WO2020231162A1 - Sulfur-carbon composite, and cathode and lithium secondary battery each comprising same - Google Patents

Sulfur-carbon composite, and cathode and lithium secondary battery each comprising same Download PDF

Info

Publication number
WO2020231162A1
WO2020231162A1 PCT/KR2020/006256 KR2020006256W WO2020231162A1 WO 2020231162 A1 WO2020231162 A1 WO 2020231162A1 KR 2020006256 W KR2020006256 W KR 2020006256W WO 2020231162 A1 WO2020231162 A1 WO 2020231162A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
sulfur
carbon composite
weight
secondary battery
Prior art date
Application number
PCT/KR2020/006256
Other languages
French (fr)
Korean (ko)
Inventor
김봉수
양승보
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200056606A external-priority patent/KR102328262B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US17/298,878 priority Critical patent/US11967702B2/en
Priority to CN202080007113.8A priority patent/CN113228349A/en
Priority to EP20806156.4A priority patent/EP3905392A4/en
Publication of WO2020231162A1 publication Critical patent/WO2020231162A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a sulfur-carbon composite applicable as a positive electrode material of a lithium secondary battery, a positive electrode including the same, and a lithium secondary battery.
  • a lithium-sulfur secondary battery uses a sulfur-based compound having a sulfur-sulfur bond as a positive electrode active material, and an alkali metal such as lithium or a carbon-based material in which metal ions such as lithium ions are inserted and deintercalated, or an alloy with lithium It is a secondary battery that uses silicon or tin to form a negative electrode active material.
  • electrical energy is stored by using an oxidation-reduction reaction in which sulfur-sulfur bonds are cut off during discharge, which is a reduction reaction, and the oxidation number of sulfur decreases, and during charging, which is an oxidation reaction, sulfur-sulfur bonds are formed again as the oxidation number of sulfur increases. And create it.
  • sulfur which is used as a positive electrode active material in lithium-sulfur secondary batteries, has a theoretical energy density of 1675 mAh/g, and has a theoretical energy density that is 5 times higher than that of the positive electrode active material used in conventional lithium secondary batteries. It is a battery capable of expressing the density.
  • sulfur is attracting attention as an energy source for mid- to large-sized devices such as electric vehicles as well as portable electronic devices because of its low cost, rich reserves, easy supply, and environmental friendliness.
  • sulfur since sulfur has no conductivity, it is applied as an electrochemical positive electrode active material by forming a porous carbon material and a sulfur-carbon composite.
  • sulfur (S) becomes Li 2 S by the electrons transferred through the carbon in the lead wire and the sulfur-carbon composite and lithium ions transferred through the electrolyte from the negative electrode. Reduce.
  • Korean Patent Publication No. 2016-0051610 a patent that applies carbon having various types of structures in a sulfur-carbon composite, relates to a cathode material for a lithium-sulfur secondary battery, a mixture of a sulfur-carbon nanotube composite and a sulfur-graphene composite. Disclosed is a technology for using a sulfur-carbon composite comprising a cathode material.
  • Patent Document 1 Korean Patent Publication No. 2016-0051610
  • the present inventors when manufacturing a sulfur-carbon composite applied as a positive electrode active material of a lithium secondary battery, contain planar carbon in a certain ratio, and also limit the elution of sulfur by including at least one of point carbon and linear carbon. , To provide a sulfur-carbon composite capable of improving battery performance by facilitating contact with an electrolyte and maintaining a reaction rate.
  • an object of the present invention is to provide a sulfur-carbon composite containing planar carbon in a certain ratio.
  • Another object of the present invention is to provide a positive electrode for a lithium secondary battery comprising a sulfur-carbon composite containing the planar carbon in a certain ratio.
  • Another object of the present invention is to provide a lithium secondary battery comprising a sulfur-carbon composite containing the planar carbon in a predetermined ratio.
  • the present invention is a sulfur-carbon composite comprising planar carbon
  • the planar carbon provides a sulfur-carbon composite containing more than 0% by weight and less than 50% by weight based on the total weight of the carbon.
  • the present invention also provides a positive electrode for a lithium secondary battery comprising the sulfur-carbon composite.
  • the present invention also provides a lithium secondary battery comprising the positive electrode.
  • the sulfur-carbon composite according to the present invention may improve the performance of a battery by including planar carbon or various types of carbon including planar carbon.
  • the sulfur-carbon composite contains planar carbon, it is possible to support a large amount of sulfur to increase energy density and prevent sulfur from eluting when applied to a positive electrode for a lithium secondary battery.
  • the sulfur-carbon composite includes a sulfur-carbon composite in which sulfur is exposed to the outside, such as a sulfur-carbon composite containing point-like carbon or a linear carbon-composite containing linear carbon, so that contact between sulfur and the electrolyte is possible. It is easy to maintain the reaction rate and prevent voltage drop.
  • the sulfur-carbon composite when applied to a positive electrode of a lithium secondary battery, the discharge capacity and high rate characteristics of the lithium secondary battery can be improved.
  • FIGS. 1A to 1C are schematic diagrams of a planar sulfur-carbon composite, a point-type sulfur-carbon composite, and a linear sulfur-carbon composite, respectively, included in the sulfur-carbon composite according to the present invention.
  • FIG. 2 is a schematic diagram of a positive electrode for a lithium secondary battery comprising a sulfur-carbon composite according to the present invention.
  • FIG. 3A is a graph showing the initial discharge performance of a lithium-sulfur secondary battery in which the sulfur-carbon composites each prepared in Examples 1 to 4 and Comparative Example 1 were applied to a positive electrode
  • FIG. 3B is a graph showing the initial discharge performance of Examples 1 to 4 and Comparative Example 1 Is a graph showing the results of measuring the high rate characteristics of a lithium-sulfur secondary battery in which the sulfur-carbon composites prepared in each were applied to a positive electrode.
  • FIG. 4A is a graph showing the initial discharge performance of a lithium-sulfur secondary battery in which the sulfur-carbon composites each prepared in Examples 5 to 6 and Comparative Example 1 were applied to a positive electrode
  • FIG. 4B is a graph showing the initial discharge performance of Examples 5 to 6 and Comparative Example 1 Is a graph showing the results of measuring the high rate characteristics of a lithium-sulfur secondary battery in which the sulfur-carbon composites prepared in each were applied to a positive electrode.
  • point carbon refers to carbon having a shape similar to a dot, and is also referred to as zero-dimensional carbon.
  • sulfur-carbon composite including the "point-type carbon” is referred to as "point-type sulfur-carbon composite”.
  • linear carbon refers to carbon having a shape similar to a line and is also referred to as one-dimensional carbon.
  • sulfur-carbon composite including the “linear carbon” is referred to as a "linear sulfur-carbon composite”.
  • planar carbon refers to carbon having a shape similar to that of cotton, and is also referred to as two-dimensional carbon.
  • sulfur-carbon composite including the "facet carbon” is referred to as “facet sulfur-carbon composite”.
  • the present invention relates to a sulfur-carbon composite comprising carbon in various shapes. Since the shape of the sulfur-carbon composite formed according to the shape of the carbon may be determined, the sulfur-carbon composite may have various shapes according to the carbon shape.
  • the shape of the sulfur-carbon composite may have the same shape as that of carbon.
  • the sulfur-carbon composite including the planar carbon may also be a planar sulfur-carbon composite having a planar shape
  • the sulfur-carbon composite including the point-like carbon may also be a point sulfur-carbon composite having a point shape
  • the sulfur-carbon composite including the linear carbon may have a linear sulfur-carbon composite shape.
  • the sulfur-carbon composite according to the present invention may include planar carbon.
  • the sulfur-carbon composite may further include at least one selected from point-type carbon and linear carbon in addition to planar carbon.
  • the sulfur-carbon composite according to the present invention may contain 40 to 95% by weight of sulfur and 5 to 60% by weight of carbon.
  • the sulfur content of the sulfur-carbon composite may be 40% by weight or more, 45% by weight or more, 50% by weight or more, 55% by weight or more, or 60% by weight or more, and also 75% by weight or less, 80% by weight or less, 85 It may be less than or equal to 90% by weight, or less than or equal to 95% by weight.
  • the sulfur is included in the prescribed range, the energy density of the lithium secondary battery can be improved. Therefore, if the sulfur content is less than 40% by weight, the energy density may be lowered, and if the content is more than 95% by weight, the electron and lithium ion transfer resistance may increase.
  • the content of carbon contained in the sulfur-carbon composite may be 5% by weight or more, 10% by weight or more, 15% by weight or more, 20% by weight or more, or 25% by weight or more, and also 40% by weight or less, 45% by weight It may be less than, 50% by weight or less, 55% by weight or less, or 60% by weight or less.
  • the carbon is included in the prescribed range, electronic conductivity and lithium ion conductivity of a lithium secondary battery may be improved. Therefore, if the carbon content is less than 5% by weight, electronic conductivity and lithium ion conductivity may be lowered, and if it is more than 60% by weight, the sulfur content is relatively lowered, thereby lowering energy density.
  • the sulfur is sulfur (S 8 ), Li 2 S n (n ⁇ 1), an organic sulfur compound and a carbon-sulfur polymer [(C 2 S x ) n , x is an integer of 2.5 to 50, n ⁇ 2] may be one or more selected from the group consisting of.
  • the carbon may further include at least one selected from point-type carbon and linear carbon in addition to planar carbon, and the present invention will be described in more detail below with reference to the drawings.
  • FIG. 1A is a schematic diagram of a planar sulfur-carbon composite according to the present invention.
  • the planar sulfur-carbon composite 11 is a form in which sulfur (S2) is inserted between planar carbon (C2), in other words, planar carbon (C2) supports and wraps sulfur (S2). Form. Due to such morphological characteristics, when the planar sulfur-carbon composite 11 is applied as a positive electrode active material of a lithium secondary battery, elution of sulfur can be prevented.
  • Planar carbon (C2) may be contained in an amount greater than 0% by weight and less than 50% by weight based on the total weight of carbon included in the sulfur-carbon composite according to the present invention. Specifically, the content of the planar carbon (C2) may be more than 0 wt%, 5 wt% or more, or 10 wt% or more, and 30 wt% or less, 35 wt% or less, 40 wt% or less, based on the total weight of the carbon , 45% or less or less than 50% by weight. If the content of the planar carbon (C2) is 0% by weight, the effect of preventing the elution of sulfur from the positive electrode is insignificant and there may be no effect of improving the performance by the planar carbon. Since is lowered, a voltage drop occurs, and sufficient battery capacity may not be implemented.
  • Planar carbon (C2) is selected from the group consisting of non-oxide graphene, graphene oxide, reduced graphene oxide, doped graphene, and carbon nanoribbon. It may be one or more, preferably reduced graphene oxide.
  • the specific surface area of the planar carbon (C2) may be greater than the sum of the specific surface areas of other carbons included in the sulfur-carbon composite.
  • the sulfur-carbon composite includes planar carbon, point carbon and linear carbon
  • the specific surface area of the planar carbon may be greater than the sum of the specific surface areas of the point carbon and the linear carbon.
  • the specific surface area of the planar carbon (C2) may be 200 m2/g to 1000 m2/g, specifically 200 m2/g or more, 300 m2/g or more, 400 m2/g or more, or 500 m2/g or more, and , 700 m2/g or less, 800 m2/g or less, 900 m2/g or less, or 1000 m2/g or less.
  • planar carbon (C2) having such a specific surface area it is possible to support more sulfur to improve the capacity of the battery and to suppress the elution of sulfur.
  • the content of sulfur (S2) contained in the planar sulfur-carbon composite 11 may be 10 to 45% by weight based on the total weight of sulfur contained in the sulfur-carbon composite, and specifically 10% by weight or more, 15 It may be greater than or equal to 20% by weight, or less than or equal to 35%, less than or equal to 40%, or less than or equal to 45% by weight. If it is less than the above range, the sulfur content in the battery decreases and the battery capacity is excessively reduced, and if it exceeds the above range, the electrical conductivity in the electrode excessively decreases, thereby increasing the resistance.
  • FIG. 1B is a schematic diagram of a point-type sulfur-carbon composite according to the present invention
  • FIG. 1C is a schematic diagram of a linear sulfur-carbon composite according to the present invention.
  • the point-type sulfur-carbon composite 12 has a core-shell form by forming sulfur (S0) on the surface of the point-type carbon (C0), and the linear sulfur-carbon composite 13 is linear carbon. Since sulfur (S1) is formed inside and/or on the surface of (C1) to have a tube shape, sulfur (S0, S1) is exposed to the outside. Due to these morphological features, when the point-shaped sulfur-carbon composite 12 or the linear sulfur-carbon composite 13 is applied as a positive electrode active material of a lithium secondary battery, the sulfur (S0, S1) exposed to the surface is It is easy to contact the bar, it is possible to improve the battery performance by preventing the voltage drop.
  • At least one carbon selected from point-like carbon (C0) and linear carbon (C1) may be 50% by weight or more and less than 100% by weight based on the total weight of carbon contained in the sulfur-carbon composite according to the present invention, and specifically , 50% by weight or more, 55% by weight or more, 60% by weight or more, 65% by weight or more, or 70% by weight or more, and also 80% by weight or less, 85% by weight or less, 90% by weight or less, 95% by weight or less or It may be less than 100% by weight.
  • the content of one or more of the carbons selected from point-like carbon (C0) and linear carbon (C1) is less than 50% by weight, the electrolyte is not smoothly in and out of the positive electrode and lithium ion conductivity is lowered, resulting in a voltage drop and sufficient battery capacity.
  • the effect of preventing the elution of sulfur from the positive electrode is insignificant, and the discharge capacity and life characteristics of the lithium secondary battery may be deteriorated.
  • Point carbon (C0) may be at least one selected from the group consisting of ketjen black, denka black, acetylene black, super-p, and fullerene. And, preferably, it may be Ketjen Black.
  • Linear carbon (C1) may be one or more selected from the group consisting of carbon nanotubes (CNT) and carbon fibers, and preferably carbon nanotubes.
  • the content of sulfur (S0, S1) contained in at least one selected from the point-type sulfur-carbon composite 12 and the linear sulfur-carbon composite 13 is 55 to the total weight of sulfur contained in the sulfur-carbon composite. It may be 90% by weight, specifically 55% by weight or more, 60% by weight or more, or 65% by weight or more, and also 85% by weight or less, 90% by weight or less, or 95% by weight or less. If it is less than the above range, the sulfur content in the battery decreases and the battery capacity is excessively reduced, and if it exceeds the above range, the electrical conductivity in the electrode excessively decreases, thereby increasing the resistance.
  • a method for preparing a sulfur-carbon composite is not particularly limited, and a method for producing a sulfur-carbon composite commonly used in the art may be used.
  • the form of carbon contained in the sulfur-carbon composite according to the present invention that is, planar carbon, point-like carbon, or linear carbon may all be applied to the same method for preparing the sulfur-carbon composite.
  • the sulfur-carbon composite may be prepared by a melt diffusion method.
  • the melt diffusion method is a manufacturing method in which sulfur penetrates into carbon particles by melting sulfur through heating.
  • the heat treatment may include various direct or indirect heating methods.
  • the sulfur-carbon composite according to the present invention comprises the steps of (S1) mixing sulfur and carbon; And heat-treating the mixture of sulfur and carbon formed in the step (S1).
  • the amounts and types of sulfur and carbon in the step (S1) are as described above.
  • the heat treatment temperature in the step (S2) is a temperature at which sulfur is dissolved and permeated into the carbon to be supported, and may be higher than the melting point of sulfur.
  • the temperature during the heat treatment may be 100 to 200°C, specifically, 100°C or more, 105°C or more, 110°C or more, 115°C or more, or 120°C or more, and 180°C or less, 185°C or less , 190°C or less, 195°C or less, or 200°C or less, and may be heat treated by a melt diffusion method. If it is less than the above range, the sulfur-carbon composite itself may not be manufactured because the process of dissolving sulfur and seeping into the carbon does not proceed.If it exceeds the above range, the loss rate increases due to the vaporization of sulfur, and the sulfur-carbon composite is denatured to become a cathode material of a lithium secondary battery. When applied, the effect of improving the performance of the battery may be insignificant.
  • planar sulfur-carbon composite, point-type sulfur-carbon composite, and linear sulfur-carbon composite according to the present invention may be prepared respectively according to the method for preparing a sulfur-carbon composite as described above, or may be prepared simultaneously.
  • the present invention also relates to a lithium secondary battery comprising the sulfur-carbon composite as described above.
  • the sulfur-carbon composite may preferably be included as a positive electrode active material.
  • the lithium secondary battery according to the present invention may include a positive electrode, a negative electrode, a separator and an electrolyte interposed therebetween.
  • FIG. 2 is a schematic diagram of a positive electrode for a lithium secondary battery comprising a sulfur-carbon composite according to the present invention.
  • the positive electrode 1 for a lithium secondary battery may include a positive electrode current collector 20 and a positive electrode active material layer 10 having a positive electrode active material formed on the positive electrode current collector 20.
  • the positive electrode active material may include a sulfur-carbon composite, and the sulfur-carbon composite may include a planar sulfur-carbon composite 11, and a point-shaped sulfur-carbon composite 12 and a linear sulfur-carbon composite ( It may contain one or more selected from among 13).
  • the positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes to the battery, for example, stainless steel, aluminum, nickel, titanium, calcined carbon, or on the surface of aluminum or stainless steel. Carbon, nickel, titanium, silver or the like surface-treated may be used.
  • the positive electrode current collector may be in various forms such as a film, sheet, foil, net, porous material, foam, non-woven fabric having fine irregularities formed on the surface so as to increase adhesion to the positive electrode active material.
  • the negative electrode of the lithium secondary battery may include a negative electrode current collector and a negative electrode active material layer having a negative electrode active material formed on the negative electrode current collector.
  • lithium metal or a carbon material through which lithium ions can be occluded and released may be used, such as silicon or tin.
  • a carbon material may be used, and both low crystalline carbon and high crystalline carbon may be used as the carbon material.
  • low crystalline carbon soft carbon and hard carbon are typical
  • high crystalline carbon is natural graphite, kish graphite, pyrolytic carbon, liquid crystal pitch-based carbon fiber (mesophase pitch based carbon fiber), meso-carbon microbeads, mesophase pitches, and high-temperature calcined carbons such as petroleum or coal tar pitch derived cokes are typical.
  • the negative electrode may include a binder, and as the binder, vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidenefluoride (PVDF), and polyacrylonitrile ), polymethylmethacrylate, etc., various kinds of binder polymers may be used.
  • VDF-co-HFP vinylidene fluoride-hexafluoropropylene copolymer
  • PVDF polyvinylidenefluoride
  • polyacrylonitrile polymethylmethacrylate
  • the negative electrode current collector is not particularly limited as long as it has conductivity without causing chemical changes to the battery, for example, copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel. Surface treatment with carbon, nickel, titanium, silver, or the like, aluminum-cadmium alloy, or the like may be used.
  • the negative electrode current collector like the positive electrode current collector, may be used in various forms such as a film, sheet, foil, net, porous body, foam, nonwoven fabric having fine irregularities on the surface thereof.
  • the positive electrode active material layer or the negative electrode active material layer may further include a binder resin, a conductive material, a filler, and other additives.
  • the binder resin is used for bonding of an electrode active material and a conductive material and bonding to a current collector.
  • binder resins include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetra Fluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene-butadiene rubber, fluorine rubber, and various copolymers thereof.
  • PVDF polyvinylidene fluoride
  • CMC carboxymethylcellulose
  • EPDM ethylene-propylene-diene polymer
  • sulfonated-EPDM styrene-butadiene rubber
  • fluorine rubber and various copolymers thereof.
  • the conductive material is used to further improve the conductivity of the electrode active material.
  • a conductive material is not particularly limited as long as it has conductivity without causing a chemical change in the battery, and examples thereof include graphite such as natural graphite or artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and thermal black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride, aluminum, and nickel powder; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Polyphenylene derivatives and the like can be used.
  • the conductive material may be a vapor grown carbon fiber (VGCF).
  • the filler is selectively used as a component that suppresses the expansion of the electrode, and is not particularly limited as long as it is a fibrous material without causing chemical changes to the battery, and examples thereof include olefin-based polymers such as polyethylene and polypropylene; Fibrous materials such as glass fiber and carbon fiber are used.
  • the separator may be made of a porous substrate, and the porous substrate may be used as long as it is a porous substrate commonly used in an electrochemical device, for example, a polyolefin-based porous membrane or a nonwoven fabric. It can be used, but is not particularly limited thereto.
  • polyolefin-based porous membrane examples include polyolefin-based polymers such as high-density polyethylene, linear low-density polyethylene, low-density polyethylene, and ultra-high molecular weight polyethylene, polyolefin-based polymers such as polypropylene, polybutylene, and polypentene, respectively, or a mixture of them. There is one membrane.
  • nonwoven fabric in addition to the polyolefin nonwoven fabric, for example, polyethylene terephthalate, polybutyleneterephthalate, polyester, polyacetal, polyamide, polycarbonate ), polyimide, polyetheretherketone, polyethersulfone, polyphenyleneoxide, polyphenylenesulfide, and polyethylenenaphthalene, respectively, alone or Nonwoven fabrics formed of polymers obtained by mixing them are exemplified.
  • the structure of the nonwoven fabric may be a spunbond nonwoven fabric composed of long fibers or a melt blown nonwoven fabric.
  • the thickness of the porous substrate is not particularly limited, but may be 1 ⁇ m to 100 ⁇ m, or 5 ⁇ m to 50 ⁇ m.
  • the size and porosity of the pores present in the porous substrate are also not particularly limited, but may be 0.001 ⁇ m to 50 ⁇ m and 10% to 95%, respectively.
  • the electrolyte may be a nonaqueous electrolyte, and the electrolyte salt contained in the nonaqueous electrolyte is a lithium salt.
  • the lithium salt may be used without limitation, those commonly used in an electrolyte for a lithium secondary battery.
  • the lithium salt is LiFSI, LiPF 6 , LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiPF 6 , LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, it may be one or more selected from the group consisting of lithium chloroborane and lithium 4-phenyl borate.
  • organic solvents included in the above-described non-aqueous electrolyte those commonly used in electrolytes for lithium secondary batteries can be used without limitation, and for example, ethers, esters, amides, linear carbonates, cyclic carbonates, etc. can be used alone or in two or more types. It can be mixed and used. Among them, representatively, a cyclic carbonate, a linear carbonate, or a carbonate compound that is a slurry thereof may be included.
  • cyclic carbonate compound examples include ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, Any one selected from the group consisting of 2,3-pentylene carbonate, vinylene carbonate, vinylethylene carbonate, and halides thereof, or two or more of these slurries.
  • halides include, for example, fluoroethylene carbonate (FEC), but are not limited thereto.
  • linear carbonate compound is any one selected from the group consisting of dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate, ethylmethyl carbonate (EMC), methylpropyl carbonate, and ethylpropyl carbonate, or Two or more of these slurries may be representatively used, but are not limited thereto.
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethylmethyl carbonate
  • methylpropyl carbonate methylpropyl carbonate
  • EMC ethylmethyl carbonate
  • ethylpropyl carbonate methylpropyl carbonate
  • ethylpropyl carbonate methylpropyl carbonate
  • ethylpropyl carbonate methylpropyl carbonate
  • ethylpropyl carbonate methylpropyl carbonate
  • ethylpropyl carbonate methylpropyl carbonate
  • the ether of the organic solvent is selected from the group consisting of dimethyl ether, diethyl ether, dipropyl ether, methylethyl ether, methylpropyl ether, ethylpropyl ether, dimethoxyethane (DME) and dioxolane (DOL). Any one or two or more of these slurries may be used, but the present invention is not limited thereto.
  • esters in the organic solvent include methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, Any one selected from the group consisting of ⁇ -valerolactone and ⁇ -caprolactone, or two or more types of slurry may be used, but is not limited thereto.
  • the injection of the non-aqueous electrolyte may be performed at an appropriate step in the manufacturing process of the electrochemical device, depending on the manufacturing process and required physical properties of the final product. That is, it can be applied before assembling the electrochemical device or at the final stage of assembling the electrochemical device.
  • the lithium secondary battery according to the present invention in addition to winding, which is a general process, lamination, stacking, and folding of a separator and an electrode are possible.
  • the shape of the battery case is not particularly limited, and may be in various shapes such as a cylindrical shape, a stacked type, a square shape, a pouch type, or a coin type.
  • the structure and manufacturing method of these batteries are widely known in this field, and thus detailed descriptions are omitted.
  • the lithium secondary battery can be classified into various batteries, such as lithium-sulfur secondary batteries, lithium-air batteries, lithium-oxide batteries, and lithium all-solid batteries, depending on the material of the positive electrode/cathode used.
  • the present invention also provides a battery module including the lithium secondary battery as a unit cell.
  • the battery module can be used as a power source for medium and large-sized devices that require high temperature stability, long cycle characteristics, and high capacity characteristics.
  • Examples of the medium and large-sized devices include a power tool that is powered by an omniscient motor and moves; Electric vehicles including electric vehicles (EV), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like; Electric two-wheeled vehicles including electric bicycles (E-bikes) and electric scooters (E-scooters); Electric golf cart; Power storage systems, etc., but are not limited thereto.
  • Electric vehicles including electric vehicles (EV), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like
  • Electric two-wheeled vehicles including electric bicycles (E-bikes) and electric scooters (E-scooters); Electric golf cart; Power storage systems, etc., but are not limited thereto.
  • the sulfur-carbon composite according to the present invention can be applied to a positive electrode of a lithium-sulfur secondary battery among lithium secondary batteries.
  • the lithium-sulfur secondary battery may be a battery including the sulfur-carbon composite as a positive electrode active material.
  • the sulfur-carbon composite can exhibit high ionic conductivity by securing the path of lithium ions to the inside of the pores, and acts as a sulfur carrier to increase reactivity with sulfur, which is a positive electrode active material, to increase the initial discharge capacity of a lithium-sulfur secondary battery. And high rate performance can be improved at the same time.
  • the carbon powder is linear carbon and is a carbon nanotube (CNT) powder.
  • the mixture obtained in (1-1) was heat-treated at 155° C. to prepare a sulfur-carbon composite through a melt diffusion method.
  • the sulfur-carbon complex includes a linear sulfur-carbon complex.
  • the sulfur-carbon composite obtained in (1) above as a positive electrode active material, VGCF (Vapor grown carbon fiber) as a conductive material, and polyvinylidene fluoride (PVDF) as a binder were mixed in a weight ratio of 8:1:1, and a concentration of 20% Disperse in water to prepare a positive electrode slurry.
  • the positive electrode slurry was coated on Al foil and dried to prepare a positive electrode.
  • the electrolyte was DOL/DME (1:1, v/v) as a solvent, and 1M LiTFSI and 3% by weight of LiNO 3 were included.
  • a lithium-sulfur secondary battery in the form of a coin cell was manufactured using the electrolyte solution and polyolefin separator prepared as the composition.
  • DOL means dioxolane
  • DME means dimethoxyethane.
  • the carbon powder includes 10% by weight of reduced graphene oxide powder as planar carbon and 90% by weight of CNT powder as linear carbon.
  • the specific surface area of the reduced graphene oxide is 600 m 2 /g.
  • the mixture obtained in (1-1) was heat-treated at 155° C., so that sulfur was supported on the carbon through a melt diffusion method to prepare a sulfur-carbon composite.
  • the prepared sulfur-carbon composite includes a planar sulfur-carbon composite and a linear sulfur-carbon composite.
  • the sulfur-carbon composite obtained in (1) above as a positive electrode active material, and polyvinylidene fluoride (PVDF) as a VGCF (Vapor grown carbon fiber) binder as a conductive material were mixed in a weight ratio of 8:1:1, and at a concentration of 20%. Disperse in water to prepare a positive electrode slurry.
  • PVDF polyvinylidene fluoride
  • the positive electrode slurry was coated on Al foil and dried to prepare a positive electrode.
  • the electrolyte was DOL/DME (1:1, v/v) as a solvent, and 1M LiTFSI and 3% by weight of LiNO 3 were included.
  • a lithium-sulfur secondary battery in the form of a coin cell was manufactured using the electrolyte solution and polyolefin separator prepared as the composition.
  • DOL means dioxolane
  • DME means dimethoxyethane.
  • Example 2 In the same manner as in Example 1, a sulfur-carbon composite was prepared in the composition as shown in Table 1 below. At this time, as shown in Table 1 below, the surface carbon content is 26% by weight and 35% by weight, respectively, based on the total weight of carbon contained in the sulfur-carbon composite, and the sulfur-carbon composite, the positive electrode, and the lithium-sulfur secondary battery are Was prepared.
  • Example 1 Unit:% by weight Sulfur-carbon complex carbon sulfur Sulfur content Carbon content Cotton type carbon content Linear carbon content Cotton sulfur content Linear sulfur content Comparative Example 1 75 25 0 100 0 100 Example 1 75 25 10 90 10 90 Example 2 75 25 20 80 20 80 Example 3 75 25 30 70 30 70 Example 4 75 25 40 60 40 60 Example 5 76.5 23.5 26 74 31 69 Example 6 77 23 35 65 42 58
  • FIG. 3A is a graph showing the initial discharge performance of a lithium-sulfur secondary battery in which the sulfur-carbon composites each prepared in Examples 1 to 4 and Comparative Example 1 were applied to a positive electrode
  • FIG. 3B is a graph showing the initial discharge performance of Examples 1 to 4 and Comparative Example 1 Is a graph showing the results of measuring the high rate characteristics of a lithium-sulfur secondary battery in which the sulfur-carbon composites prepared in each were applied to a positive electrode.
  • the discharge capacity per weight of sulfur is increased in the lithium-sulfur secondary batteries of Examples 1 to 4 including both planar carbon and linear carbon compared to Comparative Example 1 that does not include planar carbon and includes only linear carbon.
  • Examples 1 to 4 as the content of planar carbon increased, the discharge capacity increased, and it was confirmed that the discharge capacity of Example 3 in which the content of planar carbon was 30% by weight was the highest. On the other hand, it was confirmed that the discharge capacity did not increase any more when the content of planar carbon was 40% by weight as in Example 4 exceeding 30% by weight.
  • Example 3 in which the content of planar carbon is 30% by weight is the highest as in the initial discharge performance curve of FIG. Similarly, as in Example 4, when the content of planar carbon was 40% by weight, it was confirmed that the discharge capacity did not increase any more.
  • FIG. 4A is a graph showing the first initial discharge performance of a lithium-sulfur secondary battery in which the sulfur-carbon composites each prepared in Examples 5 to 6 and Comparative Example 1 were applied to a positive electrode
  • FIG. 4B is A graph showing the results of measuring the high rate characteristics of a lithium-sulfur secondary battery in which the sulfur-carbon composites each prepared in 1 were applied to a positive electrode.
  • Example 5 is the highest at a high rate, similar to the initial discharge performance curve of FIG. 4A.
  • Example 2 The sulfur-carbon composites of Example 2, Example 3, and Example 4 are the case where the content of reduced graphene oxide, which is planar carbon, is 20% by weight, 30% by weight, and 40% by weight, respectively, based on the total weight of carbon.
  • C0 point carbon
  • C1 linear carbon
  • C2 planar carbon

Abstract

The present invention relates to a sulfur-carbon composite and a cathode for a lithium secondary battery and a lithium secondary battery each comprising same. More specifically, carbons contained in the sulfur-carbon composite may include various shapes of carbons. Particularly, when applied as a cathode active material in a lithium battery, the sulfur-carbon composite containing a predetermined amount of planar-shaped carbons can prevent the elution of sulfur and improve the reaction rate in the cathode, thereby enhancing the performance of the lithium secondary battery.

