JP2016189321A - Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same - Google Patents

Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same Download PDF

Info

Publication number
JP2016189321A
JP2016189321A JP2016018900A JP2016018900A JP2016189321A JP 2016189321 A JP2016189321 A JP 2016189321A JP 2016018900 A JP2016018900 A JP 2016018900A JP 2016018900 A JP2016018900 A JP 2016018900A JP 2016189321 A JP2016189321 A JP 2016189321A
Authority
JP
Japan
Prior art keywords
active material
positive electrode
int
lithium ion
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016018900A
Other languages
Japanese (ja)
Inventor
淳平 下羽
Jumpei Shimohane
淳平 下羽
秀明 関
Hideaki Seki
秀明 関
裕之 宮原
Hiroyuki Miyahara
裕之 宮原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to US15/076,137 priority Critical patent/US10243215B2/en
Priority to CN201610184399.2A priority patent/CN106025191B/en
Publication of JP2016189321A publication Critical patent/JP2016189321A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode active material for lithium ion secondary battery having high rate characteristics, and to provide a positive electrode for lithium ion secondary battery and a lithium ion secondary battery.SOLUTION: A positive electrode active material for lithium ion secondary battery has active material particles containing one or more kinds of compound containing Li and a transition metal, and a coating layer covering at least a part of the surface of the active material particles. The coating layer is composed of at least one kind of graphene and multilayer graphene. In the Raman spectrum of the coating layer, there are G band (peak of 1530-1630 cm) and 2D band (peak of 2650-2750 cm), and the intensity of the 2D band (2D/G) standardized by the intensity of the G band satisfies the relation 0.05≤2D/G.SELECTED DRAWING: Figure 1

Description

本発明は、高いレート特性を有するリチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極およびこれを用いたリチウムイオン二次電池に関する。   The present invention relates to a positive electrode active material for lithium ion secondary batteries having high rate characteristics, a positive electrode for lithium ion secondary batteries, and a lithium ion secondary battery using the same.

近年モバイル向けや電気自動車のような大型機器の電源としても注目されているリチウムイオン二次電池はレート特性やエネルギー密度の更なる向上が求められている。リチウムイオン二次電池は、主に正極、負極、電解液、セパレータなどから構成されており、中でも正極の特性を改善することでレート特性の向上が期待できる。
例えば特許文献1、2には導電材で正極活物質粒子の表面を被覆することで、正極の内部抵抗を低減する手法が報告されている。また、特許文献3は粒子表面に炭素を含む活物質のラマンスペクトルのGバンドとDバンドの強度比によって被覆層の炭素化度(電子伝導性)を制御しレート特性を向上している。
しかしながら、リチウムイオン二次電池の多用途化に伴い、更なるレート特性の向上が求められている。
In recent years, lithium ion secondary batteries, which are attracting attention as power sources for mobile devices and large-sized devices such as electric vehicles, are required to further improve rate characteristics and energy density. Lithium ion secondary batteries are mainly composed of a positive electrode, a negative electrode, an electrolytic solution, a separator, and the like, and in particular, improvement in rate characteristics can be expected by improving the characteristics of the positive electrode.
For example, Patent Documents 1 and 2 report a technique for reducing the internal resistance of the positive electrode by coating the surface of the positive electrode active material particles with a conductive material. Patent Document 3 improves the rate characteristics by controlling the carbonization degree (electron conductivity) of the coating layer by the intensity ratio of the G band and D band of the Raman spectrum of the active material containing carbon on the particle surface.
However, with the diversification of lithium ion secondary batteries, further improvement in rate characteristics is required.

特開2007−173134号公報JP 2007-173134 A 特表2014−510997号公報Special table 2014-510997 gazette 特開2012−234766号公報JP 2012-234766 A

本発明は上記従来技術の有する課題を鑑みてなされたものであり、高いレート特性を有するリチウムイオン二次電池を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and an object thereof is to provide a lithium ion secondary battery having high rate characteristics.

上記目標を達成するために、本発明に係る正極活物質は、Li及び遷移金属を含む化合物を一種以上含む活物質粒子と、前記活物質粒子表面の少なくとも一部を被覆する被覆層とを有し、前記被覆層はグラフェンもしくは多層グラフェンの少なくとも一種からなり、前記被覆層におけるラマンスペクトルにおいて、Gバンド(C−C結合の伸縮振動に由来する1530cm−1〜1630cm−1に現れるピーク)と、2Dバンド(フォノンがブリルアンゾーンのディラックコーン間で2回非弾性散乱されることに由来する2650cm−1〜2750cm−1に現れるピーク)を有し、Gバンドの強度で規格化した2Dバンドの強度(2Dint/Gint)が、0.05≦2Dint/Gint、を満たすことを特徴とする。 In order to achieve the above goal, the positive electrode active material according to the present invention has active material particles containing at least one compound containing Li and a transition metal, and a coating layer covering at least a part of the surface of the active material particles. and, the covering layer comprises at least one of the graphene or multilayer graphene, in the Raman spectrum of the coating layer, and G band (peak appearing at 1530cm -1 ~1630cm -1 derived from the stretching vibration of C-C bonds), Intensity of 2D band having a 2D band (a peak appearing at 2650 cm −1 to 2750 cm −1 derived from inelastic scattering of phonons twice between Dirac cones in the Brillouin zone) and normalized by the intensity of the G band (2D int / G int ) satisfies 0.05 ≦ 2D int / G int .

本発明に係る正極活物質を用いることにより、レート特性が向上したリチウムイオン二次電池を提供することができる。これは、活物質粒子表面の少なくとも一部がグラフェンもしくは多層グラフェンで被覆された活物質のラマンスペクトルが上記条件を満たす場合、良好なグラフェンもしくは多層グラフェン自体の導電性と、良好なグラフェンもしくは多層グラフェンと活物質間の導電性が両立されるためであると推察される。   By using the positive electrode active material according to the present invention, a lithium ion secondary battery having improved rate characteristics can be provided. When the Raman spectrum of the active material in which at least a part of the surface of the active material particles is coated with graphene or multilayer graphene satisfies the above conditions, the conductivity of the good graphene or multilayer graphene itself and the good graphene or multilayer graphene This is presumably because the conductivity between the active material and the active material is compatible.

本発明に係る正極活物質の被覆層におけるラマンスペクトルにおいて、Gバンドの強度で規格化した2Dバンドの強度(2Dint/Gint)が、0.1≦2Dint/Gint、を満たすことが望ましい。
これらの条件を満たす場合、グラフェンもしくは多層グラフェン自体の導電性と、グラフェンもしくは多層グラフェンと活物質間の導電性がさらに向上するため、レート特性がさらに向上する。
In the Raman spectrum of the coating layer of the positive electrode active material according to the present invention, the intensity of the 2D band (2D int / G int ) normalized by the intensity of the G band satisfies 0.1 ≦ 2D int / G int . desirable.
When these conditions are satisfied, the conductivity of the graphene or multilayer graphene itself and the conductivity between the graphene or multilayer graphene and the active material are further improved, so that the rate characteristics are further improved.

本発明に係る正極は、活物質粒子表面の少なくとも一部がグラフェンもしくは多層グラフェンで被覆され、被覆層のラマンスペクトルのGバンド及び2Dバンドが、0.05≦2Dint/Gintを満たす正極活物質を含む。 In the positive electrode according to the present invention, at least a part of the active material particle surface is coated with graphene or multilayer graphene, and the G band and 2D band of the Raman spectrum of the coating layer satisfy 0.05 ≦ 2D int / G int. Contains substances.

本発明に係る正極を用いることにより、レート特性が向上した正極が得られる。   By using the positive electrode according to the present invention, a positive electrode with improved rate characteristics can be obtained.

本発明に係るリチウムイオン二次電池は、正極、負極、前記正極と前記負極との間に介在するセパレータ及び電解質を有し、前記正極が上述の正極活物質を含む。   The lithium ion secondary battery according to the present invention includes a positive electrode, a negative electrode, a separator and an electrolyte interposed between the positive electrode and the negative electrode, and the positive electrode includes the positive electrode active material described above.

本発明に係るリチウムイオン二次電池を用いることによりレート特性の改善されたリチウムイオン二次電池を提供できる。   By using the lithium ion secondary battery according to the present invention, a lithium ion secondary battery with improved rate characteristics can be provided.

本発明によれば、高いレート特性を有する正極活物質、それを用いた正極、及びリチウムイオン二次電池を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the positive electrode active material which has a high rate characteristic, the positive electrode using the same, and a lithium ion secondary battery can be provided.

本実施形態のリチウムイオン二次電池の模式断面図である。It is a schematic cross section of the lithium ion secondary battery of this embodiment.

本発明に係るリチウムイオン二次電池の好適な実施の一例を、図面を参照しつつ詳細に説明する。ただし、本発明のリチウムイオン二次電池は、以下の実施形態に限定されるものではない。なお図面の寸法比率は図示の比率に限られるものではない。   An example of a preferred embodiment of a lithium ion secondary battery according to the present invention will be described in detail with reference to the drawings. However, the lithium ion secondary battery of the present invention is not limited to the following embodiments. In addition, the dimensional ratio of drawing is not restricted to the ratio of illustration.

