WO2020230584A1 - 浄化処理剤及び浄化処理方法 - Google Patents

浄化処理剤及び浄化処理方法 Download PDF

Info

Publication number
WO2020230584A1
WO2020230584A1 PCT/JP2020/017577 JP2020017577W WO2020230584A1 WO 2020230584 A1 WO2020230584 A1 WO 2020230584A1 JP 2020017577 W JP2020017577 W JP 2020017577W WO 2020230584 A1 WO2020230584 A1 WO 2020230584A1
Authority
WO
WIPO (PCT)
Prior art keywords
heavy metal
steelmaking dust
treated
iron
acid
Prior art date
Application number
PCT/JP2020/017577
Other languages
English (en)
French (fr)
Inventor
達弥 佐々木
太洋 堀田
菜生 笠井
稲葉 岳志
飯島 勝之
宗義 澤山
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019142058A external-priority patent/JP2020189287A/ja
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Publication of WO2020230584A1 publication Critical patent/WO2020230584A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/08Reclamation of contaminated soil chemically
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/62Heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/02Soil-conditioning materials or soil-stabilising materials containing inorganic compounds only

Definitions

  • the present invention relates to a purifying agent and a purifying method.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a purification treatment agent and a purification treatment method capable of efficiently removing heavy metal elements from a treatment object.
  • the invention made to solve the above problems is a purification treatment agent that removes heavy metal elements and contains steelmaking dust.
  • the heavy metal element contained in the object to be treated using the purification agent is in the form of ions in the liquid in the presence of a liquid containing water (hereinafter, may be simply referred to as "liquid"). Elute.
  • liquid a liquid containing water
  • Elute ionized heavy metal elements
  • the object to be treated does not contain the solution
  • heavy metal element ions are eluted into the solution.
  • the above steelmaking dust is originally discharged as unnecessary matter in the process of steelmaking.
  • This steelmaking dust usually contains at least one of a zero-valent iron element and a divalent iron element.
  • the steelmaking dust comes into contact with the above liquid, at least one of the following reactions (a), (b) and (c) occurs.
  • divalent iron ions derived from the zero-valent iron element in the steelmaking dust are eluted into the liquid.
  • divalent iron ions and trivalent iron ions are eluted from the divalent iron element in the steelmaking dust into the liquid.
  • the heavy metal element ion can be precipitated (insolubilized) as an insoluble matter by the oxidation reaction caused by the 0-valent and divalent iron elements and the dissolution reaction caused by the divalent iron element.
  • This precipitation occurs on the surface of steelmaking dust (specifically, the surface of zero-valent and divalent iron elements). Therefore, the precipitate can be adsorbed on the steelmaking dust. Heavy metal elements can be removed by this precipitation (insolubilization) and adsorption.
  • the purification treatment agent contains the steelmaking dust, the cost and the environmental load can be reduced, which is efficient.
  • the purification treatment agent contains the steelmaking dust
  • the heavy metal element ions eluted from the object to be treated can be efficiently insolubilized, and the insoluble matter can be adsorbed on the steelmaking dust and removed. That is, heavy metal elements can be efficiently removed from the object to be treated.
  • rolled sludge can be mentioned as having such an effect.
  • the purifying agent may satisfy at least one of the following conditions (1) and (2). As described above, when the purifying agent satisfies at least one of the following conditions (1) and (2), the heavy metal element can be more reliably removed from the object to be treated.
  • the content of zero-valent iron element in the steelmaking dust is 10% by mass or more.
  • the content of the divalent iron element in the steelmaking dust is 10% by mass or more.
  • the purification agent further contains an acid.
  • the steelmaking dust usually contains an alkaline component such as calcium oxide (also called CaO or quicklime) as an unavoidable impurity. Therefore, when the steelmaking dust comes into contact with the liquid, the pH of the liquid rises due to the alkaline component. When the pH of the liquid rises, it may become difficult for the divalent and trivalent iron ions to elute from the steelmaking dust (that is, it becomes difficult for the oxidation reaction and the dissolution reaction to occur).
  • an alkaline component such as calcium oxide (also called CaO or quicklime) as an unavoidable impurity. Therefore, when the steelmaking dust comes into contact with the liquid, the pH of the liquid rises due to the alkaline component. When the pH of the liquid rises, it may become difficult for the divalent and trivalent iron ions to elute from the steelmaking dust (that is, it becomes difficult for the oxidation reaction and the dissolution reaction to occur).
  • the purification agent contains the acid
  • the increase in pH of the liquid due to the alkaline component is suppressed, and the pH is changed to the divalent value. And can be reduced (adjusted) to an appropriate range for elution of trivalent iron ions.
  • This decrease in pH can promote the elution of the divalent and trivalent iron ions. Therefore, heavy metal elements can be more reliably removed from the object to be treated.
  • the acid is hydrochloric acid or ferrous sulfate.
  • the pH of the solution can be lowered more appropriately. That is, the pH of the liquid can be lowered to the extent that the pH of the liquid does not drop too much. Therefore, heavy metal elements can be more reliably removed from the object to be treated.
  • Another invention made to solve the above problems is a purification treatment method for removing heavy metal elements from a treatment target, which comprises a step of bringing a purification treatment agent containing steelmaking dust into contact with the treatment target. It is a processing method.
  • the purification treatment method can efficiently remove heavy metal elements from the object to be treated by using a purification treatment agent containing steelmaking dust.
  • the purification treatment agent further contains an acid.
  • an acid As described above, by further containing the acid in the purification treatment agent, even if the steelmaking dust contains the alkaline component, the increase in pH of the liquid due to the alkaline component is suppressed.
  • the pH can be lowered (adjusted) to a range suitable for elution of the divalent and trivalent iron ions. This decrease in pH can promote the elution of the divalent and trivalent iron ions. Therefore, heavy metal elements can be more reliably removed from the object to be treated.
  • the pH of the mixture obtained by bringing the purification treatment agent into contact with the treatment target is preferably 3 or more and 9.5 or less. If the pH of the mixture is less than 3, the reduced heavy metal elements may dissolve again. In addition, the amount of hydrogen generated by the reaction of the iron element in the steelmaking dust with the acid increases, and there is a concern that the insoluble matter (precipitate) adsorbed on the steelmaking dust may come off from the steelmaking dust. On the other hand, if the pH of the mixture exceeds 9.5, the amount of iron hydroxide produced increases, and there is a concern that the reactivity of the insolubilization decreases. On the other hand, when the pH is in the above range, heavy metal elements can be more reliably removed from the object to be treated.
  • the "heavy metal element” means a metal element having a specific gravity of 4.5 or more at 25 ° C. and a metal element other than iron element.
  • the form of "heavy metal element” includes a form of a zero-valent heavy metal element (heavy metal alone), a form of a compound of a heavy metal element and another element (heavy metal element compound), and a form of an ion (heavy metal element ion). ..
  • the form of "heavy metal element ion” includes the form of an ion in which a single heavy metal element is ionized and the form of an ion in which a compound of a heavy metal element and another element is ionized.
  • insolubilization of heavy metal element ions the already ionized heavy metal element ions are insolubilized, and the heavy metal elements that have not yet been ionized are brought into contact with a liquid containing water to change the form of the heavy metal element ions. In addition, insolubilization of this heavy metal element ion is included.
  • the "pH of the mixture” refers to the pH of the object to be treated in a state where the mixture contains water to the extent that the pH can be measured. That is, the "pH of the mixture” means the pH of the mixture itself when the pH of the mixture itself of the object to be treated and the purification agent can be directly measured. On the other hand, when the pH of the mixture itself of the treatment target and the purification treatment agent cannot be directly measured, a state in which a liquid containing water is further contacted with the treatment target and the purification treatment agent (a state in which the mixture contains the above liquid). ) Refers to the pH of the mixture.
  • heavy metal elements can be efficiently removed from the object to be treated.
  • the purification treatment method of the present invention heavy metal elements can be efficiently removed from the object to be treated.
  • the numerical range between the combined upper limit value and the lower limit value is described in the present specification as a suitable numerical range of any of the above items.
  • the numerical range between the upper limit value and the lower limit value described above includes a numerical range from the upper limit value to the lower limit value and a numerical range from the lower limit value to the upper limit value.
  • the purification treatment agent according to the present embodiment is a purification treatment agent that removes heavy metal elements and contains steelmaking dust.
  • the purifying agent may further contain an acid.
  • the steelmaking dust is a powder generated together with gas in the steelmaking process of manufacturing steel from pig iron.
  • Examples of this steelmaking dust include dust generated together with exhaust gas during treatment in a converter and treatment in a dephosphorization furnace.
  • the steelmaking dust is a powder containing an iron element.
  • the steelmaking dust usually contains at least one of a zero-valent iron element and a divalent iron element.
  • the zero-valent iron element is present in the steelmaking dust in the form of iron (so-called metallic iron).
  • the divalent iron element is present in the steelmaking dust in the form of a compound (divalent iron compound) of the divalent iron element and another element.
  • the steelmaking dust may contain a trivalent iron element as an iron element.
  • the trivalent iron element is present in the steelmaking dust in the form of a compound (trivalent iron compound) of the trivalent iron element and another element.
  • the content of the zero-valent iron element and the content of the divalent iron element in the steelmaking dust are not particularly limited.
  • the purifying agent may satisfy at least one of the following conditions (1) and (2). In this way, by satisfying at least one of the following conditions (1) and (2), the purifying agent is more reliable than the case where both of the following conditions (1) and (2) are not satisfied. Heavy metal elements can be removed from the object to be treated.
  • the content of zero-valent iron element in the steelmaking dust is 10% by mass or more.
  • the content of the divalent iron element in the steelmaking dust is 10% by mass or more.
  • the lower limit of the content of the zero-valent iron element in the steelmaking dust is preferably 10% by mass, more preferably 30% by mass, further preferably 50% by mass, and 70% by mass as described above. % Is particularly preferable.
  • the upper limit of the content of the zero-valent iron element 95% by mass is preferable, and 85% by mass is more preferable. If the content of the zero-valent iron element does not reach the above lower limit, the amount of divalent iron ions eluted from the steelmaking dust may be too small. If the elution amount of divalent iron ions is too small, the heavy metal element ions in the liquid cannot be sufficiently reduced (insolubilized), and the heavy metal elements may not be sufficiently removed from the object to be treated.
  • the content of zero-valent iron element in the steelmaking dust can be measured by the metallic iron quantification method described in the manual of JIS M8213: 1995 "Iron ore-acid-soluble iron (II) quantification method".
  • the lower limit of the content of the divalent iron element in the steelmaking dust as described above, 10% by mass is preferable, and 30% by mass is more preferable.
  • the upper limit of the content of the divalent iron element is preferably 95% by mass, more preferably 85% by mass. If the content of the divalent iron element is less than the above lower limit, the elution amount of divalent and trivalent iron ions may be too small. If the elution amount of trivalent iron ions is too small, the heavy metal element ions in the liquid cannot be sufficiently reduced (insolubilized), and the heavy metal elements may not be sufficiently removed from the object to be treated.
  • the elution amount of the divalent iron ion is too small, there is a possibility that an insoluble salt of the heavy metal element ion and the divalent iron ion in the above liquid cannot be sufficiently formed. Therefore, there is a possibility that heavy metal elements cannot be sufficiently removed from the object to be treated.
  • the content of the divalent iron element exceeds the above upper limit, the removal performance of the heavy metal element is not improved as compared with the increase in the content, and the cost may increase.
  • the content of the divalent iron element in the steelmaking dust can be measured by JIS M8213: 1995 "Iron ore-acid-soluble iron (II) quantification method".
  • the content of the divalent iron element in the steelmaking dust is not satisfied even if the above condition (1) is satisfied. May be good.
  • the content of the zero-valent iron element in the steelmaking dust is 0% by mass (that is, the steelmaking dust contains the zero-valent iron element. Not) is also included.
  • the content of the divalent iron element in the steelmaking dust may or may not satisfy the above condition (2). Good.
  • the content of the divalent iron element in the steelmaking dust is 0% by mass (that is, the divalent iron element is contained in the steelmaking dust. Not) is also included.
  • the steelmaking dust usually contains elements other than iron.
  • the steelmaking dust may inevitably contain heavy metal elements.
  • this heavy metal element include selenium (Se), mercury (Hg), lead (Pb), arsenic (As), chromium (hexavalent chromium, Cr 6+ ), cobalt (Co), nickel (Ni), and copper (Cu). ), Zinc (Zn) and other elements. If the content of heavy metal elements in the steelmaking dust is too large, heavy metal element ions that should be originally removed may be eluted from the steelmaking dust. Therefore, the number of heavy metal elements to be removed increases in addition to the heavy metal elements in the object to be treated, and as a result, the heavy metal elements in the object to be treated may not be sufficiently removed.
  • the upper limit of the content of heavy metal elements in the steelmaking dust the upper limit of the total content of selenium (Se), mercury (Hg), lead (Pb), arsenic (As) and chromium (Cr) is 0. It is preferably less than 1% by mass.
  • the content of each heavy metal element in the steelmaking dust can be measured as follows. That is, the content of selenium (Se) can be measured by JIS M8134: 1994 "Method for quantifying selenium in ore".
  • the content of mercury (Hg) can be measured by the Ministry of the Environment Sediment Survey Method: 2012.
  • the lead (Pb) content can be measured by JIS M8229: 1997 "Iron ore-lead quantification method”.
  • the content of arsenic (As) can be measured by JIS M8226: 2006 "Iron ore-Arsenic quantification method”.
  • the content of chromium (Cr) can be measured by JIS M8224: 1997 "Iron ore-Chromium quantification method”.
  • the content of cobalt (Co) can be measured by JIS M8210: 1995 "Iron ore-Cobalt quantification method".
  • the content of nickel (Ni) can be measured by JIS M8223: 1997 "Iron ore-Nickel quantification method”.
  • the content of copper (Cu) can be measured by JIS M8218: 1997 "Iron ore-Copper quantification method”.
  • the zinc (Zn) content can be measured by JIS M8228: 1997 "Iron ore-Zinc quantification method”.
  • the steelmaking dust inevitably contains, for example, calcium (Ca) and oxygen (O) as elements other than iron. These elements are contained in the steelmaking dust, for example, in the form of calcium oxide (CaO, quicklime).
  • CaO calcium oxide
  • quicklime calcium oxide
  • the pH of the above solution rises due to the elution of calcium oxide. If the content of calcium oxide in the steelmaking dust is too large, the pH of the liquid will rise too much. If the pH rises too much, it becomes difficult to elute divalent iron ions from the zero-valent iron element, and it becomes difficult to elute divalent and trivalent iron ions from the divalent iron element.
  • the content of calcium oxide in the steelmaking dust is preferably 30% by mass, more preferably 15% by mass.
  • the lower limit of the calcium oxide content is usually about 2% by mass.
  • the content of calcium oxide in the steelmaking dust can be measured by JIS M8221: 1997 "Iron ore-Calcium quantification method”.
  • examples of elements other than iron that can be contained in the steelmaking dust include elements such as silicon, aluminum, magnesium, potassium, sodium, and carbon.
  • silicon is in the form of silicon oxide (SiO 2 )
  • aluminum is in the form of aluminum oxide (Al 2 O 3 )
