JP2017103207A - Positive electrode active material, positive electrode, and lithium ion secondary battery - Google Patents

Positive electrode active material, positive electrode, and lithium ion secondary battery Download PDF

Info

Publication number
JP2017103207A
JP2017103207A JP2016170528A JP2016170528A JP2017103207A JP 2017103207 A JP2017103207 A JP 2017103207A JP 2016170528 A JP2016170528 A JP 2016170528A JP 2016170528 A JP2016170528 A JP 2016170528A JP 2017103207 A JP2017103207 A JP 2017103207A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
composite oxide
electrode active
lithium composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016170528A
Other languages
Japanese (ja)
Inventor
慎 藤田
Shin Fujita
慎 藤田
秀明 関
Hideaki Seki
秀明 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to CN201610989741.6A priority Critical patent/CN106876661A/en
Priority to US15/348,280 priority patent/US10971717B2/en
Publication of JP2017103207A publication Critical patent/JP2017103207A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide: a positive electrode active material having high cycle characteristics; a positive electrode; and a lithium ion battery using the positive electrode.SOLUTION: A positive electrode active material comprises: a lithium composite oxide; a compound with high thermal conductivity; and graphene or multilayer graphene.SELECTED DRAWING: Figure 1

Description

本発明は、正極活物質、それを用いた正極及びリチウムイオン二次電池に関するものである。   The present invention relates to a positive electrode active material, a positive electrode using the positive electrode active material, and a lithium ion secondary battery.

従来、リチウムイオン二次電池用の正極活物質としてコバルト酸リチウムやニッケル酸リチウム、マンガン酸リチウム等が、4Vを越える起電力が得られることから広く研究が行われている。   Conventionally, lithium cobaltate, lithium nickelate, lithium manganate, and the like as a positive electrode active material for a lithium ion secondary battery have been widely studied since an electromotive force exceeding 4 V can be obtained.

リチウムイオン二次電池用の正極活物質は、放電容量を向上する目的で充電電圧を上昇させる傾向にある。しかしながら、充電電圧を上げて放電容量を向上させると、それに伴って電池の発熱量が大きくなり、発熱により電池のサイクル特性が低下してしまう。   The positive electrode active material for a lithium ion secondary battery tends to increase the charging voltage for the purpose of improving the discharge capacity. However, when the charge voltage is increased to improve the discharge capacity, the amount of heat generated by the battery increases accordingly, and the cycle characteristics of the battery are reduced due to heat generation.

特にコバルト酸リチウムやニッケル酸リチウム、マンガン酸リチウム等を正極活物質とした電池系は、充電電圧を上昇させた際の発熱により、十分なサイクル特性が得られておらず、特に高温環境においては顕著である。   In particular, battery systems using lithium cobaltate, lithium nickelate, lithium manganate, etc. as the positive electrode active material have not obtained sufficient cycle characteristics due to heat generated when the charging voltage is raised, especially in high temperature environments. It is remarkable.

コバルト酸リチウムのサイクル特性についての先行文献として、例えば特許文献1のようにコバルト酸リチウムのコバルト及び/又はリチウムの一部を他の金属元素で置換してサイクル特性が向上することが報告されているが、充電時の熱不安定性の改善は十分ではなく、更なるサイクル特性の向上が求められている。なお、以下では、場合により、リチウムイオン二次電池を「電池」と記す。   As a prior document on the cycle characteristics of lithium cobalt oxide, for example, as disclosed in Patent Document 1, it is reported that the cobalt characteristics of lithium cobalt oxide and / or a part of lithium are replaced with other metal elements to improve the cycle characteristics. However, improvement in thermal instability during charging is not sufficient, and further improvement in cycle characteristics is required. Hereinafter, in some cases, a lithium ion secondary battery is referred to as a “battery”.

特開2006−164758号公報JP 2006-164758 A

本発明は上記従来技術の有する課題を鑑みてなされたものであり、高いサイクル特性を有する正極活物質、正極、及びリチウムイオン二次電池を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and an object thereof is to provide a positive electrode active material, a positive electrode, and a lithium ion secondary battery having high cycle characteristics.

上記目標を達成するために、本発明に係る正極活物質は、下記化学式(1)で表されるリチウム複合酸化物と、
高熱伝導化合物と、
グラフェンまたは多層グラフェンと、
を含む正極活物質。
Li M1 M21−y ・・・(1)
[上記化学式1において、M1はNi、Co、Mnから選ばれる少なくとも一種の金属であり、M2はAl、Fe、Ti、Cr、Mg、Cu、Ga、Zn、Sn、B、V、Ca及びSrからなる群より選ばれる少なくとも1種類の金属であり、0.05≦x≦1.2、0.3≦y≦1を満たす]
In order to achieve the above goal, a positive electrode active material according to the present invention includes a lithium composite oxide represented by the following chemical formula (1):
A high thermal conductivity compound,
Graphene or multilayer graphene,
A positive electrode active material comprising:
Li x M1 y M2 1-y O 2 (1)
[In the above chemical formula 1, M1 is at least one metal selected from Ni, Co, and Mn, and M2 is Al, Fe, Ti, Cr, Mg, Cu, Ga, Zn, Sn, B, V, Ca, and Sr. And at least one metal selected from the group consisting of 0.05 ≦ x ≦ 1.2 and 0.3 ≦ y ≦ 1]

かかる構成によれば、高熱伝導化合物と、グラフェンまたは多層グラフェンとを含むことにより、充電の際に発生する熱を効率的に逃がすことが出来、正極の蓄熱を抑制する為正極活物質の劣化を防ぎ、サイクル特性が向上する。特に、充電電圧を4.2V付近まで上昇すると、正極活物質の結晶の転移、あるいは正極活物質の分解が起こり、それに伴って大きな発熱が起こる。かかる構成にすることで、この正極活物質の熱安定性の低下を抑制することが出来る。   According to such a configuration, by including a high thermal conductive compound and graphene or multi-layer graphene, heat generated during charging can be efficiently released, and deterioration of the positive electrode active material is suppressed in order to suppress heat storage of the positive electrode. Prevents and improves cycle characteristics. In particular, when the charging voltage is increased to around 4.2 V, crystal transition of the positive electrode active material or decomposition of the positive electrode active material occurs, and large heat generation occurs accordingly. With such a configuration, it is possible to suppress a decrease in thermal stability of the positive electrode active material.

本発明に係る正極活物質は、AlN、BN、Si、TiN、ZrN、VN、CrN、SiC、WC、TiC、TaC、ZrC、NbC、MoC、Cr、TiB、ZrB、VB、NbBから選ばれる少なくとも一種であることが好ましい。 The positive electrode active material according to the present invention includes AlN, BN, Si 3 N 4 , TiN, ZrN, VN, Cr 2 N, SiC, WC, TiC, TaC, ZrC, NbC, Mo 2 C, Cr 3 C 2 , TiB. 2 , at least one selected from ZrB 2 , VB 2 and NbB 2 is preferred.

かかる構成によれば、特に高熱伝導化合物を含むことにより、充電の際に発生する熱を効率的に逃がすことが出来、正極の蓄熱を抑制する為正極活物質の劣化を防ぎ、サイクル特性が向上する。   According to such a configuration, the heat generated during charging can be efficiently released by including a highly heat conductive compound, and the deterioration of the positive electrode active material is prevented to suppress the heat storage of the positive electrode, and the cycle characteristics are improved. To do.

本発明に係る正極活物質に用いられる高熱伝導化合物は、リチウム複合酸化物に対して0.05〜10重量%含有されていることが好ましい。   The high thermal conductive compound used in the positive electrode active material according to the present invention is preferably contained in an amount of 0.05 to 10% by weight with respect to the lithium composite oxide.

高熱伝導化合物の重量が0.05重量%より大きい場合、充電の際に発生する熱をより効率的に逃がすことが出来る為、サイクル特性が向上する。また、10重量%以下であれば、エネルギー密度の低下を防ぐことが出来る。   When the weight of the high thermal conductive compound is greater than 0.05% by weight, the heat generated during charging can be released more efficiently, so that the cycle characteristics are improved. Moreover, if it is 10 weight% or less, the fall of an energy density can be prevented.

本発明に係る正極活物質に用いられるリチウム複合酸化物は、被覆層により被覆され、被覆層は高熱伝導化合物及びグラフェン及び多層グラフェンのうちいずれか1種以上を含むことが好ましい。   The lithium composite oxide used for the positive electrode active material according to the present invention is preferably coated with a coating layer, and the coating layer preferably contains any one or more of a high thermal conductivity compound, graphene, and multilayer graphene.

高熱伝導化合物がリチウム複合酸化物の少なくとも一部を被覆することにより、発熱源からの熱をより効率的に伝導して逃がすことが出来、発熱を抑制する為劣化を防ぎ、サイクル特性が向上する。   By covering at least a part of the lithium composite oxide with the high thermal conductive compound, the heat from the heat source can be more efficiently conducted and released, and the deterioration is prevented by suppressing the heat generation, and the cycle characteristics are improved. .

被覆層は高熱伝導化合物を含み、さらに被覆層上にはその一部をグラフェンまたは多層グラフェンが被覆していることが好ましい。   The coating layer preferably contains a high thermal conductive compound, and it is preferable that a part of the coating layer is coated with graphene or multilayer graphene.

被覆層がリチウム複合酸化物により強固に密着し、さらにグラフェンまたは多層グラフェンのもつ熱伝導率の異方性の影響を緩和出来る為、リチウム複合酸化物からの発熱をより速やかに伝導して逃がすことが出来、発熱を抑制する為劣化を防ぎ、サイクル特性が向上する。   The coating layer is tightly adhered to the lithium composite oxide, and furthermore, the influence of anisotropy of thermal conductivity of graphene or multilayer graphene can be mitigated, so that heat from the lithium composite oxide can be conducted more quickly and released. Can be prevented, and heat generation is suppressed to prevent deterioration and improve cycle characteristics.

高熱伝導化合物の平均膜厚が30〜300nmであり、グラフェンまたは多層グラフェンの膜厚が50〜500nmであることが好ましい。   The average film thickness of the high thermal conductive compound is preferably 30 to 300 nm, and the film thickness of graphene or multilayer graphene is preferably 50 to 500 nm.

高熱伝導化合物の平均膜厚が30nm以上であれば、熱伝導のネットワークパスを形成しやすくなり、効率的に熱を逃がすことが出来る為、サイクル特性が向上する。また、300nm以下であれば、イオン伝導率の低下を防ぐことが出来る為、レート特性の低下を防ぐことが出来る。   If the average film thickness of the high thermal conductive compound is 30 nm or more, it becomes easy to form a thermal conduction network path, and heat can be efficiently released, so that cycle characteristics are improved. Moreover, if it is 300 nm or less, since the fall of ion conductivity can be prevented, the fall of a rate characteristic can be prevented.

グラフェンまたは多層グラフェンの膜厚が50nm以上であれば、熱伝導のネットワークパスを形成しやすくなり、効率的に熱を逃がすことが出来る為、サイクル特性が向上する。また、500nm以下であれば、イオン伝導率の低下を防ぐことが出来る為、レート特性の低下を防ぐことが出来る。   If the film thickness of graphene or multilayer graphene is 50 nm or more, it becomes easy to form a network path for heat conduction, and heat can be efficiently released, so that cycle characteristics are improved. Moreover, if it is 500 nm or less, since the fall of ion conductivity can be prevented, the fall of a rate characteristic can be prevented.

本発明に係る正極活物質に用いられる高熱伝導化合物は平均一次粒子径が10〜500nmであることが好ましい。   The high thermal conductive compound used for the positive electrode active material according to the present invention preferably has an average primary particle size of 10 to 500 nm.

高熱伝導化合物の平均一次粒子径が10nm以上であれば、熱伝導のネットワークパスを形成しやすくなり、効率的に熱を逃がすことが出来る。また、500nm以下であれば、粒子間の接触点を多くすることが出来る為、効率的に熱を逃がし、サイクル特性が向上する。   If the average primary particle diameter of the high heat conductive compound is 10 nm or more, it becomes easy to form a heat conduction network path, and heat can be efficiently released. Moreover, if it is 500 nm or less, since the contact point between particle | grains can be increased, a heat | fever is efficiently released and cycling characteristics improve.

本発明によれば、高いサイクル特性を有する正極活物質、正極およびそれを用いたリチウムイオン二次電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the positive electrode active material which has high cycling characteristics, a positive electrode, and a lithium ion secondary battery using the same can be provided.

本実施形態のリチウムイオン二次電池の模式断面図である。It is a schematic cross section of the lithium ion secondary battery of this embodiment. 本第二実施形態の正極活物質の模式断面図である。It is a schematic cross section of the positive electrode active material of the second embodiment. 本第三実施形態の正極活物質の模式断面図である。It is a schematic cross section of the positive electrode active material of the third embodiment.

本発明に係るリチウムイオン二次電池の好適な実施の一例を、図面を参照しつつ詳細に説明する。ただし、本発明のリチウムイオン二次電池は、以下の実施形態に限定されるものではない。なお図面の寸法比率は図示の比率に限られるものではない。   An example of a preferred embodiment of a lithium ion secondary battery according to the present invention will be described in detail with reference to the drawings. However, the lithium ion secondary battery of the present invention is not limited to the following embodiments. In addition, the dimensional ratio of drawing is not restricted to the ratio of illustration.

(リチウムイオン二次電池)
本実施形態に係る電極、及びリチウムイオン二次電池について図1を参照して簡単に説明する。リチウムイオン二次電池100は、主として積層体40、積層体40を密閉した状態で収容するケース50、及び積層体40に接続された一対のリード60、62を備えている。また図示されていないが、積層体40とともに電解液をケース50に収容している。
(Lithium ion secondary battery)
An electrode and a lithium ion secondary battery according to this embodiment will be briefly described with reference to FIG. The lithium ion secondary battery 100 mainly includes a laminate 40, a case 50 that accommodates the laminate 40 in a sealed state, and a pair of leads 60 and 62 connected to the laminate 40. Although not shown, the electrolytic solution is housed in the case 50 together with the laminate 40.