(リチウムイオン二次電池)
本実施形態に係る電極、及びリチウムイオン二次電池について図1を参照して簡単に説明する。リチウムイオン二次電池100は、主として積層体40、積層体40を密閉した状態で収容するケース50、及び積層体40に接続された一対のリード60、62を備えている。また図示されていないが、積層体40とともに電解液をケース50に収容している。
(Lithium ion secondary battery)
An electrode and a lithium ion secondary battery according to this embodiment will be briefly described with reference to FIG. The lithium ion secondary battery 100 mainly includes a laminate 40, a case 50 that accommodates the laminate 40 in a sealed state, and a pair of leads 60 and 62 connected to the laminate 40. Although not shown, the electrolytic solution is housed in the case 50 together with the laminate 40.

積層体40は、正極20、負極30がセパレータ10を挟んで対向配置されたものである。正極20は、板状(膜状)の正極集電体22上に正極活物質層24が設けられたものである。負極30は、板状(膜状)の負極集電体32上に負極活物質層34が設けられたものである。正極活物質層24及び負極活物質層34がセパレータ10の両側にそれぞれ接触している。正極集電体22及び負極集電体32の端部には、それぞれリード62、60が接続されており、リード60、62の端部はケース50の外部にまで延びている。   The laminated body 40 is configured such that the positive electrode 20 and the negative electrode 30 are disposed to face each other with the separator 10 interposed therebetween. The positive electrode 20 is obtained by providing a positive electrode active material layer 24 on a plate-like (film-like) positive electrode current collector 22. The negative electrode 30 is obtained by providing a negative electrode active material layer 34 on a plate-like (film-like) negative electrode current collector 32. The positive electrode active material layer 24 and the negative electrode active material layer 34 are in contact with both sides of the separator 10. Leads 62 and 60 are connected to the ends of the positive electrode current collector 22 and the negative electrode current collector 32, respectively, and the ends of the leads 60 and 62 extend to the outside of the case 50.

以下、正極20及び負極30を総称して電極20、30といい、正極集電体22及び負極集電体32を総称して集電体22、32といい、正極活物質層24及び負極活物質層34を総称して活物質層24、34という。   Hereinafter, the positive electrode 20 and the negative electrode 30 are collectively referred to as electrodes 20 and 30, and the positive electrode current collector 22 and the negative electrode current collector 32 are collectively referred to as current collectors 22 and 32. The positive electrode active material layer 24 and the negative electrode active material The material layer 34 is collectively referred to as the active material layers 24 and 34.

(正極活物質層)
正極活物質層24は、正極活物質、バインダー、及び、必要に応じて導電剤から主に構成される。
(Positive electrode active material layer)
The positive electrode active material layer 24 is mainly composed of a positive electrode active material, a binder, and, if necessary, a conductive agent.

(正極活物質)
正極活物質は、Li及び遷移金属を含む化合物を一種以上含む活物質粒子と、前記活物質粒子表面の少なくとも一部を被覆する被覆層とを有し、前記被覆層はグラフェンもしくは多層グラフェンの少なくとも一種からなり、前記被覆層におけるラマンスペクトルにおいて、Gバンド(1530cm−1〜1630cm−1のピーク)、Dバンド(1300cm−1〜1400cm−1のピーク)と2Dバンド(2650cm−1〜2750cm−1のピーク)を有し、
少なくともGバンドの強度で規格化した2Dバンドの強度(2Dint/Gint)が、0.05≦2Dint/Gint、を満たす。
(Positive electrode active material)
The positive electrode active material has active material particles containing one or more compounds containing Li and a transition metal, and a coating layer that covers at least a part of the surface of the active material particles, and the coating layer is at least graphene or multilayer graphene It made one, in the Raman spectrum of the coating layer, (the peak of 1530cm -1 ~1630cm -1) G band, D band (peak of 1300cm -1 ~1400cm -1) and 2D band (2650cm -1 ~2750cm -1 Peak)
The intensity (2D int / G int ) of the 2D band normalized by at least the intensity of the G band satisfies 0.05 ≦ 2D int / G int .

Gバンドで規格化した2Dバンドの強度が、0.05≦2Dint/Gintを満たせば、被覆層を形成するグラフェンもしくは多層グラフェンは高い電子伝導性を有し、さらに活物質粒子表面の凹凸に対して良好な接触性を有する為、レート特性が向上する。
If the intensity of the 2D band normalized by the G band satisfies 0.05 ≦ 2D int / G int , the graphene or multilayer graphene forming the coating layer has high electron conductivity, and the irregularities on the surface of the active material particles Therefore, the rate characteristic is improved.

また、Gバンドの強度で規格化した2Dバンドの強度(2Dint/Gint)は、0.05≦2Dint/Gint≦0.4を満たす場合、レート特性のみならず、電極作成時の塗料安定性が向上し塗布性が向上するため好ましい。 In addition, when the intensity of the 2D band normalized by the intensity of the G band (2D int / G int ) satisfies 0.05 ≦ 2D int / G int ≦ 0.4, not only the rate characteristics, It is preferable because the stability of the paint is improved and the coating property is improved.

ここで、グラフェンとは、炭素原子の六員環を平面に敷き詰めた構造を持つ単原子層の物質である。多層グラフェンとは、グラフェンが複数積層した構造を持つ物質であり、厚みが100nm以下のものを多層グラフェンとする。   Here, graphene is a substance of a monoatomic layer having a structure in which six-membered rings of carbon atoms are spread on a plane. Multilayer graphene is a substance having a structure in which a plurality of graphenes are stacked, and a multilayer graphene having a thickness of 100 nm or less.

(被覆層)
前記被覆層は、被覆層を構成する材料の結晶性、また活物質粒子との密着性の観点から被覆層を形成する物質は厚みが20nm以下の条件を満たすことが好ましい。
(Coating layer)
The covering layer preferably satisfies the condition that the thickness of the material forming the covering layer is 20 nm or less from the viewpoint of the crystallinity of the material constituting the covering layer and the adhesion to the active material particles.

Gバンドの強度で規格化した2Dバンドの強度(2Dint/Gint)が、0.1≦2Dint/Gintを満たすことがより好ましい。
被覆層を形成するグラフェンもしくは多層グラフェンが上記条件を満たす場合、グラフェンもしくは多層グラフェン自体の導電性、グラフェンもしくは多層グラフェンと活物質粒子間の導電性が向上し、活物質からのLi挿入脱離も容易となり、レート特性がさらに向上するため好ましい。
More preferably, the intensity of the 2D band (2D int / G int ) normalized by the intensity of the G band satisfies 0.1 ≦ 2D int / G int .
When the graphene or multilayer graphene forming the coating layer satisfies the above conditions, the conductivity of the graphene or multilayer graphene itself, the conductivity between the graphene or multilayer graphene and the active material particles are improved, and Li insertion and desorption from the active material is also achieved. This is preferable because it becomes easy and rate characteristics are further improved.

さらにGバンドの強度で規格化したDバンドの強度(Dint/Gint)が、0.6≦Dint/Gint≦1.2であることが好ましい。   Furthermore, it is preferable that the intensity (Dint / Gint) of the D band normalized by the intensity of the G band is 0.6 ≦ Dint / Gint ≦ 1.2.

Gバンドで規格化したDバンド強度が、0.6≦Dint/Gintを満たすことで、グラフェンもしくは多層グラフェンと活物質粒子との密着性が向上し、Dint/Gint≦1.2を満たすことで、グラフェンもしくは多層グラフェンを構成する微結晶は、グラフェンもしくは多層グラフェンが良好な導電性を発揮するのに十分な大きさを有する。   When the D band intensity normalized by the G band satisfies 0.6 ≦ Dint / Gint, the adhesion between graphene or multilayer graphene and the active material particles is improved, and by satisfying Dint / Gint ≦ 1.2 The crystallites constituting the graphene or multilayer graphene have a size sufficient for the graphene or multilayer graphene to exhibit good conductivity.

Li及び遷移金属を含む化合物を一種以上含む活物質は、例えば、LiCoOで表されるコバルト酸リチウム、LiMnOで表されるマンガン酸リチウム、LiNi(1−y−z)CoAl [0.05≦x≦1.2、0<y≦0.5、0<z≦0.5、y+z≦0.5] もしくはLiNi(1−y−z)CoMn [0.05≦x≦1.2、0<y≦0.5、0<z≦0.5、y+z≦0.5]で表されるニッケル酸リチウム、LiFePOで表されるリン酸鉄リチウム、LiMnPOで表されるリン酸マンガンリチウム、LiVOPOやLi(PO等で表されるリン酸バナジウムリチウムなどが挙げられる。その中でもLiNi(1−y−z)CoAl [0.05≦x≦1.2、0<y≦0.5、0<z≦0.5、y+z≦0.5]で表される化合物は高容量であるため好ましい。
また、いうまでもないが上述した例の化合物を複数混合しても良い。混合する場合には少なくとも前記グラフェン又は多層グラフェンはLiNi(1−y−z)CoAl [0.05≦x≦1.2、0<y≦0.5、0<z≦0.5、y+z≦0.5]で表される化合物を被覆することが好ましい。
Examples of the active material containing one or more compounds including Li and a transition metal include lithium cobaltate represented by LiCoO 2 , lithium manganate represented by LiMnO 2 , and Li x Ni (1-yz) Co y Al. z O 2 [0.05 ≦ x ≦ 1.2,0 <y ≦ 0.5,0 <z ≦ 0.5, y + z ≦ 0.5] or Li x Ni (1-y- z) Co y Mn z O 2 [0.05 ≦ x ≦ 1.2,0 <y ≦ 0.5,0 <z ≦ 0.5, y + z ≦ 0.5] lithium nickelate represented by the represented by LiFePO 4 Examples thereof include lithium iron phosphate, lithium manganese phosphate represented by LiMnPO 4 , lithium vanadium phosphate represented by LiVOPO 4 , Li 3 V 2 (PO 4 ) 3, and the like. Among them, Li x Ni (1-yz) Co y Al z O 2 [0.05 ≦ x ≦ 1.2, 0 <y ≦ 0.5, 0 <z ≦ 0.5, y + z ≦ 0.5 ] Is preferable because of its high capacity.
Needless to say, a plurality of compounds of the above-described examples may be mixed. In the case of mixing, at least the graphene or multilayer graphene is Li x Ni (1-yz) Co y Al z O 2 [0.05 ≦ x ≦ 1.2, 0 <y ≦ 0.5, 0 <z. It is preferable to coat the compound represented by ≦ 0.5, y + z ≦ 0.5].