  • magnesium is in the form of magnesium oxide (MgO)
  • potassium is in the form of potassium oxide (K 2 O), sodium.
  • carbon (C) is in the form of being dissolved in metallic iron, or is in the form of a compound in which these elements are combined, and is contained in the steelmaking dust.
  • the steelmaking dust contains such an element other than iron, the smaller the content of this element in the steelmaking dust, the more preferable.
  • the upper limit of the content of elements other than this iron element is preferably 5% by mass, more preferably 2% by mass, and 1 Mass% is more preferred.
  • the steelmaking dust is obtained by collecting dust from a fluid containing gas and dust generated in the steelmaking process.
  • the method for collecting dust is not particularly limited as long as it is a method capable of collecting dust so as to contain 0-valent and divalent iron elements.
  • the steelmaking dust is obtained by collecting the fluid generated in the converter step with a wet dust collector.
  • the above fluid immediately after generation is at a high temperature. Therefore, as time elapses from the generation in a high temperature state, the 0-valent iron element and the divalent iron element contained in the dust may be oxidized in the dust, respectively, and both may change to trivalent iron elements. is there.
  • the trivalent iron element has no reducing ability.
  • trivalent iron elements are less likely to form water-insoluble salts with other elements (including heavy metal element ions). That is, trivalent iron elements are difficult to insolubilize heavy metal element ions. Therefore, it is necessary to collect the generated dust at an early stage while cooling so that the zero-valent and divalent iron elements do not change to the trivalent iron elements.
  • the dust can be collected while being rapidly cooled.
  • 0-valent and divalent iron elements can be collected while suppressing their conversion to trivalent iron elements.
  • the heavy metal element in the object to be treated is eluted in the solution in the form of heavy metal element ion.
  • the object to be treated does not contain the above solution, when the object to be treated comes into contact with the solution, it elutes into the solution in the form of heavy metal element ions.
  • the insolubilization mechanism of heavy metal element ions generated when the liquid in which heavy metal element ions are eluted and the steelmaking dust are brought into contact with each other, that is, when the heavy metal element ions and the steelmaking dust are brought into contact with each other in the presence of the liquid. Is inferred as follows.
  • An anode reaction occurs in which the zero-valent iron element (Fe) contained in the steelmaking dust is oxidized to emit electrons (Fe ⁇ Fe 2+ + 2e ⁇ ). By this oxidation reaction, divalent iron ions are eluted from the zero-valent iron element into the above liquid.
  • B At least a part of the divalent iron element (Fe 2+ ) contained in the steelmaking dust is oxidized to cause an anodic reaction that emits electrons (Fe 2+ ⁇ Fe 3+ + e ⁇ ). By this oxidation reaction, trivalent iron ions are eluted from the divalent iron element into the above liquid.
  • the reduction and salt formation occur at the portion (that is, the surface) of the steelmaking dust in contact with the liquid. Therefore, the zero-valent heavy metal element obtained by the reduction and the compound containing the heavy metal element obtained by the salt formation (heavy metal element compound) are precipitated on the surface of the steelmaking dust and adsorbed on the surface. ..
  • heavy metal element ions eluted from the object to be treated are precipitated as a zero-valent heavy metal element or an insoluble heavy metal element compound. It can be adsorbed on the steel dust.
  • the heavy metal element can be removed from the liquid by adsorbing the heavy metal element to the steelmaking dust in the form of a precipitate (that is, an insoluble matter). In this way, by using the steelmaking dust, heavy metal elements can be removed from the object to be treated.
  • the object to be treated or the purification treatment agent contains the above liquid, the heavy metal element can be removed by the above adsorption action without adding a further liquid such as water.
  • the ease with which divalent and trivalent iron ions are eluted from the steelmaking dust containing the 0-valent iron element and the divalent iron element is affected by the pH of the liquid.
  • the pH of the liquid is determined by the pH of the mixture of the object to be treated and the purifying agent. Therefore, considering the ease of elution of divalent and trivalent iron ions from the steelmaking dust, the pH of the mixture is preferably 3 or more and 9.5 or less as described later.
  • the upper limit of the average particle size of the steelmaking dust is preferably 1000 ⁇ m, more preferably 500 ⁇ m, and even more preferably 100 ⁇ m.
  • the lower limit of the average particle size of the steelmaking dust 1 ⁇ m is preferable, 5 ⁇ m is more preferable, 10 ⁇ m is further preferable, and 50 ⁇ m is particularly preferable. If the average particle size exceeds the upper limit, the surface area of the steelmaking dust is too small, and the adsorption rate (that is, removal rate) of heavy metal elements may decrease. On the contrary, if the average particle size does not reach the lower limit, the yield may decrease. In addition, handleability may be reduced.
  • the "average particle size” is defined as a particle size distribution obtained by a dry sieving test using a sieve specified in JIS-Z-8801: 2006, and the cumulative mass is 50% in this particle size distribution. Refers to the diameter.
  • the content of the steelmaking dust in the purification treatment agent is not particularly limited, and can be appropriately set according to, for example, the degree of removal of heavy metal elements from the object to be treated.
  • the lower limit of the content of the steelmaking dust in the purification treatment agent 5% by mass is preferable, and 10% by mass is more preferable.
  • the upper limit of the content of the steelmaking dust is preferably 80% by mass, more preferably 20% by mass. If the content of the steelmaking dust does not reach the above lower limit, the content of the steelmaking dust is too small, and the content of the zero-valent iron element and the divalent iron element may be too small accordingly.
  • the contents of the zero-valent iron element and the divalent iron element are too small, there is a possibility that the heavy metal element cannot be sufficiently removed from the object to be treated.
  • the content of the steelmaking dust exceeds the above upper limit, the effect of removing heavy metal elements does not increase as compared with the increase in the content, and the cost may increase.
  • the content may be 100% by mass. That is, the purification treatment agent may contain only steelmaking dust.
  • the acid lowers the pH of the added material by adding it. Specifically, the acid lowers the pH of the mixture of the object to be treated and the purifying agent than the pH when the acid is not contained.
  • the pH of the mixture is the pH of the mixture in which the object to be treated and the purification agent are brought into contact with each other.
  • the purifying agent specifically, the acid
  • the pH of the mixture is the pH of the mixture in which the object to be treated and the purification agent are brought into contact with each other. pH.
  • the pH of the mixture is the pH of the mixture in which the treatment target, the treatment target, and the liquid are brought into contact with each other.
  • the steelmaking dust usually contains an alkaline component exemplified by calcium oxide. Therefore, when the steelmaking dust is brought into contact with the object to be treated in the presence of the liquid, the pH of the mixture is usually higher than the pH of the object to be treated before the contact. When the pH rises in this way, divalent and trivalent iron ions may be difficult to elute from the 0-valent and divalent iron elements in the steelmaking dust.
  • the purifying agent contains the acid
  • the pH of the mixture can be lowered. By lowering the pH in this way, as will be described later, it is possible to lower (adjust) the pH of the mixture to a range in which divalent and trivalent iron ions are easily eluted from the steelmaking dust. Become. This decrease in pH can promote the elution of divalent and trivalent iron ions. Therefore, heavy metal elements can be removed more reliably from the object to be treated.
  • the pH of the object to be treated is the pH of the object to be treated itself.
  • the pH of the object to be treated is the pH of the object to be treated in a state where the object to be treated and the solution are in contact with each other. That is, it is the pH of the mixture in which the object to be treated and the above liquid are brought into contact with each other.
  • the acid examples include inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid, organic acids such as citric acid, and salts such as iron salts such as ferrous sulfate and ferrous chloride.
  • inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid
  • organic acids such as citric acid
  • salts such as iron salts such as ferrous sulfate and ferrous chloride.
  • hydrochloric acid or ferrous sulfate is preferable as the acid.
  • Hydrochloric acid and ferrous sulfate can reduce the pH of the mixture of the object to be treated and the purifying agent.
  • hydrochloric acid and ferrous sulfate have weak oxidizing power as compared with other acids, so that it is difficult to increase the valence of iron ions.
  • the acid when the acid is hydrochloric acid or ferrous sulfate, it is possible to prevent the zero-valent and divalent iron elements contained in the steelmaking dust from being oxidized without exhibiting their respective reducing abilities. .. That is, it is possible to prevent the 0-valent and divalent iron elements from being eluted as trivalent iron ions without reducing the heavy metal element ions.
  • hydrochloric acid and ferrous sulfate do not easily increase the valence of iron ions. Therefore, when the acid is hydrochloric acid or ferrous sulfate, heavy metals caused by a decrease in divalent iron ions. The decrease in the reaction of forming insolubilized salts with the element can be suppressed.
  • the acid may be in liquid form or solid form.
  • the acid of this solid may be used in the form of a solution dissolved in the solution.
  • a liquid whose pH can be adjusted such as a waste liquid in a pickling step after a rolling step in steelmaking, may be used.
  • the content of the above acid in the purification treatment agent is not particularly limited.
  • the acid content is appropriately set so that the zero-valent iron element and the divalent iron element in the steelmaking dust can sufficiently insolubilize the heavy metal element ions eluted from the object to be treated.
  • the content of alkaline components contained in the object to be treated the content of alkaline components such as calcium oxide contained in the steelmaking dust, and the like.
  • the acid content is appropriately set so that the pH of the mixture of the object to be treated and the steelmaking dust is in an appropriate range for removing heavy metal elements.
  • the acid content may be appropriately set so that the pH of the mixture of the steelmaking dust and the object to be treated is 3 or more and 9.5 or less.
  • the lower limit of the content of the acid in the purification treatment agent 25 parts by mass is preferable with respect to 100 parts by mass of the steelmaking dust, and 40 parts by mass is more preferable.
  • the upper limit of the acid content is preferably 1900 parts by mass and more preferably 900 parts by mass with respect to 100 parts by mass of the steelmaking dust. If the acid content is less than the lower limit, the pH of the mixture may not be sufficiently lowered. If the pH cannot be lowered sufficiently, heavy metal elements may not be sufficiently removed from the object to be treated. On the contrary, when the content of the acid exceeds the upper limit, the pH of the mixture may be lowered too much from an appropriate range, making it difficult to insolubilize the heavy metal element. For example, a heavy metal element compound that does not elute at an appropriate pH may elute at an excessively low pH, and as a result, the heavy metal element may not be insolubilized.
  • the treatment target includes liquid treatment target such as contaminated water containing heavy metal element, soil containing heavy metal element, solid treatment target such as steel by-product containing heavy metal, soil containing heavy metal element, and heavy metal.
  • liquid treatment target such as contaminated water containing heavy metal element, soil containing heavy metal element, solid treatment target such as steel by-product containing heavy metal, soil containing heavy metal element, and heavy metal.
  • suspension-like or slurry-like processing objects such as a mixture of a solid such as a steel by-product and a liquid containing water.
  • Examples of the steel by-products include conventionally known steel slag, conventionally known steel dust, and the like.
  • steel slag include ironmaking slag produced in the process of iron making such as blast furnace slag, and steelmaking slag produced in the process of steelmaking such as converter slag.
  • steel dust include ironmaking dust generated in the process of ironmaking such as blast furnace dust, dust generated in the process of steelmaking such as converter dust, and dust generated in the process after steelmaking such as electric furnace dust.
  • a heavy metal element having a lower ionization tendency than iron element is preferable.
  • the heavy metal element has a lower ionization tendency than the iron element, it is easily reduced by the above-mentioned oxidation reaction.
  • heavy metal elements having a lower ionization tendency than this iron element include elements such as selenium (Se), mercury (Hg), lead (Pb), arsenic (As), cadmium (Cd), and chromium (Cr).
  • the form of the heavy metal element in the object to be treated may be the form of a heavy metal alone or a compound with another element (heavy metal element compound).
  • the heavy metal element compound examples include sodium selenite, mercury chloride, lead chloride, sodium hydrogen hydride, cadmium nitrate, potassium dichromate and the like.
  • the heavy metals ions e.g., selenate ion (SeO 4 2-), mercury ions (Hg 2 2+, Hg 2 + ) lead ion (Pb 2+), arsenate ion (AsO 4 3-), cadmium ion (Cd 2+ ), dichromate ion (Cr 2 O 7 2- ) and the like.
  • a zero-valent selenium element also referred to as metallic selenium
  • a zero-valent mercury element also referred to as metallic mercury
  • a zero-valent cadmium element also referred to as metallic cadmium
  • Elemental arsenic is dissolved in the liquid in the form of arsenate ion (AsO 4 3-).
  • the divalent iron ion eluted from the zero-valent iron element and the divalent iron element in the steelmaking dust is reacted with the above-mentioned arsenate ion to generate an insoluble salt. It can be precipitated.
  • the insoluble iron arsenate compound of arsenic acid and iron
  • arsenate ions can be removed from the object to be treated.
  • the reaction formula between the divalent iron ion and the arsenate ion is expressed as the following formula. 3Fe 2+ + 2AsO 4 3- ⁇ Fe 3 (AsO 4 ) 2
  • Each element chromium and lead are dissolved in the solution in the form of dichromate ion (Cr 2 O 7 2-) and lead ions each having hexavalent chromium element a (Cr 6+) (Pb 2+) ..
  • dichromate ion Cr 2 O 7 2-
  • lead ions each having hexavalent chromium element a (Cr 6+) (Pb 2+) .
  • divalent iron ions eluted from steelmaking dust can be reacted with dichromic acid ions and lead ions, respectively, to generate insoluble salts, which can be precipitated.
  • the insoluble compound can be precipitated on the surface of steelmaking dust and adsorbed by the salt forming reaction. By this precipitation and adsorption, dichromate ion and lead ion can be removed from the object to be treated.
  • the trivalent chromium element (Cr 3+ ) is not a target for purification because it is less harmful to the human body.
  • the removal of the hexavalent chromium element also includes reducing the hexavalent chromium element to a trivalent chromium element.
  • the purification treatment agent can efficiently remove heavy metal elements from the object to be treated.
  • the purification treatment method of the present embodiment is a purification treatment method for removing heavy metal elements from the treatment target, and includes a step of bringing a purification treatment agent containing steelmaking dust into contact with the treatment target. That is, the present embodiment includes a step of bringing the purification treatment agent into contact with the treatment target.
  • the purification treatment agent that comes into contact with the treatment object may contain the steelmaking dust and the acid.
  • the steelmaking dust may contain an alkaline component.
  • the object to be treated may also contain an alkaline component. Even in such a case, by adjusting the amount of the purification treatment agent, more specifically, the content of the acid contained in the purification treatment agent according to the content of the alkaline component, the object to be treated can be treated.
  • the pH of the mixture with the purification agent can be adjusted to a range suitable for insolubilizing heavy metal elements.
  • the purifying agent is brought into contact with the object to be treated.
  • a liquid containing water is added as needed.
  • the purifying agent and the object to be treated are brought into contact with each other in the presence of the above liquid. More specifically, when the object to be treated contains the above-mentioned liquid in an amount necessary for removing the heavy metal element, the purification treatment agent and the object to be treated are brought into contact with each other without adding the above-mentioned liquid. In this case, the above solution may be further added.
