WO2020232823A1 - 双线圈无线无源电磁笔及其控制电路和控制方法 - Google Patents

双线圈无线无源电磁笔及其控制电路和控制方法 Download PDF

Info

Publication number
WO2020232823A1
WO2020232823A1 PCT/CN2019/097304 CN2019097304W WO2020232823A1 WO 2020232823 A1 WO2020232823 A1 WO 2020232823A1 CN 2019097304 W CN2019097304 W CN 2019097304W WO 2020232823 A1 WO2020232823 A1 WO 2020232823A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
terminal
resistor
output
unit
Prior art date
Application number
PCT/CN2019/097304
Other languages
English (en)
French (fr)
Inventor
万力锋
Original Assignee
深圳市优笔触控科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市优笔触控科技有限公司 filed Critical 深圳市优笔触控科技有限公司
Publication of WO2020232823A1 publication Critical patent/WO2020232823A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • G06F3/03545Pens or stylus
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • H02J7/025

Definitions

  • This application relates to the technical field of electromagnetic pens, in particular to a dual-coil wireless passive electromagnetic pen and its control circuit and control method.
  • the traditional electromagnetic stylus generally uses the same induction coil to receive and transmit signals.
  • the induction coil has to constantly switch between receiving and transmitting signals, but it is easy to switch back and forth between transmitting and receiving signals. This leads to unstable transmission signal, low work efficiency, difficult signal processing and poor anti-interference ability.
  • the traditional technical solutions have the problems of unstable transmission signal, low working efficiency, difficult signal processing, and poor anti-interference ability.
  • the embodiments of the present application provide a dual-coil wireless passive electromagnetic pen and its control circuit and control method, aiming to solve the instability of transmitted signals, low work efficiency, and difficulty in signal processing in traditional technical solutions.
  • the first aspect of the embodiments of the present application provides a dual-coil wireless passive electromagnetic pen control circuit, including: a first coil, the first coil is configured to receive an input signal; a second coil, the second coil is configured To transmit an output signal; an energy extraction module, the energy extraction module is connected to the first coil, the energy extraction module is configured to extract energy from the input signal and convert it into a DC voltage; a power supply module, the power supply module Connected to the energy extraction module, the power supply module is configured to convert the DC voltage to a target voltage; and an output signal generation module, the output signal generation module is connected to the power supply module and the second coil, so The output signal generating module is configured to convert the target voltage into the output signal and transmit the output signal to the outside through the second coil.
  • the energy extraction module includes: a resonance unit, the resonance unit is connected to the first coil, the resonance unit is configured to extract energy of the input signal and output alternating current; a rectification unit, the rectification The input end of the unit is connected to the resonant unit, and the rectification unit is configured to convert the alternating current into direct current; a voltage stabilizing unit, the input end of the stabilizing unit is connected to the output end of the rectifying unit, and the stabilizing unit The voltage unit is configured to output the DC power as a constant DC voltage; and an energy storage unit, the input end of the energy storage unit is connected to the output end of the voltage stabilization unit, and the energy storage unit is configured to store the voltage stabilization unit The DC voltage output by the unit.
  • the resonant unit includes a first parallel capacitor array, a first end of the first parallel capacitor array is connected to a first output end of the first coil, and a first output end of the first parallel capacitor array The two ends are connected with the second output end of the first coil.
  • the rectifier unit includes a first diode, a second diode, a third diode, and a fourth diode.
  • the anode of the first diode and the second diode The anode of the pole tube is commonly connected to the ground, the cathode of the first diode and the anode of the fourth diode are commonly connected as the first input terminal of the rectifier unit, and the cathode of the fourth diode And the cathode of the third diode are connected together as the output terminal of the rectifier unit, and the cathode of the second diode and the anode of the third diode are connected together as the second terminal of the rectifier unit. Input terminal.
  • the voltage stabilizing unit includes a second parallel capacitor array, a first resistor, a second resistor, a fifth diode, and a first switch tube.
  • the first end of the second parallel capacitor array, the The first end of the first resistor and the input end of the first switch tube are commonly connected to the output end of the rectifier unit, the second end of the second parallel capacitor array, and the anode of the fifth diode
  • the first end of the second resistor is commonly connected to ground
  • the cathode of the fifth diode and the second end of the first resistor are connected to the control end of the first switch
  • the first The output terminal of the switch tube and the second terminal of the second resistor are connected together as the output terminal of the voltage stabilizing unit.
  • the energy storage unit includes a third parallel capacitor array, the first end of the third parallel capacitor array is connected to the output end of the voltage stabilizing unit, and the second The terminal is grounded.
  • the power supply module includes: a first inductor, a voltage conversion chip, and a fourth parallel capacitor array, the first end of the first inductor is connected to the output end of the energy extraction module, and the first inductor
  • the second terminal of the voltage conversion chip is connected to the power terminal of the voltage conversion chip
  • the enable terminal of the voltage conversion chip is connected to the output terminal of the energy extraction module
  • the output terminal of the voltage conversion chip is connected to the fourth parallel capacitor
  • the array is commonly connected as the output terminal of the power supply module, and the feedback terminal of the voltage conversion chip and the fourth parallel capacitor array are commonly connected to the ground.
  • the output signal generating module includes a first capacitor, a second capacitor, a third capacitor, a fourth capacitor, a third resistor, a fourth resistor, a fifth resistor, a sixth resistor, a second switch tube, and A fifth parallel capacitor array, the first end of the fifth parallel capacitor array, the first end of the fifth resistor, and the first end of the first capacitor are commonly connected with the output end of the power supply module and the The first input terminal of the second coil, the second terminal of the fifth parallel capacitor array and the input terminal of the second switch tube are connected to the first terminal of the third capacitor, and the second terminal of the first capacitor The second end of the fifth resistor, the first end of the sixth resistor, the first end of the second capacitor, and the control end of the second switch tube are connected together.
  • the third resistor One end of the second switch tube is connected to the output end of the second switch, the second end of the second capacitor, the second end of the sixth resistor, the second end of the fourth resistor, and the second end of the fourth capacitor
  • the second terminal is commonly connected to the ground, and the first terminal of the fourth resistor, the first terminal of the fourth capacitor, the second terminal of the third capacitor, and the second terminal of the third resistor are commonly connected.
  • the second aspect of the embodiments of the present application provides a dual-coil wireless passive electromagnetic pen, including: a pen core;
  • a magnetic core, the magnetic core is fixedly connected to the pen core;
  • An elastic member the elastic member is connected with the pen core and the magnetic core, and the elastic member is used to move the pen core and the magnetic core;
  • a first coil, the first coil is configured to receive an input signal
  • a second coil the second coil is configured to transmit an output signal, and the first coil and the second coil are sleeved on the magnetic core.
  • An energy extraction module is connected to the first coil, and the energy extraction module is configured to extract energy from the input signal and convert it into a direct current voltage;
  • a power supply module the power supply module is connected to the energy extraction module, and the power supply module is configured to convert the direct current voltage to a target voltage;
  • An output signal generation module is connected to the power supply module and the second coil, and the output signal generation module is configured to convert the target voltage into the output signal and pass the second coil The output signal is transmitted to the outside.
  • the third aspect of the embodiments of the present application provides a control method of a dual-coil wireless passive electromagnetic pen, the control method is applied to a dual-coil wireless passive electromagnetic pen, the dual-coil wireless passive electromagnetic pen includes The first coil and the second coil, the control method includes the following steps:
  • the output signal is transmitted to the outside through the second coil.
  • the above dual-coil wireless passive electromagnetic pen control circuit by adding the first coil only used to receive input signals and the second coil only used to transmit output signals, so as to ensure that the transmitted signal and the received signal can be simultaneously and mutually exclusive.
  • the interference avoids the need to constantly switch the transmitted signal and the received signal back and forth, thereby solving the problems of unstable transmitted signal, low working efficiency, difficult signal processing, and poor anti-interference ability in traditional technical solutions.
  • FIG. 1 is a schematic circuit diagram of a dual-coil wireless passive electromagnetic pen control circuit provided by an embodiment of the application;
  • FIG. 2 is a schematic circuit diagram of an example of an energy extraction module in the dual-coil wireless passive electromagnetic pen control circuit shown in FIG. 1;
