WO2020228403A1 - 量子点及其制作方法、量子点发光二极管和显示面板 - Google Patents

量子点及其制作方法、量子点发光二极管和显示面板 Download PDF

Info

Publication number
WO2020228403A1
WO2020228403A1 PCT/CN2020/078757 CN2020078757W WO2020228403A1 WO 2020228403 A1 WO2020228403 A1 WO 2020228403A1 CN 2020078757 W CN2020078757 W CN 2020078757W WO 2020228403 A1 WO2020228403 A1 WO 2020228403A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dot
transition layer
charge
shell
charge transition
Prior art date
Application number
PCT/CN2020/078757
Other languages
English (en)
French (fr)
Inventor
禹钢
张爱迪
Original Assignee
京东方科技集团股份有限公司
北京京东方技术开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方技术开发有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/041,419 priority Critical patent/US20210210706A1/en
Publication of WO2020228403A1 publication Critical patent/WO2020228403A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/56Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
    • C09K11/562Chalcogenides
    • C09K11/565Chalcogenides with zinc cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/70Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass

Definitions

  • the embodiments of the present disclosure relate to a quantum dot and a manufacturing method thereof, a quantum dot electroluminescent diode, and a display panel.
  • Quantum Dot (QD) as a new type of luminescent material has the advantages of narrow emission spectrum, adjustable emission wavelength, high spectral purity, etc.
  • Quantum Dot Light Emitting Diodes Quantum Dot Light Emitting Diodes, abbreviated QLED
  • QLED Quantum Dot Light Emitting Diodes
  • the current quantum dots are cadmium-based CdSe/CdS, that is, the quantum dot core and quantum dot shell are made of CdSe/CdS.
  • CdSe/CdS contains toxic heavy metal cadmium
  • cadmium-free systems are currently the development trend of QD.
  • the current cadmium-free QD quantum dot core interface and the quantum dot shell interface have an Auger recombination phenomenon, which causes more non-radiative transitions and weakens the light-emitting ability of the quantum dots.
  • At least one embodiment of the present disclosure provides a quantum dot including a quantum dot core, a charge transition layer covering the outside of the quantum dot core, and a quantum dot shell covering the outside of the charge transition layer,
  • the charge transition layer includes a host material and metal ions doped in the host material
  • the metal ions are metal ions with variable charge valence
  • the charge valence of the metal ions includes the charge of the cation in the quantum dot core.
  • the valence state and the charge valence state of the cation in the quantum dot shell are examples of the charge transition layer.
  • the metal ion is a divalent/trivalent variable metal ion.
  • the metal ion includes at least one of manganese ion, iron ion, europium ion, cobalt ion, and nickel ion.
  • the thickness of the charge transition layer is in the range of 1-10 atomic layers.
  • the doping mass ratio of the metal ions in the host material of the charge transition layer is less than 5%.
  • the host material of the charge transition layer is the same as the material of the quantum dot core, or the host material of the charge transition layer is at least adjacent to the charge transition layer of the quantum dot shell. Some of the materials are the same.
  • the material of the quantum dot core is indium phosphide.
  • the quantum dot shell includes a first quantum dot shell covering the outside of the charge transition layer, and a second quantum dot shell covering the outside of the first quantum dot shell; wherein, the The lattice mismatch between the first quantum dot shell and the quantum dot core is smaller than the lattice mismatch between the second quantum dot shell and the quantum dot core.
  • the material of the first quantum dot shell is zinc selenide
  • the material of the second quantum dot shell is zinc sulfide
  • At least one embodiment of the present disclosure provides a method for manufacturing quantum dots, the method comprising: manufacturing a quantum dot core; forming a charge transition layer outside the quantum dot core; forming a quantum dot shell outside the charge transition layer,
  • the charge transition layer includes a host material and metal ions doped in the host material, the metal ions are metal ions with variable charge valence, and the charge valence of the metal ions includes the charge of the cation in the quantum dot core.
  • the valence state and the charge valence state of the cation in the quantum dot shell are examples of the charge transition layer.
  • the production of the quantum dot core includes: dissolving a long-chain fatty acid solution containing indium ions and a long-chain fatty acid solution containing zinc ions in a non-polar solvent for reaction to obtain a precursor solution, wherein the non-polar solvent The boiling point of the polar solvent is higher than 150°C; the non-polar solvent containing phosphorus compound is injected into the precursor solution to form the quantum dot core; wherein, the non-polar solvent containing the phosphorus compound and the non-polar solvent containing indium The molar ratio of the ion to the long-chain fatty acid solution is greater than or equal to 60%.
  • forming a charge transition layer outside the quantum dot core includes: injecting a long-chain fatty acid solution containing the metal ion on the outside of the quantum dot core; The solution is injected into a non-polar solvent containing a phosphorus compound to form the charge transition layer doped with metal ions; wherein the quantum dot core and the non-polar solvent containing the phosphorus compound included in the charge transition layer
  • the molar amount of is the first mole
  • the molar amount of the long-chain fatty acid solution containing indium ions is the second mole
  • the first mole is equal to the second mole.
  • forming a charge transition layer outside the quantum dot core includes: implanting a long-chain fatty acid solution doped with the metal ion and zinc ion on the outside of the quantum dot core; The solution is injected into a long-chain fatty acid solution containing only zinc ions to form the charge transition layer doped with the metal ions; wherein the quantum dot core includes the molar amount of the long-chain fatty acid solution containing indium ions and the The molar amount of the long-chain fatty acid solution of zinc ions included in the charge transition layer is the same.
  • the metal ion includes at least one of manganese ion, iron ion, europium ion, cobalt ion, and nickel ion.
  • the doping mass ratio of the metal ions in the host material of the charge transition layer is less than 5%.
  • forming a quantum dot shell outside the charge transition layer includes: injecting a high boiling point solution containing a sulfur compound and octyl mercaptan outside the charge transition layer, heating and cooling to form the quantum dot shell; wherein The molar amount of the sulfur-containing compound is the same as the molar amount of the long-chain fatty acid solution containing zinc ions.
  • At least one embodiment of the present disclosure provides a quantum dot light emitting diode, and the light emitting layer of the quantum dot light emitting diode includes the quantum dot described in any one of the above.
  • At least one embodiment of the present disclosure provides a display panel, the light-emitting area of the display panel includes the quantum dot described in any one of the above.
  • FIG. 1 is a schematic longitudinal cross-sectional view of a quantum dot provided by an embodiment of the disclosure
  • FIG. 2 is a schematic longitudinal cross-sectional view of a quantum dot provided by an embodiment of the disclosure
  • FIG. 3 is a schematic longitudinal cross-sectional view of a quantum dot provided by an embodiment of the disclosure.
  • FIG. 5 is a schematic structural diagram of a quantum dot light-emitting diode provided by an embodiment of the disclosure.
  • FIG. 6 is a schematic structural diagram of a display panel provided by an embodiment of the disclosure.
  • the current cadmium-free quantum dots (QD) at the interface between the quantum dot core and the quantum dot shell will cause more non-radiative transitions, which weaken the light-emitting ability of the quantum dots.
  • the embodiments of the present disclosure provide a new quantum dot.
  • a charge transition layer for transitioning the charge valence state between the quantum dot core and the quantum dot shell is provided between the quantum dot core and the quantum dot shell to reduce the quantum dots.
  • an embodiment of the present disclosure provides a quantum dot, which includes a quantum dot core 10, a charge transition layer 20 covering the quantum dot core, and a quantum dot covering the charge transition layer 20 ⁇ 30.
