WO2019066585A1 - Method for preparing cathode active material for secondary battery, cathode active material prepared thereby, and lithium secondary battery comprising same - Google Patents

Method for preparing cathode active material for secondary battery, cathode active material prepared thereby, and lithium secondary battery comprising same Download PDF

Info

Publication number
WO2019066585A1
WO2019066585A1 PCT/KR2018/011579 KR2018011579W WO2019066585A1 WO 2019066585 A1 WO2019066585 A1 WO 2019066585A1 KR 2018011579 W KR2018011579 W KR 2018011579W WO 2019066585 A1 WO2019066585 A1 WO 2019066585A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
active material
coating
metal oxide
carbide
Prior art date
Application number
PCT/KR2018/011579
Other languages
French (fr)
Korean (ko)
Inventor
안동준
조문규
박성순
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180115214A external-priority patent/KR102143101B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2020506194A priority Critical patent/JP6890874B2/en
Priority to US16/481,718 priority patent/US11189827B2/en
Priority to CN201880008691.6A priority patent/CN110225887B/en
Publication of WO2019066585A1 publication Critical patent/WO2019066585A1/en
Priority to US17/459,344 priority patent/US11888153B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/991Boron carbide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a cathode active material for a secondary battery, a cathode active material thus prepared, and a lithium secondary battery comprising the cathode active material.
  • the lithium secondary battery has a structure in which an organic electrolyte or a polymer electrolyte is filled between a positive electrode and a negative electrode, which are made of an active material capable of intercalating and deintercalating lithium ions, and oxidized when lithium ions are inserted / And electrical energy is produced by the reduction reaction.
  • lithium cobalt oxide LiCoO 2
  • lithium nickel oxide LiNiO 2
  • lithium manganese oxide LiMnO 2 or LiMn 2 O 4
  • lithium iron phosphate compound LiFePO 4
  • LiNi 1 - ⁇ Co ⁇ O 2 0.1 ⁇ 0.3
  • nickel is partially replaced by cobalt
  • a nickel manganese-based lithium composite metal oxide in which a part of nickel (Ni) is substituted with manganese (Mn) excellent in thermal stability and a nickel-cobalt manganese-based lithium composite metal oxide in which manganese (Mn) (Hereinafter referred to as " NCM-based lithium oxide ") has an advantage in that it has excellent cycle characteristics and thermal stability.
  • a cathode active material for high voltage and high voltage secondary batteries which suppresses side reaction with an electrolyte under high voltage and formation of a solid electrolyte interface (SEI) film on the surface of a cathode active material, and has improved resistance characteristics and life characteristics.
  • SEI solid electrolyte interface
  • the present invention provides a method of manufacturing a lithium secondary battery including: providing a lithium transition metal oxide; Mixing the lithium transition metal oxide, a coating polymer, and a carbide to form a mixture; And heat-treating the mixture to form a coating layer comprising a carbonated coating polymer and a carbide on the surface of the lithium transition metal oxide.
  • the present invention also provides a method of manufacturing a cathode active material for a secondary battery.
  • the present invention also relates to a lithium transition metal oxide; And a coating layer formed on the particle surface of the lithium-transition metal oxide, wherein the coating layer is in the form of a film, and the coating layer comprises a carbonated coating polymer and a carbide.
  • the present invention also provides a positive electrode and a lithium secondary battery including the positive electrode active material.
  • a cathode active material for high voltage and high voltage secondary batteries can be produced which suppresses a side reaction with an electrolyte and a solid electrolyte interface (SEI) film formation on the surface of a cathode active material under a high voltage and has improved resistance characteristics and life characteristics.
  • SEI solid electrolyte interface
  • the positive electrode active material for a secondary battery according to the present invention can prevent mechanical damage of a positive electrode active material generated by repetition of charging / discharging in a high voltage state.
  • uniform coating can be performed on the entire surface of the cathode active material particles, and the initial resistance and the rate of resistance increase can be reduced by securing excellent electrical conductivity.
  • Example 1 and 2 are SEM (Scanning Electron Microscope) photographs of a cathode active material manufactured according to Example 1 of the present invention.
  • FIGS. 3 and 4 are SEM (Scanning Electron Microscope) photographs of the cathode active material prepared according to Comparative Example 2 on an enlarged scale.
  • a method of manufacturing a cathode active material for a secondary battery according to the present invention includes the steps of: providing a lithium transition metal oxide; Mixing the lithium transition metal oxide, a coating polymer, and a carbide to form a mixture; And heat-treating the mixture to form a coating layer comprising a carbonated coating polymer and carbide on the surface of the lithium transition metal oxide particle.
  • the present invention relates to a method of coating a lithium transition metal oxide particle by using a mixture of a coating polymer and a carbide to suppress side reactions with an electrolyte and formation of a solid electrolyte interface (SEI) film on the surface of a cathode active material under high voltage, And life characteristics can be improved.
  • SEI solid electrolyte interface
  • a polymer for coating a soft material it is possible to prevent mechanical breakage of a cathode active material generated by repetition of charging / discharging in a high voltage state, and by using a carbide excellent in electrical conductivity, And the resistance increase rate can be reduced.
  • the coating polymer may be carbonized through heat treatment during the coating process to ensure additional electrical conductivity.
  • a lithium transition metal oxide is provided.
  • the lithium transition metal oxide may be a lithium transition metal oxide which is typically used as a cathode active material and more preferably at least one transition metal selected from the group consisting of nickel (Ni), cobalt (Co) and manganese (Mn)
  • Ni nickel
  • Co cobalt
  • Mn manganese
  • the cathode active material may include a lithium-transition metal composite oxide represented by the following general formula (1).
  • M a is at least one element selected from the group consisting of Mn, Al and Zr and M b is at least one element selected from the group consisting of Al, Zr, Ti, Mg, Ta, Nb, Mo, W and Cr Or more, and 0.9? P? 1.5, 0? X? 0.5, 0? Y? 0.5, and 0? Z? More preferably 0? X + y? 0.7, and most preferably 0 ⁇ x + y?
  • the cathode active material is more preferably LiNi 0.8 Co 0.1 Mn 0.1 O 2 , LiNi 0 . 9 Co 0 . 05 Mn 0 . 05 O 2 , or LiNi 0 . 6 Co 0 . 2 Mn 0 . 2 O 2 Or a high-Ni NCM-based lithium transition metal oxide.
  • the lithium transition metal oxide, the polymer for coating and the carbide are mixed to form a mixture.
  • the coating polymer can be used as long as it can coat the particle surface of the lithium transition metal oxide and does not deteriorate the electrochemical performance.
  • the polymer include polyvinylidene fluoride (PVDF), polyvinyl pyrrolidone Polyvinylpyrrolidone), polyethylene, polystyrene, polyethylene terephthalate, polyvinyl chloride, polyvinylidene chloride, epoxy resin, amino resin, phenol resin and polyester resin, and more preferably at least one of polyvinylidene At least one selected from the group consisting of polyvinylpyrrolidone (PVDF) and polyvinylpyrrolidone, polyethylene terephthalate and polyvinylidene chloride may be used.
  • PVDF polyvinylidene fluoride
  • PVDF polyvinyl pyrrolidone
  • Polyvinylpyrrolidone Polyvinylpyrrolidone
  • polyethylene polystyrene
  • the polymer for coating of a soft material By using the polymer for coating of a soft material, it is possible to prevent mechanical breakage of the positive electrode active material generated by repeating charging / discharging in a high voltage state.
  • the formation of the coating layer through the conventional dry coating method of metal oxide is difficult to coat uniformly in the form of an island and is difficult to coat uniformly in the form of an island.
  • the coating polymer in which the coating is coated with a mixture of the polymer for coating and a carbide It is possible to easily form a film-like uniform coating layer through temperature control during the coating process based on the melting point of the polymer for coating, and the carbide mixed with the coating polymer can uniformly coat the surface of the cathode active material particle Can be distributed.
  • the coating polymer may be carbonized through a heat treatment during the coating process, thereby providing additional electrical conductivity.
  • the polymer for coating may be included in an amount of 0.001 to 10 parts by weight, more preferably 0.005 to 5 parts by weight, based on 100 parts by weight of the lithium-transition metal oxide contained in the mixture.
  • the coating polymer is mixed in an amount of 0.001 to 10 parts by weight based on 100 parts by weight of the lithium-transition metal oxide, whereby a coating layer can be uniformly formed on the entire surface of the cathode active material particle. It is possible to prevent mechanical breakage of the positive electrode active material that occurs while repeating the above-described process.
  • the carbide is a compound composed of carbon and one element.
  • the carbide is covalently bonded to carbon and other elements and has a relatively high melting point and can remain as it is without being decomposed into CO 2 or CO even during high temperature heat treatment in an oxidizing atmosphere during the coating process, It can be coated with the polymer for uniform distribution on the surface of the cathode active material particles. As a result, excellent electrical conductivity can be ensured and excellent electrical conductivity can be secured to reduce initial resistance and resistance increase rate.
  • the carbide may be included in an amount of 0.001 to 10 parts by weight, more preferably 0.002 to 2 parts by weight, based on 100 parts by weight of the lithium-transition metal oxide contained in the mixture. Since the carbide is mixed in an amount of 0.001 to 10 parts by weight based on 100 parts by weight of the lithium transition metal oxide, it can be uniformly distributed over the surface of the positive electrode active material particles, and the initial resistance and the rate of increase in resistance can be decreased have.
  • the mixture may be prepared by adding and stirring a polymer for coating to a lithium-transition metal oxide, then adding and stirring the carbide, and simultaneously adding a coating polymer and a carbide, And the order of the manufacturing process is not particularly limited.
  • a stirring process can be selectively performed, and the stirring speed may be 2,000 rpm at 100 rpm.
  • the mixture may contain the coating polymer and the carbide in a weight ratio of 1:99 to 99: 1, more preferably 20:80 to 80:20.
  • a uniform film-like coating layer can be formed on the entire surface of the cathode active material particle, and the carbide can be uniformly distributed.
  • SEI solid electrolyte interface
  • the mixture is subjected to heat treatment to form a coating layer containing a carbonated coating polymer and a carbide on the surface of the lithium transition metal oxide.
  • the heat treatment for forming the coating layer may be performed in an oxidizing atmosphere such as air or oxygen or an inert atmosphere such as nitrogen, but may be performed in an oxidizing atmosphere.
  • the heat treatment may be performed at 200 to 800 ° C for 0.5 to 5 hours, more preferably at 300 to 600 ° C for 0.5 to 5 hours.
  • the cathode active material for a secondary battery of the present invention thus produced is a lithium transition metal oxide; And a coating layer formed on the particle surface of the lithium transition metal oxide, wherein the coating layer is in the form of a film, and the coating layer comprises a carbonated coating polymer and a carbide.
  • the coating polymer used in the coating process can be formed into a carbonized form through heat treatment during the coating process.
  • the carbonized coating polymer can ensure additional electrical conductivity.
  • the carbide may remain as it is without being decomposed into CO 2 or CO even during high-temperature heat treatment in an oxidizing atmosphere during the coating process.
  • a coating layer may be formed together with the coating polymer and may be uniformly distributed on the surface of the cathode active material particle. have.
  • the coating layer may contain 0.001 to 10 parts by weight, more preferably 0.002 to 2 parts by weight, of the carbide relative to 100 parts by weight of the lithium-transition metal oxide particles.
  • Carbide is not decomposed and removed even during the heat treatment during the coating process so that the above content can be satisfied and carbide is contained within the above range to secure excellent electrical conductivity and reduce initial resistance and resistance increase rate, And can be suitably applied as a high-voltage positive electrode active material.
  • the coating polymer and the carbide are applied in the same manner as described above for the method of manufacturing the cathode active material for a secondary battery of the present invention.
  • the coating layer is in the form of a film surrounding the particle surface of the lithium transition metal oxide, and the thickness of the coating layer may be 5 to 2,000 nm, more preferably 10 to 500 nm. If the thickness of the coating layer is less than 5 nm, the coating layer may be too thin to form a uniform coating layer. If the thickness of the coating layer is more than 2,000 nm, the ion conductivity may be lowered.
  • a cathode active material for a secondary battery manufactured by coating a coating polymer and a carbide as a hybrid coating suppresses a side reaction with an electrolyte under a high voltage and forms a solid electrolyte interface (SEI) film on the surface of the cathode active material And thus, it is possible to remarkably improve the high-voltage undervoltage resistance characteristic and the life characteristic.
  • SEI solid electrolyte interface
  • a positive electrode and a lithium secondary battery for a secondary battery including the positive electrode active material.
  • the positive electrode includes a positive electrode collector and a positive electrode active material layer formed on the positive electrode collector and including the positive electrode active material.
  • the cathode current collector is not particularly limited as long as it has conductivity without causing a chemical change in the battery, and for example, a metal such as stainless steel, aluminum, nickel, titanium, sintered carbon, , Nickel, titanium, silver, or the like may be used.
  • the cathode current collector may have a thickness of 3 to 500 ⁇ , and fine unevenness may be formed on the surface of the cathode current collector to increase the adhesive force of the cathode active material.
  • it can be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the cathode active material layer may include a conductive material and a binder together with the cathode active material described above.
  • the conductive material is used for imparting conductivity to the electrode.
