WO2020228284A1 - 一种固态反射型体声波谐振器及其制备方法 - Google Patents
一种固态反射型体声波谐振器及其制备方法 Download PDFInfo
- Publication number
- WO2020228284A1 WO2020228284A1 PCT/CN2019/118087 CN2019118087W WO2020228284A1 WO 2020228284 A1 WO2020228284 A1 WO 2020228284A1 CN 2019118087 W CN2019118087 W CN 2019118087W WO 2020228284 A1 WO2020228284 A1 WO 2020228284A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reflective layer
- piezoelectric material
- acoustic impedance
- grown
- layer
- Prior art date
Links
- 239000007787 solid Substances 0.000 title claims abstract description 25
- 238000002360 preparation method Methods 0.000 title description 32
- 239000000463 material Substances 0.000 claims abstract description 320
- 239000000758 substrate Substances 0.000 claims abstract description 142
- 238000005468 ion implantation Methods 0.000 claims abstract description 54
- 238000000034 method Methods 0.000 claims abstract description 39
- 239000013067 intermediate product Substances 0.000 claims abstract description 38
- 238000002513 implantation Methods 0.000 claims abstract description 31
- 239000010409 thin film Substances 0.000 claims abstract description 26
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 claims abstract description 25
- 238000010438 heat treatment Methods 0.000 claims abstract description 8
- 238000012546 transfer Methods 0.000 claims abstract description 4
- 150000001875 compounds Chemical class 0.000 claims description 84
- 150000002500 ions Chemical class 0.000 claims description 50
- 239000010408 film Substances 0.000 claims description 35
- 239000007772 electrode material Substances 0.000 claims description 31
- 238000002347 injection Methods 0.000 claims description 30
- 239000007924 injection Substances 0.000 claims description 30
- 238000002955 isolation Methods 0.000 claims description 29
- 229910052721 tungsten Inorganic materials 0.000 claims description 27
- UMIVXZPTRXBADB-UHFFFAOYSA-N benzocyclobutene Chemical compound C1=CC=C2CCC2=C1 UMIVXZPTRXBADB-UHFFFAOYSA-N 0.000 claims description 26
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 23
- 239000010931 gold Substances 0.000 claims description 23
- 229910052697 platinum Inorganic materials 0.000 claims description 23
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 17
- 239000011135 tin Substances 0.000 claims description 17
- 229910004140 HfO Inorganic materials 0.000 claims description 15
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 15
- 229910052737 gold Inorganic materials 0.000 claims description 15
- 238000010884 ion-beam technique Methods 0.000 claims description 15
- 229910052741 iridium Inorganic materials 0.000 claims description 15
- 229910052759 nickel Inorganic materials 0.000 claims description 15
- 229910052715 tantalum Inorganic materials 0.000 claims description 15
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 15
- 239000011810 insulating material Substances 0.000 claims description 14
- 239000011521 glass Substances 0.000 claims description 13
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 11
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 11
- 229910052718 tin Inorganic materials 0.000 claims description 11
- 238000004519 manufacturing process Methods 0.000 claims description 9
- 229920000642 polymer Polymers 0.000 claims description 9
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 9
- 239000004642 Polyimide Substances 0.000 claims description 7
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 7
- 230000005496 eutectics Effects 0.000 claims description 7
- 229920001721 polyimide Polymers 0.000 claims description 7
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 5
- 229910045601 alloy Inorganic materials 0.000 claims description 5
- 239000000956 alloy Substances 0.000 claims description 5
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 5
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 5
- 229910052758 niobium Inorganic materials 0.000 claims description 4
- 239000011248 coating agent Substances 0.000 claims description 2
- 238000000576 coating method Methods 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- 239000013078 crystal Substances 0.000 abstract description 16
- 238000005516 engineering process Methods 0.000 abstract description 2
- 229910052710 silicon Inorganic materials 0.000 description 13
- WSMQKESQZFQMFW-UHFFFAOYSA-N 5-methyl-pyrazole-3-carboxylic acid Chemical compound CC1=CC(C(O)=O)=NN1 WSMQKESQZFQMFW-UHFFFAOYSA-N 0.000 description 11
- 238000000206 photolithography Methods 0.000 description 11
- 239000010703 silicon Substances 0.000 description 11
- 230000000694 effects Effects 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- -1 that is Inorganic materials 0.000 description 5
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 235000012239 silicon dioxide Nutrition 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 3
- 229910052681 coesite Inorganic materials 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000000313 electron-beam-induced deposition Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H3/00—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
- H03H3/007—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
- H03H3/02—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/02007—Details of bulk acoustic wave devices
- H03H9/02015—Characteristics of piezoelectric layers, e.g. cutting angles
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/02007—Details of bulk acoustic wave devices
- H03H9/02086—Means for compensation or elimination of undesirable effects
- H03H9/0211—Means for compensation or elimination of undesirable effects of reflections
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/15—Constructional features of resonators consisting of piezoelectric or electrostrictive material
- H03H9/17—Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
- H03H9/171—Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
- H03H9/172—Means for mounting on a substrate, i.e. means constituting the material interface confining the waves to a volume
- H03H9/174—Membranes
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/15—Constructional features of resonators consisting of piezoelectric or electrostrictive material
- H03H9/17—Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
- H03H9/178—Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator of a laminated structure of multiple piezoelectric layers with inner electrodes
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H3/00—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
- H03H3/007—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
- H03H3/02—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
- H03H2003/023—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks being of the membrane type
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H3/00—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
- H03H3/007—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
- H03H3/02—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
- H03H2003/025—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks comprising an acoustic mirror
Definitions
- the invention belongs to the processing field of single crystal thin film devices. Specifically, the invention relates to a solid-state reflective bulk acoustic resonator and a preparation method thereof.
- the film bulk acoustic resonator has been widely used in the field of wireless communication due to its small size and high quality factor (Q value).
- the film bulk acoustic resonator converts electrical energy into sound waves through the inverse piezoelectric effect of the piezoelectric film to form resonance.
- Its resonant cavity is supported by a piezoelectric film and is a sandwich structure with a piezoelectric film sandwiched between two metal electrodes.
- the resonance frequency is mainly inversely proportional to the thickness of the piezoelectric film, and also related to the characteristics and thickness of the other layers of the sandwich structure. To obtain a high-Q resonator, the resonance energy must be confined within the piezoelectric layer.
- the ideal total reflection state is that both sides of the resonant cavity of the sandwich structure are air. In this structure, the resonant region is in a suspended state and the mechanical strength is poor.
- a multilayer reflective layer structure is prepared in the resonance area and below, which can effectively reflect the resonance energy.
- the solid-state reflective resonator has obvious advantages in terms of structural strength.
- the existing preparation method of solid-state reflective resonator mainly includes depositing a reflective layer, a lower electrode, and a piezoelectric layer on a substrate, and then preparing an upper electrode.
- the temperature-compensated film bulk wave resonator and processing method disclosed in Chinese Patent Document CN101958696A the piezoelectric film used is mainly aluminum nitride film. Due to the electron beam deposition method, it is difficult to ensure the crystal lattice orientation of the film.
- the uniformity of the film is affected by the electrode layer, thereby affecting the quality of the film, causing the device to generate multiple harmonics, affecting the resonant frequency, and the electromechanical coupling coefficient of the aluminum nitride film is not high, which is difficult to meet the needs of broadband filtering.
- the present invention provides a method for preparing a solid reflective bulk acoustic wave resonator, so as to solve the problem that it is difficult to ensure the crystal lattice orientation of the film and the film quality is not high when the solid reflective bulk acoustic resonator is prepared in the prior art.
- Sub-harmonics have a great impact on the resonance frequency and are difficult to achieve broadband filtering.
- the present invention provides a method for manufacturing a solid reflective bulk acoustic wave resonator, which includes the following steps:
- the piezoelectric material that has been ion-implanted, and grow a reflective layer under the injection surface of the piezoelectric material, then take the substrate, and grow the reflective layer on the substrate, and the piezoelectric material has a reflective layer One side of the substrate is bonded to the side of the substrate with the reflective layer;
- step (b) Heat the bonded intermediate product obtained in step (a) to peel off the film of the piezoelectric material, and then grow an upper electrode on the peeled side of the piezoelectric material to obtain;
- the piezoelectric material in step (a) is lithium niobate
- the piezoelectric material after ion implantation is obtained by the following method: taking the piezoelectric material and performing ion implantation on the piezoelectric material, the ions injected into the piezoelectric material are H ions, He ions, B ions, As One or more of the ions; the energy of the implanted ions is 100KeV-1000KeV; the implantation dose is 2-8 ⁇ 10 16 /cm 2 ; the ion beam current is 0.1-10um/cm -2 ; the implantation depth is 0.3-8um;
- the substrate is one of Si, SOI, glass, LN, and LT.
- the reflective layer includes a low acoustic impedance reflective layer and a high acoustic impedance reflective layer; the low acoustic impedance reflective layer and the high acoustic impedance reflective layer are alternately arranged, wherein the layer closest to the piezoelectric material Reflective layer with low acoustic impedance;
- the material of the low acoustic impedance reflective layer is one or more of Al, Ti, SiO 2 and BCB;
- the material of the high acoustic impedance reflective layer is Mo, Au, Nb, Ni, Pt, Ta One or more of, W, Ir, ZnO, HfO 2 , TiO 2 , Ta 2 O 5 , WO 3 ;
- growing the reflective layer specifically includes the following steps:
- a high acoustic impedance reflective layer is grown on the substrate, and then a low acoustic impedance reflective layer is grown on the high acoustic impedance reflective layer, which grows for 1-3 cycles, and finally the low acoustic impedance reflective layer Just grow a high acoustic impedance reflection layer on top;
- a high acoustic impedance reflection layer is grown on the substrate, and then a low acoustic impedance reflection layer is grown on the high acoustic impedance reflection layer, and the growth cycle is 1-2 cycles, and finally a layer is grown on the low acoustic impedance reflection layer.
- a high acoustic impedance reflective layer is enough;
- the total thickness of the grown reflective layer is 200 nm-6000 nm.
- the bonding in step (a) is one of polymer bonding, hydrophilic bonding, and eutectic bonding;
- the polymer bonding specifically includes the following steps: coating a bonding compound on one side of the substrate and/or the piezoelectric material for bonding; wherein the bonding compound is an organic insulating material;
- the organic insulating material includes one or more of benzocyclobutene and polyimide; preferably, the thickness of the coated bond is 100nm-4000nm;
- the hydrophilic bonding specifically includes the following steps: growing a bonding compound on one side of the substrate and/or the piezoelectric material; wherein the bonding compound is silicon oxide, silicon nitride, One or more of aluminum oxide and aluminum nitride; preferably, the thickness of the grown bond is 100nm-4000nm;
- the eutectic bonding specifically includes the following steps: preferably growing a bonding compound on one side of the substrate and/or the piezoelectric material; wherein the bonding compound is gold, tin and alloys thereof One or more of; preferably, the thickness of the grown bond is 100nm-4000nm.
- a bottom electrode is also grown on the injection surface of the piezoelectric material subjected to ion implantation in step (a);
- the lower electrode includes a patterned lower electrode and an unpatterned lower electrode.
- the patterned bottom electrode is grown by the following method: first lithographically form the pattern to be grown on the surface of the piezoelectric material, then grow the electrode, and finally wash off the excess part; or The electrode is grown on the surface of the material, and then a mask is prepared, and finally the excess part is etched away;
- the electrode material for growing the bottom electrode is one of Al, Au, Mo, Pt, and W; the thickness of the bottom electrode is 50-500 nm.
- the bottom electrode is a patterned bottom electrode, and SiO 2 is grown on one side of the bottom electrode as an isolation layer to planarize or not planarize the isolation layer; the thickness of the isolation layer is 50-800nm, preferably, the thickness of the isolation layer is 50-100nm.
- step (b) specifically includes the following steps: heating the bonded intermediate product obtained in step (a) to 200-350°C to peel off the film, and then annealing at a temperature of 200-350°C for 20 ⁇ 120min to obtain a peeling film; preferably, the thickness of the piezoelectric material after peeling is 500-1000 nm.
- the electrode material of the grown upper electrode is one of Al, Au, Mo, Pt, and W, and the thickness of the upper electrode is 50-300 nm.
- the present invention also provides a solid reflective bulk acoustic wave resonator prepared by the method for preparing the solid reflective bulk acoustic wave resonator.
- the solid-state reflective bulk acoustic resonator includes an upper electrode, a piezoelectric film, a lower electrode, a reflective layer, a bonding layer, and a substrate in order from top to bottom; preferably, the lower electrode is a patterned The lower electrode, an isolation layer is also provided between the lower electrode and the reflective layer;
- the top electrode, the piezoelectric film, the bottom electrode, the bonding layer, the reflective layer and the substrate are included in order from top to bottom.
- the reflective layer is composed of alternately arranged low acoustic impedance reflective layers and high acoustic impedance reflective layers.
- the present invention also provides a solid reflective bulk acoustic wave resonator
- top to bottom it includes an upper electrode, a piezoelectric film, a lower electrode, a reflective layer, a bonding layer, and a substrate; preferably, the lower electrode is a patterned lower electrode, and the lower electrode and the reflective layer There is also an isolation layer;
- the upper electrode, the piezoelectric film, the lower electrode, the bonding layer, the reflective layer and the substrate are included in order from top to bottom;
- the reflective layer is composed of alternately arranged low acoustic impedance reflective layers and high acoustic impedance reflective layers.
- the solid-state reflective bulk acoustic resonator is prepared by a wafer bonding transfer method.
- the preparation method of the solid-state reflective bulk acoustic resonator of the present invention uses wafer bonding transfer technology to prepare high-quality piezoelectric films, and combined with the solid-state reflective layer structure can prepare resonators with high structural strength and excellent performance.
- the bonding layer of the present invention can be designed at any position between the lower electrode and the substrate. The invention can make the bonding mode have great flexibility, meet the needs of different preparation situations, and improve the bonding power.
- the prepared solid-state reflective bulk acoustic wave resonator can meet the requirements of high frequency and high electromechanical coupling coefficient, meet the needs of broadband filtering, and is not easy to generate harmonics, which solves the problem of solid-state reflective bulk acoustic wave prepared by electron beam deposition.
- the low acoustic impedance reflective layer and the high acoustic impedance reflective layer are alternately distributed, and the alternately distributed low acoustic impedance reflective layer and high acoustic impedance reflective layer often pass through layer by layer
- the way it grows is prepared.
- the roughness of the uppermost film will gradually increase, and the quality of the film will get worse and worse, while the quality of the reflective layer closest to the piezoelectric material is less sensitive to the sound wave of the solid reflective layer.
- the reflection effect has the greatest impact.
- the present invention ensures that the reflective layer closest to the piezoelectric material has good quality, and avoids the adverse effects of poor quality of the growth film layer by layer on the resonator.
- FIG. 1 is a schematic flow chart of the preparation method of the solid reflective bulk acoustic wave resonator in Example 1.
- Example 2 is a schematic flow chart of the method for preparing the solid-state reflective bulk acoustic wave resonator in Example 2.
- FIG. 3 is a schematic flow chart of the method for preparing the solid reflective bulk acoustic wave resonator in Example 3.
- FIG. 3 is a schematic flow chart of the method for preparing the solid reflective bulk acoustic wave resonator in Example 3.
- Example 4 is a schematic flow chart of the method for preparing the solid reflective bulk acoustic wave resonator in Example 4.
- FIG. 5 is a schematic flow chart of the preparation method of the solid reflective bulk acoustic wave resonator in Example 5.
- FIG. 5 is a schematic flow chart of the preparation method of the solid reflective bulk acoustic wave resonator in Example 5.
- FIG. 6 is a schematic flow chart of the method for preparing the solid-state reflective bulk acoustic wave resonator in Example 6.
- FIG. 6 is a schematic flow chart of the method for preparing the solid-state reflective bulk acoustic wave resonator in Example 6.
- FIG. 7 is a schematic flow chart of the preparation method of the solid reflective bulk acoustic wave resonator in Example 7.
- FIG. 7 is a schematic flow chart of the preparation method of the solid reflective bulk acoustic wave resonator in Example 7.
- FIG. 8 is a schematic flow chart of the preparation method of the solid reflective bulk acoustic wave resonator in Example 8.