  • the object to be treated does not contain the above-mentioned liquid necessary for removing the heavy metal element
  • the above-mentioned liquid in an amount necessary for removing the heavy metal element is added.
  • a mode of adding the liquid in this way a mode of adding the liquid separately from the steelmaking dust and the acid, and a mode in which the acid and the liquid are mixed (for example, a solution) together with the steelmaking dust. Examples include the mode of addition.
  • the amount of the above liquid required to remove heavy metal elements from the object to be treated is not particularly limited. For example, this amount can be appropriately set according to the content of heavy metal elements in the object to be treated.
  • the liquid is not particularly limited as long as it contains water and is capable of removing heavy metal elements from the object to be treated. Examples of the liquid include water.
  • the method of contacting the treatment object with the purification treatment agent is not particularly limited.
  • the contact method includes, for example, a method in which the purifying agent and, if necessary, the above liquid are filled in an appropriate container and the object to be treated is continuously passed through the container, and the purifying agent is applied to the object to be treated. Examples thereof include a method of adding and stirring.
  • the lower limit of the amount of the steelmaking dust added is preferably 0.3 g, more preferably 0.5 g, with respect to 1 mg of the heavy metal contained in the object to be treated.
  • the upper limit of the amount of the steelmaking dust added 3 g is preferable and 2 g is more preferable with respect to 1 mg of the heavy metal contained in the object to be treated. If the amount of steelmaking dust added is less than the above lower limit, heavy metal elements may not be sufficiently removed from the object to be treated. On the contrary, if the amount of the steelmaking dust added exceeds the above upper limit, it may be difficult to improve the removal efficiency of heavy metal elements as compared with the increase in the amount of the purification treatment agent.
  • the lower limit of the amount of the acid added is preferably 25 parts by mass, more preferably 40 parts by mass with respect to 100 parts by mass of the steelmaking dust, as described above. preferable.
  • the upper limit of the amount of the acid added is preferably 1900 parts by mass and more preferably 900 parts by mass with respect to 100 parts by mass of the steelmaking dust. If the amount of the acid added does not reach the lower limit, as described above, the pH of the mixture cannot be sufficiently lowered, and the heavy metal element may not be sufficiently removed from the object to be treated. On the contrary, when the content of the acid exceeds the upper limit, as described above, the pH of the mixture may be too low than an appropriate range, and it may be difficult to insolubilize the heavy metal element.
  • the lower limit of the pH of the mixture obtained by bringing the purification treatment agent into contact with the object to be treated 3 is preferable, 3.6 is more preferable, 4 is further preferable, and 5 is particularly preferable.
  • the upper limit of the pH 9.5 is preferable, 8.3 is more preferable, 8 is further preferable, and 7 is particularly preferable. If the pH does not reach the lower limit, the reduced heavy metal element may dissolve again. In addition, the amount of hydrogen generated by the reaction of the iron element in the steelmaking dust with the acid increases, and there is a concern that the insoluble matter (precipitate) adsorbed on the steelmaking dust may come off from the steelmaking dust.
  • the timing at which the steelmaking dust and acid contained in the purification treatment agent are brought into contact with the treatment target is not particularly limited.
  • steelmaking dust and acid may be added to the object to be treated at the same time, or may be added at different timings.
  • the mode of adding the steel dust and the acid at the same time includes a mode of adding the steelmaking dust and the acid in a mixed state, and a mode of adding the steelmaking dust and the acid separately at the same timing. All of the steelmaking dust and the acid may be added to the object to be treated at once, or all of the steelmaking dust and the acid may be added in a plurality of times.
  • the upper limit of the stirring time when the purification treatment agent is brought into contact with the object to be treated is preferably 72 hours, more preferably 48 hours, and even more preferably 36 hours.
  • the lower limit of the stirring time is preferably 1 minute, more preferably 1 hour, further preferably 10 hours, and particularly preferably 15 hours. If the stirring time exceeds the upper limit, it becomes difficult to improve the removal amount of the heavy metal element as compared with the increase in the stirring time, so that the removal efficiency of the heavy metal element may decrease. On the contrary, if the stirring time does not reach the above lower limit, heavy metal elements may not be sufficiently removed from the object to be treated.
  • the stirring device used for stirring include conventionally known stirring devices.
  • Whether or not the heavy metal element has been removed from the object to be treated can be confirmed by using, for example, a known dissolution test shown in Examples described later.
  • the elution amount of heavy metal elements (first elution amount) when the elution test described later is performed on a mixture obtained by contacting the purification treatment agent with the object to be treated using the purification treatment agent.
  • the elution amount (second elution amount) of the heavy metal element when the elution test described later is performed on the object to be treated without using the purification treatment agent is measured. Then, by subtracting the first elution amount from the second elution amount, the degree of removal of heavy metal elements by using the purification treatment agent can be confirmed.
  • the first elution amount and the second elution amount are set per unit amount of the object to be treated (for example, unit mass (per 1 g) or unit volume (per 1 L)).
  • the converted second elution amount may be subtracted from the converted first elution amount. Further, the subtracted result (removal amount of heavy metal element per 1 g of the object to be treated) may be converted into the removal amount per 1 g of steelmaking dust.
  • the removal of heavy metal ions by the above dissolution test using the treatment target and the purification treatment agent means that the treatment target and the purification treatment agent are brought into contact with each other in the presence of a liquid containing water to cause heavy metal element ions.
  • the dissolution test may correspond to one aspect of the purification treatment method.
  • the treated object that has been purified according to the standard can be used. Examples of this use include land reclamation and land reclamation in sea areas.
  • the degree of removal of heavy metal elements by using the purification treatment agent can be confirmed as follows, instead of performing the above dissolution test. That is, the treatment target, which is a solution, is brought into contact with the purification treatment agent, and the amount (residual amount) of the heavy metal element eluted in the obtained mixture is measured as the first elution amount, and the treatment target is treated. It is also possible to measure the amount of the heavy metal element originally eluted in the second elution amount as the second elution amount, and confirm the degree of removal of the heavy metal element by using the purification treatment agent in the same manner as described above.
  • the present invention is not limited to the above embodiment.
  • the purification treatment agent may contain only steelmaking dust, and in addition to steelmaking dust and acid, heavy metals. It may contain other components that do not interfere with the removal of the element.
  • steelmaking dust is collected by a wet dust collector, but if it is possible to collect steelmaking dust containing zero-valent iron element and divalent iron element, steelmaking dust is collected by using another dust collector or the like. May be collected.
  • the object to be treated As the object to be treated (component "A"), the object to be treated having the composition shown in Table 1 below was used.
  • steelmaking dust (“B” component) which is a component of the purification treatment agent steelmaking dust having the composition shown in Table 2 below was used. Further, as the steelmaking dust (“B'” component) different from this steelmaking dust, steelmaking dust having the composition shown in Table 2 below was used.
  • the acids shown in Table 3 below were used as the acids (“C” components) that are the components of the purification agent.
  • T.Fe indicates the total content of 0-valent iron element, divalent iron element, and trivalent iron element (total iron element content).
  • M.Fe indicates the content of zero-valent iron element (metal iron).
  • T—Cr indicates the total content of hexavalent chromium element and trivalent chromium element (total chromium element content).
  • 20% by mass in the hydrochloric acid column indicates the concentration of hydrogen chloride in the hydrochloric acid aqueous solution.
  • 98% by mass in the column of iron sulfate heptahydrate indicates its purity. The content of each component of the object to be treated and the steelmaking dust was measured by the following method.
  • the content of each component contained in the object to be treated and the steelmaking dust was measured as follows. That is, the content of total iron (T.Fe) was measured by JIS M8212: 2005 "Iron ore-total iron quantification method". The FeO content was measured by JIS M8213: 1995 "Iron Ore-Acid Soluble Iron (II) Quantification Method”. M. The Fe content was measured by the metallic iron quantification method described in the manual of JIS M8213: 1995 "Iron ore-acid-soluble iron (II) quantification method". The content of Fe 2 O 3 is determined from the content of total iron to the content of FeO and M.I. It was calculated by subtracting the Fe content.
  • the content of calcium oxide (CaO) was measured by JIS M8221: 1997 "Iron Ore-Calcium Quantification Method".
  • the content of selenium (Se) was measured by JIS M8134: 1994 "Method for quantifying selenium in ore”.
  • the mercury (Hg) content was measured by the Ministry of the Environment Sediment Survey Method: 2012.
  • the lead (Pb) content was measured by JIS M8229: 1997 "Iron Ore-Lead Quantification Method”.
  • the content of arsenic (As) was measured by JIS M8226: 2006 "Iron ore-Arsenic quantification method".
  • the content of chromium (T-Cr) was measured by JIS M8224: 1997 "Iron Ore-Chromium Quantification Method”.
  • each of the obtained samples of Experimental Examples 1 to 4 was subjected to an elution test by the method described later, and the pH of the eluate (pH of the mixture), and the selenium (Se) element and mercury (Hg) element in the test solution, respectively.
  • the elution amount (mg / L) of was measured.
  • the measurement result of each elution amount was divided by the blending amount of the object to be treated (“A1” component) and converted into the elution amount (mg / L) per 1 g of the object to be treated.
  • the conversion result of Experimental Example 1 is used as a reference (the above-mentioned second elution amount), and the conversion result of Experimental Example 1 is subtracted from each conversion result of Experimental Examples 2 to 4 (the above-mentioned first elution amount). I did. This subtracted result was divided by the blending amount of steelmaking dust (“B” component) and converted into the removal amount (mg / L) per 1 g of steelmaking dust. Since the elution amount of each of the mercury elements of Experimental Examples 2 to 4 was below the lower limit of detection, none of the above conversions was performed. Table 4 shows the measurement results of each elution amount and each conversion result.
  • the pH of the obtained eluent conforms to the method specified in 12.1 "Glass electrode method” of JIS K0102: 2016, and the pH / ion meter HM-42X manufactured by DKK-TOA Corporation is used as a pH meter.
  • GST-5821C manufactured by DKK-TOA CORPORATION was used as a pH electrode for measurement.
  • the elution amount of the selenium element in the obtained eluate was measured according to the method specified in 67.2 “Hydride compound generation atomic absorption method” of JIS K0102: 2016.
  • the amount of mercury element eluted in the eluate was measured according to the method specified in JIS K0102: 2016 66.1.1 “Reduced Vaporization Atomic Absorption Method”.
  • heavy metal elements can be removed by adding steelmaking dust to the object to be treated. It was also shown that heavy metal elements can be removed more reliably by adding steelmaking dust and acid to the object to be treated. Further, when steelmaking dust and acid are added to the object to be treated and the pH is 3.6 or more and 8.3 or less, a larger amount of heavy metal elements can be removed, and 1 g of the object to be treated and steelmaking dust can be removed. It has been shown that the amount of heavy metal elements removed per gram can be increased to more than 5.0 ⁇ 10 -4 mg / L.
  • the reagents shown below were used. In the formulation shown in Table 5 below, reagents are mixed so that the concentration (content) of each heavy metal element becomes the value shown in Table 5, and a solution containing heavy metals as ions (“preparation solution (X)”) is prepared. Prepared. This preparation solution (X) was used as an object to be treated.
  • (reagent) Cadmium standard solution (Cd1000) Made by Fujifilm Wako Pure Chemical Industries, Ltd.
  • Product code 036-11711 Lead standard solution (Pb1000) Made by Fujifilm Wako Pure Chemical Industries, Ltd.
  • the “B” component was used as steelmaking dust.
  • the “C1” component was used as the acid.
  • the prepared solution (X) was used as it was as a sample of Experimental Example 17.
  • the prepared solution (X) and the component “B” were mixed according to the formulation shown in Table 6 to obtain a mixture (sample) of Experimental Example 18.
  • the prepared solution (X), the "B” component, and the “C1” component were mixed with the formulations shown in Table 6 to obtain a mixture (sample) of Experimental Example 19.
  • the pH of the obtained sample of Experimental Example 17 was measured using the pH measuring method in the dissolution test described above.
  • the samples of Experimental Example 18 and Experimental Example 19 were shaken under the same conditions as the above-mentioned dissolution test, and after this shaking, the mixed solution was allowed to stand, and the centrifugation operation was performed under the same conditions as described above. .. After the centrifugation operation, the supernatant (sample solution) was filtered under the same conditions as described above to obtain an eluate.
  • the solution after mixing the preparation solution X and the "B" component is called an eluate as described above.
  • the amount (residual amount) of heavy metal elements remaining in the eluate after mixing is called the elution amount.
  • the pH of the obtained eluate was measured in the same manner as in the elution test described above.
  • the elution amount (residual amount, mg / L) of cadmium (Cd) element, lead (Pb) element and arsenic (As) element in the obtained eluate was measured by the following method. That is, the elution amount of the cadmium element was measured according to the method specified in 55.3 “ICP emission spectroscopic analysis method” of JIS K0102: 2016. The amount of lead element eluted in the eluate was measured according to the method specified in 54.3 “ICP Emission Spectroscopy” of JIS K0102: 2016. The elution amount of arsenic element in the eluate was measured according to the method specified in 61.3 “Hydride generation ICP emission spectroscopic analysis method” of JIS K0102: 2016.
  • each elution amount was divided by the blending amount (volume conversion) of the object to be treated (prepared component (X)) and converted to the elution amount (mg / L) per 1 L of the object to be treated.
  • the conversion results are not shown in Table 6.
  • the conversion result of Experimental Example 17 is used as a reference (the above-mentioned second elution amount), and the conversion result of Experimental Example 17 from each conversion result of Experimental Example 18 and Example 19 (the above-mentioned first elution amount).
  • This subtracted result was divided by the blending amount of steelmaking dust (“B” component) and converted into the removal amount (mg / L) per 1 g of steelmaking dust.
  • Table 6 shows the measurement results of each elution amount and each conversion result.
  • each heavy metal element can be removed by adding steelmaking dust as well as mercury element and selenium element. It was also shown that each heavy metal element can be further removed by further adding an acid in addition to the steelmaking dust.
  • the purification treatment agent and purification treatment method of the present invention are suitable for removing heavy metal elements from solids such as contaminated water containing heavy metal elements, soil containing heavy metal elements, and steel by-products containing heavy metal elements.
  • the purification treatment agent and purification treatment method of the present invention are suitable for removing heavy metal elements from solids such as contaminated water containing heavy metal elements, soil containing heavy metal elements, and steel by-products containing heavy metal elements.
  • it can be suitably used for removing heavy metal elements from steel slag and steel dust generated in the process of steelmaking from ironmaking.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Soil Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