  • the conductive material can be used without particular limitation as long as it has electron conductivity without causing chemical change. Specific examples thereof include graphite such as natural graphite and artificial graphite; Carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black and carbon fiber; Metal powder or metal fibers such as copper, nickel, aluminum and silver; Conductive whiskey such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; And polyphenylene derivatives. These may be used alone or in admixture of two or more.
  • the conductive material may be typically contained in an amount of 1 to 30% by weight based on the total weight of the cathode active material layer.
  • the binder serves to improve adhesion between the positive electrode active material particles and adhesion between the positive electrode active material and the positive electrode collector.
  • specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, carboxymethylcellulose ), Starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene butadiene rubber (SBR), fluororubber, and various copolymers thereof.
  • the binder may be included in an amount of 1 to 30% by weight based on the total weight of the cathode active material layer.
  • the positive electrode may be manufactured according to a conventional positive electrode manufacturing method, except that the positive electrode active material described above is used. Specifically, the composition for forming a cathode active material layer containing the above-mentioned cathode active material and optionally a binder and a conductive material may be coated on the cathode current collector, followed by drying and rolling. At this time, the types and contents of the cathode active material, the binder, and the conductive material are as described above.
  • the solvent examples include dimethyl sulfoxide (DMSO), isopropyl alcohol, N-methylpyrrolidone (NMP), acetone, and the like. Water and the like, and one kind or a mixture of two or more kinds can be used.
  • the amount of the solvent to be used is sufficient to dissolve or disperse the cathode active material, the conductive material and the binder in consideration of the coating thickness of the slurry and the yield of the slurry, and then to have a viscosity capable of exhibiting excellent thickness uniformity Do.
  • the positive electrode may be produced by casting the composition for forming the positive electrode active material layer on a separate support, then peeling off the support from the support, and laminating the obtained film on the positive electrode current collector.
  • an electrochemical device including the anode.
  • the electrochemical device may be specifically a battery or a capacitor, and more specifically, may be a lithium secondary battery.
  • the lithium secondary battery includes a positive electrode, a negative electrode disposed opposite to the positive electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolyte, as described above.
  • the lithium secondary battery may further include a battery container for storing the positive electrode, the negative electrode and the electrode assembly of the separator, and a sealing member for sealing the battery container.
  • the negative electrode includes a negative electrode current collector and a negative electrode active material layer disposed on the negative electrode current collector.
  • the negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery.
  • the negative electrode current collector may be formed on the surface of copper, stainless steel, aluminum, nickel, titanium, sintered carbon, Carbon, nickel, titanium, silver or the like, aluminum-cadmium alloy, or the like may be used.
  • the negative electrode collector may have a thickness of 3 to 500 ⁇ , and similarly to the positive electrode collector, fine unevenness may be formed on the surface of the collector to enhance the binding force of the negative electrode active material.
  • it can be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the anode active material layer optionally includes a binder and a conductive material together with the anode active material.
  • the negative electrode active material layer may be formed by applying and drying a composition for forming a negative electrode including a negative electrode active material on the negative electrode collector and, optionally, a binder and a conductive material, or by casting the composition for forming a negative electrode on a separate support , And a film obtained by peeling from the support may be laminated on the negative electrode collector.
  • a compound capable of reversible intercalation and deintercalation of lithium may be used.
  • Specific examples thereof include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fiber and amorphous carbon;
  • Metal compounds capable of alloying with lithium such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloys, Sn alloys or Al alloys; SiO ⁇ (0 ⁇ ⁇ 2 ), SnO 2, vanadium oxide, which can dope and de-dope a lithium metal oxide such as lithium vanadium oxide;
  • a composite containing the metallic compound and the carbonaceous material such as Si-C composite or Sn-C composite, and any one or a mixture of two or more thereof may be used.
  • a metal lithium thin film may be used as the negative electrode active material.
  • the carbon material may be both low-crystalline carbon and high-crystallinity carbon.
  • Examples of the low-crystalline carbon include soft carbon and hard carbon.
  • Examples of the highly crystalline carbon include natural graphite, artificial graphite, artificial graphite or artificial graphite, Kish graphite graphite, pyrolytic carbon, mesophase pitch based carbon fiber, meso-carbon microbeads, mesophase pitches and petroleum or coal tar coke derived cokes).
  • binder and the conductive material may be the same as those described above for the anode.
  • the separator separates the negative electrode and the positive electrode and provides a moving path of lithium ions.
  • the separator can be used without any particular limitation as long as it is used as a separator in a lithium secondary battery. Particularly, It is preferable to have a low resistance and an excellent ability to impregnate the electrolyte.
  • porous polymer films such as porous polymer films made of polyolefin-based polymers such as ethylene homopolymers, propylene homopolymers, ethylene / butene copolymers, ethylene / hexene copolymers and ethylene / methacrylate copolymers, May be used.
  • a nonwoven fabric made of a conventional porous nonwoven fabric for example, glass fiber of high melting point, polyethylene terephthalate fiber, or the like may be used.
  • a coated separator containing a ceramic component or a polymer material may be used, and may be optionally used as a single layer or a multilayer structure.
  • Examples of the electrolyte used in the present invention include an organic-based liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel-type polymer electrolyte, a solid inorganic electrolyte, and a molten inorganic electrolyte that can be used in the production of a lithium secondary battery. It is not.
  • the electrolyte may include an organic solvent and a lithium salt.
  • the organic solvent may be used without limitation as long as it can act as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • examples of the organic solvent include ester solvents such as methyl acetate, ethyl acetate,? -Butyrolactone and?
  • Ether solvents such as dibutyl ether or tetrahydrofuran; Ketone solvents such as cyclohexanone; Aromatic hydrocarbon solvents such as benzene and fluorobenzene; Dimethyl carbonate (DMC), diethylcarbonate (DEC), methylethylcarbonate (MEC), ethylmethylcarbonate (EMC), ethylene carbonate (EC), propylene carbonate PC) and the like; Alcohol solvents such as ethyl alcohol and isopropyl alcohol; R-CN (R is a straight, branched or cyclic hydrocarbon group of C2 to C20, which may contain a double bond aromatic ring or an ether bond); Amides such as dimethylformamide; Dioxolanes such as 1,3-dioxolane; Or sulfolane may be used.
  • Ether solvents such as dibutyl ether or tetrahydrofuran
  • Ketone solvents such as cyclohexanone
  • a carbonate-based solvent is preferable, and a cyclic carbonate (for example, ethylene carbonate or propylene carbonate) having a high ionic conductivity and a high dielectric constant, for example, such as ethylene carbonate or propylene carbonate, For example, ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate) is more preferable.
  • a cyclic carbonate for example, ethylene carbonate or propylene carbonate
  • ethylene carbonate or propylene carbonate for example, ethylene carbonate or propylene carbonate
  • ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate
  • the lithium salt can be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery.
  • the lithium salt LiPF 6, LiClO 4, LiAsF 6, LiBF 4, LiSbF 6, LiAl0 4, LiAlCl 4, LiCF 3 SO 3, LiC 4 F 9 SO 3, LiN (C 2 F 5 SO 3) 2 , LiN (C 2 F 5 SO 2) 2, LiN (CF 3 SO 2) 2.
  • LiCl, LiI, or LiB (C 2 O 4 ) 2 may be used.
  • the concentration of the lithium salt is preferably in the range of 0.1 to 2.0 M. When the concentration of the lithium salt is within the above range, the electrolyte has an appropriate conductivity and viscosity, so that it can exhibit excellent electrolyte performance and the lithium ion can effectively move.
  • the electrolyte may contain, for example, a haloalkylene carbonate-based compound such as difluoroethylene carbonate or the like, pyridine, triethanolamine, or the like for the purpose of improving lifetime characteristics of the battery, Ethyl phosphite, triethanol amine, cyclic ether, ethylenediamine, glyme, hexametriamide, nitrobenzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinones, N, At least one additive such as benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, The additive may be included in an amount of 0.1 to 5% by weight based on the total weight of the electrolyte.
  • the lithium secondary battery including the cathode active material according to the present invention stably exhibits excellent discharge capacity, output characteristics, and capacity retention rate, it can be used in portable devices such as mobile phones, notebook computers, digital cameras, and hybrid electric vehicles hybrid electric vehicle (HEV)).
  • portable devices such as mobile phones, notebook computers, digital cameras, and hybrid electric vehicles hybrid electric vehicle (HEV)).
  • HEV hybrid electric vehicles hybrid electric vehicle
  • a battery module including the lithium secondary battery as a unit cell and a battery pack including the same.
  • the battery module or the battery pack may include a power tool; An electric vehicle including an electric vehicle (EV), a hybrid electric vehicle, and a plug-in hybrid electric vehicle (PHEV); Or a power storage system, as shown in FIG.
  • a power tool including an electric vehicle (EV), a hybrid electric vehicle, and a plug-in hybrid electric vehicle (PHEV); Or a power storage system, as shown in FIG.
  • EV electric vehicle
  • PHEV plug-in hybrid electric vehicle
  • PVDF polyvinylidene fluoride
  • Example 2 Was prepared in the same manner as in Example 1, except that Al 4 C 3 was used instead of B 4 C as a carbide.
  • PVDF polyvinylidene fluoride
  • PVDF polyvinylidene fluoride
  • LiNi 0.6 Co 0.2 Mn 0.2 O 2 in which no coating layer was formed was prepared.
  • LiNi 0 . 6 Co 0 . 2 Mn 0 . 2 O 2 and H 3 BO 3 100 a mixture in a weight ratio of 0.1 and heat-treated for about 3 hours in an oxygen atmosphere to 400 °C the LiNi 0. 6 Co 0 . 2 Mn 0 . 2 O 2 Of the particle surface.
  • LiNi 0 . 6 Co 0 . 2 Mn 0 . 2 O 2 , polyvinylidene fluoride (PVDF) and carbon black were mixed at a weight ratio of 100: 2: 0.1 and heat-treated at 400 ° C for about 3 hours in an oxygen atmosphere to form the particle surface of LiNi 0.6 Co 0.2 Mn 0.2 O 2 To form a coating layer.
  • PVDF polyvinylidene fluoride
  • the thickness was very uneven, and no carbon black was detected in the coating layer. It is thought that carbon black was decomposed and removed into CO 2 or CO during the heat treatment process.
  • LiNi 0 . 6 Co 0 . 2 Mn 0 . 2 O 2 and B 4 C 100 a mixture in a weight ratio of 0.1 and heat-treated for about 3 hours in an oxygen atmosphere to 400 °C the LiNi 0. 6 Co 0 . 2 Mn 0 . 2 O 2 Of the particle surface.
  • PVDF polyvinylidene fluoride
  • FIG. 1 and FIG. 2 (Example 1) and FIGS. 3 and 4 (Comparative Example 2) are photographs of a cathode active material produced according to Example 1 and Comparative Example 2, which are observed by a scanning electron microscope (SEM) .
  • SEM scanning electron microscope
  • Example 1 prepared by coating with a coating polymer and a hybrid coating of carbide shows that a film-like coating layer surrounding the active material particle surface is formed to a thickness of 1,000 nm on average I could confirm.
  • Comparative Example 2 coated with H 3 BO 3 which is a conventional coating material, it can be confirmed that an island-shaped coating portion is formed on the surface of the active material particle.
  • carbon black and PVDF binder were mixed in a N-methylpyrrolidone solvent in a weight ratio of 96: 2: 2, was coated on one side of the aluminum current collector, dried at 130 ⁇ , and rolled to prepare a positive electrode.
  • a negative electrode active material natural graphite, a carbon black conductive material and a PVdF binder were mixed in a N-methylpyrrolidone solvent in a weight ratio of 85: 10: 5 to prepare a composition for forming an anode, To prepare a negative electrode.
  • a lithium secondary battery was prepared by preparing an electrode assembly between a positive electrode and a negative electrode manufactured as described above through a separator of porous polyethylene, positioning the electrode assembly inside a case, and then injecting an electrolyte into the case.
  • Each of the prepared lithium secondary battery cells was charged at a rate of 0.7 C and 4.4 V in a CCCV mode at 25 ° C and 45 ° C, cut off at 0.55C, The capacity retention (%) was measured while discharging to 3.0 V and performing charge / discharge 100 times. The results are shown in Table 1.
  • Examples 1 to 4 which were prepared by coating a coating polymer and a hybrid coating of carbide, were compared with Comparative Example 1 which was not coated or coated with H 3 BO 3 which is a conventional coating material (25 ° C.) and high temperature (45 ° C.) under high voltage compared to Example 2.
  • the cycle characteristics of Examples 1 to 4 were remarkably superior to those of Comparative Example 3 in which a polymer and carbon (carbon black) were coated as a coating material.
  • Comparative Example 4 in which B 4 C was coated as a single coating material, the cyclotoxicity at room temperature (25 ° C) and high temperature (45 ° C) was lower than those in Examples 1 to 4 and was similar to that in Comparative Example 2 . Also, in Comparative Example 5 in which PVDF was coated as a single coating material, cycle characteristics at room temperature (25 ° C) and high temperature (45 ° C) were significantly lower than those of Examples 1 to 4.
  • Each of the prepared lithium secondary battery cells was charged at a rate of 0.7 C and 4.4 V in a CCCV mode at 25 ° C and 45 ° C, cut off at 0.55C, And the resistance increase rate (DCIR [%]) was measured while charging / discharging was performed 100 times. The results are shown in Table 2.
  • Examples 1 to 4 prepared by coating with a coating polymer and a hybrid coating of carbide were compared with Comparative Example 1 which was not coated or coated with H 3 BO 3 which is a conventional coating material
  • the resistance increase rate at room temperature and high temperature (45 ° C) under a high voltage was remarkably reduced compared to Example 2.
  • the resistance characteristics of Examples 1 to 4 were remarkably superior to those of Comparative Example 3 in which a polymer and carbon (carbon black) were coated as a coating material.