  • Fig. 3 is a schematic circuit diagram of an example of a resonance unit of the energy extraction module shown in Fig. 2;
  • FIG. 4 is a schematic circuit diagram of an example of the rectifier unit of the energy extraction module shown in FIG. 2;
  • FIG. 5 is a schematic circuit diagram of an example of a voltage stabilizing unit of the energy extraction module shown in FIG. 2;
  • Fig. 6 is a schematic circuit diagram of an example of the energy storage unit of the energy extraction module shown in Fig. 2;
  • Fig. 7 is a schematic circuit diagram of an example of a power supply module in the dual-coil wireless passive electromagnetic pen control circuit shown in Fig. 1;
  • FIG. 8 is a schematic circuit diagram of an example of an output signal generating module in the dual-coil wireless passive electromagnetic pen control circuit shown in FIG. 1;
  • FIG. 9 is a schematic structural diagram of a dual-coil wireless passive electromagnetic pen provided by an embodiment of the application.
  • FIG. 1 is a schematic circuit diagram of a dual-coil wireless passive electromagnetic pen control circuit provided by the first embodiment of the present application.
  • FIG. 1 is a schematic circuit diagram of a dual-coil wireless passive electromagnetic pen control circuit provided by the first embodiment of the present application.
  • FIG. 1 is a schematic circuit diagram of a dual-coil wireless passive electromagnetic pen control circuit provided by the first embodiment of the present application.
  • the details are as follows:
  • the dual-coil wireless passive electromagnetic pen control circuit in this embodiment includes a first coil 40, a second coil 50, an energy extraction module 100, a power supply module 200, and an output signal generation module 300, the first coil 40 and the energy extraction module 100 is connected, the output of the energy extraction module 100 is connected to the power supply module 200, the output of the power supply module 200 is connected to the output signal generating module 300, the output signal generating module 300 is connected to the second coil 50, and the first coil 40 is set to receive input Signal, the second coil 50 is set to transmit an output signal, the energy extraction module 100 is set to extract energy from the input signal and convert it into a DC voltage, the power supply module 200 is set to convert the DC voltage to a target voltage, and the output signal generation module 300 is set to The target voltage is converted into an output signal, and the output signal is transmitted to the second coil 50 to the outside.
  • the energy extraction module 100 may be composed of a device or circuit having one or more combined functions of converting a signal induced by a coil into a DC voltage;
  • the power supply module 200 may be composed of a device or chip having a DC voltage conversion function, etc. ,
  • the output signal generation module 300 can be composed of a circuit or chip that generates an output signal according to the input voltage without applying an excitation signal, such as a self-oscillation circuit.
  • Step 1 The first coil 40 receives an external input signal, and the input signal may be a high-frequency power signal;
  • Step 2 The energy extraction module 100 obtains energy through resonance with the first coil 40, and converts the energy into a stable DC voltage through rectification, filtering, etc., and stores it;
  • Step 3 The power supply module 200 converts the DC voltage provided by the energy extraction module 100 into a preset target voltage and outputs it;
  • Step 4 The output signal generating module 300 converts the target voltage into an output signal and transmits the output signal to the outside through the second coil 50.
  • the output signal can be an uninterrupted, stable amplitude sine wave whose frequency changes with pressure signal.
  • the outside world in the above steps can be an antenna board matched with the electromagnetic pen.
  • the power signal emitted by the antenna board is sent to the first coil 40.
  • the antenna board calculates the actual physical coordinates of the electromagnetic pen on the antenna board by amplifying and integrating the signal, and calculating the actual physical coordinates of the electromagnetic pen on the antenna board through the different signal strengths received by different coils, and calculating the true pressure of the electromagnetic pen by calculating the frequency of the output signal emitted by the electromagnetic pen
  • the upper computer of the antenna board restores the real handwriting according to the actual physical coordinates of the electromagnetic pen on the antenna board and the real pressure sensitivity data of the electromagnetic pen.
  • the electromagnetic pen includes the dual-coil wireless wireless sensor in this embodiment. Source of the stylus of the electromagnetic pen control circuit.
  • the first coil 40 only used to receive input signals and the second coil 50 only used to transmit output signals are added to ensure that the signal is transmitted and received. It can be carried out at the same time without interfering with each other, avoiding the process of constantly switching the transmitted signal and the received signal back and forth, thereby solving the instability of the transmitted signal, low work efficiency, difficult signal processing and anti-interference ability in traditional technical solutions. Poor problem.
  • the energy extraction module 100 includes: a resonance unit 110, a rectification unit 120, a voltage stabilization unit 130, and an energy storage unit 140.
  • the resonance unit 110 is connected to the first coil 40, and the input of the rectification unit 120 Terminal is connected to the resonant unit 110, the input terminal of the voltage stabilizing unit 130 is connected to the output terminal of the rectifying unit 120, the input terminal of the energy storage unit 140 is connected to the output terminal of the stabilizing unit 130, and the resonant unit 110 is configured to extract the input signal Energy and output AC power, the rectifying unit 120 is configured to convert AC power into DC power, the voltage stabilizing unit 130 is configured to output DC power as a constant DC voltage, and the energy storage unit 140 is configured to store the DC voltage output by the voltage stabilizing unit 130.
  • the resonance unit 110 in this embodiment may be composed of one or more devices among resistors, inductors, and capacitors, such as series resonance, parallel resonance, LC resonance or RLC resonance, etc.;
  • the rectifier unit 120 may be a full bridge Rectification or half-bridge rectification;
  • the voltage stabilizing unit 130 may be composed of components or chips having a voltage stabilizing function;
  • the energy storage unit 140 includes one or more energy storage capacitors.
  • the resonance unit 110 includes a first parallel capacitor array 111, a first end of the first parallel capacitor array 111 is connected to the first output end of the first coil 40, and the first parallel capacitor array 111 The second end of is connected to the second output end of the first coil 40.
  • the first parallel capacitor array 111 includes at least one capacitor.
  • each capacitor is in a parallel mode; in FIG. 3, the first parallel capacitor in this embodiment
  • the parallel capacitor array 111 mainly includes a fourth capacitor C4, a fifth capacitor C5, a sixth capacitor C6, and a seventh capacitor C7.
  • the fourth capacitor C4, the fifth capacitor C5, the sixth capacitor C6, and the seventh capacitor C7 can be non-polar.
  • the first parallel capacitor array 111 in this embodiment also includes a first switch S1 connected in series with the fifth capacitor C5 and a second switch S2 connected in series with the sixth capacitor C6 And a third switch S3 connected in series with the seventh capacitor C7, wherein each switch can be selected according to actual resonance requirements of different electromagnetic pens or the same electromagnetic pen corresponding to different antennas.
  • the rectifier unit 120 includes a first diode D1, a second diode D2, a third diode D3, and a fourth diode D4.
  • the first diode D1 The anode and the anode of the second diode D2 are commonly connected to the ground, the cathode of the first diode D1 and the anode of the fourth diode D4 are commonly connected as the first input terminal of the rectifier unit 120, and the fourth diode D4
  • the cathode of the second diode D2 and the cathode of the third diode D3 are commonly connected as the output terminal of the rectifier unit 120, and the cathode of the second diode D2 and the anode of the third diode D3 are commonly connected as the second input terminal of the rectifier unit 120.
  • the voltage stabilizing unit 130 includes a second parallel capacitor array 131, a first resistor R1, a second resistor R2, a fifth diode D5, a first switch Q1, and a second parallel capacitor
  • the first end of the array 131, the first end of the first resistor R1, and the input end of the first switch Q1 are commonly connected to the output end of the rectifier unit 120, the second end of the second parallel capacitor array 131, and the fifth diode
  • the anode of D5 and the first end of the second resistor R2 are connected to the ground, the cathode of the fifth diode D5 and the second end of the first resistor R1 are connected to the control end of the first switch Q1, the first switch Q1
  • the output terminal of R2 and the second terminal of the second resistor R2 are commonly connected as the output terminal of the voltage stabilizing unit 130. It should be understood that the output terminal of the voltage stabilizing unit 130 is also the output terminal of the energy extraction module 100.
  • the fifth diode D5 in this embodiment is a Zener diode
  • the first switching tube Q1 in this embodiment is a triode, where the input terminal of the first switching tube Q1 is the collector of the triode, and the first switching tube Q1
  • the control terminal of is the base of the triode
  • the output terminal of the first switch Q1 is the emitter of the triode; it should be understood that in other embodiments, the first switch Q1 may be a MOS transistor or an IGBT thyristor.
  • the second parallel capacitor array 131 includes at least one capacitor.
  • each capacitor is in a parallel mode; in FIG. 5, the second parallel capacitor array in this embodiment
  • the parallel capacitor array 131 mainly includes an eighth capacitor C8, a ninth capacitor C9, a tenth capacitor C10, and an eleventh capacitor C11.
