WO2020231037A1 - Substrate drying chamber - Google Patents

Substrate drying chamber Download PDF

Info

Publication number
WO2020231037A1
WO2020231037A1 PCT/KR2020/005421 KR2020005421W WO2020231037A1 WO 2020231037 A1 WO2020231037 A1 WO 2020231037A1 KR 2020005421 W KR2020005421 W KR 2020005421W WO 2020231037 A1 WO2020231037 A1 WO 2020231037A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
supercritical fluid
drying
supply
chamber
Prior art date
Application number
PCT/KR2020/005421
Other languages
French (fr)
Korean (ko)
Inventor
신희용
윤병문
Original Assignee
무진전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 무진전자 주식회사 filed Critical 무진전자 주식회사
Publication of WO2020231037A1 publication Critical patent/WO2020231037A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/67034Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for drying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67126Apparatus for sealing, encapsulating, glassing, decapsulating or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping

Definitions

  • the present invention relates to a substrate drying chamber. More specifically, the present invention increases the substrate throughput by increasing the mixing speed of the supercritical fluid and the organic solvent, and induces the supercritical fluid to maintain a temperature above the critical point to ensure the uniformity of the drying process.
  • the supercritical fluid for initial pressurization is liquefied or evaporated by the cooling phenomenon due to the pressure drop that occurs during the process of introducing (initial pressurization) into the drying chamber, causing particulate contamination on the substrate, and supercritical drying.
  • the mixed fluid in which IPA is dissolved in the fluid is discharged (reduced pressure)
  • the mixed fluid phase separates due to the cooling effect, causing particulate contamination on the substrate or collapse of the pattern formed on the substrate due to the surface tension of the mixed fluid.
  • the present invention relates to a substrate drying chamber capable of preventing a problem in which particles are introduced into a substrate inside the chamber.
  • the semiconductor device manufacturing process includes various processes such as a lithography process, an etching process, and an ion implantation process, and after each process is completed, the surface of the wafer is removed by removing impurities or residues remaining on the wafer surface before proceeding to the next process.
  • a cleaning process and a drying process are being performed for cleaning.
  • a chemical liquid for cleaning treatment is supplied to the surface of the wafer, and then deionized water (DIW) is supplied to perform a rinse treatment.
  • DIW deionized water
  • a drying treatment of drying the wafer by removing deionized water remaining on the wafer surface is performed.
  • IPA isopropyl alcohol
  • IPA on the wafer is dissolved in the supercritical carbon dioxide (CO 2 ) fluid by supplying carbon dioxide in a supercritical state to a wafer whose surface is moistened with isopropyl alcohol (IPA) in the chamber. And by gradually discharging the supercritical carbon dioxide (CO 2 ) fluid dissolving IPA from the chamber, the wafer can be dried without collapse of the pattern.
  • CO 2 supercritical carbon dioxide
  • the supercritical fluid is stored at a high pressure in a supercritical fluid generator provided outside the drying chamber, and then introduced into the drying chamber (initial pressure) while passing through a pipe and a valve, the valve and the pipe connection part.
  • a cooling phenomenon occurs due to a drop in pressure at, and during this process, it is liquefied or vaporized to cause particulate contamination on the substrate.
  • the pressurization speed is increased, there is a problem that sufficient heat transfer to the supercritical fluid is insufficient simply by maintaining the temperature of the pipe through a simple heat exchanger.
  • the mixed fluid in which IPA is dissolved in the drying supercritical fluid for drying is discharged (depressurized) in the drying chamber, if the mixed fluid is phase separated by the cooling effect, it may cause particulate contamination of the substrate or the surface tension of the mixed fluid. As a result, the pattern formed on the substrate may collapse. Specifically, when the temperature and pressure drop below the critical point due to rapid adiabatic expansion in the high pressure region above the critical point, the mixed fluid forming the single phase is phase separated, resulting in poor drying on the substrate. Contamination, etc.), and the pattern collapse of the substrate may also be caused.
  • FIG. 2 shows a chamber for processing a substrate disclosed in Korean Patent Laid-Open Publication No. 10-2017-0137243, which is a prior art related to a substrate processing apparatus using such a supercritical fluid.
  • IPA may be introduced into a mating surface of the upper body 430 and the lower body 420 constituting the high-pressure chamber 410 in contact with each other.
  • the organic solvent introduced into the bonding surface of the upper body 430 and the lower body 420 becomes particles and accumulates around it.
  • the chamber is opened to transport the processed substrate to the outside. At this time, particles around the bonding surface of the upper body 430 and the lower body 420 are released due to the pressure difference between the inside and the outside of the chamber. It can be introduced into the chamber.
  • a lower supply port 422 for supplying a supercritical fluid for initial pressure, and an exhaust port for exhausting the supercritical fluid after drying Since 426 is not located in the center of the lower body 420, it is difficult to supply and discharge the supercritical fluid by evenly distributing the supercritical fluid inside the chamber by forming an asymmetric flow when supplying and discharging the fluid, thereby reducing drying efficiency. A problem occurs.
  • the mixing speed of the supercritical fluid and IPA supplied in the drying process using the supercritical fluid is one of the important factors affecting the wafer throughput.
  • the technical problem of the present invention is to increase the substrate throughput by increasing the mixing speed of the supercritical fluid and the organic solvent, and induce the supercritical fluid to maintain a temperature above the critical point, thereby securing the uniformity of the drying process. To be able to.
  • the technical problem of the present invention is to reduce pressure at the valve and the pipe connection part during the process of introducing (initial pressurization) into the drying chamber through pipes and valves in the supercritical fluid generator provided outside the drying chamber. This is to solve the problem of causing particulate contamination on the substrate by liquefaction or vaporization due to the cooling phenomenon that occurs.
  • the technical problem of the present invention is that when the mixed fluid in which IPA is dissolved in the drying supercritical fluid is discharged (reduced pressure) in the drying chamber, the mixed fluid is phase separated by the cooling effect, causing particulate contamination on the substrate. Or the pattern formed on the substrate collapses due to the surface tension of the mixed fluid.
  • the technical problem of the present invention is to provide a supply path of the supercritical fluid for initial pressurization and a discharge path of the supercritical fluid in which the organic solvent formed on the substrate after drying is dissolved through one integrated supply/discharge port, thereby providing a supercritical fluid.
  • a supply path of the supercritical fluid for initial pressurization and a discharge path of the supercritical fluid in which the organic solvent formed on the substrate after drying is dissolved through one integrated supply/discharge port, thereby providing a supercritical fluid.
  • the technical problem of the present invention is to block re-inflow particles when the chamber is opened after the drying process is completed by using a substrate placement plate that is required for arranging a substrate, and initial pressure directed directly to the substrate surface at the beginning of the drying process. It prevents the collapse of the pattern formed on the substrate by preventing the flow of the supercritical fluid for use, and prevents the problem that particles that may be contained in the supercritical fluid for initial pressurization are deposited on the substrate or reduces the amount of deposition, and The drying process time is shortened by reducing the working volume of the chamber due to the volume.
  • the technical problem of the present invention is to arrange the substrate on the substrate placement plate so as to be positioned higher than the bonding surface between the lower housing and the upper housing, so that when the drying process is completed and the chamber is opened, Particles around the sealed part are prevented from flowing into the substrate by gravity due to the height difference between the substrate and the bonding surface.
  • an upper housing, a lower housing coupled to the upper housing so as to be opened and closed, and a substrate coupled to the bottom surface of the lower housing and formed with an organic solvent are disposed.
  • an integrated supply/discharge port providing a discharge path of the mixed fluid in which the organic solvent is dissolved in the supercritical fluid including the initial pressurization supercritical fluid and the drying supercritical fluid
  • the integrated supply/ An agitator for stirring the initial pressurization supercritical fluid supplied through the discharge port and the drying supercritical fluid supplied through the upper supply port, and is installed on the substrate arrangement plate, and when the initial pressurization supercritical fluid is supplied and
  • a heating member for heating the initial pressurization supercritical fluid and the mixed fluid by operating when the mixed fluid is discharged.
  • the heating member operates during an initial pressing time in which the initial pressing supercritical fluid is supplied, and controls the temperature of the initial pressing supercritical fluid to be above a critical point. To do.
  • the heating member is operated during a discharge time during which the mixed fluid is discharged, and compensates for a temperature decrease caused by adiabatic expansion due to a pressure drop occurring in the discharge process of the mixed fluid.
  • the temperature of the drying supercritical fluid contained in the mixed fluid is controlled to be above the critical point.
  • the stirrer increases the mixing speed of the organic solvent and the initial pressure supercritical fluid and the mixing speed of the organic solvent and the drying supercritical fluid.
  • the stirrer includes a shaft inserted into the chamber through an insertion hole formed in a central region of the upper housing, and a stirring blade portion coupled to one end located inside the chamber among both ends of the shaft. And a driving unit coupled to the other end located outside the chamber of both ends of the shaft to provide rotational driving force to the shaft.
  • the substrate drying chamber according to the present invention further includes a shaft coupling member coupled to an outer surface of the upper housing to axially couple a shaft constituting the stirrer, wherein the shaft coupling member is spaced apart from the center point of the shaft coupling member.
  • a plurality of through holes are formed, and the upper supply port comprises a plurality of supply holes formed in the upper housing so as to be aligned with a plurality of through holes formed in the shaft coupling member.
  • a plurality of through holes formed in the shaft coupling member are arranged symmetrically to each other.
  • the integrated supply/discharge port is formed to extend from one side to the other side of the lower housing and is formed to face the substrate arrangement plate in an intermediate region between the one side and the other side. It is characterized by being.
  • the integrated supply/discharge port includes a first conduit part formed from one side of the lower housing to the middle region, and the substrate is disposed in communication with the first conduit part in the intermediate region. And a second conduit portion formed to face the plate and communicated with the common port portion and the first conduit in the intermediate region to the other side of the lower housing.
  • the first pipe part and the common port part provide a supply path of the supercritical fluid for initial pressure
  • the common port part and the second pipe part It is characterized in that it provides a discharge path of the critical fluid
  • the substrate drying chamber according to the present invention further includes a sealing portion provided on a bonding surface between the lower housing and the upper housing, and the substrate is positioned higher than the bonding surface between the lower housing and the upper housing. And when the drying process is completed and the lower housing and the upper housing are opened, particles around the sealing portion provided on the bonding surface are transferred to the substrate by gravity according to the height difference between the substrate and the bonding surface. It is characterized in that the inflow of is prevented.
  • the supercritical fluid for initial pressure supplied through the first conduit portion and the common port portion is blocked by the substrate arrangement plate so that direct injection to the substrate is prevented.
  • one end is coupled to the bottom surface of the lower housing and the other end is coupled to the substrate placement plate, thereby supporting the substrate placement plate while separating the substrate placement plate from the bottom surface of the lower housing. It characterized in that it further comprises a substrate arrangement plate support.
  • the first spaced space existing between the bottom surface of the lower housing and the substrate placement plate by the substrate placement plate support part is for initial pressure supplied through the integrated supply/discharge port. It is characterized in that the supercritical fluid moves along the lower surface of the substrate arrangement plate to gradually diffuse into the processing area in which the substrate is disposed.
  • the substrate drying chamber according to the present invention further includes a substrate support portion having one end coupled to the upper surface of the substrate arrangement plate and the other end coupled to the substrate, supporting the substrate and separating the substrate from the upper surface of the substrate arrangement plate Characterized in that.
  • the second separation space existing between the upper surface of the substrate arrangement plate and the substrate by the substrate support portion is an initial pressurization supplied to the lower surface of the substrate through the integrated supply/discharge port. It is characterized in that the drying process is shortened by exposure to the supercritical fluid for drying and the supercritical fluid for drying supplied through the upper supply port.
  • the present invention it is possible to increase the substrate throughput by increasing the mixing speed of the supercritical fluid and the organic solvent, and induce the supercritical fluid to maintain a temperature above the critical point, thereby securing the uniformity of the drying process. have.
  • the supercritical fluid is introduced into the drying chamber through pipes and valves in the supercritical fluid generator provided outside the drying chamber (initial pressurization).
  • the mixed fluid in which IPA is dissolved in the drying supercritical fluid is discharged (depressurized) in the drying chamber, the mixed fluid is phase separated by the cooling effect, causing particulate contamination on the substrate or the surface tension of the mixed fluid.
  • the supply path of the supercritical fluid for initial pressurization and the discharge path of the supercritical fluid in which the organic solvent formed on the substrate after drying is dissolved is symmetrical when supplying and discharging the supercritical fluid.
  • the supercritical fluid is uniformly distributed and supplied and discharged in the chamber by inducing a natural flow, thereby increasing substrate drying efficiency.
  • a substrate placement plate that is required for arranging the substrate, it blocks re-inflow particles when the chamber is opened after the drying process is completed, and the initial pressure supercritical fluid flows directly to the substrate surface at the beginning of the drying process. It is possible to prevent the collapse of the pattern formed on the substrate, prevent the problem that particles that may be contained in the initial pressurization supercritical fluid are deposited on the substrate, or reduce the amount of deposition, and reduce the amount of deposition. Due to the reduced working volume of the chamber there is an effect of shortening the drying process time.
  • FIG. 1 is a diagram showing a pattern collapse phenomenon occurring in a substrate drying process according to the prior art
  • FIG. 2 is a view showing a conventional substrate drying chamber
  • FIG. 3 is a view showing a substrate drying chamber according to an embodiment of the present invention.
  • FIG. 4 is a view showing an exemplary top surface shape in which a shaft constituting a stirrer is coupled to a shaft coupling member in an embodiment of the present invention
  • FIG. 5 is a view showing a diffusion path of the initial pressurization supercritical fluid in an embodiment of the present invention
  • FIG. 6 is a diagram showing a diffusion path of a drying supercritical fluid in an embodiment of the present invention
  • FIG. 7 is a view showing a discharge path of a mixed fluid in which an organic solvent is dissolved in a supercritical fluid including an initial pressurizing supercritical fluid and a drying supercritical fluid in an embodiment of the present invention
  • FIG. 8 is a diagram illustrating a sealing portion provided on a bonding surface between the upper housing and the lower housing and a substrate of particles existing therearound when the drying process is completed and the lower housing and the upper housing are opened, according to an embodiment of the present invention. It is a diagram for explaining the principle of preventing the inflow of
  • first or second may be used to describe various elements, but the elements should not be limited by the terms. The terms are only for the purpose of distinguishing one component from other components, for example, without departing from the scope of the rights according to the concept of the present invention, the first component may be named as the second component and similarly the second component. The component may also be referred to as a first component.
  • FIG. 3 is a view showing a substrate drying chamber according to an embodiment of the present invention
  • FIG. 4 is an exemplary top shape in which a shaft constituting a stirrer is coupled to a shaft coupling member in an embodiment of the present invention
  • 5 is a view showing the diffusion path of the initial pressurization supercritical fluid in an embodiment of the present invention
  • FIG. 6 is a view showing the diffusion of the drying supercritical fluid in an embodiment of the present invention.
  • FIG. 7 is a diagram showing a path
  • FIG. 7 is a view showing a discharge path of a mixed fluid in which an organic solvent is dissolved in a supercritical fluid including a supercritical fluid for initial pressurization and a supercritical fluid for drying in an embodiment of the present invention 8 is, in one embodiment of the present invention, when the drying process is completed and the lower housing and the upper housing are opened, the sealing portion provided on the bonding surface of the upper housing and the lower housing and particles existing therearound It is a diagram for explaining the principle of preventing inflow to the substrate.
  • a substrate drying chamber 1 includes an upper housing 10, a lower housing 20, a sealing unit 30, a substrate placement plate 40, and heating.
  • the upper housing 10 and the lower housing 20 are coupled to each other so as to be able to open and close, and provide a space in which a drying process is performed.
  • the upper housing 10 and the lower housing 20 may be configured to have a cylindrical shape, but are not limited thereto.
  • an upper supply port 60 is formed in the upper housing 10
  • an integrated supply/discharge port 50 is formed in the lower housing 20. The specific configuration of the upper supply port 60 will be described in detail later in connection with the configuration of the stirrer 100 and the shaft coupling member 200.
  • the sealing part 30 is provided on the coupling surface (C) of the lower housing 20 and the upper housing 10, and maintains the airtightness of the coupling surface (C) between the lower housing 20 and the upper housing 10. Block the inner area of the chamber from the outside.
  • the sealing part 30 provided on the coupling surface C of the upper housing 10 and the lower housing 20
  • the substrate W is a bonding surface of the lower housing 20 and the upper housing 10
  • the sealing part provided on the bonding surface (C) (30)
  • the surrounding particles may be configured to be prevented from entering the substrate W by gravity according to a height difference between the substrate W and the bonding surface C.
  • the substrate arranging plate 40 is a component on which a substrate W on which an organic solvent is formed is attached to the bottom surface 22 of the lower housing 20. The interaction between the substrate arrangement plate 40 and other components will be described later.
  • the heating member 45 is installed on the substrate arranging plate 40 and operates when the supercritical fluid for initial pressurization is supplied and when the mixed fluid is discharged to heat the supercritical fluid for initial pressurization and the mixed fluid. do.
  • the heating member 45 may be implemented in the form of an electric resistance heating element or an oil-filled heater formed in the substrate mounting plate 40, but the implementation form of the heating member 45 is It is not limited thereto.
  • the initial pressure supercritical fluid is supplied during the set initial pressure time through the first conduit portion 510 and the common port portion 520 constituting the integrated supply/discharge port 50, and 2) After the initial pressurization time has elapsed, the supply of the initial pressurization supercritical fluid is cut off, and the drying supercritical fluid is supplied through the upper supply port 60 for the drying time, and 3) the drying supercritical fluid is after the drying time.
  • the supply of the fluid is blocked and the mixed fluid may be discharged during the discharge time through the common port part 520 and the second conduit part 530 constituting the integrated supply/discharge port 50.
  • the supply of the drying supercritical fluid and the discharge of the mixed fluid may be repeated a set number of times.
  • the heating member 45 may be operated during an initial pressing time during which the initial pressing supercritical fluid is supplied, so that the temperature of the initial pressing supercritical fluid may be adjusted to be above a critical point.
  • the supercritical fluid is stored at a high pressure in a supercritical fluid generator provided outside the substrate drying chamber 1 according to an embodiment of the present invention, and then passed through a pipe and a valve to the substrate drying chamber 1.
  • a cooling phenomenon occurs due to a pressure drop at the connection portion of the valve and the pipe, and during this process, the temperature may be liquefied or vaporized to cause particulate contamination on the substrate W. It is important to maintain it, but the prior art has not provided an effective technical measure for this.
  • the pressurization speed is increased, there is a problem that sufficient heat transfer to the supercritical fluid is insufficient simply by maintaining the temperature of the pipe through a simple heat exchanger.
  • An embodiment of the present invention solves this problem through the heating member 45 installed on the substrate mounting plate 40. That is, the initial pressurization through the heating member 45 installed on the substrate arranging plate 40 in the chamber, especially when the initial pressurization proceeds rapidly, minimizes the phase change of the supercritical fluid for initial pressurization in the substrate drying chamber 1 W) particle contamination can be prevented, and the process speed can be improved by facilitating formation or maintenance of a supercritical fluid.
  • the heating member 45 is operated during the discharge time during which the mixed fluid is discharged, and compensates for the temperature decrease caused by the adiabatic expansion due to the pressure drop occurring in the discharge process of the mixed fluid,
  • the temperature of the supercritical fluid for drying included in can be adjusted to be above the critical point.
  • the mixed fluid in which an organic solvent such as IPA is dissolved in the drying supercritical fluid in the chamber is discharged (reduced pressure)
  • the mixed fluid is phase separated by the cooling effect, particulate contamination or mixed fluid of the substrate (W)
  • the pattern formed on the substrate W may collapse due to the surface tension of. Specifically, when the temperature and pressure drop below the critical point due to rapid adiabatic expansion in the high pressure region above the critical point, the mixed fluid constituting the single phase is phase separated, resulting in poor drying on the substrate (W). (Particulate contamination, etc.) may be caused, and pattern collapse of the substrate W may also be caused.
  • An embodiment of the present invention solves this problem through the heating member 45 installed on the substrate mounting plate 40. That is, when the mixed fluid is discharged, the decompression rate is considered in consideration of the phase change, and the heating member 45 is used to transfer sufficient heat to proceed with the decompression discharge step in consideration of the cooling effect, thereby preventing drying failure and speeding up the process. It can be improved.
  • the initial pressure supercritical fluid supplied through the first conduit portion 510 and the common port portion 520 constituting the integrated supply/discharge port 50 is blocked by the substrate mounting plate 40 and thus the substrate ( It can be configured to prevent direct injection to W).
  • Figure 5 shows the diffusion path of the initial pressurization supercritical fluid, and the diagram showing the discharge path of the mixed fluid in which an organic solvent is dissolved in the supercritical fluid including the initial pressurization supercritical fluid and the drying supercritical fluid.
  • the substrate placement plate 40 required to arrange the substrate W, which is the target of the drying process, after the drying process is completed, when the chamber is opened, re-inflow particles are blocked, and the drying process It is possible to prevent the collapse of the pattern formed on the substrate (W) by preventing the flow of the initial pressure supercritical fluid directly to the surface of the substrate (W), and particles that may be contained in the initial pressure supercritical fluid are contained on the substrate. It is possible to prevent the problem of depositing on the (W) or to reduce the amount of deposition, and to reduce the working volume of the chamber due to the volume occupied by the substrate arrangement plate 40 to shorten the drying process time.
  • the integrated supply/discharge port 50 is formed extending from one side 24 to the other side 26 of the lower housing 20, and the substrate is arranged in the intermediate region 28 between one side 24 and the other side 26. Discharge of the mixed fluid dissolved in the initial pressure supercritical fluid and the drying supercritical fluid formed on the substrate (W) after drying and the supply path of the supercritical fluid for initial pressure, formed to face the plate 40 It is a component that provides a path.
  • the supply path of the supercritical fluid for initial pressurization and the organic solvent formed on the substrate W after drying are dissolved in the supercritical fluid for initial pressurization and the supercritical fluid for drying through one such integrated supply/discharge port 50
  • By providing a discharge path of the fluid there is an effect of increasing the substrate drying efficiency by inducing a symmetrical flow when supplying and discharging the supercritical fluid and supplying and discharging the supercritical fluid evenly in the chamber.
  • such an integrated supply/discharge port 50 has a first conduit portion 510 formed from one side 24 of the lower housing 20 to the middle region 28, and the first conduit portion 510 in the middle region 28.
  • the lower housing is in communication with the conduit part 510 and is in communication with the common port part 520 and the first conduit part 510 in the common port part 520 and the intermediate region 28 formed to face the substrate mounting plate 40.
  • It includes a second conduit part 530 formed up to the other side 26 of 20, and the first conduit part 510 and the common port part 520 provide a supply path of the supercritical fluid for initial pressurization,
  • the common port part 520 and the second conduit part 530 may be configured to provide a discharge path for the supercritical fluid in which the organic solvent is dissolved.
  • the upper supply port 60 is a component formed to face the substrate mounting plate 40 in the central region of the upper housing 10 to provide a supply path of the supercritical fluid for drying.
  • the initial pressure supercritical fluid is supplied during the set initial pressure time through the first conduit portion 510 and the common port portion 520 constituting the integrated supply/discharge port 50, and 2) After the initial pressurization time has elapsed, the supply of the initial pressurization supercritical fluid is cut off, and the drying supercritical fluid is supplied through the upper supply port 60 for the drying time, and 3) the drying supercritical fluid is after the drying time.
  • the supply of the fluid is blocked and the mixed fluid may be discharged during the discharge time through the common port part 520 and the second conduit part 530 constituting the integrated supply/discharge port 50.
  • the supply of the supercritical fluid for drying and the discharge of the mixed fluid may be repeated a set number of times, that is, flushed.
  • the agitator 100 is a component that agitates the initial pressure supercritical fluid supplied through the integrated supply/discharge port and the drying supercritical fluid supplied through the upper supply port in the chamber. It can be configured to increase the mixing speed of the critical fluid and the mixing speed of the organic solvent and the drying supercritical fluid. According to this configuration, it is possible to increase the substrate throughput, which is a performance indicator of the supercritical drying process, and induce the supercritical fluid to maintain a temperature above the critical point, thereby ensuring uniformity in the drying process.
  • the stirrer 100 may include a shaft 110, a stirring blade 120, and a driving part 130.
  • the shaft 110 is a component inserted into the chamber through an insertion hole formed in the central region of the upper housing, and performs a function of rotating by a rotational driving force provided by the driving unit 130.
  • the stirring blade unit 120 is a component coupled to one end located inside the chamber among both ends of the shaft 110, and performs a function of agitating the supercritical fluid by rotating inside the chamber according to the rotation of the shaft 110. .
  • the driving unit 130 is a component that is coupled to the other end located outside the chamber of both ends of the shaft 110 to provide rotational driving force to the shaft 110.
  • the shaft coupling member 200 is a component that is coupled to the outer surface of the upper housing to axially couple the shaft 110 constituting the stirrer 100.
  • a plurality of through holes 210, 220, 230, 240 spaced apart from the center point of the shaft coupling member 200 are formed symmetrically. It may be configured, and the upper supply port may be formed of a plurality of supply holes formed in the upper housing so as to be aligned in the vertical direction with a plurality of through holes formed in the shaft coupling member 200.
  • a hole arranged in the vertical direction is formed in the insertion hole formed in the upper housing, and the hole formed in the central region of the shaft coupling member 200 constituting the stirrer 100 It can be inserted into the chamber through the insertion hole formed in the upper housing, the shaft coupling member 200 through which the shaft 110 passes may be provided with a bearing (bearing) means.
  • the substrate placement plate support part 70 has one end coupled to the bottom surface 22 of the lower housing 20 and the other end coupled to the substrate placement plate 40, and supports the substrate placement plate 40 while supporting the substrate placement plate ( It is a component that separates 40) from the bottom surface 22 of the lower housing 20.
  • the first spaced space R1 existing between the bottom surface 22 of the lower housing 20 and the substrate placement plate 40 by the substrate placement plate support part 70 is an integral supply/discharge port 50
  • the supercritical fluid for initial pressure supplied through may move along the lower surface of the substrate placement plate 40 to gradually diffuse into the processing area where the substrate W is disposed.
  • the substrate support 80 has one end coupled to the upper surface of the substrate placement plate 40 and the other end coupled to the substrate W. While supporting the substrate W, the substrate W is attached to the upper surface of the substrate placement plate 40. It is a component that separates from
  • the second separation space R2 existing between the upper surface of the substrate mounting plate 40 and the substrate W by the substrate support 80 provides the lower surface of the substrate W as the integrated supply/discharge port ( It performs a function of shortening the drying process time by exposure to the initial pressure supercritical fluid supplied through 50) and the drying supercritical fluid supplied through the upper supply port 60.
  • the housing driving unit 90 is a means for opening and closing the housing, and after the drying process is completed, the lower housing 20 is driven to separate the lower housing 20 from the upper housing 10 to open the chamber or initiate the drying process. In this case, the lower housing 20 may be driven to couple the lower housing 20 to the upper housing 10 to close the chamber.
  • the housing driving unit 90 is expressed as driving the lower housing 20, but this is only an example, and the housing driving unit 90 may be configured to drive the upper housing 10.
  • the supercritical fluid for initial pressurization and the supercritical fluid for drying may include carbon dioxide (CO 2 ), and the organic solvent may include alcohol, but is not limited thereto.
  • the alcohol may include methanol, ethanol, 1-propanol, 2-propanol, IPA, and 1-butanol. It is not limited.
  • carbon dioxide in a supercritical state is applied to the substrate W whose surface is moistened with an organic solvent such as alcohol in the chamber.
  • an organic solvent such as alcohol in the chamber.
  • the alcohol on the substrate W is dissolved in the supercritical carbon dioxide fluid.
  • the substrate W can be dried without collapse of the pattern.
  • the mixed fluid in which IPA is dissolved in the drying supercritical fluid is discharged (depressurized) in the drying chamber, the mixed fluid is phase separated by the cooling effect, causing particulate contamination on the substrate or the surface tension of the mixed fluid.
  • the substrate throughput is increased, and the supercritical fluid maintains a temperature above the critical point, thereby securing the uniformity of the drying process. have.
  • the supply path of the supercritical fluid for initial pressurization and the discharge path of the supercritical fluid in which the organic solvent formed on the substrate after drying is dissolved is symmetrical when supplying and discharging the supercritical fluid.
  • the supercritical fluid is uniformly distributed and supplied and discharged in the chamber by inducing a natural flow, thereby increasing substrate drying efficiency.
  • a substrate placement plate that is required for arranging the substrate, it blocks re-inflow particles when the chamber is opened after the drying process is completed, and the initial pressure supercritical fluid flows directly to the substrate surface at the beginning of the drying process. It is possible to prevent the collapse of the pattern formed on the substrate, prevent the problem that particles that may be contained in the initial pressurization supercritical fluid are deposited on the substrate, or reduce the amount of deposition, and reduce the amount of deposition. Due to the reduced working volume of the chamber there is an effect of shortening the drying process time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