Abstract

The present invention provides a method for preparing a cathode active material for a secondary battery, comprising the steps of: preparing a lithium transition metal oxide; forming a mixture by mixing the lithium transition metal oxide, a coating polymer and a carbide; and heating the mixture so as to form, on the surface of the lithium transition metal oxide particles, a coating layer comprising a carbonated coating polymer and the carbide.

Description

이차전지용 양극 활물질의 제조방법, 이와 같이 제조된 양극 활물질 및 이를 포함하는 리튬 이차전지A method for producing a cathode active material for a secondary battery, a cathode active material thus prepared, and a lithium secondary battery comprising the same
관련출원과의 상호인용Mutual citation with related application
본 출원은 2017년 9월 29일자 한국 특허 출원 제10-2017-0127757호 및 2018년 9월 27일자 한국 특허 출원 제10-2018-0115214호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2017-0127757 filed on September 29, 2017, and Korean Patent Application No. 10-2018-0115214 filed on September 27, 2018, The entire contents of which are incorporated herein by reference.
기술분야Technical field
본 발명은 이차전지용 양극 활물질의 제조방법, 이와 같이 제조된 양극 활물질 및 이를 포함하는 리튬 이차전지에 관한 것이다. The present invention relates to a method for producing a cathode active material for a secondary battery, a cathode active material thus prepared, and a lithium secondary battery comprising the cathode active material.
최근 휴대전화, 노트북 컴퓨터, 전기 자동차 등 전지를 사용하는 전자기구의 급속한 보급에 수반하여 소형 경량이면서도 상대적으로 고용량인 이차전지의 수요가 급속히 증대되고 있다. 특히, 리튬 이차전지는 경량이고 고에너지 밀도를 가지고 있어 휴대 기기의 구동 전원으로서 각광을 받고 있다. 이에 따라, 리튬 이차전지의 성능향상을 위한 연구개발 노력이 활발하게 진행되고 있다. 2. Description of the Related Art In recent years, with the rapid spread of electronic devices using batteries such as mobile phones, notebook computers, electric vehicles, and the like, the demand for secondary batteries of small size and light weight and relatively high capacity has been rapidly increasing. Particularly, the lithium secondary battery is light in weight and has a high energy density, and is attracting attention as a driving power source for portable devices. Accordingly, research and development efforts for improving the performance of the lithium secondary battery have been actively conducted.
리튬 이차전지는 리튬 이온의 삽입(intercalations) 및 탈리(deintercalation)가 가능한 활물질로 이루어진 양극과 음극 사이에 유기 전해액 또는 폴리머 전해액을 충전시킨 상태에서 리튬 이온이 양극 및 음극에서 삽입/탈리 될 때의 산화와 환원 반응에 의해 전기 에너지가 생산된다.The lithium secondary battery has a structure in which an organic electrolyte or a polymer electrolyte is filled between a positive electrode and a negative electrode, which are made of an active material capable of intercalating and deintercalating lithium ions, and oxidized when lithium ions are inserted / And electrical energy is produced by the reduction reaction.
리튬 이차전지의 양극 활물질로는 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2), 리튬 망간 산화물(LiMnO2 또는 LiMn2O4 등), 리튬 인산철 화합물(LiFePO4) 등이 주로 사용된다. 또한, LiNiO2의 우수한 가역 용량은 유지하면서도 낮은 열 안정성을 개선하기 위한 방법으로서, 니켈(Ni)의 일부를 코발트(Co)나 망간(Mn)으로 치환하는 방법이 제안되었다. 그러나 니켈의 일부를 코발트로 치환한 LiNi1 - αCoαO2(α=0.1~0.3)의 경우 우수한 충·방전특성과 수명특성을 보이나, 열적 안정성이 낮다. 한편, 니켈(Ni)의 일부를 열적 안정성이 뛰어난 망간(Mn)으로 치환한 니켈 망간계 리튬 복합금속 산화물 및 망간(Mn)과 코발트(Co)로 치환한 니켈 코발트 망간계 리튬 복합금속 산화물(이하 간단히 'NCM계 리튬 산화물'이라 함)의 경우 상대적으로 사이클 특성 및 열적 안정성이 우수하다는 장점이 있다.As the positive electrode active material of the lithium secondary battery, lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), lithium manganese oxide (LiMnO 2 or LiMn 2 O 4 ), lithium iron phosphate compound (LiFePO 4 ) do. Further, as a method for improving low thermal stability while maintaining excellent reversible capacity of LiNiO 2 , a method of replacing a part of nickel (Ni) with cobalt (Co) or manganese (Mn) has been proposed. However, LiNi 1 - α Co α O 2 (α = 0.1 ~ 0.3), in which nickel is partially replaced by cobalt, exhibits excellent charge / discharge characteristics and lifetime characteristics, but has low thermal stability. On the other hand, a nickel manganese-based lithium composite metal oxide in which a part of nickel (Ni) is substituted with manganese (Mn) excellent in thermal stability and a nickel-cobalt manganese-based lithium composite metal oxide in which manganese (Mn) (Hereinafter referred to as " NCM-based lithium oxide ") has an advantage in that it has excellent cycle characteristics and thermal stability.
최근 고용량화 및 고에너지 밀도에 대한 요구가 점차 커지고 있으며, 구동 전압 범위의 확대를 통한 고전압화를 통해 목표 에너지 밀도 구현을 시도하고 있다. 이에, 기존의 4.3V 이하보다 더욱 고전압인 4.35V 이상의 충전 전압 조건에서 신뢰성 및 안정성을 가지는 내고전압용 양극 활물질의 개발이 요구되고 있다.Recently, the demand for higher capacity and higher energy density has been increasing, and attempts have been made to achieve the target energy density by increasing the driving voltage range to higher voltage. Accordingly, development of a cathode active material for high voltage and high voltage having reliability and stability at a charge voltage higher than 4.35 V, which is higher than that of the conventional 4.3 V, is required.
특히, 고전압 상태에서는 전해액과의 부반응 증가 및 양극 활물질 표면에 SEI(Solid electrolyte interface) 막 형성에 따른 수명 특성 저하 및 저항 증가의 문제가 있어, 이를 개선한 양극 활물질의 개발이 필요한 실정이다. Particularly, in the high voltage state, there is a problem of an increase in side reaction with the electrolyte and degradation of lifetime characteristics and resistance increase due to the formation of a SEI (solid electrolyte interface) film on the surface of the cathode active material, and development of a cathode active material is needed.
본 발명은 고전압 하에서 전해액과의 부반응 및 양극 활물질 표면의 SEI(Solid electrolyte interface) 막 형성을 억제하고, 저항 특성 및 수명 특성이 개선된 내고전압용 이차전지 양극 활물질을 제공하고자 하는 것이다.Disclosed is a cathode active material for high voltage and high voltage secondary batteries, which suppresses side reaction with an electrolyte under high voltage and formation of a solid electrolyte interface (SEI) film on the surface of a cathode active material, and has improved resistance characteristics and life characteristics.
본 발명은 리튬 전이금속 산화물을 마련하는 단계; 상기 리튬 전이금속 산화물, 코팅용 폴리머 및 카바이드(carbide)를 혼합하여 혼합물을 형성하는 단계; 및 상기 혼합물을 열처리하여, 상기 리튬 전이금속 산화물의 입자 표면에 탄화된 코팅용 폴리머 및 카바이드(carbide)를 포함하는 코팅층을 형성하는 단계;를 포함하는 이차전지용 양극 활물질의 제조방법을 제공한다.The present invention provides a method of manufacturing a lithium secondary battery including: providing a lithium transition metal oxide; Mixing the lithium transition metal oxide, a coating polymer, and a carbide to form a mixture; And heat-treating the mixture to form a coating layer comprising a carbonated coating polymer and a carbide on the surface of the lithium transition metal oxide. The present invention also provides a method of manufacturing a cathode active material for a secondary battery.
또한, 본 발명은 리튬 전이금속 산화물; 및 상기 리튬 전이금속 산화물의 입자 표면에 형성된 코팅층;을 포함하며, 상기 코팅층은 막 형태로 이루어지고, 상기 코팅층은 탄화된 코팅용 폴리머 및 카바이드(carbide)를 포함하는 이차전지용 양극 활물질을 제공한다.The present invention also relates to a lithium transition metal oxide; And a coating layer formed on the particle surface of the lithium-transition metal oxide, wherein the coating layer is in the form of a film, and the coating layer comprises a carbonated coating polymer and a carbide.
또한, 본 발명은 상기 양극 활물질을 포함하는 양극 및 리튬 이차전지를 제공한다.The present invention also provides a positive electrode and a lithium secondary battery including the positive electrode active material.
본 발명에 따르면, 고전압 하에서 전해액과의 부반응 및 양극 활물질 표면의 SEI(Solid electrolyte interface) 막 형성을 억제하고, 저항 특성 및 수명 특성이 개선된 내고전압용 이차전지 양극 활물질을 제조할 수 있다.According to the present invention, a cathode active material for high voltage and high voltage secondary batteries can be produced which suppresses a side reaction with an electrolyte and a solid electrolyte interface (SEI) film formation on the surface of a cathode active material under a high voltage and has improved resistance characteristics and life characteristics.
본 발명에 따른 이차전지용 양극 활물질은 고전압 상태의 충/방전을 반복하면서 발생하는 양극 활물질의 기계적 파손을 방지할 수 있다. 또한, 양극 활물질 입자 표면 전체에 균일한 코팅이 가능하며, 우수한 전기 전도성 확보로 초기 저항 및 저항 증가율을 감소시킬 수 있다.The positive electrode active material for a secondary battery according to the present invention can prevent mechanical damage of a positive electrode active material generated by repetition of charging / discharging in a high voltage state. In addition, uniform coating can be performed on the entire surface of the cathode active material particles, and the initial resistance and the rate of resistance increase can be reduced by securing excellent electrical conductivity.
도 1 및 도 2는 본 발명의 실시예 1에 따라 제조된 양극 활물질을 확대 관찰한 주사전자현미경(SEM, Scanning Electron Microscope)사진이다. 1 and 2 are SEM (Scanning Electron Microscope) photographs of a cathode active material manufactured according to Example 1 of the present invention.
도 3 및 도 4는 비교예 2에 따라 제조된 양극 활물질을 확대 관찰한 주사전자현미경(SEM, Scanning Electron Microscope)사진이다. FIGS. 3 and 4 are SEM (Scanning Electron Microscope) photographs of the cathode active material prepared according to Comparative Example 2 on an enlarged scale.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다. 이때, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Hereinafter, the present invention will be described in detail in order to facilitate understanding of the present invention. Herein, terms and words used in the present specification and claims should not be construed to be limited to ordinary or dictionary meanings, and the inventor may appropriately define the concept of the term to describe its own invention in the best way. It should be construed as meaning and concept consistent with the technical idea of the present invention.
본 발명의 이차전지용 양극 활물질의 제조방법은 리튬 전이금속 산화물을 마련하는 단계; 상기 리튬 전이금속 산화물, 코팅용 폴리머 및 카바이드(carbide)를 혼합하여 혼합물을 형성하는 단계; 및 상기 혼합물을 열처리하여, 상기 리튬 전이금속 산화물의 입자 표면에 탄화된 코팅용 폴리머 및 카바이드(carbide)를 포함하는 코팅층을 형성하는 단계;를 포함한다.A method of manufacturing a cathode active material for a secondary battery according to the present invention includes the steps of: providing a lithium transition metal oxide; Mixing the lithium transition metal oxide, a coating polymer, and a carbide to form a mixture; And heat-treating the mixture to form a coating layer comprising a carbonated coating polymer and carbide on the surface of the lithium transition metal oxide particle.
본 발명은 코팅용 폴리머 및 카바이드(carbide)의 혼합물을 사용하여 리튬 전이금속 산화물 입자를 코팅함으로써, 고전압 하에서 전해액과의 부반응 및 양극 활물질 표면의 SEI(Solid electrolyte interface) 막 형성을 억제하고, 저항 특성 및 수명 특성을 개선할 수 있다. 연성 소재의 코팅용 폴리머를 사용함으로써 고전압 상태의 충/방전을 반복하면서 발생하는 양극 활물질의 기계적 파손을 방지할 수 있으며, 전기 전도성이 우수한 카바이드(carbide)를 사용함으로써 우수한 전기 전도성 확보로 인해 초기 저항 및 저항 증가율을 감소시킬 수 있다. 또한, 코팅 공정 중 열처리를 통해 상기 코팅용 폴리머가 탄화되어 추가적인 전기 전도성을 확보할 수 있다.The present invention relates to a method of coating a lithium transition metal oxide particle by using a mixture of a coating polymer and a carbide to suppress side reactions with an electrolyte and formation of a solid electrolyte interface (SEI) film on the surface of a cathode active material under high voltage, And life characteristics can be improved. By using a polymer for coating a soft material, it is possible to prevent mechanical breakage of a cathode active material generated by repetition of charging / discharging in a high voltage state, and by using a carbide excellent in electrical conductivity, And the resistance increase rate can be reduced. Further, the coating polymer may be carbonized through heat treatment during the coating process to ensure additional electrical conductivity.
본 발명의 이차전지용 양극 활물질의 제조방법을 하기에서 단계별로 구체적으로 설명한다. The method for producing the cathode active material for a secondary battery of the present invention will be described in detail below.
먼저, 리튬 전이금속 산화물을 마련한다.First, a lithium transition metal oxide is provided.
상기 리튬 전이금속 산화물은 통상적으로 양극 활물질로서 사용되는 리튬 전이금속 산화물을 사용할 수 있으며, 보다 바람직하게는 니켈(Ni), 코발트(Co) 및 망간(Mn)으로 이루어진 군에서 선택된 어느 하나 이상의 전이금속 양이온을 포함하는 리튬 전이금속 산화물을 사용할 수 있다. 예를 들어, 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나, 화학식 Li1+x1Mn2-x1O4 (여기서, x1 는 0 ~ 0.33), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물, 화학식 LiNi1 - x2M1 x2O2 (여기서, M1= Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, x2 = 0.01 ~ 0.3)으로 표현되는 Ni 사이트형 리튬 니켈 산화물, 화학식 LiMn2-x3M2 x3O2(여기서, M2 = Co, Ni, Fe, Cr, Zn 또는 Ta 이고, x3 = 0.01 ~ 0.1) 또는 Li2Mn3M3O8 (여기서, M3 = Fe, Co, Ni, Cu 또는 Zn)으로 표현되는 리튬 망간 복합 산화물, LiNix4Mn2 - x4O4(여기서, x4 = 0.01 ~ 1)로 표현되는 스피넬 구조의 리튬 망간 복합 산화물, 리튬 인산철 화합물(LiFePO4) 등을 들 수 있지만, 이들만으로 한정되는 것은 아니며, 보다 바람직하게는 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2), 리튬 망간 산화물(LiMn2O4), 리튬 인산철 화합물(LiFePO4) 등일 수 있다.The lithium transition metal oxide may be a lithium transition metal oxide which is typically used as a cathode active material and more preferably at least one transition metal selected from the group consisting of nickel (Ni), cobalt (Co) and manganese (Mn) A lithium-transition metal oxide including a cation can be used. For example, a layered compound such as lithium cobalt oxide (LiCoO 2 ) and lithium nickel oxide (LiNiO 2 ) or a layered compound such as Li 1 + x 1 Mn 2-x 1 O 4 (where x 1 is 0 to 0.33), LiMnO 3 , LiMn 2 O 3, LiMnO formula LiNi 1 2 such as lithium manganese oxide, of - x2 M 1 x2 O 2 (where, M 1 = Co, Mn, and Al, Cu, Fe, Mg, B or Ga, x2 = 0.01 ~ 0.3 ) Ni site type lithium nickel oxide, the formula LiMn 2-x3 M 2 x3 O 2 ( here, represented as M 2 = Co, Ni, Fe, Cr, and Zn, or Ta, x3 = 0.01 ~ 0.1) or Li 2 Mn A lithium manganese composite oxide expressed by 3 M 3 O 8 (where M 3 = Fe, Co, Ni, Cu or Zn), a spinel represented by LiNi x 4 Mn 2 - x 4 O 4 (where x 4 = 0.01 to 1) (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), lithium manganese oxide (LiNiO 2 ), and lithium manganese composite oxide (LiFePO 4 ) Oxide (LiMn 2 O 4 ), Lithium iron phosphate compound (LiFePO 4 ), and the like.
또는, 상기 양극 활물질로서 하기 화학식 1로 표시되는 리튬 전이금속 복합 산화물을 포함할 수 있다.Alternatively, the cathode active material may include a lithium-transition metal composite oxide represented by the following general formula (1).
[화학식 1][Chemical Formula 1]
LipNi1-x-yCoxMa yMb zO2 Li p Ni 1-xy Co x M a y M b z O 2