Description

황-탄소 복합체, 이를 포함하는 양극 및 리튬 이차전지Sulfur-carbon composite, positive electrode and lithium secondary battery including the same
본 출원은 2019년 5월 14일자 한국 특허 출원 제10-2019-0056010호 및 2020년 5월 12일자 한국 특허 출원 제10-2020-0056606호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함한다.This application claims the benefit of priority based on Korean Patent Application No. 10-2019-0056010 filed May 14, 2019 and Korean Patent Application No. 10-2020-0056606 filed May 12, 2020. All contents disclosed in the literature are included as part of this specification.
본 발명은 리튬 이차전지의 양극재로 적용 가능한 황-탄소 복합체, 이를 포함하는 양극 및 리튬 이차전지에 관한 것이다.The present invention relates to a sulfur-carbon composite applicable as a positive electrode material of a lithium secondary battery, a positive electrode including the same, and a lithium secondary battery.
최근 전자기기 분야와 전기 자동차 분야의 급속한 발전에 따라 이차전지의 수요가 증가하고 있다. 특히, 휴대용 전자기기의 소형화 및 경량화 추세에 따라, 그에 부응할 수 있는 고 에너지 밀도를 갖는 이차전지에 대한 요구가 커지고 있다.Recently, the demand for secondary batteries is increasing with the rapid development of electronic devices and electric vehicles. In particular, according to the trend of miniaturization and weight reduction of portable electronic devices, there is a growing demand for a secondary battery having a high energy density that can meet the trend.
이차전지 중 리튬-황 이차전지는 황-황 결합을 갖는 황계 화합물을 양극 활물질로 사용하고, 리튬과 같은 알칼리 금속 또는 리튬 이온과 같은 금속 이온의 삽입 및 탈삽입이 일어나는 탄소계 물질 또는 리튬과 합금을 형성하는 실리콘이나 주석 등을 음극 활물질로 사용하는 이차전지다. 구체적으로, 환원 반응인 방전시 황-황 결합이 끊어지면서 황의 산화수가 감소하고, 산화 반응인 충전시 황의 산화수가 증가하면서 황-황 결합이 다시 형성되는 산화-환원 반응을 이용하여 전기적 에너지를 저장하고 생성한다.Among the secondary batteries, a lithium-sulfur secondary battery uses a sulfur-based compound having a sulfur-sulfur bond as a positive electrode active material, and an alkali metal such as lithium or a carbon-based material in which metal ions such as lithium ions are inserted and deintercalated, or an alloy with lithium It is a secondary battery that uses silicon or tin to form a negative electrode active material. Specifically, electrical energy is stored by using an oxidation-reduction reaction in which sulfur-sulfur bonds are cut off during discharge, which is a reduction reaction, and the oxidation number of sulfur decreases, and during charging, which is an oxidation reaction, sulfur-sulfur bonds are formed again as the oxidation number of sulfur increases. And create it.
특히, 리튬-황 이차전지에 양극 활물질로 사용되는 황은 이론 에너지 밀도가 1675 mAh/g으로, 기존의 리튬 이차전지에 사용되는 양극 활물질에 비해 5배 정도 높은 이론 에너지 밀도를 가지고 있어 고출력, 고 에너지 밀도의 발현이 가능한 전지이다. 이에 더해서 황은 값이 저렴하고 매장량이 풍부해 수급이 용이하며 환경친화적이라는 이점 때문에 휴대용 전자기기 뿐만 아니라 전기 자동차와 같은 중대형 장치의 에너지원으로 주목 받고 있다.In particular, sulfur, which is used as a positive electrode active material in lithium-sulfur secondary batteries, has a theoretical energy density of 1675 mAh/g, and has a theoretical energy density that is 5 times higher than that of the positive electrode active material used in conventional lithium secondary batteries. It is a battery capable of expressing the density. In addition, sulfur is attracting attention as an energy source for mid- to large-sized devices such as electric vehicles as well as portable electronic devices because of its low cost, rich reserves, easy supply, and environmental friendliness.
그러나, 황은 전도성이 없으므로 다공성 탄소 소재와 황-탄소 복합체를 구성하여 전기화학적 양극 활물질로 적용되고 있다. 이와 같이 양극 활물질로 적용된 황-탄소 복합체는, 도선과 황-탄소 복합체 내의 탄소를 통하여 전달되는 전자 및 음극으로부터 전해액을 통하여 전달되는 리튬 이온에 의하여, 황(S)은 Li2S가 되며 리튬을 환원시킨다.However, since sulfur has no conductivity, it is applied as an electrochemical positive electrode active material by forming a porous carbon material and a sulfur-carbon composite. In the sulfur-carbon composite applied as a positive electrode active material as described above, sulfur (S) becomes Li 2 S by the electrons transferred through the carbon in the lead wire and the sulfur-carbon composite and lithium ions transferred through the electrolyte from the negative electrode. Reduce.
자연상태의 황은 S8 형태의 고리 모양으로 존재하는데, 전지의 방전과 함께 Li2S가 되는 과정에서 Li2S8, Li2S6, Li2S4 등과 같은 리튬-폴리설파이드의 형태를 거치고, 이들 리튬-폴리설파이드는 전해액에 잘 용해되므로, 이러한 리튬-폴리설파이드는 전해액에 용해된 상태로 음극으로 이동하여 수명 감소(셔틀 효과)를 초래하는 문제가 있다. Sulfur in its natural state exists in the form of an S 8 ring, and in the process of becoming Li 2 S with the discharge of the battery, Li 2 S 8 , Li 2 S 6 , Li 2 S 4 After passing through the form of lithium-polysulfide such as, etc., these lithium-polysulfides are well soluble in the electrolyte, so the lithium-polysulfide moves to the negative electrode in a dissolved state in the electrolyte, resulting in a reduction in life (shuttle effect). have.
또한, 상기 황-탄소 복합체에서 탄소 사용을 최소화하고 황 함량을 늘려 에너지 밀도를 높이고자 할 경우, 황 함량이 많아지면 전자 및 리튬 이온의 전달저항이 커지므로 최적의 탄소 구조가 필요하다. In addition, in the case of minimizing the use of carbon in the sulfur-carbon composite and increasing energy density by increasing the sulfur content, an optimal carbon structure is required because the transfer resistance of electrons and lithium ions increases as the sulfur content increases.
황-탄소 복합체에서 다양한 형태의 구조를 가지는 탄소를 적용한 특허인 한국공개특허 제2016-0051610호는 리튬-황 이차전지용 양극재에 관한 것으로, 황-탄소나노튜브 복합체와 황-그래핀 복합체의 혼합물을 포함하는 황-탄소 복합체를 양극재로 사용하는 기술을 개시하고 있다.Korean Patent Publication No. 2016-0051610, a patent that applies carbon having various types of structures in a sulfur-carbon composite, relates to a cathode material for a lithium-sulfur secondary battery, a mixture of a sulfur-carbon nanotube composite and a sulfur-graphene composite. Disclosed is a technology for using a sulfur-carbon composite comprising a cathode material.
그러나, 탄소 소재의 경우 그 형태에 따라 장점과 단점이 있으므로, 이들 탄소 소재의 형태의 따른 장점을 최대화하고, 단점을 최소화할 수 있도록, 황-탄소 복합체 제조 시 사용하는 다양한 형태의 탄소 소재를 최적의 조건으로 조합하여, 리튬-황 이차전지의 성능 개선에 효과적인 황-탄소 복합체를 제조하는 기술 개발이 필요하다.However, since carbon materials have advantages and disadvantages depending on their shape, various types of carbon materials used in the manufacture of sulfur-carbon composites are optimal in order to maximize the advantages of the shapes of these carbon materials and minimize the disadvantages. It is necessary to develop a technology for producing a sulfur-carbon composite that is effective in improving the performance of a lithium-sulfur secondary battery by combining it under the conditions of.
[선행기술문헌][Prior technical literature]
[특허문헌][Patent Literature]
(특허문헌 1) 한국공개특허 제2016-0051610호(Patent Document 1) Korean Patent Publication No. 2016-0051610
이에 본 발명자들은, 리튬 이차전지의 양극 활물질로 적용하는 황-탄소 복합체 제조시, 면형 탄소를 일정 비율로 포함하고, 또한 점형 탄소 및 선형 탄소 중 1종 이상의 탄소도 포함하여 황의 용출을 제한하는 동시에, 전해액과의 접촉을 용이하게 하여 반응 속도를 유지함으로써 전지 성능을 향상시킬 수 있는 황-탄소 복합체를 제공하고자 한다.Accordingly, the present inventors, when manufacturing a sulfur-carbon composite applied as a positive electrode active material of a lithium secondary battery, contain planar carbon in a certain ratio, and also limit the elution of sulfur by including at least one of point carbon and linear carbon. , To provide a sulfur-carbon composite capable of improving battery performance by facilitating contact with an electrolyte and maintaining a reaction rate.
따라서, 본 발명의 목적은 면형 탄소를 일정 비율로 포함하는 황-탄소 복합체를 제공하는 것이다.Accordingly, an object of the present invention is to provide a sulfur-carbon composite containing planar carbon in a certain ratio.
본 발명의 다른 목적은 상기 면형 탄소를 일정 비율로 포함하는 황-탄소 복합체를 포함하는 리튬 이차전지용 양극을 제공하는 것이다.Another object of the present invention is to provide a positive electrode for a lithium secondary battery comprising a sulfur-carbon composite containing the planar carbon in a certain ratio.
본 발명의 또 다른 목적은 상기 면형 탄소를 일정 비율로 포함하는 황-탄소 복합체를 포함하는 리튬 이차전지를 제공하는 것이다.Another object of the present invention is to provide a lithium secondary battery comprising a sulfur-carbon composite containing the planar carbon in a predetermined ratio.
상기 목적을 달성하기 위해, 본 발명은, 면형 탄소를 포함하는 황-탄소 복합체로서,In order to achieve the above object, the present invention is a sulfur-carbon composite comprising planar carbon,
상기 면형 탄소는 상기 탄소 전체 중량을 기준으로 0 중량% 초과, 50 중량% 미만으로 포함된, 황-탄소 복합체를 제공한다.The planar carbon provides a sulfur-carbon composite containing more than 0% by weight and less than 50% by weight based on the total weight of the carbon.
본 발명은 또한, 상기 황-탄소 복합체를 포함하는 리튬 이차전지용 양극을 제공한다.The present invention also provides a positive electrode for a lithium secondary battery comprising the sulfur-carbon composite.
본 발명은 또한, 상기 양극을 포함하는 리튬 이차전지를 제공한다.The present invention also provides a lithium secondary battery comprising the positive electrode.
본 발명에 따른 황-탄소 복합체는 면형 탄소, 또는 면형 탄소를 비롯하여 다양한 형태의 탄소를 함께 포함하여 전지의 성능을 향상시킬 수 있다.The sulfur-carbon composite according to the present invention may improve the performance of a battery by including planar carbon or various types of carbon including planar carbon.
상기 황-탄소 복합체는 면형 탄소를 포함함으로써, 많은 양의 황을 담지하여 에너지 밀도를 높이는 동시에 리튬 이차전지용 양극에 적용시 황의 용출을 방지할 수 있다.Since the sulfur-carbon composite contains planar carbon, it is possible to support a large amount of sulfur to increase energy density and prevent sulfur from eluting when applied to a positive electrode for a lithium secondary battery.
또한, 상기 황-탄소 복합체는 점형 탄소를 포함하는 황-탄소 복합체 또는 선형 탄소를 포함하는 선형 탄소-복합체와 같이 황이 외부로 노출된 형태의 황-탄소 복합체를 포함하여 황과 전해액과의 접촉이 용이하여 반응 속도를 유지하고 전압 강하를 방지할 수 있다.In addition, the sulfur-carbon composite includes a sulfur-carbon composite in which sulfur is exposed to the outside, such as a sulfur-carbon composite containing point-like carbon or a linear carbon-composite containing linear carbon, so that contact between sulfur and the electrolyte is possible. It is easy to maintain the reaction rate and prevent voltage drop.
또한, 상기 황-탄소 복합체를 리튬 이차전지의 양극에 적용할 경우, 리튬 이차전지의 방전용량 및 고율 특성을 개선시킬 수 있다.In addition, when the sulfur-carbon composite is applied to a positive electrode of a lithium secondary battery, the discharge capacity and high rate characteristics of the lithium secondary battery can be improved.
도 1a 내지 도 1c는 각각 본 발명에 따른 황-탄소 복합체에 포함된 면형 황-탄소 복합체, 점형 황-탄소 복합체 및 선형 황-탄소 복합체의 모식도이다.1A to 1C are schematic diagrams of a planar sulfur-carbon composite, a point-type sulfur-carbon composite, and a linear sulfur-carbon composite, respectively, included in the sulfur-carbon composite according to the present invention.
도 2는 본 발명에 따른 황-탄소 복합체를 포함하는 리튬 이차전지용 양극의 모식도이다.2 is a schematic diagram of a positive electrode for a lithium secondary battery comprising a sulfur-carbon composite according to the present invention.
도 3a는 실시예 1 내지 4와 비교예 1에서 각각 제조된 황-탄소 복합체를 양극에 적용한 리튬-황 이차전지의 초기 방전 성능을 나타낸 그래프이고, 도 3b는 실시예 1 내지 4와 비교예 1에서 각각 제조된 황-탄소 복합체를 양극에 적용한 리튬-황 이차전지의 고율특성을 측정한 결과를 나타낸 그래프이다.3A is a graph showing the initial discharge performance of a lithium-sulfur secondary battery in which the sulfur-carbon composites each prepared in Examples 1 to 4 and Comparative Example 1 were applied to a positive electrode, and FIG. 3B is a graph showing the initial discharge performance of Examples 1 to 4 and Comparative Example 1 Is a graph showing the results of measuring the high rate characteristics of a lithium-sulfur secondary battery in which the sulfur-carbon composites prepared in each were applied to a positive electrode.
도 4a는 실시예 5 내지 6과 비교예 1에서 각각 제조된 황-탄소 복합체를 양극에 적용한 리튬-황 이차전지의 초기 방전 성능을 나타낸 그래프이고, 도 4b는 실시예 5 내지 6과 비교예 1에서 각각 제조된 황-탄소 복합체를 양극에 적용한 리튬-황 이차전지의 고율특성을 측정한 결과를 나타낸 그래프이다.4A is a graph showing the initial discharge performance of a lithium-sulfur secondary battery in which the sulfur-carbon composites each prepared in Examples 5 to 6 and Comparative Example 1 were applied to a positive electrode, and FIG. 4B is a graph showing the initial discharge performance of Examples 5 to 6 and Comparative Example 1 Is a graph showing the results of measuring the high rate characteristics of a lithium-sulfur secondary battery in which the sulfur-carbon composites prepared in each were applied to a positive electrode.
도 5는 실시예 2 내지 실시예 4에서 각각 제조된 황-탄소 복합체의 SEM(Scanning Electron Microscope) 사진이다.5 is a SEM (Scanning Electron Microscope) photograph of the sulfur-carbon composites prepared in Examples 2 to 4, respectively.
이하, 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.
본 명세서에서 사용된 용어 "점형 탄소"는 점(dot)과 유사한 형상을 가지는 탄소를 의미하는 것으로 0차원 탄소라고도 한다. 또한, 상기 "점형 탄소"를 포함하는 황-탄소 복합체를 "점형 황-탄소 복합체"라고 한다.The term "point carbon" as used herein refers to carbon having a shape similar to a dot, and is also referred to as zero-dimensional carbon. In addition, the sulfur-carbon composite including the "point-type carbon" is referred to as "point-type sulfur-carbon composite".