A substrate drying chamber according to the present invention comprises: an upper housing; a lower housing; a substrate placing plate; an upper supply port which provides a supply path for a supercritical fluid for drying; an integrated supply/discharge port which provides a supply path for a supercritical fluid for initial pressurization and a discharge path for a mixed fluid obtained by dissolving an organic solvent in a supercritical fluid for drying after drying is performed by the supply of the supercritical fluid for drying; an agitator which agitates the supercritical fluid for initial pressurization and the supercritical fluid for drying; and a heating member which operates to heat the supercritical fluid for initial pressurization and the mixed fluid when the supercritical fluid for initial pressurization is supplied or the mixed fluid is discharged.

Description

기판 건조 챔버Substrate drying chamber
본 발명은 기판 건조 챔버에 관한 것이다. 보다 구체적으로, 본 발명은 초임계유체와 유기용제의 혼합속도를 증가시켜 기판 처리량(throughput)을 증가시키고, 초임계유체가 임계점 이상의 온도를 유지하도록 유도하여 건조공정의 균일성(uniformity)을 확보할 수 있고, 초기 가압용 초임계유체가 건조 챔버로 도입(초기 가압)되는 과정 중에 발생하는 압력저하로 인한 냉각 현상에 의해 액화 혹은 기화되어 기판에 입자상의 오염을 유발하는 문제점과 건조용 초임계유체에 IPA가 용해된 혼합유체의 배출(감압) 시, 혼합유체가 냉각 효과에 의해 상 분리(phase separation)되어 기판에 입자상 오염을 유발하거나 혼합유체의 표면 장력에 의해 기판에 형성된 패턴이 붕괴하는 문제점을 해결할 수 있고, 초임계유체의 공급 및 배출 시 대칭적인 흐름을 유도하여 초임계유체를 챔버 내부에 균일하게 분산시켜 공급 및 배출함으로써 기판 건조효율을 증대시킬 수 있으며, 건조공정 종료 후 챔버 개방 시 파티클이 챔버 내부의 기판으로 유입되는 문제를 방지할 수 있는 기판 건조 챔버에 관한 것이다.The present invention relates to a substrate drying chamber. More specifically, the present invention increases the substrate throughput by increasing the mixing speed of the supercritical fluid and the organic solvent, and induces the supercritical fluid to maintain a temperature above the critical point to ensure the uniformity of the drying process. The supercritical fluid for initial pressurization is liquefied or evaporated by the cooling phenomenon due to the pressure drop that occurs during the process of introducing (initial pressurization) into the drying chamber, causing particulate contamination on the substrate, and supercritical drying. When the mixed fluid in which IPA is dissolved in the fluid is discharged (reduced pressure), the mixed fluid phase separates due to the cooling effect, causing particulate contamination on the substrate or collapse of the pattern formed on the substrate due to the surface tension of the mixed fluid. Problems can be solved, and substrate drying efficiency can be increased by inducing a symmetrical flow when supplying and discharging the supercritical fluid, and supplying and discharging the supercritical fluid evenly inside the chamber, and opening the chamber after the drying process is completed. The present invention relates to a substrate drying chamber capable of preventing a problem in which particles are introduced into a substrate inside the chamber.
반도체 장치의 제조 공정에는 리소그래피 공정, 에칭 공정, 이온 주입 공정 등의 다양한 공정이 포함되어 있으며, 각 공정의 종료 후, 다음 공정으로 이행하기 전에 웨이퍼 표면에 잔존하는 불순물이나 잔사를 제거해서 웨이퍼 표면을 청정하게 하기 위한 세정 공정 및 건조 공정이 수행되고 있다.The semiconductor device manufacturing process includes various processes such as a lithography process, an etching process, and an ion implantation process, and after each process is completed, the surface of the wafer is removed by removing impurities or residues remaining on the wafer surface before proceeding to the next process. A cleaning process and a drying process are being performed for cleaning.
예를 들어, 에칭 공정 후의 웨이퍼의 세정 처리에서는 웨이퍼의 표면에 세정 처리를 위한 약액이 공급되고, 그 후에 탈이온수(deionized water, DIW)가 공급되어서 린스(rinse) 처리가 행해진다. 린스 처리 후에는 웨이퍼 표면에 남아있는 탈이온수를 제거해서 웨이퍼를 건조하는 건조 처리가 행해진다.For example, in the cleaning treatment of the wafer after the etching process, a chemical liquid for cleaning treatment is supplied to the surface of the wafer, and then deionized water (DIW) is supplied to perform a rinse treatment. After the rinsing treatment, a drying treatment of drying the wafer by removing deionized water remaining on the wafer surface is performed.
건조 처리를 수행하는 방법으로는, 예를 들어, 웨이퍼 상의 탈이온수를 이소프로필 알코올(IPA)로 치환해서 웨이퍼를 건조하는 기술이 알려져 있다.As a method of performing the drying treatment, for example, a technique of drying a wafer by replacing deionized water on a wafer with isopropyl alcohol (IPA) is known.
그러나 종래의 이러한 건조 기술에 따르면, 도 1에 개시된 바와 같이, 건조 처리 시에, 액체인 IPA의 표면 장력에 의해 웨이퍼 상에 형성된 패턴이 도괴하는 문제가 발생한다.However, according to such a conventional drying technique, as disclosed in FIG. 1, a problem occurs in that a pattern formed on a wafer is collapsed due to the surface tension of the liquid IPA during the drying process.
이러한 문제를 해결하기 위해서, 표면 장력이 제로가 되는 초임계 건조 기술이 제안되고 있다.In order to solve this problem, a supercritical drying technique in which the surface tension becomes zero has been proposed.
이러한 초임계 건조 기술에 따르면, 챔버 내에서 표면이 이소프로필 알코올(IPA)로 습윤되어 있는 웨이퍼에 초임계 상태의 이산화탄소를 공급함으로써 웨이퍼 상의 IPA가 초임계 이산화탄소(CO2) 유체에 용해된다. 그리고 IPA를 용해하고 있는 초임계 이산화탄소(CO2) 유체를 서서히 챔버에서 배출함으로써 패턴의 도괴 없이 웨이퍼를 건조할 수 있다.According to this supercritical drying technique, IPA on the wafer is dissolved in the supercritical carbon dioxide (CO 2 ) fluid by supplying carbon dioxide in a supercritical state to a wafer whose surface is moistened with isopropyl alcohol (IPA) in the chamber. And by gradually discharging the supercritical carbon dioxide (CO 2 ) fluid dissolving IPA from the chamber, the wafer can be dried without collapse of the pattern.
한편, 초임계 유체는 건조 챔버의 외부에 구비되는 초임계 유체 생성기 내에서 높은 압력으로 저장되어 있다가, 배관 및 밸브를 거치면서 건조 챔버로 도입(초기 가압)되는 과정 중에 상기 밸브 및 배관 연결 부위에서 압력 저하로 인한 냉각 현상이 발생하고, 이 과정 중에 액화 혹은 기화되어 기판에 입자상의 오염을 유발할 수 있다는 문제점이 있다. 특히, 가압 속도가 증가될 경우 단순 열교환기를 통해 배관의 온도를 유지하는 것만으로는 초임계 상의 유체에 충분한 열전달이 부족하다는 문제점이 있다.On the other hand, the supercritical fluid is stored at a high pressure in a supercritical fluid generator provided outside the drying chamber, and then introduced into the drying chamber (initial pressure) while passing through a pipe and a valve, the valve and the pipe connection part. There is a problem in that a cooling phenomenon occurs due to a drop in pressure at, and during this process, it is liquefied or vaporized to cause particulate contamination on the substrate. In particular, when the pressurization speed is increased, there is a problem that sufficient heat transfer to the supercritical fluid is insufficient simply by maintaining the temperature of the pipe through a simple heat exchanger.
또한, 건조 챔버에서 건조용 초임계유체에 IPA가 용해된 혼합유체의 배출(감압) 시, 혼합유체가 냉각 효과에 의해 상 분리(phase separation)될 경우 기판의 입자상 오염 혹은 혼합유체의 표면 장력에 의해 기판에 형성된 패턴의 붕괴가 발생할 수 있다. 구체적으로, 임계점 이상의 높은 압력 영역에서의 급격한 단열 팽창에 의해 온도와 압력이 임계점 이하로 떨어질 경우 단일 상(single phase)을 이루고 있던 혼합유체가 상 분리(phase separation)되어 기판에 건조 불량(입자상의 오염 등)을 야기할 수 있으며, 기판의 패턴 붕괴 또한 유발될 수 있다는 문제점이 있다.In addition, when the mixed fluid in which IPA is dissolved in the drying supercritical fluid for drying is discharged (depressurized) in the drying chamber, if the mixed fluid is phase separated by the cooling effect, it may cause particulate contamination of the substrate or the surface tension of the mixed fluid. As a result, the pattern formed on the substrate may collapse. Specifically, when the temperature and pressure drop below the critical point due to rapid adiabatic expansion in the high pressure region above the critical point, the mixed fluid forming the single phase is phase separated, resulting in poor drying on the substrate. Contamination, etc.), and the pattern collapse of the substrate may also be caused.
도 2는 이러한 초임계유체를 사용한 기판 처리 장치와 관련된 선행기술인 대한민국 공개특허공보 제10-2017-0137243호에 개시된 기판 처리용 챔버를 나타낸 것이다.FIG. 2 shows a chamber for processing a substrate disclosed in Korean Patent Laid-Open Publication No. 10-2017-0137243, which is a prior art related to a substrate processing apparatus using such a supercritical fluid.
도 2를 참조하면, 초임계 건조공정에서 IPA를 제거하는 과정에서 고압 챔버(410)를 구성하는 상부 바디(430)과 하부 바디(420)의 접촉하는 결합면으로 IPA가 유입될 수 있다. 이렇게 상부 바디(430)과 하부 바디(420)의 결합면으로 유입된 유기용제는 파티클이 되어 주변에 쌓이게 된다.Referring to FIG. 2, in a process of removing IPA in a supercritical drying process, IPA may be introduced into a mating surface of the upper body 430 and the lower body 420 constituting the high-pressure chamber 410 in contact with each other. In this way, the organic solvent introduced into the bonding surface of the upper body 430 and the lower body 420 becomes particles and accumulates around it.
초임계 건조공정이 끝난 후 처리된 기판을 외부로 반송하기 위해 챔버는 개방되며, 이때, 챔버 내부와 외부의 압력차이로 인해 상부 바디(430)과 하부 바디(420)의 결합면 주위의 파티클이 챔버 내부로 유입될 수 있다.After the supercritical drying process is over, the chamber is opened to transport the processed substrate to the outside. At this time, particles around the bonding surface of the upper body 430 and the lower body 420 are released due to the pressure difference between the inside and the outside of the chamber. It can be introduced into the chamber.
대한민국 공개특허공보 제10-2017-0137243호에 따르면, 기판이 상부 바디(430)과 하부 바디(420)의 결합면보다 아래쪽에 위치하기 때문에, 상부 바디(430)과 하부 바디(420)의 결합면 주위의 파티클이 챔버 내부로 유입되는 과정에서 중력에 의하여 파티클의 일부는 기판으로 유입될 가능성이 높다.According to Korean Patent Laid-Open Publication No. 10-2017-0137243, since the substrate is located below the bonding surface of the upper body 430 and the lower body 420, the bonding surface of the upper body 430 and the lower body 420 When surrounding particles are introduced into the chamber, there is a high possibility that some of the particles are introduced into the substrate due to gravity.
이와 같이, 기판으로 유입되는 파티클은 공정의 불량을 초래하기 때문에, 파티클 유입을 방지하기 위하여 상부 바디(430)과 하부 바디(420)의 결합면 주위에 차단막을 추가로 설치해야 할 필요성이 있으며, 이에 따라 장치의 전체적인 구조가 복잡해지는 문제점이 있다.In this way, since particles flowing into the substrate cause a defect in the process, there is a need to additionally install a blocking film around the bonding surface of the upper body 430 and the lower body 420 in order to prevent particle inflow. Accordingly, there is a problem that the overall structure of the device becomes complicated.
또한, 대한민국 공개특허공보 제10-2017-0137243호를 포함하는 종래 기술에 따르면, 초기가압을 위한 초임계유체를 공급하는 하부 공급 포트(422), 건조 이후의 초임계유체를 배기하는 배기포트(426)가 하부 바디(420)의 정중앙에 위치하지 아니함으로써 유체의 공급 및 배출 시 비대칭적인 흐름을 형성하여 초임계유체를 챔버 내부에 균일하게 분산시켜 공급 및 배출시키기 어려우며, 이로 인해 건조효율이 저하되는 문제점이 발생한다.In addition, according to the prior art including Korean Patent Publication No. 10-2017-0137243, a lower supply port 422 for supplying a supercritical fluid for initial pressure, and an exhaust port for exhausting the supercritical fluid after drying ( Since 426 is not located in the center of the lower body 420, it is difficult to supply and discharge the supercritical fluid by evenly distributing the supercritical fluid inside the chamber by forming an asymmetric flow when supplying and discharging the fluid, thereby reducing drying efficiency. A problem occurs.
한편, 초임계유체를 이용한 건조 공정에서 공급된 초임계유체와 IPA의 혼합속도는 웨이퍼 처리량(throughput)에 영향을 주는 중요한 인자 중 하나이다. On the other hand, the mixing speed of the supercritical fluid and IPA supplied in the drying process using the supercritical fluid is one of the important factors affecting the wafer throughput.
초임계유체의 높은 용해력과 빠른 확산속도에도 불구하고, 대한민국 공개특허공보 제10-2017-0137243호를 포함하는 종래 기술에 따르면, 초임계유체와 IPA의 혼합속도를 충분히 증가시키지 못하여 건조시간이 길어지고 처리량이 감소하게 되는 문제점이 있다.In spite of the high dissolving power and fast diffusion rate of the supercritical fluid, according to the prior art including Korean Patent Laid-Open No. 10-2017-0137243, the mixing speed of the supercritical fluid and IPA was not sufficiently increased, resulting in a long drying time. There is a problem that the throughput is reduced.
또한 이러한 느린 혼합속도는 초임계유체의 임계점 이상의 온도 유지에 어려움을 초래하여 건조 공정의 균일성(uniformity) 확보에 불리하다는 문제점이 있다.In addition, such a slow mixing speed has a problem in that it is difficult to maintain the temperature above the critical point of the supercritical fluid, which is disadvantageous in securing the uniformity of the drying process.
[선행기술문헌][Prior technical literature]
[특허문헌][Patent Literature]
대한민국 공개특허공보 제10-2017-0137243호(공개일자: 2017년 12월 13일, 명칭: 기판 처리 장치 및 방법)Republic of Korea Patent Publication No. 10-2017-0137243 (published date: December 13, 2017, name: substrate processing apparatus and method)
본 발명의 기술적 과제는 초임계유체와 유기용제의 혼합속도를 증가시켜 기판 처리량(throughput)을 증가시키고, 초임계유체가 임계점 이상의 온도를 유지하도록 유도하여 건조공정의 균일성(uniformity)을 확보할 수 있도록 하는 것이다.The technical problem of the present invention is to increase the substrate throughput by increasing the mixing speed of the supercritical fluid and the organic solvent, and induce the supercritical fluid to maintain a temperature above the critical point, thereby securing the uniformity of the drying process. To be able to.
또한, 본 발명의 기술적 과제는 초임계 유체가 건조 챔버의 외부에 구비되는 초임계 유체 생성기에서 배관 및 밸브를 통해 건조 챔버로 도입(초기 가압)되는 과정 중에 상기 밸브 및 배관 연결 부위에서 압력 저하로 인해 발생하는 냉각 현상에 의해 액화 혹은 기화되어 기판에 입자상의 오염을 유발하는 문제점을 해결하는 것이다.In addition, the technical problem of the present invention is to reduce pressure at the valve and the pipe connection part during the process of introducing (initial pressurization) into the drying chamber through pipes and valves in the supercritical fluid generator provided outside the drying chamber. This is to solve the problem of causing particulate contamination on the substrate by liquefaction or vaporization due to the cooling phenomenon that occurs.
또한, 본 발명의 기술적 과제는 건조 챔버에서 건조용 초임계유체에 IPA가 용해된 혼합유체의 배출(감압) 시, 혼합유체가 냉각 효과에 의해 상 분리(phase separation)되어 기판에 입자상 오염을 유발하거나 혼합유체의 표면 장력에 의해 기판에 형성된 패턴이 붕괴하는 문제점을 해결하는 것이다.In addition, the technical problem of the present invention is that when the mixed fluid in which IPA is dissolved in the drying supercritical fluid is discharged (reduced pressure) in the drying chamber, the mixed fluid is phase separated by the cooling effect, causing particulate contamination on the substrate. Or the pattern formed on the substrate collapses due to the surface tension of the mixed fluid.