상기 식에서, Ma은 Mn, Al 및 Zr로 이루어진 군에서 선택된 적어도 하나 이상의 원소이고, Mb는 Al, Zr, Ti, Mg, Ta, Nb, Mo, W 및 Cr로 이루어진 군에서 선택되는 적어도 하나 이상의 원소이며, 0.9≤p≤1.5, 0≤x≤0.5, 0≤y≤0.5, 0≤z≤0.1이다. 보다 바람직하게는 0≤x+y≤0.7일 수 있고, 가장 바람직하게는 0<x+y≤0.4이며, 전체 전이금속 중 니켈(Ni)의 함량이 60몰% 이상인 High-Ni NCM계 양극 활물질일 수 있다. 예를 들어, 상기 양극 활물질은 보다 바람직하게는 LiNi0.8Co0.1Mn0.1O2, LiNi0 . 9Co0 . 05Mn0 . 05O2 , 또는 LiNi0 . 6Co0 . 2Mn0 . 2O2 등의 High-Ni NCM계 리튬 전이금속 산화물일 수 있다.Wherein M a is at least one element selected from the group consisting of Mn, Al and Zr and M b is at least one element selected from the group consisting of Al, Zr, Ti, Mg, Ta, Nb, Mo, W and Cr Or more, and 0.9? P? 1.5, 0? X? 0.5, 0? Y? 0.5, and 0? Z? More preferably 0? X + y? 0.7, and most preferably 0 <x + y? 0.4, and the content of nickel (Ni) in the total transition metal is 60 mol% Lt; / RTI &gt; For example, the cathode active material is more preferably LiNi 0.8 Co 0.1 Mn 0.1 O 2 , LiNi 0 . 9 Co 0 . 05 Mn 0 . 05 O 2 , or LiNi 0 . 6 Co 0 . 2 Mn 0 . 2 O 2 Or a high-Ni NCM-based lithium transition metal oxide.
다음으로, 상기 리튬 전이금속 산화물과, 코팅용 폴리머 및 카바이드(carbide)를 혼합하여 혼합물을 형성한다.Next, the lithium transition metal oxide, the polymer for coating and the carbide are mixed to form a mixture.
상기 코팅용 폴리머는 리튬 전이금속 산화물의 입자 표면을 피복 처리할 수 있고, 전기화학적 성능을 저하시키지 않는 것이라면 사용 가능하고, 예를 들어, 폴리비닐리덴플로라이드(PVDF), 폴리바이닐피롤리돈(Polyvinylpyrrolidone), 폴리에틸렌, 폴리스티렌, 폴리에틸렌 테레프탈레이트,폴리염화비닐, 폴리염화비닐리덴, 에폭시수지, 아미노 수지, 페놀 수지, 폴리에스테르 수지로 이루어진 군에서 선택된 적어도 하나 이상일 수 있으며, 보다 바람직하게는 폴리비닐리덴플로라이드(PVDF) 및 폴리바이닐피롤리돈(Polyvinylpyrrolidone), 폴리에틸렌 테레프탈레이트 및 폴리염화비닐리덴으로 이루어진 군에서 선택된 적어도 하나 이상을 사용할 수 있다.The coating polymer can be used as long as it can coat the particle surface of the lithium transition metal oxide and does not deteriorate the electrochemical performance. Examples of the polymer include polyvinylidene fluoride (PVDF), polyvinyl pyrrolidone Polyvinylpyrrolidone), polyethylene, polystyrene, polyethylene terephthalate, polyvinyl chloride, polyvinylidene chloride, epoxy resin, amino resin, phenol resin and polyester resin, and more preferably at least one of polyvinylidene At least one selected from the group consisting of polyvinylpyrrolidone (PVDF) and polyvinylpyrrolidone, polyethylene terephthalate and polyvinylidene chloride may be used.
연성 소재의 상기 코팅용 폴리머를 사용함으로써 고전압 상태의 충/방전을 반복하면서 발생하는 양극 활물질의 기계적 파손을 방지할 수 있다. 또한, 기존의 메탈 옥사이드의 건식 코팅법을 통한 코팅층 형성은 아일랜드(island) 형태로 코팅되고 막 형태로 균일하게 코팅하기 어려웠으나, 상기 코팅용 폴리머와 카바이드(carbide)의 혼합물로 코팅하는 본 발명의 경우 코팅용 폴리머의 녹는점을 바탕으로 코팅 공정 중 온도 제어를 통해 용이하게 막 형태의 균일한 코팅층을 형성할 수 있으며, 상기 코팅용 폴리머와 혼합된 카바이드(carbide)가 양극 활물질 입자 표면에 균일하게 분포되도록 할 수 있다. 또한, 상기 코팅용 폴리머는 코팅 공정 중 열처리를 통해 탄화되어 추가적인 전기 전도성 확보의 역할을 할 수 있다.By using the polymer for coating of a soft material, it is possible to prevent mechanical breakage of the positive electrode active material generated by repeating charging / discharging in a high voltage state. In addition, the formation of the coating layer through the conventional dry coating method of metal oxide is difficult to coat uniformly in the form of an island and is difficult to coat uniformly in the form of an island. However, in the case of the present invention in which the coating is coated with a mixture of the polymer for coating and a carbide It is possible to easily form a film-like uniform coating layer through temperature control during the coating process based on the melting point of the polymer for coating, and the carbide mixed with the coating polymer can uniformly coat the surface of the cathode active material particle Can be distributed. In addition, the coating polymer may be carbonized through a heat treatment during the coating process, thereby providing additional electrical conductivity.
상기 코팅용 폴리머는 상기 혼합물에 포함된 리튬 전이금속 산화물 100중량부에 대하여 0.001 내지 10중량부로 포함될 수 있으며, 보다 바람직하게는 0.005 내지 5중량부 포함될 수 있다. 상기 코팅용 폴리머가 리튬 전이금속 산화물 100중량부 대비 0.001 내지 10중량부로 혼합됨으로써, 양극 활물질 입자 표면 전체에 균일하게 막 형태로 코팅층을 형성할 수 있으며, 이와 같이 형성된 코팅층은 고전압 상태의 충/방전을 반복하면서 발생하는 양극 활물질의 기계적 파손을 방지할 수 있다.The polymer for coating may be included in an amount of 0.001 to 10 parts by weight, more preferably 0.005 to 5 parts by weight, based on 100 parts by weight of the lithium-transition metal oxide contained in the mixture. The coating polymer is mixed in an amount of 0.001 to 10 parts by weight based on 100 parts by weight of the lithium-transition metal oxide, whereby a coating layer can be uniformly formed on the entire surface of the cathode active material particle. It is possible to prevent mechanical breakage of the positive electrode active material that occurs while repeating the above-described process.
상기 카바이드(carbide)는 탄소와 그 밖의 1원소로 이루어진 화합물로서, 예를 들어, B4C, Al4C3, TiC, TaC, WC, NbC, HfC, VC 및 ZrC로 이루어진 군에서 선택된 적어도 하나 이상일 수 있으며, 보다 바람직하게는 B4C 또는 Al4C3일 수 있다.The carbide is a compound composed of carbon and one element. For example, at least one selected from the group consisting of B 4 C, Al 4 C 3 , TiC, TaC, WC, NbC, HfC, VC and ZrC Or more, more preferably B 4 C or Al 4 C 3 .
상기 카바이드(carbide)는 탄소와 다른 원소가 공유 결합되어 있으며, 상대적으로 높은 녹는점을 가지고 있어, 코팅 공정 중 산화 분위기 고온 열처리 시에도 CO2 또는 CO로 분해되지 않고 그대로 잔존할 수 있으며, 상기 코팅용 폴리머와 함께 양극 활물질 입자 표면에 균일하게 분포되도록 코팅될 수 있다. 이를 통해 우수한 전기 전도성을 확보할 수 있으며, 우수한 전기 전도성 확보로 초기 저항 및 저항 증가율을 감소시킬 수 있다.The carbide is covalently bonded to carbon and other elements and has a relatively high melting point and can remain as it is without being decomposed into CO 2 or CO even during high temperature heat treatment in an oxidizing atmosphere during the coating process, It can be coated with the polymer for uniform distribution on the surface of the cathode active material particles. As a result, excellent electrical conductivity can be ensured and excellent electrical conductivity can be secured to reduce initial resistance and resistance increase rate.
상기 카바이드(carbide)는 상기 혼합물에 포함된 리튬 전이금속 산화물 100중량부에 대하여 0.001 내지 10중량부로 포함될 수 있으며, 보다 바람직하게는 0.002 내지 2중량부 포함될 수 있다. 상기 카바이드(carbide)가 리튬 전이금속 산화물 100중량부 대비 0.001 내지 10중량부로 혼합됨으로써, 양극 활물질 입자 표면 전체에 균일하게 분포할 수 있으며, 우수한 전기 전도성 확보로 인해 초기 저항 및 저항 증가율을 감소시킬 수 있다.The carbide may be included in an amount of 0.001 to 10 parts by weight, more preferably 0.002 to 2 parts by weight, based on 100 parts by weight of the lithium-transition metal oxide contained in the mixture. Since the carbide is mixed in an amount of 0.001 to 10 parts by weight based on 100 parts by weight of the lithium transition metal oxide, it can be uniformly distributed over the surface of the positive electrode active material particles, and the initial resistance and the rate of increase in resistance can be decreased have.
한편, 상기 혼합물은 리튬 전이금속 산화물에 코팅용 폴리머를 투입 및 교반한 후, 상기 카바이드(carbide)를 투입 및 교반하여 제조할 수도 있고, 동시에 코팅용 폴리머 및 카바이드(carbide)를 투입하고 교반하여 제조할 수도 있으며, 제조 공정의 순서는 특별히 제한되지 않는다. 혼합물 형성시 교반 공정을 선택적으로 수행할 수 있으며, 이때 교반 속도는 100rpm 내자 2,000rpm일 수 있다.On the other hand, the mixture may be prepared by adding and stirring a polymer for coating to a lithium-transition metal oxide, then adding and stirring the carbide, and simultaneously adding a coating polymer and a carbide, And the order of the manufacturing process is not particularly limited. When the mixture is formed, a stirring process can be selectively performed, and the stirring speed may be 2,000 rpm at 100 rpm.
상기 혼합물은 상기 코팅용 폴리머 및 카바이드(carbide)를 1:99 내지 99:1 중량비로 포함할 수 있으며, 보다 바람직하게는 20:80 내지 80:20 중량비로 포함할 수 있다. 상기 코팅용 폴리머 및 카바이드(carbide)를 상기 중량비 범위 내로 포함함으로써 양극 활물질 입자 표면 전체에 균일한 막 형태의 코팅층을 형성할 수 있으며, 카바이드(carbide)가 균일 분포될 수 있다. 또한, 이를 통해 고전압 하에서 전해액과의 부반응 및 양극 활물질 표면의 SEI(Solid electrolyte interface) 막 형성을 억제할 수 있으며, 저항 특성 및 수명 특성이 개선된 내고전압용 양극 활물질을 제조할 수 있다.The mixture may contain the coating polymer and the carbide in a weight ratio of 1:99 to 99: 1, more preferably 20:80 to 80:20. By including the coating polymer and the carbide in the weight ratio range, a uniform film-like coating layer can be formed on the entire surface of the cathode active material particle, and the carbide can be uniformly distributed. Also, it is possible to suppress the formation of a SEI (solid electrolyte interface) film on the surface of a cathode active material and a side reaction with an electrolyte under a high voltage, and a cathode active material for high voltage and high resistance and life characteristics can be produced.
다음으로, 상기 혼합물을 열처리하여, 상기 리튬 전이금속 산화물의 입자 표면에 탄화된 코팅용 폴리머 및 카바이드(carbide)를 포함하는 코팅층을 형성한다.Next, the mixture is subjected to heat treatment to form a coating layer containing a carbonated coating polymer and a carbide on the surface of the lithium transition metal oxide.
상기 코팅층을 형성하기 위한 열처리는 공기나 산소 등의 산화성 분위기 또는 질소 등의 비활성 분위기하에서 수행할 수 있으나, 보다 바람직하게는 산화성 분위기에서 수행할 수 있다. The heat treatment for forming the coating layer may be performed in an oxidizing atmosphere such as air or oxygen or an inert atmosphere such as nitrogen, but may be performed in an oxidizing atmosphere.
상기 열처리는 200 내지 800℃에서 0.5 내지 5시간 동안 수행할 수 있으며, 보다 바람직하게는 300 내지 600℃에서 0.5 내지 5시간 동안 수행할 수 있다. The heat treatment may be performed at 200 to 800 ° C for 0.5 to 5 hours, more preferably at 300 to 600 ° C for 0.5 to 5 hours.
이와 같이 제조된 본 발명의 이차전지용 양극 활물질은 리튬 전이금속 산화물; 및 상기 리튬 전이금속 산화물의 입자 표면에 형성된 코팅층;을 포함하며, 상기 코팅층은 막 형태로 이루어지고, 상기 코팅층은 탄화된 코팅용 폴리머 및 카바이드(carbide)를 포함한다.The cathode active material for a secondary battery of the present invention thus produced is a lithium transition metal oxide; And a coating layer formed on the particle surface of the lithium transition metal oxide, wherein the coating layer is in the form of a film, and the coating layer comprises a carbonated coating polymer and a carbide.
코팅 공정에서 사용된 코팅용 폴리머는 코팅 공정 중의 열처리를 통해 탄화된 형태로 코팅층을 형성할 수 있다. 상기 탄화된 코팅용 폴리머로 인해 추가적인 전기 전도성을 확보할 수 있다. The coating polymer used in the coating process can be formed into a carbonized form through heat treatment during the coating process. The carbonized coating polymer can ensure additional electrical conductivity.
상기 카바이드(carbide)는 코팅 공정 중 산화 분위기 고온 열처리 시에도 CO2 또는 CO로 분해되지 않고 그대로 잔존할 수 있으며, 상기 코팅용 폴리머와 함께 코팅층을 형성하고, 양극 활물질 입자 표면에 균일하게 분포할 수 있다. The carbide may remain as it is without being decomposed into CO 2 or CO even during high-temperature heat treatment in an oxidizing atmosphere during the coating process. A coating layer may be formed together with the coating polymer and may be uniformly distributed on the surface of the cathode active material particle. have.
상기 코팅층은 리튬 전이금속 산화물 입자 100중량부에 대하여 상기 카바이드(carbide)를 0.001 내지 10중량부 포함할 수 있으며, 보다 바람직하게는 0.002 내지 2중량부를 포함할 수 있다. 코팅 공정 중 열처리 시에도 카바이드(carbide)가 분해 제거되지 않고 잔존하여 상기 함유량을 만족할 수 있으며, 카바이드(carbide)가 상기 범위 내로 포함됨으로써 우수한 전기 전도성을 확보하고, 초기 저항 및 저항 증가율을 감소시키며, 고전압용 양극 활물질로서 적합하게 적용할 수 있다. The coating layer may contain 0.001 to 10 parts by weight, more preferably 0.002 to 2 parts by weight, of the carbide relative to 100 parts by weight of the lithium-transition metal oxide particles. Carbide is not decomposed and removed even during the heat treatment during the coating process so that the above content can be satisfied and carbide is contained within the above range to secure excellent electrical conductivity and reduce initial resistance and resistance increase rate, And can be suitably applied as a high-voltage positive electrode active material.
상기 코팅용 폴리머 및 카바이드(carbide)의 종류는 앞서 본 발명의 이차전지용 양극 활물질의 제조방법에서 설명한 바와 동일하게 적용된다.The coating polymer and the carbide are applied in the same manner as described above for the method of manufacturing the cathode active material for a secondary battery of the present invention.
상기 코팅층은 리튬 전이금속 산화물의 입자 표면을 둘러싸는 막 형태로 이루어지며, 상기 코팅층의 두께는 5 내지 2,000nm, 보다 바람직하게는 10 내지 500nm일 수 있다. 상기 코팅층의 두께가 5nm 미만이면 코팅층이 너무 얇은 부분이 발생하여 균일한 막 형태의 코팅층 형성이 어려울 수 있으며, 2,000nm를 초과하면 이온전도성을 낮추어 용량 저하의 문제가 있을 수 있다.The coating layer is in the form of a film surrounding the particle surface of the lithium transition metal oxide, and the thickness of the coating layer may be 5 to 2,000 nm, more preferably 10 to 500 nm. If the thickness of the coating layer is less than 5 nm, the coating layer may be too thin to form a uniform coating layer. If the thickness of the coating layer is more than 2,000 nm, the ion conductivity may be lowered.
본 발명에 따라 코팅용 폴리머 및 카바이드(carbide)의 하이브리드(hybrid) 코팅재로서 코팅하여 제조된 이차전지용 양극 활물질은 고전압 하에서 전해액과의 부반응을 억제하고, 양극 활물질 표면의 SEI(Solid electrolyte interface) 막 형성을 억제할 수 있으며, 이에 따라 고전압 하 저항 특성 및 수명 특성을 현저히 개선할 수 있다.According to the present invention, a cathode active material for a secondary battery manufactured by coating a coating polymer and a carbide as a hybrid coating suppresses a side reaction with an electrolyte under a high voltage and forms a solid electrolyte interface (SEI) film on the surface of the cathode active material And thus, it is possible to remarkably improve the high-voltage undervoltage resistance characteristic and the life characteristic.
본 발명의 또 다른 일 실시예에 따르면 상기 양극 활물질을 포함하는 이차전지용 양극 및 리튬 이차전지를 제공한다.According to another embodiment of the present invention, there is provided a positive electrode and a lithium secondary battery for a secondary battery including the positive electrode active material.
구체적으로, 상기 양극은 양극 집전체 및 상기 양극 집전체 위에 형성되며, 상기 양극 활물질을 포함하는 양극 활물질 층을 포함한다.Specifically, the positive electrode includes a positive electrode collector and a positive electrode active material layer formed on the positive electrode collector and including the positive electrode active material.
상기 양극에 있어서, 양극 집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또, 상기 양극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 상기 양극 집전체 표면 상에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.In the anode, the cathode current collector is not particularly limited as long as it has conductivity without causing a chemical change in the battery, and for example, a metal such as stainless steel, aluminum, nickel, titanium, sintered carbon, , Nickel, titanium, silver, or the like may be used. In addition, the cathode current collector may have a thickness of 3 to 500 탆, and fine unevenness may be formed on the surface of the cathode current collector to increase the adhesive force of the cathode active material. For example, it can be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
또, 상기 양극 활물질 층은 앞서 설명한 양극 활물질과 함께, 도전재 및 바인더를 포함할 수 있다.In addition, the cathode active material layer may include a conductive material and a binder together with the cathode active material described above.