본 명세서에서 사용된 용어 "선형 탄소"는 선과 유사한 형상을 가지는 탄소를 의미하는 것으로 1차원 탄소라고도 한다. 또한, 상기 "선형 탄소"를 포함하는 황-탄소 복합체를 "선형 황-탄소 복합체"라고 한다.The term "linear carbon" as used herein refers to carbon having a shape similar to a line and is also referred to as one-dimensional carbon. In addition, the sulfur-carbon composite including the "linear carbon" is referred to as a "linear sulfur-carbon composite".
본 명세서에서 사용된 용어 "면형 탄소"는 면과 유사한 형상을 가지는 탄소를 의미하는 것으로 2차원 탄소라고도 한다. 또한, 상기 "면형 탄소"를 포함하는 황-탄소 복합체를 "면형 황-탄소 복합체"라고 한다.The term "planar carbon" as used herein refers to carbon having a shape similar to that of cotton, and is also referred to as two-dimensional carbon. In addition, the sulfur-carbon composite including the "facet carbon" is referred to as "facet sulfur-carbon composite".
황-탄소 복합체Sulfur-carbon complex
본 발명은 다양한 형상의 탄소를 포함하는 황-탄소 복합체에 관한 것이다. 상기 탄소의 형상에 따라 형성되는 황-탄소 복합체의 형상이 결정될 수 있으므로, 상기 황-탄소 복합체는 탄소 형상에 따라 다양한 형상을 가지는 것일 수 있다.The present invention relates to a sulfur-carbon composite comprising carbon in various shapes. Since the shape of the sulfur-carbon composite formed according to the shape of the carbon may be determined, the sulfur-carbon composite may have various shapes according to the carbon shape.
예컨대, 상기 황-탄소 복합체의 형상은 탄소의 형상과 동일한 형상을 가지는 것일 수 있다. 다시 말해, 상기 면형 탄소를 포함하는 황-탄소 복합체도 면 형상을 가지는 면형 황-탄소 복합체일 수 있고, 상기 점형 탄소를 포함하는 황-탄소 복합체도 점 형상을 가지는 점형 황-탄소 복합체일 수 있으며, 상기 선형 탄소를 포함하는 황-탄소 복합체는 선형 황-탄소 복합체 형상일 수 있다.For example, the shape of the sulfur-carbon composite may have the same shape as that of carbon. In other words, the sulfur-carbon composite including the planar carbon may also be a planar sulfur-carbon composite having a planar shape, and the sulfur-carbon composite including the point-like carbon may also be a point sulfur-carbon composite having a point shape, , The sulfur-carbon composite including the linear carbon may have a linear sulfur-carbon composite shape.
본 발명에 따른 황-탄소 복합체는 면형 탄소를 포함하는 것일 수 있다. 또한, 상기 황-탄소 복합체는 면형 탄소 이외에 점형 탄소 및 선형 탄소 중 선택되는 1종 이상을 더 포함하는 것일 수 있다.The sulfur-carbon composite according to the present invention may include planar carbon. In addition, the sulfur-carbon composite may further include at least one selected from point-type carbon and linear carbon in addition to planar carbon.
본 발명에 따른 황-탄소 복합체는 황 40 내지 95 중량% 및 탄소 5 내지 60 중량%를 포함하는 것일 수 있다. 상기 황-탄소 복합체에 포함된 황의 함량은 40 중량% 이상, 45 중량% 이상, 50 중량% 이상, 55 중량% 이상 또는 60 중량% 이상일 수 있고, 또한 75 중량% 이하, 80 중량% 이하, 85 중량% 이하, 90 중량% 이하 또는 95 중량% 이하일 수 있다. 상기 황이 이와 같이 규정된 범위로 포함될 경우 리튬 이차전지의 에너지 밀도를 향상시킬 수 있다. 따라서, 상기 황의 함량이 상기 40 중량% 미만이면 에너지 밀도가 저하될 수 있고, 상기 95 중량% 초과이면 전자와 리튬 이온 전달 저항이 커질 수 있다.The sulfur-carbon composite according to the present invention may contain 40 to 95% by weight of sulfur and 5 to 60% by weight of carbon. The sulfur content of the sulfur-carbon composite may be 40% by weight or more, 45% by weight or more, 50% by weight or more, 55% by weight or more, or 60% by weight or more, and also 75% by weight or less, 80% by weight or less, 85 It may be less than or equal to 90% by weight, or less than or equal to 95% by weight. When the sulfur is included in the prescribed range, the energy density of the lithium secondary battery can be improved. Therefore, if the sulfur content is less than 40% by weight, the energy density may be lowered, and if the content is more than 95% by weight, the electron and lithium ion transfer resistance may increase.
또한, 상기 황-탄소 복합체에 포함된 탄소의 함량은 5 중량% 이상, 10 중량% 이상, 15 중량% 이상, 20 중량% 이상 또는 25 중량% 이상일 수 있고 또한, 40 중량% 이하, 45 중량% 이하, 50 중량% 이하, 55 중량% 이하 또는 60 중량% 이하일 수 있다. 상기 탄소가 이와 같이 규정된 범위로 포함될 경우 리튬 이차전지의 전자 전도도 및 리튬 이온 전도도를 향상시킬 수 있다. 따라서, 상기 탄소의 함량이 5 중량% 미만이면 전자 전도도 및 리튬 이온 전도도가 저하될 수 있고, 60 중량% 초과이면 황의 함량이 상대적으로 저하되어 에너지 밀도가 저하될 수 있다.In addition, the content of carbon contained in the sulfur-carbon composite may be 5% by weight or more, 10% by weight or more, 15% by weight or more, 20% by weight or more, or 25% by weight or more, and also 40% by weight or less, 45% by weight It may be less than, 50% by weight or less, 55% by weight or less, or 60% by weight or less. When the carbon is included in the prescribed range, electronic conductivity and lithium ion conductivity of a lithium secondary battery may be improved. Therefore, if the carbon content is less than 5% by weight, electronic conductivity and lithium ion conductivity may be lowered, and if it is more than 60% by weight, the sulfur content is relatively lowered, thereby lowering energy density.
본 발명에 있어서, 상기 황은 황(S8), Li2Sn(n ≥ 1), 유기 황 화합물 및 탄소-황 폴리머[(C2Sx)n, x는 2.5 내지 50인 정수, n ≥ 2]로 이루어진 군에서 선택되는 1종 이상일 수 있다.In the present invention, the sulfur is sulfur (S 8 ), Li 2 S n (n ≥ 1), an organic sulfur compound and a carbon-sulfur polymer [(C 2 S x ) n , x is an integer of 2.5 to 50, n ≥ 2] may be one or more selected from the group consisting of.
본 발명에 있어서, 상기 탄소는 면형 탄소 이외에 점형 탄소 및 선형 탄소 중 선택되는 1종 이상을 더 포함할 수 있으며, 이하, 도면을 참조하여 본 발명을 보다 상세히 설명한다. In the present invention, the carbon may further include at least one selected from point-type carbon and linear carbon in addition to planar carbon, and the present invention will be described in more detail below with reference to the drawings.
도 1a은 본 발명에 따른 면형 황-탄소 복합체의 모식도이다.1A is a schematic diagram of a planar sulfur-carbon composite according to the present invention.
도 1a를 참조하면, 면형 황-탄소 복합체(11)는 면형 탄소(C2) 사이에 황(S2)이 삽입되어 있는 형태로서, 다시 말해, 면형 탄소(C2)가 황(S2)을 담지하여 감싸는 형태이다. 이와 같은 형태적인 특징으로 인하여, 면형 황-탄소 복합체(11)를 리튬 이차전지의 양극 활물질로 적용할 경우, 황의 용출을 방지할 수 있다. 1A, the planar sulfur-carbon composite 11 is a form in which sulfur (S2) is inserted between planar carbon (C2), in other words, planar carbon (C2) supports and wraps sulfur (S2). Form. Due to such morphological characteristics, when the planar sulfur-carbon composite 11 is applied as a positive electrode active material of a lithium secondary battery, elution of sulfur can be prevented.
면형 탄소(C2)는, 본 발명에 따른 황-탄소 복합체에 포함된 탄소 전체 중량에 대하여 0 중량% 초과, 50 중량% 미만으로 포함될 수 있다. 구체적으로 상기 면형 탄소(C2)의 함량은 상기 탄소 전체 중량에 대하여, 0 중량% 초과, 5 중량% 이상 또는 10 중량% 이상일 수 있고, 또한 30 중량% 이하, 35 중량% 이하, 40 중량% 이하, 45 중량% 이하 또는 50 중량% 미만일 수 있다. 상기 면형 탄소(C2)의 함량이 0 중량%이면 양극에서 황의 용출 방지 효과가 미미하여 면형 탄소에 의한 성능 개선 효과가 없을 수 있고, 50 중량% 이상일 경우 양극에서 전해액의 출입이 원활하지 못하여 리튬 이온전도도가 저하되므로 전압 강하가 발생하여 충분한 전지 용량을 구현할 수 없을 수 있다. Planar carbon (C2) may be contained in an amount greater than 0% by weight and less than 50% by weight based on the total weight of carbon included in the sulfur-carbon composite according to the present invention. Specifically, the content of the planar carbon (C2) may be more than 0 wt%, 5 wt% or more, or 10 wt% or more, and 30 wt% or less, 35 wt% or less, 40 wt% or less, based on the total weight of the carbon , 45% or less or less than 50% by weight. If the content of the planar carbon (C2) is 0% by weight, the effect of preventing the elution of sulfur from the positive electrode is insignificant and there may be no effect of improving the performance by the planar carbon. Since is lowered, a voltage drop occurs, and sufficient battery capacity may not be implemented.
면형 탄소(C2)는 비산화그래핀, 산화그래핀(graphene oxide), 환원 그래핀 산화물(reduced graphene oxide), 도핑된 그래핀(doped graphene) 및 탄소나노리본(carbon nanoribbon)으로 이루어진 군에서 선택되는 1종 이상일 수 있으며, 바람직하게는 환원 그래핀 산화물일 수 있다.Planar carbon (C2) is selected from the group consisting of non-oxide graphene, graphene oxide, reduced graphene oxide, doped graphene, and carbon nanoribbon. It may be one or more, preferably reduced graphene oxide.
면형 탄소(C2)의 비표면적은 황-탄소 복합체에 포함된 다른 탄소의 비표면적의 합보다 큰 것일 수 있다. 예를 들어, 황-탄소 복합체가 면형 탄소, 점형 탄소 및 선형 탄소를 포함할 경우, 면형 탄소의 비표면적은 점형 탄소와 선형 탄소의 비표면적 합보다 큰 것일 수 있다. The specific surface area of the planar carbon (C2) may be greater than the sum of the specific surface areas of other carbons included in the sulfur-carbon composite. For example, when the sulfur-carbon composite includes planar carbon, point carbon and linear carbon, the specific surface area of the planar carbon may be greater than the sum of the specific surface areas of the point carbon and the linear carbon.
상기 면형 탄소(C2)의 비표면적은 200 ㎡/g 내지 1000 ㎡/g 일 수 있으며, 구체적으로 200 ㎡/g 이상, 300 ㎡/g 이상, 400 ㎡/g 이상 또는 500 ㎡/g 이상일 수 있고, 700 ㎡/g 이하, 800 ㎡/g 이하, 900 ㎡/g 이하 또는 1000 ㎡/g 이하일 수 있다. 이와 같은 비표면적을 가지는 면형 탄소(C2)를 사용할 경우 더 많은 황을 담지 하여 전지의 용량을 향상시키는 동시에 황의 용출을 억제할 수 있다.The specific surface area of the planar carbon (C2) may be 200 m2/g to 1000 m2/g, specifically 200 m2/g or more, 300 m2/g or more, 400 m2/g or more, or 500 m2/g or more, and , 700 m2/g or less, 800 m2/g or less, 900 m2/g or less, or 1000 m2/g or less. When planar carbon (C2) having such a specific surface area is used, it is possible to support more sulfur to improve the capacity of the battery and to suppress the elution of sulfur.
면형 황-탄소 복합체(11)에 포함된 황(S2)의 함량은, 황-탄소 복합체에 포함된 황의 전체 중량을 기준으로 10 내지 45 중량%일 수 있으며, 구체적으로는 10 중량% 이상, 15 중량% 이상 또는 20 중량% 이상일 수 있고, 또한, 35 중량% 이하, 40 중량% 이하 또는 45 중량% 이하일 수 있다. 상기 범위 미만이면 전지 내 황 함량이 줄어들어 전지 용량이 과도하게 감소하고, 상기 범위 초과이면 전극 내 전기 전도도가 과도하게 감소하여 저항이 증가할 수 있다.The content of sulfur (S2) contained in the planar sulfur-carbon composite 11 may be 10 to 45% by weight based on the total weight of sulfur contained in the sulfur-carbon composite, and specifically 10% by weight or more, 15 It may be greater than or equal to 20% by weight, or less than or equal to 35%, less than or equal to 40%, or less than or equal to 45% by weight. If it is less than the above range, the sulfur content in the battery decreases and the battery capacity is excessively reduced, and if it exceeds the above range, the electrical conductivity in the electrode excessively decreases, thereby increasing the resistance.
도 1b는 본 발명에 따른 점형 황-탄소 복합체의 모식도이고, 도 1c는 본 발명에 따른 선형 황-탄소 복합체의 모식도이다.1B is a schematic diagram of a point-type sulfur-carbon composite according to the present invention, and FIG. 1C is a schematic diagram of a linear sulfur-carbon composite according to the present invention.
도 1b 및 도 1c를 참조하면, 점형 황-탄소 복합체(12)는 점형 탄소(C0) 표면에 황(S0)이 형성되어 코어-쉘 형태를 가지고, 선형 황-탄소 복합체(13)는 선형 탄소(C1)의 내부 및/또는 표면에 황(S1)이 형성되어 튜브 형태를 가지므로, 황(S0, S1)이 외부로 노출된 형태를 포함한다. 이와 같은 형태적인 특징로 인하여, 점형 황-탄소 복합체(12) 또는 선형 황-탄소 복합체(13)를 리튬 이차전지의 양극 활물질로 적용할 경우, 표면에 노출된 황(S0, S1)은 전해액과의 접촉이 용이한 바, 전압 강하를 방지하여 전지 성능을 향상시킬 수 있다.1B and 1C, the point-type sulfur-carbon composite 12 has a core-shell form by forming sulfur (S0) on the surface of the point-type carbon (C0), and the linear sulfur-carbon composite 13 is linear carbon. Since sulfur (S1) is formed inside and/or on the surface of (C1) to have a tube shape, sulfur (S0, S1) is exposed to the outside. Due to these morphological features, when the point-shaped sulfur-carbon composite 12 or the linear sulfur-carbon composite 13 is applied as a positive electrode active material of a lithium secondary battery, the sulfur (S0, S1) exposed to the surface is It is easy to contact the bar, it is possible to improve the battery performance by preventing the voltage drop.
점형 탄소(C0) 및 선형 탄소(C1) 중 선택되는 1종 이상의 탄소는, 본 발명에 따른 황-탄소 복합체에 포함된 탄소 전체 중량에 대하여 50 중량% 이상, 100 중량% 미만일 수 있으며, 구체적으로, 50 중량% 이상, 55 중량% 이상, 60 중량% 이상, 65 중량% 이상 또는 70 중량% 이상일 수 있고, 또한, 80 중량% 이하, 85 중량% 이하, 90 중량% 이하, 95 중량% 이하 또는 100 중량% 미만일 수 있다. 상기 점형 탄소(C0) 및 선형 탄소(C1) 중 선택되는 1종 이상의 탄소의 함량이 50 중량% 미만이면 양극에서 전해액의 출입이 원활하지 못하여 리튬 이온전도도가 저하되므로 전압 강하가 발생하여 충분한 전지 용량을 구현할 수 없고, 100 중량%일 경우, 면형 탄소(C2)가 없는 것이므로 양극에서 황의 용출 방지 효과가 미미하여 리튬 이차전지의 방전용량과 수명특성이 저하될 수 있다.At least one carbon selected from point-like carbon (C0) and linear carbon (C1) may be 50% by weight or more and less than 100% by weight based on the total weight of carbon contained in the sulfur-carbon composite according to the present invention, and specifically , 50% by weight or more, 55% by weight or more, 60% by weight or more, 65% by weight or more, or 70% by weight or more, and also 80% by weight or less, 85% by weight or less, 90% by weight or less, 95% by weight or less or It may be less than 100% by weight. If the content of one or more of the carbons selected from point-like carbon (C0) and linear carbon (C1) is less than 50% by weight, the electrolyte is not smoothly in and out of the positive electrode and lithium ion conductivity is lowered, resulting in a voltage drop and sufficient battery capacity. In the case of 100% by weight, since there is no surface carbon (C2), the effect of preventing the elution of sulfur from the positive electrode is insignificant, and the discharge capacity and life characteristics of the lithium secondary battery may be deteriorated.
점형 탄소(C0)는 케첸 블랙(ketjen black), 덴카 블랙(denka black), 아세틸렌 블랙(acetylene black), 슈퍼-p(Super-p) 및 플러렌(Fullerene)로 이루어진 군에서 선택되는 1종 이상일 수 있으며, 바람직하게는 케첸 블랙일 수 있다.Point carbon (C0) may be at least one selected from the group consisting of ketjen black, denka black, acetylene black, super-p, and fullerene. And, preferably, it may be Ketjen Black.