処理対象物から重金属を効率的に除去することを可能とする浄化処理剤及び浄化処理方法を提供することを課題とする。本発明の浄化処理剤は、重金属元素を除去する浄化処理剤であって、製鋼ダストを含有する。本発明の浄化処理方法は、処理対象物から重金属元素を除去する浄化処理方法であって、製鋼ダストを含有する浄化処理剤を上記処理対象物に接触させる工程を備える。

Description

浄化処理剤及び浄化処理方法
 本発明は、浄化処理剤及び浄化処理方法に関する。
 セレン、水銀、ヒ素、鉛、カドミウム、クロム等の重金属元素による環境汚染が問題となっている。上記重金属元素は、人体に対して有害であり、健康障害をもたらす。このため、重金属元素毎に厳しい環境基準が定められている。例えば、重金属元素を含有する鉄鋼副産物が上記環境基準を満たさない場合、この鉄鋼副産物を陸上埋立、海域埋立等に用いることが困難となる。すなわち、処理対象物を産業上利用することが困難となる。
 上記重金属元素を除去する浄化処理剤を用いて上記重金属元素を含む処理対象物を浄化する方法として、鉄又はその合金粉であるアトマイズ粉を含有する浄化処理剤に重金属又は重金属化合物を吸着させる方法が提案されている(特開2015-213873号公報、特開2018-161604号公報参照)。
特開2015-213873号公報 特開2018-161604号公報
 上記特許文献1及び2に示すような浄化処理方法では、鉄又はその合金粉として、水アトマイズ法で製造したアトマイズ粉を用いている。この浄化処理方法では、アトマイズ粉を製造する必要がある分、資源及びエネルギーが必要となる。このため、上記浄化処理方法は、環境・資源エネルギーの観点で改善すべき部分がある。
 本発明はこのような事情に鑑みてなされたものであり、処理対象物から重金属元素を効率的に除去することができる浄化処理剤及び浄化処理方法を提供することを課題とする。
 上記課題を解決するためになされた発明は、重金属元素を除去する浄化処理剤であって製鋼ダストを含有する浄化処理剤である。
 当該浄化処理剤を用いた処理の対象である処理対象物に含まれる重金属元素は、水を含む液(以下、単に「液」という場合がある)の存在下で、この液にイオンの形態で溶出する。例えば上記処理対象物が上記液を含んでいる場合、この液中にイオン化した重金属元素(以下、「重金属元素イオン」という場合がある)が既に溶出している。例えば上記処理対象物が上記液を含んでいない場合には、上記処理対象物が上記液と接触すると、上記液中に重金属元素イオンが溶出する。
 一方、上記製鋼ダストは、製鋼の過程で本来不要物として排出される。この製鋼ダストは、通常、0価の鉄元素及び2価の鉄元素の少なくとも一方を含んでいる。この製鋼ダストが上記液と接触すると、下記(a)、(b)及び(c)の少なくとも1つの反応が生じる。
(a)上記製鋼ダスト中の0価の鉄元素から2価の鉄イオンが上記液中に溶出する(アノード反応、すなわち酸化反応)。
(b)上記鉄鋼ダスト中の2価の鉄元素から3価の鉄イオンが溶出する(アノード反応、すなわち酸化反応)。
(c)上記鉄鋼ダスト中の2価の鉄元素がそのまま(価数を2価に維持したまま)溶出する(溶解反応)。
 上記(a)~(c)に示すように、上記製鋼ダスト中の0価の鉄元素に由来して2価の鉄イオンが上記液中に溶出する。加えて、上記製鋼ダスト中の2価の鉄元素に由来して2価の鉄イオン及び3価の鉄イオンが上記液中に溶出する。上記(a)及び(b)の酸化反応によって上記液中の重金属元素イオンが還元され、0価の重金属元素に変化する。上記(a)の酸化反応及び(c)の溶解反応で溶出した2価の鉄イオンが重金属元素イオンと不溶性の塩を形成する。このように、上記0価及び2価の鉄元素に起因する酸化反応、並びに上記2価の鉄元素に起因する溶解反応によって、重金属元素イオンを不溶物として析出させる(不溶化させる)ことができる。この析出は製鋼ダストの表面(具体的には0価及び2価の鉄元素の表面)で生じる。よって、析出物を上記製鋼ダストに吸着させることができる。この析出(不溶化)及び吸着によって、重金属元素を除去することができる。
 加えて、上記製鋼ダストを浄化処理剤の成分として用いると、浄化処理剤の重要な成分を、あえて製造する必要がない。また、製鋼の過程で発生する不要物を有効に利用することができる。よって、当該浄化処理剤が上記製鋼ダストを含むことで、コスト及び環境負荷を低減することができるため、効率的である。
 このように、当該浄化処理剤が上記製鋼ダストを含有することで、処理対象物から溶出する重金属元素イオンを効率的に不溶化し、不溶化物を上記製鋼ダストに吸着させて除去することができる。すなわち、処理対象物から重金属元素を効率的に除去することができる。なお、このような効果を有するものとして製鋼ダスト以外に圧延スラッジが挙げられる。
 当該浄化処理剤が下記条件(1)及び(2)の少なくとも一方を満たすとよい。このように、当該浄化処理剤が下記条件(1)及び(2)の少なくとも一方を満たすことで、より確実に処理対象物から重金属元素を除去することができる。
(1)上記製鋼ダスト中の0価の鉄元素の含有量が10質量%以上である。
(2)上記製鋼ダスト中の2価の鉄元素の含有量が10質量%以上である。
 当該浄化処理剤が酸をさらに含有するとよい。ここで、上記製鋼ダストは、通常、不可避不純物として酸化カルシウム(CaO、生石灰とも呼ばれる)等のアルカリ成分を含んでいる。このため、上記製鋼ダストが上記液に接触すると、上記アルカリ成分に起因して上記液のpHが上昇する。上記液のpHが上昇すると、上記製鋼ダストから上記2価及び3価の鉄イオンが溶出し難くなる(すなわち、酸化反応及び溶解反応が生じ難くなる)おそれがある。
 しかし、当該浄化処理剤が上記酸を含有することで、上記製鋼ダストが上記アルカリ成分を含んでいても、このアルカリ成分に起因する上記液のpHの上昇を抑制し、そのpHを上記2価及び3価の鉄イオンの溶出に適切な範囲へと低下させる(調整する)ことができる。このpHの低下によって、上記2価及び3価の鉄イオンの溶出を促進することができる。よって、より確実に処理対象物から重金属元素を効率的に除去することができる。
 上記酸が塩酸又は硫酸第一鉄であるとよい。このように、上記酸が塩酸又は硫酸第一鉄であることで、より適切に上記液のpHを低下させることができる。すなわち、上記液のpHが低下し過ぎない程度に、上記液のpHを低下させることができる。よって、より確実に処理対象物から重金属元素を効率的に除去することができる。
 上記課題を解決するためになされた別の発明は、処理対象物から重金属元素を除去する浄化処理方法であって、製鋼ダストを含有する浄化処理剤を上記処理対象物に接触させる工程を備える浄化処理方法である。
 当該浄化処理方法は、製鋼ダストを含有する浄化処理剤を用いることで、上述の通り、処理対象物から重金属元素を効率的に除去することができる。
 すなわち、上記液の存在下で上記製鋼ダストと上記処理対象物とを接触させると、上述の通り、上記(a)~(c)の少なくとも1つの反応が生じる。上記0価及び2価の鉄元素に起因する上記(a)及び(b)の酸化反応、並びに上記2価の鉄元素に起因する上記(c)の溶解反応によって、重金属元素イオンを不溶物として析出させる(不溶化させる)ことができる。この析出は製鋼ダストの表面で生じるため、析出物を上記製鋼ダストに吸着させることができる。この析出(不溶化)及び吸着によって、重金属元素を除去することができる。加えて、上述した通り、上記製鋼ダストを浄化処理剤の成分として用いると、コスト及び環境負荷を低減することができるため、効率的である。従って、処理対象物から重金属元素を効率的に除去することができる。
 上記浄化処理剤が酸をさらに含有するとよい。このように、上記浄化処理剤が酸をさらに含有することで、上述の通り、上記製鋼ダストが上記アルカリ成分を含んでいても、このアルカリ成分に起因する上記液のpHの上昇を抑制し、そのpHを上記2価及び3価の鉄イオンの溶出に適切な範囲へと低下させる(調整する)ことができる。このpHの低下によって、上記2価及び3価の鉄イオンの溶出を促進することができる。よって、より確実に処理対象物から重金属元素を効率的に除去することができる。
 上記接触工程では、上記浄化処理剤を上記処理対象物に接触させて得られる混合物のpHとしては、3以上9.5以下が好ましい。上記混合物のpHが3未満であると、還元された重金属元素が再び溶解するおそれがある。また、製鋼ダスト中の鉄元素が酸と反応して発生する水素量が大きくなり、製鋼ダストに吸着した不溶化物(析出物)が製鋼ダストから剥がれ落ちる懸念がある。一方、上記混合物のpHが9.5を超えると、水酸化鉄の生成量が大きくなり、上記した不溶化の反応性が低下する懸念がある。これに対し、上記pHが上記範囲であることで、より確実に処理対象物から重金属元素を効率的に除去することができる。
 ここで、「重金属元素」とは、25℃における比重が4.5以上の金属元素であって、鉄元素以外の金属元素をいう。「重金属元素」の形態には、0価の重金属元素(重金属単体)の形態、重金属元素と他の元素との化合物(重金属元素化合物)の形態、及びイオン(重金属元素イオン)の形態が含まれる。「重金属元素イオン」の形態には、重金属元素単体がイオン化したイオンの形態、及び重金属元素と他の元素との化合物がイオン化したイオンの形態が含まれる。
 「重金属元素イオンの不溶化」には、既にイオン化している重金属元素イオンを不溶化すること、及び未だイオン化されていない重金属元素を、水を含む液と接触させて重金属元素イオンの形態に変化させたうえで、この重金属元素イオンを不溶化することが含まれる。
 「混合物のpH」とは、pHを測定することができる程度に上記混合物が水を含む状態での処理対象物のpHをいう。すなわち、「混合物のpH」は、処理対象物と浄化処理剤との混合物自体のpHを直接測定できる場合には混合物自体のpHを意味する。一方、処理対象物と浄化処理剤との混合物自体のpHを直接測定できない場合には、処理対象物及び浄化処理剤に、水を含む液をさらに接触させた状態(混合物が上記液を含む状態)での混合物のpHをいう。
 以上説明したように、本発明の浄化処理剤を用いることで、処理対象物から重金属元素を効率的に除去することができる。本発明の浄化処理方法を用いることで、処理対象物から重金属元素を効率的に除去することができる。
 以下、本発明の浄化処理剤及び浄化処理方法の実施形態について詳説する。なお、本明細書では、任意の事項について記載された複数の上限値のうちの1つと複数の下限値のうちの1つとを適宜組み合わせることができる。このように組み合わせることで、組み合わされた上限値と下限値との間の数値範囲が上記任意の事項の好適な数値範囲として本明細書中に記載されているものとする。ここで、上記した上限値と下限値との間の数値範囲は上限値から下限値までの数値範囲、及び下限値から上限値までの数値範囲を含む。
[浄化処理剤]
 本実施形態に係る浄化処理剤は、重金属元素を除去する浄化処理剤であって、製鋼ダストを含有する。当該浄化処理剤は、酸をさらに含有してもよい。
<製鋼ダスト>
 上記製鋼ダストは、銑鉄から鋼を製造する製鋼工程でガスと共に発生する粉体である。この製鋼ダストとしては、転炉での処理、脱リン炉での処理の際に排ガスと共に発生するダスト等が挙げられる。
 上記製鋼ダストは、鉄元素を含む粉体である。具体的には、上記製鋼ダストは、通常、0価の鉄元素及び2価の鉄元素の少なくとも一方を含む。0価の鉄元素は、鉄(いわゆる金属鉄)の形態で上記製鋼ダスト中に存在する。2価の鉄元素は、この2価の鉄元素と他の元素との化合物(2価の鉄化合物)の形態で上記製鋼ダスト中に存在する。上記製鋼ダストは、鉄元素として3価の鉄元素を含んでもよい。この3価の鉄元素は、この3価の鉄元素と他の元素との化合物(3価の鉄化合物)の形態で上記製鋼ダスト中に存在する。
 上記製鋼ダスト中の0価の鉄元素の含有量及び2価の鉄元素の含有量は、それぞれ特に限定されない。例えばこれらの含有量に関し、当該浄化処理剤が下記条件(1)及び(2)の少なくとも一方を満たすとよい。このように、当該浄化処理剤が下記条件(1)及び(2)の少なくとも一方を満たすことで、下記条件(1)及び(2)の双方ともを満たさない場合と比較して、より確実に処理対象物から重金属元素を除去することができる。
(1)上記製鋼ダスト中の0価の鉄元素の含有量が10質量%以上である。
(2)上記製鋼ダスト中の2価の鉄元素の含有量が10質量%以上である。
 この場合において、上記製鋼ダスト中の0価の鉄元素の含有量の下限としては、上記のように10質量%が好ましく、加えて30質量%がより好ましく、50質量%がさらに好ましく、70質量%が特に好ましい。一方、上記0価の鉄元素の含有量の上限としては、95質量%が好ましく、85質量%がより好ましい。上記0価の鉄元素の含有量が上記下限に満たないと、上記製鋼ダストからの2価の鉄イオンの溶出量が小さ過ぎるおそれがある。2価の鉄イオンの溶出量が小さ過ぎると、上記液中の重金属元素イオンを十分に還元(不溶化)できず、処理対象物から重金属元素を十分に除去することができないおそれがある。加えて、2価の鉄イオンの溶出量が小さ過ぎると、上記液中の重金属元素イオンと2価の鉄イオンとの不溶性の塩を十分に形成することができず、処理対象物から重金属元素を十分に除去することができないおそれがある。逆に、上記0価の鉄元素の含有量が上記上限を超えると、上記含有量の増加に比して重金属元素の除去性能が向上せず、コストが増加するおそれがある。
 上記製鋼ダスト中の0価の鉄元素の含有量は、JIS M8213:1995「鉄鉱石-酸可溶性鉄(II)定量方法」の解説書に記載の金属鉄定量方法によって測定することができる。
 上記製鋼ダスト中の2価の鉄元素の含有量の下限としては、上記のように10質量%が好ましく、加えて30質量%がさらに好ましい。一方、上記2価の鉄元素の含有量の上限としては、95質量%が好ましく、85質量%がより好ましい。上記2価の鉄元素の含有量が上記下限に満たないと、2価及び3価の鉄イオンの溶出量が小さ過ぎるおそれがある。3価の鉄イオンの溶出量が小さ過ぎると、上記液中の重金属元素イオンを十分に還元(不溶化)できず、処理対象物から重金属元素を十分に除去することができないおそれがある。2価の鉄イオンの溶出量が小さ過ぎると、上記液中の重金属元素イオンと2価の鉄イオンとの不溶性の塩を十分に形成することができないおそれがある。よって、処理対象物から重金属元素を十分に除去することができないおそれがある。逆に、上記2価の鉄元素の含有量が上記上限を超えると、上記含有量の増加に比して重金属元素の除去性能が向上せず、コストが増加するおそれがある。
 上記製鋼ダスト中の2価の鉄元素の含有量は、JIS M8213:1995「鉄鉱石-酸可溶性鉄(II)定量方法」によって測定することができる。
 なお、2価の鉄元素の含有量が上記条件(2)を満たす場合には、上記製鋼ダスト中の0価の鉄元素の含有量は、上記条件(1)を満たしても、満たさなくてもよい。この上記条件(1)を満たさない場合には、上記製鋼ダスト中の0価の鉄元素の含有量が0質量%であること(すなわち、上記製鋼ダスト中に0価の鉄元素が含まれていないこと)も含まれる。また、0価の鉄元素の含有量が上記条件(1)を満たす場合には、上記製鋼ダスト中の2価の鉄元素の含有量は、上記条件(2)を満たしても満たさなくてもよい。この上記条件(2)を満たさない場合には、上記製鋼ダスト中の2価の鉄元素の含有量が0質量%であること(すなわち、上記製鋼ダスト中に2価の鉄元素が含まれていないこと)も含まれる。
