试结果如下 所示:
Figure PCTCN2019122431-appb-000002
由上表数据可知,本发明制得的石墨烯-铜复合导电片,与导电金属粉体的混合性佳具有较佳的拉伸强度、回弹性、扯断伸长率、撕裂强度等机械性能,加工成型性,易于加工成型制备石墨烯发热复合材料和发热组件,稳定性高。
在本发明的另一个实施例中,提供的该石墨烯生发装置的所述电接口40为磁吸接口或者USB接口。具体地,电接口40主要与电源线连接并接通外界的电源、控制器或者移动终端,这样可以为石墨烯发热组件20通电以及控制石墨烯发热组件20并使得石墨烯发热组件20发热。同样,根据实际生产需求以及型号的不同,可以选择磁吸接口或者USB接口作为本实施例的墨烯发生装置的电接口40使用。
在本发明的另一个实施例中,如图3和图5~6所示,提供的该石墨烯生发装置的所述壳体10的内部还设置有固定座50,所述电路板70卡接于所述固定座50上。具体地,固定座50的设置可以方便对电路板70进行安装和固定,这样在使用该石墨烯生发装置时,即使不断晃动壳体10或者壳体10受到一定的外力作用,依然不需要担心该电路板70松动或者脱落,如此就保证了电路板70与石墨烯发热组件20的连接的稳定性和可靠性。
在本发明的另一个实施例中,如图3和图5所示,提供的该石墨烯生发装置的所述壳体10的内部还设置有电池60,所述电池60与所述电路板70电连接。具体地,电池60的设置可以直接为石墨烯发热组件20供电,这样无需使用电 源线与电接口40连接,即可让石墨烯生发装置工作,并且,可以在使用该石墨烯生发装置时,减少电源线对使用者造成的干扰,提高使用的舒适性。
在本发明的另一个实施例中,提供的该石墨烯生发装置的电池60为干电池60。采用干电池60作为电池60使用,方便使用,并且可以快速地对干电池60进行更换,以保证该石墨烯生发装置的续航。
在本发明的另一个实施例中,提供的该石墨烯生发装置的电池60为充电电池60,电源线接通接电口后,可以为充电电池60进行充电。
在本发明的另一个实施例中,如图5~6所示,提供的该石墨烯生发装置的所述固定座50上设置有电池腔51,所述电池60嵌装于所述电池腔51内。在该实施例中,电池60腔的设置可以容置并固定电池60,确保电池60安装后的稳定性,通过保持电池60安装后的位置的稳定性以确保电池60输出电量的稳定性,进而提高该石墨烯生发装置使用的可靠性和稳定性。具体地,固定座50的前侧设置有两个位置对应且间隔设置的嵌装槽53,电路板70的两侧可以分别前装入两个嵌装槽53内。同时,嵌装槽53为长条状结构,这样电路板70嵌入嵌装槽53内时,推动电路板70相对于固定座50滑动一定的距离,增加嵌装槽53与电路板70的接触面积即可稳定地固定好电路板70。
在本发明的另一个实施例中,如图3和图5所示,提供的该石墨烯生发装置的所述固定座50设置在壳体10内部的前侧位置,壳体10的内侧的前侧位置指的是当该石墨烯生发装置佩戴在人体的头部上时,与人体头部的额头位置朝向一直的方向为前侧位置。如此涉及可以保证电池60和电路板70也设置在前侧位置,同时与电路板70连接的电接口40也可以设置在前侧位置,进而可以方便使用者手持电源线与电接口40插接,同时具有使用方便的优势。
在本发明的另一个实施例中,如图3~6所示,提供的该石墨烯生发装置的所述壳体10内设有两个间隔布置的弹性卡柱1221,优选地,两个弹性卡柱1221均设置在壳体10内部的前侧位置。进一步地,所述固定座50的相对两侧均设置有凸块52,两个凸块52之间的间距与两个弹性卡柱1221的间距值接近,这 样以保证所述固定座50设置于两个所述弹性卡柱1221之间时,两个所述凸块52分别与两个所述弹性卡柱1221卡接。并且,两个弹性卡柱1221具有一定的形变弹性能力,这样在安装固定座50时,可以先屈服两个弹性卡柱1221,使得其变形,以此将固定座50设置于两个弹性卡柱1221之间,移除屈服两个弹性卡柱1221形变的力后,弹性卡柱1221在自身的弹性力作用下复位,如此就与两个凸块52分别卡接,进而实现固定座50的安装和定位。当需要拆卸固定座50时,同样,屈服两个弹性卡柱1221,使得两个弹性卡柱1221脱离与两个凸块52的卡接,如此可以取出固定座50,进而完成对固定座50的拆卸。