  • the charge transition layer 20 is configured to transition the charge valence state between the quantum dot core 10 and the quantum dot shell 30.
  • the host material of the charge transition layer 20 is doped with metal ions, the metal ions are metal ions with variable charge valence, and the charge valence of the metal ions includes the charge valence state of the cation in the quantum dot core and the cation in the quantum dot shell The charge valence state.
  • the metal ion doped in the charge transition layer 20 can be a monovalent/divalent variable valence metal ion, or a divalent/trivalent variable valence metal ion, or, Trivalent/quaternary variable metal ion.
  • the material of the quantum dot core 10 may be indium phosphide (InP), and the material of the quantum dot shell 30 may be zinc sulfide (ZnS).
  • the metal ion doped in the charge transition layer 20 can be It is a divalent/trivalent variable valence metal ion, such as manganese ion, iron ion or europium ion, cobalt ion, nickel ion, etc.
  • the metal ion can be at least two of manganese ion, iron ion, europium ion, cobalt ion and nickel ion, and the charge valence state of the main metal ion matches the charge valence state of the quantum dot core or quantum dot shell. It is the same or similar to the charge valence state of the quantum dot core or quantum dot shell.
  • the host material of the charge transition layer 20 may be the same as the material of the quantum dot core 10, for example, the host material of the charge transition layer 20 may be indium phosphide as described above. Alternatively, the host material of the charge transition layer 20 may be the same as the material of the quantum dot shell 30. For example, the host material of the charge transition layer 20 may be zinc sulfide as described above. Alternatively, the host material of the charge transition layer 20 may be another material different from the materials of the quantum dot core 10 and the quantum dot shell 30.
  • the metal ion doped in the charge transition layer 20 may affect the light emission of the quantum dot. For example, if the metal ions doped in the charge transition layer 20 are europium ions, the europium ions themselves will emit red light. If the europium ions are doped in green quantum dots or blue quantum dots, it will affect the green quantum dots or The luminescence of blue quantum dots affects. In the embodiments of the present disclosure, in order to reduce the degree of influence of metal ions on the light emission of the quantum dots, the charge transition layer 20 is doped with as little metal ions as possible. For example, the doping amount of metal ions in the host material of the charge transition layer 20 in the embodiment of the present disclosure is less than 5% (mass ratio).
  • the charge transition layer 20 in the embodiments of the present disclosure is as thin as possible, so that the charge transition layer 20 is doped with as few metal ions as possible.
  • the thickness of the charge transition layer 20 in the embodiment of the present disclosure is within the thickness range of 1-10 atomic layers.
  • the charge transition layer 20 may include at least two layers.
  • the charge transition layer 20 may include a first charge transition layer 201 and a second charge transition layer 202.
  • the boundary line between the first charge transition layer 201 and the second transition layer 202 is indicated by a dotted line.
  • the host material of the first charge transition layer 201 is the same as the material of the quantum dot core 10
  • the host material of the second charge transition layer 202 is the same as the host material of the first charge transition layer 201, or the second charge transition layer
  • the host material of the layer 202 is the same as the material of the quantum dot shell 30.
  • the quantum dot shell 30 may also include at least two layers.
  • the quantum electric core 30 includes a first quantum dot shell 301 and a second quantum dot shell 302 as an example.
  • the dividing line between the first quantum dot shell 301 and the second quantum dot shell 302 is indicated by a dotted line.
  • the first quantum dot shell 301 covers the outside of the quantum dot core 10
  • the second quantum dot shell 302 covers the outside of the first quantum dot shell 301.
  • the lattice mismatch between the first quantum dot shell 301 and the quantum dot core 10 is smaller than the lattice mismatch between the second quantum dot shell 302 and the quantum dot core 10.
  • the first quantum dot shell 301 also acts as a transition charge between the quantum dot core 10 and the second quantum dot shell 302 to reduce the radiation-free transition from the quantum dot core 10 to the second quantum shell 302 and strengthen the quantum dot The luminous ability.
  • the material of the first quantum dot shell 301 may be zinc selenide (ZnSe), and the material of the second quantum dot shell 302 may be zinc sulfide.
  • FIG. 3 takes the charge transition layer 20 as an example.
  • the charge transition layer 20 can also be a multilayer structure.
  • a quantum dot is provided as above.
  • the method for manufacturing the above quantum dot based on the same inventive concept is described below. Please refer to FIG. 4.
  • Some exemplary manufacturing processes are as follows.
  • a quantum dot shell 30 is formed outside the charge transition layer 20.
  • the main material of the charge transition layer 20 is doped with metal ions, the metal ions are metal ions with variable charge valence, and the charge valence of the metal ions includes the quantum dot core The charge valence state of the cation and the charge valence state of the cation in the quantum dot shell.
  • the long-chain fatty acid solution containing indium ions and the long-chain fatty acid solution containing zinc ions can be dissolved in a non-polar solvent, and heated to make the long-chain fatty acid solution containing indium ions, The long-chain fatty acid solution containing zinc ions reacts to obtain a precursor solution. Then, a non-polar solvent containing a phosphorus compound is injected into the precursor solution to form the quantum dot core 10.
  • the long-chain fatty acid solution containing indium ions can be considered to be obtained by dissolving the indium source in the fatty acid.
  • the indium source may be indium chloride or indium oxide.
  • the fatty acid can be oleic acid, which acts as a ligand for the indium source, which helps to increase the reaction rate of the indium source.
  • the long-chain fatty acid solution containing indium ions may be indium oleate.
  • the long-chain fatty acid solution containing zinc ions can be considered to be obtained by dissolving the zinc source in the fatty acid.
  • the zinc source may be zinc chloride or zinc oxide.
  • the fatty acid can be oleic acid, which acts as a ligand for the zinc source, which helps to increase the reaction rate of the zinc source.
  • the long-chain fatty acid solution containing the zinc compound may be zinc oleate.
  • the non-polar solvent containing the phosphorus compound can be considered to be formed by dissolving the phosphorus source in the non-polar solvent.
  • the phosphorous source can be trimethylsilyl phosphorous P(TMS)_3.
  • the non-polar solvent here may be a high-boiling non-polar solvent, for example, a non-polar solvent with a boiling point higher than 150°C.
  • the non-polar solvent can be an octadecene solution to promote the decomposition of the phosphorus source, accelerate the formation of the quantum dot core 10, and improve the uniformity of the particle size of the quantum dots.
  • the molar ratio of the non-polar solvent containing phosphorus ions to the long-chain fatty acid solution containing indium ions is greater than or equal to 60%.
  • 0.1 mmol of indium oleate and 0.1 mmol of zinc oleate can be added to the octadecene solution, and water and oxygen are removed to maintain a nitrogen atmosphere. After heating to 250°C to 280°C for reaction, Obtain a precursor solution. Then, an octadecene solution containing 0.08 mmol of P(TMS) 3 is injected into the precursor solution to form a quantum dot core 10.
  • a charge transition layer 20 can be fabricated on the outside of the quantum dot core 10. Depending on the host material of the charge transition layer 20, the process of making the charge transition layer 20 is also different.
  • the first case if the host material of the charge transition layer 20 is the same as the material of the quantum dot core 10, when making the charge transition layer 20, a long-chain fatty acid solution containing metal ions can be injected outside the quantum dot core, and then the metal The ionized long-chain fatty acid solution is injected into a non-polar solvent containing phosphorus ions to form a charge transition layer 20 doped with metal ions.
  • the metal ion may be at least one of the aforementioned manganese ion, iron ion, europium ion, cobalt ion and nickel ion.
  • the metal ion is manganese ion as an example.