 上記製鋼ダストは、通常、鉄以外の元素も含む場合がある。例えば、上記製鋼ダストは重金属元素を不可避的に含む場合がある。この重金属元素としては、例えばセレン(Se)、水銀(Hg)、鉛(Pb)、ヒ素(As)、クロム(6価クロム、Cr6+)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)といった元素が挙げられる。上記製鋼ダスト中の重金属元素の含有量が大き過ぎると、この製鋼ダストから、本来除去すべき重金属元素イオンが溶出してしまうおそれがある。このため、処理対象物中の重金属元素以外に除去すべき重金属元素が増え、その結果、処理対象物中の重金属元素を十分に除去することができないおそれがある。よって、上記製鋼ダスト中の重金属元素の含有量は小さい程、好ましい。例えば上記製鋼ダスト中の重金属元素の含有量の上限としては、特にセレン(Se)、水銀(Hg)、鉛(Pb)、ヒ素(As)及びクロム(Cr)の含有量の合計の上限が0.1質量%未満であると好ましい。
 上記製鋼ダスト中の各重金属元素の含有量は、下記のように測定することができる。すなわち、セレン(Se)の含有量は、JIS M8134:1994「鉱石中のセレン定量方法」によって測定することができる。水銀(Hg)の含有量は、環境省 底質調査法:2012によって測定することができる。鉛(Pb)の含有量はJIS M8229:1997「鉄鉱石-鉛定量方法」によって測定することができる。ヒ素(As)の含有量は、JIS M8226:2006「鉄鉱石-ひ素定量方法」によって測定することができる。クロム(Cr)の含有量は、JIS M8224:1997「鉄鉱石-クロム定量方法」によって測定することができる。コバルト(Co)の含有量は、JIS M8210:1995「鉄鉱石-コバルト定量方法」によって測定することができる。ニッケル(Ni)の含有量は、JIS M8223:1997「鉄鉱石-ニッケル定量方法」によって測定することができる。銅(Cu)の含有量は、JIS M8218:1997「鉄鉱石-銅定量方法」によって測定することができる。亜鉛(Zn)の含有量は、JIS M8228:1997「鉄鉱石-亜鉛定量方法」によって測定することができる。
 上記の他、上記製鋼ダストは、鉄以外の元素として、例えばカルシウム(Ca)及び酸素(O)を不可避的に含む。これらの元素は、例えば上記製鋼ダスト中に酸化カルシウム(CaO、生石灰)の形態で含まれる。上記液と上記製鋼ダストとが接触すると、上記製鋼ダスト中の酸化カルシウムが溶出する。酸化カルシウムはアルカリ成分であるため、この酸化カルシウムの溶出に起因して上記液のpHが上昇する。上記製鋼ダスト中の酸化カルシウムの含有量が大き過ぎる場合には、その分、上記液のpHが上昇し過ぎることになる。pHが上昇し過ぎると、0価の鉄元素から2価の鉄イオンが溶出し難くなり、2価の鉄元素から2価及び3価の鉄イオンが溶出し難くなる。このため、酸化カルシウムの含有量が大き過ぎると、その分、上記液のpHを低下させるための酸の添加量(製鋼ダストの含有量に対する酸の含有量)を大きくする必要がある。酸の添加量が大きくなる程、コストが増大する。よって、上記製鋼ダスト中の酸化カルシウムの含有量は小さい程、好ましい。例えば、上記製鋼ダスト中の酸化カルシウムの含有量の上限としては、30質量%が好ましく、15質量%がより好ましい。一方、上記酸化カルシウムの含有量の下限としては、通常、2質量%程度である。
 上記製鋼ダスト中の酸化カルシウムの含有量は、JIS M8221:1997「鉄鉱石-カルシウム定量方法」によって測定することができる。
 上記の他、上記製鋼ダストに含まれ得る鉄以外の元素として、例えばケイ素、アルミニウム、マグネシウム、カリウム、ナトリウム、炭素といった元素が挙げられる。例えば、ケイ素は、酸化ケイ素(SiO)の形態、アルミニウムは酸化アルミニウム(Al)の形態、マグネシムは酸化マグネシウム(MgO)の形態、カリウムは酸化カリウム(KO)の形態、ナトリウムは酸化ナトリウム(NaO)の形態、炭素(C)は金属鉄に固溶する形態、あるいはこれらの元素が化合した化合物の形態で、上記製鋼ダストに含まれる。このような上記鉄以外の元素を上記製鋼ダストが含む場合、この元素の上記製鋼ダスト中の含有量の含有量は、小さい程好ましい。例えば、この鉄元素以外の元素(ただし、重金属元素、並びに酸化カルシウムを構成するカルシウム元素及び酸素元素を除く)の含有量の上限としては、5質量%が好ましく、2質量%がより好ましく、1質量%がさらに好ましい。
 上記製鋼ダストは、製鋼工程で発生した、ガス及びダストを含む流体からダストを捕集することによって得られる。ダストの捕集方法は、0価及び2価の鉄元素を含有しているようにダストを捕集することができる方法であればよく、特に限定されない。例えば、上記製鋼ダストは、転炉工程で発生した上記流体から湿式集塵機で捕集することによって得られる。
 ここで、通常、発生直後の上記流体は高温である。このため、高温の状態で発生から時間が経過するにつれて、ダストに含まれる0価の鉄元素及び2価の鉄元素がそれぞれダスト中で酸化され、いずれも3価の鉄元素に変化するおそれがある。3価の鉄元素は、還元能力を有しない。加えて、3価の鉄元素は他の元素(重金属元素イオンを含む)と水に不溶性の塩を形成し難い。すなわち、3価の鉄元素は重金属元素イオンを不溶化し難い。よって、0価及び2価の鉄元素が3価の鉄元素に変化しないように、発生したダストを、冷却しながら早期に捕集する必要がある。
 この点に関し、上記のように湿式集塵機でダストを捕集することで、ダストを急速に冷却しながら捕集することができる。この捕集によって、0価及び2価の鉄元素を、これらが3価の鉄元素に変化することを抑制しながら捕集することができる。このように、上記湿式集塵機で上記ダストを捕集することで、上述のように0価及び2価の鉄元素を含む上記製鋼ダストを得ることができる。
 処理対象物が上記液を含有している場合には、処理対象物中の重金属元素は、重金属元素イオンの形態で上記液中に溶出している。一方、処理対象物が上記液を含有していない場合には、処理対象物が上記液と接触すると、重金属元素イオンの形態で上記液中に溶出する。このように重金属元素イオンが溶出した上記液と上記製鋼ダストとを接触させたとき、すなわち、上記液の存在下で重金属元素イオンと上記製鋼ダストとを接触させときに生じる重金属元素イオンの不溶化メカニズムは、以下のように推察される。
 すなわち、重金属元素イオンが溶出した上記液と上記製鋼ダストとを接触させると、下記(a)~(c)の少なくとも1つの反応が生じる。
(a)上記製鋼ダストに含まれる0価の鉄元素(Fe)が酸化されて電子を放出するアノード反応(酸化反応)が生じる(Fe→Fe2++2e)。この酸化反応によって0価の鉄元素から2価の鉄イオンが上記液中に溶出する。
(b)上記製鋼ダストに含まれる2価の鉄元素(Fe2+)の少なくとも一部が酸化されて電子を放出するアノード反応が生じる(Fe2+→Fe3++e)。この酸化反応によって2価の鉄元素から3価の鉄イオンが上記液中に溶出する。
(c)上記製鋼ダストに含まれる2価の鉄元素(Fe2+)の他の一部が、そのままその価数が変わることなく上記液中に溶出する溶解反応が生じる。この溶解反応によって2価の鉄元素から2価の鉄イオンが上記液中に溶出する。
 上記(a)及び(b)の酸化反応で放出された電子が上記重金属元素イオンと反応することで、上記重金属元素イオンが還元され、0価の重金属元素に変化する。この還元によって、重金属元素イオンが不溶化される。また、上記(a)の酸化反応及び(c)の溶解反応で溶出した2価の鉄イオンと重金属元素イオンとが反応することで、不溶性の塩が形成される。この塩形成によって重金属元素イオンが不溶化される。このように、上記還元及び塩形成によって重金属元素イオンが不溶化されると推察される。
 上記還元及び塩形成は、上記製鋼ダストの上記液と接触する部分(すなわち、表面)で生じる。このため、上記還元で得られた0価の重金属元素、及び上記塩形成で得られた重金属元素を含有する化合物(重金属元素化合物)は、上記製鋼ダストの表面に析出し、この表面に吸着する。
 上述のように、処理対象物と上記製鋼ダストとを上記液の存在下で接触させることで、処理対象物から溶出する重金属元素イオンを0価の重金属元素又は不溶性の重金属元素化合物として析出させ、上記製鋼ダストに吸着させることができる。加えて、重金属元素を析出物(すなわち、不溶化物)の形態で上記製鋼ダストに吸着させることで、上記液から重金属元素を除去することができる。このように、上記製鋼ダストを用いることで、処理対象物から重金属元素を除去することができる。なお、処理対象物又は浄化処理剤が上記液を含む場合には、更なる水などの液体を添加しなくても、上記吸着作用で重金属元素を除去することができる。
 加えて、処理対象物から重金属元素を除去するために、鉄鋼副産物、より具体的には製鋼副産物である上記製鋼ダストを用いることで、水アトマイズ法によって得られる鉄又はその合金粉と比較して、コスト及び環境負荷を低減することができる。
 上記0価の鉄元素及び2価の鉄元素を含む上記製鋼ダストからの2価及び3価の鉄イオンの溶出し易さは、上記液のpHに影響される。上記液のpHは、処理対象物と当該浄化処理剤との混合物のpHによって決まる。よって、上記製鋼ダストからの2価及び3価の鉄イオンの溶出し易さを考慮すると、上記混合物のpHとしては、後述するように3以上9.5以下であることが好ましい。
 上記製鋼ダストの平均粒径の上限としては、1000μmが好ましく、500μmがより好ましく、100μmがさらに好ましい。一方、上記製鋼ダストの平均粒径の下限としては、1μmが好ましく、5μmがより好ましく、10μmがさらに好ましく、50μmが特に好ましい。上記平均粒径が上記上限を超えると、上記製鋼ダストの表面積が小さ過ぎて、重金属元素の吸着速度(すなわち除去速度)が低下するおそれがある。逆に、上記平均粒径が上記下限に満たないと、歩留まりが低くなるおそれがある。また、取り扱い性が低下するおそれがある。ここで、「平均粒径」とは、JIS-Z-8801:2006に規定されるふるいを用いた乾式ふるい分け試験によって粒子径分布を求め、この粒子径分布にて累積質量が50%となる粒径をいう。
 当該浄化処理剤中の上記製鋼ダストの含有量は、特に限定されず、例えば処理対象物からの重金属元素の除去の程度等に応じて適宜設定することができる。例えば当該浄化処理剤中の上記製鋼ダストの含有量の下限としては、5質量%が好ましく、10質量%がより好ましい。一方、上記製鋼ダストの含有量の上限としては、80質量%が好ましく、20質量%がより好ましい。上記製鋼ダストの含有量が上記下限に満たないと、上記製鋼ダストの含有量が小さ過ぎ、その分、0価の鉄元素及び2価の鉄元素の含有量も小さ過ぎるおそれがある。0価の鉄元素及び2価の鉄元素の含有量が小さ過ぎると、処理対象物から重金属元素を十分に除去することができないおそれがある。逆に、上記製鋼ダストの含有量が上記上限を超えると、含有量の増加に比して重金属元素の除去効果が増加せず、コストが増加するおそれがある。なお、上記含有量が100質量%であってもよい。すなわち、当該浄化処理剤が製鋼ダストのみを含有していてもよい。
<酸>
 酸は、これを添加することによって、添加された材料のpHを低下させるものである。具体的には、上記酸は、処理対象物と当該浄化処理剤との混合物のpHを、この酸が含有されていない場合のそのpHよりも低下させるものである。処理対象物が上記液を含む場合、上記混合物のpHは、処理対象物と当該浄化処理剤とを接触させた混合物のpHである。この場合において、当該浄化処理剤(具体的には上記酸)が上記液を含んでも含まなくてもよい。処理対象物が上記液を含まず、当該浄化処理剤(具体的には上記酸)が上記液を含む場合、上記混合物のpHは、処理対象物と当該浄化処理剤とを接触させた混合物のpHである。処理対象物も当該処理対象物も上記液を含まない場合、上記混合物のpHは、処理対象物と当該処理対象物とさらに上記液とを接触させた混合物のpHである。
 上述した通り、上記製鋼ダストは、通常、酸化カルシウムに例示されるアルカリ成分を含んでいる。このため、通常、上記液の存在下で上記製鋼ダストと処理対象物とを接触させたとき、混合物のpHが接触前の処理対象物のpHよりも上昇する。このようにpHが上昇すると、上記製鋼ダスト中の0価及び2価の鉄元素から2価及び3価の鉄イオンが溶出し難くなるおそれがある。しかし、当該浄化処理剤が上記酸を含有することで、上記混合物のpHを低下させることができる。このようにpHを低下させることで、後述するように、上記混合物のpHを、上記製鋼ダストから2価及び3価の鉄イオンが溶出し易い範囲へと低下させる(調整する)ことが可能になる。このpHの低下によって、2価及び3価の鉄イオンの溶出を促進することができる。よって、より確実に処理対象物から重金属元素を除去することができる。
 なお、処理対象物が上記液を含む場合、処理対象物のpHは、処理対象物自体のpHである。処理対象物が上記液を含まない場合、処理対象物のpHは、処理対象物と上記液とを接触させた状態での処理対象物のpHである。すなわち、処理対象物と上記液とを接触させた混合物のpHである。
 上記酸としては、塩酸、硫酸、硝酸等の無機酸、クエン酸等の有機酸、硫酸第一鉄、塩化第一鉄等の鉄塩といった塩等が挙げられる。これらのうち、上記酸としては塩酸又は硫酸第一鉄が好ましい。塩酸及び硫酸第一鉄は、処理対象物と当該浄化処理剤との混合物のpHを減少させることができる。加えて、塩酸及び硫酸第一鉄は、他の酸と比較して酸化力が弱いため、鉄イオンの価数を増大させ難い。よって、上記酸が塩酸又は硫酸第一鉄であることで、上記製鋼ダストに含まれる0価及び2価の鉄元素が各還元能力を発揮することなく酸化されることを、抑制することができる。すなわち、0価及び2価の鉄元素が重金属元素イオンを還元することなく3価の鉄イオンとして溶出してしまうことを、抑制することができる。加えて、上記の通り、塩酸及び硫酸第一鉄は鉄イオンの価数を増大させ難いため、上記酸が塩酸又は硫酸第一鉄であることで、2価の鉄イオンの減少に起因する重金属元素と不溶化の塩を形成する反応の減少を、抑制することができる。上記酸は、液体の形態であっても固体の形態であってもよい。上記酸が固体である場合、この固体の上記酸が上記液に溶解した溶液の形態で用いられてもよい。なお、上記酸として、例えば製鋼における圧延工程の後の酸洗工程の廃液等のpHを調整可能な液を用いてもよい。
 当該浄化処理剤中の上記酸の含有量は、特に限定されない。例えば上記酸の含有量は、上記製鋼ダスト中の0価の鉄元素及び2価の鉄元素が処理対象物から溶出する重金属元素イオンを十分に不溶化できるように、適宜設定される。具体的には、例えば、処理対象物に含まれる重金属元素の含有量、処理対象物に含まれるアルカリ成分の含有量、上記製鋼ダストに含まれる酸化カルシウム等のアルカリ成分の含有量等に応じて、処理対象物と上記製鋼ダストとの混合物のpHが重金属元素の除去に適切な範囲となるように、上記酸の含有量が適宜設定される。例えば後述するように、上記製鋼ダストと処理対象物との混合物のpHが3以上9.5以下となるように上記酸の含有量が適宜設定されるとよい。
 例えば当該浄化処理剤中の上記酸の含有量の下限としては、上記製鋼ダスト100質量部に対して25質量部が好ましく、40質量部がより好ましい。一方、上記酸の含有量の上限としては、上記製鋼ダスト100質量部に対して、1900質量部が好ましく、900質量部がより好ましい。上記酸の含有量が上記下限に満たないと、上記混合物のpHを十分に低下させることができないおそれがある。pHを十分に低下させることができないと、処理対象物から重金属元素を十分に除去することができないおそれがある。逆に、上記酸の含有量が上記上限を超えると、上記混合物のpHが適切な範囲よりも低下し過ぎて重金属元素を不溶化させることが困難になるおそれがある。例えば、適切なpHでは溶出しない重金属元素化合物が、過度に低下したpHでは溶出してしまい、その結果、重金属元素を不溶化できないおそれがある。