在本发明的另一个实施例中,如图2所示,提供的该石墨烯生发装置的所述壳体10上设置有耳朵避让位102,耳朵避让位102有两个,两个耳朵避让位102分别位于所述头型腔101的两侧部,两个耳朵避让位102均用于避让耳朵的耳朵避让位102。具体地,耳朵避让位102的形状为弧形状,其可以确保将石墨烯生发装置佩戴在头上时,壳体10的底缘不会抵压到人体的耳朵,提高使用石墨烯生发装置的舒适性。
在本发明的另一个实施例中,如图2和图5所示,提供的该石墨烯生发装置的所述壳体10包括内胆12和上盖11,与头部形状相适配的头型腔101设置在内胆12的底部,内胆12与上盖11连接形成一个内部具有腔室的壳体10,其中,电路板70、石墨烯发热组件20和电池60均可以设置在壳体10内部的腔室内。内胆12与上盖11的连接可以是固定连接或者可拆卸连接。例如可以是粘接、超声波焊接或者紧固件连接等。
在本发明的另一个实施例中,提供的该石墨烯生发装置的所述壳体10的内胆12可以是软质塑胶制造,这样该内胆12与人体的头部接触时为软接触,提高使用该石墨烯生发装置时,头部的舒适性。
在本发明的另一个实施例中,如图3和图5所示,提供的该石墨烯生发装置的所述壳体10的内胆12包括内胆12主体和设置在内胆12主体底部周缘的环形挡缘122,上盖11与环形挡缘122的外周缘适配接触从而使得内胆12与上 盖11连接形成一个内部具有腔室的壳体10。进一步地,弹性卡柱1221设置在环形挡缘122位于前侧的位置处。更进一步地,环形挡缘122的底部设置有避空孔1222,该避空孔1222供按钮71容置和露出,以便使用者操作按动该按钮71。另外,耳朵避让位102设置在环形挡缘122相对应的两底部位置处。
本发明另一实施例提供的一种石墨烯生发装置,如图1~5所示,其包括壳体10、电路板70、电池60和石墨烯发热组件20,所述壳体10设置有与头部形状相适配的头型腔101,所述石墨烯发热组件20、所述电池60和所述电路板70均设置在所述壳体10的内部,所述石墨烯发热组件20与所述电路板70电连接,所述电池60与所述电路板70电连接。本发明实施例提供的石墨烯生发装置具体使用时,将壳体10佩戴在人体的头部上,其中,壳体10上设置的头型腔101与佩戴者的头部相适配,电池60为石墨烯发热组件20供电,石墨烯发热组件20可以实现快速升温,且石墨烯发热组件20产生的远红外线可以在人体的头部产生温热效应和共振效应,使头部头皮位置产生高频震动,可由真皮层到表皮层深层次地清除氧化的自由基,促进头皮微血管的血液循环,从而实现减少脱发的情况发生,以及辅助让头发更好地生长。在该实施例中,不需要电源线的使用,可以在使用该石墨烯生发装置时,减少电源线对使用者造成的干扰,提高使用的舒适性。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种石墨烯生发装置,其特征在于:包括壳体、电路板和石墨烯发热组件,所述壳体设置有与头部形状相适配的头型腔,所述石墨烯发热组件和所述电路板均设置在所述壳体的内部,且所述石墨烯发热组件与所述电路板电连接,所述壳体的侧部设置有与所述电路板电连接的电接口。
  2. 根据权利要求1所述的石墨烯生发装置,其特征在于:所述石墨烯发热组件包括组件本体以及设置于组件本体外表面的石墨烯发热复合材料,所述石墨烯发热复合材料包括由内至外依次设置的第一胶粘层、基材层、第二胶粘层、导电片、发热线路层和封装绝缘层,所述第一胶粘层的内表面与所述组件本体的外表面粘合连接;所述导电片为石墨烯-铜复合导电片,所述发热线路层由石墨烯发热浆料印刷制得,且所述发热线路层与所述电接口电性连接。
  3. 根据权利要求2所述的石墨烯生发装置,其特征在于:所述基材层为外表面和内表面均经过电晕处理的PET薄膜、PVC薄膜、PE薄膜、PC薄膜、PEN薄膜和PP薄膜中的一种;所述第一胶粘层和第二胶粘层均可为有机硅胶粘层、环氧树脂胶粘层、聚氨酯胶粘层、聚酰胺热熔胶粘层、聚烯烃热熔胶层和EVA热熔胶层中的一种;所述封装绝缘层包括40-60份玻璃粉、15-25份二氧化硅、3-8份羟乙基纤维素和60-80份松油醇。