積層体40は、正極20、負極30が、非水電解液を含んだセパレータ10を挟んで対向配置されたものである。正極20は、板状(膜状)の正極集電体22上に正極活物質層24が設けられたものである。負極30は、板状(膜状)の負極集電体32条に負極活物質層34が設けられたものである。正極活物質層24及び負極活物質層34がセパレータ10の両側にそれぞれ接触している。正極集電体22及び負極集電体32の端部には、それぞれリード62、60が接続されており、リード60、62の端部はケース50の外部にまで延びている。   The laminated body 40 is configured such that the positive electrode 20 and the negative electrode 30 are disposed to face each other with the separator 10 containing a non-aqueous electrolyte interposed therebetween. The positive electrode 20 is obtained by providing a positive electrode active material layer 24 on a plate-like (film-like) positive electrode current collector 22. The negative electrode 30 is obtained by providing a negative electrode active material layer 34 on a plate-like (film-like) negative electrode current collector 32. The positive electrode active material layer 24 and the negative electrode active material layer 34 are in contact with both sides of the separator 10. Leads 62 and 60 are connected to the ends of the positive electrode current collector 22 and the negative electrode current collector 32, respectively, and the ends of the leads 60 and 62 extend to the outside of the case 50.

以下、正極20及び負極30を総称して電極20、30といい、正極集電体22及び負極集電体32を総称して集電体22、32といい、正極活物質層24及び負極活物質層34を総称して活物質層24、34という。   Hereinafter, the positive electrode 20 and the negative electrode 30 are collectively referred to as electrodes 20 and 30, and the positive electrode current collector 22 and the negative electrode current collector 32 are collectively referred to as current collectors 22 and 32. The positive electrode active material layer 24 and the negative electrode active material The material layer 34 is collectively referred to as the active material layers 24 and 34.

本実施形態に係る正極活物質層は、正極活物質と正極バインダーと導電材から構成されている。   The positive electrode active material layer according to this embodiment includes a positive electrode active material, a positive electrode binder, and a conductive material.

(正極活物質)
本実施形態に係る正極活物質は、下記化学式(1)で表されるリチウム複合酸化物と、高熱伝導化合物と、グラフェンまたは多層グラフェンと、を含むことを特徴とする。
Lix M1 M21−y ・・・(1)
[上記化学式1において、M1はNi、Co、Mnから選ばれる少なくとも一種の金属であり、M2はAl、Fe、Ti、Cr、Mg、Cu、Ga、Zn、Sn、B、V、Ca及びSrからなる群より選ばれる少なくとも1種類の金属であり、0.05≦x≦1.2、0.3≦y≦1を満たす]
(Positive electrode active material)
The positive electrode active material according to the present embodiment includes a lithium composite oxide represented by the following chemical formula (1), a high thermal conductive compound, and graphene or multilayer graphene.
Lix M1 y M2 1-y O 2 (1)
[In the above chemical formula 1, M1 is at least one metal selected from Ni, Co, and Mn, and M2 is Al, Fe, Ti, Cr, Mg, Cu, Ga, Zn, Sn, B, V, Ca, and Sr. And at least one metal selected from the group consisting of 0.05 ≦ x ≦ 1.2 and 0.3 ≦ y ≦ 1]

かかる構成によれば、高熱伝導化合物と、グラフェンまたは多層グラフェンとを含むことにより、充電の際に発生する熱を効率的に逃がすことが出来、正極の蓄熱を抑制する為正極活物質の劣化を防ぎ、サイクル特性が向上する。   According to such a configuration, by including a high thermal conductive compound and graphene or multi-layer graphene, heat generated during charging can be efficiently released, and deterioration of the positive electrode active material is suppressed in order to suppress heat storage of the positive electrode. Prevents and improves cycle characteristics.

高熱伝導化合物の熱伝導率は、少なくとも正極活物質に含まれるリチウム複合酸化物よりも熱伝導率が高いことが好ましく、10W/m・K以上であることがより好ましい。熱伝導率が10W/m・K以上であれば、充電の際に発生する熱を効率的に逃がすことが出来る為、正極の蓄熱を抑制する為正極活物質の劣化を防ぎ、サイクル特性が向上する。   The thermal conductivity of the high thermal conductive compound is preferably higher than that of at least the lithium composite oxide contained in the positive electrode active material, and more preferably 10 W / m · K or more. If the thermal conductivity is 10 W / m · K or more, the heat generated during charging can be efficiently released, so the positive electrode active material is prevented from deteriorating and the cycle characteristics are improved to suppress the heat storage of the positive electrode. To do.

本実施形態に係るリチウム複合酸化物は、0.5≦y≦1を満たすことが好ましく、0.8≦y≦1を満たすことがより好ましい。これにより、高いサイクル特性を有すると共に、高い放電容量を得ることができる。   The lithium composite oxide according to the present embodiment preferably satisfies 0.5 ≦ y ≦ 1, and more preferably satisfies 0.8 ≦ y ≦ 1. Thereby, it is possible to obtain a high discharge capacity while having high cycle characteristics.

本実施形態に係るリチウム複合酸化物としては、具体的にはLi1.0Ni0.83Co0.14Al0.032.0、Li1.0Ni0.8Co0.15Al0.052.0等のニッケル・コバルト・アルミの三元系材料(NCA)、Li1.0Ni0.8Co0.1Mn0.12.0、Li1.0Ni0.5Co0.2Mn0.32.0、Li1.0Ni0.6Co0.2Mn0.22.0、Li1.0Ni0.333Co0.333Mn0.3332.0等のニッケル・コバルト・マンガンの三元系材料(NCM)、LiCoO等のコバルト酸リチウム(LCO)、などが挙げられ、中でもNCAは高いエネルギー密度を有するため好ましい。 Specifically, as the lithium composite oxide according to the present embodiment, Li 1.0 Ni 0.83 Co 0.14 Al 0.03 O 2.0 , Li 1.0 Ni 0.8 Co 0.15 Al Nickel-cobalt-aluminum ternary material (NCA) such as 0.05 O 2.0 , Li 1.0 Ni 0.8 Co 0.1 Mn 0.1 O 2.0 , Li 1.0 Ni 0 .5 Co 0.2 Mn 0.3 O 2.0 , Li 1.0 Ni 0.6 Co 0.2 Mn 0.2 O 2.0 , Li 1.0 Ni 0.333 Co 0.333 Mn 0 Examples include nickel, cobalt and manganese ternary materials (NCM) such as .333 O 2.0 , and lithium cobalt oxide (LCO) such as LiCoO 2. Among them, NCA is preferable because of its high energy density.

また、本実施形態に係るリチウム複合酸化物は、上記2種類以上の混合物からなっても良い。   Moreover, the lithium composite oxide according to the present embodiment may be composed of a mixture of two or more of the above.

高熱伝導化合物は、AlN、BN、Si、TiN、ZrN、VN、CrN、SiC、WC、TiC、TaC、ZrC、NbC、MoC、Cr、TiB、ZrB、VB、NbBから選ばれる少なくとも一種であることが好ましい。特に高い熱伝導性を持つ化合物を含むことにより、充電の際に発生する熱をより効率的に逃がすことが出来、正極の蓄熱を抑制する為正極活物質の劣化を防ぎ、サイクル特性が向上する。 High thermal conductive compounds are AlN, BN, Si 3 N 4 , TiN, ZrN, VN, Cr 2 N, SiC, WC, TiC, TaC, ZrC, NbC, Mo 2 C, Cr 3 C 2 , TiB 2 , ZrB 2. , VB 2 and NbB 2 are preferred. By including a compound with particularly high thermal conductivity, the heat generated during charging can be released more efficiently, the positive electrode active material is prevented from deteriorating to suppress the positive electrode heat storage, and the cycle characteristics are improved. .

高熱伝導化合物は、AlN、BN、Si、TiN、ZrN、VN、NbN、CrNから選ばれる少なくとも一種であることがより好ましい。窒化物は非常に安定であり、リチウム複合酸化物と窒化物との反応が起こりにくいため、サイクル特性が向上する。 The high thermal conductive compound is more preferably at least one selected from AlN, BN, Si 3 N 4 , TiN, ZrN, VN, NbN, and Cr 2 N. Since nitride is very stable and reaction between the lithium composite oxide and the nitride hardly occurs, cycle characteristics are improved.

高熱伝導化合物の重量は、リチウム複合酸化物に対して0.05〜10重量%であることが好ましい。高熱伝導化合物の重量が0.05重量%より大きい場合、充電の際に発生する熱を更に効率的に逃がすことが出来る為、サイクル特性が向上する。また、10重量%以下であれば、エネルギー密度の低下を防ぐことが出来る。   The weight of the high thermal conductive compound is preferably 0.05 to 10% by weight with respect to the lithium composite oxide. When the weight of the high thermal conductive compound is larger than 0.05% by weight, the heat generated during charging can be released more efficiently, so that the cycle characteristics are improved. Moreover, if it is 10 weight% or less, the fall of an energy density can be prevented.

更に、高熱伝導化合物の重量は、0.1〜5重量%であることがより好ましい。高熱伝導化合物の重量が0.1〜5重量%である場合、上述した効果をより高めることが出来る。   Further, the weight of the high thermal conductive compound is more preferably 0.1 to 5% by weight. When the weight of the high thermal conductive compound is 0.1 to 5% by weight, the above-described effect can be further enhanced.

<第一実施形態>
上述してきた通り、本実施形態に係る正極活物質は、特定のリチウム複合酸化物と、高熱伝導化合物と、グラフェンまたは多層グラフェンのうちいずれか1種以上から構成される。その形態は、特に限定されないが、上記リチウム複合酸化物と上記高熱伝導化合物が正極活物質層24内で混合されていればよい。また、この時の混合状態は正極活物質層24内で均一に分散されていてもよいし、上記リチウム複合酸化物と上記高熱伝導化合物とが互いに凝集し2次粒子を形成してもよい。
<First embodiment>
As described above, the positive electrode active material according to the present embodiment is composed of any one or more of a specific lithium composite oxide, a high thermal conductive compound, and graphene or multilayer graphene. Although the form is not particularly limited, it is sufficient that the lithium composite oxide and the high thermal conductive compound are mixed in the positive electrode active material layer 24. Further, the mixed state at this time may be uniformly dispersed in the positive electrode active material layer 24, or the lithium composite oxide and the high thermal conductive compound may aggregate to form secondary particles.

<第二実施形態>
本実施形態に係る正極活物質について図2を参照して説明する。サイクル特性を向上させる目的で、リチウム複合酸化物110は被覆層120により被覆され、被覆層120は高熱伝導化合物、またはグラフェンまたは多層グラフェンのうちいずれか1種以上を含むことが好ましい。言うまでもないが、リチウム複合酸化物110は被覆層120によって完全に覆われていなくても良く、リチウム複合酸化物が、高熱伝導化合物またはグラフェンや、多層グラフェンを含む被覆層により少なくとも一部が被覆されることにより、発熱源からの熱を効率的に伝導して逃がすことが出来る。具体的には、例えば上記高熱伝導化合物またはグラフェン、多層グラフェンの被覆率が50%以上であることが好ましい。なお、被覆率は、図2に示すような正極活物質の断面から上記リチウム複合酸化物の表面が上記高熱伝導化合物でどの程度覆われているかを100分率で計算し、例えば50個の正極活物質の平均値を取ればよい。特に、高熱伝導化合物を含む被覆層120がリチウム複合酸化物の少なくとも一部を被覆することがより好ましく、発熱源からの熱をより効率的に伝導して逃がすことが出来、発熱を抑制する為劣化を防ぎ、サイクル特性が向上する。
<Second embodiment>
The positive electrode active material according to the present embodiment will be described with reference to FIG. For the purpose of improving the cycle characteristics, the lithium composite oxide 110 is preferably covered with a coating layer 120, and the coating layer 120 preferably contains any one or more of a high thermal conductivity compound, graphene, and multilayer graphene. Needless to say, the lithium composite oxide 110 may not be completely covered with the coating layer 120, and the lithium composite oxide is at least partially covered with a coating layer containing a high thermal conductive compound or graphene or multilayer graphene. Thus, heat from the heat source can be efficiently conducted and released. Specifically, for example, the coverage of the high thermal conductive compound, graphene, or multilayer graphene is preferably 50% or more. Note that the coverage ratio is calculated by calculating the percentage of the surface of the lithium composite oxide covered with the high thermal conductive compound from the cross section of the positive electrode active material as shown in FIG. What is necessary is just to take the average value of an active material. In particular, it is more preferable that the coating layer 120 containing a high thermal conductive compound covers at least a part of the lithium composite oxide, so that heat from the heat source can be more efficiently conducted and released, and heat generation can be suppressed. Deterioration is prevented and cycle characteristics are improved.

<第三実施形態>
本実施形態に係る正極活物質について図3を参照して説明する。被覆層140における被覆層120は高熱伝導化合物を含み、さらに被覆層上にはその一部をグラフェンまたは多層グラフェンを含む被覆層130が被覆していることがより好ましい。被覆層120がリチウム複合酸化物により強固に密着し、さらに被覆層130に含まれるグラフェンまたは多層グラフェンのもつ熱伝導率の異方性の影響を緩和出来る為、リチウム複合酸化物からの発熱をより速やかに伝導して逃がすことが出来、発熱を抑制する為劣化を防ぎ、サイクル特性が向上する。
<Third embodiment>
The positive electrode active material according to the present embodiment will be described with reference to FIG. More preferably, the coating layer 120 in the coating layer 140 includes a high thermal conductive compound, and a coating layer 130 including graphene or multilayer graphene is partially coated on the coating layer. Since the coating layer 120 is firmly adhered to the lithium composite oxide, and furthermore, the influence of the thermal conductivity anisotropy of the graphene or multilayer graphene contained in the coating layer 130 can be mitigated, the heat generation from the lithium composite oxide is further increased. It can conduct quickly and escape, and it suppresses heat generation to prevent deterioration and improve cycle characteristics.