- FIG. 8 is a schematic flow chart of the preparation method of the solid reflective bulk acoustic wave resonator in Example 8.
- FIG. 9 is a schematic flow chart of the preparation method of the solid-state reflective bulk acoustic wave resonator in Example 9.
- Example 10 is a schematic flow chart of the method for preparing the solid-state reflective bulk acoustic wave resonator in Example 10.
- FIG. 11 is a schematic flow chart of the preparation method of the solid reflective bulk acoustic wave resonator in Example 11.
- FIG. 11 is a schematic flow chart of the preparation method of the solid reflective bulk acoustic wave resonator in Example 11.
- FIG. 12 is a schematic diagram of the structure of the solid reflective bulk acoustic resonator prepared in Example 1.
- FIG. 12 is a schematic diagram of the structure of the solid reflective bulk acoustic resonator prepared in Example 1.
- step (b) Heat the bonded intermediate product obtained in step (a) to peel off the thin film of the piezoelectric material, and then grow an upper electrode on the peeled side of the piezoelectric material.
- the preparation method of the solid-state reflective bulk acoustic resonator is shown in FIG. 1, and specifically includes the following steps:
- the injected ions can also be one or more of He ions, B ions, and As ions; the energy of the injected ions can be any within the range of 100KeV-1000KeV
- the implantation dose can be any value in the range of 2-8 ⁇ 10 16 /cm 2 ; the ion beam current can be any value in the range of 0.1-10um/cm -2 ; the implantation depth can be any value in the range of 0.3-8um value.
- a reflective layer is grown under the injection surface of the obtained piezoelectric material after ion implantation; a low acoustic impedance reflective layer is grown on one side of the piezoelectric material, and then a high acoustic impedance is grown on the low acoustic impedance reflective layer
- the resistive reflective layer is grown for 1-4 cycles in this way; in this embodiment, grown for 3 cycles, and the total thickness of the grown reflective layer is 3600 nm.
- the reflective layer includes a low acoustic impedance reflective layer and a high acoustic impedance reflective layer; the low acoustic impedance reflective layer and the high acoustic impedance reflective layer are alternately arranged; the material of the low acoustic impedance reflective layer is Al, the The material of the high acoustic impedance reflection layer is Mo.
- the material of the low acoustic impedance reflective layer can also be replaced with one or more of Ti, SiO 2 and BCB; (wherein, BCB is the abbreviation for benzocyclobutene,
- the material of the high acoustic impedance reflection layer can also be replaced by one of Au, Nb, Ni, Pt, Ta, W, Ir, ZnO, HfO 2 , TiO 2 , Ta 2 O 5 , and WO 3 Kind or more.
- the bonding in this embodiment is polymer bonding.
- One side of the material is coated with a bonding compound for bonding; wherein the bonding compound is an organic insulating material; the organic insulating material includes but not limited to benzocyclobutene and polyimide; the coated
- the thickness of the bond is 100nm-4000nm; in this implementation, the details are as follows:
- a bonding compound is spin-coated on the obtained reflective layer to form a bonding layer;
- the bonding compound is benzocyclobutene, namely BCB;
- a bonding compound is spin-coated on the substrate to form a bonding layer, and the bonding compound is benzocyclobutene, namely BCB; in this embodiment, the substrate It is Si.
- the substrate can also be replaced with one of SOI, glass, LN, and LT.
- SOI the abbreviation for silicon on the insulating layer
- LiN the abbreviation for lithium niobate
- LN the abbreviation for lithium tantalate
- the pre-bonding pressure for bonding is 4 ⁇ 10 5 pa, and the holding time is 30 min. ; Then, the temperature is slowly increased to 200° C., and the temperature is maintained at 200° C., for 2 hours, so that the benzocyclobutene is completely solidified and the bonding is completed to obtain the bonded intermediate product.
- step (b) The bonded intermediate product obtained in step (a) is subjected to heat treatment, and annealed at a temperature of 350° C. for 2 hours to cause the piezoelectric material to split along the damaged layer generated by the implanted ions to obtain a single crystal pressure
- the electrical thin film material, the piezoelectric layer is shown in (4) in Figure 1.
- an upper electrode is grown on the side of the piezoelectric material after peeling.
- the patterned upper electrode is grown.
- the pattern to be grown is formed by photolithography on the surface of the piezoelectric material, and then the electrode is grown. , And finally wash off the excess part; the electrode material of the grown upper electrode is Al; the thickness of the upper electrode is 50 nm, which is obtained, as shown in (5) in Figure 1.
- FIG. 12 it is a schematic diagram of the structure of the prepared solid reflective bulk acoustic wave resonator.
- step (b) Heat the bonded intermediate product obtained in step (a) to peel off the thin film of the piezoelectric material, and then grow an upper electrode on the peeled side of the piezoelectric material.
- the manufacturing method of the solid-state reflective bulk acoustic wave resonator is shown in FIG. 2, and specifically includes the following steps:
- a reflective layer is grown under the injection surface of the obtained piezoelectric material after ion implantation; a low acoustic impedance reflective layer is grown on one side of the piezoelectric material, and then a high acoustic impedance is grown on the low acoustic impedance reflective layer
- the impedance reflection layer is grown for 1-4 cycles in this way; in this embodiment, the growth is 3 cycles, and the total thickness of the grown reflection layer is 3000 nm.
- the reflective layer includes a low acoustic impedance reflective layer and a high acoustic impedance reflective layer; the low acoustic impedance reflective layer and the high acoustic impedance reflective layer are alternately arranged; the material of the low acoustic impedance reflective layer is Al, the The material of the high acoustic impedance reflection layer is Mo.
- the material of the low acoustic impedance reflective layer can also be replaced with one or more of Ti, SiO 2 and BCB; (wherein, BCB is the abbreviation for benzocyclobutene,
- the material of the high acoustic impedance reflection layer can also be replaced by one of Au, Nb, Ni, Pt, Ta, W, Ir, ZnO, HfO 2 , TiO 2 , Ta 2 O 5 , and WO 3 Kind or more.
- the bonding in this embodiment is a hydrophilic bonding.
- a bonding compound is grown on one side of the electrical material to bond; wherein the bonding compound is one or more of silicon oxide, silicon nitride, aluminum oxide, and aluminum nitride; the thickness of the grown bonding compound is 100nm-4000nm, in this embodiment, the details are as follows:
- a bonding compound is grown on the obtained reflective layer to form a bonding layer;
- the bonding compound is silicon oxide, that is, SiO 2 ;
- a bonding compound is grown on the substrate to form a bonding layer.
- the bonding compound is silicon oxide, that is, SiO 2 ; in this embodiment, the substrate is Si, as an alternative implementation of this embodiment, the substrate can also be replaced with one of SOI, glass, LN, and LT.
- SOI the abbreviation for silicon on the insulating layer
- LiN the abbreviation for lithium niobate
- LN the abbreviation for lithium tantalate
- the substrate on which the bonding layer is grown and the piezoelectric material are placed in a bonding machine or a tube furnace for bonding, to obtain a bonded intermediate product.
- step (b) The bonded intermediate product obtained in step (a) is heat-treated, and annealed at a temperature of 200° C. for 2 hours to cause the piezoelectric material to split along the damaged layer generated by the ion implantation to obtain a single crystal pressure Electrical thin film material, as shown in (4) in Figure 2.
- an upper electrode is grown on the side of the piezoelectric material after peeling.
- the patterned upper electrode is grown.
- the pattern to be grown is formed by photolithography on the surface of the piezoelectric material, and then the electrode is grown. , And finally wash off the excess part; the electrode material of the grown upper electrode is Al; the thickness of the upper electrode is 50 nm, that is, it is obtained, as shown in (5) in Figure 2.
- step (b) Heat the bonded intermediate product obtained in step (a) to peel off the thin film of the piezoelectric material, and then grow an upper electrode on the peeled side of the piezoelectric material.
- the preparation method of the solid-state reflective bulk acoustic wave resonator is shown in FIG. 3, which specifically includes the following steps:
- a reflective layer is grown under the injection surface of the obtained piezoelectric material after ion implantation; a low acoustic impedance reflective layer is grown on one side of the piezoelectric material, and then a high acoustic impedance is grown on the low acoustic impedance reflective layer
- the impedance reflection layer is grown for 1-4 cycles in this way; in this embodiment, the growth is 3 cycles, and the total thickness of the grown reflection layer is 3000 nm.
- the reflective layer includes a low acoustic impedance reflective layer and a high acoustic impedance reflective layer; the low acoustic impedance reflective layer and the high acoustic impedance reflective layer are alternately arranged; the material of the low acoustic impedance reflective layer is Al, the The material of the high acoustic impedance reflection layer is Mo.
- the material of the low acoustic impedance reflective layer can also be replaced with one or more of Ti, SiO 2 and BCB; (wherein, BCB is the abbreviation for benzocyclobutene,
- the material of the high acoustic impedance reflection layer can also be replaced by one of Au, Nb, Ni, Pt, Ta, W, Ir, ZnO, HfO 2 , TiO 2 , Ta 2 O 5 , and WO 3 Kind or more.
- the bonding in this embodiment is eutectic bonding.
- a bonding compound is grown on one side of the material; wherein the bonding compound is one or more of gold, tin, and alloys thereof; preferably, the thickness of the grown bonding compound is 100 nm-4000 nm.
- the details are as follows:
- a bonding compound is grown on the obtained reflective layer to form a bonding layer;
- the bonding compound is gold and tin, namely Au/Sn;
- a bonding compound is grown on the substrate to form a bonding layer.
- the bonding compound is gold and tin, namely Au/Sn; in this embodiment, the substrate The bottom is Si.
- the substrate can also be replaced with one of SOI, glass, LN, and LT.
- SOI the abbreviation for silicon on the insulating layer
- LiN the abbreviation for lithium niobate
- LN the abbreviation for lithium tantalate
- the substrate on which the bonding layer is grown and the piezoelectric material are placed in a bonding machine or a tube furnace for bonding, to obtain a bonded intermediate product.
- step (b) The bonded intermediate product obtained in step (a) is heat-treated, and annealed at a temperature of 200° C. for 2 hours to cause the piezoelectric material to split along the damaged layer generated by the ion implantation to obtain a single crystal pressure Electric thin film material, as shown in (4) in Figure 3.
- an upper electrode is grown on the side of the piezoelectric material after peeling.
- the patterned upper electrode is grown.
- the pattern to be grown is formed by photolithography on the surface of the piezoelectric material, and then the electrode is grown. , And finally wash off the excess part; the electrode material of the grown upper electrode is Al; the thickness of the upper electrode is 50 nm, that is, it is obtained, as shown in (5) in FIG. 3.
- step (b) Heat the bonded intermediate product obtained in step (a) to peel off the thin film of the piezoelectric material, and then grow an upper electrode on the peeled side of the piezoelectric material.
- the manufacturing method of the solid-state reflective bulk acoustic wave resonator is shown in FIG. 4, which specifically includes the following steps:
- the injected ions can also be one or more of He ions, B ions, and As ions; the energy of the injected ions can be any within the range of 100KeV-1000KeV
- the implantation dose can be any value in the range of 2-8 ⁇ 10 16 /cm 2 ; the ion beam current can be any value in the range of 0.1-10um/cm -2 ; the implantation depth can be any value in the range of 0.3-8um value.
- a bottom electrode is grown on the injection surface of the piezoelectric material after ion implantation; the bottom electrode is an unpatterned bottom electrode.
- the electrode material for growing the bottom electrode is Al, and the thickness of the bottom electrode is 50 nm.
- the electrode material for growing the bottom electrode can also be one of Au, Mo, Pt, and W; the thickness of the bottom electrode can be any value in the range of 50-500 nm.
- a reflective layer is grown under the injection surface of the obtained piezoelectric material after ion implantation; a low acoustic impedance reflective layer is grown on one side of the piezoelectric material, and then the low A high-acoustic-impedance reflective layer is grown on the acoustic-impedance reflective layer, which is grown for 1-4 cycles; in this embodiment, the growth is 3 cycles, and the total thickness of the grown reflective layer is 3600 nm.
- the reflective layer includes a low acoustic impedance reflective layer and a high acoustic impedance reflective layer; the low acoustic impedance reflective layer and the high acoustic impedance reflective layer are alternately arranged; the material of the low acoustic impedance reflective layer is Al, the The material of the high acoustic impedance reflection layer is Mo.
- the material of the low acoustic impedance reflective layer can also be replaced with one or more of Ti, SiO 2 , and BCB; the material of the high acoustic impedance reflective layer can also be replaced with One or more of Au, Nb, Ni, Pt, Ta, W, Ir, ZnO, HfO 2 , TiO 2 , Ta 2 O 5 , and WO 3 .
- the bonding in this embodiment is polymer bonding.
- One side of the material is coated with a bonding compound for bonding; wherein the bonding compound is an organic insulating material; the organic insulating material includes but not limited to benzocyclobutene and polyimide; the coated
- the thickness of the bond is 100nm-4000nm; in this implementation, the details are as follows:
- a bonding compound is spin-coated on the obtained reflective layer to form a bonding layer;
- the bonding compound is benzocyclobutene, namely BCB;
- a bonding compound is spin-coated on the substrate to form a bonding layer, and the bonding compound is benzocyclobutene, or BCB; in this embodiment, the substrate It is Si.
- the substrate can also be replaced with one of SOI, glass, LN, and LT.
- SOI the abbreviation for silicon on the insulating layer
- LiN the abbreviation for lithium niobate
- LN the abbreviation for lithium tantalate
- the pre-bonding pressure for bonding is 4 ⁇ 10 5 pa, and the holding time is 30 min. ; Then, the temperature is slowly increased to 200° C., and the temperature is maintained at 200° C., for 2 hours, so that the benzocyclobutene is completely solidified and the bonding is completed to obtain the bonded intermediate product.
- step (b) The bonded intermediate product obtained in step (a) is subjected to heat treatment, and annealed at a temperature of 350° C. for 2 hours to cause the piezoelectric material to split along the damaged layer generated by the implanted ions to obtain a single crystal pressure Electrical thin film material, as shown in (5) in Figure 4.
- an upper electrode is grown on the side of the piezoelectric material after peeling.
- the patterned upper electrode is grown.
- the pattern to be grown is formed by photolithography on the surface of the piezoelectric material, and then the electrode is grown. , And finally wash off the excess part; the electrode material of the grown upper electrode is Al; the thickness of the upper electrode is 50 nm, that is, it is obtained, as shown in (6) in FIG. 4.
- step (b) Heat the bonded intermediate product obtained in step (a) to peel off the thin film of the piezoelectric material, and then grow an upper electrode on the peeled side of the piezoelectric material.
- the preparation method of the solid-state reflective bulk acoustic resonator is shown in FIG. 5, which specifically includes the following steps:
- a bottom electrode is grown on the injection surface of the piezoelectric material after ion implantation; the bottom electrode is an unpatterned bottom electrode.
- the electrode material for growing the bottom electrode is Al, and the thickness of the bottom electrode is 50 nm.
- the electrode material for growing the bottom electrode can also be one of Au, Mo, Pt, and W; the thickness of the bottom electrode can be any value in the range of 50-500 nm.
- a reflective layer is grown below the injection surface of the obtained piezoelectric material after ion implantation; a low acoustic impedance reflective layer is grown on one side of the piezoelectric material, and then on A high-acoustic-impedance reflective layer is grown on the low-acoustic-impedance reflective layer, which is grown for 1-4 cycles; in this embodiment, the growth is 3 cycles, and the total thickness of the grown reflective layer is 3000 nm.
- the reflective layer includes a low acoustic impedance reflective layer and a high acoustic impedance reflective layer; the low acoustic impedance reflective layer and the high acoustic impedance reflective layer are alternately arranged; the material of the low acoustic impedance reflective layer is Al, the The material of the high acoustic impedance reflection layer is Mo.
- the material of the low acoustic impedance reflective layer can also be replaced with one or more of Ti, SiO 2 and BCB; (wherein, BCB is the abbreviation for benzocyclobutene,
- the material of the high acoustic impedance reflection layer can also be replaced by one of Au, Nb, Ni, Pt, Ta, W, Ir, ZnO, HfO 2 , TiO 2 , Ta 2 O 5 , and WO 3 Kind or more.
- the bonding in this embodiment is a hydrophilic bonding.