  • the long-chain fatty acid solution containing metal ions may be manganese oleate.
  • the non-polar solvent of the phosphorus-containing compound is the above-mentioned octadecene solution containing P(TMS)_3, so that the host material of the charge transition layer 20 is the same as the material of the quantum dot core 10.
  • the molar amount of the non-polar solvent containing phosphorous ions included in the quantum dot core 10 and the charge transition layer 20 is the first mole
  • the molar amount of the long-chain fatty acid solution containing indium ions is the second mole
  • the first mole is equal to The second mole. That is, the host material of the charge transition layer 20 is the same as the material of the quantum dot core 10, but it is necessary to ensure a balance between the amount of indium element and the amount of phosphorus element.
  • 0.001 mmol of manganese oleate can be injected outside the quantum dot core 10, and then an octadecene solution containing 0.02 mmol of P(TMS)_3 can be injected to form a doped manganese
  • the charge transition layer 20 of ions When the quantum dot core 10 is made, the temperature is kept in the range of 250°C ⁇ 280°C, and then manganese oleate and the octadecene solution containing P(TMS)3 are injected.
  • the octene solution is not in the heating device, so after injecting manganese oleate and the octadecene solution containing P(TMS)3 outside the quantum dot core 10, the temperature will decrease.
  • the temperature may be in the range of 220°C ⁇ 250°C Inside.
  • the doping concentration of manganese ions in the charge transition layer 20 is less than 5% (mass ratio).
  • the thickness of the charge transition layer 20 is within the thickness range of 1-10 atomic layers.
  • the second case if the host material of the charge transition layer 20 is the same as the material of the quantum dot shell 30, when making the charge transition layer 20, first a long-chain fatty acid solution containing metal ions and zinc ions can be injected outside the quantum dot core, and then A non-polar solvent containing a sulfur source or a selenium source is then injected to form a charge transition layer 20 doped with metal ions.
  • the long-chain fatty acid solution containing metal ions and zinc ions can be zinc oleate doped with manganese compounds, zinc oleate and a non-polar solvent containing sulfur compounds, that is, containing P
  • a long-chain fatty acid solution containing only zinc ions that is, pure zinc oleate, is injected to react, so that the host material of the charge transition layer 20 is the same as the material of the quantum dot shell 30.
  • the molar amount of the long-chain fatty acid solution containing indium ions forming the quantum dot core 10 and the molar amount of the long-chain fatty acid solution containing zinc ions forming the charge transition layer the same.
  • the doping concentration of manganese ions in the charge transition layer 20 is less than 5% (mass ratio), for example, the doping concentration of manganese ions in the charge transition layer 20 is 3% (mass ratio).
  • the thickness of the charge transition layer 20 is within the thickness range of 1-10 atomic layers.
  • the quantum dot shell 30 is continuously fabricated on the outside of the charge transition layer 20.
  • the embodiment of the present disclosure may inject a high-boiling solution of a sulfur compound and a ligand into the outside of the charge transition layer 20, for example, inject a non-polar solution of a sulfur compound into the outside of the charge transition layer 20, and use octyl mercaptan.
  • a ligand it is heated and then cooled to form a quantum dot shell 30.
  • the molar amount of the non-polar solution of the sulfur compound is the same as the molar amount of the long-chain fatty acid solution containing zinc ions.
  • octadecene solution of tributylphosphine-sulfur adduct is injected into the outside of the charge transition layer 20, together with 1.2 mL of 1-octanethiol. After heating, the temperature is heated to about 300° C. for about 120 minutes, for example, to cause the octadecene solution containing S-TBP to react with 1-octanethiol to obtain the quantum dot shell 30.
  • the S-TBP can be obtained by dissolving 1mmol of sulfur powder and 1.25mL of TBP in 1.25mL of 1-octadecene (ODE) solution.
  • the quantum dot shell 30 can be made in multiple layers, such as the first quantum dot shell 301 and the second quantum dot shell 302 described above.
  • the first quantum dot shell 301 may be manufactured first, and then the second quantum dot shell 302 may be manufactured.
  • a first mole of a non-polar solution containing a selenium compound and octyl mercaptan are injected into the outside of the charge transition layer 20, heated and then cooled to form the first quantum dot shell 301.
  • a second mole of a non-polar solution containing a sulfur compound and octyl mercaptan are injected into the outside of the first quantum dot shell 301, heated and then cooled to form the second quantum dot shell 302.
  • the sum of the first mole and the second mole is the same as the molar amount of the long-chain fatty acid solution containing zinc ions.
  • 0.5 mmol of Se-TBP octadecene solution is injected into the outside of the charge transition layer 20, and 0.5 mL of 1-octanethiol is injected.
  • the temperature is heated to about 300° C. for about 120 minutes, for example, to make the octadecene solution containing Se-TBP react with 1-octanethiol to obtain the first quantum dot shell 301. Cool to room temperature.
  • a 0.5 mmol octadecene solution containing S-TBP was injected into the outside of the first quantum dot shell 301, and 0.5 mL 1-octanethiol was injected.
  • the temperature is heated to about 300° C.
  • Se-TBP can be obtained by dissolving 1mmol of selenium powder and 1.25mL of TBP in 1.25mL of ODE solution.
  • quantum dots After the quantum dots are obtained, they can be washed 3-4 times with ethyl acetate and toluene alternately to obtain purified quantum dots for use.
  • quantum dot electroluminescent diodes or display panels are made by quantum dots.
  • the embodiments of the present disclosure also provide a quantum dot light emitting diode (for example, a quantum dot electroluminescent diode), the light emitting layer of which is prepared by the above quantum dots.
  • the quantum dot light-emitting diode includes a light-emitting layer 02 and a first electrode 01 and a second electrode 03 located on both sides of the light-emitting layer 02.
  • the light-emitting layer 02 can be prepared by the aforementioned quantum dots or the light-emitting layer 02 includes the aforementioned quantum dots.
  • embodiments of the present disclosure also provide a display panel, the light-emitting area of the display panel includes the aforementioned quantum dots.
  • the display panel includes a base substrate 00.
  • the light emitting area of the display panel may include the aforementioned quantum dot light emitting diode.
  • the embodiment of FIG. 6 takes the quantum dot light-emitting diode located in the light-emitting area of the display panel as an example, the embodiment according to the present disclosure is not limited thereto, and the quantum dots may exist in the light-emitting area of the display panel in other forms.
  • the above-mentioned quantum dot solution at a concentration of 20 mg/mL can be spin-coated on a thin film transistor (TFT) array substrate on which a hole injection layer and a hole transport layer have been sequentially arranged to form a light emitting layer. Then, ZnO nanoparticles are deposited on the light-emitting layer as the electron transport layer, and then the electrode is vacuum evaporated, and the display panel is obtained after packaging.
  • TFT thin film transistor
  • a charge transition layer is arranged between the quantum dot core and the quantum dot shell, and the main material of the charge transition layer is doped with metal ions, and the metal ions are metal ions with variable charge valence.
  • the charge valence state of the metal ion includes the charge valence state of the cation in the quantum dot core and the charge valence state of the cation in the quantum dot shell, which acts as a buffer for the charge. Therefore, it is between the quantum dot core interface and the quantum dot shell interface When Auger recombination occurs, the non-radiative transition is reduced. This can reduce the lattice defects of the quantum dot core due to the defect state during the electrical excitation process, and strengthen the light-emitting ability of the quantum dot.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Luminescent Compositions (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种量子点及其制作方法、量子点发光二极管和显示面板。该量子点包括量子点核、包覆在所述量子点核外部的电荷过渡层,以及包覆在所述电荷过渡层外部的量子点壳。所述电荷过渡层包括主体材料以及掺杂在所述主体材料中的金属离子,所述金属离子为电荷价态可变金属离子,金属离子的电荷价态包括量子点核中阳离子的电荷价态和量子点壳中阳离子的电荷价态。该量子点可以减少量子点核的界面和量子点壳的界面之间的无辐射跃迁,增强量子点的发光能力。