このような形態をとるとき、高熱伝導化合物の平均膜厚は30〜300nmであり、グラフェンまたは多層グラフェンの膜厚は50〜500nmであることが好ましい。高熱伝導化合物の平均膜厚が30nm以上であれば、熱伝導のネットワークパスを形成しやすくなり、効率的に熱を逃がすことが出来る為、サイクル特性が向上する。また、300nm以下であれば、イオン伝導率の低下を防ぐことが出来る為、レート特性の低下を防ぐことが出来る。グラフェンまたは多層グラフェンの膜厚が50nm以上であれば、熱伝導のネットワークパスを形成しやすくなり、効率的に熱を逃がすことが出来る為、サイクル特性が向上する。また、500nm以下であれば、イオン伝導率の低下を防ぐことが出来る為、レート特性の低下を防ぐことが出来る。   When taking such a form, it is preferable that the average film thickness of a high thermal conductive compound is 30-300 nm, and the film thickness of a graphene or multilayer graphene is 50-500 nm. If the average film thickness of the high thermal conductive compound is 30 nm or more, it becomes easy to form a thermal conduction network path, and heat can be efficiently released, so that cycle characteristics are improved. Moreover, if it is 300 nm or less, since the fall of ion conductivity can be prevented, the fall of a rate characteristic can be prevented. If the film thickness of graphene or multilayer graphene is 50 nm or more, it becomes easy to form a network path for heat conduction, and heat can be efficiently released, so that cycle characteristics are improved. Moreover, if it is 500 nm or less, since the fall of ion conductivity can be prevented, the fall of a rate characteristic can be prevented.

また、高熱伝導化合物の平均膜厚をAとし、グラフェンまたは多層グラフェンの膜厚をBとすると、膜厚の比であるA/Bの比率は、0.1≦A/B≦1.2であることが好ましい。   When the average film thickness of the high thermal conductive compound is A and the film thickness of graphene or multilayer graphene is B, the ratio of A / B, which is the ratio of the film thickness, is 0.1 ≦ A / B ≦ 1.2. Preferably there is.

上述した通り、第一から第三までの形態を説明してきたが、含有する高熱伝導化合物の平均一次粒子径は10〜500nmであることが好ましい。高熱伝導化合物の平均一次粒子径が10nm以上であれば、熱伝導のネットワークパスを形成しやすくなり、効率的に熱を逃がすことが出来る。また、500nm以下であれば、粒子間の接触点を多くすることが出来る為、効率的に熱を逃がし、サイクル特性が向上する。なお、この時の平均一次粒子径は、正極活物質層の断面から走査型電子顕微鏡(SEM)にて、例えば50個サンプリングした粒子の平均値を計算すればよい。   As above-mentioned, although the form from the 1st to the 3rd was demonstrated, it is preferable that the average primary particle diameter of the high heat conductive compound to contain is 10-500 nm. If the average primary particle diameter of the high heat conductive compound is 10 nm or more, it becomes easy to form a heat conduction network path, and heat can be efficiently released. Moreover, if it is 500 nm or less, since the contact point between particle | grains can be increased, a heat | fever is efficiently released and cycling characteristics improve. In addition, what is necessary is just to calculate the average value of the average primary particle diameter at this time, for example, the particle | grains which sampled 50 pieces with the scanning electron microscope (SEM) from the cross section of the positive electrode active material layer.

本実施形態に係る正極活物質に含まれるリチウム複合酸化物の種類、及び高熱伝導化合物の種類は、X線回折、X線光電子分光、エネルギー分散型X線分光法の分析などによって同定できる。またその混合比率は誘導結合プラズマ発光分光分析などによって同定できる。その中でもX線回折が好ましい。   The type of the lithium composite oxide and the type of the high thermal conductive compound contained in the positive electrode active material according to the present embodiment can be identified by analysis of X-ray diffraction, X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy, and the like. The mixing ratio can be identified by inductively coupled plasma emission spectroscopy. Among these, X-ray diffraction is preferable.

本実施形態に係るリチウム複合酸化物粒子表面の高熱伝導化合物の被覆の状態等を観察するには、正極を切断し、断面をクロスセクションポリッシャやイオンミリング装置などで研磨した面を、走査型電子顕微鏡、透過型電子顕微鏡などを用いることで観察・測定できる。 In order to observe the coating state of the high thermal conductive compound on the surface of the lithium composite oxide particles according to the present embodiment, the surface of the positive electrode cut and the cross section polished by a cross section polisher or an ion milling device is used as a scanning electron. Observation and measurement can be performed using a microscope, a transmission electron microscope, or the like.

(正極集電体)
正極集電体22は、導電性の板材であればよく、例えば、アルミニウム、銅、ニッケル箔の金属薄板を用いることができる。
(Positive electrode current collector)
The positive electrode current collector 22 may be a conductive plate material, and for example, a thin metal plate of aluminum, copper, or nickel foil can be used.

(正極バインダー)
バインダーは、活物質同士を結合すると共に、活物質と集電体22とを結合している。バインダーは、上述の結合が可能なものであればよく、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン−テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン−クロロトリフルオロエチレン共重合体(ECTFE)、ポリフッ化ビニル(PVF)等のフッ素樹脂が挙げられる。
(Positive electrode binder)
The binder binds the active materials to each other and binds the active material to the current collector 22. The binder is not particularly limited as long as the above-described bonding is possible. For example, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene- Perfluoroalkyl vinyl ether copolymer (PFA), ethylene-tetrafluoroethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), ethylene-chlorotrifluoroethylene copolymer (ECTFE), polyvinyl fluoride (PVF) ) And the like.

また、上記の他に、バインダーとして、例えば、ビニリデンフルオライド−ヘキサフルオロプロピレン系フッ素ゴム(VDF−HFP系フッ素ゴム)、ビニリデンフルオライド−ヘキサフルオロプロピレン−テトラフルオロエチレン系フッ素ゴム(VDF−HFPTFE系フッ素ゴム)、ビニリデンフルオライド−ペンタフルオロプロピレン系フッ素ゴム(VDF−PFP系フッ素ゴム)、ビニリデンフルオライド−ペンタフルオロプロピレン−テトラフルオロエチレン系フッ素ゴム(VDF−PFP−TFE系フッ素ゴム)、ビニリデンフルオライド−パーフルオロメチルビニルエーテル−テトラフルオロエチレン系フッ素ゴム(VDF−PFMVE−TFE系フッ素ゴム)、ビニリデンフルオライド−クロロトリフルオロエチレン系フッ素ゴム(VDF−CTFE系フッ素ゴム)等のビニリデンフルオライド系フッ素ゴムを用いてもよい。   In addition to the above, as the binder, for example, vinylidene fluoride-hexafluoropropylene-based fluororubber (VDF-HFP-based fluororubber), vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene-based fluororubber (VDF-HFPPTFE-based) Fluororubber), vinylidene fluoride-pentafluoropropylene-based fluororubber (VDF-PFP-based fluororubber), vinylidene fluoride-pentafluoropropylene-tetrafluoroethylene-based fluororubber (VDF-PFP-TFE-based fluororubber), vinylidene fluoride Ride-perfluoromethyl vinyl ether-tetrafluoroethylene fluoro rubber (VDF-PFMVE-TFE fluoro rubber), vinylidene fluoride-chlorotrifluoroethylene fluoro rubber It may be used vinylidene fluoride-based fluorine rubbers such as rubber (VDF-CTFE-based fluorine rubber).

また、バインダーとして電子伝導性の導電性高分子やイオン伝導性の導電性高分子を用いてもよい。電子伝導性の導電性高分子としては、例えば、ポリアセチレン等が挙げられる。この場合は、バインダーが導電材の機能も発揮するので導電材を添加しなくてもよい。イオン伝導性の導電性高分子としては、例えば、ポリエチレンオキシド、ポリプロピレンオキシド等の高分子化合物にリチウム塩又はリチウムを主体とするアルカリ金属塩と、を複合化させたもの等が挙げられる。   Alternatively, an electron conductive conductive polymer or an ion conductive conductive polymer may be used as the binder. Examples of the electron conductive conductive polymer include polyacetylene. In this case, since the binder also functions as a conductive material, it is not necessary to add a conductive material. Examples of the ion conductive conductive polymer include those obtained by combining a polymer compound such as polyethylene oxide and polypropylene oxide with a lithium salt or an alkali metal salt mainly composed of lithium.

(導電材)
導電材としては、例えば、カーボンブラック類等のカーボン粉末、カーボンナノチューブ、炭素材料、銅、ニッケル、ステンレス、鉄等の金属微粉、炭素材料及び金属微粉の混合物、ITO等の導電性酸化物が挙げられる。
(Conductive material)
Examples of the conductive material include carbon powder such as carbon black, carbon nanotube, carbon material, fine metal powder such as copper, nickel, stainless steel and iron, a mixture of carbon material and fine metal powder, and conductive oxide such as ITO. It is done.

(負極活物質層)
本実施形態に係る負極活物質層は、負極活物質と負極バインダーと導電材から構成されている。
(Negative electrode active material layer)
The negative electrode active material layer according to this embodiment includes a negative electrode active material, a negative electrode binder, and a conductive material.

(負極活物質)
負極活物質はリチウムイオンを吸蔵・放出可能な化合物であればよく、公知のリチウムイオン電池用の負極活物質を使用できる。負極活物質としては、例えば、リチウムイオンを吸蔵・放出可能な黒鉛(天然黒鉛、人造黒鉛)、カーボンナノチューブ、難黒鉛化炭素、易黒鉛化炭素、低温度焼成炭素等の炭素材料、アルミニウム、シリコン、スズ等のリチウムと化合することのできる金属、二酸化シリコン、二酸化スズ等の酸化物を主体とする非晶質の化合物、チタン酸リチウム(LiTi12)等を含む粒子が挙げられる。単位重量あたりの容量の高く、比較的安定な黒鉛を用いることが好ましい。
(Negative electrode active material)
The negative electrode active material should just be a compound which can occlude / release lithium ion, and can use the well-known negative electrode active material for lithium ion batteries. Examples of the negative electrode active material include carbon materials that can occlude and release lithium ions (natural graphite, artificial graphite), carbon nanotubes, non-graphitizable carbon, graphitizable carbon, low-temperature calcined carbon, and the like, aluminum, silicon And particles containing a metal that can be combined with lithium such as tin, an amorphous compound mainly composed of an oxide such as silicon dioxide and tin dioxide, and lithium titanate (Li 4 Ti 5 O 12 ). . It is preferable to use graphite having a high capacity per unit weight and relatively stable.

(負極集電体)
負極集電体32は、導電性の板材であればよく、例えば、アルミニウム、銅、ニッケル箔の金属薄板を用いることができる。
(Negative electrode current collector)
The negative electrode current collector 32 may be a conductive plate material, and for example, a thin metal plate of aluminum, copper, or nickel foil can be used.

(負極導電材)
導電材としては、例えば、カーボンブラック類等のカーボン粉末、カーボンナノチューブ、炭素材料、銅、ニッケル、ステンレス、鉄等の金属微粉、炭素材料及び金属微粉の混合物、ITO等の導電性酸化物が挙げられる。
(Negative electrode conductive material)
Examples of the conductive material include carbon powder such as carbon black, carbon nanotube, carbon material, fine metal powder such as copper, nickel, stainless steel and iron, a mixture of carbon material and fine metal powder, and conductive oxide such as ITO. It is done.

(負極バインダー)
負極に用いるバインダーは正極と同様のものを使用できる。
(Negative electrode binder)
The binder used for a negative electrode can use the same thing as a positive electrode.

(負極導電材)
同様に負極に用いる導電材も正極と同様のものを使用できる。
(Negative electrode conductive material)
Similarly, the same conductive material as that for the positive electrode can be used for the negative electrode.

(セパレータ)
セパレータ10は、電気絶縁性の多孔質構造から形成されていればよく、例えば、ポリエチレン、ポリプロピレン又はポリオレフィンからなるフィルムの単層体、積層体や上記樹脂の混合物の延伸膜、或いはセルロース、ポリエステル及びポリプロピレンからなる群より選択される少なくとも1種の構成材料からなる繊維不織布が挙げられる。
(Separator)
The separator 10 only needs to be formed of an electrically insulating porous structure, for example, a single layer of a film made of polyethylene, polypropylene, or polyolefin, a stretched film of a laminate or a mixture of the above resins, or cellulose, polyester, and Examples thereof include a fiber nonwoven fabric made of at least one constituent material selected from the group consisting of polypropylene.

(非水電解液)
非水電解液は、非水溶媒に電解質が溶解されており、非水溶媒として環状カーボネートと、鎖状カーボネートと、を含有してもよい。
(Nonaqueous electrolyte)
The nonaqueous electrolytic solution has an electrolyte dissolved in a nonaqueous solvent, and may contain a cyclic carbonate and a chain carbonate as a nonaqueous solvent.

環状カーボネートとしては、電解質を溶媒和することができるものであれば特に限定されず、公知の環状カーボネートを使用できる。例えば、エチレンカーボネート、プロピレンカーボネート及びブチレンカーボネートなどを用いることができる。   The cyclic carbonate is not particularly limited as long as it can solvate the electrolyte, and a known cyclic carbonate can be used. For example, ethylene carbonate, propylene carbonate, butylene carbonate, and the like can be used.

鎖状カーボネートとしては、環状カーボネートの粘性を低下させることができるものであれば特に限定されず、公知の鎖状カーボネートを使用できる。例えば、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネートが挙げられる。その他、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、γ−ブチロラクトン、1,2−ジメトキシエタン、1,2−ジエトキシエタンなどを混合して使用してもよい。   The chain carbonate is not particularly limited as long as the viscosity of the cyclic carbonate can be reduced, and a known chain carbonate can be used. Examples thereof include diethyl carbonate, dimethyl carbonate, and ethyl methyl carbonate. In addition, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, γ-butyrolactone, 1,2-dimethoxyethane, 1,2-diethoxyethane, and the like may be mixed and used.