선형 탄소(C1)는 탄소나노튜브(CNT) 및 탄소섬유로 이루어진 군에서 선택되는 1종 이상일 수 있으며, 바람직하게는 탄소나노튜브일 수 있다.Linear carbon (C1) may be one or more selected from the group consisting of carbon nanotubes (CNT) and carbon fibers, and preferably carbon nanotubes.
점형 황-탄소 복합체(12) 및 선형 황-탄소 복합체(13) 중 선택된 1종 이상에 포함된 황(S0,S1)의 함량은, 황-탄소 복합체에 포함된 황의 전체 중량을 기준으로 55 내지 90 중량%, 구체적으로는 55 중량% 이상, 60 중량% 이상 또는 65 중량% 이상일 수 있고, 또한, 85 중량% 이하, 90 중량% 이하 또는 95 중량% 이하일 있다. 상기 범위 미만이면 전지 내 황 함량이 줄어들어 전지 용량이 과도하게 감소하고, 상기 범위 초과이면 전극 내 전기 전도도가 과도하게 감소하여 저항이 증가할 수 있다.The content of sulfur (S0, S1) contained in at least one selected from the point-type sulfur-carbon composite 12 and the linear sulfur-carbon composite 13 is 55 to the total weight of sulfur contained in the sulfur-carbon composite. It may be 90% by weight, specifically 55% by weight or more, 60% by weight or more, or 65% by weight or more, and also 85% by weight or less, 90% by weight or less, or 95% by weight or less. If it is less than the above range, the sulfur content in the battery decreases and the battery capacity is excessively reduced, and if it exceeds the above range, the electrical conductivity in the electrode excessively decreases, thereby increasing the resistance.
황-탄소 복합체의 제조방법Method for producing sulfur-carbon composite
본 발명은 또한, 황-탄소 복합체의 제조방법은 특별히 제한되지는 않으며, 당업계에서 통상적으로 사용하는 황-탄소 복합체의 제조방법을 사용할 수 있다.In the present invention, a method for preparing a sulfur-carbon composite is not particularly limited, and a method for producing a sulfur-carbon composite commonly used in the art may be used.
또한, 본 발명에 따른 황-탄소 복합체에 포함된 탄소의 형태, 즉, 면형 탄소, 점형 탄소 또는 선형 탄소를 모두 동일한 황-탄소 복합체의 제조방법에 적용할 수도 있다.In addition, the form of carbon contained in the sulfur-carbon composite according to the present invention, that is, planar carbon, point-like carbon, or linear carbon may all be applied to the same method for preparing the sulfur-carbon composite.
예를 들어, 상기 황-탄소 복합체는 용융 확산법에 의해 제조될 수 있다. 상기 용융 확산법은 가열을 통한 황의 용융에 의해 탄소입자 내부로 황이 침투하는 제조법이다. 이때, 상기 열처리는 다양한 직접 또는 간접 가열 방식을 포함하는 것일 수 있다.For example, the sulfur-carbon composite may be prepared by a melt diffusion method. The melt diffusion method is a manufacturing method in which sulfur penetrates into carbon particles by melting sulfur through heating. In this case, the heat treatment may include various direct or indirect heating methods.
본 발명에 따른 황-탄소의 복합체는 (S1) 황과 탄소를 혼합하는 단계; 및 상기 (S1) 단계에서 형성된 황과 탄소의 혼합물을 열처리하는 단계;를 포함할 수 있다. The sulfur-carbon composite according to the present invention comprises the steps of (S1) mixing sulfur and carbon; And heat-treating the mixture of sulfur and carbon formed in the step (S1).
상기 (S1) 단계에서 황과 탄소의 사용량 및 종류는 앞서 설명한 바와 같다.The amounts and types of sulfur and carbon in the step (S1) are as described above.
또한, 상기 (S2) 단계의 열처리 온도는 황이 녹아 상기 탄소에 스며들어 담지될 수 있도록 하는 온도로서, 황의 녹는점 이상일 수 있다.In addition, the heat treatment temperature in the step (S2) is a temperature at which sulfur is dissolved and permeated into the carbon to be supported, and may be higher than the melting point of sulfur.
구체적으로, 상기 열처리시 온도는 100 내지 200℃일 수 있으며, 구체적으로, 100℃ 이상, 105℃ 이상, 110℃ 이상, 115℃ 이상 또는 120℃ 이상일 수 있고, 또한, 180℃ 이하, 185℃ 이하, 190℃ 이하, 195℃ 이하 또는 200℃ 이하일 수 있으며, 용융 확산법에 의해서 열처리하는 것일 수 있다. 상기 범위 미만이면 황이 녹아 탄소에 스며드는 과정이 진행되지 않으므로 황-탄소 복합체 자체가 제조되지 않을 수 있고, 상기 범위 초과이면 황의 기화로 유실율이 커지고 황-탄소 복합체가 변성되어 리튬 이차전지의 양극재로 적용시 전지의 성능 개선 효과가 미미할 수 있다.Specifically, the temperature during the heat treatment may be 100 to 200°C, specifically, 100°C or more, 105°C or more, 110°C or more, 115°C or more, or 120°C or more, and 180°C or less, 185°C or less , 190°C or less, 195°C or less, or 200°C or less, and may be heat treated by a melt diffusion method. If it is less than the above range, the sulfur-carbon composite itself may not be manufactured because the process of dissolving sulfur and seeping into the carbon does not proceed.If it exceeds the above range, the loss rate increases due to the vaporization of sulfur, and the sulfur-carbon composite is denatured to become a cathode material of a lithium secondary battery. When applied, the effect of improving the performance of the battery may be insignificant.
또한, 본 발명에 따른 면형 황-탄소 복합체, 점형 황-탄소 복합체 및 선형 황-탄소 복합체는 상술한 바와 같은 황-탄소 복합체의 제조방법에 따라 각각 제조될 수도 있고, 동시에 제조될 수도 있다.In addition, the planar sulfur-carbon composite, point-type sulfur-carbon composite, and linear sulfur-carbon composite according to the present invention may be prepared respectively according to the method for preparing a sulfur-carbon composite as described above, or may be prepared simultaneously.
리튬 이차전지Lithium secondary battery
본 발명은 또한, 전술한 바와 같은 황-탄소 복합체를 포함하는 리튬 이차전지에 관한 것이다. 이때, 상기 황-탄소 복합체는 바람직하게는 양극 활물질로 포함될 수 있다. The present invention also relates to a lithium secondary battery comprising the sulfur-carbon composite as described above. In this case, the sulfur-carbon composite may preferably be included as a positive electrode active material.
본 발명에 따른 리튬 이차전지는 양극, 음극, 이들 사이에 개재된 분리막 및 전해질을 포함할 수 있다.The lithium secondary battery according to the present invention may include a positive electrode, a negative electrode, a separator and an electrolyte interposed therebetween.
도 2는 본 발명에 따른 황-탄소 복합체를 포함하는 리튬 이차전지용 양극의 모식도이다.2 is a schematic diagram of a positive electrode for a lithium secondary battery comprising a sulfur-carbon composite according to the present invention.
도 2를 참조하면, 상기 리튬 이차전지용 양극(1)은 양극 집전체(20) 및 상기 양극 집전체(20) 상에 형성된 양극 활물질을 갖는 양극 활물질층(10)을 포함할 수 있다. Referring to FIG. 2, the positive electrode 1 for a lithium secondary battery may include a positive electrode current collector 20 and a positive electrode active material layer 10 having a positive electrode active material formed on the positive electrode current collector 20.
상기 양극 활물질은 황-탄소 복합체를 포함할 수 있으며, 상기 황-탄소 복합체는 면형 황-탄소 복합체(11)를 포함할 수 있고, 또한 점형 황-탄소 복합체(12) 및 선형 황-탄소 복합체(13) 중 선택되는 1종 이상을 포함할 수 있다.The positive electrode active material may include a sulfur-carbon composite, and the sulfur-carbon composite may include a planar sulfur-carbon composite 11, and a point-shaped sulfur-carbon composite 12 and a linear sulfur-carbon composite ( It may contain one or more selected from among 13).
또한, 추가로 상기 양극 활물질로는 리튬 함유 전이금속 산화물이 사용될 수도 있으며, 예를 들면 LiCoO2, LiNiO2, LiMnO2, LiMn2O4, Li(NiaCobMnc)O2(0<a<1, 0<b<1, 0<c<1, a+b+c=1), LiNi1 - yCoyO2, LiCo1 - yMnyO2, LiNi1 - yMnyO2(O≤y<1), Li(NiaCobMnc)O4(0<a<2, 0<b<2, 0<c<2, a+b+c=2), LiMn2 - zNizO4, LiMn2 - zCozO4(0<z<2), LiCoPO4 및 LiFePO4로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있다. 또한, 이러한 산화물(oxide) 외에 황화물(sulfide), 셀렌화물(selenide) 및 할로겐화물(halide) 등도 사용될 수 있다.In addition, a lithium-containing transition metal oxide may be used as the positive electrode active material, for example, LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , Li(Ni a Co b Mn c )O 2 (0<a<1,0<b<1,0<c<1, a+b+c=1), LiNi 1 - y Co y O 2 , LiCo 1 - y Mn y O 2 , LiNi 1 - y Mn y O 2 (O≤y<1), Li(Ni a Co b Mn c )O 4 (0<a<2, 0<b<2, 0<c<2, a+b+c=2), LiMn 2 - z Ni z O 4, LiMn 2 - z Co z O 4 (0 <z <2), LiCoPO may be used any one or a mixture of two or more of these four and is selected from the group consisting of LiFePO 4. In addition, in addition to these oxides, sulfide, selenide, and halide may be used.
또한, 상기 양극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되지 않으며, 예를 들면 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 이때, 상기 양극 집전체는 양극 활물질과의 접착력을 높일 수도 있도록, 표면에 미세한 요철이 형성된 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태를 사용할 수 있다.In addition, the positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes to the battery, for example, stainless steel, aluminum, nickel, titanium, calcined carbon, or on the surface of aluminum or stainless steel. Carbon, nickel, titanium, silver or the like surface-treated may be used. In this case, the positive electrode current collector may be in various forms such as a film, sheet, foil, net, porous material, foam, non-woven fabric having fine irregularities formed on the surface so as to increase adhesion to the positive electrode active material.
본 발명에 있어서, 상기 리튬 이차전지의 음극은 음극 집전체 및 상기 음극 집전체 상에 형성된 음극 활물질을 갖는 음극 활물질층을 포함할 수 있다. In the present invention, the negative electrode of the lithium secondary battery may include a negative electrode current collector and a negative electrode active material layer having a negative electrode active material formed on the negative electrode current collector.
상기 음극 활물질로는 리튬 금속 혹은 통상적으로 리튬 이온이 흡장 및 방출될 수 있는 탄소재, 규소 또는 주석 등을 사용할 수 있다. 바람직하게는 탄소재를 사용할 수 있는데, 탄소재로는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소(soft carbon) 및 경화탄소(hard carbon)가 대표적이며, 고결정성 탄소로는 천연 흑연, 키시흑연(Kish graphite), 열분해 탄소(pyrolytic carbon), 액정 피치계 탄소섬유(mesophase pitch based carbon fiber), 탄소 미소구체(meso-carbon microbeads), 액정피치(Mesophase pitches) 및 석유와 석탄계 코크스(petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다. 이때 음극은 결착제를 포함할 수 있으며, 결착제로는 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride, PVDF), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate) 등, 다양한 종류의 바인더 고분자가 사용될 수 있다.As the negative active material, lithium metal or a carbon material through which lithium ions can be occluded and released may be used, such as silicon or tin. Preferably, a carbon material may be used, and both low crystalline carbon and high crystalline carbon may be used as the carbon material. As low crystalline carbon, soft carbon and hard carbon are typical, and high crystalline carbon is natural graphite, kish graphite, pyrolytic carbon, liquid crystal pitch-based carbon fiber (mesophase pitch based carbon fiber), meso-carbon microbeads, mesophase pitches, and high-temperature calcined carbons such as petroleum or coal tar pitch derived cokes are typical. At this time, the negative electrode may include a binder, and as the binder, vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidenefluoride (PVDF), and polyacrylonitrile ), polymethylmethacrylate, etc., various kinds of binder polymers may be used.
또한, 상기 음극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되지 않으며, 예를 들면 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 상기 음극 집전체는 양극 집전체와 마찬가지로, 표면에 미세한 요철이 형성된 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 사용될 수 있다.In addition, the negative electrode current collector is not particularly limited as long as it has conductivity without causing chemical changes to the battery, for example, copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel. Surface treatment with carbon, nickel, titanium, silver, or the like, aluminum-cadmium alloy, or the like may be used. In addition, the negative electrode current collector, like the positive electrode current collector, may be used in various forms such as a film, sheet, foil, net, porous body, foam, nonwoven fabric having fine irregularities on the surface thereof.
이때, 상기 양극 활물질층 또는 음극 활물질층은 바인더 수지, 도전재, 충진제 및 기타 첨가제 등을 추가로 포함할 수 있다.In this case, the positive electrode active material layer or the negative electrode active material layer may further include a binder resin, a conductive material, a filler, and other additives.
상기 바인더 수지는 전극 활물질과 도전재의 결합과 집전체에 대한 결합을 위해 사용한다. 이러한 바인더 수지의 예로는, 폴리비닐리덴플루오라이드(PVDF), 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 하이드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌-부타디엔 고무, 불소 고무, 이들의 다양한 공중합체 등을 들 수 있다.The binder resin is used for bonding of an electrode active material and a conductive material and bonding to a current collector. Examples of such binder resins include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetra Fluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene-butadiene rubber, fluorine rubber, and various copolymers thereof.
상기 도전재는 전극 활물질의 도전성을 더욱 향상시키기 위해 사용한다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 휘스커; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등이 사용될 수 있다. 바람직하게는, 상기 도전재는 VGCF(Vapor grown carbon fiber)일 수 있다.The conductive material is used to further improve the conductivity of the electrode active material. Such a conductive material is not particularly limited as long as it has conductivity without causing a chemical change in the battery, and examples thereof include graphite such as natural graphite or artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and thermal black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride, aluminum, and nickel powder; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Polyphenylene derivatives and the like can be used. Preferably, the conductive material may be a vapor grown carbon fiber (VGCF).