Description

量子点及其制作方法、量子点发光二极管和显示面板
本申请要求于2019年5月14日递交的中国专利申请第201910396664.7号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开的实施例涉及一种量子点及其制作方法、量子点电致发光二极管和显示面板。
背景技术
量子点(Quantum Dot,简称QD)作为新型的发光材料,具有发光光谱窄、发光波长可调控、光谱纯度高等优点,以量子点材料作为发光层的量子点发光二极管(Quantum Dot Light Emitting Diodes,简称QLED)成为了目前新型显示器件研究的主要方向。
目前的量子点为镉系CdSe/CdS,即量子点核和量子点壳通过CdSe/CdS制成。但是CdSe/CdS含有毒重金属镉,目前无镉系是QD的发展趋势。目前的无镉系QD的量子点核的界面和量子点壳的界面之间存在俄歇复合现象,造成较多的无辐射跃迁,减弱了量子点的发光能力。
发明内容
本公开的至少一个实施例提供一种量子点,该量子点包括量子点核、包覆在所述量子点核外部的电荷过渡层,以及包覆在所述电荷过渡层外部的量子点壳,其中,所述电荷过渡层包括主体材料和掺杂在所述主体材料中的金属离子,所述金属离子为电荷价态可变金属离子,金属离子的电荷价态包括量子点核中阳离子的电荷价态和量子点壳中阳离子的电荷价态。
在一些示例中,所述金属离子为二价/三价的可变价金属离子。
在一些示例中,所述金属离子包括锰离子、铁离子、铕离子、钴离子、镍离子中的至少一种。
在一些示例中,所述电荷过渡层的厚度在1~10个原子层的厚度范围内。
在一些示例中,所述金属离子在所述电荷过渡层的主体材料中的掺杂质量比小于5%。
在一些示例中,所述电荷过渡层的主体材料与所述量子点核的材料相同,或,所述电荷过渡层的主体材料与所述量子点壳的与所述电荷过渡层相邻的至少一部分的材料相同。
在一些示例中,所述量子点核的材料为磷化铟。
在一些示例中,所述量子点壳包括包覆在所述电荷过渡层外部的第一量子点壳,以及包覆在所述第一量子点壳外部的第二量子点壳;其中,所述第一量子点壳与所述量子点核的晶格失配度小于所述第二量子点壳与所述量子点核的晶格失配度。
在一些示例中,所述第一量子点壳的材料为硒化锌,所述第二量子点壳的材料为硫化锌。
本公开的至少一个实施例提供了一种量子点的制作方法,该方法包括:制作量子点核;在所述量子点核外形成电荷过渡层;在所述电荷过渡层外形成量子点壳,其中,所述电荷过渡层包括主体材料和掺杂在所述主体材料中的金属离子,所述金属离子为电荷价态可变金属离子,金属离子的电荷价态包括量子点核中阳离子的电荷价态和量子点壳中阳离子的电荷价态。
在一些示例中,所述制作量子点核包括:将含有铟离子的长链脂肪酸溶液、含有锌离子的长链脂肪酸溶液溶解在非极性溶剂进行反应,得到前驱体溶液,其中,所述非极性溶剂的沸点高于150℃;在所述前驱体溶液注入含有磷化合物的非极性溶剂,形成所述量子点核;其中,所述含有磷化合物的非极性溶剂与所述含有铟离子的长链脂肪酸溶液的摩尔比大于或等于60%。
在一些示例中,在所述量子点核外形成电荷过渡层,包括:在所述量子点核外部注入含有所述金属离子的长链脂肪酸溶液;向所述含有所述金属离子的长链脂肪酸溶液注入含有磷化合物的非极性溶剂,形成掺杂有金属离子的所述电荷过渡层;其中,所述量子点核以及所述电荷过渡层中包括的所述含有磷化合物的非极性溶剂的摩尔量为第一摩尔,所述含有铟离子的长链脂肪酸溶液的摩尔量为第二摩尔,所述第一摩尔等于所述第二摩尔。
在一些示例中,在所述量子点核外形成电荷过渡层,包括:在所述量子点 核外部注入掺杂了含有所述金属离子以及锌离子的长链脂肪酸溶液;向所述长链脂肪酸溶液注入只包含锌离子的长链脂肪酸溶液,形成掺杂了所述金属离子的所述电荷过渡层;其中,所述量子点核包括的含有铟离子的长链脂肪酸溶液的摩尔量与所述电荷过渡层中包括的锌离子的长链脂肪酸溶液的摩尔量相同。
在一些示例中,所述金属离子包括锰离子、铁离子、铕离子、钴离子以及镍离子中的至少一种。
在一些示例中,所述金属离子在所述电荷过渡层的主体材料中的掺杂质量比小于5%。
在一些示例中,在所述电荷过渡层外形成量子点壳包括:在所述电荷过渡层外部注入含有硫化合物的高沸点溶液以及辛硫醇,加热后冷却,形成所述量子点壳;其中,所述含有硫化合物的摩尔量与所述含有锌离子的长链脂肪酸溶液的摩尔量相同。
本公开的至少一个实施例提供了一种量子点发光二极管,所述量子点发光二极管的发光层包括如上述任一项所述的量子点。
本公开的至少一个实施例提供了一种显示面板,所述显示面板的发光区域包括如上述任一项所述的量子点。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1为本公开实施例提供的量子点的一种纵向剖面示意图;
图2为本公开实施例提供的量子点的一种纵向剖面示意图;
图3为本公开实施例提供的量子点的一种纵向剖面示意图;
图4为本公开实施例提供的量子点的制作方法的流程示意图;
图5为本公开实施例提供的量子点发光二极管的结构示意图;
图6为本公开实施例提供的显示面板的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
目前的无镉系量子点(QD)的量子点核和量子点壳之间的界面处会造成较多的无辐射跃迁,减弱了量子点的发光能力。
鉴于此,本公开实施例提供了一种新的量子点,在量子点核和量子点壳之间设置过渡量子点核和量子点壳之间的电荷价态的电荷过渡层,以减少量子点核的界面和量子点壳的界面之间的无辐射跃迁,从而加强量子点的发光能力。
下面结合附图,对本公开实施例提供的量子点及其制作方法、QLED和显示面板的具体实施方式进行详细地说明。附图中各膜层的厚度和形状不反映真实比例,目的只是示意说明本公开内容。
请参见图1,本公开实施例提供的一种量子点,该量子点包括量子点核10、包覆在量子点核外部的电荷过渡层20,以及包覆在电荷过渡层20外部的量子点壳30。电荷过渡层20被配置为可以过渡量子点核10和量子点壳30之间的电荷价态。例如,电荷过渡层20的主体材料内掺杂有金属离子,该金属离子为电荷价态可变金属离子,金属离子的电荷价态包括量子点核中阳离子的电荷价态和量子点壳中阳离子的电荷价态。