非水溶媒中の環状カーボネートと鎖状カーボネートの割合は体積にして1:9〜1:1にすることが好ましい。   The ratio of the cyclic carbonate and the chain carbonate in the non-aqueous solvent is preferably 1: 9 to 1: 1 by volume.

電解質としては、例えば、LiPF、LiClO、LiBF、LiCFSO、LiCF、CFSO、LiC(CFSO、LiN(CFSO、LiN(CFCFSO、LiN(CFSO)(CSO)、LiN(CFCFCO)、LiBOB等のリチウム塩が使用できる。なお、これらのリチウム塩は1種を単独で使用してもよく、2種以上を併用してもよい。特に、導電性の観点から、LiPFを含むことが好ましい。 Examples of the electrolyte include LiPF 6 , LiClO 4 , LiBF 4 , LiCF 3 SO 3 , LiCF 3 , CF 2 SO 3 , LiC (CF 3 SO 2 ) 3 , LiN (CF 3 SO 2 ) 2 , LiN (CF 3 Lithium salts such as CF 2 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiN (CF 3 CF 2 CO) 2 , LiBOB can be used. In addition, these lithium salts may be used individually by 1 type, and may use 2 or more types together. In particular, LiPF 6 is preferably included from the viewpoint of conductivity.

LiPFを非水溶媒に溶解する際は、非水電解液中の電解質の濃度を、0.5〜2.0mol/Lに調整することが好ましい。電解質の濃度が0.5mol/L以上であると、非水電解液の導電性を充分に確保することができ、充放電時に十分な容量が得られやすい。また、電解質の濃度が2.0mol/L以内に抑えることで、非水電解液の粘度上昇を抑え、リチウムイオンの移動度を充分に確保することができ、充放電時に十分な容量が得られやすくなる。 When LiPF 6 is dissolved in a non-aqueous solvent, the concentration of the electrolyte in the non-aqueous electrolyte is preferably adjusted to 0.5 to 2.0 mol / L. When the concentration of the electrolyte is 0.5 mol / L or more, the conductivity of the nonaqueous electrolytic solution can be sufficiently secured, and a sufficient capacity can be easily obtained during charging and discharging. Moreover, by suppressing the electrolyte concentration to within 2.0 mol / L, it is possible to suppress an increase in the viscosity of the non-aqueous electrolyte, to sufficiently secure the mobility of lithium ions, and to obtain a sufficient capacity during charging and discharging. It becomes easy.

LiPFをその他の電解質と混合する場合にも、非水電解液中のリチウムイオン濃度が0.5〜2.0mol/Lに調整することが好ましく、LiPFからのリチウムイオン濃度がその50mol%以上含まれることがさらに好ましい。 Even when LiPF 6 is mixed with another electrolyte, the lithium ion concentration in the non-aqueous electrolyte is preferably adjusted to 0.5 to 2.0 mol / L, and the lithium ion concentration from LiPF 6 is 50 mol%. More preferably, it is contained.

(正極活物質の製造方法)
本実施形態に係る正極活物質は、以下の混合工程、被覆工程により製造することができる。
(Method for producing positive electrode active material)
The positive electrode active material according to this embodiment can be manufactured by the following mixing process and coating process.

(混合工程)
混合工程では、リチウム複合酸化物と高熱伝導化合物とグラフェンまたは多層グラフェンを混合することにより正極活物質を得ることができる。混合の方法としては、特に限定されないが、タービュラーミキサーやヘンシェルミキサーなど既存の装置を用いて行うことができる。
(Mixing process)
In the mixing step, a positive electrode active material can be obtained by mixing lithium composite oxide, a high thermal conductive compound, and graphene or multilayer graphene. The mixing method is not particularly limited, and can be performed using an existing apparatus such as a Turbuler mixer or a Henschel mixer.

(被覆工程)
被覆工程では、リチウム複合酸化物の表面に高熱伝導化合物およびグラフェンまたは多層グラフェンを被覆し、被覆層を形成することができる。被覆層を形成する方法として、特に限定されないが、摩擦や圧縮といった機械エネルギーを利用したメカノケミカル法、粒子に被覆液を吹きかけるスプレードライ法など、粒子表面に被覆層を形成する既存の方法を用いることができる。中でも、メカノケミカル法は均一で密着性の良い被覆層を形成できるため好ましい。
(Coating process)
In the coating step, the surface of the lithium composite oxide can be coated with a high thermal conductive compound and graphene or multilayer graphene to form a coating layer. The method for forming the coating layer is not particularly limited, but an existing method for forming the coating layer on the particle surface, such as a mechanochemical method using mechanical energy such as friction or compression, or a spray drying method in which a coating liquid is sprayed on the particle is used. be able to. Among these, the mechanochemical method is preferable because it can form a coating layer that is uniform and has good adhesion.

(電極20,30の製造方法)
次に、本実施形態に係る電極20,30の製造方法について説明する。
(Method for manufacturing electrodes 20 and 30)
Next, a method for manufacturing the electrodes 20 and 30 according to the present embodiment will be described.

上記活物質、バインダー及び溶媒を混合する。必要に応じ導電材を更に加えても良い。溶媒としては例えば、水、N−メチル−2−ピロリドン等を用いることができる。塗料を構成する成分の混合方法は特に制限されず、混合順序もまた特に制限されない。上記塗料を、集電体22、32に塗布する。塗布方法としては、特に制限はなく、通常電極を作製する場合に採用される方法を用いることができる。例えば、スリットダイコート法、ドクターブレード法が挙げられる。   The active material, binder and solvent are mixed. A conductive material may be further added as necessary. As the solvent, for example, water, N-methyl-2-pyrrolidone or the like can be used. The mixing method of the components constituting the paint is not particularly limited, and the mixing order is not particularly limited. The paint is applied to the current collectors 22 and 32. There is no restriction | limiting in particular as an application | coating method, The method employ | adopted when producing an electrode normally can be used. Examples thereof include a slit die coating method and a doctor blade method.

続いて、集電体22、32上に塗布された塗料中の溶媒を除去する。除去法は特に限定されず、塗料が塗布された集電体22、32を、例えば80℃〜150℃の雰囲気下で乾燥させればよい。   Subsequently, the solvent in the paint applied on the current collectors 22 and 32 is removed. The removal method is not particularly limited, and the current collectors 22 and 32 to which the paint is applied may be dried, for example, in an atmosphere of 80 ° C. to 150 ° C.

そして、このようにして正極活物質層24、負極活物質層34が形成された電極を必要に応じ、ロールプレス装置等によりプレス処理を行う。ロールプレスの線圧は例えば、100〜2500kgf/cmとすることができる。   Then, the electrode on which the positive electrode active material layer 24 and the negative electrode active material layer 34 are formed in this way is subjected to a press treatment by a roll press device or the like as necessary. The linear pressure of the roll press can be, for example, 100 to 2500 kgf / cm.

以上の工程を経て、集電体22、32上に電極活物質層24,34が形成された電極が得られる。   Through the above steps, an electrode in which the electrode active material layers 24 and 34 are formed on the current collectors 22 and 32 is obtained.

(リチウムイオン二次電池の製造方法)
続いて、本実施形態に係るリチウムイオン二次電池の製造方法について説明する。本実施形態に係るリチウムイオン二次電池の製造方法は、上述した活物質を含む正極20と、負極30と、正極と負極との間に介在するセパレータ10と、リチウム塩を含む非水電解液と、を外装体50内に封入する工程を備える。
(Method for producing lithium ion secondary battery)
Then, the manufacturing method of the lithium ion secondary battery which concerns on this embodiment is demonstrated. The method for manufacturing a lithium ion secondary battery according to the present embodiment includes a positive electrode 20 including the active material, a negative electrode 30, a separator 10 interposed between the positive electrode and the negative electrode, and a nonaqueous electrolytic solution including a lithium salt. And a step of enclosing the outer body 50 in the exterior body 50.

例えば、上述した活物質を含む正極20と、上記負極30と、上記セパレータ10とを積層し、正極20及び負極30を、積層方向に対して垂直な方向から、プレス器具で加熱加圧し、正極20、セパレータ10、及び負極30を密着させる。そして、例えば、予め作製した袋状の外装体50に、上記積層体40を入れ、上記リチウム塩を含む非水電解液を注入することにより、リチウムイオン二次電池を作製することができる。なお、外装体に上記リチウム塩を含む非水電解液を注入するのではなく、積層体40を予め上記リチウム塩を含む非水電解液に含浸させてもよい。   For example, the positive electrode 20 including the active material described above, the negative electrode 30 and the separator 10 are stacked, and the positive electrode 20 and the negative electrode 30 are heated and pressed with a press tool from a direction perpendicular to the stacking direction. 20, the separator 10 and the negative electrode 30 are brought into close contact with each other. Then, for example, a lithium ion secondary battery can be manufactured by putting the laminate 40 into a bag-shaped exterior body 50 prepared in advance and injecting a non-aqueous electrolyte containing the lithium salt. Instead of injecting the non-aqueous electrolyte containing the lithium salt into the outer package, the laminate 40 may be impregnated with the non-aqueous electrolyte containing the lithium salt in advance.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and exhibits the same function and effect. Are included in the technical scope.

(実施例1)
(正極の作製)
リチウム複合酸化物としてLi1.0Ni0.83Co0.14Al0.032.0(以下NCAと記す)と、平均粒子径50nmのAlN(イオリテック社製)とを100:0.1質量比率で秤量し、メカノケミカル法によりNCA表面にAlNを被覆した。AlNを被覆したNCAと、平均厚さ8nmのグラフェンとを100.1:2質量比率で秤量し、メカノケミカル法によりグラフェンを被覆し、正極活物質を得た。得られた活物質とバインダーであるポリフッ化ビニリデン(PVDF)とアセチレンブラックを混合したものを、溶媒であるN−メチル−2−ピロリドン(NMP)中に分散させてスラリーを調製した。なお、スラリーにおいて正極活物質とアセチレンブラックとPVDFとの重量比が93:3:4となるように、スラリーを調製した。このスラリーを集電体である厚さ20μmのアルミニウム箔上に塗布し、乾燥させた後、線圧1000kgf/cmで圧延を行い、実施例1の正極を得た。
Example 1
(Preparation of positive electrode)
Li 1.0 Ni 0.83 Co 0.14 Al 0.03 O 2.0 (hereinafter referred to as NCA) as a lithium composite oxide and AlN (manufactured by Iritech Co., Ltd.) having an average particle diameter of 50 nm are 100: 0. 1. Weighed at a mass ratio of 1 and coated AlN on the NCA surface by a mechanochemical method. NCA coated with AlN and graphene having an average thickness of 8 nm were weighed at a mass ratio of 100.1: 2 and coated with graphene by a mechanochemical method to obtain a positive electrode active material. A slurry was prepared by dispersing a mixture of the obtained active material, polyvinylidene fluoride (PVDF), which is a binder, and acetylene black, in N-methyl-2-pyrrolidone (NMP), which is a solvent. The slurry was prepared so that the weight ratio of the positive electrode active material, acetylene black, and PVDF was 93: 3: 4 in the slurry. This slurry was applied onto a 20 μm thick aluminum foil as a current collector, dried, and then rolled at a linear pressure of 1000 kgf / cm to obtain a positive electrode of Example 1.

(正極内部の高熱伝導化合物の測定)
リチウム複合酸化物粒子表面のAlNおよびグラフェンによる被覆の状態の観察は、透過型電子顕微鏡(TEM)、走査型電子顕微鏡(SEM)、エネルギー分散型X線分光法(EDX)、クロスセクションポリッシャ、イオンミリング装置を用いて観察した。測定用の試料は、正極を切断し、切断面をクロスセクションポリッシャおよびイオンミリング装置で研磨することで作製した。
(Measurement of high thermal conductivity compounds inside the positive electrode)
Observation of the coating state of AlN and graphene on the surface of the lithium composite oxide particles is performed by transmission electron microscope (TEM), scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), cross section polisher, ion Observation was performed using a milling device. A sample for measurement was prepared by cutting the positive electrode and polishing the cut surface with a cross section polisher and an ion milling device.

SEM、EDXおよびTEMによる正極表面および正極断面の観察により、リチウム複合酸化物粒子表面に均一なAlNの被覆がされており、AlNの被覆層の表面に均一なグラフェンが被覆されていることを確認した。   Observation of the positive electrode surface and positive electrode cross section by SEM, EDX, and TEM confirmed that the surface of the lithium composite oxide particles was uniformly coated with AlN and that the surface of the AlN coating layer was coated with uniform graphene. did.

(負極の作製)
負極活物質として天然黒鉛粉末90重量%と、PVDF10重量%をNMP中に分散させてスラリーを調製した。得られたスラリーを厚さ15μmの銅箔上に塗工し、温度140℃で30分間減圧乾燥した後に、ロールプレス装置を用いてプレス処理することにより、負極を得た。
(Preparation of negative electrode)
As a negative electrode active material, 90 wt% of natural graphite powder and 10 wt% of PVDF were dispersed in NMP to prepare a slurry. The obtained slurry was coated on a copper foil having a thickness of 15 μm, dried under reduced pressure at a temperature of 140 ° C. for 30 minutes, and then pressed using a roll press apparatus to obtain a negative electrode.

(非水電解液)
エチレンカーボネート(EC)とジエチルカーボネート(DEC)の混合溶媒に、LiPFを1.0mol/Lとなるように溶解させた非水電解液を用意した。混合溶媒におけるECとDECとの体積比は、EC:DEC=30:70とした。
(Nonaqueous electrolyte)
A nonaqueous electrolytic solution in which LiPF 6 was dissolved at 1.0 mol / L in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) was prepared. The volume ratio of EC to DEC in the mixed solvent was EC: DEC = 30: 70.