  • the eighth capacitor C8, the ninth capacitor C9, the tenth capacitor C10, and the eleventh capacitor C11 can be Filter capacitor;
  • the second parallel capacitor array 131 in this embodiment also includes a fourth switch S4 connected in series with the ninth capacitor C9, a fifth switch S5 connected in series with the tenth capacitor C10, and a first switch S5 connected in series with the eleventh capacitor C11
  • the energy storage unit 140 includes a third parallel capacitor array 141.
  • the first end of the third parallel capacitor array 141 is connected to the output end of the voltage stabilizing unit 130.
  • the second end is grounded.
  • the third parallel capacitor array 141 includes at least one capacitor.
  • each capacitor is in a parallel mode; in FIG. 6, this embodiment
  • the third parallel capacitor array 141 in the example mainly includes the twelfth capacitor C12, the thirteenth capacitor C13, the fourteenth capacitor C14, and the fifteenth capacitor C15, the twelfth capacitor C12, the thirteenth capacitor C13, and the tenth capacitor C13.
  • the four capacitors C14 and the fifteenth capacitor C15 can be energy storage capacitors; the third parallel capacitor array 141 in this embodiment also includes a seventh switch S7 connected in series with the thirteenth capacitor C13, and a seventh switch S7 connected in series with the fourteenth capacitor C14. The eighth switch S8 and the ninth switch S9 connected in series with the fifteenth capacitor C15.
  • the power supply module 200 includes: a first inductor L1, a voltage conversion chip U1, and a fourth parallel capacitor array 210.
  • the first end of the first inductor L1 is connected to the output end of the energy extraction module 100
  • the second terminal of the first inductor L1 is connected to the power terminal SW of the voltage conversion chip U1
  • the enable terminal EN of the voltage conversion chip U1 is connected to the output terminal of the energy extraction module 100
  • the output terminal OUT of the voltage conversion chip U1 is connected to the first
  • the four parallel capacitor array 210 is commonly connected as the output terminal of the power supply module 200, and the feedback terminal FB of the voltage conversion chip U1 and the fourth parallel capacitor array 210 are commonly connected to the ground.
  • the fourth parallel capacitor array 210 includes at least one capacitor.
  • each capacitor is in a parallel mode; in FIG. 7, the fourth parallel capacitor array in this embodiment
  • the parallel capacitor array 210 mainly includes the sixteenth capacitor C16, the seventeenth capacitor C17, the eighteenth capacitor C18, and the nineteenth capacitor C19, the sixteenth capacitor C16, the seventeenth capacitor C17, the eighteenth capacitor C18, and the The nineteenth capacitor C19 is used for voltage stabilization, energy storage, etc.; the fourth parallel capacitor array 210 in this embodiment also includes a tenth switch in series with the seventeenth capacitor C17, and an eleventh switch in series with the eighteenth capacitor C18. A switch and a twelfth switch connected in series with the nineteenth capacitor C19.
  • the output signal generating module 300 includes a first capacitor C1, a second capacitor C2, a third capacitor C3, a fourth capacitor C4, a third resistor R3, a fourth resistor R4, and a fifth resistor.
  • R5, the sixth resistor R6, the second switch Q2, and the fifth parallel capacitor array 310, the first end of the fifth parallel capacitor array 310, the first end of the fifth resistor R5, and the first end of the first capacitor C1 are commonly connected Connected to the output terminal of the power supply module 200 and the first input terminal of the second coil 50, the second terminal of the fifth parallel capacitor array 310, the input terminal of the second switch tube Q2, and the first terminal of the third capacitor C3.
  • the second end of the capacitor C1 is grounded, the second end of the fifth resistor R5, the first end of the sixth resistor R6, the first end of the second capacitor C2, and the control end of the second switch Q2 are connected in common, and the third resistor R3 One end of is connected to the output end of the second switch tube Q2, the second end of the second capacitor C2, the second end of the sixth resistor R6, the second end of the fourth resistor R4, and the second end of the fourth capacitor C4 are commonly connected At ground, the first end of the fourth resistor R4, the first end of the fourth capacitor C4, the second end of the third capacitor C3, and the second end of the third resistor R3 are connected in common.
  • the second switching tube Q2 is a triode, where the input end of the second switching tube Q2 is the collector of the triode, the control end of the second switching tube Q2 is the base of the triode, and the output of the second switching tube Q2 The terminal is the emitter of the triode; it should be understood that, in other embodiments, the first switching tube Q1 may be other switching tubes with an amplification function.
  • the fifth parallel capacitor array 310 includes at least one capacitor.
  • each capacitor is in a parallel mode; in FIG. 8, the fifth parallel capacitor array 310 in this embodiment
  • the parallel capacitor array 310 mainly includes the twentieth capacitor C20, the twenty-first capacitor C21, the twenty-second capacitor C22, and the twenty-third capacitor C23; the fifth parallel capacitor array 310 in this embodiment also includes the A thirteenth switch S13 connected in series with a twenty-first capacitor C21, a fourteenth switch S14 connected in series with a twenty-second capacitor C22, and a fifteenth switch S15 connected in series with a twenty-third capacitor C23.
  • the output signal generating module 300 in this embodiment adds a fifth parallel capacitor array 310 in parallel with the second coil 50, a first capacitor C1, a second capacitor C2, a third capacitor C3, a fourth capacitor C4, a third resistor R3,
  • the fourth resistor R4, the fifth resistor R5, the sixth resistor R6 and the second switch tube Q2 form a circuit with oscillation, amplifying, filtering and feedback functions, thereby outputting an output signal with relatively stable amplitude and frequency. It should be understood that the frequency of the output signal of the output signal generating module 300 changes in proportion to the change of the equivalent inductance of the second coil 50.
  • a second aspect of the embodiments of the present application provides a dual-coil wireless passive electromagnetic pen, including a pen core 10, a magnetic core 20, an elastic member 30, and a dual-coil wireless passive electromagnetic pen control circuit;
  • the dual-coil wireless passive electromagnetic pen control circuit includes a first coil 40, a second coil 50, an energy extraction module 100, a power supply module 200, and an output signal generation module 300.
  • the magnetic core 20 is fixedly connected to the pen core 10, and is flexible.
  • the component 30 is connected to the pen core 10 and the magnetic core 20.
  • the first coil 40 and the second coil 50 are sleeved on the magnetic core 20.
  • the elastic component 30 is used to move the pen core 10 and the magnetic core 20.
  • the elastic component 30 can be a compression spring.
  • the energy extraction module 100, the power supply module 200, and the output signal generation module 300 can be installed on the control board 60 shown in FIG. 9.
  • the composition and functions of the energy extraction module 100, the power supply module 200, and the output signal generation module 300 are as in the embodiment of the present application. As mentioned in the first aspect, I will not repeat it here.
  • the expansion and contraction of the elastic component 30 will change the relative position of the magnetic core 20 and the second coil 50, thereby changing the equivalent inductance of the second coil 50.
  • the equivalent inductance changes with the pressure of the elastic component 30.
  • the change is proportional.
  • the frequency of the output signal generated by the output signal generating module 300 will change proportionally with the change rate of the equivalent inductance. That is, the frequency of the output signal transmitted by the second coil 50 is proportional to the elastic component 30.
  • the device for receiving the output signal externally transmitted by the second coil 50 can obtain the true pressure sensitivity when using the dual-coil wireless passive electromagnetic pen in real time by converting the frequency of the output signal.
  • the third aspect of the embodiments of the present application provides a control method of a dual-coil wireless passive electromagnetic pen.
  • the control method is applied to a dual-coil wireless passive electromagnetic pen.
  • the dual-coil wireless passive electromagnetic pen includes a A coil and a second coil.
  • the dual-coil wireless passive electromagnetic pen may include the dual-coil wireless passive electromagnetic pen control circuit provided in the first aspect of the embodiment of the application or the second aspect of the embodiment of the application.
  • the control method includes the following steps:
  • Step 1 Receive external input signals through the first coil
  • the input signal may be a power signal
  • the first coil may be the aforementioned first coil 40.
  • Step 2 Obtain the energy of the input signal
  • the energy of the input signal can be obtained through resonance or the like, for example, the energy of the input signal can be obtained through the resonance unit 110 in FIG. 3.
  • Step 3 Convert the energy into a stable DC voltage and store it
  • energy can be converted into a stable DC voltage by means of rectification, filtering, etc.
  • the energy can be converted into a stable DC voltage by the rectifier unit 120 and the voltage stabilizing unit 130, and the DC voltage can be converted to the DC voltage by energy storage capacitors, energy storage batteries, etc. The voltage is stored.
  • Step 4 Convert the DC voltage to the preset target voltage
  • the DC voltage can be converted into a preset target voltage by a DC-DC conversion chip or a voltage conversion chip, etc., for example, it can be completed by the power supply module 200.
  • Step 5 Convert the target voltage into an output signal
  • the target voltage can be converted into an output signal by means of oscillation or the like, and the output signal can be an uninterrupted, stable amplitude sine wave signal whose frequency changes with pressure.
  • Step 6 Transmit the output signal through the second coil.
  • the second coil may be the second coil 50 described above.