在一种可能的实施方式中,电荷过渡层20掺杂的金属离子可以是一价/二价的可变价金属离子,也可以是二价/三价的可变价金属离子,或者,也可以是三价/四价的可变价金属离子。
例如,本公开实施例中,量子点核10的材料可以是磷化铟(InP),量子点壳30的材料可以是硫化锌(ZnS)。考虑到量子点核中的磷和量子点壳中的硫的电荷价态(或者量子点核中的铟和量子点壳中的锌的电荷价态),电荷过渡层20掺杂的金属离子可以是二价/三价的可变价金属离子,例如锰离子、铁离子或者铕离子、钴离子、镍离子等。又例如,金属离子可以是锰离子、铁离子、铕离子、钴离子以及镍离子中的至少两种,主要金属离子的电荷价态均与量子点核或量子点壳的电荷价态匹配,也就是与量子点核或量子点壳的电 荷价态相同或者相近。
电荷过渡层20的主体材料可以与量子点核10的材料相同,例如,电荷过渡层20的主体材料可以是如上述的磷化铟。或者,电荷过渡层20的主体材料可以与量子点壳30的材料相同,例如,电荷过渡层20的主体材料可以是如上述的硫化锌。又或者,电荷过渡层20的主体材料也可能是与量子点核10以及量子点壳30的材料不相同的其他的材料。
如果电荷过渡层20所掺杂的金属离子本身会发光,可能会对量子点的发光造成影响。例如,如果电荷过渡层20所掺杂的金属离子是铕离子,那么由于铕离子本身会发红光,如果铕离子掺杂在绿色量子点或蓝色量子点,那么就会影响绿色量子点或蓝色量子点的发光造成影响。本公开实施例为了减少金属离子对量子点的发光的影响程度,电荷过渡层20所掺杂的金属离子尽量较少。例如,本公开实施例中的金属离子在电荷过渡层20的主体材料的掺杂量小于5%(质量比)。在一些示例中,本公开实施例中的电荷过渡层20尽量较薄,以使得电荷过渡层20所掺杂的金属离子尽量较少。例如,本公开实施例中的电荷过渡层20的厚度位于1~10个原子层的厚度范围内。
在一些示例中,电荷过渡层20可以包括至少两层。例如,请参见图2,电荷过渡层20可以包括第一电荷过渡层201和第二电荷过渡层202。如图2所示,第一电荷过渡层201和第二过渡层202的分界线用虚线进行示意。这种情况下,第一电荷过渡层201的主体材料与量子点核10的材料相同,第二电荷过渡层202的主体材料与第一电荷过渡层201的主体材料相同,或者,第二电荷过渡层202的主体材料与量子点壳30的材料相同。
量子点壳30也可以包括至少两层。例如,请参见图3,量子电核30包括第一量子点壳301和第二量子点壳302共两层为例。图3中,第一量子点壳301和第二量子点壳302的分界线用虚线进行示意。第一量子点壳301包覆在量子点核10的外部,第二量子点壳302包覆在第一量子点壳301的外部。第一量子点壳301与量子点核10的晶格失配度小于第二量子点壳302与量子点核10的晶格失配度。这样,第一量子点壳301在量子点核10到第二量子点壳302之间也起到了过渡电荷的作用,以减少量子点核10到第二量子壳302的无辐射跃迁,加强量子点的发光能力。
例如,第一量子点壳301的材料可以为硒化锌(ZnSe),第二量子点壳 302的材料可以为硫化锌。
需要说明的是,图3以电荷过渡层20是一层为例,在图3所示的结构中,电荷过渡层20同样可以是多层结构。
如上提供了一种量子点,下面介绍基于同一发明构思提供的上述量子点的制作方法,请参见图4,一些示例性的制作流程如下。
S401、制作量子点核10;
S402、在量子点核外10形成电荷过渡层20;
S403、在电荷过渡层20外形成量子点壳30,电荷过渡层20的主体材料内掺杂有金属离子,金属离子为电荷价态可变金属离子,金属离子的电荷价态包括量子点核中阳离子的电荷价态和量子点壳中阳离子的电荷价态。
例如,制作量子点核10时,首先可以将含有铟离子的长链脂肪酸溶液、含有锌离子的长链脂肪酸溶液在非极性溶剂中进行溶解,并加热使得含有铟离子的长链脂肪酸溶液、含有锌离子的长链脂肪酸溶液进行反应,得到前驱体溶液。再在前驱体溶液中注入含有磷化合物的非极性溶剂,以形成量子点核10。
含有铟离子的长链脂肪酸溶液可以认为是铟源溶解在脂肪酸中得到的。例如,铟源可以是氯化铟、氧化铟。脂肪酸可以是油酸,作为铟源的配体,有利于提高铟源的反应速度。例如,含有铟离子的长链脂肪酸溶液可以是油酸铟。同样地,含有锌离子的长链脂肪酸溶液可以认为是锌源溶解在脂肪酸中得到的。例如,锌源可以是氯化锌、氧化锌。脂肪酸可以是油酸,作为锌源的配体,有利于提高锌源的反应速度。例如,含有锌化合物的长链脂肪酸溶液可以是油酸锌。含有磷化合物的非极性溶剂,可以认为是磷源溶解在非极性溶剂形成的。磷源可以是三甲基硅基磷P(TMS)_3。这里的非极性溶剂可以是高沸点非极性溶剂,例如,沸点高于150℃的非极性溶剂。例如,非极性溶剂可以是十八烯溶液,促进磷源分解、加快形成量子点核10的速度,提高量子点的粒度的均一性。
在制作量子点核10时,含有磷离子的非极性溶剂与含有铟离子的长链脂肪酸溶液的摩尔比大于或等于60%。示例性的,本公开实施例可以将0.1mmol油酸铟、0.1mmol油酸锌加入十八烯溶液中,并保持除水除氧维持氮气氛围环境下,加热到250℃~280℃反应后,得到前驱体溶液。再在前驱体溶液中注入 含有0.08mmol的P(TMS)_3的十八烯溶液,形成量子点核10。
形成量子点核10之后,可以在量子点核10的外部制作电荷过渡层20。根据电荷过渡层20的主体材料的不同,制作电荷过渡层20的过程也所有不同。
第一种情况:如果电荷过渡层20的主体材料与量子点核10的材料相同,制作电荷过渡层20时,首先可以在量子点核外部注入含有金属离子的长链脂肪酸溶液,再向含有金属离子的长链脂肪酸溶液注入含有磷离子的非极性溶剂,形成掺杂有金属离子的电荷过渡层20。
金属离子可以是上述的锰离子、铁离子、铕离子、钴离子以及镍离子中的至少一种,下面的介绍中以金属离子是锰离子为例。含有金属离子的长链脂肪酸溶液可以是油酸锰。含磷化合物的非极性溶剂是上述的含有P(TMS)_3的十八烯溶液,以使得电荷过渡层20的主体材料与量子点核10的材料相同。