(セパレータ)
膜厚16μmのポリエチレン微多孔膜(空孔率:40%、シャットダウン温度:134℃)を用意した。
(Separator)
A polyethylene microporous membrane having a thickness of 16 μm (porosity: 40%, shutdown temperature: 134 ° C.) was prepared.

(電池の作製)
上記正極、負極、及びセパレータを積層させて発電要素を構成し、これと上記非水電解液とを用いて、実施例1の電池セルを作製した。
(Production of battery)
The positive electrode, the negative electrode, and the separator were laminated to constitute a power generation element, and a battery cell of Example 1 was produced using this and the non-aqueous electrolyte.

(Cレート)
電池セルの容量を、25℃の環境下において1時間で定電流放電する電流密度を1Cと呼び、以下では充電もしくは放電時の電流密度をCレートの定数倍を用いて表す(例えば1Cの10分の1の電流密度は0.1Cと表す。)。
(C rate)
The current density at which the battery cell capacity is discharged at a constant current in one hour in an environment of 25 ° C. is called 1C. Hereinafter, the current density during charging or discharging is expressed using a constant multiple of the C rate (for example, 10C of 1C). (Partial current density is expressed as 0.1 C).

(放電容量の測定)
作製した実施例1の電池セルを用いて、0.1Cの電流密度で電圧が4.2V(vs.Li/Li)に到達するまで定電流充電を行い、さらに電流密度が0.05Cに低下するまで4.2V(vs.Li/Li)において定電圧充電を行い、充電容量を測定した。その結果を0.1C放電容量として表1に示す。
(Measurement of discharge capacity)
Using the produced battery cell of Example 1, constant current charging was performed until the voltage reached 4.2 V (vs. Li / Li + ) at a current density of 0.1 C, and the current density was further increased to 0.05 C. Constant voltage charging was performed at 4.2 V (vs. Li / Li + ) until the voltage decreased, and the charge capacity was measured. The results are shown in Table 1 as 0.1 C discharge capacity.

続いて、5分間の休止後に0.1Cの電流密度で電圧が2.5V(vs.Li/Li)となるまで定電流放電を行い、放電容量を測定した。なお、電流密度は1Cを正極活物質量に対して、186mAh/gとして計算し、放電容量は大きいほど好ましい。 Subsequently, after resting for 5 minutes, constant current discharge was performed at a current density of 0.1 C until the voltage reached 2.5 V (vs. Li / Li + ), and the discharge capacity was measured. The current density is calculated with 1C as 186 mAh / g with respect to the positive electrode active material amount, and the larger the discharge capacity, the better.

(サイクル特性の測定)
レート測定後の電池セルを用いて、上記充放電の手順により0.5C充電/1C放電を500サイクル繰り返した。また充放電は45℃の恒温槽の中で行った。初回の放電容量を100%とし、500サイクル後の放電容量の値を容量維持率とした。なお、容量維持率は大きいほど好ましい。結果を500サイクル後容量維持率として表1に示す。
(Measurement of cycle characteristics)
Using the battery cell after rate measurement, 0.5C charge / 1C discharge was repeated 500 cycles according to the charge / discharge procedure. Moreover, charging / discharging was performed in a 45 degreeC thermostat. The initial discharge capacity was 100%, and the discharge capacity value after 500 cycles was the capacity retention rate. The larger the capacity maintenance rate, the better. The results are shown in Table 1 as the capacity retention after 500 cycles.

(実施例2)
正極の作製において、リチウム複合酸化物とAlNの質量比率を100:0.03としたこと以外は、実施例1と同様にして実施例2の電池を作製し、評価を行った。
(Example 2)
In the production of the positive electrode, the battery of Example 2 was produced and evaluated in the same manner as in Example 1 except that the mass ratio of the lithium composite oxide and AlN was 100: 0.03.

(実施例3)
正極の作製において、リチウム複合酸化物とAlNの質量比率を100:0.05したこと以外は、実施例1と同様にして実施例3の電池を作製し、評価を行った。
(Example 3)
In the production of the positive electrode, a battery of Example 3 was produced and evaluated in the same manner as in Example 1 except that the mass ratio of the lithium composite oxide and AlN was 100: 0.05.

(実施例4)
正極の作製において、リチウム複合酸化物とAlNの質量比率を100:1としたこと以外は、実施例1と同様にして実施例4の電池を作製し、評価を行った。
Example 4
In the production of the positive electrode, the battery of Example 4 was produced and evaluated in the same manner as in Example 1 except that the mass ratio of the lithium composite oxide and AlN was 100: 1.

(実施例5)
正極の作製において、リチウム複合酸化物とAlNの質量比率を100:5としたこと以外は、実施例1と同様にして実施例5の電池を作製し、評価を行った。
(Example 5)
In the production of the positive electrode, a battery of Example 5 was produced and evaluated in the same manner as in Example 1 except that the mass ratio of the lithium composite oxide and AlN was 100: 5.

(実施例6)
正極の作製において、リチウム複合酸化物とAlNの質量比率を100:10としたこと以外は、実施例1と同様にして実施例6の電池を作製し、評価を行った。
(Example 6)
In the production of the positive electrode, a battery of Example 6 was produced and evaluated in the same manner as in Example 1 except that the mass ratio of the lithium composite oxide and AlN was 100: 10.

(実施例7)
正極の作製において、リチウム複合酸化物とAlNの質量比率を100:11としたこと以外は、実施例1と同様にして実施例7の電池を作製し、評価を行った。
(Example 7)
In the production of the positive electrode, a battery of Example 7 was produced and evaluated in the same manner as in Example 1 except that the mass ratio of the lithium composite oxide and AlN was 100: 11.

(実施例8)
正極の作製において、AlNの代わりにBNを用いたこと以外は、実施例1と同様にして実施例8の電池を作製し、評価を行った。
(Example 8)
In the production of the positive electrode, the battery of Example 8 was produced and evaluated in the same manner as in Example 1 except that BN was used instead of AlN.

(実施例9)
正極の作製において、AlNの代わりにBNを用い、リチウム複合酸化物とBNの重量比率を100:5としたこと以外は、実施例1と同様にして実施例9の電池を作製し、評価を行った。
Example 9
In the production of the positive electrode, a battery of Example 9 was produced and evaluated in the same manner as in Example 1 except that BN was used instead of AlN and the weight ratio of the lithium composite oxide and BN was set to 100: 5. went.

(実施例10)
正極の作製において、AlNの代わりにSiを用いたこと以外は、実施例1と同様にして実施例10の電池を作製し、評価を行った。
(Example 10)
In the production of the positive electrode, a battery of Example 10 was produced and evaluated in the same manner as in Example 1 except that Si 3 N 4 was used instead of AlN.

(実施例11)
正極の作製において、AlNの代わりにSiを用い、リチウム複合酸化物とSiの重量比率を100:5としたこと以外は、実施例1と同様にして実施例11の電池を作製し、評価を行った。
(Example 11)
The battery of Example 11 was made in the same manner as in Example 1 except that Si 3 N 4 was used instead of AlN in the production of the positive electrode and the weight ratio of the lithium composite oxide to Si 3 N 4 was set to 100: 5. Were prepared and evaluated.

(実施例12)
正極の作製において、AlNの代わりにTiNを用いたこと以外は、実施例1と同様にして実施例12の電池を作製し、評価を行った。
(Example 12)
In the production of the positive electrode, the battery of Example 12 was produced and evaluated in the same manner as in Example 1 except that TiN was used instead of AlN.

(実施例13)
正極の作製において、AlNの代わりにZrNを用いたこと以外は、実施例1と同様にして実施例13の電池を作製し、評価を行った。
(Example 13)
In the production of the positive electrode, the battery of Example 13 was produced and evaluated in the same manner as in Example 1 except that ZrN was used instead of AlN.

(実施例14)
正極の作製において、AlNの代わりにVNを用いたこと以外は、実施例1と同様にして実施例14の電池を作製し、評価を行った。
(Example 14)
In the production of the positive electrode, a battery of Example 14 was produced and evaluated in the same manner as in Example 1 except that VN was used instead of AlN.

(実施例15)
正極の作製において、AlNの代わりにCrNを用いたこと以外は、実施例1と同様にして実施例15の電池を作製し、評価を行った。
(Example 15)
In the production of the positive electrode, a battery of Example 15 was produced and evaluated in the same manner as in Example 1 except that Cr 2 N was used instead of AlN.

(実施例16)
正極の作製において、AlNの代わりにSiCを用いたこと以外は、実施例1と同様にして実施例16の電池を作製し、評価を行った。
(Example 16)
In the production of the positive electrode, a battery of Example 16 was produced and evaluated in the same manner as in Example 1 except that SiC was used instead of AlN.

(実施例17)
正極の作製において、AlNの代わりにWCを用いたこと以外は、実施例1と同様にして実施例17の電池を作製し、評価を行った。
(Example 17)
In the production of the positive electrode, the battery of Example 17 was produced and evaluated in the same manner as in Example 1 except that WC was used instead of AlN.

(実施例18)
正極の作製において、AlNの代わりにTiCを用いたこと以外は、実施例1と同様にして実施例18の電池を作製し、評価を行った。
(Example 18)
In the production of the positive electrode, a battery of Example 18 was produced and evaluated in the same manner as in Example 1 except that TiC was used instead of AlN.

(実施例19)
正極の作製において、AlNの代わりにTaCを用いたこと以外は、実施例1と同様にして実施例19の電池を作製し、評価を行った。
(Example 19)
In the production of the positive electrode, a battery of Example 19 was produced and evaluated in the same manner as in Example 1 except that TaC was used instead of AlN.

(実施例20)
正極の作製において、AlNの代わりにZrCを用いたこと以外は、実施例1と同様にして実施例20の電池を作製し、評価を行った。
(Example 20)
In the production of the positive electrode, a battery of Example 20 was produced and evaluated in the same manner as in Example 1 except that ZrC was used instead of AlN.

(実施例21)
正極の作製において、AlNの代わりにNbCを用いたこと以外は、実施例1と同様にして実施例21の電池を作製し、評価を行った。
(Example 21)
In the production of the positive electrode, a battery of Example 21 was produced and evaluated in the same manner as in Example 1 except that NbC was used instead of AlN.

(実施例22)
正極の作製において、AlNの代わりにCrを用いたこと以外は、実施例1と同様にして実施例22の電池を作製し、評価を行った。
(Example 22)
In the production of the positive electrode, a battery of Example 22 was produced and evaluated in the same manner as in Example 1 except that Cr 3 C 2 was used instead of AlN.

(実施例23)
正極の作製において、AlNの代わりにMoCを用いたこと以外は、実施例1と同様にして実施例23の電池を作製し、評価を行った。
(Example 23)
In the production of the positive electrode, a battery of Example 23 was produced and evaluated in the same manner as in Example 1 except that Mo 2 C was used instead of AlN.

(実施例24)
正極の作製において、AlNの代わりにTiBを用いたこと以外は、実施例1と同様にして実施例24の電池を作製し、評価を行った。
(Example 24)
In the production of the positive electrode, a battery of Example 24 was produced and evaluated in the same manner as in Example 1 except that TiB 2 was used instead of AlN.

(実施例25)
正極の作製において、AlNの代わりにZrBを用いたこと以外は、実施例1と同様にして実施例25の電池を作製し、評価を行った。
(Example 25)
In the production of the positive electrode, a battery of Example 25 was produced and evaluated in the same manner as in Example 1 except that ZrB 2 was used instead of AlN.

(実施例26)
正極の作製において、AlNの代わりにVBを用いたこと以外は、実施例1と同様にして実施例26の電池を作製し、評価を行った。
(Example 26)
In the production of the positive electrode, a battery of Example 26 was produced and evaluated in the same manner as in Example 1 except that VB 2 was used instead of AlN.

(実施例27)
正極の作製において、AlNの代わりにNbBを用いたこと以外は、実施例1と同様にして実施例27の電池を作製し、評価を行った。
(Example 27)
In the production of the positive electrode, a battery of Example 27 was produced and evaluated in the same manner as in Example 1 except that NbB 2 was used instead of AlN.

(実施例28)
正極の作製において、リチウム複合酸化物とグラフェンの質量比率を100:0.27としたこと以外は、実施例1と同様にして実施例28の電池を作製し、評価を行った。
(Example 28)
In the production of the positive electrode, a battery of Example 28 was produced and evaluated in the same manner as in Example 1 except that the mass ratio of the lithium composite oxide and graphene was 100: 0.27.

(実施例29)
正極の作製において、リチウム複合酸化物とグラフェンの質量比率を100:0.33としたこと以外は、実施例1と同様にして実施例29の電池を作製し、評価を行った。
(Example 29)
In the production of the positive electrode, a battery of Example 29 was produced and evaluated in the same manner as in Example 1 except that the mass ratio of the lithium composite oxide and graphene was 100: 0.33.

(実施例30)
正極の作製において、リチウム複合酸化物とグラフェンの質量比率を100:3.33としたこと以外は、実施例1と同様にして実施例30の電池を作製し、評価を行った。
(Example 30)
In the production of the positive electrode, a battery of Example 30 was produced and evaluated in the same manner as in Example 1 except that the mass ratio of the lithium composite oxide and graphene was 100: 3.33.

(実施例31)
正極の作製において、リチウム複合酸化物とグラフェンの質量比率を100:3.67としたこと以外は、実施例1と同様にして実施例31の電池を作製し、評価を行った。
(Example 31)
In the production of the positive electrode, a battery of Example 31 was produced and evaluated in the same manner as in Example 1 except that the mass ratio of the lithium composite oxide and graphene was 100: 3.67.

(実施例32)
正極の作製において、AlNのリチウム複合酸化物への被覆工程を行わずに、グラフェンの被覆工程を行い、その後タービュラーミキサーを用いてリチウム複合酸化物とAlNを混合したこと以外は、実施例1と同様にして実施例32の電池を作製し、評価を行った。
(Example 32)
In the production of the positive electrode, Example 1 was performed except that the coating process of graphene was performed without performing the coating process of AlN on the lithium composite oxide, and then the lithium composite oxide and AlN were mixed using a turbuler mixer. Similarly, a battery of Example 32 was produced and evaluated.