이때, 상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한없이 사용가능하다. 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 도전재는 통상적으로 양극활물질층 총 중량에 대하여 1 내지 30 중량%로 포함될 수 있다.At this time, the conductive material is used for imparting conductivity to the electrode. The conductive material can be used without particular limitation as long as it has electron conductivity without causing chemical change. Specific examples thereof include graphite such as natural graphite and artificial graphite; Carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black and carbon fiber; Metal powder or metal fibers such as copper, nickel, aluminum and silver; Conductive whiskey such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; And polyphenylene derivatives. These may be used alone or in admixture of two or more. The conductive material may be typically contained in an amount of 1 to 30% by weight based on the total weight of the cathode active material layer.
또, 상기 바인더는 양극 활물질 입자들 간의 부착 및 양극 활물질과 양극 집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 바인더는 양극 활물질층 총 중량에 대하여 1 내지 30 중량%로 포함될 수 있다.In addition, the binder serves to improve adhesion between the positive electrode active material particles and adhesion between the positive electrode active material and the positive electrode collector. Specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, carboxymethylcellulose ), Starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene butadiene rubber (SBR), fluororubber, and various copolymers thereof. One kind or a mixture of two or more kinds of them may be used. The binder may be included in an amount of 1 to 30% by weight based on the total weight of the cathode active material layer.
상기 양극은 상기한 양극 활물질을 이용하는 것을 제외하고는 통상의 양극 제조방법에 따라 제조될 수 있다. 구체적으로, 상기한 양극 활물질 및 선택적으로, 바인더 및 도전재를 포함하는 양극 활물질 층 형성용 조성물을 양극 집전체 상에 도포한 후, 건조 및 압연함으로써 제조될 수 있다. 이때 상기 양극 활물질, 바인더, 도전재의 종류 및 함량은 앞서 설명한 바와 같다.The positive electrode may be manufactured according to a conventional positive electrode manufacturing method, except that the positive electrode active material described above is used. Specifically, the composition for forming a cathode active material layer containing the above-mentioned cathode active material and optionally a binder and a conductive material may be coated on the cathode current collector, followed by drying and rolling. At this time, the types and contents of the cathode active material, the binder, and the conductive material are as described above.
상기 용매로는 당해 기술분야에서 일반적으로 사용되는 용매일 수 있으며, 디메틸셀폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸피롤리돈(NMP), 아세톤(acetone) 또는 물 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 용매의 사용량은 슬러리의 도포 두께, 제조 수율을 고려하여 상기 양극활물질, 도전재 및 바인더를 용해 또는 분산시키고, 이후 양극제조를 위한 도포시 우수한 두께 균일도를 나타낼 수 있는 점도를 갖도록 하는 정도면 충분하다.Examples of the solvent include dimethyl sulfoxide (DMSO), isopropyl alcohol, N-methylpyrrolidone (NMP), acetone, and the like. Water and the like, and one kind or a mixture of two or more kinds can be used. The amount of the solvent to be used is sufficient to dissolve or disperse the cathode active material, the conductive material and the binder in consideration of the coating thickness of the slurry and the yield of the slurry, and then to have a viscosity capable of exhibiting excellent thickness uniformity Do.
또, 다른 방법으로, 상기 양극은 상기 양극 활물질 층 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 양극 집전체 상에 라미네이션함으로써 제조될 수도 있다.Alternatively, the positive electrode may be produced by casting the composition for forming the positive electrode active material layer on a separate support, then peeling off the support from the support, and laminating the obtained film on the positive electrode current collector.
본 발명의 또 다른 일 실시예에 따르면, 상기 양극을 포함하는 전기화학소자가 제공된다. 상기 전기화학소자는 구체적으로 전지 또는 커패시터 등일 수 있으며, 보다 구체적으로는 리튬 이차전지일 수 있다.According to another embodiment of the present invention, there is provided an electrochemical device including the anode. The electrochemical device may be specifically a battery or a capacitor, and more specifically, may be a lithium secondary battery.
상기 리튬 이차전지는 구체적으로 양극, 상기 양극과 대향하여 위치하는 음극, 상기 양극과 음극 사이에 개재되는 세퍼레이터 및 전해질을 포함하며, 상기 양극은 앞서 설명한 바와 같다. 또, 상기 리튬 이차전지는 상기 양극, 음극, 세퍼레이터의 전극 조립체를 수납하는 전지용기, 및 상기 전지용기를 밀봉하는 밀봉 부재를 선택적으로 더 포함할 수 있다. Specifically, the lithium secondary battery includes a positive electrode, a negative electrode disposed opposite to the positive electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolyte, as described above. The lithium secondary battery may further include a battery container for storing the positive electrode, the negative electrode and the electrode assembly of the separator, and a sealing member for sealing the battery container.
상기 리튬 이차전지에 있어서, 상기 음극은 음극 집전체 및 상기 음극 집전체 상에 위치하는 음극활물질 층을 포함한다.In the lithium secondary battery, the negative electrode includes a negative electrode current collector and a negative electrode active material layer disposed on the negative electrode current collector.
상기 음극 집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 탄소, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또, 상기 음극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 양극 집전체와 마찬가지로, 상기 집전체 표면에 미세한 요철을 형성하여 음극활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.The negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery. For example, the negative electrode current collector may be formed on the surface of copper, stainless steel, aluminum, nickel, titanium, sintered carbon, Carbon, nickel, titanium, silver or the like, aluminum-cadmium alloy, or the like may be used. In addition, the negative electrode collector may have a thickness of 3 to 500 탆, and similarly to the positive electrode collector, fine unevenness may be formed on the surface of the collector to enhance the binding force of the negative electrode active material. For example, it can be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
상기 음극 활물질 층은 음극 활물질과 함께 선택적으로 바인더 및 도전재를 포함한다. 상기 음극 활물질 층은 일례로서 음극 집전체 상에 음극 활물질, 및 선택적으로 바인더 및 도전재를 포함하는 음극 형성용 조성물을 도포하고 건조하거나, 또는 상기 음극 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 음극 집전체 상에 라미네이션함으로써 제조될 수도 있다.The anode active material layer optionally includes a binder and a conductive material together with the anode active material. The negative electrode active material layer may be formed by applying and drying a composition for forming a negative electrode including a negative electrode active material on the negative electrode collector and, optionally, a binder and a conductive material, or by casting the composition for forming a negative electrode on a separate support , And a film obtained by peeling from the support may be laminated on the negative electrode collector.
상기 음극 활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물이 사용될 수 있다. 구체적인 예로는 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소 등의 탄소질 재료; Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si합금, Sn합금 또는 Al합금 등 리튬과 합금화가 가능한 금속질 화합물; SiOβ(0 < β < 2), SnO2, 바나듐 산화물, 리튬 바나듐 산화물과 같이 리튬을 도프 및 탈도프할 수 있는 금속산화물; 또는 Si-C 복합체 또는 Sn-C 복합체과 같이 상기 금속질 화합물과 탄소질 재료를 포함하는 복합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또한, 상기 음극활물질로서 금속 리튬 박막이 사용될 수도 있다. 또, 탄소재료는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소 (soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 무정형, 판상, 인편상, 구형 또는 섬유형의 천연 흑연 또는 인조 흑연, 키시흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정피치계 탄소섬유 (mesophase pitch based carbon fiber), 탄소 미소구체 (meso-carbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.As the negative electrode active material, a compound capable of reversible intercalation and deintercalation of lithium may be used. Specific examples thereof include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fiber and amorphous carbon; Metal compounds capable of alloying with lithium such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloys, Sn alloys or Al alloys; SiO β (0 <β <2 ), SnO 2, vanadium oxide, which can dope and de-dope a lithium metal oxide such as lithium vanadium oxide; Or a composite containing the metallic compound and the carbonaceous material such as Si-C composite or Sn-C composite, and any one or a mixture of two or more thereof may be used. Also, a metal lithium thin film may be used as the negative electrode active material. The carbon material may be both low-crystalline carbon and high-crystallinity carbon. Examples of the low-crystalline carbon include soft carbon and hard carbon. Examples of the highly crystalline carbon include natural graphite, artificial graphite, artificial graphite or artificial graphite, Kish graphite graphite, pyrolytic carbon, mesophase pitch based carbon fiber, meso-carbon microbeads, mesophase pitches and petroleum or coal tar coke derived cokes).
또, 상기 바인더 및 도전재는 앞서 양극에서 설명한 바와 동일한 것일 수 있다.In addition, the binder and the conductive material may be the same as those described above for the anode.
한편, 상기 리튬 이차전지에 있어서, 세퍼레이터는 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 리튬 이차전지에서 세퍼레이터로 사용되는 것이라면 특별한 제한 없이 사용 가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 세퍼레이터가 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.Meanwhile, in the lithium secondary battery, the separator separates the negative electrode and the positive electrode and provides a moving path of lithium ions. The separator can be used without any particular limitation as long as it is used as a separator in a lithium secondary battery. Particularly, It is preferable to have a low resistance and an excellent ability to impregnate the electrolyte. Specifically, porous polymer films such as porous polymer films made of polyolefin-based polymers such as ethylene homopolymers, propylene homopolymers, ethylene / butene copolymers, ethylene / hexene copolymers and ethylene / methacrylate copolymers, May be used. Further, a nonwoven fabric made of a conventional porous nonwoven fabric, for example, glass fiber of high melting point, polyethylene terephthalate fiber, or the like may be used. In order to secure heat resistance or mechanical strength, a coated separator containing a ceramic component or a polymer material may be used, and may be optionally used as a single layer or a multilayer structure.
또, 본 발명에서 사용되는 전해질로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다. Examples of the electrolyte used in the present invention include an organic-based liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel-type polymer electrolyte, a solid inorganic electrolyte, and a molten inorganic electrolyte that can be used in the production of a lithium secondary battery. It is not.
구체적으로, 상기 전해질은 유기 용매 및 리튬염을 포함할 수 있다. Specifically, the electrolyte may include an organic solvent and a lithium salt.
상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), γ-부티로락톤(γ-butyrolactone), ε-카프로락톤(ε-caprolactone) 등의 에스테르계 용매; 디부틸 에테르(dibutyl ether) 또는 테트라히드로퓨란(tetrahydrofuran) 등의 에테르계 용매; 시클로헥사논(cyclohexanone) 등의 케톤계 용매; 벤젠(benzene), 플루오로벤젠(fluorobenzene) 등의 방향족 탄화수소계 용매; 디메틸카보네이트(dimethylcarbonate, DMC), 디에틸카보네이트(diethylcarbonate, DEC), 메틸에틸카보네이트(methylethylcarbonate, MEC), 에틸메틸카보네이트(ethylmethylcarbonate, EMC), 에틸렌카보네이트(ethylene carbonate, EC), 프로필렌카보네이트(propylene carbonate, PC) 등의 카보네이트계 용매; 에틸알코올, 이소프로필 알코올 등의 알코올계 용매; R-CN(R은 C2 내지 C20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류; 디메틸포름아미드 등의 아미드류; 1,3-디옥솔란 등의 디옥솔란류; 또는 설포란(sulfolane)류 등이 사용될 수 있다. 이중에서도 카보네이트계 용매가 바람직하고, 전지의 충방전 성능을 높일 수 있는 높은 이온전도도 및 고유전율을 갖는 환형 카보네이트(예를 들면, 에틸렌카보네이트 또는 프로필렌카보네이트 등)와, 저점도의 선형 카보네이트계 화합물(예를 들면, 에틸메틸카보네이트, 디메틸카보네이트 또는 디에틸카보네이트 등)의 혼합물이 보다 바람직하다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 약 1:1 내지 약 1:9의 부피비로 혼합하여 사용하는 것이 전해액의 성능이 우수하게 나타날 수 있다. The organic solvent may be used without limitation as long as it can act as a medium through which ions involved in the electrochemical reaction of the battery can move. Specifically, examples of the organic solvent include ester solvents such as methyl acetate, ethyl acetate,? -Butyrolactone and? -Caprolactone; Ether solvents such as dibutyl ether or tetrahydrofuran; Ketone solvents such as cyclohexanone; Aromatic hydrocarbon solvents such as benzene and fluorobenzene; Dimethyl carbonate (DMC), diethylcarbonate (DEC), methylethylcarbonate (MEC), ethylmethylcarbonate (EMC), ethylene carbonate (EC), propylene carbonate PC) and the like; Alcohol solvents such as ethyl alcohol and isopropyl alcohol; R-CN (R is a straight, branched or cyclic hydrocarbon group of C2 to C20, which may contain a double bond aromatic ring or an ether bond); Amides such as dimethylformamide; Dioxolanes such as 1,3-dioxolane; Or sulfolane may be used. Among these, a carbonate-based solvent is preferable, and a cyclic carbonate (for example, ethylene carbonate or propylene carbonate) having a high ionic conductivity and a high dielectric constant, for example, such as ethylene carbonate or propylene carbonate, For example, ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate) is more preferable. In this case, when the cyclic carbonate and the chain carbonate are mixed in a volume ratio of about 1: 1 to about 1: 9, the performance of the electrolytic solution may be excellent.