另外,量子点核10以及电荷过渡层20中包括的含有磷离子的非极性溶剂的摩尔量为第一摩尔,含有铟离子的长链脂肪酸溶液的摩尔量为第二摩尔,第一摩尔等于第二摩尔。也就是电荷过渡层20的主体材料与量子点核10的材料相同,但是需要保证铟元素的量与磷元素的量的平衡。
示例性的,在制作电荷过渡层20时,可以在量子点核10的外部注入0.001mmol的油酸锰,再注入含有0.02mmol的P(TMS)_3的十八烯溶液,形成掺杂了锰离子的电荷过渡层20。在制作量子点核10时,温度保持在250℃~280℃范围内,之后注入油酸锰和含有P(TMS)3的十八烯溶液,由于油酸锰和含有P(TMS)3的十八烯溶液不在加热设备中,所以在量子点核10的外部注入油酸锰和含有P(TMS)3的十八烯溶液后,温度会有所降低,例如温度可能位于220℃~250℃范围内。因为锰离子本身发光,为了减少锰离子对量子点的发光的影响,这里锰离子在电荷过渡层20的掺杂浓度小于5%(质量比)。可能的实施方式中,电荷过渡层20的厚度位于1-10个原子层的厚度范围内。
第二种情况:如果电荷过渡层20的主体材料与量子点壳30的材料相同,制作电荷过渡层20时,首先可以在量子点核外部注入含有金属离子以及锌离子的长链脂肪酸溶液,之后再注入含有硫源或硒源的非极性溶剂,形成掺杂有金属离子的电荷过渡层20。
与第一种情况的不同之处在于,含有金属离子以及锌离子的长链脂肪酸 溶液可以是掺杂了锰化合物的油酸锌,油酸锌与含硫化合物的非极性溶剂,即含有P(TMS)_3的十八烯溶液反应之后,再注入只包含锌离子的长链脂肪酸溶液,即纯油酸锌进行反应,以使得电荷过渡层20的主体材料与量子点壳30的材料相同。同样,为了保证铟元素的量与磷元素的量的平衡,形成量子点核10的含有铟离子的长链脂肪酸溶液的摩尔量,与形成电荷过渡层的锌离子的长链脂肪酸溶液的摩尔量相同。
示例性的,在制作电荷过渡层20时,可以在量子点核10的外部注入0.02mmol含锰化合物的油酸锌,再注入含有0.08mmol的油酸锌,形成掺杂了锰离子的电荷过渡层20。与第一种情况相同,这里锰离子在电荷过渡层20的掺杂浓度小于5%(质量比),例如锰离子在电荷过渡层20的掺杂浓度是3%(质量比)。可能的实施方式中,电荷过渡层20的厚度位于1-10个原子层的厚度范围内。
制作电荷过渡层20之后,继续在电荷过渡层20的外部制作量子点壳30。例如,本公开实施例可以在电荷过渡层20的外部注入含硫化合物的高沸点溶液与配体,例如,在电荷过渡层20的外部注入含硫化合物的非极性溶液,并以辛硫醇作为配体,加热后冷却,形成量子点壳30。例如,含硫化合物的非极性溶液的摩尔量与含有锌离子的长链脂肪酸溶液的摩尔量相同。
示例性的,在电荷过渡层20的外部注入1mmol的三丁基膦-硫加合物(S-TBP)的十八烯溶液,并搭配1.2mL 1-辛硫醇。之后加热,将温度加热至300℃左右,加热例如120min左右,使得含有S-TBP的十八烯溶液和1-辛硫醇反应,得到量子点壳30。这里的S-TBP可以通过1mmol的硫粉与1.25mL的TBP在1.25mL1-十八烯(ODE)溶液中溶解所得。
在可能的实施方式中,量子点壳30可以制作为多层,例如上述的第一量子点壳301和第二量子点壳302。例如,在制作量子点壳30时,可以先制作第一量子点壳301,再制作第二量子点壳302。例如,在电荷过渡层20的外部先注入第一摩尔含有硒化合物的非极性溶液以及辛硫醇,加热后冷却,形成第一量子点壳301。在第一量子点壳301的外部先注入第二摩尔含有硫化合物的非极性溶液以及辛硫醇,加热后冷却,形成第二量子点壳302。例如,第一摩尔与第二摩尔的总和与上述含有锌离子的长链脂肪酸溶液的摩尔量相同。
示例性的,在电荷过渡层20的外部注入0.5mmol的Se-TBP的十八烯溶 液,并注入0.5mL 1-辛硫醇。将温度加热至300℃左右,加热例如120min左右,使得含有Se-TBP的十八烯溶液和1-辛硫醇反应,得到第一量子点壳301。冷却至室温。在第一量子点壳301的外部注入0.5mmol的含有S-TBP的十八烯溶液注入,并注入0.5mL 1-辛硫醇。将温度加热至300℃左右,加热例如120min左右,使得含有S-TBP的十八烯溶液和1-辛硫醇反应,得到第二量子点壳302。例如,Se-TBP可以通过将1mmol的硒粉与1.25mL的TBP在1.25mL ODE溶液中溶解所得。
得到量子点之后,可以采用乙酸乙酯和甲苯交替洗涤3-4次,得到纯化的量子点,以待用。例如通过量子点制作量子点电致发光二极管或显示面板。
示例性的,基于同一发明构思,本公开实施例还提供了一种量子点发光二极管(例如,量子点电致发光二极管),该量子点发光二极管的发光层通过上述的量子点制备所得。如图5所示,量子点发光二极管包括发光层02以及位于发光层02两侧的第一电极01和第二电极03。例如,发光层02可以通过上述的量子点制备或者发光层02中包括上述量子点。
基于同一发明构思,本公开实施例还提供了一种显示面板,该显示面板的发光区域包括上述的量子点。如图6所示,显示面板包括衬底基板00。显示面板的发光区域中可以包括上述的量子点发光二极管。虽然图6的实施例中以量子点发光二极管位于显示面板的发光区域为例进行了描述,但根据本公开的实施例不限于此,量子点可以以其他形式存在于显示面板的发光区域。
在制作显示面板时,例如可以在已经依次设置了空穴注入层、空穴传输层的薄膜晶体管(TFT)阵列基板上旋涂20mg/mL浓度的上述量子点溶液,形成发光层。再在发光层上面沉积ZnO纳米颗粒作为电子传输层,然后真空蒸镀电极,封装后得到显示面板。
综上,在本公开实施例中,量子点核和量子点壳之间设置了电荷过渡层,该电荷过渡层的主体材料内掺杂有金属离子,该金属离子为电荷价态可变金属离子,金属离子的电荷价态包括量子点核中阳离子的电荷价态和量子点壳中阳离子的电荷价态,起到缓冲电荷的作用,因此在量子点核的界面和量子点壳的界面之间发生俄歇复合现象时,无辐射跃迁减少了。这样可以减少电激发过程中,量子点核由于缺陷态产生的晶格缺陷,加强了量子点的发光能力。
以上所述仅是本发明的示范性实施方式,而非用于限制本发明的保护范 围,本发明的保护范围由所附的权利要求确定。