(実施例33)
正極の作製において、グラフェンのリチウム複合酸化物への被覆工程を行わずに、タービュラーミキサーを用いてリチウム複合酸化物とグラフェンを混合したこと以外は、実施例1と同様にして実施例33の電池を作製し、評価を行った。
(Example 33)
The battery of Example 33 was prepared in the same manner as in Example 1 except that in the production of the positive electrode, the lithium composite oxide and graphene were mixed using a turbulent mixer without performing the coating process of graphene on the lithium composite oxide. Were prepared and evaluated.

(実施例34)
正極の作製において、AlNおよびグラフェンのリチウム複合酸化物への被覆工程を行わずに、タービュラーミキサーを用いてリチウム複合酸化物とAlN及びグラフェンを混合したこと以外は、実施例1と同様にして実施例34の電池を作製し、評価を行った。
(Example 34)
In the production of the positive electrode, the same procedure as in Example 1 was performed except that the lithium composite oxide, AlN, and graphene were mixed using a turbuler mixer without performing the coating step of AlN and graphene on the lithium composite oxide. The battery of Example 34 was produced and evaluated.

(実施例35)
正極の作製において、AlNの代わりにBNを用い、リチウム複合酸化物への被覆工程を行わずに、タービュラーミキサーを用いてリチウム複合酸化物とBNおよびグラフェンを混合したこと以外は、実施例1と同様にして、実施例35の電池を作製し、評価を行った。
(Example 35)
In the production of the positive electrode, Example 1 was used except that BN was used instead of AlN, and the lithium composite oxide was mixed with BN and graphene using a turbuler mixer without performing the coating step on the lithium composite oxide. Similarly, a battery of Example 35 was produced and evaluated.

(実施例36)
正極の作製において、AlNの代わりにSiを用い、リチウム複合酸化物への被覆工程を行わずに、タービュラーミキサーを用いてリチウム複合酸化物とSiおよびグラフェンを混合したこと以外は、実施例1と同様にして、実施例36の電池を作製し、評価を行った。
(Example 36)
In the production of the positive electrode, Si 3 N 4 was used instead of AlN, and the lithium composite oxide, Si 3 N 4 and graphene were mixed using a turbuler mixer without performing the coating step on the lithium composite oxide. In the same manner as in Example 1, the battery of Example 36 was produced and evaluated.

(実施例37)
正極の作製において、平均一次粒子径50nmのAlNの代わりに、平均一次粒子径10nmのAlNを用いたこと以外は、実施例1と同様にして、実施例37の電池を作製し、評価を行った。
(Example 37)
In the production of the positive electrode, a battery of Example 37 was produced and evaluated in the same manner as in Example 1 except that AlN having an average primary particle diameter of 10 nm was used instead of AlN having an average primary particle diameter of 50 nm. It was.

(実施例38)
正極の作製において、平均一次粒子径50nmのAlNの代わりに、平均一次粒子径100nmのAlNを用いたこと以外は、実施例1と同様にして、実施例38の電池を作製し、評価を行った。
(Example 38)
In the production of the positive electrode, a battery of Example 38 was produced and evaluated in the same manner as in Example 1 except that AlN having an average primary particle diameter of 100 nm was used instead of AlN having an average primary particle diameter of 50 nm. It was.

(実施例39)
正極の作製において、平均一次粒子径50nmのAlNの代わりに、平均一次粒子径500nmのAlNを用いたこと以外は、実施例1と同様にして、実施例39の電池を作製し、評価を行った。
(Example 39)
In the production of the positive electrode, a battery of Example 39 was produced and evaluated in the same manner as in Example 1 except that AlN having an average primary particle diameter of 500 nm was used instead of AlN having an average primary particle diameter of 50 nm. It was.

(実施例40)
正極の作製において、Li1.0Ni0.83Co0.14Al0.032.0のリチウム複合酸化物の代わりにLi1.0Ni0.8Co0.1Al0.12.0のリチウム複合酸化物を用いたこと以外は、実施例1と同様にして、実施例40の電池を作製し、評価を行った。
(Example 40)
In the preparation of the positive electrode, Li 1.0 Ni 0.83 Co 0.14 Al Li 1.0 instead of 0.03 lithium composite oxide O 2.0 Ni 0.8 Co 0.1 Al 0.1 O A battery of Example 40 was made and evaluated in the same manner as Example 1 except that 2.0 lithium composite oxide was used.

(実施例41)
正極の作製において、Li1.0Ni0.83Co0.14Al0.032.0のリチウム複合酸化物の代わりにLi1.0Ni0.8Co0.1Mn0.12.0のリチウム複合酸化物を用い、放電容量の測定時に電流密度の1Cを正極活物質量に対して、160mAh/gとして計算したこと以外は、実施例1と同様にして、実施例41の電池を作製し、評価を行った。
(Example 41)
In Fabrication of Positive Electrode, Li 1.0 Ni 0.83 Co 0.14 Al Li 1.0 instead 0.03 lithium composite oxide O 2.0 Ni 0.8 Co 0.1 Mn 0.1 O Example 41 was carried out in the same manner as in Example 1 except that a lithium composite oxide of 2.0 was used and the current density of 1C was calculated as 160 mAh / g with respect to the amount of the positive electrode active material when measuring the discharge capacity. A battery was prepared and evaluated.

(実施例42)
正極の作製において、Li1.0Ni0.83Co0.14Al0.032.0のリチウム複合酸化物の代わりにLi1.0Ni0.5Co0.2Mn0.32.0のリチウム複合酸化物を用い、放電容量の測定時に電流密度の1Cを正極活物質量に対して、160mAh/gとして計算したこと以外は、実施例1と同様にして、実施例42の電池を作製し、評価を行った。
(Example 42)
In the preparation of the positive electrode, Li 1.0 Ni 0.83 Co 0.14 Al Li 1.0 instead of 0.03 lithium composite oxide O 2.0 Ni 0.5 Co 0.2 Mn 0.3 O Example 42 was conducted in the same manner as in Example 1 except that a lithium composite oxide of 2.0 was used and the current density of 1C was calculated as 160 mAh / g with respect to the amount of the positive electrode active material when measuring the discharge capacity. A battery was prepared and evaluated.

(実施例43)
正極の作製において、Li1.0Ni0.83Co0.14Al0.032.0のリチウム複合酸化物の代わりにLi1.0Ni0.34Co0.33Mn0.332.0のリチウム複合酸化物を用い、放電容量の測定時に電流密度の1Cを正極活物質量に対して、160mAh/gとして計算したこと以外は、実施例1と同様にして、実施例43の電池を作製し、評価を行った。
(Example 43)
In the preparation of the positive electrode, Li 1.0 Ni 0.83 Co Li 1.0 instead of 0.14 Al 0.03 lithium composite oxide O 2.0 Ni 0.34 Co 0.33 Mn 0.33 O Example 43 was carried out in the same manner as in Example 1 except that a lithium composite oxide of 2.0 was used and the current density of 1C was calculated as 160 mAh / g with respect to the amount of the positive electrode active material when measuring the discharge capacity. A battery was prepared and evaluated.

(実施例44)
正極の作製において、Li1.0Ni0.83Co0.14Al0.032.0のリチウム複合酸化物の代わりにLi1.0Ni0.6Co0.2Mn0.22.0のリチウム複合酸化物を用い、放電容量の測定時に電流密度の1Cを正極活物質量に対して、160mAh/gとして計算したこと以外は、実施例1と同様にして、実施例44の電池を作製し、評価を行った。
(Example 44)
In Fabrication of Positive Electrode, Li 1.0 Ni 0.83 Co 0.14 Al Li 1.0 instead of 0.03 lithium composite oxide O 2.0 Ni 0.6 Co 0.2 Mn 0.2 O Example 44 was performed in the same manner as in Example 1 except that a lithium composite oxide of 2.0 was used and the current density of 1C was calculated as 160 mAh / g with respect to the amount of the positive electrode active material when measuring the discharge capacity. A battery was prepared and evaluated.

(実施例45)
正極の作製において、Li1.0Ni0.83Co0.14Al0.032.0のリチウム複合酸化物の代わりにLiCoOのリチウム複合酸化物を用い、放電容量の測定時に電流密度の1Cを正極活物質量に対して、160mAh/gとして計算したこと以外は、実施例1と同様にして、実施例45の電池を作製し、評価を行った。
(Example 45)
In the production of the positive electrode, LiCoO 2 lithium composite oxide was used instead of Li 1.0 Ni 0.83 Co 0.14 Al 0.03 O 2.0 lithium composite oxide, and the current density was measured when measuring the discharge capacity. A battery of Example 45 was produced and evaluated in the same manner as in Example 1 except that 1C was calculated as 160 mAh / g with respect to the amount of the positive electrode active material.

(実施例46)
正極の作製において、AlNの代わりにBNを用い、リチウム複合酸化物とBNの重量比率を100:0.03としたこと以外は、実施例1と同様にして実施例46の電池を作製し、評価を行った。
(Example 46)
In the production of the positive electrode, a battery of Example 46 was produced in the same manner as in Example 1 except that BN was used instead of AlN and the weight ratio of the lithium composite oxide and BN was set to 100: 0.03. Evaluation was performed.

(実施例47)
正極の作製において、AlNの代わりにBNを用い、リチウム複合酸化物とBNの重量比率を100:0.05としたこと以外は、実施例1と同様にして実施例47の電池を作製し、評価を行った。
(Example 47)
In the production of the positive electrode, a battery of Example 47 was produced in the same manner as in Example 1 except that BN was used instead of AlN and the weight ratio of the lithium composite oxide to BN was set to 100: 0.05. Evaluation was performed.

(実施例48)
正極の作製において、AlNの代わりにBNを用い、リチウム複合酸化物とBNの重量比率を100:10としたこと以外は、実施例1と同様にして実施例48の電池を作製し、評価を行った。
(Example 48)
In the production of the positive electrode, a battery of Example 48 was produced and evaluated in the same manner as in Example 1 except that BN was used instead of AlN and the weight ratio of the lithium composite oxide and BN was set to 100: 10. went.

(実施例49)
正極の作製において、AlNの代わりにBNを用い、リチウム複合酸化物とBNの重量比率を100:11としたこと以外は、実施例1と同様にして実施例49の電池を作製し、評価を行った。
(Example 49)
In the production of the positive electrode, a battery of Example 49 was produced and evaluated in the same manner as in Example 1 except that BN was used instead of AlN and the weight ratio of the lithium composite oxide to BN was set to 100: 11. went.

(実施例50)
正極の作製において、AlNの代わりにSiを用い、リチウム複合酸化物とSiの重量比率を100:0.03としたこと以外は、実施例1と同様にして実施例50の電池を作製し、評価を行った。
(Example 50)
Example 50 In the same manner as in Example 1, except that Si 3 N 4 was used in place of AlN and the weight ratio of the lithium composite oxide to Si 3 N 4 was set to 100: 0.03. A battery was prepared and evaluated.

(実施例51)
正極の作製において、AlNの代わりにSiを用い、リチウム複合酸化物とSiの重量比率を100:0.05としたこと以外は、実施例1と同様にして実施例51の電池を作製し、評価を行った。
(Example 51)
In the production of the positive electrode, Example 51 was carried out in the same manner as in Example 1 except that Si 3 N 4 was used instead of AlN and the weight ratio of the lithium composite oxide and Si 3 N 4 was set to 100: 0.05. A battery was prepared and evaluated.

(実施例52)
正極の作製において、AlNの代わりにSiを用い、リチウム複合酸化物とSiの重量比率を100:10としたこと以外は、実施例1と同様にして実施例52の電池を作製し、評価を行った。
(Example 52)
The battery of Example 52 was made in the same manner as in Example 1 except that Si 3 N 4 was used instead of AlN in the production of the positive electrode, and the weight ratio of the lithium composite oxide and Si 3 N 4 was set to 100: 10. Were prepared and evaluated.

(実施例53)
正極の作製において、AlNの代わりにSiを用い、リチウム複合酸化物とSiの重量比率を100:11としたこと以外は、実施例1と同様にして実施例53の電池を作製し、評価を行った。
(Example 53)
The battery of Example 53 was made in the same manner as in Example 1 except that Si 3 N 4 was used instead of AlN and the weight ratio of the lithium composite oxide to Si 3 N 4 was set to 100: 11 in the production of the positive electrode. Were prepared and evaluated.

(実施例54)
正極の作製において、Li1.0Ni0.83Co0.14Al0.032.0のリチウム複合酸化物の代わりにLi1.0Ni0.8Co0.1Mn0.12.0のリチウム複合酸化物を用い、リチウム複合酸化物とAlNの重量比率を100:0.03としたこと以外は、実施例1と同様にして、実施例54の電池を作製し、評価を行った。
(Example 54)
In the preparation of the positive electrode, Li 1.0 Ni 0.83 Co 0.14 Al Li 1.0 instead of 0.03 lithium composite oxide O 2.0 Ni 0.8 Co 0.1 Mn 0.1 O A battery of Example 54 was prepared and evaluated in the same manner as in Example 1 except that a lithium composite oxide of 2.0 was used and the weight ratio of the lithium composite oxide to AlN was set to 100: 0.03. Went.

(実施例55)
正極の作製において、Li1.0Ni0.83Co0.14Al0.032.0のリチウム複合酸化物の代わりにLi1.0Ni0.8Co0.1Mn0.12.0のリチウム複合酸化物を用い、リチウム複合酸化物とAlNの重量比率を100:0.05としたこと以外は、実施例1と同様にして、実施例55の電池を作製し、評価を行った。
(Example 55)
In the preparation of the positive electrode, Li 1.0 Ni 0.83 Co 0.14 Al Li 1.0 instead of 0.03 lithium composite oxide O 2.0 Ni 0.8 Co 0.1 Mn 0.1 O A battery of Example 55 was prepared and evaluated in the same manner as in Example 1 except that a lithium composite oxide of 2.0 was used and the weight ratio of the lithium composite oxide to AlN was set to 100: 0.05. Went.