- a bonding compound is grown on one side of the electrical material to bond; wherein the bonding compound is one or more of silicon oxide, silicon nitride, aluminum oxide, and aluminum nitride; the thickness of the grown bonding compound is 100nm-4000nm, in this embodiment, the details are as follows:
- a bonding compound is grown on the obtained reflective layer to form a bonding layer;
- the bonding compound is silicon oxide, that is, SiO 2 ;
- a bonding compound is grown on the substrate to form a bonding layer.
- the bonding compound is silicon oxide, that is, SiO 2 ; in this embodiment, the substrate is Si, as an alternative implementation of this embodiment, the substrate can also be replaced with one of SOI, glass, LN, and LT.
- SOI the abbreviation for silicon on the insulating layer
- LiN the abbreviation for lithium niobate
- LN the abbreviation for lithium tantalate
- the substrate on which the bonding layer is grown and the piezoelectric material are placed in a bonding machine or a tube furnace for bonding, to obtain a bonded intermediate product.
- step (b) The bonded intermediate product obtained in step (a) is heat-treated, and annealed at a temperature of 200° C. for 2 hours to cause the piezoelectric material to split along the damaged layer generated by the ion implantation to obtain a single crystal pressure Electrical thin film material, as shown in (5) in Figure 5.
- an upper electrode is grown on the side of the piezoelectric material after peeling.
- the patterned upper electrode is grown.
- the pattern to be grown is formed by photolithography on the surface of the piezoelectric material, and then the electrode is grown. , And finally wash off the excess part; the electrode material of the grown upper electrode is Al; the thickness of the upper electrode is 50 nm, that is, it is obtained, as shown in (6) in FIG. 5.
- step (b) Heat the bonded intermediate product obtained in step (a) to peel off the thin film of the piezoelectric material, and then grow an electrode on the peeled side of the piezoelectric material.
- the manufacturing method of the solid-state reflective bulk acoustic wave resonator is shown in FIG. 6, and specifically includes the following steps:
- a bottom electrode is grown on the injection surface of the piezoelectric material after ion implantation; the bottom electrode is an unpatterned bottom electrode.
- the electrode material for growing the bottom electrode is Al, and the thickness of the bottom electrode is 50 nm.
- the electrode material for growing the bottom electrode can also be one of Au, Mo, Pt, and W; the thickness of the bottom electrode can be any value in the range of 50-500 nm.
- a reflective layer is grown below the injection surface of the obtained piezoelectric material after ion implantation; a low acoustic impedance reflective layer is grown on one side of the piezoelectric material, and then the low A high-acoustic-impedance reflective layer is grown on the acoustic-impedance reflective layer, which is grown for 1-4 cycles; in this embodiment, the growth is 3 cycles, and the total thickness of the grown reflective layer is 3000 nm.
- the reflective layer includes a low acoustic impedance reflective layer and a high acoustic impedance reflective layer; the low acoustic impedance reflective layer and the high acoustic impedance reflective layer are alternately arranged; the material of the low acoustic impedance reflective layer is Al, the The material of the high acoustic impedance reflection layer is Mo.
- the material of the low acoustic impedance reflective layer can also be replaced with one or more of Ti, SiO2, and BCB; the material of the high acoustic impedance reflective layer can also be replaced with Au One or more of, Nb, Ni, Pt, Ta, W, Ir, ZnO, HfO 2 , TiO 2 , Ta 2 O 5 , and WO 3 .
- the bonding in this embodiment is eutectic bonding.
- a bonding compound is grown on one side of the material; wherein the bonding compound is one or more of gold, tin, and alloys thereof; preferably, the thickness of the grown bonding compound is 100 nm-4000 nm.
- the details are as follows:
- a bonding compound is grown on the obtained reflective layer to form a bonding layer;
- the bonding compound is gold and tin, namely Au/Sn;
- a bonding compound is grown on the substrate to form a bonding layer, and the bonding compound is gold and tin, namely Au/Sn; in this embodiment, the substrate The bottom is Si.
- the substrate can also be replaced with one of SOI, glass, LN, and LT.
- SOI the abbreviation for silicon on the insulating layer
- LiN the abbreviation for lithium niobate
- LN the abbreviation for lithium tantalate
- the substrate on which the bonding layer is grown and the piezoelectric material are placed in a bonding machine or a tube furnace for bonding, to obtain a bonded intermediate product.
- step (b) The bonded intermediate product obtained in step (a) is heat-treated, and annealed at a temperature of 200° C. for 2 hours to cause the piezoelectric material to split along the damaged layer generated by the implanted ions to obtain a single crystal Electrical thin film material, as shown in (5) in Figure 6.
- an upper electrode is grown on the side of the piezoelectric material after peeling.
- the patterned upper electrode is grown.
- the pattern to be grown is formed by photolithography on the surface of the piezoelectric material, and then the electrode is grown. , And finally wash off the excess part; the electrode material of the grown upper electrode is Al; the thickness of the upper electrode is 50 nm, that is, it is obtained, as shown in (6) in FIG. 6.
- step (b) Heat the bonded intermediate product obtained in step (a) to peel off the thin film of the piezoelectric material, and then grow an upper electrode on the peeled side of the piezoelectric material.
- the preparation method of the solid-state reflective bulk acoustic resonator is shown in FIG. 7, and specifically includes the following steps:
- a bottom electrode is grown on the injection surface of the piezoelectric material after ion implantation; the bottom electrode is a patterned bottom electrode.
- the patterned bottom electrode is grown by the following method: first lithographically form the pattern to be grown on the surface of the piezoelectric material, then grow the electrode, and finally wash off the excess part; as an alternative implementation of this embodiment,
- the bottom electrode can also be grown by the following method: first grow an electrode on the surface of the piezoelectric material, then prepare a mask, and finally etch away the excess part; in this embodiment, the electrode material for growing the bottom electrode is Al, the thickness of the lower electrode is 50 nm.
- the electrode material for growing the bottom electrode can also be one of Au, Mo, Pt, and W; the thickness of the bottom electrode can be any value in the range of 50-500 nm.
- the substrate is taken.
- the substrate is Si.
- the substrate can also be replaced with SOI, glass, LN, One of LT.
- SOI the abbreviation for silicon on the insulating layer
- LiN the abbreviation for lithium niobate
- LN the abbreviation for lithium tantalate
- a high-acoustic impedance reflective layer is grown on the substrate, and then a low-acoustic-impedance reflective layer is grown on the high-acoustic-impedance reflective layer, which is grown for 1-3 cycles, and finally grown on the low-acoustic-impedance reflective layer
- One layer of high acoustic impedance reflective layer is sufficient; in this embodiment, the growth of 3 cycles, the total thickness of the grown reflective layer is 3000 nm.
- the reflective layer includes a low acoustic impedance reflective layer and a high acoustic impedance reflective layer; the low acoustic impedance reflective layer and the high acoustic impedance reflective layer are alternately arranged; the material of the low acoustic impedance reflective layer is Al, the The material of the high acoustic impedance reflection layer is Mo.
- the material of the low acoustic impedance reflective layer can also be replaced with one or more of Ti, SiO2, and BCB; the material of the high acoustic impedance reflective layer can also be replaced with Au One or more of, Nb, Ni, Pt, Ta, W, Ir, ZnO, HfO 2 , TiO 2 , Ta 2 O 5 , and WO 3 .
- the piezoelectric material is bonded to the side of the substrate with the reflective layer;
- the bonding in this embodiment is a polymer bond, and the substrate and the piezoelectric material are bonded on one side Coated bonding compound bonding;
- the bonding compound is an organic insulating material;
- the organic insulating material includes but not limited to benzocyclobutene, polyimide;
- the thickness of the coated bonding compound It is 100nm-4000nm; in this implementation, the details are as follows:
- a bonding compound is spin-coated on the side of the obtained piezoelectric material with the lower electrode to form a bonding layer;
- the bonding compound is benzocyclobutane Ene, namely BCB;
- a bonding compound is spin-coated on the side of the substrate with a reflective layer to form a bonding layer, and the bonding compound is benzocyclobutene, namely BCB;
- the pre-bonding pressure for bonding is 4 ⁇ 10 5 pa, and the holding time is 30 min. ; Then, the temperature is slowly increased to 200° C., and the temperature is maintained at 200° C., for 2 hours, so that the benzocyclobutene is completely solidified and the bonding is completed to obtain the bonded intermediate product.
- step (b) The bonded intermediate product obtained in step (a) is subjected to heat treatment, and annealed at a temperature of 350° C. for 2 hours to cause the piezoelectric material to split along the damaged layer generated by the implanted ions to obtain a single crystal pressure Electrical thin film material, as shown in (5) in Figure 7.
- an upper electrode is grown on the side of the piezoelectric material after peeling.
- the patterned upper electrode is grown.
- the pattern to be grown is formed by photolithography on the surface of the piezoelectric material, and then the electrode is grown. , And finally wash off the excess part; the electrode material of the grown upper electrode is Al; the thickness of the upper electrode is 50 nm, that is, it is obtained, as shown in (6) in FIG. 7.
- step (b) Heat the bonded intermediate product obtained in step (a) to peel off the thin film of the piezoelectric material, and then grow an upper electrode on the peeled side of the piezoelectric material.
- the preparation method of the solid-state reflective bulk acoustic resonator is shown in FIG. 8, and specifically includes the following steps:
- a bottom electrode is grown on the injection surface of the piezoelectric material after ion implantation; the bottom electrode is a patterned bottom electrode.
- the patterned bottom electrode is grown by the following method: first lithographically form the pattern to be grown on the surface of the piezoelectric material, then grow the electrode, and finally wash off the excess part; as an alternative implementation of this embodiment,
- the bottom electrode can also be grown by the following method: first grow an electrode on the surface of the piezoelectric material, then prepare a mask, and finally etch away the excess part; in this embodiment, the electrode material for growing the bottom electrode is Al, the thickness of the lower electrode is 50 nm.
- the electrode material for growing the bottom electrode can also be one of Au, Mo, Pt, and W; the thickness of the bottom electrode can be any value in the range of 50-500 nm.
- SiO 2 is grown on one side of the lower electrode as an isolation layer, and then the isolation layer is planarized; the thickness of the isolation layer is 50 nm.
- the thickness of the isolation layer may be any value in the range of 50-800 nm.
- a reflective layer is grown under the isolating layer of the piezoelectric material obtained by ion implantation; a low acoustic impedance reflective layer is grown on one side of the piezoelectric material, and then A high-acoustic-impedance reflective layer is grown on the low-acoustic-impedance reflective layer and grown for 1-4 cycles.
- the growth is 3 cycles, and the total thickness of the grown reflective layer is 3000 nm.
- the reflective layer includes a low acoustic impedance reflective layer and a high acoustic impedance reflective layer; the low acoustic impedance reflective layer and the high acoustic impedance reflective layer are alternately arranged; the material of the low acoustic impedance reflective layer is Al, the The material of the high acoustic impedance reflection layer is Mo.
- the material of the low acoustic impedance reflective layer can also be replaced with one or more of Ti, SiO 2 , and BCB; the material of the high acoustic impedance reflective layer can also be replaced with One or more of Au, Nb, Ni, Pt, Ta, W, Ir, ZnO, HfO 2 , TiO 2 , Ta 2 O 5 , and WO 3 .
- the bonding in this embodiment is polymer bonding.
- One side of the material is coated with a bonding compound for bonding; wherein the bonding compound is an organic insulating material; the organic insulating material includes but not limited to benzocyclobutene and polyimide; the coated
- the thickness of the bond is 100nm-4000nm; in this implementation, the details are as follows:
- a bonding compound is spin-coated on one side of the reflective layer of the piezoelectric material to form a bonding layer; in this embodiment, the bonding compound is benzocyclobutene , Namely BCB;
- a bonding compound is spin-coated on the side of the substrate with a reflective layer to form a bonding layer, and the bonding compound is benzocyclobutene, namely BCB;
- the bottom is Si.
- the substrate can also be replaced with one of SOI, glass, LN, and LT.
- SOI the abbreviation for silicon on the insulating layer
- LN the abbreviation for lithium niobate
- LT the abbreviation for lithium tantalate
- the pre-bonding pressure for bonding is 4 ⁇ 10 5 pa, and the holding time is 30 min. ; Then, the temperature is slowly increased to 200° C., and the temperature is maintained at 200° C., for 2 hours, so that the benzocyclobutene is completely solidified and the bonding is completed to obtain the bonded intermediate product.
- step (b) The bonded intermediate product obtained in step (a) is subjected to heat treatment, and annealed at a temperature of 350° C. for 2 hours to cause the piezoelectric material to split along the damaged layer generated by the implanted ions to obtain a single crystal pressure Electric thin film material, as shown in (6) in Figure 8.
- an upper electrode is grown on the side of the piezoelectric material after peeling.
- the patterned upper electrode is grown.
- the pattern to be grown is formed by photolithography on the surface of the piezoelectric material, and then the electrode is grown. , And finally wash off the excess part; the electrode material of the grown upper electrode is Al; the thickness of the upper electrode is 50 nm, that is, it is obtained, as shown in (7) in FIG. 8.
- step (b) Heat the bonded intermediate product obtained in step (a) to peel off the thin film of the piezoelectric material, and then grow an upper electrode on the peeled side of the piezoelectric material.
- the preparation method of the solid-state reflective bulk acoustic resonator is shown in FIG. 9, and specifically includes the following steps:
- a bottom electrode is grown on the injection surface of the piezoelectric material after ion implantation; the bottom electrode is a patterned bottom electrode.
- the patterned bottom electrode is grown by the following method: first lithographically form the pattern to be grown on the surface of the piezoelectric material, then grow the electrode, and finally wash off the excess part; as an alternative implementation of this embodiment,
- the bottom electrode can also be grown by the following method: first grow an electrode on the surface of the piezoelectric material, then prepare a mask, and finally etch away the excess part; in this embodiment, the electrode material for growing the bottom electrode is Al, the thickness of the lower electrode is 50 nm.
- the electrode material for growing the bottom electrode can also be one of Au, Mo, Pt, and W; the thickness of the bottom electrode can be any value in the range of 50-500 nm.
- SiO 2 is grown on one side of the lower electrode as an isolation layer, and then the isolation layer is planarized; the thickness of the isolation layer is 50 nm.
- the thickness of the isolation layer may be any value in the range of 50-800 nm.
- a reflective layer is grown under the obtained isolation layer of piezoelectric material after ion implantation.
- the reflective layer includes a low acoustic impedance reflective layer and a high acoustic impedance reflective layer;
- the acoustic impedance reflective layer and the high acoustic impedance reflective layer are alternately arranged; first, a low acoustic impedance reflective layer is grown on one side of the piezoelectric material, and then a high acoustic impedance reflective layer is grown on the low acoustic impedance reflective layer.
- the impedance reflection layer is grown in this way for 1-2 cycles; in this embodiment, the growth is 1 cycle, and the thickness of the grown reflection layer is 300 nm.
- the material of the low acoustic impedance reflective layer is Al, and the material of the high acoustic impedance reflective layer is Mo.
- the material of the low acoustic impedance reflective layer can also be replaced with one or more of Ti, SiO 2 , and BCB; the material of the high acoustic impedance reflective layer can also be replaced with One or more of Au, Nb, Ni, Pt, Ta, W, Ir, ZnO, HfO 2 , TiO 2 , Ta 2 O 5 , and WO 3 .
- the bonding in this embodiment is a hydrophilic bonding.
- the bonding compound is grown on one side of the material; wherein the bonding compound is one or more of silicon oxide, silicon nitride, aluminum oxide, and aluminum nitride; preferably, the thickness of the grown bonding compound It is 100nm-4000nm.
- the details are as follows:
- a bonding compound is grown on the obtained reflective layer to form a bonding layer; in this embodiment, the bonding compound is silicon dioxide;
- the substrate is taken.
- the substrate is Si.
- the substrate can also be replaced with SOI, glass, LN One of LT.
- SOI the abbreviation for silicon on the insulating layer
- LiN the abbreviation for lithium niobate
- LN the abbreviation for lithium tantalate
- a high acoustic impedance reflective layer is grown on the substrate, and then a low acoustic impedance reflective layer is grown on the high acoustic impedance reflective layer, and the growth cycle is 1-2 cycles, and finally on the low acoustic impedance reflective layer It is sufficient to grow a reflective layer with high acoustic impedance; in this embodiment, the growth is performed for one cycle, and the thickness of the grown reflective layer is 300 nm.