  4. 根据权利要求2所述的石墨烯生发装置,其特征在于:所述石墨烯-铜复合导电片包括如下重量份的原料:
    Figure PCTCN2019122431-appb-100001
    Figure PCTCN2019122431-appb-100002
  5. 根据权利要求4所述的石墨烯生发装置,其特征在于:所述纳米金属粉是由纳米铜粉和纳米镍粉以重量比为5-6:1-2:2-3组成的混合物,所述纳米铜粉是表面被纳米银粉包覆的球状银包覆铜粉;所述甲基乙烯基硅橡胶的乙烯基含量为0.14-0.18%,分子量为55-65万;所述羟基硅油的羟基含量为4-8%;所述硫化剂为2,5-二甲基-2,5-二叔丁基过氧化己烷。
  6. 根据权利要求4所述的石墨烯生发装置,其特征在于:所述石墨烯-铜复合导电片由如下步骤制得;
    步骤A:按照重量份计,将甲基乙烯基硅橡胶进行搅拌密炼,制得物料A;
    步骤B:按照重量份计,将三分之一的用量的沉淀白炭黑加入至步骤A制得的物料A中,然后依次加入端羟基聚二甲基硅氧烷、乙烯基三甲氧基硅烷和羟基硅油,每种原料加入混合搅拌至原料分散均匀,然后将剩余的沉淀白炭黑分两次加入,混合搅拌均匀,制得物料B;
    步骤C:按照重量份计,将石墨烯纳米粉体、纳米金属粉和导电炭黑加入至步骤B制得的物料B中,搅拌混料成团,制得物料C;
    步骤D:将步骤C混料成团后制得的物料C升温炼胶,出料,开炼均匀,然后加入硫化剂,搅拌均匀,下辊,裁切,制得石墨烯-铜复合导电片24。
  7. 根据权利要求2所述的石墨烯生发装置,其特征在于:所述石墨烯发热浆料包括如下重量份的原料:
    Figure PCTCN2019122431-appb-100003
    Figure PCTCN2019122431-appb-100004
    所述改性氧化石墨烯纳米粉体由如下步骤制得:
    步骤(1):将氧化石墨烯纳米粉体分散于醇溶剂中,搅拌混合均匀,得到氧化石墨烯分散液;
    步骤(2):往步骤(1)制得的氧化石墨烯分散液中滴加1-芘丁酸,边搅拌边滴加,滴加完毕后制得反应液;
    步骤(3):往步骤(2)制得的反应液中加入水合联氨,在氮气保护氛围中保温搅拌20-30min,最后经真空抽滤,制得改性氧化石墨烯纳米粉体。
  8. 根据权利要求7所述的石墨烯生发装置,其特征在于:所述步骤(1)中,氧化石墨烯纳米粉体与醇溶剂的混合比例为3-8:10,所述醇溶剂为正丁醇、甲醇、乙醇和异丙醇中的至少一种;所述步骤(2)中,1-芘丁酸与氧化石墨烯分散液的混合比例为2:3-4;所述步骤(3)中,水合联氨与反应液的混合比例为1:2-5。
  9. 根据权利要求6所述的石墨烯生发装置,其特征在于:每份所述硅烷偶联剂包括2-3份γ-氨丙基三乙氧基硅烷、2-3份甲基三乙氧基硅烷、1-2份焦磷酸酯钛酸酯和4-5份乙烯基三(β-甲氧基乙氧基)硅烷;所述固化剂为三乙醇胺、2-甲基咪唑与环氧丁基醚加成物、二氨基二苯基砜、间苯二胺和β-羟乙基乙二胺中的至少一种;所述溶剂为丙酮、二甲苯、异丙醇中的至少一种。
  10. 一种石墨烯生发装置,其特征在于:包括壳体、电路板、电池和石墨烯发热组件,所述壳体设置有与头部形状相适配的头型腔,所述石墨烯发热组件、所述电池和所述电路板均设置在所述壳体的内部,所述石墨烯发热组件与所述电路板电连接,所述电池与所述电路板电连接。
PCT/CN2019/122431 2019-05-20 2019-12-02 石墨烯生发装置 WO2020233079A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910417745.0A CN110270012A (zh) 2019-05-20 2019-05-20 石墨烯生发装置
CN201910417745.0 2019-05-20