Abstract

一种双线圈无线无源电磁笔控制电路,通过加入只用于接收输入信号的第一线圈和只用于发射输出信号的第二线圈,从而保证了发射信号和接收信号可以同时且互不干扰的进行,避免了需要不断来回切换发射信号和接收信号,从而解决了传统的技术方案中存在的发射信号不稳定、工作效率低、信号处理难度大以及抗干扰能力差的问题。

Description

双线圈无线无源电磁笔及其控制电路和控制方法 技术领域
本申请涉及电磁笔技术领域,尤其涉及一种双线圈无线无源电磁笔及其控制电路和控制方法。
背景技术
目前,传统的电磁手写笔的一般是用同一个感应线圈来接收信号和发射信号,其感应线圈要在接收信号和发射信号之间不断地切换,但是发射信号和接收信号来回切换的过程中容易导致发射信号不稳定、工作效率低、信号处理难度大以及抗干扰能力差。
因此,传统的技术方案中存在发射信号不稳定、工作效率低、信号处理难度大以及抗干扰能力差的问题。
技术问题
有鉴于此,本申请实施例提供了一种双线圈无线无源电磁笔及其控制电路和控制方法,旨在解决传统的技术方案中存在的发射信号不稳定、工作效率低、信号处理难度大以及抗干扰能力差的问题。
技术解决方案
本申请实施例的第一方面提供了一种双线圈无线无源电磁笔控制电路,包括:第一线圈,所述第一线圈设置为接收输入信号;第二线圈,所述第二线圈设置为发射输出信号;能量提取模块,所述能量提取模块与所述第一线圈连接,所述能量提取模块设置为从所述输入信号中提取能量并转换为直流电压;供电模块,所述供电模块与所述能量提取模块连接,所述供电模块设置为将所述直流电压转为目标电压;以及输出信号产生模块,所述输出信号产生模块与所述供电模块和所述第二线圈连接,所述输出信号产生模块设置为将所述目标电压转换为所述输出信号并通过所述第二线圈对外发射所述输出信号。
在一个实施例中,所述能量提取模块包括:谐振单元,所述谐振单元与所述第一线圈连接,所谐振单元设置为提取所述输入信号的能量并输出交流电;整流单元,所述整流单元的输入端与所述谐振单元连接,所述整流单元设置为将所述交流电转换为直流电;稳压单元,所述稳压单元的输入端与所述整流单元的输出端连接,所述稳压单元设置将所述直流电输出为恒定的直流电压;以及储能单元,所述储能单元的输入端与所述稳压单元的输出端连接,所述储能单元设置为储存所述稳压单元输出的所述直流电压。
在一个实施例中,所述谐振单元包括第一并联电容阵列,所述第一并联电容阵列的第一端与所述第一线圈的第一输出端连接,所述第一并联电容阵列的第二端与所述第一线圈的第二输出端连接。
在一个实施例中,所述整流单元包括第一二极管、第二二极管、第三二极管以及第四二极管,所述第一二极管的正极和所述第二二极管的正极共接于地,所述第一二极管的负极和所述第四二极管的正极共接作为所述整流单元的第一输入端,所述第四二极管的负极和所述第三二极管的负极共接作为所述整流单元的输出端,所述第二二极管的负极和所述第三二极管的正极共接作为所述整流单元的第二输入端。
在一个实施例中,所述稳压单元包括第二并联电容阵列、第一电阻、第二电阻、第五二极管以及第一开关管,所述第二并联电容阵列的第一端、所述第一电阻的第一端与所述第一开关管的输入端共接于所述整流单元的输出端,所述第二并联电容阵列的第二端、所述第五二极管的正极以及所述第二电阻的第一端共接于地,所述第五二极管的负极和所述第一电阻的第二端接于所述第一开关管的控制端,所述第一开关管的输出端和所述第二电阻的第二端共接作为所述稳压单元的输出端。
在一个实施例中,所述储能单元包括第三并联电容阵列,所述第三并联电容阵列的第一端与所述稳压单元的输出端连接,所述第三并联电容阵列的第二端接地。
在一个实施例中,所述供电模块包括:第一电感、电压转换芯片以及第四并联电容阵列,第一电感的第一端接于所述能量提取模块的输出端连接,所述第一电感的第二端与所述电压转换芯片的电源端连接,所述电压转换芯片的使能端与所述能量提取模块的输出端连接,所述电压转换芯片的输出端和所述第四并联电容阵列共接作为所述供电模块的输出端,所述电压转换芯片的反馈端和所述第四并联电容阵列共接于地。
在一个实施例中,所述输出信号产生模块包括第一电容、第二电容、第三电容、第四电容、第三电阻、第四电阻、第五电阻、第六电阻、第二开关管以及第五并联电容阵列,所述第五并联电容阵列的第一端、所述第五电阻的第一端以及所述第一电容的第一端共接与所述供电模块的输出端和所述第二线圈的第一输入端,所述第五并联电容阵列的第二端和所述第二开关管的输入端和所述第三电容的第一端连接,所述第一电容的第二端接地,所述第五电阻的第二端、所述第六电阻的第一端、所述第二电容的第一端以及所述第二开关管的控制端共接,所述第三电阻的一端与所述第二开关管的输出端连接,所述第二电容的第二端、所述第六电阻的第二端、所述第四电阻的第二端以及所述第四电容的第二端共接于地,所述第四电阻的第一端、所述第四电容的第一端、所述第三电容的第二端以及所述第三电阻的第二端共接。
本申请实施例的第二方面提供了一种双线圈无线无源电磁笔,包括:笔芯;
磁芯,所述磁芯与所述笔芯固定连接;
弹性部件,所述弹性部件与所述笔芯和所述磁芯连接,所述弹性部件用以移动所述笔芯和所述磁芯;
第一线圈,所述第一线圈设置为接收输入信号;
第二线圈,所述第二线圈设置为发射输出信号,所述第一线圈和所述第二线圈套设于所述磁芯。;
能量提取模块,所述能量提取模块与所述第一线圈连接,所述能量提取模块设置为从所述输入信号中提取能量并转换为直流电压;
供电模块,所述供电模块与所述能量提取模块连接,所述供电模块设置为将所述直流电压转为目标电压;以及
输出信号产生模块,所述输出信号产生模块与所述供电模块和所述第二线圈连接,所述输出信号产生模块设置为将所述目标电压转换为所述输出信号并通过所述第二线圈对外发射所述输出信号。
本申请实施例的第三方面提供了一种双线圈无线无源电磁笔的控制方法,所述控制方法应用于双线圈无线无源电磁笔,所述双线圈无线无源电磁笔包括第一线圈和第二线圈,所述控制方法包括以下步骤:
通过所述第一线圈接收外界的输入信号;
获取所述输入信号的能量;
将所述能量转换为稳定的直流电压并储存;
将所述直流电压转换为预设的目标电压;
将所述目标电压转换为输出信号;
通过所述第二线圈向外发射所述输出信号。
有益效果
上述的双线圈无线无源电磁笔控制电路,通过加入只用于接收输入信号的第一线圈和只用于发射输出信号的第二线圈,从而保证了发射信号和接收信号可以同时且互不干扰的进行,避免了需要不断来回切换发射信号和接收信号,从而解决了传统的技术方案中存在的发射信号不稳定、工作效率低、信号处理难度大以及抗干扰能力差的问题。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一实施例提供的双线圈无线无源电磁笔控制电路的电路示意图;
图2为图1所示的双线圈无线无源电磁笔控制电路中能量提取模块的示例电路原理图;
图3为图2所示的能量提取模块的谐振单元的示例电路原理图;
图4为图2所示的能量提取模块的整流单元的示例电路原理图;