상기 리튬염은 리튬 이차전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한 없이 사용될 수 있다. 구체적으로 상기 리튬염은, LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2. LiCl, LiI, 또는 LiB(C2O4)2 등이 사용될 수 있다. 상기 리튬염의 농도는 0.1 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.The lithium salt can be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery. Specifically, the lithium salt, LiPF 6, LiClO 4, LiAsF 6, LiBF 4, LiSbF 6, LiAl0 4, LiAlCl 4, LiCF 3 SO 3, LiC 4 F 9 SO 3, LiN (C 2 F 5 SO 3) 2 , LiN (C 2 F 5 SO 2) 2, LiN (CF 3 SO 2) 2. LiCl, LiI, or LiB (C 2 O 4 ) 2 may be used. The concentration of the lithium salt is preferably in the range of 0.1 to 2.0 M. When the concentration of the lithium salt is within the above range, the electrolyte has an appropriate conductivity and viscosity, so that it can exhibit excellent electrolyte performance and the lithium ion can effectively move.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다. 이때 상기 첨가제는 전해질 총 중량에 대하여 0.1 내지 5 중량%로 포함될 수 있다. In addition to the electrolyte components, the electrolyte may contain, for example, a haloalkylene carbonate-based compound such as difluoroethylene carbonate or the like, pyridine, triethanolamine, or the like for the purpose of improving lifetime characteristics of the battery, Ethyl phosphite, triethanol amine, cyclic ether, ethylenediamine, glyme, hexametriamide, nitrobenzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinones, N, At least one additive such as benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, The additive may be included in an amount of 0.1 to 5% by weight based on the total weight of the electrolyte.
상기와 같이 본 발명에 따른 양극 활물질을 포함하는 리튬 이차전지는 우수한 방전 용량, 출력 특성 및 용량 유지율을 안정적으로 나타내기 때문에, 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 및 하이브리드 전기자동차(hybrid electric vehicle, HEV) 등의 전기 자동차 분야 등에 유용하다. As described above, since the lithium secondary battery including the cathode active material according to the present invention stably exhibits excellent discharge capacity, output characteristics, and capacity retention rate, it can be used in portable devices such as mobile phones, notebook computers, digital cameras, and hybrid electric vehicles hybrid electric vehicle (HEV)).
이에 따라, 본 발명의 다른 일 구현예에 따르면, 상기 리튬 이차전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지팩이 제공된다. According to another embodiment of the present invention, there is provided a battery module including the lithium secondary battery as a unit cell and a battery pack including the same.
상기 전지모듈 또는 전지팩은 파워 툴(Power Tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차, 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다.The battery module or the battery pack may include a power tool; An electric vehicle including an electric vehicle (EV), a hybrid electric vehicle, and a plug-in hybrid electric vehicle (PHEV); Or a power storage system, as shown in FIG.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. Hereinafter, embodiments of the present invention will be described in detail so that those skilled in the art can easily carry out the present invention. The present invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein.
실시예 1Example 1
LiNi0 . 6Co0 . 2Mn0 . 2O2와 폴리비닐리덴플로라이드(PVDF), 카바이드(carbide)로서 B4C를 100:2:0.1의 중량비로 혼합하고, 산소 분위기 하 400℃에서 3시간 가량 열처리하여 상기 LiNi0.6Co0.2Mn0.2O2 의 입자 표면에 코팅층을 형성하였다. LiNi 0 . 6 Co 0 . 2 Mn 0 . B 2 O 2 and polyvinylidene fluoride (PVDF) as carbides, B 4 C as a carbide in a weight ratio of 100: 2: 0.1, and heat-treated at 400 ° C. for 3 hours in an oxygen atmosphere to form the LiNi 0.6 Co 0.2 Mn On the particle surface of 0.2 O 2 To form a coating layer.
실시예 2Example 2
카바이드(carbide)로서 B4C를 대신하여 Al4C3를 혼합하여 제조한 것으로 제외하고는 실시예 1과 동일하게 실시하여 제조하였다.Was prepared in the same manner as in Example 1, except that Al 4 C 3 was used instead of B 4 C as a carbide.
실시예 3Example 3
코팅용 폴리머로서 폴리비닐리덴플로라이드(PVDF)를 대신하여 폴리바이닐피롤리돈(PVP)를 혼합하여 제조한 것을 제외하고는 실시예 1과 동일하게 실시하여 제조하였다.(PVP) instead of polyvinylidene fluoride (PVDF) as a polymer for coating was prepared in the same manner as in Example 1.
실시예 4Example 4
LiNi0 . 6Co0 . 2Mn0 . 2O2와 폴리비닐리덴플로라이드(PVDF), 카바이드(carbide)로서 B4C를 100:0.2:0.5의 중량비로 혼합하고, 산소 분위기 하 400℃에서 3시간 가량 열처리하여 상기 LiNi0.6Co0.2Mn0.2O2 의 입자 표면에 코팅층을 형성하였다. LiNi 0 . 6 Co 0 . 2 Mn 0 . B 2 O 2 and polyvinylidene fluoride (PVDF) as carbides, B 4 C as a carbide in a weight ratio of 100: 0.2: 0.5, and heat-treated at 400 ° C. for 3 hours in an oxygen atmosphere to form the LiNi 0.6 Co 0.2 Mn A coating layer was formed on the surface of 0.2 O 2 particles.
비교예 1Comparative Example 1
코팅층을 형성하지 않은 LiNi0.6Co0.2Mn0.2O2을 준비하였다.LiNi 0.6 Co 0.2 Mn 0.2 O 2 in which no coating layer was formed was prepared.
비교예 2Comparative Example 2
LiNi0 . 6Co0 . 2Mn0 . 2O2와 H3BO3를 100:0.1의 중량비로 혼합하고, 산소 분위기 하 400℃에서 3시간 가량 열처리하여 상기 LiNi0 . 6Co0 . 2Mn0 . 2O2 의 입자 표면을 코팅하였다. LiNi 0 . 6 Co 0 . 2 Mn 0 . 2 O 2 and H 3 BO 3 100: a mixture in a weight ratio of 0.1 and heat-treated for about 3 hours in an oxygen atmosphere to 400 ℃ the LiNi 0. 6 Co 0 . 2 Mn 0 . 2 O 2 Of the particle surface.
비교예 3Comparative Example 3
LiNi0 . 6Co0 . 2Mn0 . 2O2와 폴리비닐리덴플로라이드(PVDF), 카본 블랙을 100:2:0.1의 중량비로 혼합하고, 산소 분위기 하 400℃에서 3시간 가량 열처리하여 상기 LiNi0.6Co0.2Mn0.2O2 의 입자 표면에 코팅층을 형성하였다. LiNi 0 . 6 Co 0 . 2 Mn 0 . 2 O 2 , polyvinylidene fluoride (PVDF) and carbon black were mixed at a weight ratio of 100: 2: 0.1 and heat-treated at 400 ° C for about 3 hours in an oxygen atmosphere to form the particle surface of LiNi 0.6 Co 0.2 Mn 0.2 O 2 To form a coating layer.
이와 같이 제조된 코팅층의 경우 두께가 매우 불균일한 형태로 형성되었고, 코팅층에서 카본 블랙이 검출되지 않았다. 이는 열처리 공정 중 카본블랙이 CO2 또는 CO로 분해 제거되었기 때문인 것으로 생각된다. In the case of the coating layer thus formed, the thickness was very uneven, and no carbon black was detected in the coating layer. It is thought that carbon black was decomposed and removed into CO 2 or CO during the heat treatment process.
비교예Comparative Example 4 4
LiNi0 . 6Co0 . 2Mn0 . 2O2와 B4C를 100:0.1의 중량비로 혼합하고, 산소 분위기 하 400℃에서 3시간 가량 열처리하여 상기 LiNi0 . 6Co0 . 2Mn0 . 2O2 의 입자 표면을 코팅하였다. LiNi 0 . 6 Co 0 . 2 Mn 0 . 2 O 2 and B 4 C 100: a mixture in a weight ratio of 0.1 and heat-treated for about 3 hours in an oxygen atmosphere to 400 ℃ the LiNi 0. 6 Co 0 . 2 Mn 0 . 2 O 2 Of the particle surface.
비교예Comparative Example 5 5
LiNi0 . 6Co0 . 2Mn0 . 2O2와 폴리비닐리덴플로라이드(PVDF)를 100:2의 중량비로 혼합하고, 산소 분위기 하 400℃에서 3시간 가량 열처리하여 상기 LiNi0 . 6Co0 . 2Mn0 . 2O2 의 입자 표면을 코팅하였다. LiNi 0 . 6 Co 0 . 2 Mn 0 . 2 O 2 and polyvinylidene fluoride (PVDF) 100: mixed in a weight ratio of 2, by heat treatment for about 3 hours in an oxygen atmosphere to 400 ℃ the LiNi 0. 6 Co 0 . 2 Mn 0 . 2 O 2 Of the particle surface.
[실험예 1: 양극 활물질 관찰] [Experimental Example 1: Observation of cathode active material]
상기 실시예 1 및 비교예 2에 따라 제조된 양극 활물질을 주사전자현미경(SEM)으로 확대 관찰한 사진을 도 1, 도 2(실시예 1) 및 도 3, 도 4(비교예 2)에 나타내었다.1 and FIG. 2 (Example 1) and FIGS. 3 and 4 (Comparative Example 2) are photographs of a cathode active material produced according to Example 1 and Comparative Example 2, which are observed by a scanning electron microscope (SEM) .
도 1 및 도 2를 참조하면, 코팅용 폴리머 및 카바이드(carbide)의 하이브리드(hybrid) 코팅재로서 코팅하여 제조한 실시예 1은 활물질 입자 표면을 둘러싼 막 형태의 코팅층이 평균 1,000nm의 두께로 형성된 것을 확인할 수 있었다. 1 and 2, Example 1 prepared by coating with a coating polymer and a hybrid coating of carbide shows that a film-like coating layer surrounding the active material particle surface is formed to a thickness of 1,000 nm on average I could confirm.
도 3 및 도 4를 참조하면, 기존 코팅재인 H3BO3로 코팅한 비교예 2는 활물질 입자 표면에 막 형태가 아닌 아일랜드(island) 형태의 코팅부가 형성된 것을 확인할 수 있다.Referring to FIGS. 3 and 4, in Comparative Example 2 coated with H 3 BO 3 , which is a conventional coating material, it can be confirmed that an island-shaped coating portion is formed on the surface of the active material particle.
[실험예 2: 고전압 사이클 특성 평가] [Experimental Example 2: Evaluation of high-voltage cycle characteristics]
실시예 1 내지 4 및 비교예 1 내지 5에서 제조된 양극 활물질을 사용하고, 카본 블랙, PVDF 바인더를 N-메틸피롤리돈 용매 중에 중량비로 96:2:2의 비율로 혼합하여 양극 형성용 조성물을 제조하고, 이를 알루미늄 집전체의 일면에 도포한 후, 130℃에서 건조 후 압연하여, 각각 양극을 제조하였다.Using the cathode active materials prepared in Examples 1 to 4 and Comparative Examples 1 to 5, carbon black and PVDF binder were mixed in a N-methylpyrrolidone solvent in a weight ratio of 96: 2: 2, Was coated on one side of the aluminum current collector, dried at 130 캜, and rolled to prepare a positive electrode.
또, 음극 활물질로서 천연흑연, 카본블랙 도전재 및 PVdF 바인더를 N-메틸피롤리돈 용매 중에서 중량비로 85:10:5의 비율로 혼합하여 음극 형성용 조성물을 제조하고, 이를 구리 집전체의 일면에 도포하여 음극을 제조하였다. In addition, as a negative electrode active material, natural graphite, a carbon black conductive material and a PVdF binder were mixed in a N-methylpyrrolidone solvent in a weight ratio of 85: 10: 5 to prepare a composition for forming an anode, To prepare a negative electrode.
상기와 같이 제조된 양극과 음극 사이에 다공성 폴리에틸렌의 세퍼레이터를 개재하여 전극 조립체를 제조하고, 상기 전극 조립체를 케이스 내부에 위치시킨 후, 케이스 내부로 전해액을 주입하여 리튬 이차 전지를 제조하였다. 이때 전해액은 에틸렌카보네이트/디메틸카보네이트/에틸메틸카보네이트(EC/DMC/EMC의 혼합 부피비=3/4/3)로 이루어진 유기 용매에 1.0M 농도의 리튬헥사플루오로포스페이트(LiPF6)를 용해시켜 제조하였다. A lithium secondary battery was prepared by preparing an electrode assembly between a positive electrode and a negative electrode manufactured as described above through a separator of porous polyethylene, positioning the electrode assembly inside a case, and then injecting an electrolyte into the case. The electrolyte solution was prepared by dissolving 1.0 M lithium hexafluorophosphate (LiPF 6 ) in an organic solvent composed of ethylene carbonate / dimethyl carbonate / ethyl methyl carbonate (mixed volume ratio of EC / DMC / EMC = 3/4/3) Respectively.
상기와 같이 제조된 각 리튬 이차 전지 셀(full cell)에 대해 각각 25℃ 및 45℃에서 CCCV 모드로 0.7C, 4.4V가 될 때까지 충전하고, 0.55C 조건으로 cut off하였으며, 0.5C의 정전류로 3.0V가 될 때까지 방전하여 100회 충방전을 실시하면서 용량 유지율(Capacity Retention[%])을 측정하였다. 그 결과를 표 1에 나타내었다.Each of the prepared lithium secondary battery cells was charged at a rate of 0.7 C and 4.4 V in a CCCV mode at 25 ° C and 45 ° C, cut off at 0.55C, The capacity retention (%) was measured while discharging to 3.0 V and performing charge / discharge 100 times. The results are shown in Table 1.
100회 사이클 후 용량 유지율(%)Capacity retention after 100 cycles (%)
25℃25 ℃ 45℃45 ° C
실시예1Example 1 98.698.6 95.795.7
실시예2Example 2 95.395.3 93.093.0
실시예3Example 3 97.797.7 94.894.8
실시예4Example 4 98.198.1 95.695.6
비교예1Comparative Example 1 90.490.4 88.188.1
비교예2Comparative Example 2 91.491.4 90.590.5
비교예3Comparative Example 3 91.091.0 88.488.4
비교예4Comparative Example 4 91.291.2 90.690.6
비교예5Comparative Example 5 92.792.7 90.890.8
상기 표 1을 참조하면, 코팅용 폴리머 및 카바이드(carbide)의 하이브리드(hybrid) 코팅재로서 코팅하여 제조한 실시예 1 내지 4는 코팅하지 않은 비교예 1 또는 기존 코팅재인 H3BO3로 코팅한 비교예 2에 비하여 고전압 하 상온(25℃) 및 고온(45℃)에서의 사이클 톡성이 현저히 우수히 나타났다. 또한, 폴리머와 카본(카본 블랙)을 코팅재로서 코팅한 비교예 3과 비교하여도 실시예 1 내지 4의 사이클 특성이 현저히 우수하였다. Referring to Table 1, Examples 1 to 4, which were prepared by coating a coating polymer and a hybrid coating of carbide, were compared with Comparative Example 1 which was not coated or coated with H 3 BO 3 which is a conventional coating material (25 ° C.) and high temperature (45 ° C.) under high voltage compared to Example 2. In addition, the cycle characteristics of Examples 1 to 4 were remarkably superior to those of Comparative Example 3 in which a polymer and carbon (carbon black) were coated as a coating material.
또한, B4C를 단독 코팅재로서 코팅한 비교예 4의 경우 상온(25℃) 및 고온(45℃)에서의 사이클 톡성이 실시예 1 내지 4 대비 낮게 나타났고, 비교예 2와 유사한 수준을 보였다. 또한, PVDF를 단독 코팅재로서 코팅한 비교예 5의 경우도 실시예 1 내지 4 대비 상온(25℃) 및 고온(45℃)에서의 사이클 특성이 현저히 낮게 나타났다.Further, in Comparative Example 4 in which B 4 C was coated as a single coating material, the cyclotoxicity at room temperature (25 ° C) and high temperature (45 ° C) was lower than those in Examples 1 to 4 and was similar to that in Comparative Example 2 . Also, in Comparative Example 5 in which PVDF was coated as a single coating material, cycle characteristics at room temperature (25 ° C) and high temperature (45 ° C) were significantly lower than those of Examples 1 to 4.
[실험예 3: 고전압 셀저항 특성 평가][Experimental Example 3: Evaluation of high voltage cell resistance]
상기와 같이 제조된 각 리튬 이차 전지 셀(full cell)에 대해 각각 25℃ 및 45℃에서 CCCV 모드로 0.7C, 4.4V가 될 때까지 충전하고, 0.55C 조건으로 cut off하였으며, 0.5C의 정전류로 3.0V가 될 때까지 방전하여 100회 충방전을 실시하면서 저항 증가율(DCIR[%])을 측정하였다. 그 결과를 표 2에 나타내었다.Each of the prepared lithium secondary battery cells was charged at a rate of 0.7 C and 4.4 V in a CCCV mode at 25 ° C and 45 ° C, cut off at 0.55C, And the resistance increase rate (DCIR [%]) was measured while charging / discharging was performed 100 times. The results are shown in Table 2.
100회 사이클 후 저항 증가율(%)Resistance increase rate after 100 cycles (%)
25℃25 ℃ 45℃45 ° C
실시예1Example 1 1414 2525
실시예2Example 2 1313 2727
실시예3Example 3 1818 3030
실시예4Example 4 1717 2222
비교예1Comparative Example 1 3232 5151
비교예2Comparative Example 2 2929 4848
비교예3Comparative Example 3 3131 4949
비교예4Comparative Example 4 2525 4343
비교예5Comparative Example 5 3535 5252
상기 표 2를 참조하면, 코팅용 폴리머 및 카바이드(carbide)의 하이브리드(hybrid) 코팅재로서 코팅하여 제조한 실시예 1 내지 4는 코팅하지 않은 비교예 1 또는 기존 코팅재인 H3BO3로 코팅한 비교예 2에 비하여 고전압 하 상온 및 고온(45℃)에서의 저항 증가율이 현저히 감소하였다. 또한, 폴리머와 카본(카본 블랙)을 코팅재로서 코팅한 비교예 3과 비교하여도 실시예 1 내지 4의 저항 특성이 현저히 우수하였다.Referring to Table 2, Examples 1 to 4 prepared by coating with a coating polymer and a hybrid coating of carbide were compared with Comparative Example 1 which was not coated or coated with H 3 BO 3 which is a conventional coating material The resistance increase rate at room temperature and high temperature (45 ° C) under a high voltage was remarkably reduced compared to Example 2. In addition, the resistance characteristics of Examples 1 to 4 were remarkably superior to those of Comparative Example 3 in which a polymer and carbon (carbon black) were coated as a coating material.
또한, 비교예 4에서 실시한 B4C 단독 코팅의 경우 실시예 1 내지 4 대비 높은 저항 증가율을 나타내었다. 이는 실시예 1 내지 4의 경우 폴리머-카바이드의 균일한 코팅에 의한 표면 전기 전도성 향상 및 부반응물 생성 억제로 인해 저항 증가율이 감소되었기 때문으로 생각되며, 비교예 4와 같이 전도성을 가지는 카바이드의 단독 코팅시 양극 활물질 표면에 균일한 코팅 형성이 되지 않기 때문인 것으로 생각된다.In addition, the B 4 C single coating of Comparative Example 4 exhibited a higher resistance increase rate than Examples 1 to 4. This is presumably because the resistance increase rate was reduced due to the improvement of the surface electrical conductivity and the inhibition of the formation of side reactants by the uniform coating of the polymer-carbide in Examples 1 to 4, and as shown in Comparative Example 4, It is considered that uniform coating is not formed on the surface of the cathode active material.
또한, 비교예 5의 PVDF 단독 코팅의 경우 상대적으로 높은 저항 증가율이 나타나며, 이는 폴리머 자체의 초기 저항 증가와 더불어 충방전 중의 저항 증가율도 지속적으로 증가되었다.In the case of the PVDF single coating of Comparative Example 5, a relatively high resistance increase rate was exhibited, which was accompanied by an increase in the initial resistance of the polymer itself and a continuous increase in the resistance increase rate during charging and discharging.