ここで、本実施形態に係る活物質の種類は、X線回折、X線光電子分光、エネルギー分散型X線分光法の分析などによって同定できる。その中でもX線回折が好ましい。   Here, the type of the active material according to the present embodiment can be identified by analysis of X-ray diffraction, X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy, or the like. Among these, X-ray diffraction is preferable.

前記活物質は、二次粒子を構成していることが好ましい。二次粒子を構成する場合、その活物質の二次粒子の平均粒径は500nm〜50μmであることが好ましい。平均粒径がこの範囲であれば、活物質粒子表面に十分な被覆層を形成するのに必要なグラフェンもしくは多層グラフェン量の減少によって活物質の占める割合が増え、また活物質粒子内部と外部の電子及びLiイオンの伝導が向上し、正極の容量が向上する。   The active material preferably constitutes secondary particles. When constituting secondary particles, the average particle size of the secondary particles of the active material is preferably 500 nm to 50 μm. If the average particle size is within this range, the proportion of the active material increases due to the decrease in the amount of graphene or multilayer graphene necessary to form a sufficient coating layer on the surface of the active material particles, and the inside and outside of the active material particles The conduction of electrons and Li ions is improved, and the capacity of the positive electrode is improved.

本実施形態に係るグラフェンもしくは多層グラフェンによる活物質粒子表面に形成された被覆層のラマンスペクトルは、例えばレーザーラマン顕微鏡によって測定できる。
レーザーラマン顕微鏡には、光源として例えばアルゴンイオンレーザーを使用できる。公知のアルゴンイオンレーザーを用いたラマン測定装置を用いればよく、例えば、波長514.532nmのアルゴンイオンレーザーを用いて測定すればよい。
The Raman spectrum of the coating layer formed on the surface of the active material particles by graphene or multilayer graphene according to the present embodiment can be measured by, for example, a laser Raman microscope.
In the laser Raman microscope, for example, an argon ion laser can be used as a light source. A known Raman measurement apparatus using an argon ion laser may be used. For example, the measurement may be performed using an argon ion laser having a wavelength of 514.532 nm.

測定されたラマンスペクトルはGバンド、Dバンド、2Dバンド(フォノンがブリルアンゾーンのディラックコーン間で1回ずつ弾性散乱と非弾性散乱されることに由来する1300cm−1〜1400cm−1に現れるピーク)及び2Dバンドを除く波数範囲(700cm−1〜1100cm−1、1800cm−1〜2500cm−1及び2850cm−1〜3100cm−1)に対して二次関数を用いたフィッティングを行い、この二次関数をベースラインとしてGバンド及び2Dバンドの強度とする。また複数回測定を行い、平均をとることで、Gバンド強度に対するノイズの標準偏差が5%以下となるまで測定を繰り返す。 The measured Raman spectra are G band, D band and 2D band (peaks appearing at 1300 cm −1 to 1400 cm −1 derived from elastic scattering and inelastic scattering of phonons once between Dirac cones in the Brillouin zone) and wave number range (700cm -1 ~1100cm -1, 1800cm -1 ~2500cm -1 and 2850cm -1 ~3100cm -1) excluding the 2D band performs fitting using a quadratic function with respect to, the secondary function The baseline is the intensity of the G band and 2D band. Further, the measurement is repeated several times, and the measurement is repeated until the standard deviation of the noise with respect to the G band intensity becomes 5% or less.

(正極集電体)
正極集電体22は、導電性の板材であればよく、例えば、アルミニウム、銅、ニッケル箔の金属薄板を用いることができる。
(Positive electrode current collector)
The positive electrode current collector 22 may be a conductive plate material, and for example, a thin metal plate of aluminum, copper, or nickel foil can be used.

(正極バインダー)
バインダーは、活物質同士を結合すると共に、活物質と集電体22とを結合している。バインダーは、上述の結合が可能なものであればよく、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン−テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン−クロロトリフルオロエチレン共重合体(ECTFE)、ポリフッ化ビニル(PVF)等のフッ素樹脂が挙げられる。
(Positive electrode binder)
The binder binds the active materials to each other and binds the active material to the current collector 22. The binder is not particularly limited as long as the above-described bonding is possible. For example, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene- Perfluoroalkyl vinyl ether copolymer (PFA), ethylene-tetrafluoroethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), ethylene-chlorotrifluoroethylene copolymer (ECTFE), polyvinyl fluoride (PVF) ) And the like.

また、上記の他に、バインダーとして、例えば、ビニリデンフルオライド−ヘキサフルオロプロピレン系フッ素ゴム(VDF−HFP系フッ素ゴム)、ビニリデンフルオライド−ヘキサフルオロプロピレン−テトラフルオロエチレン系フッ素ゴム(VDF−HFPTFE系フッ素ゴム)、ビニリデンフルオライド−ペンタフルオロプロピレン系フッ素ゴム(VDF−PFP系フッ素ゴム)、ビニリデンフルオライド−ペンタフルオロプロピレン−テトラフルオロエチレン系フッ素ゴム(VDF−PFP−TFE系フッ素ゴム)、ビニリデンフルオライド−パーフルオロメチルビニルエーテル−テトラフルオロエチレン系フッ素ゴム(VDF−PFMVE−TFE系フッ素ゴム)、ビニリデンフルオライド−クロロトリフルオロエチレン系フッ素ゴム(VDF−CTFE系フッ素ゴム)等のビニリデンフルオライド系フッ素ゴムを用いてもよい。   In addition to the above, as the binder, for example, vinylidene fluoride-hexafluoropropylene-based fluororubber (VDF-HFP-based fluororubber), vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene-based fluororubber (VDF-HFPPTFE-based) Fluororubber), vinylidene fluoride-pentafluoropropylene-based fluororubber (VDF-PFP-based fluororubber), vinylidene fluoride-pentafluoropropylene-tetrafluoroethylene-based fluororubber (VDF-PFP-TFE-based fluororubber), vinylidene fluoride Ride-perfluoromethyl vinyl ether-tetrafluoroethylene fluoro rubber (VDF-PFMVE-TFE fluoro rubber), vinylidene fluoride-chlorotrifluoroethylene fluoro rubber It may be used vinylidene fluoride-based fluorine rubbers such as rubber (VDF-CTFE-based fluorine rubber).

また、バインダーとして電子伝導性の導電性高分子やイオン伝導性の導電性高分子を用いてもよい。電子伝導性の導電性高分子としては、例えば、ポリアセチレン等が挙げられる。この場合は、バインダーが導電材の機能も発揮するので導電材を添加しなくてもよい。イオン伝導性の導電性高分子としては、例えば、ポリエチレンオキシド、ポリプロピレンオキシド等の高分子化合物にリチウム塩又はリチウムを主体とするアルカリ金属塩と、を複合化させたもの等が挙げられる。   Alternatively, an electron conductive conductive polymer or an ion conductive conductive polymer may be used as the binder. Examples of the electron conductive conductive polymer include polyacetylene. In this case, since the binder also functions as a conductive material, it is not necessary to add a conductive material. Examples of the ion conductive conductive polymer include those obtained by combining a polymer compound such as polyethylene oxide and polypropylene oxide with a lithium salt or an alkali metal salt mainly composed of lithium.

(導電剤)
活物質粒子表面にグラフェンもしくは多層グラフェンによる被覆層を形成することで、電極作成時に導電剤を加えなくとも、電池は高いレート特性を示す。しかし、例えば、カーボンブラック、アセチレンブラック等の粒径の小さい炭素材料を塗料作成時に微量添加することで、レート特性がさらに向上する。粒径の小さい炭素材料によって、グラフェンもしくは多層グラフェンによる被覆層同士の接点における電気伝導性が強化されたためであると推測される。
(Conductive agent)
By forming a coating layer of graphene or multilayer graphene on the surface of the active material particles, the battery exhibits high rate characteristics without adding a conductive agent during electrode preparation. However, rate characteristics are further improved by adding a small amount of a carbon material having a small particle diameter such as carbon black or acetylene black at the time of preparing the coating. This is presumably because the carbon material having a small particle size enhanced the electrical conductivity at the contact between the coating layers of graphene or multilayer graphene.