图5为图2所示的能量提取模块的稳压单元的示例电路原理图;
图6为图2所示的能量提取模块的储能单元的示例电路原理图;
图7为图1所示的双线圈无线无源电磁笔控制电路中供电模块的示例电路原理图;
图8为图1所示的双线圈无线无源电磁笔控制电路中输出信号产生模块的示例电路原理图;
图9为本申请一实施例提供的双线圈无线无源电磁笔的结构示意图。
本发明的实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
请参阅图1,本申请第一实施例提供的双线圈无线无源电磁笔控制电路的电路示意图,为了便于说明,仅示出了与本实施例相关的部分,详述如下:
本实施例中的双线圈无线无源电磁笔控制电路,包括第一线圈40、第二线圈50、能量提取模块100、供电模块200以及输出信号产生模块300,第一线圈40与能量提取模块100连接,能量提取模块100的输出端与供电模块200连接,供电模块200的输出端与输出信号产生模块300连接,输出信号产生模块300与第二线圈50连接,第一线圈40设置为接收输入信号,第二线圈50设置为发射输出信号,能量提取模块100设置为从输入信号中提取能量并转换为直流电压,供电模块200设置为将直流电压转为目标电压,输出信号产生模块300设置为将目标电压转换为输出信号并通过给第二线圈50对外发射输出信号。
应理解,能量提取模块100可以由具备将线圈感应产生的信号转换为直流电压的一种或者多种组合功能的器件或者电路等构成;供电模块200可以具备直流电压转换功能的器件或者芯片等构成,例如DC-DC转换芯片;输出信号产生模块300可以由具备将在不外加激励信号,自行根据输入的电压而产生输出信号的电路或者芯片等构成,例如自激振荡电路。
为了便于理解,简述本实施例的双线圈无线无源电磁笔控制电路的工作原理如下:
步骤一:第一线圈40接收外界的输入信号,输入信号可以为高频功率信号;
步骤二:能量提取模块100通过与第一线圈40谐振等方式来获取能量,将能量通过整流、滤波等转换为稳定的直流电压并储存;
步骤三:供电模块200将能量提取模块100提供的直流电压转换为预设的目标电压并输出;
步骤四:输出信号产生模块300将所述目标电压转换为输出信号并通过第二线圈50向外发射输出信号,输出信号可以是一个不间断的、幅值稳定的、频率随压力变化的正弦波信号。
上述步骤中的外界可以为与电磁笔相互匹配的天线板,天线板发射出来的功率信号给到第一线圈40,天线板在接收到了双线圈无线无源电磁笔控制电路发出的输出信号后,天线板通过对信号进行放大积分等处理,并通过不同线圈接收到的不同信号强度计算电磁笔在天线板上的实际物理坐标,通过计算电磁笔发射的输出信号的频率计算电磁笔的真实压感,最后,天线板的上位机根据电磁笔在天线板上的实际物理坐标以及电磁笔的真实压感数据还原真实的笔迹,其中,电磁笔为包括有本实施例中的双线圈无线无源电磁笔控制电路的手写笔。
本实施例中的双线圈无线无源电磁笔控制电路,通过加入只用于接收输入信号的第一线圈40和只用于发射输出信号的第二线圈50,从而保证了发射信号和接收信号可以同时且互不干扰的进行,避免了需要不断来回切换发射信号和接收信号的过程,从而解决了传统的技术方案中存在的发射信号不稳定、工作效率低、信号处理难度大以及抗干扰能力差的问题。
请参阅图2,在一个实施例中,能量提取模块100包括:谐振单元110、整流单元120、稳压单元130以及储能单元140,谐振单元110与第一线圈40连接,整流单元120的输入端与谐振单元110连接,稳压单元130的输入端与整流单元120的输出端连接,储能单元140的输入端与稳压单元130的输出端连接,所谐振单元110设置为提取输入信号的能量并输出交流电,整流单元120设置为将交流电转换为直流电,稳压单元130设置将直流电输出为恒定的直流电压,储能单元140设置为储存稳压单元130输出的直流电压。
应理解,本实施例中的谐振单元110可以由电阻、电感以及电容之间的一种或者多种器件构成,例如串联谐振、并联谐振、LC谐振或者RLC谐振等;整流单元120可以为全桥整流或者半桥整流;稳压单元130可以采用具有稳压功能的元器件或者芯片等构成;储能单元140包括一个或者多个储能电容。
请参阅图3,在一个实施例中,谐振单元110包括第一并联电容阵列111,第一并联电容阵列111的第一端与第一线圈40的第一输出端连接,第一并联电容阵列111的第二端与第一线圈40的第二输出端连接。
应理解,第一并联电容阵列111包括至少一个电容,当第一并联电容阵列111包括两个以及两个以上的电容时,各个电容为并联模式;在图3中,本实施例中的第一并联电容阵列111主要包括了第四电容C4、第五电容C5、第六电容C6以及第七电容C7,第四电容C4、第五电容C5、第六电容C6以及第七电容C7可以为无极性电容,例如聚酯电容或者金属化聚丙烯电容;本实施例中的第一并联电容阵列111还包括了与第五电容C5串联的第一开关S1、与第六电容C6串联的第二开关S2以及与第七电容C7串联的第三开关S3,其中,各个开关可以根据不同电磁笔或者对应不同天线的同一电磁笔的实际谐振需求来选通。
请参阅图4,在一个实施例中,整流单元120包括第一二极管D1、第二二极管D2、第三二极管D3以及第四二极管D4,第一二极管D1的正极和第二二极管D2的正极共接于地,第一二极管D1的负极和第四二极管D4的正极共接作为整流单元120的第一输入端,第四二极管D4的负极和第三二极管D3的负极共接作为整流单元120的输出端,第二二极管D2的负极和第三二极管D3的正极共接作为整流单元120的第二输入端。
请参阅图5,在一个实施例中,稳压单元130包括第二并联电容阵列131、第一电阻R1、第二电阻R2、第五二极管D5以及第一开关管Q1,第二并联电容阵列131的第一端、第一电阻R1的第一端与第一开关管Q1的输入端共接于整流单元120的输出端,第二并联电容阵列131的第二端、第五二极管D5的正极以及第二电阻R2的第一端共接于地,第五二极管D5的负极和第一电阻R1的第二端接于第一开关管Q1的控制端,第一开关管Q1的输出端和第二电阻R2的第二端共接作为稳压单元130的输出端,应理解稳压单元130的输出端也为能量提取模块100的输出端。
本实施例中的第五二极管D5为稳压二极管,本实施例中的第一开关管Q1为三极管,其中,第一开关管Q1的输入端为三极管的集电极,第一开关管Q1的控制端为三极管的基极,第一开关管Q1的输出端为三极管的发射极;应理解,在其他实施例中,第一开关管Q1可以为MOS管或者IGBT晶闸管等。
应理解,第二并联电容阵列131包括至少一个电容,当第二并联电容阵列131包括两个以及两个以上的电容时,各个电容为并联模式;在图5中,本实施例中的第二并联电容阵列131主要包括了第八电容C8、第九电容C9、第十电容C10以及第十一电容C11,第八电容C8、第九电容C9、第十电容C10以及第十一电容C11可以为滤波电容;本实施例中的第二并联电容阵列131还包括了与第九电容C9串联的第四开关S4、与第十电容C10串联的第五开关S5以及与第十一电容C11串联的第六开关S6,其中,各个开关可以根据整流单元120输出的直流电的滤波需求选通。