상기 충진제는 전극의 팽창을 억제하는 성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합체; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용된다.The filler is selectively used as a component that suppresses the expansion of the electrode, and is not particularly limited as long as it is a fibrous material without causing chemical changes to the battery, and examples thereof include olefin-based polymers such as polyethylene and polypropylene; Fibrous materials such as glass fiber and carbon fiber are used.
본 발명에 있어서, 상기 분리막은 다공성 기재로 이루어질 수 있으며, 상기 다공성 기재는, 통상적으로 전기화학소자에 사용되는 다공성 기재라면 모두 사용이 가능하고, 예를 들면 폴리올레핀계 다공성 막(membrane) 또는 부직포를 사용할 수 있으나, 이에 특별히 한정되는 것은 아니다.In the present invention, the separator may be made of a porous substrate, and the porous substrate may be used as long as it is a porous substrate commonly used in an electrochemical device, for example, a polyolefin-based porous membrane or a nonwoven fabric. It can be used, but is not particularly limited thereto.
상기 폴리올레핀계 다공성 막의 예로는, 고밀도 폴리에틸렌, 선형 저밀도 폴리에틸렌, 저밀도 폴리에틸렌, 초고분자량 폴리에틸렌과 같은 폴리에틸렌, 폴리프로필렌, 폴리부틸렌, 폴리펜텐 등의 폴리올레핀계 고분자를 각각 단독으로 또는 이들을 혼합한 고분자로 형성한 막(membrane)을 들 수 있다.Examples of the polyolefin-based porous membrane include polyolefin-based polymers such as high-density polyethylene, linear low-density polyethylene, low-density polyethylene, and ultra-high molecular weight polyethylene, polyolefin-based polymers such as polypropylene, polybutylene, and polypentene, respectively, or a mixture of them. There is one membrane.
상기 부직포로는 폴리올레핀계 부직포 외에 예를 들어, 폴리에틸렌 테레프탈레이트 (polyethyleneterephthalate), 폴리부틸렌 테레프탈레이트 (polybutyleneterephthalate), 폴리에스테르 (polyester), 폴리아세탈 (polyacetal), 폴리아미드 (polyamide), 폴리카보네이트 (polycarbonate), 폴리이미드 (polyimide), 폴리에테르에테르케톤 (polyetheretherketone), 폴리에테르설폰 (polyethersulfone), 폴리페닐렌 옥사이드 (polyphenyleneoxide), 폴리페닐렌 설파이드 (polyphenylenesulfide) 및 폴리에틸렌 나프탈렌 (polyethylenenaphthalene) 등을 각각 단독으로 또는 이들을 혼합한 고분자로 형성한 부직포를 들 수 있다. 부직포의 구조는 장섬유로 구성된 스폰본드 부직포 또는 멜트 블로운 부직포일 수 있다.As the nonwoven fabric, in addition to the polyolefin nonwoven fabric, for example, polyethylene terephthalate, polybutyleneterephthalate, polyester, polyacetal, polyamide, polycarbonate ), polyimide, polyetheretherketone, polyethersulfone, polyphenyleneoxide, polyphenylenesulfide, and polyethylenenaphthalene, respectively, alone or Nonwoven fabrics formed of polymers obtained by mixing them are exemplified. The structure of the nonwoven fabric may be a spunbond nonwoven fabric composed of long fibers or a melt blown nonwoven fabric.
상기 다공성 기재의 두께는 특별히 제한되지 않으나, 1 ㎛ 내지 100 ㎛, 또는 5 ㎛ 내지 50 ㎛일 수 있다.The thickness of the porous substrate is not particularly limited, but may be 1 μm to 100 μm, or 5 μm to 50 μm.
다공성 기재에 존재하는 기공의 크기 및 기공도 역시 특별히 제한되지 않으나 각각 0.001㎛ 내지 50㎛ 및 10% 내지 95%일 수 있다.The size and porosity of the pores present in the porous substrate are also not particularly limited, but may be 0.001 μm to 50 μm and 10% to 95%, respectively.
본 발명에 있어서, 상기 전해액은 비수 전해액일 수 있으며, 상기 비수 전해액에 포함되는 전해질 염은 리튬염이다. 상기 리튬염은 리튬 이차전지용 전해액에 통상적으로 사용되는 것들 것 제한 없이 사용될 수 있다. 예를 들어 상기 리튬염은 LiFSI, LiPF6, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiPF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬 및 4-페닐 붕산 리튬으로 이루어진 군에서 선택되는 1종 이상일 수 있다.In the present invention, the electrolyte may be a nonaqueous electrolyte, and the electrolyte salt contained in the nonaqueous electrolyte is a lithium salt. The lithium salt may be used without limitation, those commonly used in an electrolyte for a lithium secondary battery. For example, the lithium salt is LiFSI, LiPF 6 , LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiPF 6 , LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, it may be one or more selected from the group consisting of lithium chloroborane and lithium 4-phenyl borate.
전술한 비수 전해액에 포함되는 유기용매로는 리튬 이차전지용 전해액에 통상적으로 사용되는 것들을 제한 없이 사용할 수 있으며, 예를 들면 에테르, 에스테르, 아미드, 선형 카보네이트, 환형 카보네이트 등을 각각 단독으로 또는 2종 이상 혼합하여 사용할 수 있다. 그 중에서 대표적으로는 환형 카보네이트, 선형 카보네이트, 또는 이들의 슬러리인 카보네이트 화합물을 포함할 수 있다.As organic solvents included in the above-described non-aqueous electrolyte, those commonly used in electrolytes for lithium secondary batteries can be used without limitation, and for example, ethers, esters, amides, linear carbonates, cyclic carbonates, etc. can be used alone or in two or more types. It can be mixed and used. Among them, representatively, a cyclic carbonate, a linear carbonate, or a carbonate compound that is a slurry thereof may be included.
상기 환형 카보네이트 화합물의 구체적인 예로는 에틸렌 카보네이트(ethylene carbonate, EC), 프로필렌 카보네이트(propylene carbonate, PC), 1,2-부틸렌 카보네이트, 2,3-부틸렌 카보네이트, 1,2-펜틸렌 카보네이트, 2,3-펜틸렌 카보네이트, 비닐렌 카보네이트, 비닐에틸렌 카보네이트 및 이들의 할로겐화물로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 슬러리가 있다. 이들의 할로겐화물로는 예를 들면, 플루오로에틸렌 카보네이트(fluoroethylene carbonate, FEC) 등이 있으며, 이에 한정되는 것은 아니다.Specific examples of the cyclic carbonate compound include ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, Any one selected from the group consisting of 2,3-pentylene carbonate, vinylene carbonate, vinylethylene carbonate, and halides thereof, or two or more of these slurries. These halides include, for example, fluoroethylene carbonate (FEC), but are not limited thereto.
또한, 상기 선형 카보네이트 화합물의 구체적인 예로는 디메틸 카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트, 에틸메틸 카보네이트(EMC), 메틸프로필 카보네이트 및 에틸프로필 카보네이트로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 슬러리 등이 대표적으로 사용될 수 있으나, 이에 한정되는 것은 아니다. 특히, 상기 카보네이트계 유기용매 중 환형 카보네이트인 에틸렌 카보네이트 및 프로필렌 카보네이트는 고점도의 유기용매로서 유전율이 높아 전해질 내의 리튬염을 보다 더 잘 해리시킬 수 있으며, 이러한 환형 카보네이트에 디메틸 카보네이트 및 디에틸 카보네이트와 같은 저점도, 저유전율 선형 카보네이트를 적당한 비율로 혼합하여 사용하면 보다 높은 전기 전도율을 갖는 전해액을 만들 수 있다.In addition, a specific example of the linear carbonate compound is any one selected from the group consisting of dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate, ethylmethyl carbonate (EMC), methylpropyl carbonate, and ethylpropyl carbonate, or Two or more of these slurries may be representatively used, but are not limited thereto. Particularly, among the carbonate-based organic solvents, ethylene carbonate and propylene carbonate, which are cyclic carbonates, are organic solvents of high viscosity and have high dielectric constants, so that lithium salts in the electrolyte can be more easily dissociated.These cyclic carbonates include dimethyl carbonate and diethyl carbonate. If a low viscosity, low dielectric constant linear carbonate is mixed in an appropriate ratio and used, an electrolyte solution having a higher electrical conductivity can be prepared.
또한, 상기 유기 용매 중 에테르로는 디메틸 에테르, 디에틸 에테르, 디프로필 에테르, 메틸에틸 에테르, 메틸프로필 에테르, 에틸프로필 에테르, 디메톡시에탄(DME) 및 디옥솔란(DOL)으로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 슬러리를 사용할 수 있으나, 이에 한정되는 것은 아니다.In addition, the ether of the organic solvent is selected from the group consisting of dimethyl ether, diethyl ether, dipropyl ether, methylethyl ether, methylpropyl ether, ethylpropyl ether, dimethoxyethane (DME) and dioxolane (DOL). Any one or two or more of these slurries may be used, but the present invention is not limited thereto.
또한, 상기 유기 용매 중 에스테르로는 메틸 아세테이트, 에틸 아세테이트, 프로필 아세테이트, 메틸 프로피오네이트, 에틸 프로피오네이트, 프로필 프로피오네이트, γ-부티로락톤, γ-발레로락톤, γ-카프로락톤, σ-발레로락톤 및 σ-카프로락톤으로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 슬러리를 사용할 수 있으나, 이에 한정되는 것은 아니다.In addition, esters in the organic solvent include methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, γ-butyrolactone, γ-valerolactone, γ-caprolactone, Any one selected from the group consisting of σ-valerolactone and σ-caprolactone, or two or more types of slurry may be used, but is not limited thereto.
상기 비수 전해액의 주입은 최종 제품의 제조 공정 및 요구 물성에 따라, 전기화학소자의 제조 공정 중 적절한 단계에서 행해질 수 있다. 즉, 전기화학소자 조립 전 또는 전기화학소자 조립 최종 단계 등에서 적용될 수 있다.The injection of the non-aqueous electrolyte may be performed at an appropriate step in the manufacturing process of the electrochemical device, depending on the manufacturing process and required physical properties of the final product. That is, it can be applied before assembling the electrochemical device or at the final stage of assembling the electrochemical device.
본 발명에 따른 리튬 이차전지는, 일반적인 공정인 권취(winding) 이외에도 세퍼레이터와 전극의 적층(lamination, stack) 및 접음(folding) 공정이 가능하다.In the lithium secondary battery according to the present invention, in addition to winding, which is a general process, lamination, stacking, and folding of a separator and an electrode are possible.
그리고, 상기 전지케이스의 형상은 특별히 제한되지 않으며, 원통형, 적층형, 각형, 파우치(pouch)형 또는 코인(coin)형 등 다양한 형상으로 할 수 있다. 이들 전지의 구조와 제조 방법은 이 분야에 널리 알려져 있으므로 상세한 설명은 생략한다.Further, the shape of the battery case is not particularly limited, and may be in various shapes such as a cylindrical shape, a stacked type, a square shape, a pouch type, or a coin type. The structure and manufacturing method of these batteries are widely known in this field, and thus detailed descriptions are omitted.
또한, 상기 리튬 이차전지는 사용하는 양극/음극 재질에 따라 리튬-황 이차전지, 리튬-공기 전지, 리튬-산화물 전지, 리튬 전고체 전지 등 다양한 전지로 분류가 가능하다.In addition, the lithium secondary battery can be classified into various batteries, such as lithium-sulfur secondary batteries, lithium-air batteries, lithium-oxide batteries, and lithium all-solid batteries, depending on the material of the positive electrode/cathode used.
본 발명은 또한, 상기 리튬 이차전지를 단위전지로 포함하는 전지모듈을 제공한다.The present invention also provides a battery module including the lithium secondary battery as a unit cell.
상기 전지모듈은 고온 안정성, 긴 사이클 특성 및 높은 용량 특성 등이 요구되는 중대형 디바이스의 전원으로 사용될 수 있다.The battery module can be used as a power source for medium and large-sized devices that require high temperature stability, long cycle characteristics, and high capacity characteristics.
상기 중대형 디바이스의 예로는 전지적 모터에 의해 동력을 받아 움직이는 파워 툴(power tool); 전기자동차(electric vehicle, EV), 하이브리드 전기자동차(hybrid electric vehicle, HEV), 플러그-인 하이브리드 전기자동차(plug-in hybrid electric vehicle, PHEV) 등을 포함하는 전기차; 전기 자전거(E-bike), 전기 스쿠터(E-scooter)를 포함하는 전기 이륜차; 전기 골프 카트(electric golf cart); 전력저장용 시스템 등을 들 수 있으나, 이에 한정되는 것은 아니다.Examples of the medium and large-sized devices include a power tool that is powered by an omniscient motor and moves; Electric vehicles including electric vehicles (EV), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like; Electric two-wheeled vehicles including electric bicycles (E-bikes) and electric scooters (E-scooters); Electric golf cart; Power storage systems, etc., but are not limited thereto.
리튬-황 이차전지Lithium-sulfur secondary battery
본 발명은 따른 황-탄소 복합체는 리튬 이차전지 중에서도, 리튬-황 이차전지의 양극에 적용할 수 있다. The sulfur-carbon composite according to the present invention can be applied to a positive electrode of a lithium-sulfur secondary battery among lithium secondary batteries.
이때, 상기 리튬-황 이차전지는 양극 활물질로서 상기 황-탄소 복합체를 포함하는 전지일 수 있다. In this case, the lithium-sulfur secondary battery may be a battery including the sulfur-carbon composite as a positive electrode active material.
상기 황-탄소 복합체는 기공 내부까지 리튬 이온의 이동 경로를 확보함으로써 높은 이온 전도성을 나타낼 수 있고, 황 담지체의 역할을 하여 양극 활물질인 황과의 반응성을 높여 리튬-황 이차전지의 초기 방전용량 및 고율성능을 동시에 향상시킬 수 있다.The sulfur-carbon composite can exhibit high ionic conductivity by securing the path of lithium ions to the inside of the pores, and acts as a sulfur carrier to increase reactivity with sulfur, which is a positive electrode active material, to increase the initial discharge capacity of a lithium-sulfur secondary battery. And high rate performance can be improved at the same time.
이하 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변경 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.Hereinafter, preferred embodiments are presented to aid the understanding of the present invention, but the following examples are only illustrative of the present invention, and it is obvious to those skilled in the art that various changes and modifications are possible within the scope and spirit of the present invention. It is natural that changes and modifications fall within the scope of the appended claims.
비교예 1Comparative Example 1
(1)황-탄소 복합체 제조(1) Preparation of sulfur-carbon composite
(1-1)탄소와 황의 혼합(1-1) Mixing of carbon and sulfur
탄소 분말 25 중량% 및 황 분말 75 중량%을 혼합한 혼합물을 얻었다. 이때, 상기 탄소 분말은 선형 탄소로서 CNT(carbon nanotube) 분말이다.A mixture of 25% by weight of carbon powder and 75% by weight of sulfur powder was obtained. In this case, the carbon powder is linear carbon and is a carbon nanotube (CNT) powder.
(1-2)열처리(1-2) Heat treatment
상기 (1-1)에서 얻은 혼합물을 155℃로 열처리하여, 용융 확산법을 통해 황-탄소 복합체를 제조하였다. 이때, 상기 황-탄소 복합체는 선형 황-탄소 복합체를 포함하는 것이다.The mixture obtained in (1-1) was heat-treated at 155° C. to prepare a sulfur-carbon composite through a melt diffusion method. In this case, the sulfur-carbon complex includes a linear sulfur-carbon complex.