- the material of the low acoustic impedance reflective layer is Al
- the material of the high acoustic impedance reflective layer is Mo.
- the material of the low acoustic impedance reflective layer can also be replaced with one or more of Ti, SiO 2 , and BCB; the material of the high acoustic impedance reflective layer can also be replaced with One or more of Au, Nb, Ni, Pt, Ta, W, Ir, ZnO, HfO 2 , TiO 2 , Ta 2 O 5 , and WO 3 .
- a bonding compound is grown on the substrate to form a bonding layer, the bonding compound is silicon dioxide;
- the piezoelectric material is placed in a bonding machine or a tube furnace for bonding to obtain an intermediate product after bonding.
- step (b) The bonded intermediate product obtained in step (a) is heat-treated, and annealed at a temperature of 200° C. for 2 hours to cause the piezoelectric material to split along the damaged layer generated by the ion implantation to obtain a single crystal pressure Electrical thin film material, as shown in (7) in Figure 9.
- an upper electrode is grown on the side of the piezoelectric material after peeling.
- the patterned upper electrode is grown.
- the pattern to be grown is formed by photolithography on the surface of the piezoelectric material, and then the electrode is grown. , And finally wash off the excess part; the electrode material of the grown upper electrode is Al; the thickness of the upper electrode is 50 nm, that is, it is obtained, as shown in (8) in FIG. 9.
- step (b) Heat the bonded intermediate product obtained in step (a) to peel off the thin film of the piezoelectric material, and then grow an upper electrode on the peeled side of the piezoelectric material.
- the manufacturing method of the solid-state reflective bulk acoustic wave resonator is shown in FIG. 10, which specifically includes the following steps:
- a bottom electrode is grown on the injection surface of the piezoelectric material after ion implantation; the bottom electrode is a patterned bottom electrode.
- the patterned bottom electrode is grown by the following method: first lithographically form the pattern to be grown on the surface of the piezoelectric material, then grow the electrode, and finally wash off the excess part; as an alternative implementation of this embodiment,
- the bottom electrode can also be grown by the following method: first grow an electrode on the surface of the piezoelectric material, then prepare a mask, and finally etch away the excess part; in this embodiment, the electrode material for growing the bottom electrode is Al, the thickness of the lower electrode is 50 nm.
- the electrode material for growing the bottom electrode can also be one of Au, Mo, Pt, and W; the thickness of the bottom electrode can be any value in the range of 50-500 nm.
- SiO 2 is grown on one side of the lower electrode as an isolation layer, and then the isolation layer is planarized; the thickness of the isolation layer is 50 nm.
- the thickness of the isolation layer may be any value in the range of 50-800 nm.
- a reflective layer is grown under the obtained isolation layer of piezoelectric material after ion implantation.
- the reflective layer includes a low acoustic impedance reflective layer and a high acoustic impedance reflective layer;
- the acoustic impedance reflective layer and the high acoustic impedance reflective layer are alternately arranged; first, a low acoustic impedance reflective layer is grown on one side of the piezoelectric material, and then a high acoustic impedance reflective layer is grown on the low acoustic impedance reflective layer.
- the impedance reflection layer is grown in this way for 1-2 cycles; in this embodiment, the growth is 1 cycle, and the thickness of the grown reflection layer is 300 nm.
- the material of the low acoustic impedance reflective layer is Al, and the material of the high acoustic impedance reflective layer is Mo.
- the material of the low acoustic impedance reflective layer can also be replaced with one or more of Ti, SiO 2 , and BCB; the material of the high acoustic impedance reflective layer can also be replaced with One or more of Au, Nb, Ni, Pt, Ta, W, Ir, ZnO, HfO 2 , TiO 2 , Ta 2 O 5 , and WO 3 .
- the bonding in this embodiment is eutectic bonding.
- a bonding compound is grown on one side of the material; wherein the bonding compound is one or more of gold, tin, and alloys thereof; preferably, the thickness of the grown bonding compound is 100 nm-4000 nm.
- the details are as follows:
- a bonding compound is grown on the obtained reflective layer to form a bonding layer;
- the bonding compound is gold and tin, namely Au/Sn;
- the substrate is taken.
- the substrate is Si.
- the substrate can also be replaced with SOI, glass, LN One of LT.
- SOI the abbreviation for silicon on the insulating layer
- LiN the abbreviation for lithium niobate
- LN the abbreviation for lithium tantalate
- a high acoustic impedance reflective layer is grown on the substrate, and then a low acoustic impedance reflective layer is grown on the high acoustic impedance reflective layer, and the growth cycle is 1-2 cycles, and finally on the low acoustic impedance reflective layer It is sufficient to grow a reflective layer with high acoustic impedance; in this embodiment, the growth is performed for one cycle, and the thickness of the grown reflective layer is 300 nm.
- the material of the low acoustic impedance reflective layer is Al
- the material of the high acoustic impedance reflective layer is Mo.
- the material of the low acoustic impedance reflective layer can also be replaced with one or more of Ti, SiO 2 , and BCB; the material of the high acoustic impedance reflective layer can also be replaced with One or more of Au, Nb, Ni, Pt, Ta, W, Ir, ZnO, HfO 2 , TiO 2 , Ta 2 O 5 , and WO 3 .
- a bonding compound is grown on the substrate to form a bonding layer, and the bonding compound is gold and tin, namely Au/Sn;
- the substrate and the piezoelectric material are placed in a bonding machine or a tube furnace for bonding to obtain an intermediate product after bonding.
- step (b) The bonded intermediate product obtained in step (a) is heat-treated, and annealed at a temperature of 200° C. for 2 hours to cause the piezoelectric material to split along the damaged layer generated by the ion implantation to obtain a single crystal pressure Electrical thin film material, as shown in (7) in Figure 10.
- an upper electrode is grown on the side of the piezoelectric material after peeling.
- the patterned upper electrode is grown.
- the pattern to be grown is formed by photolithography on the surface of the piezoelectric material, and then the electrode is grown. , And finally wash off the excess part; the electrode material of the grown upper electrode is Al; the thickness of the upper electrode is 50 nm, that is, it is obtained, as shown in (8) in FIG. 10.
- step (b) Heat the bonded intermediate product obtained in step (a) to peel off the thin film of the piezoelectric material, and then grow an electrode on the peeled side of the piezoelectric material.
- the preparation method of the solid-state reflective bulk acoustic resonator is shown in FIG. 12, which specifically includes the following steps:
- a bottom electrode is grown on the injection surface of the piezoelectric material after ion implantation; the bottom electrode is a patterned bottom electrode.
- the patterned bottom electrode is grown by the following method: first lithographically form the pattern to be grown on the surface of the piezoelectric material, then grow the electrode, and finally wash off the excess part; as an alternative implementation of this embodiment,
- the bottom electrode can also be grown by the following method: first grow an electrode on the surface of the piezoelectric material, then prepare a mask, and finally etch away the excess part; in this embodiment, the electrode material for growing the bottom electrode is Al, the thickness of the lower electrode is 50 nm.
- the electrode material for growing the bottom electrode can also be one of Au, Mo, Pt, and W; the thickness of the bottom electrode can be any value in the range of 50-500 nm.
- the thickness of the isolation layer is 50 nm.
- the thickness of the isolation layer may be any value in the range of 50-800 nm.
- a reflective layer is grown under the isolating layer of the piezoelectric material obtained by ion implantation; a low acoustic impedance reflective layer is grown on one side of the piezoelectric material, and then A high-acoustic-impedance reflective layer is grown on the low-acoustic-impedance reflective layer and grown for 1-4 cycles.
- the growth is 3 cycles, and the total thickness of the grown reflective layer is 3000 nm.
- the reflective layer includes a low acoustic impedance reflective layer and a high acoustic impedance reflective layer; the low acoustic impedance reflective layer and the high acoustic impedance reflective layer are alternately arranged; the material of the low acoustic impedance reflective layer is Al, the The material of the high acoustic impedance reflection layer is Mo.
- the material of the low acoustic impedance reflective layer can also be replaced with one or more of Ti, SiO 2 , and BCB; the material of the high acoustic impedance reflective layer can also be replaced with One or more of Au, Nb, Ni, Pt, Ta, W, Ir, ZnO, HfO 2 , TiO 2 , Ta 2 O 5 , and WO 3 .
- the bonding in this embodiment is polymer bonding.
- One side of the material is coated with a bonding compound for bonding; wherein the bonding compound is an organic insulating material; the organic insulating material includes but not limited to benzocyclobutene and polyimide; the coated
- the thickness of the bond is 100nm-4000nm; in this implementation, the details are as follows:
- a bonding compound is spin-coated on one side of the reflective layer of the obtained piezoelectric material to form a bonding layer;
- the bonding compound is benzocyclobutene , Namely BCB;
- a bonding compound is spin-coated on the side of the substrate with a reflective layer to form a bonding layer, and the bonding compound is benzocyclobutene, that is, BCB;
- the bottom is Si.
- the substrate can also be replaced with one of SOI, glass, LN, and LT.
- SOI the abbreviation for silicon on the insulating layer
- LN the abbreviation for lithium niobate
- the abbreviation for lithium tantalate is LT.
- the pre-bonding pressure for bonding is 4 ⁇ 10 5 pa, and the holding time is 30 min. ; Then, the temperature is slowly increased to 200° C., and the temperature is maintained at 200° C., for 2 hours, so that the benzocyclobutene is completely solidified and the bonding is completed to obtain the bonded intermediate product.
- step (b) The bonded intermediate product obtained in step (a) is subjected to heat treatment, and annealed at a temperature of 350° C. for 2 hours to cause the piezoelectric material to split along the damaged layer generated by the implanted ions to obtain a single crystal pressure Electrical thin film material, as shown in (6) in Figure 11.
- an upper electrode is grown on the side of the piezoelectric material after peeling.
- the patterned upper electrode is grown.
- the pattern to be grown is formed by photolithography on the surface of the piezoelectric material, and then the electrode is grown. , And finally wash off the excess part; the electrode material of the grown upper electrode is Al; the thickness of the upper electrode is 50 nm, which is obtained, as shown in (7) in FIG. 11.
- the materials of the substrate, the reflective layer, the bottom electrode, the piezoelectric layer, and the top electrode are completely the same as those in the first embodiment.
- the solid-state reflection-type bulk acoustic wave resonators prepared by the methods in Examples 1-11 and Comparative Example 1 were prepared according to the following steps Conduct a comparative test:
- Example 1 3.192GHz 3.516GHz 2581 22.71%
- Example 2 3.164GHz 3.476GHz 2157 22.12%
- Example 3 3.24GHz 3.562GHz 2352 22.28%
- Example 4 3.116GHz 3.42GHz 2200 22.04%
- Example 5 3.194GHz 3.518GHz 2250 22.7%
- Example 6 3196GHz 3.52GHz 2356 22.69%
- Example 7 3.15GHz 3.464GHz 2421 22.3%
- Example 8 3.158GHz 3.456GHz 2341 21.25%
- Example 9 3.142GHz 3.446GHz 2418 21.74%
- Example 10 3.190GHz 3.512GHz 2503 22.59%
- Example 11 3.16GHz 3.458GHz 2406 21.24% Comparative example 1 3.012GHz 3.226GHz 1100 16.35%
- the solid-state reflective bulk acoustic resonator prepared by the method of the present invention has better Q value and electromechanical coupling coefficient, and better performance. It can be known from technical common sense that the present invention can be implemented by other embodiments that do not depart from its spirit or essential features. Therefore, the above-disclosed embodiments are only illustrative in all aspects, and not the only ones. All changes within the scope of the present invention or within the scope equivalent to the present invention are encompassed by the present invention.