请参阅图6,在一个实施例中,储能单元140包括第三并联电容阵列141,第三并联电容阵列141的第一端与稳压单元130的输出端连接,第三并联电容阵列141的第二端接地,应理解,第三并联电容阵列141包括至少一个电容,当第三并联电容阵列141包括两个以及两个以上的电容时,各个电容为并联模式;在图6中,本实施例中的第三并联电容阵列141主要包括了第十二电容C12、第十三电容C13、第十四电容C14以及第十五电容C15,第十二电容C12、第十三电容C13、第十四电容C14以及第十五电容C15可以为储能电容;本实施例中的第三并联电容阵列141还包括了与第十三电容C13串联的第七开关S7、与第十四电容C14串联的第八开关S8以及与第十五电容C15串联的第九开关S9。
请参阅图7,在一个实施例中,供电模块200包括:第一电感L1、电压转换芯片U1以及第四并联电容阵列210,第一电感L1的第一端接于能量提取模块100的输出端连接,第一电感L1的第二端与电压转换芯片U1的电源端SW连接,电压转换芯片U1的使能端EN与能量提取模块100的输出端连接,电压转换芯片U1的输出端OUT和第四并联电容阵列210共接作为供电模块200的输出端,电压转换芯片U1的反馈端FB和第四并联电容阵列210共接于地。
应理解,第四并联电容阵列210包括至少一个电容,当第四并联电容阵列210包括两个以及两个以上的电容时,各个电容为并联模式;在图7中,本实施例中的第四并联电容阵列210主要包括了第十六电容C16、第十七电容C17、第十八电容C18以及第十九电容C19,第十六电容C16、第十七电容C17、第十八电容C18以及第十九电容C19用以稳压、储能等;本实施例中的第四并联电容阵列210还包括了与第十七电容C17串联的第十开关、与第十八电容C18串联的第十一开关以及与第十九电容C19串联的第十二开关。
请参阅图8,在一个实施例中,输出信号产生模块300包括第一电容C1、第二电容C2、第三电容C3、第四电容C4、第三电阻R3、第四电阻R4、第五电阻R5、第六电阻R6、第二开关管Q2以及第五并联电容阵列310,第五并联电容阵列310的第一端、第五电阻R5的第一端以及第一电容C1的第一端共接与供电模块200的输出端和第二线圈50的第一输入端,第五并联电容阵列310的第二端和第二开关管Q2的输入端和第三电容C3的第一端连接,第一电容C1的第二端接地,第五电阻R5的第二端、第六电阻R6的第一端、第二电容C2的第一端以及第二开关管Q2的控制端共接,第三电阻R3的一端与第二开关管Q2的输出端连接,第二电容C2的第二端、第六电阻R6的第二端、第四电阻R4的第二端以及第四电容C4的第二端共接于地,第四电阻R4的第一端、第四电容C4的第一端、第三电容C3的第二端以及第三电阻R3的第二端共接。
本实施例中的第二开关管Q2为三极管,其中,第二开关管Q2的输入端为三极管的集电极,第二开关管Q2的控制端为三极管的基极,第二开关管Q2的输出端为三极管的发射极;应理解,在其他实施例中,第一开关管Q1可以为其他具有放大功能的开关管。
应理解,第五并联电容阵列310包括至少一个电容,当第五并联电容阵列310包括两个以及两个以上的电容时,各个电容为并联模式;在图8中,本实施例中的第五并联电容阵列310主要包括了第二十电容C20、第二十一电容C21、第二十二电容C22以及第二十三电容C23;本实施例中的第五并联电容阵列310还包括了与第二十一电容C21串联的第十三开关S13、与第二十二电容C22串联的第十四开关S14以及与第二十三电容C23串联的第十五开关S15。
本实施中的输出信号产生模块300通过加入与第二线圈50并联的第五并联电容阵列310、第一电容C1、第二电容C2、第三电容C3、第四电容C4、第三电阻R3、第四电阻R4、第五电阻R5、第六电阻R6以及第二开关管Q2来组成一个具备振荡、放大、滤波以及反馈功能的电路,从而输出一个幅值跟频率比较稳定的输出信号。应理解,输出信号产生模块300的输出信号的频率与第二线圈50的等效电感的变化成比例变化。
请参阅图9,本申请实施例的第二方面提供了一种双线圈无线无源电磁笔,包括笔芯10、磁芯20、弹性部件30以及双线圈无线无源电磁笔控制电路;其中,双线圈无线无源电磁笔控制电路包括有第一线圈40、第二线圈50、能量提取模块100、供电模块200以及输出信号产生模块300,磁芯20与笔芯10固定连接,弹性部件30与笔芯10和磁芯20连接,第一线圈40和第二线圈50套设于磁芯20,弹性部件30用以移动笔芯10和磁芯20,弹性部件30可以为压力弹簧,能量提取模块100、供电模块200以及输出信号产生模块300可设于图9所述的控制板60上,能量提取模块100、供电模块200以及输出信号产生模块300的组成和功能如本申请实施例的第一方面所述,在此不做赘述。
在本实施例中,弹性部件30的伸缩会改变磁芯20与第二线圈50的相对位置,从而改变第二线圈50的等效电感,其中随着等效电感的变化与弹性部件30的压力变化成比例关系,同时输出信号产生模块300产生的输出信号的频率会随等效电感的变化率成比例变化,即第二线圈50对外发射的输出信号的频率与弹性部件30成比例关系,外界用以接收第二线圈50对外发射的输出信号的设备可以通过换算输出信号的频率来实时获知在使用双线圈无线无源电磁笔时的真实压感。
本申请实施例的第三方面提供了一种双线圈无线无源电磁笔的控制方法,该控制方法应用于双线圈无线无源电磁笔,所述双线圈无线无源电磁笔包括第一线圈和第二线圈,应理解,双线圈无线无源电磁笔可以包括本申请实施例的第一方面提供的双线圈无线无源电磁笔控制电路或者为本申请实施例的第二方面提供的双线圈无线无源电磁笔,该控制方法包括以下步骤:
步骤一:通过第一线圈接收外界的输入信号;
应理解,输入信号可以为功率信号,第一线圈可以为上述的第一线圈40。
步骤二:获取输入信号的能量;
应理解,可以通过谐振等方式来获取输入信号的能量,例如通过图3中的谐振单元110来获取输入信号的能量。
步骤三:将能量转换为稳定的直流电压并储存;
应理解,可以通过整流、滤波等方式将能量转换为稳定的直流电压,例如通过整流单元120、稳压单元130将能量转换为稳定的直流电压,可以通过储能电容、储能电池等对直流电压进行储存。
步骤四:将直流电压转换为预设的目标电压;
应理解,可以通过DC-DC转换芯片或者电压转换芯片等将直流电压转换为预设的目标电压,例如可以通过供电模块200来完成。
步骤五:将目标电压转换为输出信号;
应理解,可以通过振荡等方式将目标电压转换为输出信号,输出信号可以是一个不间断的、幅值稳定的、频率随压力变化的正弦波信号。
步骤六:通过第二线圈向外发射输出信号。
应理解,第二线圈可以为上述的第二线圈50。
以上仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (15)