Claims (18)

  1. 一种量子点,包括:量子点核、包覆在所述量子点核外部的电荷过渡层,以及包覆在所述电荷过渡层外部的量子点壳,其中,
    所述电荷过渡层包括主体材料和掺杂在所述主体材料内的金属离子,所述金属离子为电荷价态可变金属离子,金属离子的电荷价态包括所述量子点核中阳离子的电荷价态和所述量子点壳中阳离子的电荷价态。
  2. 如权利要求1所述的量子点,其中,所述金属离子为二价/三价的可变价金属离子。
  3. 如权利要求2所述的量子点,其中,所述金属离子包括锰离子、铁离子、铕离子、钴离子以及镍离子中的至少一种。
  4. 如权利要求1-3任一项所述的量子点,其中,所述电荷过渡层的厚度在1~10个原子层的厚度范围内。
  5. 如权利要求1-4任一项所述的量子点,其中,所述金属离子在所述电荷过渡层的主体材料中的掺杂质量比小于5%。
  6. 如权利要求1-5任一项所述的量子点,其中,所述电荷过渡层的主体材料与所述量子点核的材料相同,或,所述电荷过渡层的主体材料与所述量子点壳的与所述电荷过渡层相邻的至少一部分的材料相同。
  7. 如权利要求1-6任一项所述的量子点,其中,所述量子点核的材料为磷化铟。
  8. 如权利要求1-7任一项所述的量子点,其中,所述量子点壳包括包覆在所述电荷过渡层外部的第一量子点壳,以及包覆在所述第一量子点壳外部的第二量子点壳;其中,所述第一量子点壳与所述量子点核的晶格失配度小于所述第二量子点壳与所述量子点核的晶格失配度。
  9. 如权利要求8所述的量子点,其中,所述第一量子点壳的材料为硒化锌,所述第二量子点壳的材料为硫化锌。
  10. 一种量子点的制作方法,包括:
    制作量子点核;
    在所述量子点核外形成电荷过渡层;
    在所述电荷过渡层外形成量子点壳,
    其中,所述电荷过渡层包括主体材料以及掺杂在所述主体材料内的金属离子,所述金属离子为电荷价态可变金属离子,金属离子的电荷价态包括所述量子点核中阳离子的电荷价态和所述量子点壳中阳离子的电荷价态。
  11. 如权利要求10所述的制作方法,其中,所述制作量子点核包括:
    将含有铟离子的长链脂肪酸溶液、含有锌离子的长链脂肪酸溶液溶解在非极性溶剂进行反应,得到前驱体溶液,其中,所述非极性溶剂的沸点高于150℃;
    在所述前驱体溶液注入含磷化合物的非极性溶剂,形成所述量子点核;其中,所述含有磷化合物的非极性溶剂与所述含有铟离子的长链脂肪酸溶液的摩尔比大于或等于60%。
  12. 如权利要求11所述的制作方法,其中,在所述量子点核外形成电荷过渡层包括:
    在所述量子点核外部注入含有所述金属离子的长链脂肪酸溶液;
    向所述含有所述金属离子的长链脂肪酸溶液注入含有磷化合物的非极性溶剂,形成掺杂有金属离子的所述电荷过渡层;其中,所述量子点核以及所述电荷过渡层中包括的所述含有磷化合物的非极性溶剂的摩尔量为第一摩尔,所述含有铟离子的长链脂肪酸溶液的摩尔量为第二摩尔,所述第一摩尔等于所述第二摩尔。
  13. 如权利要求11所述的制作方法,其中,在所述量子点核外形成电荷过渡层包括:
    在所述量子点核外部注入掺杂了含有所述金属离子以及锌离子的长链脂肪酸溶液;
    向所述长链脂肪酸溶液注入只包含锌离子的长链脂肪酸溶液,形成掺杂了所述金属离子的所述电荷过渡层;其中,所述量子点核包括的含有铟离子的长链脂肪酸溶液的摩尔量与所述电荷过渡层中包括的锌离子的长链脂肪酸溶液的摩尔量相同。
  14. 如权利要求11-13任一所述的制作方法,其中,所述金属离子包括锰离子、铁离子、铕离子、钴离子以及镍离子中的至少一种。
  15. 如权利要求14所述的制作方法,其中,所述金属离子在所述电荷过渡层的主体材料中的掺杂质量比小于5%。
  16. 如权利要求11所述的制作方法,其中,在所述电荷过渡层外形成量子点壳包括:
    在所述电荷过渡层外部注入含有硫化合物的高沸点溶液以及辛硫醇,加热后冷却,形成所述量子点壳;其中,所述含硫化合物的摩尔量与所述含有锌离子的长链脂肪酸溶液的摩尔量相同。
  17. 一种量子点发光二极管,其中,所述量子点发光二极管的发光层包括如权利要求1-9任一项所述的量子点。
  18. 一种显示面板,其中,所述显示面板的发光区域包括如权利要求1-9任一项所述的量子点。
PCT/CN2020/078757 2019-05-14 2020-03-11 量子点及其制作方法、量子点发光二极管和显示面板 WO2020228403A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/041,419 US20210210706A1 (en) 2019-05-14 2020-03-11 Quantum dot and manufacturing method thereof, quantum dot light emitting diode and display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910396664.7A CN110137363B (zh) 2019-05-14 2019-05-14 一种量子点及其制作方法、qled和显示面板
CN201910396664.7 2019-05-14