<処理対象物>
 処理対象物としては、重金属元素を含む汚染水といった液体状である処理対象物、重金属元素を含む土壌、重金属を含む鉄鋼副産物といった固体状である処理対象物、重金属元素を含む土壌、重金属を含む鉄鋼副産物といった固体と、水を含む液体との混合物といった懸濁液状又はスラリー状である処理対象物等が挙げられる。
 上記鉄鋼副産物としては、例えば、従来公知の鉄鋼スラグ、従来公知の鉄鋼ダスト等が挙げられる。鉄鋼スラグとしては、例えば、高炉スラグといった製銑の過程で生じる製銑スラグ、転炉スラグといった製鋼の過程で生じる製鋼スラグ等が挙げられる。鉄鋼ダストとしては、例えば、高炉ダストといった製銑の過程で生じる製銑ダスト、転炉ダストといった製鋼の過程で生じるダスト、その他、電気炉ダストといった製鋼の後の過程で生じるダスト等が挙げられる。
<重金属元素>
 上記処理対象物に含まれる重金属元素としては、鉄元素よりもイオン化傾向が小さい重金属元素が好ましい。重金属元素が鉄元素よりもイオン化傾向が小さいと、上述した酸化反応によって還元され易い。この鉄元素よりもイオン化傾向が小さい重金属元素としてはセレン(Se)、水銀(Hg)、鉛(Pb)、ヒ素(As)、カドミウム(Cd)、クロム(Cr)等の元素が挙げられる。処理対象物中の重金属元素の形態は、重金属単体の形態であっても、他の元素との化合物(重金属元素化合物)の形態であってもよい。上記重金属元素化合物としては、例えばセレン酸ナトリウム、塩化水銀、塩化鉛、ヒ酸水素ナトリウム、硝酸カドミウム、二クロム酸カリウム等が挙げられる。重金属元素イオンとしては、例えば、セレン酸イオン(SeO 2-)、水銀イオン(Hg 2+、Hg )鉛イオン(Pb2+)、ヒ酸イオン(AsO 3-)、カドミウムイオン(Cd2+)、二クロム酸イオン(Cr 2-)等が挙げられる。以下、上記液の存在下で重金属元素が浄化処理剤の製鋼ダストに吸着される推定メカニズムについて説明する。
 セレン、水銀及びカドミウムの各元素は、それぞれセレン酸イオン(SeO 2-)、水銀イオン(Hg 2+、Hg )及びカドミウムイオン(Cd2+)の形態で、上記液中に溶解している。当該浄化処理剤を用いることで、製鋼ダスト中の0価及び2価の鉄元素から2価及び3価の鉄イオンを溶出する上記酸化反応によって、セレン酸イオン、水銀イオン及びカドミウムイオンをそれぞれ還元して、製鋼ダストの表面に析出させることができる。具体的には、上記還元反応によって、0価のセレン元素(金属セレンともいう)、0価の水銀元素(金属水銀ともいう)及び0価のカドミウム元素(金属カドミウムともいう)をそれぞれ製鋼ダストの表面に析出させ、吸着させることができる。この析出及び吸着によって、処理対象物からセレン、水銀及びカドミウムの各元素を除去することができる。
 ヒ素元素は、ヒ酸イオン(AsO 3-)の形態で上記液中に溶解している。当該浄化処理剤を用いることで、製鋼ダスト中の0価の鉄元素及び2価の鉄元素から溶出した2価の鉄イオンと上記ヒ酸イオンとを反応させ、不溶性の塩を生成させて、析出させることができる。具体的には、上記塩形成反応によって、不溶性のヒ酸鉄(ヒ酸と鉄との化合物)を製鋼ダストの表面に析出させ、吸着させることができる。この析出及び吸着によって、処理対象物からヒ酸イオンを除去することができる。上記2価の鉄イオンとヒ酸イオンとの反応式は、下記式のように表される。
 3Fe2++2AsO 3-→Fe(AsO
 クロム及び鉛の各元素は、それぞれ6価のクロム元素(Cr6+)を有する二クロム酸イオン(Cr 2-)及び鉛イオン(Pb2+)の形態で上記液中に溶解している。当該浄化処理剤を用いることで、製鋼ダストから溶出した2価の鉄イオンと二クロム酸イオン及び鉛イオンとをそれぞれ反応させ、不溶性の塩を生成させて、析出させることができる。具体的には、上記塩形成反応によって、不溶性の化合物を製鋼ダストの表面に析出させ、吸着させることができる。この析出及び吸着によって、処理対象物から二クロム酸イオン及び鉛イオンを除去することができる。なお、3価のクロム元素(Cr3+)は人体への害が少ないため、浄化対象ではない。また、6価のクロム元素の除去には、6価のクロム元素を3価のクロム元素に還元することも含まれる。
<利点>
 当該浄化処理剤は、上記製鋼ダストを含有することで、処理対象物から重金属元素を効率的に除去することができる。
[浄化処理方法]
 次いで、本実施形態の浄化処理方法について詳説する。
 本実施形態の浄化処理方法は、処理対象物から重金属元素を除去する浄化処理方法であって、製鋼ダストを含有する浄化処理剤を上記処理対象物に接触させる工程を備える。すなわち、本実施形態では、当該浄化処理剤を上記処理対象物に接触させる工程を備える。
 上述したように、上記処理対象物に接触される当該浄化処理剤が上記製鋼ダスト及び上記酸を含有していてもよい。上述の通り、製鋼ダストにはアルカリ成分が含有されている場合がある。また、処理対象物にもアルカリ成分が含まれている場合がある。このような場合においても、そのアルカリ成分の含有量に応じて当該浄化処理剤の量、より具体的には当該浄化処理剤に含まれる上記酸の含有量を調整することで、処理対象物と当該浄化処理剤との混合物のpHを、重金属元素の不溶化に適した範囲に調整することができる。
<接触工程>
 接触工程では、当該浄化処理剤と処理対象物とを接触させる。この接触工程では、必要に応じて水を含む液を添加する。具体的には、この接触工程では、上記液の存在下で、当該浄化処理剤と処理対象物とを接触させる。より具体的には、処理対象物が重金属元素の除去に必要な量の上記液を含んでいる場合には、上記液を添加することなく、当該浄化処理剤と処理対象物とを接触させる。この場合において、上記液をさらに添加してもよい。一方、処理対象物が重金属元素の除去に必要な上記液を含んでいない場合には、重金属元素の除去に必要な量の上記液を添加する。このように上記液を添加する態様としては、上記製鋼ダスト及び上記酸とは別途で上記液を添加する態様、上記酸と上記液とをこれらが混合物(例えば溶液)の状態で上記製鋼ダストと共に添加する態様等が挙げられる。
 処理対象物から重金属元素の除去に必要な上記液の量は、特に限定されない。例えば、この量は、処理対象物中の重金属元素の含有量等に応じて適宜設定することができる。上記液は、水を含み、処理対象物から重金属元素を除去することを可能にするものであればよく、特に限定されない。上記液としては、例えば水が挙げられる。
 上記処理対象物と当該浄化処理剤とを接触させる方法は、特に限定されない。この接触方法としては、例えば当該浄化処理剤及び必要に応じて上記液を適当な容器に充填し、この容器中に処理対象物を連続的に通過させる方法、当該浄化処理剤を処理対象物に添加し撹拌等する方法等が挙げられる。
 当該浄化処理剤を処理対象物に接触させる際には、上記製鋼ダストの添加量の下限としては、処理対象物に含まれる重金属1mgに対して0.3gが好ましく、0.5gがより好ましい。上記製鋼ダストの添加量の上限としては、処理対象物に含まれる重金属1mgに対して3gが好ましく、2gがより好ましい。上記製鋼ダストの添加量が上記下限に満たないと、処理対象物から重金属元素を十分に除去することができないおそれがある。逆に、上記製鋼ダストの添加量が上記上限を超えると、当該浄化処理剤の量の増加に比して重金属元素の除去効率が向上し難いおそれがある。
 当該浄化処理剤を処理対象物に接触させる際には、上記酸の添加量の下限としては、上述したように、上記製鋼ダスト100質量部に対して25質量部が好ましく、40質量部がより好ましい。一方、上記酸の添加量の上限としては、上記製鋼ダスト100質量部に対して、1900質量部が好ましく、900質量部がより好ましい。上記酸の添加量が上記下限に満たないと、上述したように、上記混合物のpHを十分に低下させることができず、処理対象物から重金属元素を十分に除去することができないおそれがある。逆に、上記酸の含有量が上記上限を超えると、上述したように、上記混合物のpHが適切な範囲よりも低下し過ぎて、重金属元素を不溶化させることが困難になるおそれがある。
 上記浄化処理剤を処理対象物に接触させて得られる混合物のpHの下限としては、3が好ましく、3.6がより好ましく、4がさらに好ましく、5が特に好ましい。一方、上記pHの上限としては、9.5が好ましく、8.3がより好ましく、8がさらに好ましく、7が特に好ましい。上記pHが上記下限に満たないと、還元された重金属元素が再び溶解するおそれがある。また、製鋼ダスト中の鉄元素が酸と反応して発生する水素量が大きくなり、製鋼ダストに吸着した不溶化物(析出物)が製鋼ダストから剥がれ落ちる懸念がある。加えて、2価の鉄イオンと重金属元素とが塩を形成しても、この塩が上記液に不溶化せずに溶解している状態になるおそれがある。よって、処理対象物から重金属元素を十分に除去することができないおそれがある。逆に、上記pHが上記上限を超えると、水酸化鉄の生成量が大きくなり、上記した不溶化の反応性が低下する懸念がある。この水酸化鉄の生成量の増大によって、重金属元素の不溶化に必要な2価及び3価の鉄イオンが十分に供給されず、処理対象物から重金属元素を十分に除去することができないおそれがある。
 浄化処理剤に含まれる製鋼ダスト及び酸を処理対象物に接触させるタイミングは、特に限定されない。例えば、製鋼ダスト及び酸を処理対象物に同時に添加しても、それぞれ異なるタイミングで添加してもよい。上記同時に添加する態様には、上記製鋼ダストと上記酸とを混合した状態で添加する態様も、上記製鋼ダストと上記酸とを別々に同じタイミングで添加する態様も含まれる。上記製鋼ダスト及び上記酸の各全部を一度に処理対象物に添加しても、上記製鋼ダスト及び上記酸の各全部をそれぞれ複数回に分けて添加してもよい。
 上記浄化処理剤を処理対象物に接触させる際の攪拌時間の上限としては、72時間が好ましく、48時間がより好ましく、36時間がさらに好ましい。一方、上記攪拌時間の下限としては、1分が好ましく、1時間がより好ましく、10時間がさらに好ましく、15時間が特に好ましい。上記攪拌時間が上記上限を超えると、攪拌時間の増加に比して重金属元素の除去量が向上し難くなるため、重金属元素の除去効率が低下するおそれがある。逆に、上記攪拌時間が上記下限に満たないと、処理対象物から重金属元素を十分に除去することができないおそれがある。攪拌する際に用いる攪拌機器としては、従来公知の攪拌機器が挙げられる。
<重金属元素の除去の程度の確認>
 処理対象物から重金属元素が除去されたか否かは、例えば後述する実施例に示す公知の溶出試験を用いて確認することができる。具体的には、当該浄化処理剤を用い、当該浄化処理剤と処理対象物とを接触させて得られた混合物について後述する溶出試験を行った場合の重金属元素の溶出量(第1溶出量)を測定する。一方、当該浄化処理剤を用いることなく処理対象物について後述する溶出試験を行った場合の重金属元素の溶出量(第2溶出量)を測定する。そして、第2溶出量から第1溶出量を差し引くことによって、当該浄化処理剤を用いることによる重金属元素の除去の程度を確認することができる。
 この重金属元素化合物の除去の程度を確認する際には、第1溶出量及び第2溶出量をそれぞれ処理対象物の単位量当たり(例えば単位質量(1g当たり)、又は単位容量(1L当たり))の各溶出量に換算したうえで、換算した第1溶出量から換算した第2溶出量を差し引いてもよい。さらに、この差し引いた結果(処理対象物1g当たりの重金属元素の除去量)を、製鋼ダスト1g当たりの除去量に換算してもよい。
 上記確認の結果、第1溶出量の方が第2溶出量よりも小さい場合には、処理対象物から一旦溶出した重金属元素イオンが析出(不溶化)し、製鋼ダストに吸着されたこと(すなわち、重金属元素が除去されたこと)が示される。また、第1溶出量の方が第2溶出量よりも小さい程、上記除去量が大きい(すなわち、製鋼ダストに対する重金属元素の吸着量が大きい)ことが示される。
 処理対象物と当該浄化処理剤とを用いた上記溶出試験によって重金属イオンが除去されることは、水を含む液の存在下で処理対象物と当該浄化処理剤とを接触させることで重金属元素イオンを除去することができることを意味する。すなわち、上記溶出試験は、当該浄化処理方法の一態様に相当し得る。上記溶出試験の結果、上記試験液への重金属元素の溶出量がその種類に応じた環境基準を満たしていれば、その基準に従って、浄化処理された処理対象物を利用することができる。この利用としては、例えば、陸上埋立、海域埋立といった埋立等が挙げられる。なお、例えば処理対象物が溶液である場合には、上記溶出試験を行う代わりに、以下のようにして、当該浄化処理剤を用いることによる重金属元素の除去の程度を確認することもできる。すなわち、溶液である処理対象物と当該浄化処理剤とを接触させ、得られた混合物中に溶出している重金属元素の量(残存量)を上記第1溶出量として測定し、上記処理対象物中に元々溶出している重金属元素の量を上記第2溶出量として測定し、上記と同様にして、当該浄化処理剤を用いることによる重金属元素の除去の程度を確認することもできる。
<利点>
 当該浄化処理方法は、当該浄化処理剤を用いることで、処理対象物から重金属元素を効率的に除去することができる。
[その他の実施形態]
 なお、本発明は、上記実施形態に限定されるものではない。例えば、上記実施形態では当該浄化処理剤が製鋼ダスト及び酸を含有する場合について説明したが、当該浄化処理剤は、製鋼ダストのみを含有してもよいし、製鋼ダスト及び酸に加えて、重金属元素の除去を妨げないような他の成分を含有していてもよい。
 上記実施形態では湿式集塵機によって製鋼ダストを捕集したが、0価の鉄元素及び2価の鉄元素を含む製鋼ダストを捕集することが可能であれば、他の集塵機等を用いて製鋼ダストを捕集してもよい。
 以下、実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
 処理対象物(「A」成分)として、下記表1に示す組成の処理対象物を用いた。浄化処理剤の成分である製鋼ダスト(「B」成分)として、下記表2に示す組成を有する製鋼ダストを用いた。また、この製鋼ダストとは異なる製鋼ダスト(「B’」成分)として、下記表2に示す組成を有する製鋼ダストを用いた。浄化処理剤の成分である酸(「C」成分)として、下記表3に示す酸を用いた。なお、表1及び表2において、「T.Fe」は0価の鉄元素、2価の鉄元素及び3価の鉄元素の含有量の合計(全鉄元素含有量)を示す。「M.Fe」は、0価の鉄元素(金属鉄)の含有量を示す。「T-Cr」は、6価のクロム元素の含有量及び3価のクロム元素の含有量の合計(総クロム元素含有量)を示す。表3において、塩酸の欄の20質量%は塩酸水溶液中の塩化水素の濃度を示す。表3において、硫酸鉄7水和物の欄の98質量%は、その純度を示す。処理対象物及び製鋼ダストの各成分の含有量は、以下の方法で測定した。
(各成分の含有量の測定方法)