  1. 一种双线圈无线无源电磁笔控制电路,其中,包括:
    第一线圈,所述第一线圈设置为接收输入信号;
    第二线圈,所述第二线圈设置为发射输出信号;
    能量提取模块,所述能量提取模块与所述第一线圈连接,所述能量提取模块设置为从所述输入信号中提取能量并转换为直流电压;
    供电模块,所述供电模块与所述能量提取模块连接,所述供电模块设置为将所述直流电压转为目标电压;以及
    输出信号产生模块,所述输出信号产生模块与所述供电模块和所述第二线圈连接,所述输出信号产生模块设置为将所述目标电压转换为所述输出信号并通过所述第二线圈对外发射所述输出信号。
  2. 根据权利要求1所述的双线圈无线无源电磁笔控制电路,其中,所述能量提取模块包括:
    谐振单元,所述谐振单元与所述第一线圈连接,所谐振单元设置为提取所述输入信号的能量并输出交流电;
    整流单元,所述整流单元的输入端与所述谐振单元连接,所述整流单元设置为将所述交流电转换为直流电;
    稳压单元,所述稳压单元的输入端与所述整流单元的输出端连接,所述稳压单元设置将所述直流电输出为恒定的直流电压;以及
    储能单元,所述储能单元的输入端与所述稳压单元的输出端连接,所述储能单元设置为储存所述稳压单元输出的所述直流电压。
  3. 根据权利要求2所述的双线圈无线无源电磁笔控制电路,其中,所述谐振单元包括第一并联电容阵列,所述第一并联电容阵列的第一端与所述第一线圈的第一输出端连接,所述第一并联电容阵列的第二端与所述第一线圈的第二输出端连接。
  4. 根据权利要求2所述的双线圈无线无源电磁笔控制电路,其中,所述整流单元包括第一二极管、第二二极管、第三二极管以及第四二极管,所述第一二极管的正极和所述第二二极管的正极共接于地,所述第一二极管的负极和所述第四二极管的正极共接作为所述整流单元的第一输入端,所述第四二极管的负极和所述第三二极管的负极共接作为所述整流单元的输出端,所述第二二极管的负极和所述第三二极管的正极共接作为所述整流单元的第二输入端。
  5. 根据权利要求2所述的双线圈无线无源电磁笔控制电路,其中,所述稳压单元包括第二并联电容阵列、第一电阻、第二电阻、第五二极管以及第一开关管,所述第二并联电容阵列的第一端、所述第一电阻的第一端与所述第一开关管的输入端共接于所述整流单元的输出端,所述第二并联电容阵列的第二端、所述第五二极管的正极以及所述第二电阻的第一端共接于地,所述第五二极管的负极和所述第一电阻的第二端接于所述第一开关管的控制端,所述第一开关管的输出端和所述第二电阻的第二端共接作为所述稳压单元的输出端。
  6. 根据权利要求2所述的双线圈无线无源电磁笔控制电路,其中,所述储能单元包括第三并联电容阵列,所述第三并联电容阵列的第一端与所述稳压单元的输出端连接,所述第三并联电容阵列的第二端接地。
  7. 根据权利要求1所述的双线圈无线无源电磁笔控制电路,其中,所述供电模块包括:第一电感、电压转换芯片以及第四并联电容阵列,第一电感的第一端接于所述能量提取模块的输出端连接,所述第一电感的第二端与所述电压转换芯片的电源端连接,所述电压转换芯片的使能端与所述能量提取模块的输出端连接,所述电压转换芯片的输出端和所述第四并联电容阵列共接作为所述供电模块的输出端,所述电压转换芯片的反馈端和所述第四并联电容阵列共接于地。
  8. 根据权利要求1所述的双线圈无线无源电磁笔控制电路,其中,所述输出信号产生模块包括第一电容、第二电容、第三电容、第四电容、第三电阻、第四电阻、第五电阻、第六电阻、第二开关管以及第五并联电容阵列,所述第五并联电容阵列的第一端、所述第五电阻的第一端以及所述第一电容的第一端共接与所述供电模块的输出端和所述第二线圈的第一输入端,所述第五并联电容阵列的第二端和所述第二开关管的输入端和所述第三电容的第一端连接,所述第一电容的第二端接地,所述第五电阻的第二端、所述第六电阻的第一端、所述第二电容的第一端以及所述第二开关管的控制端共接,所述第三电阻的一端与所述第二开关管的输出端连接,所述第二电容的第二端、所述第六电阻的第二端、所述第四电阻的第二端以及所述第四电容的第二端共接于地,所述第四电阻的第一端、所述第四电容的第一端、所述第三电容的第二端以及所述第三电阻的第二端共接。
  9. 一种双线圈无线无源电磁笔,其中,
    笔芯;
    磁芯,所述磁芯与所述笔芯固定连接;
    弹性部件,所述弹性部件与所述笔芯和所述磁芯连接,所述弹性部件用以移动所述笔芯和所述磁芯;
    第一线圈,所述第一线圈设置为接收输入信号;
    第二线圈,所述第二线圈设置为发射输出信号,所述第一线圈和所述第二线圈套设于所述磁芯。;
    能量提取模块,所述能量提取模块与所述第一线圈连接,所述能量提取模块设置为从所述输入信号中提取能量并转换为直流电压;
    供电模块,所述供电模块与所述能量提取模块连接,所述供电模块设置为将所述直流电压转为目标电压;以及
    输出信号产生模块,所述输出信号产生模块与所述供电模块和所述第二线圈连接,所述输出信号产生模块设置为将所述目标电压转换为所述输出信号并通过所述第二线圈对外发射所述输出信号。
  10. 根据权利要求9所述的双线圈无线无源电磁笔,其中,所述能量提取模块包括:
    谐振单元,所述谐振单元与所述第一线圈连接,所谐振单元设置为提取所述输入信号的能量并输出交流电;
    整流单元,所述整流单元的输入端与所述谐振单元连接,所述整流单元设置为将所述交流电转换为直流电;
    稳压单元,所述稳压单元的输入端与所述整流单元的输出端连接,所述稳压单元设置将所述直流电输出为恒定的直流电压;以及
    储能单元,所述储能单元的输入端与所述稳压单元的输出端连接,所述储能单元设置为储存所述稳压单元输出的所述直流电压。
  11. 根据权利要求10所述的双线圈无线无源电磁笔控制电路,其中,所述谐振单元包括第一并联电容阵列,所述第一并联电容阵列的第一端与所述第一线圈的第一输出端连接,所述第一并联电容阵列的第二端与所述第一线圈的第二输出端连接。
  12. 根据权利要求10所述的双线圈无线无源电磁笔控制电路,其中,所述稳压单元包括第二并联电容阵列、第一电阻、第二电阻、第五二极管以及第一开关管,所述第二并联电容阵列的第一端、所述第一电阻的第一端与所述第一开关管的输入端共接于所述整流单元的输出端,所述第二并联电容阵列的第二端、所述第五二极管的正极以及所述第二电阻的第一端共接于地,所述第五二极管的负极和所述第一电阻的第二端接于所述第一开关管的控制端,所述第一开关管的输出端和所述第二电阻的第二端共接作为所述稳压单元的输出端。
  13. 根据权利要求9所述的双线圈无线无源电磁笔控制电路,其中,所述供电模块包括:第一电感、电压转换芯片以及第四并联电容阵列,第一电感的第一端接于所述能量提取模块的输出端连接,所述第一电感的第二端与所述电压转换芯片的电源端连接,所述电压转换芯片的使能端与所述能量提取模块的输出端连接,所述电压转换芯片的输出端和所述第四并联电容阵列共接作为所述供电模块的输出端,所述电压转换芯片的反馈端和所述第四并联电容阵列共接于地。
  14. 根据权利要求9所述的双线圈无线无源电磁笔控制电路,其中,所述输出信号产生模块包括第一电容、第二电容、第三电容、第四电容、第三电阻、第四电阻、第五电阻、第六电阻、第二开关管以及第五并联电容阵列,所述第五并联电容阵列的第一端、所述第五电阻的第一端以及所述第一电容的第一端共接与所述供电模块的输出端和所述第二线圈的第一输入端,所述第五并联电容阵列的第二端和所述第二开关管的输入端和所述第三电容的第一端连接,所述第一电容的第二端接地,所述第五电阻的第二端、所述第六电阻的第一端、所述第二电容的第一端以及所述第二开关管的控制端共接,所述第三电阻的一端与所述第二开关管的输出端连接,所述第二电容的第二端、所述第六电阻的第二端、所述第四电阻的第二端以及所述第四电容的第二端共接于地,所述第四电阻的第一端、所述第四电容的第一端、所述第三电容的第二端以及所述第三电阻的第二端共接。
  15. 一种双线圈无线无源电磁笔的控制方法,其中,所述控制方法应用于双线圈无线无源电磁笔,所述双线圈无线无源电磁笔包括第一线圈和第二线圈,所述控制方法包括以下步骤:
    通过所述第一线圈接收外界的输入信号;
    获取所述输入信号的能量;
    将所述能量转换为稳定的直流电压并储存;
    将所述直流电压转换为预设的目标电压;
    将所述目标电压转换为输出信号;
    通过所述第二线圈向外发射所述输出信号。
PCT/CN2019/097304 2019-05-21 2019-07-23 双线圈无线无源电磁笔及其控制电路和控制方法 WO2020232823A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910425992.5A CN110138062A (zh) 2019-05-21 2019-05-21 双线圈无线无源电磁笔及其控制电路和控制方法
CN201910425992.5 2019-05-21