또한, 본 발명의 기술적 과제는 하나의 일체형 공급/배출포트를 통하여 초기 가압용 초임계유체의 공급경로 및 건조후 기판에 형성된 유기용제가 용해된 초임계유체의 배출경로를 제공함으로써, 초임계유체의 공급 및 배출 시 대칭적인 흐름을 유도하여 초임계유체를 챔버 내부에 균일하게 분산시켜 공급 및 배출함으로써 기판 건조효율을 증대시키는 것이다.In addition, the technical problem of the present invention is to provide a supply path of the supercritical fluid for initial pressurization and a discharge path of the supercritical fluid in which the organic solvent formed on the substrate after drying is dissolved through one integrated supply/discharge port, thereby providing a supercritical fluid. When supplying and discharging, symmetrical flow is induced, and the supercritical fluid is uniformly distributed in the chamber to supply and discharge, thereby increasing substrate drying efficiency.
또한, 본 발명의 기술적 과제는 기판을 배치하기 위하여 필수적으로 요구되는 기판 배치판을 이용하여 건조공정 완료 후 챔버 개방 시 재유입되는 파티클을 차단하고, 건조 공정의 초기에 기판 표면으로 직접 향하는 초기 가압용 초임계유체의 흐름을 방지하여 기판에 형성된 패턴의 도괴를 방지하고, 초기 가압용 초임계유체에 함유될 수 있는 파티클이 기판에 퇴적되는 문제를 방지하거나 퇴적량을 감소시키고, 기판 배치판이 차지하는 부피로 인한 챔버의 내부용적 (working volume)을 감소시켜 건조 공정시간을 단축하는 것이다.In addition, the technical problem of the present invention is to block re-inflow particles when the chamber is opened after the drying process is completed by using a substrate placement plate that is required for arranging a substrate, and initial pressure directed directly to the substrate surface at the beginning of the drying process. It prevents the collapse of the pattern formed on the substrate by preventing the flow of the supercritical fluid for use, and prevents the problem that particles that may be contained in the supercritical fluid for initial pressurization are deposited on the substrate or reduces the amount of deposition, and The drying process time is shortened by reducing the working volume of the chamber due to the volume.
또한, 본 발명의 기술적 과제는 기판을 하부 하우징과 상부 하우징의 결합면보다 높게 위치하도록 기판 배치판 상에 배치함으로써, 건조공정이 완료되어 챔버가 개방되는 경우, 하부 하우징과 상부 하우징의 결합면에 구비된 실링부 주변의 파티클이 기판과 결합면의 높이차에 따른 중력에 의해 기판으로 유입되는 문제를 방지하는 것이다.In addition, the technical problem of the present invention is to arrange the substrate on the substrate placement plate so as to be positioned higher than the bonding surface between the lower housing and the upper housing, so that when the drying process is completed and the chamber is opened, Particles around the sealed part are prevented from flowing into the substrate by gravity due to the height difference between the substrate and the bonding surface.
이러한 기술적 과제를 해결하기 위한 본 발명에 따른 기판 건조 챔버는, 상부 하우징, 상기 상부 하우징에 개폐 가능하게 결합되는 하부 하우징, 상기 하부 하우징의 바닥면에 결합되어 있으며 유기용제가 형성되어 있는 기판이 배치되는 기판 배치판, 상기 기판 배치판을 향하도록 상기 상부 하우징에 형성되어 건조용 초임계유체의 공급경로를 제공하는 상부 공급포트, 초기 가압용 초임계유체의 공급경로 및 상기 건조용 초임계유체의 공급에 따른 건조 후 상기 초기 가압용 초임계유체와 상기 건조용 초임계유체를 포함하는 초임계유체에 상기 유기용제가 용해된 혼합유체의 배출경로를 제공하는 일체형 공급/배출포트, 상기 일체형 공급/배출포트를 통해 공급되는 초기 가압용 초임계유체와 상기 상부 공급포트를 통해 공급되는 건조용 초임계유체를 교반하는 교반기 및 상기 기판 배치판에 설치되어 있으며 상기 초기 가압용 초임계유체의 공급 시 및 상기 혼합유체의 배출 시에 동작하여 상기 초기 가압용 초임계유체 및 상기 혼합유체를 가열하는 가열부재를 포함한다.In the substrate drying chamber according to the present invention for solving these technical problems, an upper housing, a lower housing coupled to the upper housing so as to be opened and closed, and a substrate coupled to the bottom surface of the lower housing and formed with an organic solvent are disposed. A substrate arrangement plate, an upper supply port formed in the upper housing so as to face the substrate arrangement plate to provide a supply path of the supercritical fluid for drying, a supply path of the supercritical fluid for initial pressure, and the drying supercritical fluid After drying according to supply, an integrated supply/discharge port providing a discharge path of the mixed fluid in which the organic solvent is dissolved in the supercritical fluid including the initial pressurization supercritical fluid and the drying supercritical fluid, the integrated supply/ An agitator for stirring the initial pressurization supercritical fluid supplied through the discharge port and the drying supercritical fluid supplied through the upper supply port, and is installed on the substrate arrangement plate, and when the initial pressurization supercritical fluid is supplied and And a heating member for heating the initial pressurization supercritical fluid and the mixed fluid by operating when the mixed fluid is discharged.
본 발명에 따른 기판 건조 챔버에 있어서, 상기 가열부재는, 상기 초기 가압용 초임계유체가 공급되는 초기가압시간 동안 동작하여, 상기 초기 가압용 초임계유체의 온도가 임계점 이상이 되도록 조절하는 것을 특징으로 한다.In the substrate drying chamber according to the present invention, the heating member operates during an initial pressing time in which the initial pressing supercritical fluid is supplied, and controls the temperature of the initial pressing supercritical fluid to be above a critical point. To do.
본 발명에 따른 기판 건조 챔버에 있어서, 상기 가열부재는, 상기 혼합유체가 배출되는 배출시간 동안 동작하여, 상기 혼합유체의 배출과정에서 발생하는 압력저하에 의한 단열팽창에 따라 발생하는 온도저하를 보상함으로써, 상기 혼합유체에 포함된 건조용 초임계유체의 온도가 임계점 이상이 되도록 조절하는 것을 특징으로 한다.In the substrate drying chamber according to the present invention, the heating member is operated during a discharge time during which the mixed fluid is discharged, and compensates for a temperature decrease caused by adiabatic expansion due to a pressure drop occurring in the discharge process of the mixed fluid. By doing so, it is characterized in that the temperature of the drying supercritical fluid contained in the mixed fluid is controlled to be above the critical point.
본 발명에 따른 기판 건조 챔버에 있어서, 상기 교반기는, 상기 유기용제와 상기 초기 가압용 초임계유체의 혼합속도 및 상기 유기용제와 상기 건조용 초임계유체의 혼합속도를 증가시키는 것을 특징으로 한다.In the substrate drying chamber according to the present invention, the stirrer increases the mixing speed of the organic solvent and the initial pressure supercritical fluid and the mixing speed of the organic solvent and the drying supercritical fluid.
본 발명에 따른 기판 건조 챔버에 있어서, 상기 교반기는, 상기 상부 하우징의 중앙영역에 형성된 삽입공을 통해 챔버 내부로 삽입되는 샤프트, 상기 샤프트의 양단 중에서 챔버 내부에 위치하는 일단에 결합된 교반 날개부 및 상기 샤프트의 양단 중에서 챔버 외부에 위치하는 타단에 결합되어 상기 샤프트에 회전 구동력을 제공하는 구동부를 포함하는 것을 특징으로 한다.In the substrate drying chamber according to the present invention, the stirrer includes a shaft inserted into the chamber through an insertion hole formed in a central region of the upper housing, and a stirring blade portion coupled to one end located inside the chamber among both ends of the shaft. And a driving unit coupled to the other end located outside the chamber of both ends of the shaft to provide rotational driving force to the shaft.
본 발명에 따른 기판 건조 챔버는, 상기 상부 하우징의 외부면에 결합되어 상기 교반기를 구성하는 샤프트를 축결합시키는 축결합 부재를 더 포함하고, 상기 축결합 부재에는 상기 축결합 부재의 중심점에서 이격된 복수의 관통홀이 형성되어 있고, 상기 상부 공급 포트는, 상기 축결합 부재에 형성된 복수의 관통홀에 정렬되도록 상기 상부 하우징에 형성된 복수의 공급홀로 이루어진 것을 특징으로 한다.The substrate drying chamber according to the present invention further includes a shaft coupling member coupled to an outer surface of the upper housing to axially couple a shaft constituting the stirrer, wherein the shaft coupling member is spaced apart from the center point of the shaft coupling member. A plurality of through holes are formed, and the upper supply port comprises a plurality of supply holes formed in the upper housing so as to be aligned with a plurality of through holes formed in the shaft coupling member.
본 발명에 따른 기판 건조 챔버에 있어서, 상기 축결합 부재에 형성되어 있는 복수의 관통홀은 상호 대칭적으로 배치되어 있는 것을 특징으로 한다.In the substrate drying chamber according to the present invention, a plurality of through holes formed in the shaft coupling member are arranged symmetrically to each other.
본 발명에 따른 기판 건조 챔버에 있어서, 상기 일체형 공급/배출포트는, 상기 하부 하우징의 일측면에서 타측면까지 연장 형성되고 상기 일측면과 상기 타측면의 중간영역에서 상기 기판 배치판을 향하도록 형성되어 있는 것을 특징으로 한다.In the substrate drying chamber according to the present invention, the integrated supply/discharge port is formed to extend from one side to the other side of the lower housing and is formed to face the substrate arrangement plate in an intermediate region between the one side and the other side. It is characterized by being.
본 발명에 따른 기판 건조 챔버에 있어서, 상기 일체형 공급/배출포트는, 상기 하부 하우징의 일측면에서 상기 중간영역까지 형성된 제1 관로부, 상기 중간영역에서 상기 제1 관로부와 연통되어 상기 기판 배치판을 향하도록 형성된 공통포트부 및 상기 중간영역에서 상기 공통포트부 및 상기 제1 관로부와 연통되어 상기 하부 하우징의 타측면까지 형성된 제2 관로부를 포함하는 것을 특징으로 한다.In the substrate drying chamber according to the present invention, the integrated supply/discharge port includes a first conduit part formed from one side of the lower housing to the middle region, and the substrate is disposed in communication with the first conduit part in the intermediate region. And a second conduit portion formed to face the plate and communicated with the common port portion and the first conduit in the intermediate region to the other side of the lower housing.
본 발명에 따른 기판 건조 챔버에 있어서, 상기 제1 관로부와 상기 공통포트부는 초기 가압용 초임계유체의 공급경로를 제공하고, 상기 공통포트부와 상기 제2 관로부는 상기 유기용제가 용해된 초임계유체의 배출경로를 제공하는 것을 특징으로 한다.In the substrate drying chamber according to the present invention, the first pipe part and the common port part provide a supply path of the supercritical fluid for initial pressure, and the common port part and the second pipe part It is characterized in that it provides a discharge path of the critical fluid.
본 발명에 따른 기판 건조 챔버는, 상기 하부 하우징과 상기 상부 하우징의 결합면에 구비된 실링부를 더 포함하고, 상기 기판은 상기 하부 하우징과 상기 상부 하우징의 결합면보다 높게 위치하도록 상기 기판 배치판 상에 배치되어 있고, 건조공정이 완료되어 상기 하부 하우징과 상기 상부 하우징이 개방되는 경우, 상기 결합면에 구비된 실링부 주변의 파티클이 상기 기판과 상기 결합면의 높이차에 따른 중력에 의해 상기 기판으로의 유입이 방지되는 것을 특징으로 한다.The substrate drying chamber according to the present invention further includes a sealing portion provided on a bonding surface between the lower housing and the upper housing, and the substrate is positioned higher than the bonding surface between the lower housing and the upper housing. And when the drying process is completed and the lower housing and the upper housing are opened, particles around the sealing portion provided on the bonding surface are transferred to the substrate by gravity according to the height difference between the substrate and the bonding surface. It is characterized in that the inflow of is prevented.
본 발명에 따른 기판 건조 챔버에 있어서, 상기 제1 관로부와 상기 공통포트부를 통해 공급되는 초기 가압용 초임계유체는 상기 기판 배치판에 막혀 상기 기판으로의 직접적인 분사가 방지되는 것을 특징으로 한다.In the substrate drying chamber according to the present invention, the supercritical fluid for initial pressure supplied through the first conduit portion and the common port portion is blocked by the substrate arrangement plate so that direct injection to the substrate is prevented.
본 발명에 따른 기판 건조 챔버는, 일단이 상기 하부 하우징의 바닥면에 결합되고 타단이 상기 기판 배치판에 결합되어, 상기 기판 배치판을 지지하면서 상기 기판 배치판을 상기 하부 하우징의 바닥면으로부터 이격시키는 기판배치판 지지부를 더 포함하는 것을 특징으로 한다.In the substrate drying chamber according to the present invention, one end is coupled to the bottom surface of the lower housing and the other end is coupled to the substrate placement plate, thereby supporting the substrate placement plate while separating the substrate placement plate from the bottom surface of the lower housing. It characterized in that it further comprises a substrate arrangement plate support.
본 발명에 따른 기판 건조 챔버에 있어서, 상기 기판배치판 지지부에 의해 상기 하부 하우징의 바닥면과 상기 기판 배치판 사이에 존재하는 제1 이격공간은 상기 일체형 공급/배출포트를 통해 공급되는 초기 가압용 초임계유체가 상기 기판 배치판의 하면을 따라 이동하여 상기 기판이 배치된 처리영역으로 점진적으로 확산하도록 유도하는 것을 특징으로 한다.In the substrate drying chamber according to the present invention, the first spaced space existing between the bottom surface of the lower housing and the substrate placement plate by the substrate placement plate support part is for initial pressure supplied through the integrated supply/discharge port. It is characterized in that the supercritical fluid moves along the lower surface of the substrate arrangement plate to gradually diffuse into the processing area in which the substrate is disposed.
본 발명에 따른 기판 건조 챔버는, 일단이 상기 기판 배치판의 상면에 결합되고 타단이 상기 기판에 결합되어, 상기 기판을 지지하면서 상기 기판을 상기 기판 배치판의 상면으로부터 이격시키는 기판 지지부를 더 포함하는 것을 특징으로 한다.The substrate drying chamber according to the present invention further includes a substrate support portion having one end coupled to the upper surface of the substrate arrangement plate and the other end coupled to the substrate, supporting the substrate and separating the substrate from the upper surface of the substrate arrangement plate Characterized in that.
본 발명에 따른 기판 건조 챔버에 있어서, 상기 기판 지지부에 의해 상기 기판 배치판의 상면과 상기 기판 사이에 존재하는 제2 이격공간은 상기 기판의 하면을 상기 일체형 공급/배출포트를 통해 공급되는 초기 가압용 초임계유체와 상기 상부 공급포트를 통해 공급되는 건조용 초임계유체에 노출시켜 건조공정의 시간을 단축시키는 것을 특징으로 한다.In the substrate drying chamber according to the present invention, the second separation space existing between the upper surface of the substrate arrangement plate and the substrate by the substrate support portion is an initial pressurization supplied to the lower surface of the substrate through the integrated supply/discharge port. It is characterized in that the drying process is shortened by exposure to the supercritical fluid for drying and the supercritical fluid for drying supplied through the upper supply port.
본 발명에 따르면, 초임계유체와 유기용제의 혼합속도를 증가시켜 기판 처리량(throughput)을 증가시키고, 초임계유체가 임계점 이상의 온도를 유지하도록 유도하여 건조공정의 균일성(uniformity)을 확보할 수 있다.According to the present invention, it is possible to increase the substrate throughput by increasing the mixing speed of the supercritical fluid and the organic solvent, and induce the supercritical fluid to maintain a temperature above the critical point, thereby securing the uniformity of the drying process. have.
본 발명에 따르면, 초임계 유체가 건조 챔버의 외부에 구비되는 초임계 유체 생성기에서 배관 및 밸브를 통해 건조 챔버로 도입(초기 가압)되는 과정 중에 상기 밸브 및 배관 연결 부위에서 압력 저하로 인해 발생하는 냉각 현상에 의해 액화 혹은 기화되어 기판에 입자상의 오염을 유발하는 문제점을 해결할 수 있는 효과가 있다.According to the present invention, the supercritical fluid is introduced into the drying chamber through pipes and valves in the supercritical fluid generator provided outside the drying chamber (initial pressurization). There is an effect of solving the problem of causing particle contamination on the substrate by being liquefied or vaporized by the cooling phenomenon.