(2)양극 제조(2) anode manufacturing
양극 활물질로서 상기 (1)에서 얻은 황-탄소 복합체, 도전재로서 VGCF(Vapor grown carbon fiber), 바인더로서 폴리비닐리덴플루오라이드(PVDF)를 8:1:1의 중량비로 혼합하고 20%의 농도로 물에 분산시켜 양극 슬러리를 제조하였다.The sulfur-carbon composite obtained in (1) above as a positive electrode active material, VGCF (Vapor grown carbon fiber) as a conductive material, and polyvinylidene fluoride (PVDF) as a binder were mixed in a weight ratio of 8:1:1, and a concentration of 20% Disperse in water to prepare a positive electrode slurry.
상기 양극 슬러리를 Al 호일에 코팅하고 건조시켜 양극을 제조하였다.The positive electrode slurry was coated on Al foil and dried to prepare a positive electrode.
(3) 리튬-황 이차전지 제조(3) Manufacture of lithium-sulfur secondary battery
음극으로서 50 ㎛ 두께의 리튬 호일, 상기 (2)에서 제조된 양극, 전해액은 용매로서 DOL/DME(1:1, v/v)을 사용하고, 1M LiTFSI와 3 중량%의 LiNO3를 포함하는 조성으로 하여 제조된 전해액 및 폴리올레핀 분리막을 사용하여 코인셀 형태의 리튬-황 이차전지를 제조하였다. 이때, DOL은 디옥솔란, DME은 디메톡시에탄을 의미한다.50 μm thick lithium foil as the negative electrode, the positive electrode prepared in (2) above, the electrolyte was DOL/DME (1:1, v/v) as a solvent, and 1M LiTFSI and 3% by weight of LiNO 3 were included. A lithium-sulfur secondary battery in the form of a coin cell was manufactured using the electrolyte solution and polyolefin separator prepared as the composition. In this case, DOL means dioxolane, and DME means dimethoxyethane.
실시예 1Example 1
(1)황-탄소 복합체 제조(1) Preparation of sulfur-carbon composite
(1-1)탄소와 황의 혼합(1-1) Mixing of carbon and sulfur
탄소 분말 25 중량% 및 황 분말 75 중량%을 혼합한 혼합물을 얻었다. 이때, 상기 탄소 분말은 면형 탄소로서 환원 그래핀 산화물 분말 10 중량% 및 선형 탄소로서 CNT 분말 90 중량%을 포함하는 것이다. 상기 환원 그래핀 산화물의 비표면적은 600 ㎡/g 이다.A mixture of 25% by weight of carbon powder and 75% by weight of sulfur powder was obtained. At this time, the carbon powder includes 10% by weight of reduced graphene oxide powder as planar carbon and 90% by weight of CNT powder as linear carbon. The specific surface area of the reduced graphene oxide is 600 m 2 /g.
(1-2)열처리(1-2) Heat treatment
상기 (1-1)에서 얻은 혼합물을 155℃로 열처리하여, 용융 확산법을 통해 상기 탄소에 황이 담지되도록 하여 황-탄소 복합체를 제조하였다. 이때, 제조된 황-탄소 복합체는 면형 황-탄소 복합체와 선형 황-탄소 복합체를 포함한다.The mixture obtained in (1-1) was heat-treated at 155° C., so that sulfur was supported on the carbon through a melt diffusion method to prepare a sulfur-carbon composite. At this time, the prepared sulfur-carbon composite includes a planar sulfur-carbon composite and a linear sulfur-carbon composite.
(2)양극 제조(2) anode manufacturing
양극 활물질로서 상기 (1)에서 얻은 황-탄소 복합체, 도전재로서 VGCF(Vapor grown carbon fiber) 바인더로서 폴리비닐리덴플루오라이드(PVDF)를 8:1:1의 중량비로 혼합하고 20%의 농도로 물에 분산시켜 양극 슬러리를 제조하였다.The sulfur-carbon composite obtained in (1) above as a positive electrode active material, and polyvinylidene fluoride (PVDF) as a VGCF (Vapor grown carbon fiber) binder as a conductive material were mixed in a weight ratio of 8:1:1, and at a concentration of 20%. Disperse in water to prepare a positive electrode slurry.
상기 양극 슬러리를 Al 호일에 코팅하고 건조시켜 양극을 제조하였다.The positive electrode slurry was coated on Al foil and dried to prepare a positive electrode.
(3) 리튬-황 이차전지 제조(3) Manufacture of lithium-sulfur secondary battery
음극으로서 50 ㎛ 두께의 리튬 호일, 상기 (2)에서 제조된 양극, 전해액은 용매로서 DOL/DME(1:1, v/v)을 사용하고, 1M LiTFSI와 3 중량%의 LiNO3를 포함하는 조성으로 하여 제조된 전해액 및 폴리올레핀 분리막을 사용하여 코인셀 형태의 리튬-황 이차전지를 제조하였다. 이때, DOL은 디옥솔란, DME은 디메톡시에탄을 의미한다.50 μm thick lithium foil as the negative electrode, the positive electrode prepared in (2) above, the electrolyte was DOL/DME (1:1, v/v) as a solvent, and 1M LiTFSI and 3% by weight of LiNO 3 were included. A lithium-sulfur secondary battery in the form of a coin cell was manufactured using the electrolyte solution and polyolefin separator prepared as the composition. In this case, DOL means dioxolane, and DME means dimethoxyethane.
실시예 2 내지 4Examples 2 to 4
실시예 1과 동일하게 실시하되, 하기 표 1에 나타난 바와 같이 황-탄소 복합체에 포함된 탄소 전체 중량을 기준으로 면형 탄소 함량을 각각 20 중량%, 30 중량% 및 40 중량%로 하여, 황-탄소 복합체, 양극 및 리튬-황 이차전지를 제조하였다.It was carried out in the same manner as in Example 1, but as shown in Table 1 below, based on the total weight of carbon contained in the sulfur-carbon composite, the planar carbon content was 20% by weight, 30% by weight, and 40% by weight, respectively, and sulfur- A carbon composite, a positive electrode, and a lithium-sulfur secondary battery were prepared.
실시예 5 내지 6Examples 5 to 6
실시예 1과 동일하게 실시하되, 하기 표 1에 기재된 바와 같은 조성으로 황-탄소 복합체를 제조하였다. 이때, 하기 표 1에 나타난 바와 같이 황-탄소 복합체에 포함된 탄소 전체 중량을 기준으로 면형 탄소 함량을 각각 26 중량% 및 35 중량%로 하여, 황-탄소 복합체, 양극 및 리튬-황 이차전지를 제조하였다.In the same manner as in Example 1, a sulfur-carbon composite was prepared in the composition as shown in Table 1 below. At this time, as shown in Table 1 below, the surface carbon content is 26% by weight and 35% by weight, respectively, based on the total weight of carbon contained in the sulfur-carbon composite, and the sulfur-carbon composite, the positive electrode, and the lithium-sulfur secondary battery are Was prepared.
단위:중량%Unit:% by weight 황-탄소 복합체Sulfur-carbon complex 탄소carbon sulfur
황함량Sulfur content 탄소함량Carbon content 면형 탄소함량Cotton type carbon content 선형 탄소함량Linear carbon content 면형 황 함량Cotton sulfur content 선형 황함량Linear sulfur content
비교예 1Comparative Example 1 7575 2525 00 100100 00 100100
실시예 1Example 1 7575 2525 1010 9090 1010 9090
실시예 2Example 2 7575 2525 2020 8080 2020 8080
실시예 3Example 3 7575 2525 3030 7070 3030 7070
실시예 4Example 4 7575 2525 4040 6060 4040 6060
실시예 5Example 5 76.576.5 23.523.5 2626 7474 3131 6969
실시예 6Example 6 7777 2323 3535 6565 4242 5858
실험예Experimental example 1: 리튬-황 이차전지의 성능 개선 효과 분석 1: Analysis of performance improvement effect of lithium-sulfur secondary battery
실시예 1 내지 6과 비교예 1에서 각각 제조된 황-탄소 복합체를 양극에 적용한 리튬-황 이차전지의 성능에 대한 실험을 실시하였다. 코인셀 형태로 제조한 상기 리튬-황 이차전지를 상온에서 충/방전을 반복하여 충방전 테스트를 진행하였으며, 첫 방전은 0.1C로 진행한 이후 충/방전을 동일하게 2회 더 반복하였고, 이후 0.2c로 3회 충/방전을 반복한 이후 0.3C/0.5C로 충/방전을 계속 반복하였다. 이를 통해 첫 방전시 용량-전압 그래프를 얻어 초기방전 성능을 평가하였으며, 사이클 반복에 따른 용량변화 그래프를 얻어 고율성능(0.3C/0.5C)을 평가하였다.An experiment was conducted on the performance of a lithium-sulfur secondary battery in which the sulfur-carbon composites each prepared in Examples 1 to 6 and Comparative Example 1 were applied to a positive electrode. The lithium-sulfur secondary battery manufactured in the form of a coin cell was repeatedly charged/discharged at room temperature to conduct a charge/discharge test, and after the first discharge was performed at 0.1C, charging/discharging was repeated two more times in the same manner. Charging/discharging was repeated three times at 0.2c, and then charging/discharging was continued at 0.3C/0.5C. Through this, a capacity-voltage graph was obtained at the first discharge to evaluate the initial discharge performance, and a capacity change graph according to cycle repetition was obtained to evaluate high rate performance (0.3C/0.5C).
도 3a는 실시예 1 내지 4와 비교예 1에서 각각 제조된 황-탄소 복합체를 양극에 적용한 리튬-황 이차전지의 초기 방전 성능을 나타낸 그래프이고, 도 3b는 실시예 1 내지 4와 비교예 1에서 각각 제조된 황-탄소 복합체를 양극에 적용한 리튬-황 이차전지의 고율특성을 측정한 결과를 나타낸 그래프이다.3A is a graph showing the initial discharge performance of a lithium-sulfur secondary battery in which the sulfur-carbon composites each prepared in Examples 1 to 4 and Comparative Example 1 were applied to a positive electrode, and FIG. 3B is a graph showing the initial discharge performance of Examples 1 to 4 and Comparative Example 1 Is a graph showing the results of measuring the high rate characteristics of a lithium-sulfur secondary battery in which the sulfur-carbon composites prepared in each were applied to a positive electrode.
도 3a를 참조하면, 면형 탄소를 포함하지 않고 선형 탄소만을 포함하는 비교예 1에 비해 면형 탄소와 선형 탄소를 모두 포함하는 실시예 1 내지 4의 리튬-황 이차전지에서 황의 무게당 방전 용량이 증가하는 것을 알 수 있다. 실시예 1 내지 4 중에서도 면형 탄소의 함량이 증가할수록 방전 용량이 상승하여 면형 탄소의 함량이 30 중량%인 실시예 3의 방전 용량이 가장 높은 것을 확인하였다. 반면, 30 중량%를 초과한 실시예 4와 같이 면형 탄소의 함량이 40 중량%이 되면 방전용량이 더 이상 증가하지 않음을 확인하였다.Referring to FIG. 3A, the discharge capacity per weight of sulfur is increased in the lithium-sulfur secondary batteries of Examples 1 to 4 including both planar carbon and linear carbon compared to Comparative Example 1 that does not include planar carbon and includes only linear carbon. I can see that. Among Examples 1 to 4, as the content of planar carbon increased, the discharge capacity increased, and it was confirmed that the discharge capacity of Example 3 in which the content of planar carbon was 30% by weight was the highest. On the other hand, it was confirmed that the discharge capacity did not increase any more when the content of planar carbon was 40% by weight as in Example 4 exceeding 30% by weight.
또한, 도 3b를 참조하면, 충방전 rate가 달라져도 도 3a의 초기 방전 성능 곡선과 동일하게 면형 탄소의 함량이 30 중량%인 실시예 3의 방전 용량이 가장 높은 것을 알 수 있다. 마찬가지로 실시예 4와 같이 면형 탄소의 함량이 40 중량%이 되면 방전용량이 더 이상 증가하지 않음을 확인하였다.In addition, referring to FIG. 3B, it can be seen that even if the charge/discharge rate is changed, the discharge capacity of Example 3 in which the content of planar carbon is 30% by weight is the highest as in the initial discharge performance curve of FIG. Similarly, as in Example 4, when the content of planar carbon was 40% by weight, it was confirmed that the discharge capacity did not increase any more.
도 4a는 실시예 5 내지 6과 비교예 1에서 각각 제조된 황-탄소 복합체를 양극에 적용한 리튬-황 이차전지의 첫번째 초기 방전 성능을 나타낸 그래프이고, 도 4b는 실시예 5 내지 6과 비교예 1에서 각각 제조된 황-탄소 복합체를 양극에 적용한 리튬-황 이차전지의 고율특성을 측정한 결과를 나타낸 그래프이다.4A is a graph showing the first initial discharge performance of a lithium-sulfur secondary battery in which the sulfur-carbon composites each prepared in Examples 5 to 6 and Comparative Example 1 were applied to a positive electrode, and FIG. 4B is A graph showing the results of measuring the high rate characteristics of a lithium-sulfur secondary battery in which the sulfur-carbon composites each prepared in 1 were applied to a positive electrode.
도 4a를 참조하면, 실시예 5 내지 6에서 면형 탄소 복합체의 황 함량이 더 높아져서 전체 황 함량이 높아졌음에도 불구하고, 비교예 1 보다 전체 황 무게 대비 방전용량이 높아짐을 알 수 있다. 그러나 실시예 6과 같이 면형 탄소의 함량이 늘어나고 전체 황 함량이 더 늘어나게 되면 방전용량의 증가가 멈추게 됨을 확인할 수 있다. 따라서 황-탄소 복합체에 포함된 황 전체 중량을 기준으로 하여 선형 황-탄소 복합체보다 면형 황-탄소 복합체에 포함된 황의 함량이 더 높을 때 더 높은 에너지 밀도를 구현할 수 있음을 알 수 있다. Referring to FIG. 4A, although the sulfur content of the planar carbon composite was higher in Examples 5 to 6 and thus the total sulfur content was increased, it can be seen that the discharge capacity was higher than that of Comparative Example 1. However, as in Example 6, it can be seen that the increase in discharge capacity stops when the content of planar carbon is increased and the total sulfur content is further increased. Therefore, it can be seen that a higher energy density can be realized when the sulfur content of the planar sulfur-carbon composite is higher than that of the linear sulfur-carbon composite based on the total weight of sulfur contained in the sulfur-carbon composite.
또한, 도 4b를 참조하면, 도 4a의 초기 방전 성능 곡선과 동일하게 고율에서실시예 5의 방전 용량이 가장 높은 것을 알 수 있다.Further, referring to FIG. 4B, it can be seen that the discharge capacity of Example 5 is the highest at a high rate, similar to the initial discharge performance curve of FIG. 4A.
실험예 2: 면형 탄소의 함량에 따른 황-탄소 복합체 형상 관찰Experimental Example 2: Observation of the shape of a sulfur-carbon composite according to the content of planar carbon
도 5는 실시예 2 내지 실시예 4에서 각각 제조된 황-탄소 복합체의 SEM(Scanning Electron Microscope, JEOL社, JSM7200) 사진이다.5 is a SEM (Scanning Electron Microscope, JEOL, JSM7200) photographs of sulfur-carbon composites prepared in Examples 2 to 4, respectively.
실시예 2, 실시예 3 및 실시예 4의 황-탄소 복합체는 탄소 전체 중량을 기준으로 면형 탄소인 환원 그래핀 산화물의 함량이 각각 20 중량%, 30 중량% 및 40 중량%인 경우이다.The sulfur-carbon composites of Example 2, Example 3, and Example 4 are the case where the content of reduced graphene oxide, which is planar carbon, is 20% by weight, 30% by weight, and 40% by weight, respectively, based on the total weight of carbon.
도 5를 참조하면, 실시예 2, 실시예 3 및 실시예 4 모두 면형 탄소(하얀색 표시)가 적정량 포함되어 있어 황 용출을 방지할 수 있으나, 실시예 4의 경우 면형 탄소의 함량이 실시예 2 및 3에 비해 상대적으로 많아 이온 전달이 다소 어려운 구조를 나타내는 것을 알 수 있다.Referring to FIG. 5, since both Examples 2, 3, and 4 contain an appropriate amount of planar carbon (indicated in white color), sulfur elution can be prevented, but in the case of Example 4, the content of planar carbon is in Example 2 And it can be seen that the structure is relatively more difficult to transfer ions than 3.
[부호의 설명][Explanation of code]
1: 양극1: anode
10: 양극 활물질층10: positive active material layer
20: 집전체20: current collector
11: 면형 황-탄소 복합체11: Faceted sulfur-carbon complex
12: 점형 황-탄소 복합체12: point type sulfur-carbon complex
13: 선형 황-탄소 복합체13: linear sulfur-carbon complex
S0, S1, S2: 황S0, S1, S2: sulfur
C0: 점형 탄소, C1: 선형 탄소, C2: 면형 탄소C0: point carbon, C1: linear carbon, C2: planar carbon