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
- Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
Abstract
本发明提供一种固态反射型体声波谐振器的制备方法,包括如下步骤:取经过离子注入的压电材料,并在所述压电材料的注入面下方和/或所述衬底上方生长反射层,然后取衬底,将所述衬底与所述压电材料键合;将得到的键合后的中间产物进行热处理,使所述压电材料的薄膜剥离,再在所述压电材料的剥离后的一侧生长上电极,即得。本发明所述的固态反射型体声波谐振器的制备方法,使用晶圆键合转移技术制备高质量单晶铌酸锂薄膜,结合反射层结构能够制备结构强度高且性能优异的谐振器。
Description
本发明属于单晶薄膜器件的加工领域,具体而言,本发明涉及一种固态反射型体声波谐振器及其制备方法。
薄膜体声波谐振器以小体积、高品质因子(Q值)等优点,已广泛应用于无线通信领域。薄膜体声波谐振器通过压电薄膜的逆压电效应将电能量转换成声波从而形成谐振,其谐振腔以压电薄膜作为支撑,是一个压电薄膜夹在两金属电极间的三明治结构,其谐振频率主要与压电薄膜厚度成反比,也与三明治结构其他各层特性和厚度有关。要获得高Q值的谐振器,必须将谐振能量限制在压电层内。理想的全反射状态是三明治结构的谐振腔两面都是空气,这种结构中谐振区域处于悬空状态,机械强度差。而固态反射型的谐振器,则是在谐振区与下方制备多层反射层结构,能够起到对谐振能量有效反射的效果,固态反射型谐振器在结构强度方面具有明显的优势。
现有固态反射型谐振器制备方法主要为在衬底上沉积反射层、下电极、压电层,然后制备上电极。例如,中国专利文献CN101958696A中公开的温度补偿薄膜体波谐振器及加工方法,采用的压电薄膜主要为氮化铝膜,由于采用电子束沉积的方式,难以保证薄膜的晶格取向,加上在金属电极上沉积,薄膜均匀性受电极层影响,从而影响薄膜质量,致使器件产生多次谐波,影响谐振频率,并且氮化铝膜机电耦合系数不高,难以满足宽带滤波的需求。
发明内容
本发明提供了一种固态反射型体声波谐振器的制备方法,以解决现有技术中制备固态反射型体声波谐振器时,难以保证薄膜的晶格取向、薄膜质量不高,致使器件产生多次谐波、对谐振频率影响大、难以达到宽频滤波的技术问题。
为了解决上述问题,本发明提供了一种固态反射型体声波谐振器的制备方法,包括如下步骤:
(a)取经过离子注入的压电材料,并在所述压电材料的注入面下方生长反射层,然后取衬底,将所述衬底与所述压电材料的具有反射层的一侧键合;
或者,取经过离子注入的压电材料,然后取衬底,在所述衬底上方生长反射层,将所述压电材料与所述衬底的具有反射层的一侧键合;
或者,取经过离子注入的压电材料,并在所述压电材料的注入面下方生长反射层,然后取衬底,在所述衬底上方生长反射层,将所述压电材料具有反射层的一侧与所述衬底的具有 反射层的一侧键合;
(b)将步骤(a)中得到的键合后的中间产物进行热处理,使所述压电材料的薄膜剥离,再在所述压电材料的剥离后的一侧生长上电极,即得;
优选地,步骤(a)中所述压电材料为铌酸锂;
优选地,经过离子注入的压电材料通过如下方法得到:取压电材料,在所述压电材料上进行离子注入,所述压电材料注入的离子为H离子、He离子、B离子、As离子中的一种或多种;注入离子的能量为100KeV-1000KeV;注入剂量为2-8×10
16/cm
2;离子束流为0.1-10um/cm
-2;注入深度为0.3-8um;
优选地,所述衬底为Si、SOI、玻璃、LN、LT中的一种。
优选地,所述反射层包括低声阻抗反射层、高声阻抗反射层;所述低声阻抗反射层与所述高声阻抗反射层为交替设置,其中最靠近所述压电材料的一层为低声阻抗反射层;
优选地,所述低声阻抗反射层的材质为Al、Ti、SiO
2、BCB中的一种或者多种;所述高声阻抗反射层的材质为Mo、Au、Nb、Ni、Pt、Ta、W、Ir、ZnO、HfO
2、TiO
2、Ta
2O
5、WO
3中的一种或多种;
优选地,生长反射层具体包括如下步骤:
在所述压电材料的一侧生长一层低声阻抗反射层,然后再在低声阻抗反射层上生长一层高声阻抗反射层,如此生长1-4个循环,即可;
或者,在所述衬底上生长一层高声阻抗反射层,然后再在高声阻抗反射层上生长一层低声阻抗反射层,如此生长1-3个循环,最后在低声阻抗反射层上生长一层高声阻抗反射层,即可;
或者,在所述压电材料的一侧生长一层低声阻抗反射层,然后再在低声阻抗反射层上生长一层高声阻抗反射层,如此循环生长1-2个循环;同时在所述衬底上生长一层高声阻抗反射层,然后再在高声阻抗反射层上生长一层低声阻抗反射层,如此循环生长1-2个循环,最后在低声阻抗反射层上生长一层高声阻抗反射层,即可;
优选的,生长的所述反射层的总厚度为200nm-6000nm。
优选地,步骤(a)中的键合为聚合物键合、亲水性键合、共晶键合中的一种;
优选地,聚合物键合具体包括如下步骤:在所述衬底和/或所述压电材料的一侧涂覆键合物键合;其中,所述键合物为有机绝缘材料;所述有机绝缘材料包括苯并环丁烯、聚酰亚胺中的一种或多种;优选地,涂覆的所述键合物厚度为100nm-4000nm;
优选地,亲水键合具体包括如下步骤:在所述衬底和/或所述压电材料的一侧生长键合物键合;其中,所述键合物为氧化硅、氮化硅、氧化铝、氮化铝中的一种或多种;优选地,生 长的所述键合物厚度为100nm-4000nm;
优选地,共晶键合具体包括如下步骤:优在所述衬底和/或所述压电材料的一侧生长键合物键合;其中,所述键合物为金、锡及其合金中的一种或多种;优选地,生长的所述键合物厚度为100nm-4000nm。
优选地,步骤(a)中的经过离子注入的压电材料的注入面上还生长有下电极;
优选地,所述下电极包括图形化的下电极、未图形化的下电极。
优选地,图形化的下电极通过如下方法生长:先在所述压电材料的表面光刻形成待生长图形,再生长电极,最后洗掉多余部分,即可;或者,先在所述压电材料的表面生长电极,再制备掩膜,最后刻蚀掉多余部分,即可;
优选地,生长下电极的电极材料为Al、Au、Mo、Pt、W中的一种;所述下电极的厚度为50-500nm。
优选地,所述下电极为图形化的下电极,在所述下电极的一侧生长SiO
2作为隔离层,对所述隔离层平坦化,或者不进行平坦化;所述隔离层的厚度为50-800nm,优选地,所述隔离层的厚度为50-100nm。
优选地,步骤(b)中具体包括如下步骤:将步骤(a)得到的键合后的中间产物,升温至200~350℃,使薄膜剥离,然后,在温度200~350℃下,退火20~120min,得到剥离薄膜;优选地,所述压电材料剥离后的厚度为500-1000nm。
优选地,生长的所述上电极的电极材料为Al、Au、Mo、Pt、W中的一种,所述上电极厚度为50~300nm。
本发明还提供一种所述的固态反射型体声波谐振器的制备方法制备得到的固态反射型体声波谐振器。
优选地,所述的固态反射型体声波谐振器,自上而下依次包括上电极、压电薄膜、下电极、反射层、键合层和衬底;优选地,所述下电极为图形化的下电极,所述下电极与所述反射层之间还设有隔离层;
或者,自上而下依次包括上电极、压电薄膜、下电极、键合层、反射层和衬底。
优选地,所述反射层由交替设置的低声阻抗反射层与高声阻抗反射层组成。
本发明还提供一种固态反射型体声波谐振器,
自上而下依次包括上电极、压电薄膜、下电极、反射层、键合层和衬底;优选地,所述下电极为图形化的下电极,所述下电极与所述反射层之间还设有隔离层;
或者,自上而下依次包括上电极、压电薄膜、下电极、键合层、反射层和衬底;
优选地,所述反射层由交替设置的低声阻抗反射层与高声阻抗反射层组成。
优选地,所述固态反射型体声波谐振器由晶圆键合转移方法制备而成。
与现有技术相比,本发明的优点和有益效果在于:
1、本发明所述的固态反射型体声波谐振器的制备方法,使用晶圆键合转移技术制备高质量压电薄膜,结合固态反射层结构能够制备结构强度高且性能优异的谐振器。本发明的键合层可以设计在下电极和衬底间任意位置。本发明可以使键合方式具有很大的灵活性,以满足不同制备情况的需要,提高键合成功率。并且,制备得到的固态反射型体声波谐振器可以达到高频、高机电耦合系数的要求,满足宽带滤波的需求,且不易产生谐波,解决了电子束沉积的方式制备的固态反射型体声波谐振器,难以保证薄膜的晶格取向、薄膜质量不高,致使器件产生多次谐波、对谐振频率影响大、难以实现宽带滤波的技术问题。
2、本发明所述的固态反射型体声波谐振器的制备方法,低声阻抗反射层和高声阻抗反射层交替分布,交替分布的低声阻抗反射层和高声阻抗反射层往往通过逐层生长的方式制备。当生长多层材料时,随着层数的增多,最上层薄膜的粗糙度会逐渐加大,薄膜质量会越来越差,而最靠近压电材料的一层反射层质量对固态反射层声波反射效果影响最大。本发明通过直接在压电材料上生长反射层,保证了最靠近压电材料的一层反射层具有较好的质量,避免了逐层生长薄膜质量差对谐振器产生的不良影响。
图1为实施例1中的固态反射型体声波谐振器的制备方法的流程示意图。
图2为实施例2中的固态反射型体声波谐振器的制备方法的流程示意图。
图3为实施例3中的固态反射型体声波谐振器的制备方法的流程示意图。
图4为实施例4中的固态反射型体声波谐振器的制备方法的流程示意图。
图5为实施例5中的固态反射型体声波谐振器的制备方法的流程示意图。
图6为实施例6中的固态反射型体声波谐振器的制备方法的流程示意图。
图7为实施例7中的固态反射型体声波谐振器的制备方法的流程示意图。
图8为实施例8中的固态反射型体声波谐振器的制备方法的流程示意图。
图9为实施例9中的固态反射型体声波谐振器的制备方法的流程示意图。
图10为实施例10中的固态反射型体声波谐振器的制备方法的流程示意图。
图11为实施例11中的固态反射型体声波谐振器的制备方法的流程示意图。
图12为实施例1中制备得到的固态反射型体声波谐振器的结构示意图。
图中:1-上电极;2-压电薄膜;3-下电极;4-低声阻抗反射层;5-高声阻抗反射层;6-键合层;7-衬底。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,本发明各实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。不同厂家、型号的原料并不影响本发明技术方案的实施及技术效果的实现。
实施例1
本实施例的固态反射型体声波谐振器的制备方法,包括如下步骤:
(a)取经过离子注入的压电材料,并在所述压电材料的注入面下方生长反射层,然后取衬底,将所述衬底与所述压电材料的具有反射层的一侧键合;
(b)将步骤(a)中得到的键合后的中间产物进行热处理,使所述压电材料的薄膜剥离,再在所述压电材料的剥离后的一侧生长上电极,即得。
作为本实施例的优选实现方式,固态反射型体声波谐振器的制备方法如图1所示,具体包括如下步骤:
(a)如图1中的(1)所示,取压电材料铌酸锂,将所述压电材料注入H离子,注入离子的能量为100KeV,注入剂量为2×10
16/cm
2,离子束流为10um/cm
-2,注入深度为4um,得到经过离子注入的压电材料。
需要说明的是,作为本实施例可替换的实现方式,注入的离子还可以是He离子、B离子、As离子中的一种或多种;注入离子的能量可以是100KeV-1000KeV范围内的任意值;注入剂量可以是2-8×10
16/cm
2范围内的任意值;离子束流可以是0.1-10um/cm
-2范围内的任意值;注入深度可以是0.3-8um范围内的任意值。
在得到的经过离子注入的压电材料的注入面下方生长反射层;在所述压电材料的一侧生长一层低声阻抗反射层,然后再在低声阻抗反射层上生长一层高声阻抗反射层,如此生长1-4个循环,即可;本实施例中,生长3个循环,生长的所述反射层的总厚度为3600nm。所述反射层包括低声阻抗反射层、高声阻抗反射层;所述低声阻抗反射层与所述高声阻抗反射层为交替设置;所述低声阻抗反射层的材质为Al,所述高声阻抗反射层的材质为Mo。作为本实施例可替换的实现方式,所述低声阻抗反射层的材质还可替换为Ti、SiO
2、BCB中的一种或者多种;(其中,BCB为苯并环丁烯的简称,下文不再赘述)所述高声阻抗反射层的材质还可替换为Au、Nb、Ni、Pt、Ta、W、Ir、ZnO、HfO
2、TiO
2、Ta
2O
5、WO
3中的一种或多种。
然后,取衬底,将所述衬底与所述压电材料的具有反射层的一侧键合,本实施例中的键 合为聚合物键合,在所述衬底和所述压电材料的一侧涂覆键合物键合;其中,所述键合物为有机绝缘材料;所述有机绝缘材料包括但不限于苯并环丁烯、聚酰亚胺中;涂覆的所述键合物厚度为100nm-4000nm;本实施中,具体如下:
如图1中的(2)所示,在得到的所述反射层上旋涂键合物,形成键合层;本实施例中,所述键合物为苯并环丁烯,即BCB;
如图1中的(3)所示,在所述衬底上旋涂键合物,形成键合层,所述键合物为苯并环丁烯,即BCB;本实施例中,所述衬底为Si,作为本实施例可替换的实现方式,所述衬底还可替换为SOI、玻璃、LN、LT中的一种。其中,绝缘层上硅的简称为SOI;铌酸锂的简称为LN;钽酸锂的简称为LT。
将涂覆有键合层的所述衬底与所述压电材料置于键合机或管式炉中进行键合,键合的预键合压力4×10
5pa,保压时间为30min;然后,将温度缓慢升至200℃,并保持温度为200℃,保持2h,使所述苯并环丁烯完全固化,完成键合,得到的键合后的中间产物。
(b)将步骤(a)中得到的键合后的中间产物进行热处理,在温度350℃下,退火2h,使所述压电材料沿注入离子产生的损伤层产生劈裂,得到单晶压电薄膜材料,即压电层,如图1中的(4)所示。最后,在所述压电材料的剥离后的一侧生长上电极,本实施例中生长的为图形化的上电极,先在所述压电材料的表面光刻形成待生长图形,再生长电极,最后洗掉多余部分,即可;生长的上电极的电极材料为Al;所述上电极的厚度为50nm,即得,如图1中的(5)所示。
如图12所示,为制备得到的固态反射型体声波谐振器的结构示意图。
实施例2
本实施例的固态反射型体声波谐振器的制备方法,包括如下步骤:
(a)取经过离子注入的压电材料,并在所述压电材料的注入面下方生长反射层,然后取衬底,将所述衬底与所述压电材料的具有反射层的一侧键合;
(b)将步骤(a)中得到的键合后的中间产物进行热处理,使所述压电材料的薄膜剥离,再在所述压电材料的剥离后的一侧生长上电极,即得。
作为本实施例的优选实现方式,固态反射型体声波谐振器的制备方法如图2所示,具体包括如下步骤:
(a)如图2中的(1)所示,取压电材料铌酸锂,将所述压电材料注入H离子,注入离子的能量为100KeV,注入剂量为2×10
16/cm
2,离子束流为10um/cm
-2,注入深度为4um,得到经过离子注入的压电材料。
在得到的经过离子注入的压电材料的注入面下方生长反射层;在所述压电材料的一侧生 长一层低声阻抗反射层,然后再在低声阻抗反射层上生长一层高声阻抗反射层,如此生长1-4个循环,即可;本实施例中,生长3个循环,生长的所述反射层的总厚度为3000nm。所述反射层包括低声阻抗反射层、高声阻抗反射层;所述低声阻抗反射层与所述高声阻抗反射层为交替设置;所述低声阻抗反射层的材质为Al,所述高声阻抗反射层的材质为Mo。作为本实施例可替换的实现方式,所述低声阻抗反射层的材质还可替换为Ti、SiO
2、BCB中的一种或者多种;(其中,BCB为苯并环丁烯的简称,下文不再赘述)所述高声阻抗反射层的材质还可替换为Au、Nb、Ni、Pt、Ta、W、Ir、ZnO、HfO
2、TiO
2、Ta
2O
5、WO
3中的一种或多种。
然后,取衬底,将所述衬底与所述压电材料的具有反射层的一侧键合,本实施例中的键合为亲水性键合,在所述衬底和所述压电材料的一侧生长键合物键合;其中,所述键合物为氧化硅、氮化硅、氧化铝、氮化铝中的一种或多种;生长的所述键合物厚度为100nm-4000nm,本实施例中,具体如下:
如图2中的(2)所示,在得到的所述反射层上生长键合物,形成键合层;本实施例中,所述键合物为氧化硅,即SiO
2;
如图2中的(3)所示,在所述衬底上生长键合物,形成键合层,所述键合物为氧化硅,即SiO
2;本实施例中,所述衬底为Si,作为本实施例可替换的实现方式,所述衬底还可替换为SOI、玻璃、LN、LT中的一种。其中,绝缘层上硅的简称为SOI;铌酸锂的简称为LN;钽酸锂的简称为LT。
将生长有键合层的所述衬底与所述压电材料置于键合机或管式炉中进行键合,得到的键合后的中间产物。