(負極活物質層)
負活物質層34は、負極活物質、バインダー、及び、必要に応じて導電剤から主に構成される。
(Negative electrode active material layer)
The negative active material layer 34 is mainly composed of a negative electrode active material, a binder, and, if necessary, a conductive agent.

(負極活物質)
負極活物質はリチウムイオンを吸蔵・放出可能な化合物であればよく、公知のリチウムイオン電池用の負極活物質を使用できる。負極活物質としては、例えば、リチウムイオンを吸蔵・放出可能な黒鉛(天然黒鉛、人造黒鉛)、カーボンナノチューブ、難黒鉛化炭素、易黒鉛化炭素、低温度焼成炭素等の炭素材料、アルミニウム、シリコン、スズ等のリチウムと化合することのできる金属、二酸化シリコン、二酸化スズ等の酸化物を主体とする非晶質の化合物、チタン酸リチウム(LiTi12)等を含む粒子が挙げられる。単位重量あたりの容量の高く、比較的安定な黒鉛を用いることが好ましい。
(Negative electrode active material)
The negative electrode active material should just be a compound which can occlude / release lithium ion, and can use the well-known negative electrode active material for lithium ion batteries. Examples of the negative electrode active material include carbon materials that can occlude and release lithium ions (natural graphite, artificial graphite), carbon nanotubes, non-graphitizable carbon, graphitizable carbon, low-temperature calcined carbon, and the like, aluminum, silicon And particles containing a metal that can be combined with lithium such as tin, an amorphous compound mainly composed of an oxide such as silicon dioxide and tin dioxide, and lithium titanate (Li 4 Ti 5 O 12 ). . It is preferable to use graphite having a high capacity per unit weight and relatively stable.

(負極集電体)
負極集電体32は、導電性の板材であればよく、例えば、アルミニウム、銅、ニッケル箔の金属薄板を用いることができる。
(Negative electrode current collector)
The negative electrode current collector 32 may be a conductive plate material, and for example, a thin metal plate of aluminum, copper, or nickel foil can be used.

(負極導電材)
導電材としては、例えば、カーボンブラック類等のカーボン粉末、カーボンナノチューブ、炭素材料、銅、ニッケル、ステンレス、鉄等の金属微粉、炭素材料及び金属微粉の混合物、ITO等の導電性酸化物が挙げられる。
(Negative electrode conductive material)
Examples of the conductive material include carbon powder such as carbon black, carbon nanotube, carbon material, fine metal powder such as copper, nickel, stainless steel and iron, a mixture of carbon material and fine metal powder, and conductive oxide such as ITO. It is done.

(負極バインダー)
負極に用いるバインダーは正極と同様のものを使用できる。
(Negative electrode binder)
The binder used for a negative electrode can use the same thing as a positive electrode.

(セパレータ)
セパレータ10は、電気絶縁性の多孔質構造から形成されていればよく、例えば、ポリエチレン、ポリプロピレン又はポリオレフィンからなるフィルムの単層体、積層体や上記樹脂の混合物の延伸膜、或いはセルロース、ポリエステル及びポリプロピレンからなる群より選択される少なくとも1種の構成材料からなる繊維不織布が挙げられる。
(Separator)
The separator 10 only needs to be formed of an electrically insulating porous structure, for example, a single layer of a film made of polyethylene, polypropylene, or polyolefin, a stretched film of a laminate or a mixture of the above resins, or cellulose, polyester, and Examples thereof include a fiber nonwoven fabric made of at least one constituent material selected from the group consisting of polypropylene.

(非水電解液)
非水電解液は、非水溶媒に電解質が溶解されており、非水溶媒として環状カーボネートと、鎖状カーボネートと、を含有してもよい。
(Nonaqueous electrolyte)
The nonaqueous electrolytic solution has an electrolyte dissolved in a nonaqueous solvent, and may contain a cyclic carbonate and a chain carbonate as a nonaqueous solvent.

環状カーボネートとしては、電解質を溶媒和することができるものであれば特に限定されず、公知の環状カーボネートを使用できる。例えば、エチレンカーボネート、プロピレンカーボネート及びブチレンカーボネートなどを用いることができる。   The cyclic carbonate is not particularly limited as long as it can solvate the electrolyte, and a known cyclic carbonate can be used. For example, ethylene carbonate, propylene carbonate, butylene carbonate, and the like can be used.

鎖状カーボネートとしては、環状カーボネートの粘性を低下させることができるものであれば特に限定されず、公知の鎖状カーボネートを使用できる。例えば、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネートが挙げられる。その他、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、γ−ブチロラクトン、1,2−ジメトキシエタン、1,2−ジエトキシエタンなどを混合して使用してもよい。   The chain carbonate is not particularly limited as long as the viscosity of the cyclic carbonate can be reduced, and a known chain carbonate can be used. Examples thereof include diethyl carbonate, dimethyl carbonate, and ethyl methyl carbonate. In addition, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, γ-butyrolactone, 1,2-dimethoxyethane, 1,2-diethoxyethane, and the like may be mixed and used.

非水溶媒中の環状カーボネートと鎖状カーボネートの割合は体積にして1:9〜1:1にすることが好ましい。   The ratio of the cyclic carbonate and the chain carbonate in the non-aqueous solvent is preferably 1: 9 to 1: 1 by volume.

電解質としては、例えば、LiPF、LiClO、LiBF、LiCFSO、LiCF、CFSO、LiC(CFSO、LiN(CFSO、LiN(CFCFSO、LiN(CFSO)(CSO)、LiN(CFCFCO)、LiBOB等のリチウム塩が使用できる。なお、これらのリチウム塩は1種を単独で使用してもよく、2種以上を併用してもよい。特に、電離度の観点から、LiPFを含むことが好ましい。 Examples of the electrolyte include LiPF 6 , LiClO 4 , LiBF 4 , LiCF 3 SO 3 , LiCF 3 , CF 2 SO 3 , LiC (CF 3 SO 2 ) 3 , LiN (CF 3 SO 2 ) 2 , LiN (CF 3 Lithium salts such as CF 2 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiN (CF 3 CF 2 CO) 2 , LiBOB can be used. In addition, these lithium salts may be used individually by 1 type, and may use 2 or more types together. In particular, LiPF 6 is preferably included from the viewpoint of the degree of ionization.

LiPFを非水溶媒に溶解する際は、非水電解液中の電解質の濃度を、0.5〜2.0mol/Lに調整することが好ましい。電解質の濃度が0.5mol/L以上であると、非水電解液のリチウムイオン濃度を充分に確保することができ、充放電時に十分な容量が得られやすい。また、電解質の濃度が2.0mol/L以内に抑えることで、非水電解液の粘度上昇を抑え、リチウムイオンの移動度を充分に確保することができ、充放電時に十分な容量が得られやすくなる。 When LiPF 6 is dissolved in a non-aqueous solvent, the concentration of the electrolyte in the non-aqueous electrolyte is preferably adjusted to 0.5 to 2.0 mol / L. When the concentration of the electrolyte is 0.5 mol / L or more, the lithium ion concentration of the nonaqueous electrolytic solution can be sufficiently secured, and a sufficient capacity can be easily obtained during charging and discharging. Moreover, by suppressing the electrolyte concentration to within 2.0 mol / L, it is possible to suppress an increase in the viscosity of the non-aqueous electrolyte, to sufficiently secure the mobility of lithium ions, and to obtain a sufficient capacity during charging and discharging. It becomes easy.

LiPFをその他の電解質と混合する場合にも、非水電解液中のリチウムイオン濃度が0.5〜2.0mol/Lに調整することが好ましく、LiPFからのリチウムイオン濃度がその50mol%以上含まれることがさらに好ましい。 Even when LiPF 6 is mixed with another electrolyte, the lithium ion concentration in the non-aqueous electrolyte is preferably adjusted to 0.5 to 2.0 mol / L, and the lithium ion concentration from LiPF 6 is 50 mol%. More preferably, it is contained.

(正極活物質の製造方法)
本実施形態に係る正極活物質は、以下の被覆層形成工程により製造することができる。
(Method for producing positive electrode active material)
The positive electrode active material according to the present embodiment can be produced by the following coating layer forming step.

(被覆層形成工程)
被覆層形成工程では、活物質粒子の表面にグラフェンもしくは多層グラフェンによる被覆層を形成することができる。被覆層を形成する方法として、特に限定されないが、摩擦や圧縮といった機械エネルギーを利用したメカノケミカル法、粒子にコーティング液を吹きかけるスプレードライ法など、粒子表面にコーティング層を形成する既存の方法を用いることができる。中でも、メカノケミカル法は均一で密着性の良い被覆層を形成できるため好ましい。
(Coating layer forming process)
In the coating layer forming step, a coating layer of graphene or multilayer graphene can be formed on the surface of the active material particles. The method for forming the coating layer is not particularly limited, but an existing method for forming a coating layer on the particle surface, such as a mechanochemical method using mechanical energy such as friction or compression, or a spray drying method in which a coating liquid is sprayed on the particle is used. be able to. Among these, the mechanochemical method is preferable because it can form a coating layer that is uniform and has good adhesion.