 処理対象物及び製鋼ダストに含まれる各成分の含有量を下記のように測定した。すなわち、全鉄(T.Fe)の含有量は、JIS M8212:2005「鉄鉱石-全鉄定量方法」によって測定した。FeOの含有量は、JIS M8213:1995「鉄鉱石-酸可溶性鉄(II)定量方法」によって測定した。M.Feの含有量は、JIS M8213:1995「鉄鉱石-酸可溶性鉄(II)定量方法」の解説書に記載の金属鉄定量方法によって測定した。Feの含有量は、全鉄の含有量からFeOの含有量及びM.Feの含有量を差し引いて算出した。酸化カルシウム(CaO)の含有量は、JIS M8221:1997「鉄鉱石-カルシウム定量方法」によって測定した。セレン(Se)の含有量は、JIS M8134:1994「鉱石中のセレン定量方法」によって測定した。水銀(Hg)の含有量は、環境省 底質調査法:2012によって測定した。鉛(Pb)の含有量は、JIS M8229:1997「鉄鉱石-鉛定量方法」によって測定した。ヒ素(As)の含有量は、JIS M8226:2006「鉄鉱石-ひ素定量方法」によって測定した。クロム(T-Cr)の含有量は、JIS M8224:1997「鉄鉱石-クロム定量方法」によって測定した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
[実験例1~4]
 表1の「A」成分(1000tのロット)から3kgずつ2回のサンプリングを行い、それぞれ「A1」成分及び「A2」成分として用いた。このうち、実験例1~4では「A1」成分を用いた。表4に示すように「A1」成分を実験例1の試料としてそのまま用いた。表4に示す配合で「A1」成分と「B」成分とをそれぞれ混合して、実験例2~4の混合物(試料)を得た。
 得られた実験例1~4の各試料について、後述する方法で溶出試験を行って、それぞれ溶出液のpH(混合物のpH)、並びに試験液へのセレン(Se)元素及び水銀(Hg)元素の溶出量(mg/L)を測定した。各溶出量の測定結果を処理対象物(「A1」成分)の配合量で除して、処理対象物1g当たりの溶出量(mg/L)にそれぞれ換算した。これら換算結果のうち、実験例1の換算結果を基準(上述した第2溶出量)とし、実験例2~4の各換算結果(上述した第1溶出量)から実験例1の換算結果を差し引いた。この差し引いた結果を、製鋼ダスト(「B」成分)の配合量で除して、製鋼ダスト1g当たりの除去量(mg/L)に換算した。なお、実験例2~4の水銀元素については、その各溶出量が検出下限以下であったため、上記いずれの換算も行わなかった。各溶出量の測定結果及び各換算結果を表4に示す。
[実験例5~11]
 上述のように小分けした2つの「A」成分うち、実験例5~11では「A2」成分を用いた。酸(「C」成分)として、表3に示す「C1」成分を用いた。表4に示すように「A2」成分を実験例5の試料としてそのまま用いた。表4に示す配合で「A2」成分と「C1」成分とを混合して、実験例6の混合物(試料)を得た。表4に示す配合で「A2」成分と、「B」成分と、「C1」成分とを混合して、実験例7~11の混合物(試料)を得た。
 上述した実験例1~4と同様に、得られた実験例5~11について、それぞれ溶出液のpH(混合物のpH)、並びに試験液へのセレン元素及び水銀元素の溶出量を測定した。各溶出量の測定結果を処理対象物1g当たりの溶出量にそれぞれ換算した。これら換算結果のうち、実験例5の換算結果を基準(上述した第2溶出量)とし、実験例6~11の各換算結果(上述した第1溶出量)から実験例5の換算結果を差し引き、この差し引いた結果を製鋼ダスト(「B」成分)1g当たりの除去量に換算した。なお、実験例7~11の水銀元素については、その各溶出量が検出下限以下であるため、上記いずれの換算も行わなかった。また、実験例6のセレン元素及び水銀元素については、製鋼ダストが配合されていない(製鋼ダストの配合量が0質量%である)ため、上記製鋼ダスト1g当たりの除去量への換算を行わなかった。各溶出量の測定結果及び各換算結果を表4に示す。
[実験例12及び13]
 上述のように小分けした2つの「A」成分うち、実験例12及び13では「A1」成分を用いた。表4に示す配合で、「A1」成分と、「B」成分と、「C2」成分とを混合して、実験例12及び13の混合物(試料)を得た。
 上述した実験例1~4と同様に、得られた実験例12及び13について、それぞれ溶出液のpH(混合物のpH)、並びに試験液へのセレン元素及び水銀元素の溶出量を測定した。各溶出量の測定結果を処理対象物1g当たりの溶出量にそれぞれ換算した。上述した実験例1の換算結果を基準(上述した第2溶出量)とし、実験例12及び13の各換算結果から実験例1の換算結果(上述した第1溶出量)を差し引き、この差し引いた結果を製鋼ダスト(「B」成分)1g当たりの除去量に換算した。なお、実験例12及び13の水銀元素については、その各溶出量が検出下限以下であったため、上記の換算を行わなかった。各溶出量の測定結果及び各換算結果を表4に示す。
[実験例14~16]
 上述した表1の「A」成分から、さらに3kgのサンプリングを行い、「A3」成分として用いた。製鋼ダストとして、「B’」成分を用いた。表4に示すように「A3」成分を実験例14の試料としてそのまま用いた。表4に示す配合で「A3」成分と「B’」成分とをそれぞれ混合して、実験例15及び実験例16の混合物(試料)を得た。
 上述した実験例1~4と同様に、得られた実験例14~16について、それぞれ溶出液のpH(混合物のpH)、並びに試験液へのセレン元素及び水銀元素の溶出量を測定した。各溶出量の測定結果を処理対象物1g当たりの溶出量にそれぞれ換算した。上述した実験例14の換算結果を基準(上述した第2溶出量)とし、実験例15及び16の各換算結果から実験例14の換算結果(上述した第1溶出量)を差し引き、この差し引いた結果を製鋼ダスト(「B’」成分)1g当たりの除去量に換算した。各溶出量の測定結果及び各換算結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
(溶出試験)
 試験液として、JIS K 0557:1998のA3又はA4の水(以下、「純水」という)を用いた。得られた各試料を、環境省の土壌環境基準である環告13号の(イ)に準拠して、0.5mm以上5mm以下の目のふるいを通過させた後、混合物と純水とを質量体積比(混合物の質量/水の体積)10%の割合で、かつ、全体の体積が500mL以上となるように混合した。得られた混合液(混合物)を常温(おおそよ20℃、具体的には5℃以上35℃以下)、常圧(おおよそ101.3kPa(1気圧)、具体的には86kPa以上106kPa以下)、振とう回数:200回/分、振とう幅:4cm以上5cm以下、振とう時間:6時間の条件で振とうした。この振とうによって、試料から重金属元素を水に溶出させた(溶出操作)。この振とう後、混合液を静置し、その後、遠心加速度:3000G、時間:20分の条件で遠心分離操作を行った。遠心分離操作の後、上澄み(試料液)を孔径1μmのメンブランフィルターでろ過し、溶出液を得た。得られた溶出液のpH(混合物のpH)をJIS K0102:2016の12.1「ガラス電極法」に定める方法に準拠し、pH測定器として東亜ディーケーケー社製のpH・イオンメータHM-42X型、pH電極として東亜ディーケーケー社製のGST-5821Cを用いて測定した。得られた溶出液中のセレン元素の溶出量を、JIS K0102:2016の67.2「水素化合物発生原子吸光法」に定める方法に準拠して測定した。溶出液中の水銀元素の溶出量を、JIS K0102:2016の66.1.1「還元気化原子吸光法」に定める方法に準拠して測定した。
 表4に示すように、処理対象物に製鋼ダストを添加する一方、酸を添加しない実験例2~4では、製鋼ダストも酸も添加しない実験例1よりも、試験液への水銀元素の溶出量が著しく減少した。実験例2~4では、試験液への水銀元素の溶出量が検出下限以下であるため、処理対象物1g及び製鋼ダスト1g当たりの水銀元素の除去量を算出することができない。しかし、上記溶出量の著しい減少を考慮すると、明らかに、処理対象物に製鋼ダストを添加することで水銀元素を除去することができるといえる。
 表4に示すように、処理対象物に製鋼ダストを添加しない一方、酸を添加する実験例6では、製鋼ダストも酸も添加しない実験例5よりも、試験液への水銀元素の溶出量が著しく増加した。実験例6では、製鋼ダストが配合されていないため、処理対象物1g及び製鋼ダスト1g当たりの水銀元素の除去量を算出することができない。しかし、上記溶出量の著しい増加を考慮すると、明らかに、処理対象物に酸のみを添加しても水銀元素を除去することができないといえる。
 これに対し、処理対象物に製鋼ダスト及び酸を添加する実験例7~13では、試験液への水銀元素の溶出量が著しく減少した。上記実験例2~4と同様、実験例7~13では、試験液への水銀元素の溶出量が検出下限以下であるため、処理対象物1g及び製鋼ダスト1g当たりの水銀元素の除去量を算出することができない。しかし、上記溶出量の著しい減少を考慮すると、明らかに、処理対象物に製鋼ダスト及び酸を添加することで水銀元素を除去することができるといえる。
 表4に示すように、処理対象物に製鋼ダストを添加しない一方、酸を添加する実験例6では、製鋼ダストも酸も添加しない実験例5よりも、試験液へのセレン元素の溶出量が少し増加した(すなわち、試験液へのセレン元素の溶出量が減少しなかった)。上記のように、実験例6では、製鋼ダストが配合されていないため、処理対象物1g及び製鋼ダスト1g当たりのセレンの除去量を算出することができない。しかし、上記溶出量が減少していないことを考慮すると、明らかに、処理対象物に酸のみを添加してもセレン元素を除去することができないといえる。
 これに対し、処理対象物に製鋼ダスト及び酸を添加する実験例7~13では、上記実験例5よりも、試験液へのセレン元素の溶出量が減少し、セレン元素が除去された。表4に示される、試験液のpHと、処理対象物1g及び製鋼ダスト1g当たりのセレン元素の除去量との関係より、少なくとも製鋼ダストを添加し、pHが3以上9.5以下である実験例7~13では、より確実にセレン元素を除去することができることが示された。また、処理対象物に製鋼ダストだけでなく酸も添加する実験例7~13では、より確実にセレン元素を除去することができることが示された。特に、処理対象物に製鋼ダスト及び酸を添加し、しかもpHが3.6以上8.3以下である実験例9~11では、他の実験例よりも多くのセレン元素を除去することができることができ、その除去量が5.0×10-4mg/Lを超えることが示された。
 このように、処理対象物に製鋼ダストを添加することで、重金属元素を除去し得ることが示された。また、処理対象物に製鋼ダスト及び酸を添加することで、より確実に重金属元素を除去し得ることが示された。さらに、処理対象物に製鋼ダスト及び酸を添加し、pHが3.6以上8.3以下である場合には、より多くの重金属元素を除去量することができ、処理対象物1g及び製鋼ダスト1g当たりの重金属元素の除去量を5.0×10-4mg/Lを超える程度にまで増大させ得ることが示された。
 表4の実験例14~16の結果より、実験例1~13で用いた製鋼ダスト(B)とは異なる製鋼ダスト(B’)を用いた場合であっても、この製鋼ダスト(B’)を添加することで水銀元素を除去することができることが示された。上記実験例1~13の結果から明らかなように、実験例15及び実験例16においても、酸を添加すれば、より水銀元素を除去することができるのは明らかである。また、酸を添加すれば、水銀元素だけでなくセレン元素も十分に除去することができるのは明らかである。
(実験例17~19)
 水銀元素及びセレン元素以外の重金属として、カドミウム元素、鉛元素及びヒ素元素を対象とし、製鋼ダストを添加することによる各重金属の除去性能を調べた。
 下記に示す試薬を用いた。下記表5に示す配合で、各重金属元素の濃度(含有量)が表5に示す値となるように試薬を混合して、重金属をイオンとして含有する溶液(「調製溶液(X)」)を調製した。この調製溶液(X)を処理対象物として用いた。
(試薬)
カドミウム標準液(Cd1000)
   富士フイルム和光純薬社製 製品コード:036-16171
鉛標準液(Pb1000)
   富士フイルム和光純薬社製 製品コード:124-04291
ヒ素標準液(As1000)
   富士フイルム和光純薬社製 製品コード:013-15481
Figure JPOXMLDOC01-appb-T000005
 製鋼ダストとして「B」成分を用いた。酸として、「C1」成分を用いた。下記表6に示すように調製溶液(X)を実験例17の試料としてそのまま用いた。表6に示す配合で調製溶液(X)と「B」成分とを混合して、実験例18の混合物(試料)を得た。表6に示す配合で調製溶液(X)と「B」成分と「C1」成分とを混合して、実験例19の混合物(試料)を得た。
 得られた実験例17の試料について、上述した溶出試験におけるpHの測定方法を用いて、pHを測定した。
 一方、実験例18及び実験例19の試料について、上述した溶出試験と同様の条件で振とうし、この振とう後、混合液を静置し、上述と同様の条件で遠心分離操作を行った。遠心分離操作の後、上述と同様の条件で上澄み(試料液)をろ過し、溶出液を得た。なお、調製溶液Xには元々重金属イオンが溶出しているが、この調製溶液Xと「B」成分とを混合した後の溶液を、上記のように溶出液と呼ぶ。この混合後の溶出液に残存している重金属元素の量(残存量)を溶出量と呼ぶ。
 得られた溶出液のpH(混合物のpH)を、上述した溶出試験と同様にして測定した。得られた溶出液中のカドミウム(Cd)元素、鉛(Pb)元素及びヒ素(As)元素の溶出量(残存量、mg/L)を以下の方法で測定した。すなわち、カドミウム元素の溶出量を、JIS K0102:2016の55.3「ICP発光分光分析法」に定める方法に準拠して測定した。溶出液中の鉛元素の溶出量を、JIS K0102:2016の54.3「ICP発光分光分析法」に定める方法に準拠して測定した。溶出液中のヒ素元素の溶出量を、JIS K0102:2016の61.3「水素化物発生ICP発光分光分析法」に定める方法に準拠して測定した。
 各溶出量(残存量)の測定結果を処理対象物(調製成分(X))の配合量(容量換算)で除して、処理対象物1L当たりの溶出量(mg/L)にそれぞれ換算した(この換算結果は表6に示さず。)。これら換算結果のうち、実験例17の換算結果を基準(上述した第2溶出量)とし、実験例18及び実施例19の各換算結果(上述した第1溶出量)から実験例17の換算結果を差し引いた。この差し引いた結果を、製鋼ダスト(「B」成分)の配合量で除して、製鋼ダスト1g当たりの除去量(mg/L)に換算した。各溶出量の測定結果及び各換算結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 表6に示すように、水銀元素及びセレン元素以外の重金属元素についても、水銀元素及びセレン元素と同様、製鋼ダストを添加することで、各重金属元素を除去することができることが示された。また、製鋼ダストに加えて酸をさらに添加することで、各重金属元素をより除去することができることが示された。
 以上説明したように、本発明の浄化処理剤を用いることで、処理対象物から重金属元素を効率的に除去することができる。本発明の浄化処理方法を用いることで、処理対象物から重金属元素を効率的に除去することができる。従って、本発明の浄化処理剤及び浄化処理方法は、重金属元素を含む汚染水等の溶液、重金属元素を含む土壌、重金属元素を含む鉄鋼副産物等の固形物から重金属元素を除去する際に好適に使用できる。特に、製銑から製鋼の過程で発生する鉄鋼スラグ及び鉄鋼ダストから重金属元素を除去する際に好適に使用することができる。この除去への適用によって、重金属元素を除去した後の処理対象物を、陸上埋立、海域埋立といった埋立等に有効に利用することが可能となる。