(b)将步骤(a)中得到的键合后的中间产物进行热处理,在温度200℃下,退火2h,使所述压电材料沿注入离子产生的损伤层产生劈裂,得到单晶压电薄膜材料,如图2中的(4)所示。最后,在所述压电材料的剥离后的一侧生长上电极,本实施例中生长的为图形化的上电极,先在所述压电材料的表面光刻形成待生长图形,再生长电极,最后洗掉多余部分,即可;生长的上电极的电极材料为Al;所述上电极的厚度为50nm,即得,如图2中的(5)所示。
实施例3
本实施例的固态反射型体声波谐振器的制备方法,包括如下步骤:
(a)取经过离子注入的压电材料,并在所述压电材料的注入面下方生长反射层,然后取衬底,将所述衬底与所述压电材料的具有反射层的一侧键合;
(b)将步骤(a)中得到的键合后的中间产物进行热处理,使所述压电材料的薄膜剥离,再在所述压电材料的剥离后的一侧生长上电极,即得。
作为本实施例的优选实现方式,固态反射型体声波谐振器的制备方法如图3所示,具体包括如下步骤:
(a)如图3中的(1)所示,取压电材料铌酸锂,将所述压电材料注入H离子,注入离子的能量为100KeV,注入剂量为2×10
16/cm
2,离子束流为10um/cm
-2,注入深度为4um,得到经过离子注入的压电材料。
在得到的经过离子注入的压电材料的注入面下方生长反射层;在所述压电材料的一侧生长一层低声阻抗反射层,然后再在低声阻抗反射层上生长一层高声阻抗反射层,如此生长1-4个循环,即可;本实施例中,生长3个循环,生长的所述反射层的总厚度为3000nm。所述反射层包括低声阻抗反射层、高声阻抗反射层;所述低声阻抗反射层与所述高声阻抗反射层为交替设置;所述低声阻抗反射层的材质为Al,所述高声阻抗反射层的材质为Mo。作为本实施例可替换的实现方式,所述低声阻抗反射层的材质还可替换为Ti、SiO
2、BCB中的一种或者多种;(其中,BCB为苯并环丁烯的简称,下文不再赘述)所述高声阻抗反射层的材质还可替换为Au、Nb、Ni、Pt、Ta、W、Ir、ZnO、HfO
2、TiO
2、Ta
2O
5、WO
3中的一种或多种。
然后,取衬底,将所述衬底与所述压电材料的具有反射层的一侧键合,本实施例中的键合为共晶键合,在所述衬底和所述压电材料的一侧生长键合物键合;其中,所述键合物为金、锡及其合金中的一种或多种;优选地,生长的所述键合物厚度为100nm-4000nm。本实施例中,具体如下:
如图3中的(2)所示,在得到的所述反射层上生长键合物,形成键合层;本实施例中,所述键合物为金、锡,即Au/Sn;
如图3中的(3)所示,在所述衬底上生长键合物,形成键合层,所述键合物为金、锡,即Au/Sn;本实施例中,所述衬底为Si,作为本实施例可替换的实现方式,所述衬底还可替换为SOI、玻璃、LN、LT中的一种。其中,绝缘层上硅的简称为SOI;铌酸锂的简称为LN;钽酸锂的简称为LT。
将生长有键合层的所述衬底与所述压电材料置于键合机或管式炉中进行键合,得到的键合后的中间产物。
(b)将步骤(a)中得到的键合后的中间产物进行热处理,在温度200℃下,退火2h,使所述压电材料沿注入离子产生的损伤层产生劈裂,得到单晶压电薄膜材料,如图3中的(4)所示。最后,在所述压电材料的剥离后的一侧生长上电极,本实施例中生长的为图形化的上电极,先在所述压电材料的表面光刻形成待生长图形,再生长电极,最后洗掉多余部分,即可;生长的上电极的电极材料为Al;所述上电极的厚度为50nm,即得,如图3中的(5)所示。
实施例4
本实施例的固态反射型体声波谐振器的制备方法,包括如下步骤:
(a)取经过离子注入的压电材料,并在所述压电材料的注入面下方生长反射层,然后取衬底,将所述衬底与所述压电材料的具有反射层的一侧键合;
(b)将步骤(a)中得到的键合后的中间产物进行热处理,使所述压电材料的薄膜剥离,再在所述压电材料的剥离后的一侧生长上电极,即得。
作为本实施例的优选实现方式,固态反射型体声波谐振器的制备方法如图4所示,具体包括如下步骤:
(a)如图4中的(1)所示,取压电材料铌酸锂,将所述压电材料注入H离子,注入离子的能量为100KeV,注入剂量为2×10
16/cm
2,离子束流为10um/cm
-2,注入深度为4um,得到经过离子注入的压电材料。
需要说明的是,作为本实施例可替换的实现方式,注入的离子还可以是He离子、B离子、As离子中的一种或多种;注入离子的能量可以是100KeV-1000KeV范围内的任意值;注入剂量可以是2-8×10
16/cm
2范围内的任意值;离子束流可以是0.1-10um/cm
-2范围内的任意值;注入深度可以是0.3-8um范围内的任意值。
在经过离子注入的压电材料的注入面上生长下电极;所述下电极为未图形化的下电极。生长下电极的电极材料为Al,所述下电极的厚度为50nm。作为本实施例可替换的实现方式,生长下电极的电极材料还可以是Au、Mo、Pt、W中的一种;所述下电极的厚度可以为50-500nm范围内的任意值。
如图4的(2)所示,在得到的经过离子注入的压电材料的注入面下方生长反射层;在所述压电材料的一侧生长一层低声阻抗反射层,然后再在低声阻抗反射层上生长一层高声阻抗反射层,如此生长1-4个循环,即可;本实施例中,生长3个循环,生长的所述反射层的总厚度为3600nm。所述反射层包括低声阻抗反射层、高声阻抗反射层;所述低声阻抗反射层与所述高声阻抗反射层为交替设置;所述低声阻抗反射层的材质为Al,所述高声阻抗反射层的材质为Mo。作为本实施例可替换的实现方式,所述低声阻抗反射层的材质还可替换为Ti、SiO
2、BCB中的一种或者多种;所述高声阻抗反射层的材质还可替换为Au、Nb、Ni、Pt、Ta、W、Ir、ZnO、HfO
2、TiO
2、Ta
2O
5、WO
3中的一种或多种。
然后,取衬底,将所述衬底与所述压电材料的具有反射层的一侧键合,本实施例中的键合为聚合物键合,在所述衬底和所述压电材料的一侧涂覆键合物键合;其中,所述键合物为有机绝缘材料;所述有机绝缘材料包括但不限于苯并环丁烯、聚酰亚胺中;涂覆的所述键合物厚度为100nm-4000nm;本实施中,具体如下:
如图4中的(3)所示,在得到的所述反射层上旋涂键合物,形成键合层;本实施例中,所述键合物为苯并环丁烯,即BCB;
如图4中的(4)所示,在所述衬底上旋涂键合物,形成键合层,所述键合物为苯并环丁烯,即BCB;本实施例中,所述衬底为Si,作为本实施例可替换的实现方式,所述衬底还可替换为SOI、玻璃、LN、LT中的一种。其中,绝缘层上硅的简称为SOI;铌酸锂的简称为LN;钽酸锂的简称为LT。
将涂覆有键合层的所述衬底与所述压电材料置于键合机或管式炉中进行键合,键合的预键合压力4×10
5pa,保压时间为30min;然后,将温度缓慢升至200℃,并保持温度为200℃,保持2h,使所述苯并环丁烯完全固化,完成键合,得到的键合后的中间产物。
(b)将步骤(a)中得到的键合后的中间产物进行热处理,在温度350℃下,退火2h,使所述压电材料沿注入离子产生的损伤层产生劈裂,得到单晶压电薄膜材料,如图4中的(5)所示。最后,在所述压电材料的剥离后的一侧生长上电极,本实施例中生长的为图形化的上电极,先在所述压电材料的表面光刻形成待生长图形,再生长电极,最后洗掉多余部分,即可;生长的上电极的电极材料为Al;所述上电极的厚度为50nm,即得,如图4中的(6)所示。
实施例5
本实施例的固态反射型体声波谐振器的制备方法,包括如下步骤:
(a)取经过离子注入的压电材料,并在所述压电材料的注入面下方生长反射层,然后取衬底,将所述衬底与所述压电材料的具有反射层的一侧键合;
(b)将步骤(a)中得到的键合后的中间产物进行热处理,使所述压电材料的薄膜剥离,再在所述压电材料的剥离后的一侧生长上电极,即得。
作为本实施例的优选实现方式,固态反射型体声波谐振器的制备方法如图5所示,具体包括如下步骤:
(a)如图5中的(1)所示,取压电材料铌酸锂,将所述压电材料注入H离子,注入离子的能量为100KeV,注入剂量为2×10
16/cm
2,离子束流为10um/cm
-2,注入深度为4um,得到经过离子注入的压电材料。
在经过离子注入的压电材料的注入面上生长下电极;所述下电极为未图形化的下电极。生长下电极的电极材料为Al,所述下电极的厚度为50nm。作为本实施例可替换的实现方式,生长下电极的电极材料还可以是Au、Mo、Pt、W中的一种;所述下电极的厚度可以为50-500nm范围内的任意值。
如图5中的(2)所示,在得到的经过离子注入的压电材料的注入面下方生长反射层;在 所述压电材料的一侧生长一层低声阻抗反射层,然后再在低声阻抗反射层上生长一层高声阻抗反射层,如此生长1-4个循环,即可;本实施例中,生长3个循环,生长的所述反射层的总厚度为3000nm。所述反射层包括低声阻抗反射层、高声阻抗反射层;所述低声阻抗反射层与所述高声阻抗反射层为交替设置;所述低声阻抗反射层的材质为Al,所述高声阻抗反射层的材质为Mo。作为本实施例可替换的实现方式,所述低声阻抗反射层的材质还可替换为Ti、SiO
2、BCB中的一种或者多种;(其中,BCB为苯并环丁烯的简称,下文不再赘述)所述高声阻抗反射层的材质还可替换为Au、Nb、Ni、Pt、Ta、W、Ir、ZnO、HfO
2、TiO
2、Ta
2O
5、WO
3中的一种或多种。
然后,取衬底,将所述衬底与所述压电材料的具有反射层的一侧键合,本实施例中的键合为亲水性键合,在所述衬底和所述压电材料的一侧生长键合物键合;其中,所述键合物为氧化硅、氮化硅、氧化铝、氮化铝中的一种或多种;生长的所述键合物厚度为100nm-4000nm,本实施例中,具体如下:
如图5中的(3)所示,在得到的所述反射层上生长键合物,形成键合层;本实施例中,所述键合物为氧化硅,即SiO
2;
如图5中的(4)所示,在所述衬底上生长键合物,形成键合层,所述键合物为氧化硅,即SiO
2;本实施例中,所述衬底为Si,作为本实施例可替换的实现方式,所述衬底还可替换为SOI、玻璃、LN、LT中的一种。其中,绝缘层上硅的简称为SOI;铌酸锂的简称为LN;钽酸锂的简称为LT。
将生长有键合层的所述衬底与所述压电材料置于键合机或管式炉中进行键合,得到的键合后的中间产物。
(b)将步骤(a)中得到的键合后的中间产物进行热处理,在温度200℃下,退火2h,使所述压电材料沿注入离子产生的损伤层产生劈裂,得到单晶压电薄膜材料,如图5中的(5)所示。最后,在所述压电材料的剥离后的一侧生长上电极,本实施例中生长的为图形化的上电极,先在所述压电材料的表面光刻形成待生长图形,再生长电极,最后洗掉多余部分,即可;生长的上电极的电极材料为Al;所述上电极的厚度为50nm,即得,如图5中的(6)所示。
实施例6
本实施例的固态反射型体声波谐振器的制备方法,包括如下步骤:
(a)取经过离子注入的压电材料,并在所述压电材料的注入面下方生长反射层,然后取衬底,将所述衬底与所述压电材料的具有反射层的一侧键合;
(b)将步骤(a)中得到的键合后的中间产物进行热处理,使所述压电材料的薄膜剥离, 再在所述压电材料的剥离后的一侧生长上电极,即得。
作为本实施例的优选实现方式,固态反射型体声波谐振器的制备方法如图6所示,具体包括如下步骤:
(a)如图6中的(1)所示,取压电材料铌酸锂,将所述压电材料注入H离子,注入离子的能量为100KeV,注入剂量为2×1016/cm2,离子束流为10um/cm-2,注入深度为4um,得到经过离子注入的压电材料。
在经过离子注入的压电材料的注入面上生长下电极;所述下电极为未图形化的下电极。生长下电极的电极材料为Al,所述下电极的厚度为50nm。作为本实施例可替换的实现方式,生长下电极的电极材料还可以是Au、Mo、Pt、W中的一种;所述下电极的厚度可以为50-500nm范围内的任意值。
如图6的(2)所示,在得到的经过离子注入的压电材料的注入面下方生长反射层;在所述压电材料的一侧生长一层低声阻抗反射层,然后再在低声阻抗反射层上生长一层高声阻抗反射层,如此生长1-4个循环,即可;本实施例中,生长3个循环,生长的所述反射层的总厚度为3000nm。所述反射层包括低声阻抗反射层、高声阻抗反射层;所述低声阻抗反射层与所述高声阻抗反射层为交替设置;所述低声阻抗反射层的材质为Al,所述高声阻抗反射层的材质为Mo。作为本实施例可替换的实现方式,所述低声阻抗反射层的材质还可替换为Ti、SiO2、BCB中的一种或者多种;所述高声阻抗反射层的材质还可替换为Au、Nb、Ni、Pt、Ta、W、Ir、ZnO、HfO
2、TiO
2、Ta
2O
5、WO
3中的一种或多种。
然后,取衬底,将所述衬底与所述压电材料的具有反射层的一侧键合,本实施例中的键合为共晶键合,在所述衬底和所述压电材料的一侧生长键合物键合;其中,所述键合物为金、锡及其合金中的一种或多种;优选地,生长的所述键合物厚度为100nm-4000nm。本实施例中,具体如下:
如图6中的(3)所示,在得到的所述反射层上生长键合物,形成键合层;本实施例中,所述键合物为金、锡,即Au/Sn;
如图6中的(4)所示,在所述衬底上生长键合物,形成键合层,所述键合物为金、锡,即Au/Sn;本实施例中,所述衬底为Si,作为本实施例可替换的实现方式,所述衬底还可替换为SOI、玻璃、LN、LT中的一种。其中,绝缘层上硅的简称为SOI;铌酸锂的简称为LN;钽酸锂的简称为LT。
将生长有键合层的所述衬底与所述压电材料置于键合机或管式炉中进行键合,得到的键合后的中间产物。
(b)将步骤(a)中得到的键合后的中间产物进行热处理,在温度200℃下,退火2h, 使所述压电材料沿注入离子产生的损伤层产生劈裂,得到单晶压电薄膜材料,如图6中的(5)所示。最后,在所述压电材料的剥离后的一侧生长上电极,本实施例中生长的为图形化的上电极,先在所述压电材料的表面光刻形成待生长图形,再生长电极,最后洗掉多余部分,即可;生长的上电极的电极材料为Al;所述上电极的厚度为50nm,即得,如图6中的(6)所示。
实施例7
本实施例的固态反射型体声波谐振器的制备方法,包括如下步骤:
(a)取经过离子注入的压电材料,然后取衬底,在所述衬底上方生长反射层,将所述压电材料与所述衬底的具有反射层的一侧键合;
(b)将步骤(a)中得到的键合后的中间产物进行热处理,使所述压电材料的薄膜剥离,再在所述压电材料的剥离后的一侧生长上电极,即得。
作为本实施例的优选实现方式,固态反射型体声波谐振器的制备方法如图7所示,具体包括如下步骤:
(a)如图7中的(1)所示,取压电材料铌酸锂,将所述压电材料注入H离子,注入离子的能量为100KeV,注入剂量为2×1016/cm2,离子束流为10um/cm
-2,注入深度为4um,得到经过离子注入的压电材料。
在经过离子注入的压电材料的注入面上生长下电极;所述下电极为图形化的下电极。图形化的下电极通过如下方法生长:先在所述压电材料的表面光刻形成待生长图形,再生长电极,最后洗掉多余部分,即可;作为本实施例的可替换的实现方式,所述下电极还可通过如下方法生长:先在所述压电材料的表面生长电极,再制备掩膜,最后刻蚀掉多余部分,即可;本实施例中,生长下电极的电极材料为Al,所述下电极的厚度为50nm。作为本实施例可替换的实现方式,生长下电极的电极材料还可以是Au、Mo、Pt、W中的一种;所述下电极的厚度可以为50-500nm范围内的任意值。
如图7的(2)所示,取衬底,本实施例中,所述衬底为Si,作为本实施例可替换的实现方式,所述衬底还可替换为SOI、玻璃、LN、LT中的一种。其中,绝缘层上硅的简称为SOI;铌酸锂的简称为LN;钽酸锂的简称为LT。
在所述衬底上生长一层高声阻抗反射层,然后再在高声阻抗反射层上生长一层低声阻抗反射层,如此生长1-3个循环,最后在低声阻抗反射层上生长一层高声阻抗反射层,即可;本实施例中,生长3个循环,生长的所述反射层的总厚度为3000nm。所述反射层包括低声阻抗反射层、高声阻抗反射层;所述低声阻抗反射层与所述高声阻抗反射层为交替设置;所述低声阻抗反射层的材质为Al,所述高声阻抗反射层的材质为Mo。作为本实施例可替换的实 现方式,所述低声阻抗反射层的材质还可替换为Ti、SiO2、BCB中的一种或者多种;所述高声阻抗反射层的材质还可替换为Au、Nb、Ni、Pt、Ta、W、Ir、ZnO、HfO
2、TiO
2、Ta
2O
5、WO
3中的一种或多种。
然后,将所述压电材料与所述衬底的具有反射层的一侧键合;本实施例中的键合为聚合物键合,在所述衬底和所述压电材料的一侧涂覆键合物键合;其中,所述键合物为有机绝缘材料;所述有机绝缘材料包括但不限于苯并环丁烯、聚酰亚胺中;涂覆的所述键合物厚度为100nm-4000nm;本实施中,具体如下:
如图7中的(3)所示,在得到的所述压电材料的具有下电极的一侧旋涂键合物,形成键合层;本实施例中,所述键合物为苯并环丁烯,即BCB;
如图7中的(4)所示,在所述衬底的具有反射层的一侧旋涂键合物,形成键合层,所述键合物为苯并环丁烯,即BCB;