メカノケミカル法の具体的な製造装置の例としては、メカノフュージョン装置、遊星ミルのような装置を用いることができる。スプレードライ法の具体的な装置の例としては、スプレードライヤ等を用いることができる。中でも、粉体にせん断応力をかけられるメカノケミカル法が好ましく、装置例としてはメカノフュージョン装置が挙げられる。   As a specific example of the manufacturing apparatus of the mechanochemical method, an apparatus such as a mechanofusion apparatus or a planetary mill can be used. As an example of a specific apparatus for the spray drying method, a spray dryer or the like can be used. Among these, a mechanochemical method in which shear stress is applied to the powder is preferable, and an example of the apparatus is a mechanofusion apparatus.

グラフェンもしくは多層グラフェンによる活物質粒子表面の被覆層におけるGバンド及び2Dバンドの強度比は、被覆層に含まれるグラフェンもしくは多層グラフェンの欠陥密度や層数に依存する。例えば粉体にせん断応力をかけられるメカノケミカル法を用いて被覆層を形成する場合、処理装置の角度、回転数、処理時間及び材料投入量の調整、さらに被覆層形成後の熱処理を適宜調整することによってラマンスペクトルのGバンド及び2Dバンドの強度を調節できる。   The intensity ratio of the G band and the 2D band in the coating layer on the surface of the active material particle by graphene or multilayer graphene depends on the defect density or the number of layers of graphene or multilayer graphene contained in the coating layer. For example, when a coating layer is formed using a mechanochemical method in which a shear stress can be applied to the powder, the angle of the processing apparatus, the number of revolutions, the processing time, the amount of material input are adjusted, and the heat treatment after the coating layer is formed is appropriately adjusted. Thus, the intensity of the G band and 2D band of the Raman spectrum can be adjusted.

(電極20,30の製造方法)
次に、本実施形態に係る電極20,30の製造方法について説明する。
(Method for manufacturing electrodes 20 and 30)
Next, a method for manufacturing the electrodes 20 and 30 according to the present embodiment will be described.

上記活物質、バインダー及び溶媒を混合する。必要に応じ導電材を更に加えても良い。溶媒としては例えば、水、N−メチル−2−ピロリドン等を用いることができる。塗料を構成する成分の混合方法は特に制限されず、混合順序もまた特に制限されない。上記塗料を、集電体22、32に塗布する。塗布方法としては、特に制限はなく、通常電極を作製する場合に採用される方法を用いることができる。例えば、スリットダイコート法、ドクターブレード法が挙げられる。   The active material, binder and solvent are mixed. A conductive material may be further added as necessary. As the solvent, for example, water, N-methyl-2-pyrrolidone or the like can be used. The mixing method of the components constituting the paint is not particularly limited, and the mixing order is not particularly limited. The paint is applied to the current collectors 22 and 32. There is no restriction | limiting in particular as an application | coating method, The method employ | adopted when producing an electrode normally can be used. Examples thereof include a slit die coating method and a doctor blade method.

続いて、集電体22、32上に塗布された塗料中の溶媒を除去する。除去法は特に限定されず、塗料が塗布された集電体22、32を、例えば80℃〜150℃の雰囲気下で乾燥させればよい。   Subsequently, the solvent in the paint applied on the current collectors 22 and 32 is removed. The removal method is not particularly limited, and the current collectors 22 and 32 to which the paint is applied may be dried, for example, in an atmosphere of 80 ° C. to 150 ° C.

そして、このようにして正極活物質層24、負極活物質層34が形成された電極を必要に応じ、ロールプレス装置等によりプレス処理を行う。ロールプレスの線圧は例えば、1000kgf/cmとすることができる。   Then, the electrode on which the positive electrode active material layer 24 and the negative electrode active material layer 34 are formed in this way is subjected to a press treatment by a roll press device or the like as necessary. The linear pressure of the roll press can be set to 1000 kgf / cm, for example.

以上の工程を経て、集電体22、32上に電極活物質層24,34が形成された電極が得られる。   Through the above steps, an electrode in which the electrode active material layers 24 and 34 are formed on the current collectors 22 and 32 is obtained.

(リチウムイオン二次電池の製造方法)
続いて、本実施形態に係るリチウムイオン二次電池の製造方法について説明する。本実施形態に係るリチウムイオン二次電池の製造方法は、上述した活物質を含む正極20と、負極30と、正極と負極との間に介在するセパレータ10と、リチウム塩を含む非水電解質溶液と、を外装体50内に封入する工程を備える。
(Method for producing lithium ion secondary battery)
Then, the manufacturing method of the lithium ion secondary battery which concerns on this embodiment is demonstrated. The method for manufacturing a lithium ion secondary battery according to the present embodiment includes a positive electrode 20 containing the active material, a negative electrode 30, a separator 10 interposed between the positive electrode and the negative electrode, and a nonaqueous electrolyte solution containing a lithium salt. And a step of enclosing the outer body 50 in the exterior body 50.

例えば、上述した活物質を含む正極20と、上記負極30と、上記セパレータ10とを積層し、正極20及び負極30を、積層方向に対して垂直な方向から、プレス器具で加熱加圧し、正極20、セパレータ10、及び負極30を密着させる。そして、例えば、予め作製した袋状の外装体50に、上記積層体40を入れ、上記リチウム塩を含む非水電解質溶液を注入することにより、リチウムイオン二次電池を作製することができる。なお、外装体に上記リチウム塩を含む非水電解質溶液を注入するのではなく、積層体40を予め上記リチウム塩を含む非水電解質溶液に含浸させてもよい。   For example, the positive electrode 20 including the active material described above, the negative electrode 30 and the separator 10 are stacked, and the positive electrode 20 and the negative electrode 30 are heated and pressed with a press tool from a direction perpendicular to the stacking direction. 20, the separator 10 and the negative electrode 30 are brought into close contact with each other. Then, for example, a lithium ion secondary battery can be manufactured by putting the laminate 40 into a bag-shaped outer package 50 prepared in advance and injecting a non-aqueous electrolyte solution containing the lithium salt. Instead of injecting the nonaqueous electrolyte solution containing the lithium salt into the outer package, the laminate 40 may be impregnated in advance with the nonaqueous electrolyte solution containing the lithium salt.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and exhibits the same function and effect. Are included in the technical scope.

(実施例1)
(正極の作製)
Li及び遷移金属を含む活物質として二次粒子の平均粒径が15μmのLi1.0Ni0.83Co0.14Al0.032.0(以下NCAと表記する)と、平均厚さ8nm、長径・短径の平均長さが15μmの多層グラフェンとを100:2の質量比率で秤量し、5度に傾斜させたホソカワミクロン製メカノフュージョンを用いて、回転数3500rpmで20分間処理を行いNCA表面に多層グラフェンによる被覆層を形成した。さらに被覆層が形成されたNCAを真空雰囲気において400℃30分のアニール処理を行いラマンスペクトルのGバンド及び2Dバンドの強度を調節した。上記正極活物質粉末97.5%とポリフッ化ビニリデン(PVDF)2.5%をN−メチル−2−ピロリドン(NMP)中に分散させ、スラリーを調製した。得られたスラリーを厚さ15μmのアルミ箔上に塗工し、温度120℃で30分間乾燥した後にロールプレス装置を用いて線圧1000kgf/cmでプレス処理することにより、正極を得た。
Example 1
(Preparation of positive electrode)
Li 1.0 Ni 0.83 Co 0.14 Al 0.03 O 2.0 (hereinafter referred to as NCA) having an average secondary particle size of 15 μm as an active material containing Li and a transition metal, and an average thickness We measure multilayer graphene with a length of 8 nm and an average length of major axis and minor axis of 15 μm at a mass ratio of 100: 2 and use a Hosokawa micron mechanofusion inclined at 5 degrees for 20 minutes at a rotational speed of 3500 rpm. A coating layer of multilayer graphene was formed on the NCA surface. Further, the NCA on which the coating layer was formed was annealed in a vacuum atmosphere at 400 ° C. for 30 minutes to adjust the intensity of the G spectrum and 2D band of the Raman spectrum. A slurry was prepared by dispersing 97.5% of the positive electrode active material powder and 2.5% of polyvinylidene fluoride (PVDF) in N-methyl-2-pyrrolidone (NMP). The obtained slurry was coated on an aluminum foil having a thickness of 15 μm, dried at a temperature of 120 ° C. for 30 minutes, and then pressed using a roll press apparatus at a linear pressure of 1000 kgf / cm to obtain a positive electrode.

(正極内部の多層グラフェン被覆層の測定)
NCA粒子表面の多層グラフェンによる被覆層の被覆状態の測定は、透過型電子顕微鏡(TEM)、走査型電子顕微鏡(SEM)、レーザーラマン顕微鏡、クロスセクションポリッシャ、イオンミリング装置を用いて測定した。測定用の試料は、正極を切断し、切断面をクロスセクションポリッシャおよびイオンミリング装置で研磨することで作製した。
またNCA粒子表面の多層グラフェンによる被覆層のラマンスペクトルは、電極表面よりレーザーラマン顕微鏡を用いて測定した。
(Measurement of multilayer graphene coating layer inside the positive electrode)
The coating state of the coating layer with multilayer graphene on the NCA particle surface was measured using a transmission electron microscope (TEM), a scanning electron microscope (SEM), a laser Raman microscope, a cross section polisher, and an ion milling device. A sample for measurement was prepared by cutting the positive electrode and polishing the cut surface with a cross section polisher and an ion milling device.
Moreover, the Raman spectrum of the coating layer by the multilayer graphene on the NCA particle surface was measured from the electrode surface using a laser Raman microscope.