또한, 건조 챔버에서 건조용 초임계유체에 IPA가 용해된 혼합유체의 배출(감압) 시, 혼합유체가 냉각 효과에 의해 상 분리(phase separation)되어 기판에 입자상 오염을 유발하거나 혼합유체의 표면 장력에 의해 기판에 형성된 패턴이 붕괴하는 문제점을 해결할 수 있는 효과가 있다.In addition, when the mixed fluid in which IPA is dissolved in the drying supercritical fluid is discharged (depressurized) in the drying chamber, the mixed fluid is phase separated by the cooling effect, causing particulate contamination on the substrate or the surface tension of the mixed fluid. There is an effect of solving the problem that the pattern formed on the substrate collapses.
또한, 하나의 일체형 공급/배출포트를 통하여 초기 가압용 초임계유체의 공급경로 및 건조후 기판에 형성된 유기용제가 용해된 초임계유체의 배출경로를 제공함으로써, 초임계유체의 공급 및 배출 시 대칭적인 흐름을 유도하여 초임계유체를 챔버 내부에 균일하게 분산시켜 공급 및 배출함으로써 기판 건조효율을 증대시킬 수 있는 효과가 있다.In addition, by providing the supply path of the supercritical fluid for initial pressurization and the discharge path of the supercritical fluid in which the organic solvent formed on the substrate after drying is dissolved through one integrated supply/discharge port, it is symmetrical when supplying and discharging the supercritical fluid. The supercritical fluid is uniformly distributed and supplied and discharged in the chamber by inducing a natural flow, thereby increasing substrate drying efficiency.
또한, 기판을 배치하기 위하여 필수적으로 요구되는 기판 배치판을 이용하여 건조공정 완료 후 챔버 개방 시 재유입되는 파티클을 차단하고, 건조 공정의 초기에 기판 표면으로 직접 향하는 초기 가압용 초임계유체의 흐름을 방지하여 기판에 형성된 패턴의 도괴를 방지할 수 있고, 초기 가압용 초임계유체에 함유될 수 있는 파티클이 기판에 퇴적되는 문제를 방지하거나 퇴적량을 감소시킬 수 있고, 기판 배치판이 차지하는 부피로 인한 챔버의 내부용적(working volume)을 감소시켜 건조 공정시간을 단축할 수 있는 효과가 있다.In addition, by using a substrate placement plate that is required for arranging the substrate, it blocks re-inflow particles when the chamber is opened after the drying process is completed, and the initial pressure supercritical fluid flows directly to the substrate surface at the beginning of the drying process. It is possible to prevent the collapse of the pattern formed on the substrate, prevent the problem that particles that may be contained in the initial pressurization supercritical fluid are deposited on the substrate, or reduce the amount of deposition, and reduce the amount of deposition. Due to the reduced working volume of the chamber there is an effect of shortening the drying process time.
또한, 기판을 하부 하우징과 상부 하우징의 결합면보다 높게 위치하도록 기판 배치판 상에 배치함으로써, 건조공정이 완료되어 챔버가 개방되는 경우, 하부 하우징과 상부 하우징의 결합면에 구비된 실링부 주변의 파티클이 기판과 결합면의 높이차에 따른 중력에 의해 기판으로 유입되는 문제를 방지할 수 있는 효과가 있다.In addition, by placing the substrate on the substrate mounting plate so as to be positioned higher than the bonding surface between the lower housing and the upper housing, when the drying process is completed and the chamber is opened, particles around the sealing portion provided on the bonding surface between the lower housing and the upper housing There is an effect of preventing a problem from flowing into the substrate due to gravity due to a height difference between the substrate and the bonding surface.
도 1은 종래기술에 따른 기판 건조 과정에서 발생하는 패턴 도괴(pattern collapse) 현상을 나타낸 도면이고,1 is a diagram showing a pattern collapse phenomenon occurring in a substrate drying process according to the prior art,
도 2는 종래의 기판 건조 챔버를 나타낸 도면이고,2 is a view showing a conventional substrate drying chamber,
도 3은 본 발명의 일 실시 예에 따른 기판 건조 챔버를 나타낸 도면이고,3 is a view showing a substrate drying chamber according to an embodiment of the present invention,
도 4는 본 발명의 일 실시 예에 있어서, 축결합 부재에 교반기를 구성하는 샤프트(shaft)가 결합된 예시적인 상면 형상을 나타낸 도면이고,4 is a view showing an exemplary top surface shape in which a shaft constituting a stirrer is coupled to a shaft coupling member in an embodiment of the present invention,
도 5는 본 발명의 일 실시 예에 있어서, 초기 가압용 초임계유체의 확산 경로를 나타낸 도면이고,5 is a view showing a diffusion path of the initial pressurization supercritical fluid in an embodiment of the present invention,
도 6은 본 발명의 일 실시 예에 있어서, 건조용 초임계유체의 확산 경로를 나타낸 도면이고,6 is a diagram showing a diffusion path of a drying supercritical fluid in an embodiment of the present invention,
도 7은 본 발명의 일 실시 예에 있어서, 초기 가압용 초임계유체와 건조용 초임계유체를 포함하는 초임계유체에 유기용제가 용해된 혼합유체의 배출 경로를 나타낸 도면이고,7 is a view showing a discharge path of a mixed fluid in which an organic solvent is dissolved in a supercritical fluid including an initial pressurizing supercritical fluid and a drying supercritical fluid in an embodiment of the present invention,
도 8은 본 발명의 일 실시 예에 있어서, 건조공정이 완료되어 하부 하우징과 상부 하우징이 개방되는 경우, 상부 하우징과 하부 하우징의 결합면에 구비된 실링부 및 그 주변에 존재하는 파티클의 기판으로의 유입이 방지되는 원리를 설명하기 위한 도면이다.FIG. 8 is a diagram illustrating a sealing portion provided on a bonding surface between the upper housing and the lower housing and a substrate of particles existing therearound when the drying process is completed and the lower housing and the upper housing are opened, according to an embodiment of the present invention. It is a diagram for explaining the principle of preventing the inflow of
본 명세서에 개시된 본 발명의 개념에 따른 실시 예들에 대해서 특정한 구조적 또는 기능적 설명은 단지 본 발명의 개념에 따른 실시 예들을 설명하기 위한 목적으로 예시된 것으로서, 본 발명의 개념에 따른 실시 예들은 다양한 형태들로 실시될 수 있으며 본 명세서에 설명된 실시 예들에 한정되지 않는다.Specific structural or functional descriptions of the embodiments according to the concept of the present invention disclosed in the present specification are only exemplified for the purpose of describing the embodiments according to the concept of the present invention, and the embodiments according to the concept of the present invention are in various forms. And are not limited to the embodiments described herein.
본 발명의 개념에 따른 실시 예들은 다양한 변경들을 가할 수 있고 여러 가지 형태들을 가질 수 있으므로 실시 예들을 도면에 예시하고 본 명세서에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명의 개념에 따른 실시 예들을 특정한 개시 형태들에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물, 또는 대체물을 포함한다.Since the embodiments according to the concept of the present invention can apply various changes and have various forms, embodiments are illustrated in the drawings and will be described in detail in the present specification. However, this is not intended to limit the embodiments according to the concept of the present invention to specific disclosed forms, and includes all changes, equivalents, or substitutes included in the spirit and scope of the present invention.
제1 또는 제2 등의 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만, 예컨대 본 발명의 개념에 따른 권리 범위로부터 벗어나지 않은 채, 제1 구성 요소는 제2 구성 요소로 명명될 수 있고 유사하게 제2 구성 요소는 제1 구성 요소로도 명명될 수 있다.Terms such as first or second may be used to describe various elements, but the elements should not be limited by the terms. The terms are only for the purpose of distinguishing one component from other components, for example, without departing from the scope of the rights according to the concept of the present invention, the first component may be named as the second component and similarly the second component. The component may also be referred to as a first component.
어떤 구성 요소가 다른 구성 요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성 요소에 직접 연결되어 있거나 접속되어 있을 수도 있지만, 중간에 다른 구성 요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성 요소가 다른 구성 요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는 중간에 다른 구성 요소가 존재하지 않는 것으로 이해되어야 할 것이다. 구성 요소간의 관계를 설명하는 다른 표현들, 즉 "~사이에" 와 "바로 ~사이에" 또는 "~에 이웃하는"과 "~에 직접 이웃하는" 등도 마찬가지로 해석되어야 한다.When a component is referred to as being "connected" or "connected" to another component, it should be understood that it is directly connected or may be connected to the other component, but other components may exist in the middle. will be. On the other hand, when a component is referred to as being "directly connected" or "directly connected" to another component, it should be understood that there is no other component in the middle. Other expressions describing the relationship between components, such as "between" and "directly between" or "adjacent to" and "directly adjacent to" should be interpreted as well.
본 명세서에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로서, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 본 명세서에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used in the present specification are only used to describe specific embodiments, and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In the present specification, terms such as "comprise" or "have" are intended to designate the presence of features, numbers, steps, actions, components, parts, or combinations thereof described herein, but one or more other features. It is to be understood that the possibility of addition or presence of elements or numbers, steps, actions, components, parts, or combinations thereof is not preliminarily excluded.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어는 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 나타낸다. 일반적으로 사용되는 사전에 정의된 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 갖는 것으로 해석되어야 하며, 본 명세서에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless otherwise defined, all terms, including technical or scientific terms, used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the present invention belongs. Terms as defined in a commonly used dictionary should be interpreted as having a meaning consistent with the meaning in the context of the related technology, and should not be interpreted as an ideal or excessively formal meaning unless explicitly defined herein .
이하에서는, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 예를 상세히 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 3은 본 발명의 일 실시 예에 따른 기판 건조 챔버를 나타낸 도면이고, 도 4는 본 발명의 일 실시 예에 있어서, 축결합 부재에 교반기를 구성하는 샤프트(shaft)가 결합된 예시적인 상면 형상을 나타낸 도면이고, 도 5는 본 발명의 일 실시 예에 있어서, 초기 가압용 초임계유체의 확산 경로를 나타낸 도면이고, 도 6은 본 발명의 일 실시 예에 있어서, 건조용 초임계유체의 확산 경로를 나타낸 도면이고, 도 7은 본 발명의 일 실시 예에 있어서, 초기 가압용 초임계유체와 건조용 초임계유체를 포함하는 초임계유체에 유기용제가 용해된 혼합유체의 배출 경로를 나타낸 도면이고, 도 8은 본 발명의 일 실시 예에 있어서, 건조공정이 완료되어 하부 하우징과 상부 하우징이 개방되는 경우, 상부 하우징과 하부 하우징의 결합면에 구비된 실링부 및 그 주변에 존재하는 파티클의 기판으로의 유입이 방지되는 원리를 설명하기 위한 도면이다.3 is a view showing a substrate drying chamber according to an embodiment of the present invention, and FIG. 4 is an exemplary top shape in which a shaft constituting a stirrer is coupled to a shaft coupling member in an embodiment of the present invention. 5 is a view showing the diffusion path of the initial pressurization supercritical fluid in an embodiment of the present invention, and FIG. 6 is a view showing the diffusion of the drying supercritical fluid in an embodiment of the present invention. FIG. 7 is a diagram showing a path, and FIG. 7 is a view showing a discharge path of a mixed fluid in which an organic solvent is dissolved in a supercritical fluid including a supercritical fluid for initial pressurization and a supercritical fluid for drying in an embodiment of the present invention 8 is, in one embodiment of the present invention, when the drying process is completed and the lower housing and the upper housing are opened, the sealing portion provided on the bonding surface of the upper housing and the lower housing and particles existing therearound It is a diagram for explaining the principle of preventing inflow to the substrate.
도 3 내지 도 8을 참조하면, 본 발명의 일 실시 예에 따른 기판 건조 챔버(1)는 상부 하우징(10), 하부 하우징(20), 실링부(30), 기판 배치판(40), 가열부재(45), 일체형 공급/배출포트(50), 상부 공급포트(60), 기판배치판 지지부(70), 기판 지지부(80), 하우징 구동부(90), 교반기(100) 및 축결합 부재(200)를 포함한다.3 to 8, a substrate drying chamber 1 according to an embodiment of the present invention includes an upper housing 10, a lower housing 20, a sealing unit 30, a substrate placement plate 40, and heating. The member 45, the integral supply/discharge port 50, the upper supply port 60, the substrate plate support part 70, the substrate support part 80, the housing drive part 90, the stirrer 100, and the shaft coupling member ( 200).
상부 하우징(10)과 하부 하우징(20)은 서로 개폐 가능하게 결합되어 있으며, 건조 공정이 수행되는 공간을 제공한다. 예를 들어, 상부 하우징(10)과 하부 하우징(20)은 원통 형상을 갖도록 구성될 수 있으나, 이에 한정되지는 않는다. 후술하겠지만, 상부 하우징(10)에는 상부 공급포트(60)가 형성되어 있고, 하부 하우징(20)에는 일체형 공급/배출포트(50)가 형성되어 있다. 상부 공급포트(60)의 구체적인 구성에 대해서는, 교반기(100) 및 축결합 부재(200)의 구성과 연계하여 이후 상세히 설명한다.The upper housing 10 and the lower housing 20 are coupled to each other so as to be able to open and close, and provide a space in which a drying process is performed. For example, the upper housing 10 and the lower housing 20 may be configured to have a cylindrical shape, but are not limited thereto. As will be described later, an upper supply port 60 is formed in the upper housing 10, and an integrated supply/discharge port 50 is formed in the lower housing 20. The specific configuration of the upper supply port 60 will be described in detail later in connection with the configuration of the stirrer 100 and the shaft coupling member 200.
실링부(30)는 하부 하우징(20)과 상부 하우징(10)의 결합면(C)에 구비되어 있으며, 하부 하우징(20)과 상부 하우징(10)의 결합면(C)의 기밀을 유지하여 챔버 내부영역을 외부와 차단시킨다.The sealing part 30 is provided on the coupling surface (C) of the lower housing 20 and the upper housing 10, and maintains the airtightness of the coupling surface (C) between the lower housing 20 and the upper housing 10. Block the inner area of the chamber from the outside.
예를 들어, 건조공정이 완료되어 하부 하우징(20)과 상부 하우징(10)이 개방되는 경우, 상부 하우징(10)과 하부 하우징(20)의 결합면(C)에 구비된 실링부(30) 및 그 주변에 존재하는 파티클의 기판(W)으로의 유입이 방지되는 원리를 설명하기 위한 도 8에 예시된 바와 같이, 기판(W)은 하부 하우징(20)과 상부 하우징(10)의 결합면(C)보다 높게 위치하도록 기판 배치판(40) 상에 배치되어 있고, 건조공정이 완료되어 하부 하우징(20)과 상부 하우징(10)이 개방되는 경우, 결합면(C)에 구비된 실링부(30) 주변의 파티클이 기판(W)과 결합면(C)의 높이차에 따른 중력에 의해 기판(W)으로의 유입이 방지되도록 구성될 수 있다.For example, when the drying process is completed and the lower housing 20 and the upper housing 10 are opened, the sealing part 30 provided on the coupling surface C of the upper housing 10 and the lower housing 20 And, as illustrated in FIG. 8 for explaining the principle of preventing the inflow of particles existing in the vicinity to the substrate W, the substrate W is a bonding surface of the lower housing 20 and the upper housing 10 When the lower housing 20 and the upper housing 10 are opened when the drying process is completed and the lower housing 20 and the upper housing 10 are opened, the sealing part provided on the bonding surface (C) (30) The surrounding particles may be configured to be prevented from entering the substrate W by gravity according to a height difference between the substrate W and the bonding surface C.