Publications (1)

Publication Number Publication Date
WO2020232823A1 true WO2020232823A1 (zh) 2020-11-26

Family

ID=67572363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/097304 WO2020232823A1 (zh) 2019-05-21 2019-07-23 双线圈无线无源电磁笔及其控制电路和控制方法

Country Status (2)

Country Link
CN (1) CN110138062A (zh)
WO (1) WO2020232823A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116610192A (zh) * 2022-02-09 2023-08-18 荣耀终端有限公司 一种电子设备及判断手写笔在位的方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112542036A (zh) * 2020-12-08 2021-03-23 大力电工襄阳股份有限公司 高压可控硅无线触发设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102221908A (zh) * 2010-04-16 2011-10-19 太瀚科技股份有限公司 新型无电池式电磁笔
CN102662494A (zh) * 2012-03-19 2012-09-12 友碁科技股份有限公司 触控笔
CN104793761A (zh) * 2014-01-17 2015-07-22 瑞鼎科技股份有限公司 具有无线充电功能的触控笔及其操作方法
TWM526118U (zh) * 2016-04-22 2016-07-21 Emright Technology Co Ltd 主動式壓感電容觸控筆

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM470283U (zh) * 2013-06-19 2014-01-11 Waltop Int Corp 觸控輸入裝置
CN204143388U (zh) * 2014-09-23 2015-02-04 华强云投资控股有限公司 一种无线充电电磁笔
CN105071554A (zh) * 2015-08-27 2015-11-18 天津市松正电动汽车技术股份有限公司 一种电动汽车无线充电装置及无线充电系统
CN106354285B (zh) * 2016-11-07 2023-05-30 深圳市精源宇科技有限公司 带原子笔芯的无源电磁笔
CN209823518U (zh) * 2019-05-21 2019-12-20 深圳市优笔触控科技有限公司 双线圈无线无源电磁笔及其控制电路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102221908A (zh) * 2010-04-16 2011-10-19 太瀚科技股份有限公司 新型无电池式电磁笔
CN102662494A (zh) * 2012-03-19 2012-09-12 友碁科技股份有限公司 触控笔
CN104793761A (zh) * 2014-01-17 2015-07-22 瑞鼎科技股份有限公司 具有无线充电功能的触控笔及其操作方法
TWM526118U (zh) * 2016-04-22 2016-07-21 Emright Technology Co Ltd 主動式壓感電容觸控筆

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116610192A (zh) * 2022-02-09 2023-08-18 荣耀终端有限公司 一种电子设备及判断手写笔在位的方法
CN116610192B (zh) * 2022-02-09 2024-04-05 荣耀终端有限公司 一种电子设备及判断手写笔在位的方法

Also Published As

Publication number Publication date
CN110138062A (zh) 2019-08-16

Similar Documents

Publication Publication Date Title
US9048741B2 (en) Switching power supply device
WO2020232823A1 (zh) 双线圈无线无源电磁笔及其控制电路和控制方法
WO2012101907A1 (ja) 電力伝送システム
JP2016067135A (ja) 非接触給電装置
JP2017028998A (ja) ワイヤレス給電装置
CN101197507A (zh) 无线电源装置及电路
KR20010071857A (ko) 스위칭 전원 회로
WO2016190095A1 (ja) ワイヤレス給電システム
US20180269722A1 (en) Peak voltage detection in a differentially driven wireless resonant transmitter
JP2008060017A (ja) マイクロ波利用装置
JP2011004479A (ja) ワイヤレス電源装置
Nagashima et al. Analytical design procedure for resonant inductively coupled wireless power transfer system with class-DE inverter and class-E rectifier
CN209823518U (zh) 双线圈无线无源电磁笔及其控制电路
TWI537774B (zh) Passive stylus with constant power supply
CN108696161A (zh) 一种适用于四级杆质谱仪的射频电源电路
CN102135832B (zh) 位置侦测装置
CN211151627U (zh) 一种基于llc拓扑结构的无线供电电路
JPH09182304A (ja) 非接触型充電器
TW201333762A (zh) 具有無線充電之定位輸入系統及其裝置
CN108448745A (zh) 一种带保护的内馈式无线电能传输系统
CN203827014U (zh) 智能电视和机顶盒遥控器无线充电电路
CN102841552A (zh) 数字板集成芯片
US8847886B2 (en) Non-contact input apparatus for computer peripheral and method of the same
JP3357233B2 (ja) 非接触型電力伝送装置
CN110707827A (zh) 一种恒压输出的容性无线充电系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19929508

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19929508

Country of ref document: EP

Kind code of ref document: A1