Claims (17)

  1. 리튬 전이금속 산화물을 마련하는 단계;Providing a lithium transition metal oxide;
    상기 리튬 전이금속 산화물, 코팅용 폴리머 및 카바이드(carbide)를 혼합하여 혼합물을 형성하는 단계; 및Mixing the lithium transition metal oxide, a coating polymer, and a carbide to form a mixture; And
    상기 혼합물을 열처리하여, 상기 리튬 전이금속 산화물의 입자 표면에 탄화된 코팅용 폴리머 및 카바이드(carbide)를 포함하는 코팅층을 형성하는 단계;Heat-treating the mixture to form a coating layer comprising carbonized coating polymer and carbide on the particle surface of the lithium-transition metal oxide;
    를 포함하는 이차전지용 양극 활물질의 제조방법. Wherein the positive electrode active material is a positive electrode active material.
  2. 제1항에 있어서,The method according to claim 1,
    상기 코팅용 폴리머는 폴리비닐리덴플로라이드(PVDF), 폴리바이닐피롤리돈(Polyvinylpyrrolidone), 폴리에틸렌, 폴리스티렌, 폴리에틸렌 테레프탈레이트,폴리염화비닐, 폴리염화비닐리덴, 에폭시수지, 아미노 수지, 페놀 수지, 폴리에스테르 수지로 이루어진 군에서 선택된 적어도 하나 이상인 이차전지용 양극 활물질의 제조방법. The coating polymer may be selected from the group consisting of polyvinylidene fluoride (PVDF), polyvinylpyrrolidone, polyethylene, polystyrene, polyethylene terephthalate, polyvinyl chloride, polyvinylidene chloride, epoxy resins, amino resins, And an ester resin. The method for producing a cathode active material for a secondary battery according to claim 1,
  3. 제1항에 있어서,The method according to claim 1,
    상기 카바이드(carbide)는 B4C, Al4C3, TiC, TaC, WC, NbC, HfC, VC 및 ZrC로 이루어진 군에서 선택된 적어도 하나 이상인 이차전지용 양극 활물질의 제조방법.Wherein the carbide is at least one selected from the group consisting of B 4 C, Al 4 C 3 , TiC, TaC, WC, NbC, HfC, VC and ZrC.
  4. 제1항에 있어서,The method according to claim 1,
    상기 혼합물은 리튬 전이금속 산화물 100중량부에 대하여 상기 코팅용 폴리머를 0.001 내지 10중량부 포함하는 이차전지용 양극 활물질의 제조방법. Wherein the mixture contains 0.001 to 10 parts by weight of the coating polymer per 100 parts by weight of the lithium transition metal oxide.
  5. 제1항에 있어서,The method according to claim 1,
    상기 혼합물은 리튬 전이금속 산화물 100중량부에 대하여 상기 카바이드(carbide)를 0.001 내지 10중량부 포함하는 이차전지용 양극 활물질의 제조방법. Wherein the mixture contains 0.001 to 10 parts by weight of the carbide relative to 100 parts by weight of the lithium transition metal oxide.
  6. 제1항에 있어서,The method according to claim 1,
    상기 혼합물은 상기 코팅용 폴리머 및 카바이드(carbide)를 1:99 내지 99:1 중량비로 포함하는 이차전지용 양극 활물질의 제조방법.Wherein the mixture comprises the polymer for coating and the carbide in a weight ratio of 1:99 to 99: 1.
  7. 제1항에 있어서,The method according to claim 1,
    상기 리튬 전이금속 산화물은 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2), 리튬 망간 산화물(LiMn2O4), 리튬 인산철 화합물(LiFePO4) 및 하기 화학식 1로 표시되는 리튬 복합 전이금속 산화물로 이루어진 군에서 선택된 적어도 하나 이상을 포함하는 이차전지용 양극 활물질의 제조방법.The lithium transition metal oxide may be at least one selected from the group consisting of lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), lithium manganese oxide (LiMn 2 O 4 ), lithium iron phosphate compound (LiFePO 4 ) And a metal oxide. The method for manufacturing a cathode active material for a secondary battery according to claim 1,
    [화학식 1][Chemical Formula 1]
    LipNi1 -x- yCoxMa yMb zO2 Li p Ni 1 -x- y Co x M a y M b z O 2
    상기 식에서, Ma은 Mn, Al 및 Zr로 이루어진 군에서 선택된 적어도 하나 이상의 원소이고, Mb는 Al, Zr, Ti, Mg, Ta, Nb, Mo, W 및 Cr로 이루어진 군에서 선택되는 적어도 하나 이상의 원소이며, 0.9≤p≤1.5, 0≤x≤0.5, 0≤y≤0.5, 0≤z≤0.1이다.Wherein M a is at least one element selected from the group consisting of Mn, Al and Zr and M b is at least one element selected from the group consisting of Al, Zr, Ti, Mg, Ta, Nb, Mo, W and Cr Or more, and 0.9? P? 1.5, 0? X? 0.5, 0? Y? 0.5, and 0? Z?
  8. 제1항에 있어서,The method according to claim 1,
    상기 열처리는 200 내지 800℃에서 수행하는 이차전지용 양극 활물질의 제조방법.Wherein the heat treatment is performed at 200 to 800 ° C.
  9. 리튬 전이금속 산화물; 및Lithium transition metal oxide; And
    상기 리튬 전이금속 산화물의 입자 표면에 형성된 코팅층;을 포함하며,And a coating layer formed on the particle surface of the lithium transition metal oxide,
    상기 코팅층은 막 형태로 이루어지고,Wherein the coating layer is in the form of a film,
    상기 코팅층은 탄화된 코팅용 폴리머 및 카바이드(carbide)를 포함하는 이차전지용 양극 활물질.Wherein the coating layer comprises a carbonated coating polymer and a carbide.
  10. 제9항에 있어서,10. The method of claim 9,
    상기 코팅용 폴리머는 폴리비닐리덴플로라이드(PVDF), 폴리바이닐피롤리돈(Polyvinylpyrrolidone), 폴리에틸렌, 폴리스티렌, 폴리에틸렌 테레프탈레이트,폴리염화비닐, 폴리염화비닐리덴, 에폭시수지, 아미노 수지, 페놀 수지, 폴리에스테르 수지로 이루어진 군에서 선택된 적어도 하나 이상인 이차전지용 양극 활물질.The coating polymer may be selected from the group consisting of polyvinylidene fluoride (PVDF), polyvinylpyrrolidone, polyethylene, polystyrene, polyethylene terephthalate, polyvinyl chloride, polyvinylidene chloride, epoxy resins, amino resins, And an ester resin.
  11. 제9항에 있어서,10. The method of claim 9,
    상기 코팅용 폴리머는 폴리비닐리덴플로라이드(PVDF) 및 폴리바이닐피롤리돈(Polyvinylpyrrolidone), 폴리에틸렌 테레프탈레이트 및 폴리염화비닐리덴으로 이루어진 군에서 선택된 적어도 하나 이상인 이차전지용 양극 활물질.Wherein the polymer for coating is at least one or more selected from the group consisting of polyvinylidene fluoride (PVDF) and polyvinylpyrrolidone, polyethylene terephthalate and polyvinylidene chloride.
  12. 제9항에 있어서,10. The method of claim 9,
    상기 카바이드(carbide)는 B4C, Al4C3, TiC, TaC, WC, NbC, HfC, VC 및 ZrC로 이루어진 군에서 선택된 적어도 하나 이상인 이차전지용 양극 활물질.Wherein the carbide is at least one selected from the group consisting of B 4 C, Al 4 C 3 , TiC, TaC, WC, NbC, HfC, VC and ZrC.
  13. 제9항에 있어서,10. The method of claim 9,
    상기 카바이드(carbide)는 B4C 또는 Al4C3인 이차전지용 양극 활물질.Wherein the carbide is B 4 C or Al 4 C 3 .
  14. 제9항에 있어서,10. The method of claim 9,
    상기 코팅층은 5 내지 2,000nm 두께인 이차전지용 양극 활물질.The coating layer is 5 to 2,000 nm thick.
  15. 제9항에 있어서,10. The method of claim 9,
    상기 코팅층은 리튬 전이금속 산화물 입자 100중량부에 대하여 상기 카바이드(carbide)를 0.001 내지 10중량부 포함하는 이차전지용 양극 활물질.Wherein the coating layer comprises 0.001 to 10 parts by weight of the carbide relative to 100 parts by weight of the lithium-transition metal oxide particles.
  16. 제9항 내지 제15항 중 어느 한 항에 따른 양극 활물질을 포함하는 이차전지용 양극.A positive electrode for a secondary battery comprising the positive electrode active material according to any one of claims 9 to 15.
  17. 제16항에 따른 양극을 포함하는 리튬 이차전지.17. A lithium secondary battery comprising the positive electrode according to claim 16.
PCT/KR2018/011579 2017-09-29 2018-09-28 Method for preparing cathode active material for secondary battery, cathode active material prepared thereby, and lithium secondary battery comprising same WO2019066585A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020506194A JP6890874B2 (en) 2017-09-29 2018-09-28 A method for producing a positive electrode active material for a secondary battery, a positive electrode active material thus produced, and a lithium secondary battery containing the same.
US16/481,718 US11189827B2 (en) 2017-09-29 2018-09-28 Method for preparing positive electrode active material for secondary battery, positive electrode active material thus prepared and lithium secondary battery including the same
CN201880008691.6A CN110225887B (en) 2017-09-29 2018-09-28 Method of preparing positive active material for secondary battery, positive active material prepared thereby, and lithium secondary battery comprising same
US17/459,344 US11888153B2 (en) 2017-09-29 2021-08-27 Method for preparing positive electrode active material for secondary battery, positive electrode active material thus prepared and lithium secondary battery including the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0127757 2017-09-29
KR20170127757 2017-09-29
KR1020180115214A KR102143101B1 (en) 2017-09-29 2018-09-27 Method for preparing positive electrode active material for secondary battery, positive electrode active material prepared by the same and lithium secondary battery comprising the same
KR10-2018-0115214 2018-09-27