Publications (1)

Publication Number Publication Date
WO2020228403A1 true WO2020228403A1 (zh) 2020-11-19

Family

ID=67573624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/078757 WO2020228403A1 (zh) 2019-05-14 2020-03-11 量子点及其制作方法、量子点发光二极管和显示面板

Country Status (3)

Country Link
US (1) US20210210706A1 (zh)
CN (1) CN110137363B (zh)
WO (1) WO2020228403A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110137363B (zh) * 2019-05-14 2021-09-03 京东方科技集团股份有限公司 一种量子点及其制作方法、qled和显示面板
KR20210128040A (ko) 2020-04-14 2021-10-26 삼성디스플레이 주식회사 양자점, 복합체, 그리고 이를 포함하는 소자
US20220396729A1 (en) * 2020-12-25 2022-12-15 Boe Technology Group Co., Ltd. METHOD FOR PREPARING ZnSe QUANTUM DOT, ZnSe QUANTUM DOT, ZnSe STRUCTURE AND DISPLAY DEVICE

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7687800B1 (en) * 2007-11-23 2010-03-30 University Of Central Florida Research Foundation, Inc. Excitation band-gap tuning of dopant based quantum dots with core-inner shell-outer shell
CN101805613A (zh) * 2010-05-07 2010-08-18 天津大学 表面官能团化二氧化硅水溶性改性量子点及其制备方法
CN106634946A (zh) * 2016-09-28 2017-05-10 Tcl集团股份有限公司 无镉核壳量子点及其制备方法
US20180008730A1 (en) * 2014-08-11 2018-01-11 William Marsh Rice University Multifunctional fluorescent and mri-active nanostructure
CN108531185A (zh) * 2018-06-07 2018-09-14 嘉兴纳鼎光电科技有限公司 一种量子点及其合成方法
CN108806989A (zh) * 2018-06-01 2018-11-13 青岛大学 带有过渡层的核壳结构量子点、制备方法和应用及光阳极、太阳能光电化学器件和应用
CN110137363A (zh) * 2019-05-14 2019-08-16 京东方科技集团股份有限公司 一种量子点及其制作方法、qled和显示面板

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106701059B (zh) * 2016-11-11 2019-07-02 纳晶科技股份有限公司 InP量子点及其制备方法
KR20180108012A (ko) * 2017-03-23 2018-10-04 나노캠텍주식회사 전이 금속으로 도핑된 양자점 및 이의 제조방법
CN110295039A (zh) * 2018-03-23 2019-10-01 Tcl集团股份有限公司 一种颗粒及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7687800B1 (en) * 2007-11-23 2010-03-30 University Of Central Florida Research Foundation, Inc. Excitation band-gap tuning of dopant based quantum dots with core-inner shell-outer shell
CN101805613A (zh) * 2010-05-07 2010-08-18 天津大学 表面官能团化二氧化硅水溶性改性量子点及其制备方法
US20180008730A1 (en) * 2014-08-11 2018-01-11 William Marsh Rice University Multifunctional fluorescent and mri-active nanostructure
CN106634946A (zh) * 2016-09-28 2017-05-10 Tcl集团股份有限公司 无镉核壳量子点及其制备方法
CN108806989A (zh) * 2018-06-01 2018-11-13 青岛大学 带有过渡层的核壳结构量子点、制备方法和应用及光阳极、太阳能光电化学器件和应用
CN108531185A (zh) * 2018-06-07 2018-09-14 嘉兴纳鼎光电科技有限公司 一种量子点及其合成方法
CN110137363A (zh) * 2019-05-14 2019-08-16 京东方科技集团股份有限公司 一种量子点及其制作方法、qled和显示面板

Also Published As

Publication number Publication date
CN110137363B (zh) 2021-09-03
US20210210706A1 (en) 2021-07-08
CN110137363A (zh) 2019-08-16

Similar Documents

Publication Publication Date Title
WO2020228403A1 (zh) 量子点及其制作方法、量子点发光二极管和显示面板
Sun et al. Efficient quantum dot light-emitting diodes with a Zn 0.85 Mg 0.15 O interfacial modification layer
US10577716B2 (en) Multilayer nanocrystal structure and method for producing the same
US7615800B2 (en) Quantum dot light emitting layer
US7952105B2 (en) Light-emitting display device having improved efficiency
US10741793B2 (en) Light emitting device including blue emitting quantum dots and method
US20080001538A1 (en) Led device having improved light output
US11186770B2 (en) II-VI based non-Cd quantum dots, manufacturing method thereof and QLED using the same
JP5771555B2 (ja) 電界発光素子用光抽出基板及びその製造方法
CN108264901A (zh) 具有漏斗型能级结构的发光材料、制备方法及半导体器件
KR101656927B1 (ko) 발광 소자 및 발광 소자용 전자수송층 제조 방법
JP6340674B2 (ja) 有機発光素子用の光取出し基板、その製造方法、及びこれを含む有機発光素子
CN108264894A (zh) 一种纳米发光材料、制备方法及半导体器件
US20220285644A1 (en) Light-emitting element and display device
KR101560088B1 (ko) 발광 소자 및 발광 소자 제조 방법
US11060026B2 (en) Electronic device including quantum dots
KR100928305B1 (ko) 금속 산화물 나노 입자의 형성 방법 및 금속 산화물 나노입자가 분포된 발광층을 포함하는 발광 소자 및 그 발광소자 제작 방법
Lee et al. 46.1: Invited Paper: Recent Progress of Light‐Emitting Diodes Based on Colloidal Quantum Dots
KR101687637B1 (ko) 단일의 양자점으로 이루어지는 발광층과 컬러변환층을 이용한 백색광 발광소자
US20200181490A1 (en) Alloy nanomaterial, preparation method therefor, and semiconductor device
WO2023184974A1 (zh) 量子点、量子点的制备方法及光电器件
KR20190027065A (ko) 비카드뮴계 발광 입자
JP5192854B2 (ja) 蛍光体及びこれを用いた表示パネル
CN108269893A (zh) 一种纳米晶体、制备方法及半导体器件
Beşkazak Colloidal perovskite nanocrystals and LED applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20806859

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20806859

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20806859

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21/07/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20806859

Country of ref document: EP

Kind code of ref document: A1