将涂覆有键合层的所述衬底与所述压电材料置于键合机或管式炉中进行键合,键合的预键合压力4×10
5pa,保压时间为30min;然后,将温度缓慢升至200℃,并保持温度为200℃,保持2h,使所述苯并环丁烯完全固化,完成键合,得到的键合后的中间产物。
(b)将步骤(a)中得到的键合后的中间产物进行热处理,在温度350℃下,退火2h,使所述压电材料沿注入离子产生的损伤层产生劈裂,得到单晶压电薄膜材料,如图7中的(5)所示。最后,在所述压电材料的剥离后的一侧生长上电极,本实施例中生长的为图形化的上电极,先在所述压电材料的表面光刻形成待生长图形,再生长电极,最后洗掉多余部分,即可;生长的上电极的电极材料为Al;所述上电极的厚度为50nm,即得,如图7中的(6)所示。
实施例8
本实施例的固态反射型体声波谐振器的制备方法,包括如下步骤:
(a)取经过离子注入的压电材料,并在所述压电材料的注入面下方生长反射层,然后取衬底,将所述衬底与所述压电材料的具有反射层的一侧键合;
(b)将步骤(a)中得到的键合后的中间产物进行热处理,使所述压电材料的薄膜剥离,再在所述压电材料的剥离后的一侧生长上电极,即得。
作为本实施例的优选实现方式,固态反射型体声波谐振器的制备方法如图8所示,具体包括如下步骤:
(a)如图8中的(1)所示,取压电材料铌酸锂,将所述压电材料注入H离子,注入离子的能量为100KeV,注入剂量为2×10
16/cm
2,离子束流为10um/cm
-2,注入深度为4um,得到经过离子注入的压电材料。
在经过离子注入的压电材料的注入面上生长下电极;所述下电极为图形化的下电极。图形化的下电极通过如下方法生长:先在所述压电材料的表面光刻形成待生长图形,再生长电极,最后洗掉多余部分,即可;作为本实施例的可替换的实现方式,所述下电极还可通过如下方法生长:先在所述压电材料的表面生长电极,再制备掩膜,最后刻蚀掉多余部分,即可;本实施例中,生长下电极的电极材料为Al,所述下电极的厚度为50nm。作为本实施例可替换的实现方式,生长下电极的电极材料还可以是Au、Mo、Pt、W中的一种;所述下电极的厚度可以为50-500nm范围内的任意值。
如图8的(2)所示,在所述下电极的一侧生长SiO
2作为隔离层,然后对所述隔离层平坦化;所述隔离层的厚度为50nm。作为本实施例的可替换的实现方式,所述隔离层的厚度可以为50-800nm范围内的任意值。
如图8中的(3)所示,在得到的经过离子注入的压电材料的隔离层的下方生长反射层;在所述压电材料的一侧生长一层低声阻抗反射层,然后再在低声阻抗反射层上生长一层高声阻抗反射层,如此生长1-4个循环,即可;本实施例中,生长3个循环,生长的所述反射层的总厚度为3000nm。所述反射层包括低声阻抗反射层、高声阻抗反射层;所述低声阻抗反射层与所述高声阻抗反射层为交替设置;所述低声阻抗反射层的材质为Al,所述高声阻抗反射层的材质为Mo。作为本实施例可替换的实现方式,所述低声阻抗反射层的材质还可替换为Ti、SiO
2、BCB中的一种或者多种;所述高声阻抗反射层的材质还可替换为Au、Nb、Ni、Pt、Ta、W、Ir、ZnO、HfO
2、TiO
2、Ta
2O
5、WO
3中的一种或多种。
然后,取衬底,将所述衬底与所述压电材料的具有反射层的一侧键合,本实施例中的键合为聚合物键合,在所述衬底和所述压电材料的一侧涂覆键合物键合;其中,所述键合物为有机绝缘材料;所述有机绝缘材料包括但不限于苯并环丁烯、聚酰亚胺中;涂覆的所述键合物厚度为100nm-4000nm;本实施中,具体如下:
如图8中的(4)所示,在得到的所述压电材料的反射层的一侧旋涂键合物,形成键合层;本实施例中,所述键合物为苯并环丁烯,即BCB;
如图8中的(5)所示,在所述衬底的具有反射层的一侧旋涂键合物,形成键合层,所述键合物为苯并环丁烯,即BCB;所述衬底为Si,作为本实施例可替换的实现方式,所述衬底还可替换为SOI、玻璃、LN、LT中的一种。其中,绝缘层上硅的简称为SOI;铌酸锂的简称为LN;钽酸锂的简称为LT。
将涂覆有键合层的所述衬底与所述压电材料置于键合机或管式炉中进行键合,键合的预键合压力4×10
5pa,保压时间为30min;然后,将温度缓慢升至200℃,并保持温度为200℃,保持2h,使所述苯并环丁烯完全固化,完成键合,得到的键合后的中间产物。
(b)将步骤(a)中得到的键合后的中间产物进行热处理,在温度350℃下,退火2h,使所述压电材料沿注入离子产生的损伤层产生劈裂,得到单晶压电薄膜材料,如图8中的(6)所示。最后,在所述压电材料的剥离后的一侧生长上电极,本实施例中生长的为图形化的上电极,先在所述压电材料的表面光刻形成待生长图形,再生长电极,最后洗掉多余部分,即可;生长的上电极的电极材料为Al;所述上电极的厚度为50nm,即得,如图8中的(7)所示。
实施例9
本实施例的固态反射型体声波谐振器的制备方法,包括如下步骤:
(a)取经过离子注入的压电材料,并在所述压电材料的注入面下方生长反射层,然后取衬底,在所述衬底上方生长反射层,将所述压电材料具有反射层的一侧与所述衬底的具有反射层的一侧键合;
(b)将步骤(a)中得到的键合后的中间产物进行热处理,使所述压电材料的薄膜剥离,再在所述压电材料的剥离后的一侧生长上电极,即得。
作为本实施例的优选实现方式,固态反射型体声波谐振器的制备方法如图9所示,具体包括如下步骤:
(a)如图9中的(1)所示,取压电材料铌酸锂,将所述压电材料注入H离子,注入离子的能量为100KeV,注入剂量为2×10
16/cm
2,离子束流为10um/cm
-2,注入深度为4um,得到经过离子注入的压电材料。
在经过离子注入的压电材料的注入面上生长下电极;所述下电极为图形化的下电极。图形化的下电极通过如下方法生长:先在所述压电材料的表面光刻形成待生长图形,再生长电极,最后洗掉多余部分,即可;作为本实施例的可替换的实现方式,所述下电极还可通过如下方法生长:先在所述压电材料的表面生长电极,再制备掩膜,最后刻蚀掉多余部分,即可;本实施例中,生长下电极的电极材料为Al,所述下电极的厚度为50nm。作为本实施例可替换的实现方式,生长下电极的电极材料还可以是Au、Mo、Pt、W中的一种;所述下电极的厚度可以为50-500nm范围内的任意值。
如图9的(2)所示,在所述下电极的一侧生长SiO
2作为隔离层,然后对所述隔离层平坦化;所述隔离层的厚度为50nm。作为本实施例的可替换的实现方式,所述隔离层的厚度可以为50-800nm范围内的任意值。
如图9中的(3)所示,在得到的经过离子注入的压电材料的隔离层的下方生长反射层,所述反射层包括低声阻抗反射层、高声阻抗反射层;所述低声阻抗反射层与所述高声阻抗反 射层为交替设置;首先,在所述压电材料的一侧生长一层低声阻抗反射层,然后再在低声阻抗反射层上生长一层高声阻抗反射层,如此循环生长1-2个循环;本实施例中,生长1个循环,生长的所述反射层的厚度为300nm。所述低声阻抗反射层的材质为Al,所述高声阻抗反射层的材质为Mo。作为本实施例可替换的实现方式,所述低声阻抗反射层的材质还可替换为Ti、SiO
2、BCB中的一种或者多种;所述高声阻抗反射层的材质还可替换为Au、Nb、Ni、Pt、Ta、W、Ir、ZnO、HfO
2、TiO
2、Ta
2O
5、WO
3中的一种或多种。
然后,取衬底,将所述衬底与所述压电材料的具有反射层的一侧键合,本实施例中的键合为亲水键合,在所述衬底和所述压电材料的一侧生长键合物键合;其中,所述键合物为氧化硅、氮化硅、氧化铝、氮化铝的一种或多种;优选地,生长的所述键合物厚度为100nm-4000nm。本实施例中,具体如下:
如图9中的(4)所示,在得到的所述反射层上生长键合物,形成键合层;本实施例中,所述键合物为二氧化硅;
如图9中的(5)所示,取衬底,本实施例中,所述衬底为Si,作为本实施例可替换的实现方式,所述衬底还可替换为SOI、玻璃、LN、LT中的一种。其中,绝缘层上硅的简称为SOI;铌酸锂的简称为LN;钽酸锂的简称为LT。
在所述衬底上生长一层高声阻抗反射层,然后再在高声阻抗反射层上生长一层低声阻抗反射层,如此循环生长1-2个循环,最后在低声阻抗反射层上生长一层高声阻抗反射层,即可;本实施例中,生长1个循环,生长的所述反射层的厚度为300nm。所述低声阻抗反射层的材质为Al,所述高声阻抗反射层的材质为Mo。作为本实施例可替换的实现方式,所述低声阻抗反射层的材质还可替换为Ti、SiO
2、BCB中的一种或者多种;所述高声阻抗反射层的材质还可替换为Au、Nb、Ni、Pt、Ta、W、Ir、ZnO、HfO
2、TiO
2、Ta
2O
5、WO
3中的一种或多种。
如图9中的(6)所示,在所述衬底上生长键合物,形成键合层,所述键合物为二氧化硅;将生长有键合层的所述衬底与所述压电材料置于键合机或管式炉中进行键合,得到的键合后的中间产物。
(b)将步骤(a)中得到的键合后的中间产物进行热处理,在温度200℃下,退火2h,使所述压电材料沿注入离子产生的损伤层产生劈裂,得到单晶压电薄膜材料,如图9中的(7)所示。最后,在所述压电材料的剥离后的一侧生长上电极,本实施例中生长的为图形化的上电极,先在所述压电材料的表面光刻形成待生长图形,再生长电极,最后洗掉多余部分,即可;生长的上电极的电极材料为Al;所述上电极的厚度为50nm,即得,如图9中的(8)所示。
实施例10
本实施例的固态反射型体声波谐振器的制备方法,包括如下步骤:
(a)取经过离子注入的压电材料,并在所述压电材料的注入面下方生长反射层,然后取衬底,在所述衬底上方生长反射层,将所述压电材料具有反射层的一侧与所述衬底的具有反射层的一侧键合;
(b)将步骤(a)中得到的键合后的中间产物进行热处理,使所述压电材料的薄膜剥离,再在所述压电材料的剥离后的一侧生长上电极,即得。
作为本实施例的优选实现方式,固态反射型体声波谐振器的制备方法如图10所示,具体包括如下步骤:
(a)如图10中的(1)所示,取压电材料铌酸锂,将所述压电材料注入H离子,注入离子的能量为100KeV,注入剂量为2×10
16/cm
2,离子束流为10um/cm
-2,注入深度为4um,得到经过离子注入的压电材料。
在经过离子注入的压电材料的注入面上生长下电极;所述下电极为图形化的下电极。图形化的下电极通过如下方法生长:先在所述压电材料的表面光刻形成待生长图形,再生长电极,最后洗掉多余部分,即可;作为本实施例的可替换的实现方式,所述下电极还可通过如下方法生长:先在所述压电材料的表面生长电极,再制备掩膜,最后刻蚀掉多余部分,即可;本实施例中,生长下电极的电极材料为Al,所述下电极的厚度为50nm。作为本实施例可替换的实现方式,生长下电极的电极材料还可以是Au、Mo、Pt、W中的一种;所述下电极的厚度可以为50-500nm范围内的任意值。
如图10的(2)所示,在所述下电极的一侧生长SiO
2作为隔离层,然后对所述隔离层平坦化;所述隔离层的厚度为50nm。作为本实施例的可替换的实现方式,所述隔离层的厚度可以为50-800nm范围内的任意值。
如图10中的(3)所示,在得到的经过离子注入的压电材料的隔离层的下方生长反射层,所述反射层包括低声阻抗反射层、高声阻抗反射层;所述低声阻抗反射层与所述高声阻抗反射层为交替设置;首先,在所述压电材料的一侧生长一层低声阻抗反射层,然后再在低声阻抗反射层上生长一层高声阻抗反射层,如此循环生长1-2个循环;本实施例中,生长1个循环,生长的所述反射层的厚度为300nm。所述低声阻抗反射层的材质为Al,所述高声阻抗反射层的材质为Mo。作为本实施例可替换的实现方式,所述低声阻抗反射层的材质还可替换为Ti、SiO
2、BCB中的一种或者多种;所述高声阻抗反射层的材质还可替换为Au、Nb、Ni、Pt、Ta、W、Ir、ZnO、HfO
2、TiO
2、Ta
2O
5、WO
3中的一种或多种。
然后,取衬底,将所述衬底与所述压电材料的具有反射层的一侧键合,本实施例中的键合为共晶键合,在所述衬底和所述压电材料的一侧生长键合物键合;其中,所述键合物为金、锡及其合金中的一种或多种;优选地,生长的所述键合物厚度为100nm-4000nm。本实施例中,具体如下:
如图10中的(4)所示,在得到的所述反射层上生长键合物,形成键合层;本实施例中,所述键合物为金、锡,即Au/Sn;
如图10中的(5)所示,取衬底,本实施例中,所述衬底为Si,作为本实施例可替换的实现方式,所述衬底还可替换为SOI、玻璃、LN、LT中的一种。其中,绝缘层上硅的简称为SOI;铌酸锂的简称为LN;钽酸锂的简称为LT。
在所述衬底上生长一层高声阻抗反射层,然后再在高声阻抗反射层上生长一层低声阻抗反射层,如此循环生长1-2个循环,最后在低声阻抗反射层上生长一层高声阻抗反射层,即可;本实施例中,生长1个循环,生长的所述反射层的厚度为300nm。所述低声阻抗反射层的材质为Al,所述高声阻抗反射层的材质为Mo。作为本实施例可替换的实现方式,所述低声阻抗反射层的材质还可替换为Ti、SiO
2、BCB中的一种或者多种;所述高声阻抗反射层的材质还可替换为Au、Nb、Ni、Pt、Ta、W、Ir、ZnO、HfO
2、TiO
2、Ta
2O
5、WO
3中的一种或多种。
如图10中的(6)所示,在所述衬底上生长键合物,形成键合层,所述键合物为金、锡,即Au/Sn;将生长有键合层的所述衬底与所述压电材料置于键合机或管式炉中进行键合,得到的键合后的中间产物。
(b)将步骤(a)中得到的键合后的中间产物进行热处理,在温度200℃下,退火2h,使所述压电材料沿注入离子产生的损伤层产生劈裂,得到单晶压电薄膜材料,如图10中的(7)所示。最后,在所述压电材料的剥离后的一侧生长上电极,本实施例中生长的为图形化的上电极,先在所述压电材料的表面光刻形成待生长图形,再生长电极,最后洗掉多余部分,即可;生长的上电极的电极材料为Al;所述上电极的厚度为50nm,即得,如图10中的(8)所示。
实施例11
本实施例的固态反射型体声波谐振器的制备方法,包括如下步骤:
(a)取经过离子注入的压电材料,并在所述压电材料的注入面下方生长反射层,然后取衬底,将所述衬底与所述压电材料的具有反射层的一侧键合;
(b)将步骤(a)中得到的键合后的中间产物进行热处理,使所述压电材料的薄膜剥离, 再在所述压电材料的剥离后的一侧生长上电极,即得。
作为本实施例的优选实现方式,固态反射型体声波谐振器的制备方法如图12所示,具体包括如下步骤:
(a)如图11中的(1)所示,取压电材料铌酸锂,将所述压电材料注入H离子,注入离子的能量为100KeV,注入剂量为2×10
16/cm
2,离子束流为10um/cm
-2,注入深度为4um,得到经过离子注入的压电材料。
在经过离子注入的压电材料的注入面上生长下电极;所述下电极为图形化的下电极。图形化的下电极通过如下方法生长:先在所述压电材料的表面光刻形成待生长图形,再生长电极,最后洗掉多余部分,即可;作为本实施例的可替换的实现方式,所述下电极还可通过如下方法生长:先在所述压电材料的表面生长电极,再制备掩膜,最后刻蚀掉多余部分,即可;本实施例中,生长下电极的电极材料为Al,所述下电极的厚度为50nm。作为本实施例可替换的实现方式,生长下电极的电极材料还可以是Au、Mo、Pt、W中的一种;所述下电极的厚度可以为50-500nm范围内的任意值。
如图11的(2)所示,在所述下电极的一侧生长SiO
2作为隔离层,所述隔离层无需平坦化;所述隔离层的厚度为50nm。作为本实施例的可替换的实现方式,所述隔离层的厚度可以为50-800nm范围内的任意值。
如图11中的(3)所示,在得到的经过离子注入的压电材料的隔离层的下方生长反射层;在所述压电材料的一侧生长一层低声阻抗反射层,然后再在低声阻抗反射层上生长一层高声阻抗反射层,如此生长1-4个循环,即可;本实施例中,生长3个循环,生长的所述反射层的总厚度为3000nm。所述反射层包括低声阻抗反射层、高声阻抗反射层;所述低声阻抗反射层与所述高声阻抗反射层为交替设置;所述低声阻抗反射层的材质为Al,所述高声阻抗反射层的材质为Mo。作为本实施例可替换的实现方式,所述低声阻抗反射层的材质还可替换为Ti、SiO
2、BCB中的一种或者多种;所述高声阻抗反射层的材质还可替换为Au、Nb、Ni、Pt、Ta、W、Ir、ZnO、HfO
2、TiO
2、Ta
2O
5、WO
3中的一种或多种。
然后,取衬底,将所述衬底与所述压电材料的具有反射层的一侧键合,本实施例中的键合为聚合物键合,在所述衬底和所述压电材料的一侧涂覆键合物键合;其中,所述键合物为有机绝缘材料;所述有机绝缘材料包括但不限于苯并环丁烯、聚酰亚胺中;涂覆的所述键合物厚度为100nm-4000nm;本实施中,具体如下:
如图11中的(4)所示,在得到的所述压电材料的反射层的一侧旋涂键合物,形成键合层;本实施例中,所述键合物为苯并环丁烯,即BCB;