(実施例56)
正極の作製において、Li1.0Ni0.83Co0.14Al0.032.0のリチウム複合酸化物の代わりにLi1.0Ni0.8Co0.1Mn0.12.0のリチウム複合酸化物を用い、リチウム複合酸化物とAlNの重量比率を100:1としたこと以外は、実施例1と同様にして、実施例56の電池を作製し、評価を行った。
(Example 56)
In the preparation of the positive electrode, Li 1.0 Ni 0.83 Co 0.14 Al Li 1.0 instead of 0.03 lithium composite oxide O 2.0 Ni 0.8 Co 0.1 Mn 0.1 O A battery of Example 56 was made and evaluated in the same manner as in Example 1 except that a lithium composite oxide of 2.0 was used and the weight ratio of the lithium composite oxide to AlN was set to 100: 1. It was.

(実施例57)
正極の作製において、Li1.0Ni0.83Co0.14Al0.032.0のリチウム複合酸化物の代わりにLi1.0Ni0.8Co0.1Mn0.12.0のリチウム複合酸化物を用い、リチウム複合酸化物とAlNの重量比率を100:5としたこと以外は、実施例1と同様にして、実施例57の電池を作製し、評価を行った。
(Example 57)
In preparation of the positive electrode, Li 1.0 Ni 0.83 Co 0.14 Al Li 1.0 instead of 0.03 lithium composite oxide O 2.0 Ni 0.8 Co 0.1 Mn 0.1 O A battery of Example 57 was made and evaluated in the same manner as in Example 1 except that a lithium composite oxide of 2.0 was used and the weight ratio of the lithium composite oxide to AlN was set to 100: 5. It was.

(実施例58)
正極の作製において、Li1.0Ni0.83Co0.14Al0.032.0のリチウム複合酸化物の代わりにLi1.0Ni0.8Co0.1Mn0.12.0のリチウム複合酸化物を用い、リチウム複合酸化物とAlNの重量比率を100:10としたこと以外は、実施例1と同様にして、実施例56の電池を作製し、評価を行った。
(Example 58)
In the preparation of the positive electrode, Li 1.0 Ni 0.83 Co 0.14 Al Li 1.0 instead of 0.03 lithium composite oxide O 2.0 Ni 0.8 Co 0.1 Mn 0.1 O A battery of Example 56 was made and evaluated in the same manner as in Example 1 except that a lithium composite oxide of 2.0 was used and the weight ratio of the lithium composite oxide to AlN was set to 100: 10. It was.

(実施例59)
正極の作製において、Li1.0Ni0.83Co0.14Al0.032.0のリチウム複合酸化物の代わりにLi1.0Ni0.8Co0.1Mn0.12.0のリチウム複合酸化物を用い、リチウム複合酸化物とAlNの重量比率を100:11としたこと以外は、実施例1と同様にして、実施例59の電池を作製し、評価を行った。
(Example 59)
In the preparation of the positive electrode, Li 1.0 Ni 0.83 Co 0.14 Al Li 1.0 instead of 0.03 lithium composite oxide O 2.0 Ni 0.8 Co 0.1 Mn 0.1 O A battery of Example 59 was made and evaluated in the same manner as in Example 1 except that a lithium composite oxide of 2.0 was used and the weight ratio of the lithium composite oxide to AlN was set to 100: 11. It was.

(実施例60)
正極の作製において、Li1.0Ni0.83Co0.14Al0.032.0のリチウム複合酸化物の代わりにLi1.0Ni0.8Co0.1Mn0.12.0のリチウム複合酸化物を用い、AlNの代わりにBNを用い、リチウム複合酸化物とBNの重量比率を100:0.1としたこと以外は、実施例1と同様にして、実施例60の電池を作製し、評価を行った。
(Example 60)
In the preparation of the positive electrode, Li 1.0 Ni 0.83 Co 0.14 Al Li 1.0 instead of 0.03 lithium composite oxide O 2.0 Ni 0.8 Co 0.1 Mn 0.1 O A lithium composite oxide of 2.0 , BN instead of AlN, and the weight ratio of the lithium composite oxide to BN was set to 100: 0.1. Sixty batteries were produced and evaluated.

(実施例61)
正極の作製において、Li1.0Ni0.83Co0.14Al0.032.0のリチウム複合酸化物の代わりにLi1.0Ni0.8Co0.1Mn0.12.0のリチウム複合酸化物を用い、AlNの代わりにBNを用い、リチウム複合酸化物とBNの重量比率を100:5としたこと以外は、実施例1と同様にして、実施例61の電池を作製し、評価を行った。
(Example 61)
In the preparation of the positive electrode, Li 1.0 Ni 0.83 Co 0.14 Al Li 1.0 instead of 0.03 lithium composite oxide O 2.0 Ni 0.8 Co 0.1 Mn 0.1 O A lithium composite oxide of 2.0 was used, BN was used instead of AlN, and the weight ratio of the lithium composite oxide to BN was set to 100: 5. A battery was prepared and evaluated.

(実施例62)
正極の作製において、Li1.0Ni0.83Co0.14Al0.032.0のリチウム複合酸化物の代わりにLi1.0Ni0.8Co0.1Mn0.12.0のリチウム複合酸化物を用い、AlNの代わりにSiを用い、リチウム複合酸化物とSiの重量比率を100:0.1としたこと以外は、実施例1と同様にして、実施例62の電池を作製し、評価を行った。
(Example 62)
In the preparation of the positive electrode, Li 1.0 Ni 0.83 Co 0.14 Al Li 1.0 instead of 0.03 lithium composite oxide O 2.0 Ni 0.8 Co 0.1 Mn 0.1 O Example 1 except that 2.0 lithium composite oxide was used, Si 3 N 4 was used instead of AlN, and the weight ratio of lithium composite oxide to Si 3 N 4 was set to 100: 0.1. Similarly, a battery of Example 62 was produced and evaluated.

(実施例63)
正極の作製において、Li1.0Ni0.83Co0.14Al0.032.0のリチウム複合酸化物の代わりにLi1.0Ni0.8Co0.1Mn0.12.0のリチウム複合酸化物を用い、AlNの代わりにSiを用い、リチウム複合酸化物とSiの重量比率を100:5としたこと以外は、実施例1と同様にして、実施例63の電池を作製し、評価を行った。
(Example 63)
In the preparation of the positive electrode, Li 1.0 Ni 0.83 Co 0.14 Al Li 1.0 instead of 0.03 lithium composite oxide O 2.0 Ni 0.8 Co 0.1 Mn 0.1 O A lithium composite oxide of 2.0 was used, Si 3 N 4 was used instead of AlN, and the weight ratio of the lithium composite oxide and Si 3 N 4 was set to 100: 5. Then, a battery of Example 63 was produced and evaluated.

(比較例1)
正極の作製において、AlN及びグラフェンを用いらなかったこと以外は、実施例1と同様にして、比較例1の電池を作製し、評価を行った。
(Comparative Example 1)
In the production of the positive electrode, a battery of Comparative Example 1 was produced and evaluated in the same manner as in Example 1 except that AlN and graphene were not used.

(比較例2)
正極の作製において、AlN及びグラフェンを用いず、Li1.0Ni0.83Co0.14Al0.032.0のリチウム複合酸化物の代わりにLi1.0Ni0.8Co0.1Al0.12.0のリチウム複合酸化物を用いたこと以外は、実施例1と同様にして、比較例2の電池を作製し、評価を行った。
(Comparative Example 2)
In the production of the positive electrode, Li 1.0 Ni 0.8 Co 0 was used instead of Li 1.0 Ni 0.83 Co 0.14 Al 0.03 O 2.0 lithium composite oxide without using AlN and graphene. .1 A battery of Comparative Example 2 was fabricated and evaluated in the same manner as Example 1 except that a lithium composite oxide of Al 0.1 O 2.0 was used.

(比較例3)
正極の作製において、AlN及びグラフェンを用いず、Li1.0Ni0.83Co0.14Al0.032.0のリチウム複合酸化物の代わりにLi1.0Ni0.8Co0.1Mn0.12.0のリチウム複合酸化物を用い、放電容量の測定時に電流密度の1Cを正極活物質量に対して、160mAh/gとして計算したこと以外は、実施例1と同様にして、比較例3の電池を作製し、評価を行った。
(Comparative Example 3)
In the production of the positive electrode, Li 1.0 Ni 0.8 Co 0 was used instead of Li 1.0 Ni 0.83 Co 0.14 Al 0.03 O 2.0 lithium composite oxide without using AlN and graphene. .1 Mn 0.1 O 2.0 Lithium composite oxide and Example 1 except that when the discharge capacity was measured, the current density of 1C was calculated as 160 mAh / g with respect to the amount of the positive electrode active material. Similarly, a battery of Comparative Example 3 was produced and evaluated.

(比較例4)
正極の作製において、AlN及びグラフェンを用いず、Li1.0Ni0.83Co0.14Al0.032.0のリチウム複合酸化物の代わりにLi1.0Ni0.5Co0.2Mn0.32.0のリチウム複合酸化物を用い、放電容量の測定時に電流密度の1Cを正極活物質量に対して、160mAh/gとして計算したこと以外は、実施例1と同様にして、比較例4の電池を作製し、評価を行った。
(Comparative Example 4)
In the production of the positive electrode, Li 1.0 Ni 0.5 Co 0 was used instead of Li 1.0 Ni 0.83 Co 0.14 Al 0.03 O 2.0 lithium composite oxide without using AlN and graphene. .2 Example 1 except that a lithium composite oxide of Mn 0.3 O 2.0 was used, and 1 C of current density was calculated as 160 mAh / g with respect to the amount of the positive electrode active material when measuring the discharge capacity. Similarly, a battery of Comparative Example 4 was produced and evaluated.

(比較例5)
正極の作製において、AlN及びグラフェンを用いず、Li1.0Ni0.83Co0.14Al0.032.0のリチウム複合酸化物の代わりにLi1.0Ni0.34Co0.33Mn0.332.0のリチウム複合酸化物を用い、放電容量の測定時に電流密度の1Cを正極活物質量に対して、160mAh/gとして計算したこと以外は、実施例1と同様にして、比較例5の電池を作製し、評価を行った。
(Comparative Example 5)
In the production of the positive electrode, Li 1.0 Ni 0.34 Co 0 was used instead of Li 1.0 Ni 0.83 Co 0.14 Al 0.03 O 2.0 lithium composite oxide without using AlN and graphene. .33 Mn 0.33 O 2.0 Lithium composite oxide was used, and Example 1 except that 1 C of current density was calculated as 160 mAh / g with respect to the amount of positive electrode active material when measuring discharge capacity. Similarly, a battery of Comparative Example 5 was produced and evaluated.

(比較例6)
正極の作製において、AlN及びグラフェンを用いず、Li1.0Ni0.83Co0.14Al0.032.0のリチウム複合酸化物の代わりにLi1.0Ni0.6Co0.2Mn0.22.0のリチウム複合酸化物を用い、放電容量の測定時に電流密度の1Cを正極活物質量に対して、160mAh/gとして計算したこと以外は、実施例1と同様にして、比較例6の電池を作製し、評価を行った。
(Comparative Example 6)
In the production of the positive electrode, Li 1.0 Ni 0.6 Co 0 was used instead of Li 1.0 Ni 0.83 Co 0.14 Al 0.03 O 2.0 lithium composite oxide without using AlN and graphene. .2 Example 1 except that a lithium composite oxide of Mn 0.2 O 2.0 was used and the current density of 1C was calculated as 160 mAh / g with respect to the amount of positive electrode active material when measuring the discharge capacity. Similarly, a battery of Comparative Example 6 was produced and evaluated.

(比較例7)
正極の作製において、AlN及びグラフェンを用いず、Li1.0Ni0.83Co0.14Al0.032.0のリチウム複合酸化物の代わりにLiCoOのリチウム複合酸化物を用い、放電容量の測定時に電流密度の1Cを正極活物質量に対して、160mAh/gとして計算したこと以外は、実施例1と同様にして、比較例7の電池を作製し、評価を行った。
(Comparative Example 7)
In the production of the positive electrode, using LiCoO 2 lithium composite oxide instead of Li 1.0 Ni 0.83 Co 0.14 Al 0.03 O 2.0 lithium composite oxide without using AlN and graphene, A battery of Comparative Example 7 was fabricated and evaluated in the same manner as in Example 1 except that 1 C of current density was calculated as 160 mAh / g with respect to the amount of the positive electrode active material when measuring the discharge capacity.

(比較例8)
正極の作製において、AlNの代わりにSiOを用い、グラフェンを用いらなかったこと以外は、実施例1と同様にして、比較例8の電池を作製し、評価を行った。
(Comparative Example 8)
In the production of the positive electrode, a battery of Comparative Example 8 was produced and evaluated in the same manner as in Example 1 except that SiO 2 was used instead of AlN and graphene was not used.

(比較例9)
正極の作製において、AlNを用いなかったこと以外は、実施例1と同様にして、比較例9の電池を作製し、評価を行った。
(Comparative Example 9)
In the production of the positive electrode, a battery of Comparative Example 9 was produced and evaluated in the same manner as in Example 1 except that AlN was not used.

(比較例10)
正極の作製において、グラフェンを用いなかったこと以外は、実施例1と同様にして、比較例10の電池を作製し、評価を行った。
(Comparative Example 10)
In the production of the positive electrode, a battery of Comparative Example 10 was produced and evaluated in the same manner as in Example 1 except that graphene was not used.