Publications (1)

Publication Number Publication Date
WO2020233079A1 true WO2020233079A1 (zh) 2020-11-26

Family

ID=67959960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122431 WO2020233079A1 (zh) 2019-05-20 2019-12-02 石墨烯生发装置

Country Status (2)

Country Link
CN (1) CN110270012A (zh)
WO (1) WO2020233079A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115928279A (zh) * 2022-12-31 2023-04-07 武汉纺织大学 石墨烯/硅橡胶同轴纤维基弹性包芯纱及其制备与应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110270012A (zh) * 2019-05-20 2019-09-24 东莞市雅思电子有限公司 石墨烯生发装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104945702A (zh) * 2015-05-21 2015-09-30 青岛科凯达橡塑有限公司 一种航空航天用高性能导电橡胶材料及其制备方法和应用
CN108392744A (zh) * 2018-03-09 2018-08-14 深圳市知本石墨烯医疗科技有限公司 头部护理装置及系统
US20190045900A1 (en) * 2017-08-10 2019-02-14 Loose Joe Hair styling device and method of forming the same
CN109511181A (zh) * 2018-09-17 2019-03-22 上海大学 铜导电电极的石墨烯电热膜及其制备方法
CN110270012A (zh) * 2019-05-20 2019-09-24 东莞市雅思电子有限公司 石墨烯生发装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206342013U (zh) * 2016-12-28 2017-07-21 靖江墨烯服饰科技有限公司 一种具有石墨烯电发热织物的帽子
CN107903692A (zh) * 2017-11-30 2018-04-13 宁波诗宏千禧贸易有限公司 一种改性石墨烯导电涂料及其制备方法
CN108187236B (zh) * 2018-01-08 2023-09-26 烯旺新材料科技股份有限公司 多功能生发仪及系统
CN108841182A (zh) * 2018-05-25 2018-11-20 国网江苏省电力有限公司电力科学研究院 一种石墨烯导电导热硅橡胶复合材料及制备方法
CN210873767U (zh) * 2019-05-20 2020-06-30 东莞市雅思电子有限公司 石墨烯生发装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104945702A (zh) * 2015-05-21 2015-09-30 青岛科凯达橡塑有限公司 一种航空航天用高性能导电橡胶材料及其制备方法和应用
US20190045900A1 (en) * 2017-08-10 2019-02-14 Loose Joe Hair styling device and method of forming the same
CN108392744A (zh) * 2018-03-09 2018-08-14 深圳市知本石墨烯医疗科技有限公司 头部护理装置及系统
CN109511181A (zh) * 2018-09-17 2019-03-22 上海大学 铜导电电极的石墨烯电热膜及其制备方法
CN110270012A (zh) * 2019-05-20 2019-09-24 东莞市雅思电子有限公司 石墨烯生发装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115928279A (zh) * 2022-12-31 2023-04-07 武汉纺织大学 石墨烯/硅橡胶同轴纤维基弹性包芯纱及其制备与应用

Also Published As

Publication number Publication date
CN110270012A (zh) 2019-09-24

Similar Documents

Publication Publication Date Title
WO2020233079A1 (zh) 石墨烯生发装置
CN210873767U (zh) 石墨烯生发装置
CN104684970B (zh) 基材粒子、导电性粒子、导电材料及连接结构体
WO2017070921A1 (zh) 一种双组份加成型防沉降导电硅胶及其制备方法
TWI232564B (en) A COF semiconductor device and a manufacturing method for the same
CN113265210A (zh) 一种高导电导热性能胶粘剂及其制备方法
CN102634312A (zh) 一种用于led封装的镀银粉末导电胶及其制备方法
CN104673111A (zh) 环氧树脂基各向异性导电胶膜的配方及制备方法
CN109705803A (zh) 一种单组份有机硅导电胶及其制备方法和应用
CN106671501A (zh) 一种高耐热性石墨膜金属复合材料及其制备方法
CN110265190A (zh) 一种三维柔性导体的制备方法
CN106811170A (zh) 一种高分子基原位纳米银导电粘接材料及制备方法
WO2015167063A1 (ko) 은나노 전자잉크 인쇄발열체 분리형 전기 온열 치료기 및 그 제조 방법
CN104576485B (zh) 导电性硅橡胶制电极图案的制作方法以及全硅橡胶制静电吸盘及其制造方法
CN210020862U (zh) 一种贴片面膜
CN115547691A (zh) 一种高频电容用导热隔膜及其制备方法
CN113787747A (zh) 一种3d打印的可穿戴设备及其制备方法
JP2000299146A (ja) マイクロフォンホルダ一体型コネクタ
CN106063391A (zh) 连接方法及接合体
CN115197577A (zh) 一种抗静电硅橡胶复合材料、柔性静电屏蔽袋及其制备方法
CN111698797B (zh) 远红外电发热膜的制备方法
CN109244342A (zh) 一种锂电池复合隔膜
AU2021467739A1 (en) Electrothermic compositions and related composite materials and methods
CN113462315A (zh) 一种增强硅胶基柔性导电胶材料粘接性的方法
KR101878862B1 (ko) 헤어아이론

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19929325

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19929325

Country of ref document: EP

Kind code of ref document: A1