기판 배치판(40)은 하부 하우징(20)의 바닥면(22)에 결합되어 있으며 유기용제가 형성되어 있는 기판(W)이 배치되는 구성요소이다. 기판 배치판(40)과 타 구성요소와의 상호작용에 대하여는 후술한다.The substrate arranging plate 40 is a component on which a substrate W on which an organic solvent is formed is attached to the bottom surface 22 of the lower housing 20. The interaction between the substrate arrangement plate 40 and other components will be described later.
가열부재(45)는 기판 배치판(40)에 설치되어 있으며, 초기 가압용 초임계유체의 공급 시 및 혼합유체의 배출 시에 동작하여 초기 가압용 초임계유체 및 혼합유체를 가열하는 기능을 수행한다.The heating member 45 is installed on the substrate arranging plate 40 and operates when the supercritical fluid for initial pressurization is supplied and when the mixed fluid is discharged to heat the supercritical fluid for initial pressurization and the mixed fluid. do.
예를 들어, 가열부재(45)는 전기저항발열체, 또는 기판 배치판(40) 내에 형성된 오일 충진 히터(oil-filled heater) 등의 형태로 구현될 수 있으나, 가열부재(45)의 구현 형태가 이에 한정되지는 않는다.For example, the heating member 45 may be implemented in the form of an electric resistance heating element or an oil-filled heater formed in the substrate mounting plate 40, but the implementation form of the heating member 45 is It is not limited thereto.
예를 들어, 1) 일체형 공급/배출포트(50)를 구성하는 제1 관로부(510)와 공통포트부(520)를 통해 초기 가압용 초임계유체가 설정된 초기가압시간 동안 공급되고, 2) 초기 가압시간이 경과한 후 초기 가압용 초임계유체의 공급이 차단되고 상부 공급포트(60)를 통해 건조용 초임계유체가 건조시간 동안 공급되고, 3) 건조 시간이 경과한 후 건조용 초임계유체의 공급이 차단되고 일체형 공급/배출포트(50)를 구성하는 공통포트부(520)와 제2 관로부(530)를 통해 혼합유체가 배출시간 동안 배출될 수 있다. 이 경우, 예를 들어, 건조용 초임계유체의 공급과 혼합유체의 배출은 설정된 횟수만큼 반복될 수 있다.For example, 1) the initial pressure supercritical fluid is supplied during the set initial pressure time through the first conduit portion 510 and the common port portion 520 constituting the integrated supply/discharge port 50, and 2) After the initial pressurization time has elapsed, the supply of the initial pressurization supercritical fluid is cut off, and the drying supercritical fluid is supplied through the upper supply port 60 for the drying time, and 3) the drying supercritical fluid is after the drying time. The supply of the fluid is blocked and the mixed fluid may be discharged during the discharge time through the common port part 520 and the second conduit part 530 constituting the integrated supply/discharge port 50. In this case, for example, the supply of the drying supercritical fluid and the discharge of the mixed fluid may be repeated a set number of times.
예를 들어, 가열부재(45)는, 초기 가압용 초임계유체가 공급되는 초기가압시간 동안 동작하여, 초기 가압용 초임계유체의 온도가 임계점 이상이 되도록 조절할 수 있다.For example, the heating member 45 may be operated during an initial pressing time during which the initial pressing supercritical fluid is supplied, so that the temperature of the initial pressing supercritical fluid may be adjusted to be above a critical point.
이러한 구성의 이유 및 그에 따른 효과를 설명하면 다음과 같다.The reason for this configuration and its effect will be described as follows.
초임계 유체는 본 발명의 일 실시 예에 따른 기판 건조 챔버(1)의 외부에 구비되는 초임계 유체 생성기 내에서 높은 압력으로 저장되어 있다가, 배관 및 밸브를 거치면서 기판 건조 챔버(1)로 도입(초기 가압)되는 과정 중에 상기 밸브 및 배관 연결 부위에서 압력 저하로 인한 냉각 현상이 발생하고, 이 과정 중에 액화 혹은 기화되어 기판(W)에 입자상의 오염을 유발할 수 있기 때문에 그 온도를 임계점 이상으로 유지해 주는 것이 중요하지만, 종래 기술은 이에 대한 효과적인 기술적 대책을 제시하지 못하고 있다. 특히, 가압 속도가 증가될 경우 단순 열교환기를 통해 배관의 온도를 유지하는 것만으로는 초임계 상의 유체에 충분한 열전달이 부족하다는 문제점이 있다.The supercritical fluid is stored at a high pressure in a supercritical fluid generator provided outside the substrate drying chamber 1 according to an embodiment of the present invention, and then passed through a pipe and a valve to the substrate drying chamber 1. During the process of introduction (initial pressurization), a cooling phenomenon occurs due to a pressure drop at the connection portion of the valve and the pipe, and during this process, the temperature may be liquefied or vaporized to cause particulate contamination on the substrate W. It is important to maintain it, but the prior art has not provided an effective technical measure for this. In particular, when the pressurization speed is increased, there is a problem that sufficient heat transfer to the supercritical fluid is insufficient simply by maintaining the temperature of the pipe through a simple heat exchanger.
본 발명의 일 실시 예는 이러한 문제를 기판 배치판(40)에 설치된 가열부재(45)를 통하여 해결한다. 즉, 챔버 내의 기판 배치판(40)에 설치된 가열부재(45)를 통해 초기 가압, 특히 초기 가압이 빠르게 진행될 시 기판 건조 챔버(1)에서 초기 가압용 초임계유체의 상변화를 최소화하여 기판(W)의 입자상의 오염을 방지할 수 있고, 초임계유체의 형성 또는 유지를 용이하게 함으로써 공정속도를 개선할 수 있다.An embodiment of the present invention solves this problem through the heating member 45 installed on the substrate mounting plate 40. That is, the initial pressurization through the heating member 45 installed on the substrate arranging plate 40 in the chamber, especially when the initial pressurization proceeds rapidly, minimizes the phase change of the supercritical fluid for initial pressurization in the substrate drying chamber 1 W) particle contamination can be prevented, and the process speed can be improved by facilitating formation or maintenance of a supercritical fluid.
또한, 예를 들어, 가열부재(45)는, 혼합유체가 배출되는 배출시간 동안 동작하여, 혼합유체의 배출과정에서 발생하는 압력저하에 의한 단열팽창에 따라 발생하는 온도저하를 보상함으로써, 혼합유체에 포함된 건조용 초임계유체의 온도가 임계점 이상이 되도록 조절할 수 있다.In addition, for example, the heating member 45 is operated during the discharge time during which the mixed fluid is discharged, and compensates for the temperature decrease caused by the adiabatic expansion due to the pressure drop occurring in the discharge process of the mixed fluid, The temperature of the supercritical fluid for drying included in can be adjusted to be above the critical point.
이러한 구성의 이유 및 그에 따른 효과를 설명하면 다음과 같다.The reason for this configuration and its effect will be described as follows.
챔버에서 건조용 초임계유체에 IPA 등과 같은 유기용제가 용해된 혼합유체의 배출(감압) 시, 혼합유체가 냉각 효과에 의해 상 분리(phase separation)될 경우 기판(W)의 입자상 오염 혹은 혼합유체의 표면 장력에 의해 기판(W)에 형성된 패턴의 붕괴가 발생할 수 있다. 구체적으로, 임계점 이상의 높은 압력 영역에서의 급격한 단열 팽창에 의해 온도와 압력이 임계점 이하로 떨어질 경우 단일 상(single phase)을 이루고 있던 혼합유체가 상 분리(phase separation)되어 기판(W)에 건조 불량(입자상의 오염 등)을 야기할 수 있으며, 기판(W)의 패턴 붕괴 또한 유발될 수 있다.When the mixed fluid in which an organic solvent such as IPA is dissolved in the drying supercritical fluid in the chamber is discharged (reduced pressure), when the mixed fluid is phase separated by the cooling effect, particulate contamination or mixed fluid of the substrate (W) The pattern formed on the substrate W may collapse due to the surface tension of. Specifically, when the temperature and pressure drop below the critical point due to rapid adiabatic expansion in the high pressure region above the critical point, the mixed fluid constituting the single phase is phase separated, resulting in poor drying on the substrate (W). (Particulate contamination, etc.) may be caused, and pattern collapse of the substrate W may also be caused.
본 발명의 일 실시 예는 이러한 문제를 기판 배치판(40)에 설치된 가열부재(45)를 통하여 해결한다. 즉, 혼합유체의 배출 시 상변화를 고려해 감압 속도가 고려되며, 냉각 효과를 고려해 가열부재(45)를 이용하여 충분한 열을 전달하여 감압 배출 단계를 진행함으로써 건조 불량을 방지할 수 있고 공정속도를 개선할 수 있다.An embodiment of the present invention solves this problem through the heating member 45 installed on the substrate mounting plate 40. That is, when the mixed fluid is discharged, the decompression rate is considered in consideration of the phase change, and the heating member 45 is used to transfer sufficient heat to proceed with the decompression discharge step in consideration of the cooling effect, thereby preventing drying failure and speeding up the process. It can be improved.
예를 들어, 일체형 공급/배출포트(50)를 구성하는 제1 관로부(510)와 공통포트부(520)를 통해 공급되는 초기 가압용 초임계유체는 기판 배치판(40)에 막혀 기판(W)으로의 직접적인 분사가 방지되도록 구성될 수 있다.For example, the initial pressure supercritical fluid supplied through the first conduit portion 510 and the common port portion 520 constituting the integrated supply/discharge port 50 is blocked by the substrate mounting plate 40 and thus the substrate ( It can be configured to prevent direct injection to W).
보다 구체적으로, 초기 가압용 초임계유체의 확산 경로를 나타낸 도 5 및 초기 가압용 초임계유체와 건조용 초임계유체를 포함하는 초임계유체에 유기용제가 용해된 혼합유체의 배출 경로를 나타낸 도 7에 예시된 바와 같이, 건조공정의 대상인 기판(W)을 배치하기 위하여 필수적으로 요구되는 기판 배치판(40)을 이용하여 건조공정 완료 후 챔버 개방 시 재유입되는 파티클을 차단하고, 건조공정의 초기에 기판(W) 표면으로 직접 향하는 초기 가압용 초임계유체의 흐름을 방지하여 기판(W)에 형성된 패턴의 도괴를 방지할 수 있고, 초기 가압용 초임계유체에 함유될 수 있는 파티클이 기판(W)에 퇴적되는 문제를 방지하거나 퇴적량을 감소시킬 수 있고, 기판 배치판(40)이 차지하는 부피로 인한 챔버의 내부용적(working volume)을 감소시켜 건조 공정시간을 단축할 수 있다.More specifically, Figure 5 shows the diffusion path of the initial pressurization supercritical fluid, and the diagram showing the discharge path of the mixed fluid in which an organic solvent is dissolved in the supercritical fluid including the initial pressurization supercritical fluid and the drying supercritical fluid. As illustrated in 7, using the substrate placement plate 40 required to arrange the substrate W, which is the target of the drying process, after the drying process is completed, when the chamber is opened, re-inflow particles are blocked, and the drying process It is possible to prevent the collapse of the pattern formed on the substrate (W) by preventing the flow of the initial pressure supercritical fluid directly to the surface of the substrate (W), and particles that may be contained in the initial pressure supercritical fluid are contained on the substrate. It is possible to prevent the problem of depositing on the (W) or to reduce the amount of deposition, and to reduce the working volume of the chamber due to the volume occupied by the substrate arrangement plate 40 to shorten the drying process time.
일체형 공급/배출포트(50)는 하부 하우징(20)의 일측면(24)에서 타측면(26)까지 연장 형성되고 일측면(24)과 타측면(26)의 중간영역(28)에서 기판 배치판(40)을 향하도록 형성되어, 초기 가압용 초임계유체의 공급경로 및 건조후 기판(W)에 형성된 유기용제가 초기 가압용 초임계유체와 건조용 초임계유체에 용해된 혼합유체의 배출경로를 제공하는 구성요소이다.The integrated supply/discharge port 50 is formed extending from one side 24 to the other side 26 of the lower housing 20, and the substrate is arranged in the intermediate region 28 between one side 24 and the other side 26. Discharge of the mixed fluid dissolved in the initial pressure supercritical fluid and the drying supercritical fluid formed on the substrate (W) after drying and the supply path of the supercritical fluid for initial pressure, formed to face the plate 40 It is a component that provides a path.
이러한 하나의 일체형 공급/배출포트(50)를 통하여 초기 가압용 초임계유체의 공급경로 및 건조후 기판(W)에 형성된 유기용제가 초기 가압용 초임계유체와 건조용 초임계유체에 용해된 혼합유체의 배출경로를 제공함으로써, 초임계유체의 공급 및 배출 시 대칭적인 흐름을 유도하여 초임계유체를 챔버 내부에 균일하게 분산시켜 공급 및 배출함으로써 기판 건조효율을 증대시킬 수 있는 효과가 있다.The supply path of the supercritical fluid for initial pressurization and the organic solvent formed on the substrate W after drying are dissolved in the supercritical fluid for initial pressurization and the supercritical fluid for drying through one such integrated supply/discharge port 50 By providing a discharge path of the fluid, there is an effect of increasing the substrate drying efficiency by inducing a symmetrical flow when supplying and discharging the supercritical fluid and supplying and discharging the supercritical fluid evenly in the chamber.
예를 들어, 이러한 일체형 공급/배출포트(50)는, 하부 하우징(20)의 일측면(24)에서 중간영역(28)까지 형성된 제1 관로부(510), 중간영역(28)에서 제1 관로부(510)와 연통되어 기판 배치판(40)을 향하도록 형성된 공통포트부(520) 및 중간영역(28)에서 공통포트부(520) 및 제1 관로부(510)와 연통되어 하부 하우징(20)의 타측면(26)까지 형성된 제2 관로부(530)를 포함하고, 제1 관로부(510)와 공통포트부(520)는 초기 가압용 초임계유체의 공급경로를 제공하고, 공통포트부(520)와 제2 관로부(530)는 유기용제가 용해된 초임계유체의 배출경로를 제공하도록 구성될 수 있다.For example, such an integrated supply/discharge port 50 has a first conduit portion 510 formed from one side 24 of the lower housing 20 to the middle region 28, and the first conduit portion 510 in the middle region 28. The lower housing is in communication with the conduit part 510 and is in communication with the common port part 520 and the first conduit part 510 in the common port part 520 and the intermediate region 28 formed to face the substrate mounting plate 40. It includes a second conduit part 530 formed up to the other side 26 of 20, and the first conduit part 510 and the common port part 520 provide a supply path of the supercritical fluid for initial pressurization, The common port part 520 and the second conduit part 530 may be configured to provide a discharge path for the supercritical fluid in which the organic solvent is dissolved.
상부 공급포트(60)는 상부 하우징(10)의 중앙영역에서 기판 배치판(40)을 향하도록 형성되어 건조용 초임계유체의 공급경로를 제공하는 구성요소이다.The upper supply port 60 is a component formed to face the substrate mounting plate 40 in the central region of the upper housing 10 to provide a supply path of the supercritical fluid for drying.
예를 들어, 1) 일체형 공급/배출포트(50)를 구성하는 제1 관로부(510)와 공통포트부(520)를 통해 초기 가압용 초임계유체가 설정된 초기가압시간 동안 공급되고, 2) 초기 가압시간이 경과한 후 초기 가압용 초임계유체의 공급이 차단되고 상부 공급포트(60)를 통해 건조용 초임계유체가 건조시간 동안 공급되고, 3) 건조 시간이 경과한 후 건조용 초임계유체의 공급이 차단되고 일체형 공급/배출포트(50)를 구성하는 공통포트부(520)와 제2 관로부(530)를 통해 혼합유체가 배출시간 동안 배출될 수 있다. 이 경우, 예를 들어, 건조용 초임계유체의 공급과 혼합유체의 배출은 설정된 횟수만큼 반복, 즉, 플러싱(flushing)될 수 있다.For example, 1) the initial pressure supercritical fluid is supplied during the set initial pressure time through the first conduit portion 510 and the common port portion 520 constituting the integrated supply/discharge port 50, and 2) After the initial pressurization time has elapsed, the supply of the initial pressurization supercritical fluid is cut off, and the drying supercritical fluid is supplied through the upper supply port 60 for the drying time, and 3) the drying supercritical fluid is after the drying time. The supply of the fluid is blocked and the mixed fluid may be discharged during the discharge time through the common port part 520 and the second conduit part 530 constituting the integrated supply/discharge port 50. In this case, for example, the supply of the supercritical fluid for drying and the discharge of the mixed fluid may be repeated a set number of times, that is, flushed.