Figure 2017103207
Figure 2017103207

表1の結果から分かる通り、リチウム複合酸化物及び、高熱伝導化合物が含まれることにより、500サイクル後の容量維持率が高くなり、サイクル特性が向上している。   As can be seen from the results in Table 1, the capacity retention rate after 500 cycles is increased and the cycle characteristics are improved by including the lithium composite oxide and the high thermal conductive compound.

(符号の説明)
10・・・セパレータ、20・・・正極、22・・・正極集電体、24・・・正極活物質層、30・・・負極、32・・・負極集電体、34・・・負極活物質層、40・・・発電要素、50・・・外装体、52・・・金属箔、54・・・高分子膜、60,62・・・リード、100・・・リチウムイオン二次電池、110・・・リチウム複合酸化物、120・・・高熱伝導化合物含有被覆層、130・・・グラフェンまたは多層グラフェン含有被覆層、140・・・被覆層
(Explanation of symbols)
DESCRIPTION OF SYMBOLS 10 ... Separator, 20 ... Positive electrode, 22 ... Positive electrode collector, 24 ... Positive electrode active material layer, 30 ... Negative electrode, 32 ... Negative electrode collector, 34 ... Negative electrode Active material layer, 40 ... power generation element, 50 ... exterior body, 52 ... metal foil, 54 ... polymer film, 60, 62 ... lead, 100 ... lithium ion secondary battery 110 ... lithium composite oxide, 120 ... high thermal conductive compound-containing coating layer, 130 ... graphene or multilayer graphene-containing coating layer, 140 ... covering layer

Claims (9)

下記化学式(1)で表されるリチウム複合酸化物と、
高熱伝導化合物と、
グラフェンまたは多層グラフェンと、
を含む正極活物質。
Li M1 M21−y ・・・(1)
[上記化学式1において、M1はNi、Co、Mnから選ばれる少なくとも一種の金属であり、M2はAl、Fe、Ti、Cr、Mg、Cu、Ga、Zn、Sn、B、V、Ca及びSrからなる群より選ばれる少なくとも1種類の金属であり、0.05≦x≦1.2、0.3≦y≦1を満たす]
A lithium composite oxide represented by the following chemical formula (1);
A high thermal conductivity compound,
Graphene or multilayer graphene,
A positive electrode active material comprising:
Li x M1 y M2 1-y O 2 (1)
[In the above chemical formula 1, M1 is at least one metal selected from Ni, Co, and Mn, and M2 is Al, Fe, Ti, Cr, Mg, Cu, Ga, Zn, Sn, B, V, Ca, and Sr. And at least one metal selected from the group consisting of 0.05 ≦ x ≦ 1.2 and 0.3 ≦ y ≦ 1]
前記高熱伝導化合物はAlN、BN、Si、TiN、ZrN、VN、CrN、SiC、WC、TiC、TaC、ZrC、NbC、MoC、Cr、TiB、ZrB、VB、NbBから選ばれる少なくとも一種である請求項1に記載の正極活物質。 The high thermal conductive compounds are AlN, BN, Si 3 N 4 , TiN, ZrN, VN, Cr 2 N, SiC, WC, TiC, TaC, ZrC, NbC, Mo 2 C, Cr 3 C 2 , TiB 2 , ZrB 2. The positive electrode active material according to claim 1, which is at least one selected from VB 2 and NbB 2 . 前記高熱伝導化合物は、前記リチウム複合酸化物に対して0.05〜10重量%含有されている請求項1または2に記載の正極活物質。   The positive electrode active material according to claim 1, wherein the high thermal conductive compound is contained in an amount of 0.05 to 10 wt% with respect to the lithium composite oxide. 前記リチウム複合酸化物は被覆層により被覆され、前記被覆層は前記高熱伝導化合物、前記グラフェン及び多層グラフェンのうちいずれか1種以上を含むことを特徴とする請求項1〜3のうちいずれか一項に記載の正極活物質。   The lithium composite oxide is coated with a coating layer, and the coating layer includes at least one of the high thermal conductivity compound, the graphene, and multilayer graphene. The positive electrode active material according to Item. 前記被覆層は前記高熱伝導化合物を含み、さらに前記被覆層上にはその一部を前記グラフェンまたは多層グラフェンが被覆していることを特徴とする請求項4に記載の正極活物質。   The positive electrode active material according to claim 4, wherein the coating layer includes the high thermal conductive compound, and the graphene or multilayer graphene covers a part of the coating layer. 前記高熱伝導化合物の平均膜厚が30〜300nmであり、前記グラフェンまたは多層グラフェンの膜厚が50〜500nmである請求項1〜5のうちいずれか一項に記載の正極活物質。   6. The positive electrode active material according to claim 1, wherein an average film thickness of the high thermal conductive compound is 30 to 300 nm, and a film thickness of the graphene or multilayer graphene is 50 to 500 nm. 前記高熱伝導化合物の平均一次粒子径が10〜500nmである請求項1〜6のうちいずれか一項に記載の正極活物質。   7. The positive electrode active material according to claim 1, wherein an average primary particle diameter of the high thermal conductive compound is 10 to 500 nm. 請求項1〜7のうちいずれか一項に記載の正極活物質を用いた正極。   The positive electrode using the positive electrode active material as described in any one of Claims 1-7. 請求項8に記載の正極と、負極と電解質とを有するリチウムイオン二次電池。   A lithium ion secondary battery comprising the positive electrode according to claim 8, a negative electrode, and an electrolyte.
JP2016170528A 2015-11-19 2016-09-01 Positive electrode active material, positive electrode, and lithium ion secondary battery Pending JP2017103207A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201610989741.6A CN106876661A (en) 2015-11-19 2016-11-10 Positive active material, positive pole and lithium rechargeable battery
US15/348,280 US10971717B2 (en) 2015-11-19 2016-11-10 Positive electrode active material, positive electrode, and lithium ion secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015226173 2015-11-19
JP2015226173 2015-11-19

Publications (1)

Publication Number Publication Date
JP2017103207A true JP2017103207A (en) 2017-06-08

Family

ID=59017479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016170528A Pending JP2017103207A (en) 2015-11-19 2016-09-01 Positive electrode active material, positive electrode, and lithium ion secondary battery

Country Status (2)

Country Link
JP (1) JP2017103207A (en)
CN (1) CN106876661A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018174134A (en) * 2017-03-30 2018-11-08 東レ株式会社 Electrode for secondary battery and method for manufacturing the same
WO2019066585A1 (en) * 2017-09-29 2019-04-04 주식회사 엘지화학 Method for preparing cathode active material for secondary battery, cathode active material prepared thereby, and lithium secondary battery comprising same
KR20190038395A (en) * 2017-09-29 2019-04-08 주식회사 엘지화학 Method for preparing positive electrode active material for secondary battery, positive electrode active material prepared by the same and lithium secondary battery comprising the same
KR20190117049A (en) * 2018-04-06 2019-10-16 주식회사 엘지화학 Positive electrode active material for secondary battery, method for preparing the same, and secondary battery comprising the same
CN112688022A (en) * 2020-12-28 2021-04-20 安普瑞斯(无锡)有限公司 Quick charge-discharge lithium ion battery and preparation method thereof
KR20210148741A (en) * 2020-06-01 2021-12-08 삼성에스디아이 주식회사 Composite cathode active material, Cathode and Lithium battery containing composite cathode active material and Preparation method thereof
KR20210148740A (en) * 2020-06-01 2021-12-08 삼성에스디아이 주식회사 Composite cathode active material, Cathode and Lithium battery containing composite cathode active material and Preparation method thereof
WO2022149767A1 (en) * 2021-01-07 2022-07-14 주식회사 엘지에너지솔루션 Positive electrode active material for lithium secondary battery, method for preparing same, and lithium secondary battery comprising same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107819119A (en) * 2017-10-27 2018-03-20 湖南杉杉新能源有限公司 A kind of preparation method of anode material for lithium-ion batteries and its anode material for lithium-ion batteries being prepared
CN113629234B (en) * 2021-08-16 2023-01-03 中国科学院宁波材料技术与工程研究所 Cathode material, preparation method thereof and lithium ion battery
CN115377400B (en) * 2022-10-26 2022-12-27 星恒电源股份有限公司 Sodium-ion battery positive electrode material, preparation method thereof, positive electrode piece and sodium-ion battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102610818B (en) * 2012-04-01 2014-11-19 上海锦众信息科技有限公司 Preparing method of anode material for composite lithium ferric phosphate cell
CN102891310A (en) * 2012-09-26 2013-01-23 天津大学 Modified titanium silicon carbon lithium ion battery ternary positive electrode material and preparation method thereof
JP2014191912A (en) * 2013-03-26 2014-10-06 Sony Corp Secondary battery
CN104134801B (en) * 2014-07-28 2016-06-01 北京万源工业有限公司 Carbonitride-graphene coated iron phosphate compound anode material of lithium and its preparation method
CN104241615B (en) * 2014-08-01 2017-03-08 山东玉皇新能源科技有限公司 A kind of method that Graphene complex ternary material is prepared using monoalcohol solvent full-boiled process
CN104124437B (en) * 2014-08-12 2016-08-24 长沙赛维能源科技有限公司 Iron phosphate compound anode material of lithium of Surface coating titanium nitride and Graphene and its preparation method and application

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018174134A (en) * 2017-03-30 2018-11-08 東レ株式会社 Electrode for secondary battery and method for manufacturing the same
US11189827B2 (en) 2017-09-29 2021-11-30 Lg Chem, Ltd. Method for preparing positive electrode active material for secondary battery, positive electrode active material thus prepared and lithium secondary battery including the same
WO2019066585A1 (en) * 2017-09-29 2019-04-04 주식회사 엘지화학 Method for preparing cathode active material for secondary battery, cathode active material prepared thereby, and lithium secondary battery comprising same
KR20190038395A (en) * 2017-09-29 2019-04-08 주식회사 엘지화학 Method for preparing positive electrode active material for secondary battery, positive electrode active material prepared by the same and lithium secondary battery comprising the same
US11888153B2 (en) 2017-09-29 2024-01-30 Lg Chem, Ltd. Method for preparing positive electrode active material for secondary battery, positive electrode active material thus prepared and lithium secondary battery including the same
KR102143101B1 (en) 2017-09-29 2020-08-10 주식회사 엘지화학 Method for preparing positive electrode active material for secondary battery, positive electrode active material prepared by the same and lithium secondary battery comprising the same
JP2020529716A (en) * 2017-09-29 2020-10-08 エルジー・ケム・リミテッド Method for manufacturing positive electrode active material for secondary battery, positive electrode active material manufactured in this way, and lithium secondary battery containing the same.
KR102204938B1 (en) * 2018-04-06 2021-01-19 주식회사 엘지화학 Positive electrode active material for secondary battery, method for preparing the same, and secondary battery comprising the same
KR20190117049A (en) * 2018-04-06 2019-10-16 주식회사 엘지화학 Positive electrode active material for secondary battery, method for preparing the same, and secondary battery comprising the same
KR20210148741A (en) * 2020-06-01 2021-12-08 삼성에스디아이 주식회사 Composite cathode active material, Cathode and Lithium battery containing composite cathode active material and Preparation method thereof
KR20210148740A (en) * 2020-06-01 2021-12-08 삼성에스디아이 주식회사 Composite cathode active material, Cathode and Lithium battery containing composite cathode active material and Preparation method thereof
KR102633759B1 (en) 2020-06-01 2024-02-05 삼성에스디아이 주식회사 Composite cathode active material, Cathode and Lithium battery containing composite cathode active material and Preparation method thereof
KR102633758B1 (en) 2020-06-01 2024-02-05 삼성에스디아이 주식회사 Composite cathode active material, Cathode and Lithium battery containing composite cathode active material and Preparation method thereof
CN112688022A (en) * 2020-12-28 2021-04-20 安普瑞斯(无锡)有限公司 Quick charge-discharge lithium ion battery and preparation method thereof
WO2022149767A1 (en) * 2021-01-07 2022-07-14 주식회사 엘지에너지솔루션 Positive electrode active material for lithium secondary battery, method for preparing same, and lithium secondary battery comprising same

Also Published As

Publication number Publication date
CN106876661A (en) 2017-06-20

Similar Documents

Publication Publication Date Title
JP2017103207A (en) Positive electrode active material, positive electrode, and lithium ion secondary battery
JP2016186933A (en) Positive electrode active material, positive electrode using the same, and lithium ion secondary battery
CN106025191B (en) Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2018179817A1 (en) Negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
US10971717B2 (en) Positive electrode active material, positive electrode, and lithium ion secondary battery
US20160285073A1 (en) Positive electrode active material, positive electrode using same, and lithium ion secondary battery
JP2016189320A (en) Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery using the same
JP6297991B2 (en) Nonaqueous electrolyte secondary battery
US20220376227A1 (en) Negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
US20160285103A1 (en) Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery using same
JP2016189321A (en) Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP2019160782A (en) Negative electrode and lithium ion secondary battery
WO2017085907A1 (en) Negative electrode active material, negative electrode, lithium ion secondary battery, method for producing negative electrode material for non-aqueous electrolyte secondary battery, and method for producing lithium ion secondary battery
JP2021099939A (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP6229333B2 (en) Nonaqueous electrolyte secondary battery
JP2019164880A (en) Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP2018170099A (en) Active material, electrode, and lithium ion secondary battery
JP2017188424A (en) Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery positive electrode using the same, and lithium ion secondary battery
WO2016152716A1 (en) Negative electrode for lithium ion secondary battery and secondary battery
US10629896B2 (en) Positive electrode and lithium ion secondary battery
WO2018021480A1 (en) Positive electrode active substance for lithium ion secondary batteries, positive electrode for lithium ion secondary batteries, and lithium ion secondary battery using same
JP2018170249A (en) Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery arranged by use thereof
JP2017183048A (en) Positive electrode active material, positive electrode arranged by use thereof, and lithium ion secondary battery
JP6380630B2 (en) Nonaqueous electrolyte secondary battery
US10211456B2 (en) Positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery positive electrode and lithium ion secondary battery using the same