SEM、EDXおよびTEMによる正極表面および正極断面の観察により、NCA粒子表面に均一な多層グラフェンによる被覆層が形成されていることを確認し、SEMによりNCA粒子50個に対して4箇所ずつ被覆層の厚みの測定を行い、被覆層の厚さが平均190nmであるとわかった。   By observing the surface of the positive electrode and the cross section of the positive electrode with SEM, EDX, and TEM, it was confirmed that a uniform multilayer graphene coating layer was formed on the NCA particle surface. The thickness of the coating layer was measured, and the average thickness of the coating layer was found to be 190 nm.

レーザーラマン顕微鏡による正極断面のラマンマッピング測定により、NCA粒子表面に、多層グラフェンによる被覆層が形成されていることを確認した。   It was confirmed by the Raman mapping measurement of the cross section of the positive electrode with a laser Raman microscope that a coating layer of multilayer graphene was formed on the NCA particle surface.

(負極の作製)
負極活物質として天然黒鉛粉末90質量部と、PVDF10質量部をNMP中に分散させてスラリーを調製した。得られたスラリーを厚さ15μmの銅箔上に塗工し、温度140℃で30分間減圧乾燥した後に、ロールプレス装置を用いてプレス処理することにより、負極を得た。
(Preparation of negative electrode)
As negative electrode active material, 90 parts by mass of natural graphite powder and 10 parts by mass of PVDF were dispersed in NMP to prepare a slurry. The obtained slurry was coated on a copper foil having a thickness of 15 μm, dried under reduced pressure at a temperature of 140 ° C. for 30 minutes, and then pressed using a roll press apparatus to obtain a negative electrode.

(非水電解質溶液)
エチレンカーボネート(EC)とジエチルカーボネート(DEC)の混合溶媒に、LiPFを1.0mol/L、LiBFを0.1mol/Lとなるように溶解させた非水電解質溶液を用意した。混合溶媒におけるECとDECとの体積比は、EC:DEC=30:70とした。
(Nonaqueous electrolyte solution)
A non-aqueous electrolyte solution was prepared by dissolving LiPF 6 at a concentration of 1.0 mol / L and LiBF 4 at a concentration of 0.1 mol / L in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC). The volume ratio of EC to DEC in the mixed solvent was EC: DEC = 30: 70.

(セパレータ)
膜厚20μmのポリエチレン微多孔膜(空孔率:40%、シャットダウン温度:134℃)を用意した。
(Separator)
A polyethylene microporous membrane having a thickness of 20 μm (porosity: 40%, shutdown temperature: 134 ° C.) was prepared.

(電池の作製)
上記正極、負極、及びセパレータを積層させて発電要素を構成し、これと上記非水電解液とを用いて、実施例1の電池セルを作製した。
(Production of battery)
The positive electrode, the negative electrode, and the separator were laminated to constitute a power generation element, and a battery cell of Example 1 was produced using this and the non-aqueous electrolyte.

(Cレート)
電池セルの容量を1時間で充電もしくは放電する電流密度を1Cと呼び、以下では充電もしくは放電時の電流密度をCレートの定数倍を用いて表す(例えば1Cの半分の電流密度は0.5Cと表す。)
(C rate)
The current density for charging or discharging a battery cell in one hour is called 1C. In the following, the current density during charging or discharging is expressed using a constant multiple of the C rate (for example, a current density half of 1C is 0.5C). Expressed as)

(レート特性の測定)
作製した実施例1の電池セルを用いて、0.1Cの電流密度で電圧が4.2V(vs.Li/Li)に到達するまで定電流充電を行い、さらに電流密度が0.05Cに低下するまで4.2V(vs.Li/Li)において定電圧充電を行い、充電容量を測定した。
(Measurement of rate characteristics)
Using the produced battery cell of Example 1, constant current charging was performed until the voltage reached 4.2 V (vs. Li / Li + ) at a current density of 0.1 C, and the current density was further increased to 0.05 C. Constant voltage charging was performed at 4.2 V (vs. Li / Li + ) until the voltage decreased, and the charge capacity was measured.

続いて、5分間の休止後に0.1Cの電流密度で電圧が2.5V(vs.Li/Li)となるまで定電流放電を行い、放電容量を測定した。なお、電流密度は1Cを活物質質量1gに対して190mAhとして計算した。 Subsequently, after resting for 5 minutes, constant current discharge was performed at a current density of 0.1 C until the voltage reached 2.5 V (vs. Li / Li + ), and the discharge capacity was measured. The current density was calculated by setting 1 C to 190 mAh with respect to 1 g of active material mass.

充放電時の電流密度を0.3C、0.5C、1C、0.1Cと変更して上記充放電の手順を繰り返すことで電池セルのレート特性を測定した。   The rate characteristics of the battery cells were measured by changing the current density during charging and discharging to 0.3 C, 0.5 C, 1 C, and 0.1 C and repeating the above charging and discharging procedure.

(実施例2〜7、比較例1〜4)
実施例2〜7、比較例1〜4においては多層グラフェンによる活物質表面の被覆層をホソカワミクロン製メカノフュージョンにより形成する際の処理条件及び被覆層形成後の熱処理条件を変更して、被覆層のラマンスペクトルの異なる正極を作製し、実施例1と同様に電池セルを作製し、評価を行った。比較例3、4においては活物質表面にカーボンブラックを用いた被覆層を形成し、処理条件及び被覆層形成後の熱処理条件を変更して、被覆層のラマンスペクトルの異なる正極を作製し、実施例1と同様に電池セルを作製し、評価を行った。結果を表1に示す。
(Examples 2-7, Comparative Examples 1-4)
In Examples 2 to 7 and Comparative Examples 1 to 4, the treatment conditions when forming the coating layer on the active material surface with multilayer graphene by Hosokawa Micron mechanofusion and the heat treatment conditions after the coating layer formation were changed. Positive electrodes having different Raman spectra were produced, and battery cells were produced and evaluated in the same manner as in Example 1. In Comparative Examples 3 and 4, a coating layer using carbon black was formed on the surface of the active material, the processing conditions and the heat treatment conditions after forming the coating layer were changed, and positive electrodes having different Raman spectra of the coating layer were produced. Battery cells were prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1.

Figure 2016189321
Figure 2016189321

表1より、NCA粒子表面の少なくとも一部にグラフェンもしくは多層グラフェンの被覆層が形成され、前記被覆層におけるラマンスペクトルにおいて、Gバンドの強度で規格化した2Dバンドの強度(2Dint/Gint)が、0.05≦2Dint/Gintを満たす場合、同様の組成比で作製された電極であってもレート特性が向上することがわかる。
また、前記ラマンスペクトルの各バンドの強度の範囲に加えて、0.1≦2Dint/Gintを満たす場合、さらにレート特性が向上し、電池のエネルギー密度がさらに向上することがわかる。 また、活物質粒子表面の被覆膜はカーボンブラックよりも多層グラフェンを用いた方が、より高いレート特性を示すことがわかる。
From Table 1, a graphene or multilayer graphene coating layer is formed on at least a part of the NCA particle surface, and in the Raman spectrum of the coating layer, the intensity of the 2D band normalized by the intensity of the G band (2D int / G int ) However, when 0.05 ≦ 2D int / G int is satisfied, it can be seen that the rate characteristics are improved even with an electrode manufactured with a similar composition ratio.
In addition to the range of intensity of each band of the Raman spectrum, it can be seen that when 0.1 ≦ 2D int / G int is satisfied, the rate characteristics are further improved and the energy density of the battery is further improved. It can also be seen that the coating film on the surface of the active material particles shows higher rate characteristics when multilayer graphene is used than carbon black.

(実施例8〜11、比較例5)
実施例8〜11、比較例5においては、正極活物質を二次粒子の平均粒径が20μmのコバルト酸リチウムに変更し、多層グラフェンによる活物質表面の被覆層をホソカワミクロン製メカノフュージョンにより形成する際の処理条件及び被覆層形成後の熱処理条件を変更して、被覆層のラマンスペクトルの異なる正極を作製し、実施例1と同様に電池セルを作製し、評価を行った。結果を表2に示す。
(Examples 8 to 11 and Comparative Example 5)
In Examples 8 to 11 and Comparative Example 5, the positive electrode active material is changed to lithium cobaltate whose secondary particles have an average particle diameter of 20 μm, and the coating layer on the active material surface with multilayer graphene is formed by mechanofusion made by Hosokawa Micron. A positive electrode having a different Raman spectrum of the coating layer was produced by changing the treatment conditions at the time and the heat treatment conditions after the coating layer was formed, and a battery cell was produced and evaluated in the same manner as in Example 1. The results are shown in Table 2.

Figure 2016189321
Figure 2016189321

表2より、コバルト酸リチウム(Li1.0Co1.02.0)粒子表面の少なくとも一部にグラフェンもしくは多層グラフェンの被覆層が形成され、前記被覆層におけるラマンスペクトルにおいて、Gバンドの強度で規格化した2Dバンドの強度(2Dint/Gint)が、0.05≦2Dint/Gintを満たす場合、同様の組成比で作製された電極であってもレート特性が向上することがわかる。
また、前記ラマンスペクトルの各バンドの強度の範囲に加えて、0.1≦2Dint/Gintを満たす場合、さらにレート特性が向上することがわかる。
From Table 2, a graphene or multilayer graphene coating layer is formed on at least a part of the lithium cobaltate (Li 1.0 Co 1.0 O 2.0 ) particle surface, and in the Raman spectrum of the coating layer, the G band When the intensity of the 2D band normalized by intensity (2D int / G int ) satisfies 0.05 ≦ 2D int / G int , rate characteristics are improved even for electrodes made with the same composition ratio I understand.
In addition to the range of intensity of each band of the Raman spectrum, it can be seen that the rate characteristic is further improved when 0.1 ≦ 2D int / G int is satisfied.