교반기(100)는 일체형 공급/배출포트를 통해 공급되는 초기 가압용 초임계유체와 상부 공급포트를 통해 공급되는 건조용 초임계유체를 챔버 내부에서 교반하는 구성요소로서, 유기용제와 초기 가압용 초임계유체의 혼합속도 및 유기용제와 건조용 초임계유체의 혼합속도를 증가시키도록 구성될 수 있다. 이러한 구성에 따르면, 초임계 건조공정의 성능지표인 기판 처리량(throughput)을 증가시킬 수 있고, 초임계유체가 임계점 이상의 온도를 유지하도록 유도하여 건조공정의 균일성(uniformity)을 확보할 수 있다.The agitator 100 is a component that agitates the initial pressure supercritical fluid supplied through the integrated supply/discharge port and the drying supercritical fluid supplied through the upper supply port in the chamber. It can be configured to increase the mixing speed of the critical fluid and the mixing speed of the organic solvent and the drying supercritical fluid. According to this configuration, it is possible to increase the substrate throughput, which is a performance indicator of the supercritical drying process, and induce the supercritical fluid to maintain a temperature above the critical point, thereby ensuring uniformity in the drying process.
예를 들어, 도 3 및 도 4에 예시된 바와 같이, 교반기(100)는 샤프트(110), 교반 날개부(120) 및 구동부(130)를 포함하여 구성될 수 있다.For example, as illustrated in FIGS. 3 and 4, the stirrer 100 may include a shaft 110, a stirring blade 120, and a driving part 130.
샤프트(110)는 상부 하우징의 중앙영역에 형성된 삽입공을 통해 챔버 내부로 삽입되는 구성요소로서, 구동부(130)가 제공하는 회전 구동력에 의해 회전하는 기능을 수행한다.The shaft 110 is a component inserted into the chamber through an insertion hole formed in the central region of the upper housing, and performs a function of rotating by a rotational driving force provided by the driving unit 130.
교반 날개부(120)는 샤프트(110)의 양단 중에서 챔버 내부에 위치하는 일단에 결합된 구성요소로서, 샤프트(110)의 회전에 따라 챔버 내부에서 회전하여 초임계유체를 교반하는 기능을 수행한다.The stirring blade unit 120 is a component coupled to one end located inside the chamber among both ends of the shaft 110, and performs a function of agitating the supercritical fluid by rotating inside the chamber according to the rotation of the shaft 110. .
구동부(130)는 샤프트(110)의 양단 중에서 챔버 외부에 위치하는 타단에 결합되어 샤프트(110)에 회전 구동력을 제공하는 구성요소이다.The driving unit 130 is a component that is coupled to the other end located outside the chamber of both ends of the shaft 110 to provide rotational driving force to the shaft 110.
축결합 부재(200)는 상부 하우징의 외부면에 결합되어 교반기(100)를 구성하는 샤프트(110)를 축결합시키는 구성요소이다.The shaft coupling member 200 is a component that is coupled to the outer surface of the upper housing to axially couple the shaft 110 constituting the stirrer 100.
예를 들어, 도 4에 예시된 바와 같이, 축결합 부재(200)에는 축결합 부재(200)의 중심점에서 이격된 복수의 관통홀(210, 220, 230, 240)이 상호 대칭적으로 형성되도록 구성될 수 있고, 상부 공급 포트는, 축결합 부재(200)에 형성된 복수의 관통홀에 상하방향으로 정렬되도록 상부 하우징에 형성된 복수의 공급홀로 이루어질 수 있다. 물론, 축결합 부재(200)의 중심영역에는 상부 하우징에 형성된 삽입공에 상하방향으로 정렬된 홀이 형성되어 있고, 교반기(100)를 구성하는 축결합 부재(200)의 중심영역에 형성된 홀과 상부 하우징에 형성된 삽입공을 통해 챔버 내부로 삽입될 수 있으며, 샤프트(110)가 관통하는 축결합 부재(200)에는 베어링(bearing) 수단이 구비될 수 있다.For example, as illustrated in FIG. 4, in the shaft coupling member 200, a plurality of through holes 210, 220, 230, 240 spaced apart from the center point of the shaft coupling member 200 are formed symmetrically. It may be configured, and the upper supply port may be formed of a plurality of supply holes formed in the upper housing so as to be aligned in the vertical direction with a plurality of through holes formed in the shaft coupling member 200. Of course, in the central region of the shaft coupling member 200, a hole arranged in the vertical direction is formed in the insertion hole formed in the upper housing, and the hole formed in the central region of the shaft coupling member 200 constituting the stirrer 100 It can be inserted into the chamber through the insertion hole formed in the upper housing, the shaft coupling member 200 through which the shaft 110 passes may be provided with a bearing (bearing) means.
기판배치판 지지부(70)는 일단이 하부 하우징(20)의 바닥면(22)에 결합되고 타단이 기판 배치판(40)에 결합되어 있으며, 기판 배치판(40)을 지지하면서 기판 배치판(40)을 하부 하우징(20)의 바닥면(22)으로부터 이격시키는 구성요소이다.The substrate placement plate support part 70 has one end coupled to the bottom surface 22 of the lower housing 20 and the other end coupled to the substrate placement plate 40, and supports the substrate placement plate 40 while supporting the substrate placement plate ( It is a component that separates 40) from the bottom surface 22 of the lower housing 20.
예를 들어, 기판배치판 지지부(70)에 의해 하부 하우징(20)의 바닥면(22)과 기판 배치판(40) 사이에 존재하는 제1 이격공간(R1)은 일체형 공급/배출포트(50)를 통해 공급되는 초기 가압용 초임계유체가 기판 배치판(40)의 하면을 따라 이동하여 기판(W)이 배치된 처리영역으로 점진적으로 확산하도록 유도하는 기능을 수행할 수 있다.For example, the first spaced space R1 existing between the bottom surface 22 of the lower housing 20 and the substrate placement plate 40 by the substrate placement plate support part 70 is an integral supply/discharge port 50 The supercritical fluid for initial pressure supplied through) may move along the lower surface of the substrate placement plate 40 to gradually diffuse into the processing area where the substrate W is disposed.
기판 지지부(80)는 일단이 기판 배치판(40)의 상면에 결합되고 타단이 기판(W)에 결합되어 있으며, 기판(W)을 지지하면서 기판(W)을 기판 배치판(40)의 상면으로부터 이격시키는 구성요소이다.The substrate support 80 has one end coupled to the upper surface of the substrate placement plate 40 and the other end coupled to the substrate W. While supporting the substrate W, the substrate W is attached to the upper surface of the substrate placement plate 40. It is a component that separates from
예를 들어, 기판 지지부(80)에 의해 기판 배치판(40)의 상면과 기판(W) 사이에 존재하는 제2 이격공간(R2)은 기판(W)의 하면을 상기 일체형 공급/배출포트(50)를 통해 공급되는 초기 가압용 초임계유체와 상부 공급포트(60)를 통해 공급되는 건조용 초임계유체에 노출시켜 건조공정의 시간을 단축시키는 기능을 수행한다.For example, the second separation space R2 existing between the upper surface of the substrate mounting plate 40 and the substrate W by the substrate support 80 provides the lower surface of the substrate W as the integrated supply/discharge port ( It performs a function of shortening the drying process time by exposure to the initial pressure supercritical fluid supplied through 50) and the drying supercritical fluid supplied through the upper supply port 60.
하우징 구동부(90)는 하우징을 개폐하는 수단으로서, 건조 공정이 종료된 이후 하부 하우징(20)을 구동하여 하부 하우징(20)을 상부 하우징(10)으로부터 분리시켜 챔버를 개방하거나, 건조 공정을 개시하는 경우 하부 하우징(20)을 구동하여 하부 하우징(20)을 상부 하우징(10)에 결합시켜 챔버를 폐쇄하는 기능을 수행할 수 있다. 도면상, 하우징 구동부(90)가 하부 하우징(20)을 구동하는 것으로 표현되어 있으나, 이는 하나의 예시일 뿐이며, 하우징 구동부(90)는 상부 하우징(10)을 구동하도록 구성될 수도 있다.The housing driving unit 90 is a means for opening and closing the housing, and after the drying process is completed, the lower housing 20 is driven to separate the lower housing 20 from the upper housing 10 to open the chamber or initiate the drying process. In this case, the lower housing 20 may be driven to couple the lower housing 20 to the upper housing 10 to close the chamber. In the drawings, the housing driving unit 90 is expressed as driving the lower housing 20, but this is only an example, and the housing driving unit 90 may be configured to drive the upper housing 10.
예를 들어, 초기 가압용 초임계유체와 건조용 초임계유체는 이산화탄소(CO2)를 포함할 수 있고, 유기용제는 알코올(alcohol)을 포함할 수 있으나, 이에 한정되지는 않는다. 구체적인 예로, 알코올은 메탄올(methanol), 에탄올(ethanol), 1-프로판올(1-propanol), 2-프로판올(2-propanol, IPA), 1-부탄올(1-butanol)을 포함할 수 있으나, 이에 한정되지는 않는다.For example, the supercritical fluid for initial pressurization and the supercritical fluid for drying may include carbon dioxide (CO 2 ), and the organic solvent may include alcohol, but is not limited thereto. As a specific example, the alcohol may include methanol, ethanol, 1-propanol, 2-propanol, IPA, and 1-butanol. It is not limited.
예를 들어, 본 발명의 일 실시 예에 따른 기판 건조 챔버에서 수행되는 초임계 건조 기술에 따르면, 챔버 내에서 표면이 알코올 등과 같은 유기용제로 습윤되어 있는 기판(W)에 초임계 상태의 이산화탄소를 공급함으로써 기판(W) 상의 알코올이 초임계 이산화탄소 유체에 용해된다. 그리고 알코올을 용해하고 있는 초임계 이산화탄소 유체를 서서히 챔버에서 배출함으로써 패턴의 도괴 없이 기판(W)을 건조할 수 있다.For example, according to the supercritical drying technique performed in the substrate drying chamber according to an embodiment of the present invention, carbon dioxide in a supercritical state is applied to the substrate W whose surface is moistened with an organic solvent such as alcohol in the chamber. By supplying, the alcohol on the substrate W is dissolved in the supercritical carbon dioxide fluid. In addition, by gradually discharging the supercritical carbon dioxide fluid in which alcohol is dissolved from the chamber, the substrate W can be dried without collapse of the pattern.
이상에서 상세히 설명한 바와 같이 본 발명에 따르면, 초임계 유체가 건조 챔버의 외부에 구비되는 초임계 유체 생성기에서 배관 및 밸브를 통해 건조 챔버로 도입(초기 가압)되는 과정 중에 상기 밸브 및 배관 연결 부위에서 압력 저하로 인해 발생하는 냉각 현상에 의해 액화 혹은 기화되어 기판에 입자상의 오염을 유발하는 문제점을 해결할 수 있는 효과가 있다.As described in detail above, according to the present invention, in the process of introducing (initial pressure) into the drying chamber through pipes and valves in the supercritical fluid generator provided outside the drying chamber, the valve and the pipe connection portion There is an effect of solving the problem of causing particulate contamination on the substrate by being liquefied or vaporized by a cooling phenomenon caused by a pressure drop.
또한, 건조 챔버에서 건조용 초임계유체에 IPA가 용해된 혼합유체의 배출(감압) 시, 혼합유체가 냉각 효과에 의해 상 분리(phase separation)되어 기판에 입자상 오염을 유발하거나 혼합유체의 표면 장력에 의해 기판에 형성된 패턴이 붕괴하는 문제점을 해결할 수 있는 효과가 있다.In addition, when the mixed fluid in which IPA is dissolved in the drying supercritical fluid is discharged (depressurized) in the drying chamber, the mixed fluid is phase separated by the cooling effect, causing particulate contamination on the substrate or the surface tension of the mixed fluid. There is an effect of solving the problem that the pattern formed on the substrate collapses.
또한, 초임계유체와 유기용제의 혼합속도를 증가시켜 기판 처리량(throughput)을 증가시키고, 초임계유체가 임계점 이상의 온도를 유지하도록 유도하여 건조공정의 균일성(uniformity)을 확보할 수 있는 효과가 있다.In addition, by increasing the mixing speed of the supercritical fluid and the organic solvent, the substrate throughput is increased, and the supercritical fluid maintains a temperature above the critical point, thereby securing the uniformity of the drying process. have.
또한, 하나의 일체형 공급/배출포트를 통하여 초기 가압용 초임계유체의 공급경로 및 건조후 기판에 형성된 유기용제가 용해된 초임계유체의 배출경로를 제공함으로써, 초임계유체의 공급 및 배출 시 대칭적인 흐름을 유도하여 초임계유체를 챔버 내부에 균일하게 분산시켜 공급 및 배출함으로써 기판 건조효율을 증대시킬 수 있는 효과가 있다.In addition, by providing the supply path of the supercritical fluid for initial pressurization and the discharge path of the supercritical fluid in which the organic solvent formed on the substrate after drying is dissolved through one integrated supply/discharge port, it is symmetrical when supplying and discharging the supercritical fluid. The supercritical fluid is uniformly distributed and supplied and discharged in the chamber by inducing a natural flow, thereby increasing substrate drying efficiency.
또한, 기판을 배치하기 위하여 필수적으로 요구되는 기판 배치판을 이용하여 건조공정 완료 후 챔버 개방 시 재유입되는 파티클을 차단하고, 건조 공정의 초기에 기판 표면으로 직접 향하는 초기 가압용 초임계유체의 흐름을 방지하여 기판에 형성된 패턴의 도괴를 방지할 수 있고, 초기 가압용 초임계유체에 함유될 수 있는 파티클이 기판에 퇴적되는 문제를 방지하거나 퇴적량을 감소시킬 수 있고, 기판 배치판이 차지하는 부피로 인한 챔버의 내부용적(working volume)을 감소시켜 건조 공정시간을 단축할 수 있는 효과가 있다.In addition, by using a substrate placement plate that is required for arranging the substrate, it blocks re-inflow particles when the chamber is opened after the drying process is completed, and the initial pressure supercritical fluid flows directly to the substrate surface at the beginning of the drying process. It is possible to prevent the collapse of the pattern formed on the substrate, prevent the problem that particles that may be contained in the initial pressurization supercritical fluid are deposited on the substrate, or reduce the amount of deposition, and reduce the amount of deposition. Due to the reduced working volume of the chamber there is an effect of shortening the drying process time.
또한, 기판을 하부 하우징과 상부 하우징의 결합면보다 높게 위치하도록 기판 배치판 상에 배치함으로써, 건조공정이 완료되어 챔버가 개방되는 경우, 하부 하우징과 상부 하우징의 결합면에 구비된 실링부 주변의 파티클이 기판과 결합면의 높이차에 따른 중력에 의해 기판으로 유입되는 문제를 방지할 수 있는 효과가 있다.In addition, by placing the substrate on the substrate mounting plate so as to be positioned higher than the bonding surface between the lower housing and the upper housing, when the drying process is completed and the chamber is opened, particles around the sealing portion provided on the bonding surface between the lower housing and the upper housing There is an effect of preventing a problem from flowing into the substrate due to gravity due to a height difference between the substrate and the bonding surface.
[부호의 설명][Explanation of code]
1: 기판 건조 챔버1: substrate drying chamber
10: 상부 하우징10: upper housing
20: 하부 하우징20: lower housing
22: 바닥면22: bottom surface
24: 일측면24: one side
26: 타측면26: the other side
28: 중간영역28: middle area
30: 실링부30: sealing part
40: 기판 배치판40: substrate placement plate
45: 가열부재45: heating member
50: 일체형 공급/배출포트50: Integrated supply/discharge port
60: 상부 공급포트60: upper supply port
61, 62: 공급홀61, 62: supply hole
70: 기판배치판 지지부70: substrate arrangement plate support
80: 기판 지지부80: substrate support
90: 하우징 구동부90: housing drive
100: 교반기100: stirrer
110: 샤프트(shaft)110: shaft
120: 교반 날개부120: stirring blade portion
130: 구동부130: drive unit
200: 축결합 부재200: shaft coupling member
210, 220, 230, 240: 관통홀210, 220, 230, 240: through hole
510: 제1 관로부510: first pipeline
520: 공통포트부520: common port part
530: 제2 관로부530: second pipeline
C: 결합면C: bonding surface
R1: 제1 이격공간R1: first separation space
R2: 제2 이격공간R2: second separation space
W: 기판W: substrate