Claims (11)

  1. 면형 탄소를 포함하는 황-탄소 복합체로서,As a sulfur-carbon composite containing facet carbon,
    상기 면형 탄소는 상기 탄소 전체 중량을 기준으로 0 중량% 초과, 50 중량% 미만으로 포함된, 황-탄소 복합체.The planar carbon is contained in an amount greater than 0% by weight and less than 50% by weight based on the total weight of the carbon, sulfur-carbon composite.
  2. 제1항에 있어서,The method of claim 1,
    상기 면형 탄소는 상기 탄소 전체 중량을 기준으로 10 내지 30 중량% 로 포함된 것인, 황-탄소 복합체.The planar carbon is contained in an amount of 10 to 30% by weight based on the total weight of the carbon, sulfur-carbon composite.
  3. 제1항에 있어서,The method of claim 1,
    상기 황-탄소 복합체는 면형 탄소; 및 점형 탄소 및 선형 탄소 중 선택된 1종 이상의 탄소;를 포함하는 것인, 황-탄소 복합체. The sulfur-carbon composite is a planar carbon; And one or more carbons selected from point-like carbon and linear carbon; to a sulfur-carbon composite.
  4. 제1항에 있어서,The method of claim 1,
    상기 면형 탄소는 비산화그래핀, 산화그래핀(graphene oxide), 환원 그래핀 산화물(reduced graphene oxide), 도핑된 그래핀(doped graphene) 및 탄소나노리본(carbon nanoribbon)으로 이루어진 군에서 선택되는, 황-탄소 복합체.The planar carbon is selected from the group consisting of non-oxide graphene, graphene oxide, reduced graphene oxide, doped graphene, and carbon nanoribbon, Sulfur-carbon complex.
  5. 제3항에 있어서,The method of claim 3,
    상기 점형 탄소는 케첸 블랙, 덴카 블랙, 아세틸렌 블랙, 슈퍼-p 및 플러렌으로 이루어진 군에서 선택되는, 황-탄소 복합체.The point-like carbon is selected from the group consisting of Ketjen Black, Denka Black, acetylene black, super-p and fullerene, sulfur-carbon composite.
  6. 제3항에 있어서,The method of claim 3,
    상기 선형 탄소는 탄소나노튜브 및 탄소섬유로 이루어진 군에서 선택되는, 황-탄소 복합체.The linear carbon is selected from the group consisting of carbon nanotubes and carbon fibers, sulfur-carbon composite.
  7. 제3항에 있어서,The method of claim 3,
    상기 면형 탄소를 포함하는 황-탄소 복합체는 상기 면형 탄소의 사이에 담지된 형태이고,The sulfur-carbon composite including the planar carbon is a type supported between the planar carbon,
    상기 점형 탄소를 포함하는 황-탄소 복합체는 상기 점형 탄소의 표면에 황이 형성된 형태이며,The sulfur-carbon composite including the point-like carbon is a form in which sulfur is formed on the surface of the point-like carbon,
    상기 선형 탄소를 포함하는 황-탄소 복합체는 상기 선형 탄소의 내부, 표면 또는 내부와 표면에 황이 형성된 형태인, 황-탄소 복합체.The sulfur-carbon composite including the linear carbon is in a form in which sulfur is formed on the inside, the surface, or the inside and the surface of the linear carbon.
  8. 제1항에 있어서,The method of claim 1,
    상기 황-탄소 복합체는 황 40 내지 95 중량% 및 탄소 5 내지 60 중량%를 포함하는 것인, 황-탄소 복합체.The sulfur-carbon composite is a sulfur-carbon composite containing 40 to 95% by weight of sulfur and 5 to 60% by weight of carbon.
  9. 제1항 내지 제8항 중 어느 한 항의 황-탄소 복합체를 포함하는 리튬 이차전지용 양극.A positive electrode for a lithium secondary battery comprising the sulfur-carbon composite of any one of claims 1 to 8.
  10. 제9항에 따른 양극을 포함하는 리튬 이차전지.A lithium secondary battery comprising the positive electrode according to claim 9.
  11. 제10항에 있어서,The method of claim 10,
    상기 리튬 이차전지는 리튬-황 이차전지인, 리튬 이차전지.The lithium secondary battery is a lithium-sulfur secondary battery, a lithium secondary battery.
PCT/KR2020/006256 2019-05-14 2020-05-13 Sulfur-carbon composite, and cathode and lithium secondary battery each comprising same WO2020231162A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/298,878 US11967702B2 (en) 2019-05-14 2020-05-13 Sulfur-carbon composite, and cathode and lithium secondary battery each comprising same
CN202080007113.8A CN113228349A (en) 2019-05-14 2020-05-13 Sulfur-carbon composite, and positive electrode and lithium secondary battery each containing the sulfur-carbon composite
EP20806156.4A EP3905392A4 (en) 2019-05-14 2020-05-13 Sulfur-carbon composite, and cathode and lithium secondary battery each comprising same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20190056010 2019-05-14
KR10-2019-0056010 2019-05-14
KR10-2020-0056606 2020-05-12
KR1020200056606A KR102328262B1 (en) 2019-05-14 2020-05-12 Sulfur-carbon composite, positive electrode and lithium secondary battery comprising the same