(実施例12〜15、比較例6)
実施例12〜15、比較例6においては、正極活物質を二次粒子の平均粒径が10μmの三元系正極活物質(Li1.0Ni1/3Mn1/3Co1/32.0)に変更し、多層グラフェンによる活物質表面の被覆層をホソカワミクロン製メカノフュージョンにより形成する際の処理条件及び被覆層形成後の熱処理条件を変更して、被覆層のラマンスペクトルの異なる正極を作製し、実施例1と同様に電池セルを作製し、評価を行った。結果を表3に示す。
(Examples 12 to 15, Comparative Example 6)
In Examples 12 to 15 and Comparative Example 6, the positive electrode active material was a ternary positive electrode active material (Li 1.0 Ni 1/3 Mn 1/3 Co 1/3 O having an average secondary particle size of 10 μm. 2.0 ), and the processing conditions when forming the coating layer on the active material surface with multilayer graphene by meso-fusion made by Hosokawa Micron and the heat treatment conditions after forming the coating layer are changed, and the positive electrode having a different Raman spectrum of the coating layer A battery cell was produced in the same manner as in Example 1 and evaluated. The results are shown in Table 3.

Figure 2016189321
Figure 2016189321

表3より、三元系正極活物質(Li1.0Ni1/3Mn1/3Co1/32.0)粒子表面の少なくとも一部にグラフェンもしくは多層グラフェンの被覆層が形成され、前記被覆層におけるラマンスペクトルにおいて、Gバンドの強度で規格化した2Dバンドの強度(2Dint/Gint)が、0.05≦2Dint/Gintを満たす場合、同様の組成比で作製された電極であってもレート特性が向上することがわかる。
また、前記ラマンスペクトルの各バンドの強度の範囲に加えて、0.1≦2Dint/Gintを満たす場合、さらにレート特性が向上することがわかる。
From Table 3, a coating layer of graphene or multilayer graphene is formed on at least a part of the ternary positive electrode active material (Li 1.0 Ni 1/3 Mn 1/3 Co 1/3 O 2.0 ) particle surface, In the Raman spectrum of the coating layer, when the intensity of the 2D band normalized by the intensity of the G band (2D int / G int ) satisfies 0.05 ≦ 2D int / G int , the same composition ratio was used. It can be seen that the rate characteristic is improved even with the electrode.
In addition to the range of intensity of each band of the Raman spectrum, it can be seen that the rate characteristic is further improved when 0.1 ≦ 2D int / G int is satisfied.

(実施例16〜19、比較例7)
実施例16〜19、比較例7においては、正極活物質を二次粒子の平均粒径が15μmのスピネルマンガン(Li1.0Mn2.04.0)に変更し、多層グラフェンによる活物質表面の被覆層をホソカワミクロン製メカノフュージョンにより形成する際の処理条件及び被覆層形成後の熱処理条件を変更して、被覆層のラマンスペクトルの異なる正極を作製し、実施例1と同様に電池セルを作製し、評価を行った。結果を表4に示す。
(Examples 16 to 19, Comparative Example 7)
In Examples 16 to 19 and Comparative Example 7, the positive electrode active material was changed to spinel manganese (Li 1.0 Mn 2.0 O 4.0 ) having an average particle size of secondary particles of 15 μm, and active by multilayer graphene A battery cell having the same Raman spectrum of the coating layer was produced by changing the processing conditions when forming the coating layer on the material surface by mechanofusion made by Hosokawa Micron and the heat treatment conditions after the coating layer was formed. Were prepared and evaluated. The results are shown in Table 4.

Figure 2016189321
Figure 2016189321

表4より、スピネルマンガン(Li1.0Mn2.04.0)粒子表面の少なくとも一部にグラフェンもしくは多層グラフェンの被覆層が形成され、前記被覆層におけるラマンスペクトルにおいて、Gバンドの強度で規格化した2Dバンドの強度(2Dint/Gint)が、0.05≦2Dint/Gintを満たす場合、同様の組成比で作製された電極であってもレート特性が向上し、その結果電池のエネルギー密度が向上することがわかる。
また、前記ラマンスペクトルの各バンドの強度の範囲に加えて、0.1≦2Dint/Gintを満たす場合、さらにレート特性が向上することがわかる。
From Table 4, a graphene or multilayer graphene coating layer is formed on at least part of the spinel manganese (Li 1.0 Mn 2.0 O 4.0 ) particle surface, and the intensity of the G band in the Raman spectrum of the coating layer When the intensity of the 2D band normalized by (2D int / G int ) satisfies 0.05 ≦ 2D int / G int , the rate characteristics are improved even for electrodes made with the same composition ratio. As a result, it can be seen that the energy density of the battery is improved.
In addition to the range of intensity of each band of the Raman spectrum, it can be seen that the rate characteristic is further improved when 0.1 ≦ 2D int / G int is satisfied.

(実施例20〜23、比較例8)
実施例20〜23、比較例8においては、正極活物質を二次粒子の平均粒径が5μmのリン酸鉄リチウム(LiFePO)に変更し、多層グラフェンによる活物質表面の被覆層をホソカワミクロン製メカノフュージョンにより形成する際の処理条件及び被覆層形成後の熱処理条件を変更して、被覆層のラマンスペクトルの異なる正極を作製し、実施例1と同様に電池セルを作製し、評価を行った。結果を表5に示す。
(Examples 20 to 23, Comparative Example 8)
In Examples 20 to 23 and Comparative Example 8, the positive electrode active material was changed to lithium iron phosphate (LiFePO 4 ) whose secondary particles had an average particle diameter of 5 μm, and the coating layer on the active material surface with multilayer graphene was manufactured by Hosokawa Micron The positive electrode having a different Raman spectrum of the coating layer was prepared by changing the processing conditions when forming by mechanofusion and the heat treatment conditions after forming the coating layer, and a battery cell was prepared and evaluated in the same manner as in Example 1. . The results are shown in Table 5.

Figure 2016189321
Figure 2016189321

表5より、リン酸鉄リチウム(LiFePO)粒子表面の少なくとも一部にグラフェンもしくは多層グラフェンの被覆層が形成され、前記被覆層におけるラマンスペクトルにおいて、Gバンドの強度で規格化した2Dバンドの強度(2Dint/Gint)が、0.05≦2Dint/Gintを満たす場合、同様の組成比で作製された電極であってもレート特性が向上し、その結果電池のエネルギー密度が向上することがわかる。
また、前記ラマンスペクトルの各バンドの強度の範囲に加えて、0.1≦2Dint/Gintを満たす場合、さらにレート特性が向上することがわかる。
From Table 5, a graphene or multilayer graphene coating layer is formed on at least a part of the lithium iron phosphate (LiFePO 4 ) particle surface, and the intensity of the 2D band normalized by the intensity of the G band in the Raman spectrum of the coating layer When (2D int / G int ) satisfies 0.05 ≦ 2D int / G int , rate characteristics are improved even with electrodes manufactured with the same composition ratio, and as a result, the energy density of the battery is improved. I understand that.
In addition to the range of intensity of each band of the Raman spectrum, it can be seen that the rate characteristic is further improved when 0.1 ≦ 2D int / G int is satisfied.

以上、評価した結果から明らかなように、実施例は比較例と比較して高いレート特性を示すものが得られることが確認できる。   As is apparent from the evaluation results, it can be confirmed that the example shows a higher rate characteristic than the comparative example.

10・・・セパレータ、20・・・正極、22・・・正極集電体、24・・・正極活物質層、30・・・負極、32・・・負極集電体、34・・・負極活物質層、40・・・発電要素、50・・・外装体、60,62・・・リード、100・・・リチウムイオン二次電池

DESCRIPTION OF SYMBOLS 10 ... Separator, 20 ... Positive electrode, 22 ... Positive electrode collector, 24 ... Positive electrode active material layer, 30 ... Negative electrode, 32 ... Negative electrode collector, 34 ... Negative electrode Active material layer, 40 ... power generation element, 50 ... exterior body, 60, 62 ... lead, 100 ... lithium ion secondary battery

Claims (5)