Claims (16)

  1. 상부 하우징;Upper housing;
    상기 상부 하우징에 개폐 가능하게 결합되는 하부 하우징;A lower housing coupled to the upper housing to be opened and closed;
    상기 하부 하우징의 바닥면에 결합되어 있으며 유기용제가 형성되어 있는 기판이 배치되는 기판 배치판;A substrate mounting plate coupled to a bottom surface of the lower housing and on which a substrate on which an organic solvent is formed is disposed;
    상기 기판 배치판을 향하도록 상기 상부 하우징에 형성되어 건조용 초임계유체의 공급경로를 제공하는 상부 공급포트;An upper supply port formed in the upper housing so as to face the substrate arrangement plate to provide a supply path of the supercritical fluid for drying;
    초기 가압용 초임계유체의 공급경로 및 상기 건조용 초임계유체의 공급에 따른 건조 후 상기 초기 가압용 초임계유체와 상기 건조용 초임계유체를 포함하는 초임계유체에 상기 유기용제가 용해된 혼합유체의 배출경로를 제공하는 일체형 공급/배출포트;Mixing of the organic solvent dissolved in the supercritical fluid including the initial pressure supercritical fluid and the drying supercritical fluid after drying according to the supply path of the initial pressure supercritical fluid and the supply of the drying supercritical fluid An integrated supply/discharge port providing a fluid discharge path;
    상기 일체형 공급/배출포트를 통해 공급되는 초기 가압용 초임계유체와 상기 상부 공급포트를 통해 공급되는 건조용 초임계유체를 교반하는 교반기; 및A stirrer for stirring the initial pressure supercritical fluid supplied through the integrated supply/discharge port and the drying supercritical fluid supplied through the upper supply port; And
    상기 기판 배치판에 설치되어 있으며 상기 초기 가압용 초임계유체의 공급 시 및 상기 혼합유체의 배출 시에 동작하여 상기 초기 가압용 초임계유체 및 상기 혼합유체를 가열하는 가열부재를 포함하는, 기판 건조 챔버.Drying the substrate, which is installed on the substrate arrangement plate and includes a heating member for heating the initial pressure supercritical fluid and the mixed fluid by operating at the time of supplying the initial pressure supercritical fluid and discharging the mixed fluid chamber.
  2. 제1항에 있어서,The method of claim 1,
    상기 가열부재는, The heating member,
    상기 초기 가압용 초임계유체가 공급되는 초기가압시간 동안 동작하여, 상기 초기 가압용 초임계유체의 온도가 임계점 이상이 되도록 조절하는 것을 특징으로 하는, 기판 건조 챔버.The substrate drying chamber, characterized in that operating during an initial pressing time in which the initial pressing supercritical fluid is supplied, and controlling the temperature of the initial pressing supercritical fluid to be above a critical point.
  3. 제1항에 있어서,The method of claim 1,
    상기 가열부재는, The heating member,
    상기 혼합유체가 배출되는 배출시간 동안 동작하여, 상기 혼합유체의 배출과정에서 발생하는 압력저하에 의한 단열팽창에 따라 발생하는 온도저하를 보상함으로써, 상기 혼합유체에 포함된 건조용 초임계유체의 온도가 임계점 이상이 되도록 조절하는 것을 특징으로 하는, 기판 건조 챔버.The temperature of the drying supercritical fluid contained in the mixed fluid is operated during the discharge time during which the mixed fluid is discharged, and compensates for the temperature decrease caused by the adiabatic expansion due to the pressure drop occurring in the discharge process of the mixed fluid. A substrate drying chamber, characterized in that it is adjusted to be above the critical point.
  4. 제1항에 있어서,The method of claim 1,
    상기 교반기는, The stirrer,
    상기 유기용제와 상기 초기 가압용 초임계유체의 혼합속도 및 상기 유기용제와 상기 건조용 초임계유체의 혼합속도를 증가시키는 것을 특징으로 하는, 기판 건조 챔버.A substrate drying chamber, characterized in that increasing the mixing speed of the organic solvent and the initial pressure supercritical fluid and the mixing speed of the organic solvent and the drying supercritical fluid.
  5. 제4항에 있어서,The method of claim 4,
    상기 교반기는, The stirrer,
    상기 상부 하우징의 중앙영역에 형성된 삽입공을 통해 챔버 내부로 삽입되는 샤프트;A shaft inserted into the chamber through an insertion hole formed in the central region of the upper housing;
    상기 샤프트의 양단 중에서 챔버 내부에 위치하는 일단에 결합된 교반 날개부; 및Agitation blades coupled to one end located inside the chamber among both ends of the shaft; And
    상기 샤프트의 양단 중에서 챔버 외부에 위치하는 타단에 결합되어 상기 샤프트에 회전 구동력을 제공하는 구동부를 포함하는 것을 특징으로 하는, 기판 건조 챔버.And a driving unit coupled to the other end positioned outside the chamber of both ends of the shaft to provide rotational driving force to the shaft.
  6. 제5항에 있어서,The method of claim 5,
    상기 상부 하우징의 외부면에 결합되어 상기 교반기를 구성하는 샤프트를 축결합시키는 축결합 부재를 더 포함하고,Further comprising a shaft coupling member coupled to the outer surface of the upper housing to shaft-couple the shaft constituting the stirrer,
    상기 축결합 부재에는 상기 축결합 부재의 중심점에서 이격된 복수의 관통홀이 형성되어 있고,The shaft coupling member has a plurality of through holes spaced apart from the center point of the shaft coupling member,
    상기 상부 공급 포트는, The upper supply port,
    상기 축결합 부재에 형성된 복수의 관통홀에 정렬되도록 상기 상부 하우징에 형성된 복수의 공급홀로 이루어진 것을 특징으로 하는, 기판 건조 챔버.A substrate drying chamber comprising a plurality of supply holes formed in the upper housing so as to be aligned with a plurality of through holes formed in the shaft coupling member.
  7. 제6항에 있어서,The method of claim 6,
    상기 축결합 부재에 형성되어 있는 복수의 관통홀은 상호 대칭적으로 배치되어 있는 것을 특징으로 하는, 기판 건조 챔버.A substrate drying chamber, characterized in that a plurality of through-holes formed in the shaft coupling member are arranged symmetrically to each other.
  8. 제1항에 있어서,The method of claim 1,
    상기 일체형 공급/배출포트는,The integrated supply/discharge port,
    상기 하부 하우징의 일측면에서 타측면까지 연장 형성되고 상기 일측면과 상기 타측면의 중간영역에서 상기 기판 배치판을 향하도록 형성되어 있는 것을 특징으로 하는, 기판 건조 챔버.The substrate drying chamber, characterized in that the substrate drying chamber is formed to extend from one side of the lower housing to the other side and is formed to face the substrate arrangement plate in an intermediate region between the one side and the other side.
  9. 제8항에 있어서,The method of claim 8,
    상기 일체형 공급/배출포트는,The integrated supply/discharge port,
    상기 하부 하우징의 일측면에서 상기 중간영역까지 형성된 제1 관로부;A first conduit formed from one side of the lower housing to the intermediate region;
    상기 중간영역에서 상기 제1 관로부와 연통되어 상기 기판 배치판을 향하도록 형성된 공통포트부; 및A common port part formed to face the substrate arrangement plate in communication with the first conduit part in the intermediate region; And
    상기 중간영역에서 상기 공통포트부 및 상기 제1 관로부와 연통되어 상기 하부 하우징의 타측면까지 형성된 제2 관로부를 포함하는 것을 특징으로 하는, 기판 건조 챔버.And a second conduit connected to the common port part and the first conduit part in the intermediate region and formed to the other side of the lower housing.
  10. 제9항에 있어서,The method of claim 9,
    상기 제1 관로부와 상기 공통포트부는 초기 가압용 초임계유체의 공급경로를 제공하고,The first conduit portion and the common port portion provide a supply path for the initial pressurization supercritical fluid,
    상기 공통포트부와 상기 제2 관로부는 상기 유기용제가 용해된 초임계유체의 배출경로를 제공하는 것을 특징으로 하는, 기판 건조 챔버.The common port portion and the second conduit portion, characterized in that providing a discharge path of the supercritical fluid in which the organic solvent is dissolved, the substrate drying chamber.
  11. 제10항에 있어서,The method of claim 10,
    상기 하부 하우징과 상기 상부 하우징의 결합면에 구비된 실링부를 더 포함하고,Further comprising a sealing portion provided on the coupling surface of the lower housing and the upper housing,
    상기 기판은 상기 하부 하우징과 상기 상부 하우징의 결합면보다 높게 위치하도록 상기 기판 배치판 상에 배치되어 있고, 건조공정이 완료되어 상기 하부 하우징과 상기 상부 하우징이 개방되는 경우, 상기 결합면에 구비된 실링부 주변의 파티클이 상기 기판과 상기 결합면의 높이차에 따른 중력에 의해 상기 기판으로의 유입이 방지되는 것을 특징으로 하는, 기판 건조 챔버.The substrate is disposed on the substrate mounting plate so as to be positioned higher than the bonding surface between the lower housing and the upper housing, and when the drying process is completed and the lower housing and the upper housing are opened, sealing provided on the bonding surface A substrate drying chamber, characterized in that the inflow of particles around the part into the substrate is prevented by gravity according to a height difference between the substrate and the bonding surface.
  12. 제11항에 있어서,The method of claim 11,
    상기 제1 관로부와 상기 공통포트부를 통해 공급되는 초기 가압용 초임계유체는 상기 기판 배치판에 막혀 상기 기판으로의 직접적인 분사가 방지되는 것을 특징으로 하는, 기판 건조 챔버.A substrate drying chamber, characterized in that the initial pressure supercritical fluid supplied through the first conduit portion and the common port portion is blocked by the substrate arrangement plate to prevent direct spraying to the substrate.
  13. 제1항에 있어서,The method of claim 1,
    일단이 상기 하부 하우징의 바닥면에 결합되고 타단이 상기 기판 배치판에 결합되어, 상기 기판 배치판을 지지하면서 상기 기판 배치판을 상기 하부 하우징의 바닥면으로부터 이격시키는 기판배치판 지지부를 더 포함하는 것을 특징으로 하는, 기판 건조 챔버.One end is coupled to the bottom surface of the lower housing and the other end is coupled to the substrate placement plate, further comprising a substrate placement plate support part that supports the substrate placement plate and separates the substrate placement plate from the bottom surface of the lower housing. Characterized in that, the substrate drying chamber.
  14. 제13항에 있어서,The method of claim 13,
    상기 기판배치판 지지부에 의해 상기 하부 하우징의 바닥면과 상기 기판 배치판 사이에 존재하는 제1 이격공간은 상기 일체형 공급/배출포트를 통해 공급되는 초기 가압용 초임계유체가 상기 기판 배치판의 하면을 따라 이동하여 상기 기판이 배치된 처리영역으로 점진적으로 확산하도록 유도하는 것을 특징으로 하는, 기판 건조 챔버.The first spaced space existing between the bottom surface of the lower housing and the substrate placement plate by the substrate placement plate support part is a supercritical fluid for initial pressure supplied through the integrated supply/discharge port. The substrate drying chamber according to claim 1, wherein the substrate is moved along and gradually diffuses into a processing area in which the substrate is disposed.
  15. 제1항에 있어서,The method of claim 1,
    일단이 상기 기판 배치판의 상면에 결합되고 타단이 상기 기판에 결합되어, 상기 기판을 지지하면서 상기 기판을 상기 기판 배치판의 상면으로부터 이격시키는 기판 지지부를 더 포함하는 것을 특징으로 하는, 기판 건조 챔버.A substrate drying chamber, characterized in that it further comprises a substrate support unit having one end coupled to the upper surface of the substrate arrangement plate and the other end coupled to the substrate, supporting the substrate and separating the substrate from the upper surface of the substrate arrangement plate .
  16. 제15항에 있어서,The method of claim 15,
    상기 기판 지지부에 의해 상기 기판 배치판의 상면과 상기 기판 사이에 존재하는 제2 이격공간은 상기 기판의 하면을 상기 일체형 공급/배출포트를 통해 공급되는 초기 가압용 초임계유체와 상기 상부 공급포트를 통해 공급되는 건조용 초임계유체에 노출시켜 건조공정의 시간을 단축시키는 것을 특징으로 하는, 기판 건조 챔버.The second spaced space existing between the upper surface of the substrate arrangement plate and the substrate by the substrate support part includes a supercritical fluid for initial pressurization and the upper supply port supplied through the integrated supply/discharge port on the lower surface of the substrate. The substrate drying chamber, characterized in that to shorten the time of the drying process by exposure to the drying supercritical fluid supplied through.
PCT/KR2020/005421 2019-05-13 2020-04-24 Substrate drying chamber WO2020231037A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190055549A KR102136691B1 (en) 2019-05-13 2019-05-13 Substrate drying chamber
KR10-2019-0055549 2019-05-13