Publications (1)

Publication Number Publication Date
WO2020231162A1 true WO2020231162A1 (en) 2020-11-19

Family

ID=73290266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/006256 WO2020231162A1 (en) 2019-05-14 2020-05-13 Sulfur-carbon composite, and cathode and lithium secondary battery each comprising same

Country Status (1)

Country Link
WO (1) WO2020231162A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140107582A (en) * 2011-12-22 2014-09-04 더 보드 오브 리전츠 오브 더 유니버시티 오브 텍사스 시스템 Sulfur-carbon composite cathodes for rechargeable lithium-sulfur batteries and methods of making the same
KR20160037084A (en) * 2014-09-26 2016-04-05 주식회사 엘지화학 Surfur-carbonnanotube complex, method of preparing the same, cathode active material for lithium-sulfur battery including the same and lithium-sulfur battery including the same
KR20160051610A (en) 2014-10-31 2016-05-11 주식회사 엘지화학 Freestanding type-cathode active material for lithium-sulfur battery and lithium-sulfur battery having the same
KR20180024917A (en) * 2016-08-31 2018-03-08 성균관대학교산학협력단 Sulfur-carbon microball composite and method of manufacturing the same
KR101957248B1 (en) * 2017-09-27 2019-03-12 한국화학연구원 Cathode Material for LiS secondary battery, and method of manufacturing the same
KR20190050424A (en) * 2017-11-03 2019-05-13 주식회사 엘지화학 Sulfur-carbon composite and lithium-sulfur battery including the same
KR20190056010A (en) 2017-11-16 2019-05-24 인하대학교 산학협력단 A braille block for the person with a visual impairment
KR20200056606A (en) 2018-11-15 2020-05-25 한양대학교 산학협력단 Population and contamination estimation method during severe accidents in nuclear power plants

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140107582A (en) * 2011-12-22 2014-09-04 더 보드 오브 리전츠 오브 더 유니버시티 오브 텍사스 시스템 Sulfur-carbon composite cathodes for rechargeable lithium-sulfur batteries and methods of making the same
KR20160037084A (en) * 2014-09-26 2016-04-05 주식회사 엘지화학 Surfur-carbonnanotube complex, method of preparing the same, cathode active material for lithium-sulfur battery including the same and lithium-sulfur battery including the same
KR20160051610A (en) 2014-10-31 2016-05-11 주식회사 엘지화학 Freestanding type-cathode active material for lithium-sulfur battery and lithium-sulfur battery having the same
KR20180024917A (en) * 2016-08-31 2018-03-08 성균관대학교산학협력단 Sulfur-carbon microball composite and method of manufacturing the same
KR101957248B1 (en) * 2017-09-27 2019-03-12 한국화학연구원 Cathode Material for LiS secondary battery, and method of manufacturing the same
KR20190050424A (en) * 2017-11-03 2019-05-13 주식회사 엘지화학 Sulfur-carbon composite and lithium-sulfur battery including the same
KR20190056010A (en) 2017-11-16 2019-05-24 인하대학교 산학협력단 A braille block for the person with a visual impairment
KR20200056606A (en) 2018-11-15 2020-05-25 한양대학교 산학협력단 Population and contamination estimation method during severe accidents in nuclear power plants

Similar Documents

Publication Publication Date Title
WO2019103463A1 (en) Cathode material for lithium secondary battery, and cathode and lithium secondary battery which comprise same
WO2016032240A1 (en) Negative electrode active material having double coating layers, method for preparing same, and lithium secondary battery comprising same
WO2018135915A1 (en) Method for manufacturing lithium secondary battery with improved high-temperature storage characteristics
WO2019194510A1 (en) Cathode active material for lithium secondary battery, method for manufacturing same, cathode comprising same for lithium secondary battery, and lithium secondary battery
WO2019083221A1 (en) Cathode active material for secondary battery, preparation method therefor, and lithium secondary battery comprising same
WO2018212481A1 (en) Method for manufacturing anode for lithium secondary battery
WO2018143733A1 (en) Method for manufacturing lithium secondary battery with improved high-temperature storage properties
WO2017095074A1 (en) Anode active material comprising titanium-based composite, manufacturing method therefor, and lithium secondary battery comprising same
WO2020085823A1 (en) Method for manufacturing anode for lithium secondary battery
WO2020262890A1 (en) Anode and secondary battery comprising same
WO2020111545A1 (en) Positive electrode active material, and positive electrode and lithium secondary battery comprising positive electrode active material
WO2019078688A2 (en) Lithium secondary battery positive electrode active material, method for preparing same, and lithium secondary battery positive electrode and lithium secondary battery comprising same
WO2018164402A1 (en) Electrode assembly and lithium battery comprising same
WO2022139452A1 (en) Method for manufacturing positive electrode for lithium secondary battery and positive electrode for lithium secondary battery manufactured thereby
WO2020067830A1 (en) Positive electrode active material for secondary battery, method for producing same, and lithium secondary battery comprising same
WO2019078626A1 (en) Method for preparing cathode active material for secondary battery and secondary battery using same
WO2018062883A2 (en) Anode for lithium secondary battery comprising mesh-shaped insulating layer, and lithium secondary battery comprising same
WO2023008952A1 (en) Insulation composition having excellent wet adhesion for electrodes, and method for manufacturing same
WO2019093864A2 (en) Lithium cobalt-based positive electrode active material, method for preparing same, positive electrode comprising same, and secondary battery
WO2023008953A1 (en) Lithium secondary battery cathode comprising insulating layer with excellent wet adhesive strength and lithium secondary battery comprising same
WO2022114538A1 (en) Method for manufacturing lithium secondary battery, and lithium secondary battery manufactured thereby
WO2018093092A1 (en) Anode active material and preparation method therefor
WO2019066585A1 (en) Method for preparing cathode active material for secondary battery, cathode active material prepared thereby, and lithium secondary battery comprising same
WO2021154024A1 (en) Positive electrode active material precursor for secondary battery, positive electrode active material, method for producing same, and lithium secondary battery including same
WO2020231162A1 (en) Sulfur-carbon composite, and cathode and lithium secondary battery each comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20806156

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020806156

Country of ref document: EP

Effective date: 20210726

NENP Non-entry into the national phase

Ref country code: DE