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/481,718 A-371-Of-International US11189827B2 (en) 2017-09-29 2018-09-28 Method for preparing positive electrode active material for secondary battery, positive electrode active material thus prepared and lithium secondary battery including the same
US17/459,344 Division US11888153B2 (en) 2017-09-29 2021-08-27 Method for preparing positive electrode active material for secondary battery, positive electrode active material thus prepared and lithium secondary battery including the same

Publications (1)

Publication Number Publication Date
WO2019066585A1 true WO2019066585A1 (en) 2019-04-04

Family

ID=65902579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/011579 WO2019066585A1 (en) 2017-09-29 2018-09-28 Method for preparing cathode active material for secondary battery, cathode active material prepared thereby, and lithium secondary battery comprising same

Country Status (1)

Country Link
WO (1) WO2019066585A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110783537A (en) * 2019-09-19 2020-02-11 安徽清泉新能源科技集团有限责任公司 Polypyrrole lithium-sulfur battery material
JP2022525463A (en) * 2019-05-13 2022-05-16 エルジー・ケム・リミテッド Positive electrode active material for secondary batteries, manufacturing method thereof, and lithium secondary batteries containing them

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130030102A (en) * 2011-09-16 2013-03-26 삼성에스디아이 주식회사 Composite cathode active material, and cathode and lithium battery containing the material
KR20140039208A (en) * 2011-06-02 2014-04-01 시리엔 아펙스 차이나 홀딩 컴퍼니 리미티드 High capacitance lithium ion battery containing metallic conducting materials
KR20150009115A (en) * 2013-07-15 2015-01-26 (주)포스코켐텍 Method for preparing electrode active material for rechargeable lithium battery, electrode active material for rechargeable lithium battery, and rechargeable lithium battery
KR20150050152A (en) * 2013-10-31 2015-05-08 주식회사 엘지화학 Manufacturing method of cathode active material, and cathode active material for lithium secondary battery manufactured thereby
JP2017103207A (en) * 2015-11-19 2017-06-08 Tdk株式会社 Positive electrode active material, positive electrode, and lithium ion secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140039208A (en) * 2011-06-02 2014-04-01 시리엔 아펙스 차이나 홀딩 컴퍼니 리미티드 High capacitance lithium ion battery containing metallic conducting materials
KR20130030102A (en) * 2011-09-16 2013-03-26 삼성에스디아이 주식회사 Composite cathode active material, and cathode and lithium battery containing the material
KR20150009115A (en) * 2013-07-15 2015-01-26 (주)포스코켐텍 Method for preparing electrode active material for rechargeable lithium battery, electrode active material for rechargeable lithium battery, and rechargeable lithium battery
KR20150050152A (en) * 2013-10-31 2015-05-08 주식회사 엘지화학 Manufacturing method of cathode active material, and cathode active material for lithium secondary battery manufactured thereby
JP2017103207A (en) * 2015-11-19 2017-06-08 Tdk株式会社 Positive electrode active material, positive electrode, and lithium ion secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022525463A (en) * 2019-05-13 2022-05-16 エルジー・ケム・リミテッド Positive electrode active material for secondary batteries, manufacturing method thereof, and lithium secondary batteries containing them
JP7278652B2 (en) 2019-05-13 2023-05-22 エルジー・ケム・リミテッド Positive electrode active material for secondary battery, method for producing the same, and lithium secondary battery including the same
CN110783537A (en) * 2019-09-19 2020-02-11 安徽清泉新能源科技集团有限责任公司 Polypyrrole lithium-sulfur battery material

Similar Documents

Publication Publication Date Title
WO2019103460A1 (en) Positive electrode material for secondary battery and lithium secondary battery comprising same
WO2018097562A1 (en) Positive electrode for secondary battery and lithium secondary battery comprising same
WO2019151834A1 (en) Cathode active material for secondary battery, preparation method therefor, and lithium secondary battery comprising same
WO2019147017A1 (en) Cathode active material for secondary battery, preparation method therefor, and lithium secondary battery comprising same
WO2019164313A1 (en) Positive electrode active material for secondary battery, preparation method therefor, and lithium secondary battery comprising same
WO2019050282A1 (en) Lithium secondary battery cathode active material, preparation method therefor, lithium secondary battery cathode comprising same, and lithium secondary battery
WO2019059552A2 (en) Cathode active material for secondary battery, preparation method therefor, and lithium secondary battery comprising same
WO2019103363A1 (en) Cathode active material for secondary battery, preparation method therefor, and lithium secondary battery comprising same
WO2019225969A1 (en) Positive electrode material for lithium rechargeable battery, positive electrode for lithium rechargeable battery, comprising same, and lithium rechargeable battery
WO2021187961A1 (en) Positive electrode active material for secondary battery and lithium secondary battery comprising same
WO2019098541A1 (en) Cathode active material for secondary battery, fabrication method therefor, and lithium secondary battery comprising same
WO2019017643A9 (en) Positive electrode for lithium secondary battery, manufacturing method therefor, and lithium secondary battery comprising same
WO2019013511A2 (en) Positive electrode for lithium secondary battery, manufacturing method therefor, and lithium secondary battery comprising same
WO2021187907A1 (en) Cathode material for lithium secondary battery, and cathode and lithium secondary battery each comprising same
WO2019078688A2 (en) Lithium secondary battery positive electrode active material, method for preparing same, and lithium secondary battery positive electrode and lithium secondary battery comprising same
WO2020067830A1 (en) Positive electrode active material for secondary battery, method for producing same, and lithium secondary battery comprising same
WO2016053051A1 (en) Positive electrode active material for lithium secondary battery, manufacturing method therefor, and lithium secondary battery comprising same
WO2021153936A1 (en) Positive electrode active material for secondary battery and lithium secondary battery comprising same
WO2021025464A1 (en) Copolymer for polymer electrolyte, gel polymer electrolyte comprising same, and lithium secondary battery
WO2019078506A2 (en) Method for preparing cathode active material for lithium secondary battery, cathode active material prepared thereby, cathode comprising same for lithium secondary battery, and lithium secondary battery
WO2019066585A1 (en) Method for preparing cathode active material for secondary battery, cathode active material prepared thereby, and lithium secondary battery comprising same
WO2019093869A2 (en) Method for manufacturing positive electrode active material for secondary battery
WO2022164281A1 (en) Positive electrode, and lithium secondary battery comprising same
WO2019093864A2 (en) Lithium cobalt-based positive electrode active material, method for preparing same, positive electrode comprising same, and secondary battery
WO2022114538A1 (en) Method for manufacturing lithium secondary battery, and lithium secondary battery manufactured thereby

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18861794

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020506194

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18861794

Country of ref document: EP

Kind code of ref document: A1