Li及び遷移金属を含む化合物を一種以上含む活物質粒子と、前記活物質粒子表面の少なくとも一部を被覆する被覆層とを有し、
前記被覆層はグラフェンもしくは多層グラフェンの少なくとも一種からなり、前記被覆層におけるラマンスペクトルにおいて、Gバンド(1530cm−1〜1630cm−1のピーク)、Dバンド(1300cm−1〜1400cm−1のピーク)と2Dバンド(2650cm−1〜2750cm−1のピーク)を有し、
少なくともGバンドの強度で規格化した2Dバンドの強度(2Dint/Gint)が、0.05≦2Dint/Gintを満たすことを特徴とするリチウムイオン二次電池用正極活物質。
An active material particle containing one or more compounds containing Li and a transition metal, and a coating layer covering at least a part of the surface of the active material particle,
The covering layer comprises at least one of the graphene or multilayer graphene, in the Raman spectrum of the coating layer, (the peak of 1530cm -1 ~1630cm -1) G band, and D band (peak of 1300cm -1 ~1400cm -1) Having a 2D band (peaks between 2650 cm −1 and 2750 cm −1 ),
A positive electrode active material for a lithium ion secondary battery, wherein a 2D band intensity (2D int / G int ) normalized by at least a G band intensity satisfies 0.05 ≦ 2D int / G int .
Gバンドの強度で規格化した2Dバンドの強度(2Dint/Gint)が、0.1≦2Dint/Gintを満たすことを特徴とする請求項1に記載のリチウムイオン二次電池用正極活物質。 2. The positive electrode for a lithium ion secondary battery according to claim 1, wherein the intensity of the 2D band (2D int / G int ) normalized by the intensity of the G band satisfies 0.1 ≦ 2D int / G int. Active material. Gバンドの強度で規格化したDバンドの強度(Dint/Gint)が、0.6≦Dint/Gint≦1.2を満たすことを特徴とする請求項1または2に記載のリチウムイオン二次電池用正極活物質。 3. The lithium according to claim 1, wherein the intensity (D int / G int ) of the D band normalized by the intensity of the G band satisfies 0.6 ≦ D int / G int ≦ 1.2. Positive electrode active material for ion secondary battery. 請求項1〜3のいずれか一項に記載のリチウムイオン二次電池用正極活物質を用いたリチウムイオン二次電池用正極。   The positive electrode for lithium ion secondary batteries using the positive electrode active material for lithium ion secondary batteries as described in any one of Claims 1-3. 請求項3に記載のリチウムイオン二次電池用正極と、負極活物質を有する負極と、前記正極と前記負極との間に介在されるセパレータと非水電解質と、を備えてなるリチウムイオン二次電池。

A lithium ion secondary comprising the positive electrode for a lithium ion secondary battery according to claim 3, a negative electrode having a negative electrode active material, a separator interposed between the positive electrode and the negative electrode, and a nonaqueous electrolyte. battery.

JP2016018900A 2015-03-27 2016-02-03 Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same Pending JP2016189321A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/076,137 US10243215B2 (en) 2015-03-27 2016-03-21 Positive electrode active material including lithium transition metal particles with graphene coating layer positive electrode and lithium ion secondary battery including the same
CN201610184399.2A CN106025191B (en) 2015-03-27 2016-03-28 Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015066289 2015-03-27
JP2015066289 2015-03-27

Publications (1)

Publication Number Publication Date
JP2016189321A true JP2016189321A (en) 2016-11-04

Family

ID=57240471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016018900A Pending JP2016189321A (en) 2015-03-27 2016-02-03 Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same

Country Status (1)

Country Link
JP (1) JP2016189321A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018174107A (en) * 2017-03-31 2018-11-08 Tdk株式会社 Positive electrode and lithium ion secondary battery
WO2018203168A1 (en) * 2017-05-03 2018-11-08 株式会社半導体エネルギー研究所 Manufacturing method for positive electrode active material particles, and secondary battery
WO2019194613A1 (en) * 2018-04-06 2019-10-10 주식회사 엘지화학 Cathode active material, method for preparing cathode active material, cathode including cathode active material, and secondary battery including cathode
WO2021075874A1 (en) * 2019-10-15 2021-04-22 한양대학교에리카산학협력단 Positive electrode active material and method for preparing same
JP2021158083A (en) * 2020-03-30 2021-10-07 住友大阪セメント株式会社 Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2022050664A1 (en) * 2020-09-01 2022-03-10 주식회사 엘지에너지솔루션 Positive electrode active material, positive electrode comprising positive electrode active material, and secondary battery comprising positive electrode

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012099468A (en) * 2010-10-08 2012-05-24 Semiconductor Energy Lab Co Ltd Positive electrode active material, and accumulator
JP2012216409A (en) * 2011-03-31 2012-11-08 Tdk Corp Active material, electrode, lithium ion secondary battery, and active material manufacturing method
WO2013132261A1 (en) * 2012-03-09 2013-09-12 The University Of Manchester Production of graphene
JP2014001126A (en) * 2012-05-25 2014-01-09 National Institute For Materials Science Method for manufacturing separated graphene film
WO2014015139A1 (en) * 2012-07-20 2014-01-23 Academia Sinica Graphene-containing electrodes
JP2014505002A (en) * 2010-12-10 2014-02-27 東レ株式会社 Graphene powder, method for producing graphene powder, and electrochemical device for lithium secondary battery containing graphene powder

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012099468A (en) * 2010-10-08 2012-05-24 Semiconductor Energy Lab Co Ltd Positive electrode active material, and accumulator
JP2014505002A (en) * 2010-12-10 2014-02-27 東レ株式会社 Graphene powder, method for producing graphene powder, and electrochemical device for lithium secondary battery containing graphene powder
JP2012216409A (en) * 2011-03-31 2012-11-08 Tdk Corp Active material, electrode, lithium ion secondary battery, and active material manufacturing method
WO2013132261A1 (en) * 2012-03-09 2013-09-12 The University Of Manchester Production of graphene
JP2014001126A (en) * 2012-05-25 2014-01-09 National Institute For Materials Science Method for manufacturing separated graphene film
WO2014015139A1 (en) * 2012-07-20 2014-01-23 Academia Sinica Graphene-containing electrodes

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018174107A (en) * 2017-03-31 2018-11-08 Tdk株式会社 Positive electrode and lithium ion secondary battery
JP7092752B2 (en) 2017-05-03 2022-06-28 株式会社半導体エネルギー研究所 Method for producing positive electrode active material particles
JPWO2018203168A1 (en) * 2017-05-03 2020-03-26 株式会社半導体エネルギー研究所 Method for producing positive electrode active material particles, and secondary battery
WO2018203168A1 (en) * 2017-05-03 2018-11-08 株式会社半導体エネルギー研究所 Manufacturing method for positive electrode active material particles, and secondary battery
JP2022113870A (en) * 2017-05-03 2022-08-04 株式会社半導体エネルギー研究所 secondary battery
WO2019194613A1 (en) * 2018-04-06 2019-10-10 주식회사 엘지화학 Cathode active material, method for preparing cathode active material, cathode including cathode active material, and secondary battery including cathode
CN111937191A (en) * 2018-04-06 2020-11-13 株式会社Lg化学 Positive electrode active material, method of preparing the same, positive electrode including the same, and secondary battery including the same
EP3761410A4 (en) * 2018-04-06 2021-04-21 Lg Chem, Ltd. Cathode active material, method for preparing cathode active material, cathode including cathode active material, and secondary battery including cathode
US11894558B2 (en) 2018-04-06 2024-02-06 Lg Energy Solution, Ltd. Positive electrode active material, method of preparing the same, positive electrode including the positive electrode active material, and secondary battery including the positive electrode
WO2021075874A1 (en) * 2019-10-15 2021-04-22 한양대학교에리카산학협력단 Positive electrode active material and method for preparing same
JP2021158083A (en) * 2020-03-30 2021-10-07 住友大阪セメント株式会社 Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
US11444282B2 (en) 2020-03-30 2022-09-13 Sumitomo Metal Mining Co., Ltd. Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2022050664A1 (en) * 2020-09-01 2022-03-10 주식회사 엘지에너지솔루션 Positive electrode active material, positive electrode comprising positive electrode active material, and secondary battery comprising positive electrode

Similar Documents

Publication Publication Date Title
CN106025191B (en) Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6206611B1 (en) Negative electrode and lithium ion secondary battery
JP5699754B2 (en) Active material, electrode, lithium ion secondary battery, and method for producing active material
JP2017103207A (en) Positive electrode active material, positive electrode, and lithium ion secondary battery
JP2016189321A (en) Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP2015092462A (en) Positive electrode and lithium ion secondary battery using the same
JP2016186933A (en) Positive electrode active material, positive electrode using the same, and lithium ion secondary battery
JP2016189320A (en) Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery using the same
JP6297991B2 (en) Nonaqueous electrolyte secondary battery
US10971717B2 (en) Positive electrode active material, positive electrode, and lithium ion secondary battery
TW201815667A (en) Electrode material for electricity storage devices, electrode for electricity storage devices, and electricity storage device
US20160285103A1 (en) Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery using same
US20160285073A1 (en) Positive electrode active material, positive electrode using same, and lithium ion secondary battery
JP2019160782A (en) Negative electrode and lithium ion secondary battery
JP6413833B2 (en) Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2019164967A (en) Negative electrode active material, negative electrode abd lithium ion secondary battery
JP2019164880A (en) Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP6183569B1 (en) Negative electrode active material, negative electrode and lithium ion secondary battery
WO2018021480A1 (en) Positive electrode active substance for lithium ion secondary batteries, positive electrode for lithium ion secondary batteries, and lithium ion secondary battery using same
CN107123787B (en) Positive electrode and lithium ion secondary battery
JP2019160577A (en) Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2018160453A (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP6183570B1 (en) Negative electrode active material, negative electrode and lithium ion secondary battery
JP2017183048A (en) Positive electrode active material, positive electrode arranged by use thereof, and lithium ion secondary battery
WO2023063303A1 (en) Positive electrode composite active material, lithium ion secondary battery, and production method for lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191008

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200407