Claims (7)

  1.  重金属元素を除去する浄化処理剤であって、
     製鋼ダスト
     を含有する浄化処理剤。
  2.  下記条件(1)及び(2)の少なくとも一方を満たす請求項1に記載の浄化処理剤。
    (1)上記製鋼ダスト中の0価の鉄元素の含有量が10質量%以上である。
    (2)上記製鋼ダスト中の2価の鉄元素の含有量が10質量%以上である。
  3.  酸をさらに含有する請求項1又は請求項2に記載の浄化処理剤。
  4.  上記酸が塩酸又は硫酸第一鉄である請求項3に記載の浄化処理剤。
  5.  処理対象物から重金属元素を除去する浄化処理方法であって、
     製鋼ダストを含有する浄化処理剤を処理対象物に接触させる工程
     を備える浄化処理方法。
  6.  上記浄化処理剤が酸をさらに含有する請求項5に記載の浄化処理方法。
  7.  上記接触工程では、上記浄化処理剤を上記処理対象物に接触させて得られる混合物のpHが3以上9.5以下である請求項5又は請求項6に記載の浄化処理方法。
PCT/JP2020/017577 2019-05-15 2020-04-23 浄化処理剤及び浄化処理方法 WO2020230584A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019092352 2019-05-15
JP2019-092352 2019-05-15
JP2019-142058 2019-08-01
JP2019142058A JP2020189287A (ja) 2019-05-15 2019-08-01 浄化処理剤及び浄化処理方法

Publications (1)

Publication Number Publication Date
WO2020230584A1 true WO2020230584A1 (ja) 2020-11-19

Family

ID=73288995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/017577 WO2020230584A1 (ja) 2019-05-15 2020-04-23 浄化処理剤及び浄化処理方法

Country Status (1)

Country Link
WO (1) WO2020230584A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5926180A (ja) * 1982-07-31 1984-02-10 Agency Of Ind Science & Technol 有害物質の固化封鎖法
JPH07185499A (ja) * 1992-12-16 1995-07-25 Entetsuku Kenkyusho:Kk 廃棄物処理材
JP2003181493A (ja) * 2002-08-26 2003-07-02 Civil Chemical Engineering Co Ltd 製鋼ダストスラリーの精製方法及び土壌浄化剤
JP2004105882A (ja) * 2002-09-19 2004-04-08 Civil Chemical Engineering Co Ltd 土壌浄化方法
JP2016007591A (ja) * 2014-06-26 2016-01-18 株式会社安藤・間 土壌浄化剤及び汚染された土壌の浄化方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5926180A (ja) * 1982-07-31 1984-02-10 Agency Of Ind Science & Technol 有害物質の固化封鎖法
JPH07185499A (ja) * 1992-12-16 1995-07-25 Entetsuku Kenkyusho:Kk 廃棄物処理材
JP2003181493A (ja) * 2002-08-26 2003-07-02 Civil Chemical Engineering Co Ltd 製鋼ダストスラリーの精製方法及び土壌浄化剤
JP2004105882A (ja) * 2002-09-19 2004-04-08 Civil Chemical Engineering Co Ltd 土壌浄化方法
JP2016007591A (ja) * 2014-06-26 2016-01-18 株式会社安藤・間 土壌浄化剤及び汚染された土壌の浄化方法

Similar Documents

Publication Publication Date Title
Xue et al. Adsorption characterization of Cu (II) from aqueous solution onto basic oxygen furnace slag
Han et al. Kinetics and mechanism of hexavalent chromium removal by basic oxygen furnace slag
JP4755159B2 (ja) 重金属類を含有する汚染水の処理剤および処理方法
JP6118571B2 (ja) 汚染土壌の処理方法
JP2006055834A (ja) 亜鉛電解製錬における電解液中のフッ素を吸着かつ脱離できるフッ素吸脱剤、及び、当該フッ素吸脱剤を用いたフッ素除去方法
JP5343006B2 (ja) 鉄ニッケル(FeNi)含有スラッジを利用したステンレスの溶解原料の製造方法
KR20170105408A (ko) 정화 처리제 및 정화 처리 방법
JP2022528557A (ja) 炭素熱還元プロセスおよび高温湿式製錬プロセスの少なくとも1つを使用して鉄または鋼スラグから目的金属を回収するための方法
Jiang et al. A novel value-added utilization process for pyrite cinder: Selective recovery of Cu/Co and synthesis of iron phosphate
Wu et al. A novel and clean utilization of converter sludge by co-reduction roasting with high-phosphorus iron ore to produce powdery reduced iron
Aghaei et al. Mercury sequestration from synthetic and real gold processing wastewaters using Fe–Al bimetallic particles
JP6242743B2 (ja) 浄化処理剤及び浄化処理方法
Chen et al. Fractionation and release behaviors of metals (In, Mo, Sr) from industrial sludge
JP2020189287A (ja) 浄化処理剤及び浄化処理方法
JP3702662B2 (ja) 有害物除去処理用鉄粉
Ma et al. Novel technology for hydrogen sulfide purification via the slurry prepared from roasted vanadium steel slag
Zhang et al. An efficient and affordable hydrometallurgical process for co-treatment of copper smelting dust and arsenic sulfide residue
KR20170030429A (ko) 정화 처리 방법 및 정화 처리제
Zhao et al. Simultaneous removal of Cr, Cu, Zn, and Cd by nano zero-valent iron modified sludge biochar in high salinity wastewater
WO2020230584A1 (ja) 浄化処理剤及び浄化処理方法
Reijonen et al. Risk assessment of the utilization of basic oxygen furnace slag (BOFS) as soil liming material: Oxidation risk and the chemical bioavailability of chromium species
TWI469821B (zh) 含重金屬的固態物的處理方法
JP6208648B2 (ja) 汚染水または汚染土壌の処理剤および処理方法
KR102113144B1 (ko) 정화 처리제 및 정화 처리 방법
JP4808093B2 (ja) ヒ素除去用鉄粉の再生方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20805611

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20805611

Country of ref document: EP

Kind code of ref document: A1