Publications (1)

Publication Number Publication Date
WO2020231037A1 true WO2020231037A1 (en) 2020-11-19

Family

ID=71893308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/005421 WO2020231037A1 (en) 2019-05-13 2020-04-24 Substrate drying chamber

Country Status (3)

Country Link
KR (1) KR102136691B1 (en)
TW (1) TWI748445B (en)
WO (1) WO2020231037A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI819517B (en) * 2021-03-15 2023-10-21 南韓商細美事有限公司 Method and apparatus for treating a substrate

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230019295A (en) * 2021-07-29 2023-02-08 세메스 주식회사 Apparatus for treating substrate
KR102643365B1 (en) * 2021-09-03 2024-03-07 세메스 주식회사 Apparatus and method for treating substrate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004146457A (en) * 2002-10-22 2004-05-20 Kobe Steel Ltd High pressure processing method and apparatus
KR20110012745A (en) * 2009-07-31 2011-02-09 세메스 주식회사 Apparatus and method for treating substrate
KR20110058037A (en) * 2009-11-25 2011-06-01 세메스 주식회사 Substrate drying apparatus and method for drying substrate thereof
KR20190000529A (en) * 2017-06-23 2019-01-03 주식회사 케이씨텍 Apparatus and Method for processing substrate
KR20190002112A (en) * 2017-06-29 2019-01-08 주식회사 케이씨텍 Apparatus and Method for processing substrate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI555112B (en) * 2015-02-11 2016-10-21 力晶科技股份有限公司 Semiconductor manufacturing apparatus and method for preventing substrate from breakage
JP6564642B2 (en) * 2015-07-23 2019-08-21 東京エレクトロン株式会社 Substrate transfer chamber, substrate processing system, and gas replacement method in substrate transfer chamber
KR101856606B1 (en) 2016-06-02 2018-05-15 세메스 주식회사 Apparatus and Method for treating substrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004146457A (en) * 2002-10-22 2004-05-20 Kobe Steel Ltd High pressure processing method and apparatus
KR20110012745A (en) * 2009-07-31 2011-02-09 세메스 주식회사 Apparatus and method for treating substrate
KR20110058037A (en) * 2009-11-25 2011-06-01 세메스 주식회사 Substrate drying apparatus and method for drying substrate thereof
KR20190000529A (en) * 2017-06-23 2019-01-03 주식회사 케이씨텍 Apparatus and Method for processing substrate
KR20190002112A (en) * 2017-06-29 2019-01-08 주식회사 케이씨텍 Apparatus and Method for processing substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI819517B (en) * 2021-03-15 2023-10-21 南韓商細美事有限公司 Method and apparatus for treating a substrate

Also Published As

Publication number Publication date
TWI748445B (en) 2021-12-01
KR102136691B1 (en) 2020-07-22
TW202107595A (en) 2021-02-16

Similar Documents

Publication Publication Date Title
WO2020231037A1 (en) Substrate drying chamber
WO2020149556A1 (en) Substrate drying chamber
WO2020159091A1 (en) Substrate drying chamber
KR102164247B1 (en) Substrate drying chamber
JP2021122058A (en) Substrate processing method
WO2020189892A1 (en) Substrate drying chamber
JP6990346B1 (en) Pre-wet module and pre-wet method
KR100753757B1 (en) Developing processing apparatus and develo ping processing method
WO2020213852A1 (en) Substrate drying chamber
WO2020218748A1 (en) Substrate drying chamber
WO2020175788A1 (en) Substrate drying chamber
WO2020197082A1 (en) Substrate drying chamber
WO2020209536A1 (en) Substrate drying chamber
WO2020166824A1 (en) Substrate drying chamber
WO2012033284A2 (en) Chamber system adapted for a successive process
WO2020235823A1 (en) Dry cleaning method using plasma and steam
WO2020116771A1 (en) Substrate treatment device
WO2020138970A2 (en) Substrate treatment apparatus
WO2018230806A1 (en) Substrate treatment device
KR20220014061A (en) Substrate drying chamber
WO2020116806A1 (en) Substrate processing device and substrate processing method
KR102283290B1 (en) Substrate drying chamber
KR102320033B1 (en) Substrate drying chamber
KR20220025346A (en) Substrate drying chamber
KR20220023371A (en) Substrate drying chamber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20806812

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20806812

Country of ref document: EP

Kind code of ref document: A1