如图11中的(5)所示,在所述衬底的具有反射层的一侧旋涂键合物,形成键合层,所 述键合物为苯并环丁烯,即BCB;所述衬底为Si,作为本实施例可替换的实现方式,所述衬底还可替换为SOI、玻璃、LN、LT中的一种。其中,绝缘层上硅的简称为SOI;铌酸锂的简称为LN;钽酸锂的简称为LT。
将涂覆有键合层的所述衬底与所述压电材料置于键合机或管式炉中进行键合,键合的预键合压力4×10
5pa,保压时间为30min;然后,将温度缓慢升至200℃,并保持温度为200℃,保持2h,使所述苯并环丁烯完全固化,完成键合,得到的键合后的中间产物。
(b)将步骤(a)中得到的键合后的中间产物进行热处理,在温度350℃下,退火2h,使所述压电材料沿注入离子产生的损伤层产生劈裂,得到单晶压电薄膜材料,如图11中的(6)所示。最后,在所述压电材料的剥离后的一侧生长上电极,本实施例中生长的为图形化的上电极,先在所述压电材料的表面光刻形成待生长图形,再生长电极,最后洗掉多余部分,即可;生长的上电极的电极材料为Al;所述上电极的厚度为50nm,即得,如图11中的(7)所示。
对比例1
本实施例的固态反射型体声波谐振器的制备方法,包括如下步骤:
取衬底,在所述衬底上方生长反射层,然后在衬底上生长下电极,再在所述下电极上沉积压电层,最后在沉积的压电层上生长上电极,即得。
其中,所述衬底、反射层、下电极、压电层、上电极的材质与实施例1中完全一致。
效果试验例
为验证本发明所述的固态反射型体声波谐振器的制备方法的技术效果,分别采用实施例1-11、对比例1中的方法制备的所述固态反射型体声波谐振器,按照如下步骤进行对比检测试验:
1.取实施例1-11、对比例1中的方法所制备的谐振器,使用探针台和矢量网络分析仪测试谐振器的S参数,得到S11。
2.将各谐振器的S11导入ADS仿真软件,利用ADS软件仿真得到三种器件输入阻抗Zin,从阻抗曲线读取各谐振器的串联谐振频率fs和并联谐振频率fp。
3.按照如下公式计算谐振器的Q值:
Q=f
s/p/2×|d(∠Zin)/df|
s/p
4.按照如下公式机电耦合系数k
t
2:
k
t
2=π
2/4×(fp-fs)/fp
经过上述实验,得到的实验数据如下:
组别 | fs | fp | Q | k t 2 |
实施例1 | 3.192GHz | 3.516GHz | 2581 | 22.71% |
实施例2 | 3.164GHz | 3.476GHz | 2157 | 22.12% |
实施例3 | 3.24GHz | 3.562GHz | 2352 | 22.28% |
实施例4 | 3.116GHz | 3.42GHz | 2200 | 22.04% |
实施例5 | 3.194GHz | 3.518GHz | 2250 | 22.7% |
实施例6 | 3196GHz | 3.52GHz | 2356 | 22.69% |
实施例7 | 3.15GHz | 3.464GHz | 2421 | 22.3% |
实施例8 | 3.158GHz | 3.456GHz | 2341 | 21.25% |
实施例9 | 3.142GHz | 3.446GHz | 2418 | 21.74% |
实施例10 | 3.190GHz | 3.512GHz | 2503 | 22.59% |
实施例11 | 3.16GHz | 3.458GHz | 2406 | 21.24% |
对比例1 | 3.012GHz | 3.226GHz | 1100 | 16.35% |
由上述结果可知,本发明所述的方法制备得到的固态反射型体声波谐振器具有更优的Q值以及机电耦合系数,性能更优。由技术常识可知,本发明可以通过其它的不脱离其精神实质或必要特征的实施方案来实现。因此,上述公开的实施方案,就各方面而言,都只是举例说明,并不是仅有的。所有在本发明范围内或在等同于本发明的范围内的改变均被本发明包含。
Claims (10)
- 一种固态反射型体声波谐振器的制备方法,其特征在于,包括如下步骤:(a)取经过离子注入的压电材料,并在所述压电材料的注入面下方生长反射层,然后取衬底,将所述衬底与所述压电材料的具有反射层的一侧键合;或者,取经过离子注入的压电材料,然后取衬底,在所述衬底上方生长反射层,将所述压电材料与所述衬底的具有反射层的一侧键合;或者,取经过离子注入的压电材料,并在所述压电材料的注入面下方生长反射层,然后取衬底,在所述衬底上方生长反射层,将所述压电材料具有反射层的一侧与所述衬底的具有反射层的一侧键合;(b)将步骤(a)中得到的键合后的中间产物进行热处理,使所述压电材料的薄膜剥离,再在所述压电材料的剥离后的一侧生长上电极,即得。
- 根据权利要求1所述的固态反射型体声波谐振器的制备方法,其特征在于,步骤(a)中所述压电材料为铌酸锂;优选地,经过离子注入的压电材料通过如下方法得到:取压电材料,在所述压电材料上进行离子注入,所述压电材料注入的离子为H离子、He离子、B离子、As离子中的一种或多种;注入离子的能量为100KeV-1000KeV;注入剂量为2-8×10 16/cm 2;离子束流为0.1-10um/cm -2;注入深度为0.3-8um;优选地,所述衬底为Si、SOI、玻璃、LN、LT中的一种。
- 根据权利要求1所述的固态反射型体声波谐振器的制备方法,其特征在于,所述反射层包括低声阻抗反射层、高声阻抗反射层;所述低声阻抗反射层与所述高声阻抗反射层为交替设置;优选地,所述低声阻抗反射层的材质为Al、Ti、SiO 2、BCB中的一种或者多种;所述高声阻抗反射层的材质为Mo、Au、Nb、Ni、Pt、Ta、W、Ir、ZnO、HfO 2、TiO 2、Ta 2O 5、WO 3中的一种或多种;优选地,生长反射层具体包括如下步骤:在所述压电材料的一侧生长一层低声阻抗反射层,然后再在低声阻抗反射层上生长一层高声阻抗反射层,如此生长1-4个循环,即可;或者,在所述衬底上生长一层高声阻抗反射层,然后再在高声阻抗反射层上生长一层低声阻抗反射层,如此生长1-3个循环,最后在低声阻抗反射层上生长一层高声阻抗反射层,即可;或者,在所述压电材料的一侧生长一层低声阻抗反射层,然后再在低声阻抗反射层上生长一层高声阻抗反射层,如此循环生长1-2个循环;同时在所述衬底上生长一层高声阻抗反射层,然后再在高声阻抗反射层上生长一层低声阻抗反射层,如此循环生长1-2个循环,最后在低声阻抗反射层上生长一层高声阻抗反射层,即可;优选的,生长的所述反射层的总厚度为200nm-6000nm。
- 根据权利要求3所述的固态反射型体声波谐振器的制备方法,其特征在于,步骤(a)中的键合为聚合物键合、亲水性键合、共晶键合中的一种;优选地,聚合物键合具体包括如下步骤:在所述衬底和/或所述压电材料的一侧涂覆键合物键合;其中,所述键合物为有机绝缘材料;所述有机绝缘材料包括苯并环丁烯、聚酰亚胺中的一种或多种;优选地,涂覆的所述键合物厚度为100nm-4000nm;优选地,亲水键合具体包括如下步骤:在所述衬底和/或所述压电材料的一侧生长键合物键合;其中,所述键合物为氧化硅、氮化硅、氧化铝、氮化铝中的一种或多种;优选地,生长的所述键合物厚度为100nm-4000nm;优选地,共晶键合具体包括如下步骤:在所述衬底和/或所述压电材料的一侧生长键合物键合;其中,所述键合物为金、锡及其合金中的一种或多种;优选 地,生长的所述键合物厚度为100nm-4000nm。
- 根据权利要求3所述的固态反射型体声波谐振器的制备方法,其特征在于,步骤(a)中的经过离子注入的压电材料的注入面上还生长有下电极;优选地,所述下电极包括图形化的下电极、未图形化的下电极;优选地,图形化的下电极通过如下方法生长:先在所述压电材料的表面光刻形成待生长图形,再生长电极,最后洗掉多余部分,即可;或者,先在所述压电材料的表面生长电极,再制备掩膜,最后刻蚀掉多余部分,即可;优选地,生长下电极的电极材料为Al、Au、Mo、Pt、W中的一种;所述下电极的厚度为50-500nm。
- 根据权利要求5所述的固态反射型体声波谐振器的制备方法,其特征在于,所述下电极为图形化的下电极,在所述下电极的一侧生长SiO 2作为隔离层,对所述隔离层平坦化,或者不进行平坦化;所述隔离层的厚度为50-800nm。
- 根据权利要求6所述的固态反射型体声波谐振器的制备方法,其特征在于,步骤(b)中具体包括如下步骤:将步骤(a)得到的键合后的中间产物,升温至200~350℃,使薄膜剥离,然后,在温度200~350℃下,退火20~120min,得到剥离薄膜;优选地,所述压电材料剥离后的厚度为500-1000nm;优选地,生长的所述上电极的电极材料为Al、Au、Mo、Pt、W中的一种,所述上电极厚度为50~300nm。
- 一种权利要求1-7中任意一项所述的固态反射型体声波谐振器的制备方法制备得到的固态反射型体声波谐振器。
- 根据权利要求8所述的固态反射型体声波谐振器,其特征在于,自上而下依次包括上电极、压电薄膜、下电极、反射层、键合层和衬底;优选地,所述下电极为图形化的下电极,所述下电极与所述反射层之间还设有隔离层;或者,自上而下依次包括上电极、压电薄膜、下电极、键合层、反射层和衬底;优选地,所述反射层由交替设置的低声阻抗反射层与高声阻抗反射层组成。
- 一种固态反射型体声波谐振器,其特征在于:自上而下依次包括上电极、压电薄膜、下电极、反射层、键合层和衬底;优选地,所述下电极为图形化的下电极,所述下电极与所述反射层之间还设有隔离层;或者,自上而下依次包括上电极、压电薄膜、下电极、键合层、反射层和衬底;优选地,所述反射层由交替设置的低声阻抗反射层与高声阻抗反射层组成;优选地,所述固态反射型体声波谐振器由晶圆键合转移方法制备而成。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/608,744 US20220321078A1 (en) | 2019-05-13 | 2019-11-13 | Solid reflection-type bulk acoustic resonator and preparation method thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910393000.5A CN110224680A (zh) | 2019-05-13 | 2019-05-13 | 一种固态反射型体声波谐振器及其制备方法 |
CN201910393000.5 | 2019-05-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020228284A1 true WO2020228284A1 (zh) | 2020-11-19 |
Family
ID=67820946
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/118087 WO2020228284A1 (zh) | 2019-05-13 | 2019-11-13 | 一种固态反射型体声波谐振器及其制备方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20220321078A1 (zh) |
CN (1) | CN110224680A (zh) |
WO (1) | WO2020228284A1 (zh) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110224680A (zh) * | 2019-05-13 | 2019-09-10 | 电子科技大学 | 一种固态反射型体声波谐振器及其制备方法 |
CN110535451A (zh) * | 2019-09-22 | 2019-12-03 | 电子科技大学 | 一种新型电极结构的声表面波谐振器 |
CN111245387B (zh) * | 2020-02-14 | 2021-05-25 | 见闻录(浙江)半导体有限公司 | 一种固态装配谐振器的结构及制作工艺 |
CN111342792B (zh) * | 2020-02-19 | 2021-05-25 | 见闻录(浙江)半导体有限公司 | 一种具有电磁屏蔽结构的固态装配谐振器及制作工艺 |
CN111628058A (zh) * | 2020-04-17 | 2020-09-04 | 华灿光电(苏州)有限公司 | AlGaInP基发光二极管芯片及其制造方法 |
CN112511125B (zh) * | 2020-09-23 | 2024-01-26 | 广东广纳芯科技有限公司 | 声表面波器件的制造方法 |
CN112499582A (zh) * | 2020-11-25 | 2021-03-16 | 天津津航技术物理研究所 | 一种基于薄膜键合的可调谐fp滤光片的制备方法 |
JPWO2022168498A1 (zh) * | 2021-02-05 | 2022-08-11 | ||
CN113054941B (zh) * | 2021-02-09 | 2023-11-24 | 偲百创(深圳)科技有限公司 | 声波谐振器制作方法及声波谐振器 |
CN112953449B (zh) * | 2021-03-04 | 2024-10-01 | 偲百创(深圳)科技有限公司 | 横向激励剪切模式的声学谐振器的制造方法 |
CN114285389A (zh) * | 2021-03-15 | 2022-04-05 | 偲百创(深圳)科技有限公司 | 声学谐振器的制备方法和声学谐振器 |
CN112953454B (zh) * | 2021-03-16 | 2022-10-11 | 电子科技大学 | 一种高频、低损耗的声表面波谐振器及其制备方法 |
CN113381721B (zh) * | 2021-05-06 | 2023-08-08 | 偲百创(深圳)科技有限公司 | 压电换能器制作方法及压电换能器 |
CN114039572A (zh) * | 2021-10-25 | 2022-02-11 | 郴州功田电子陶瓷技术有限公司 | 一种有气泡隔离层的固态型体声波谐振器 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030199105A1 (en) * | 2002-04-22 | 2003-10-23 | Kub Francis J. | Method for making piezoelectric resonator and surface acoustic wave device using hydrogen implant layer splitting |
CN101997512A (zh) * | 2010-10-28 | 2011-03-30 | 哈尔滨工业大学 | 固贴式薄膜体声波谐振器及其全绝缘布拉格反射栅制备方法 |
CN107342748A (zh) * | 2017-07-04 | 2017-11-10 | 浙江大学 | 一种基于单晶压电薄膜的体声波谐振器及其制备方法 |
CN110224680A (zh) * | 2019-05-13 | 2019-09-10 | 电子科技大学 | 一种固态反射型体声波谐振器及其制备方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100546178C (zh) * | 2003-12-19 | 2009-09-30 | 宇部兴产株式会社 | 制造压电薄膜器件的方法和压电薄膜器件 |
CN101246162A (zh) * | 2008-03-12 | 2008-08-20 | 浙江大学 | 利用压电薄膜体声波器件的抗体检测生物芯片 |
US10164605B2 (en) * | 2016-01-26 | 2018-12-25 | Avago Technologies International Sales Pte. Limited | Bulk acoustic wave resonator with piezoelectric layer comprising lithium niobate or lithium tantalate |
CN107508569B (zh) * | 2017-08-07 | 2021-06-01 | 电子科技大学 | 一种薄膜体声波谐振器的制备方法 |
CN107947750A (zh) * | 2017-11-22 | 2018-04-20 | 周燕红 | 一种压电谐振器的制备方法及压电谐振器 |
CN108493326A (zh) * | 2018-04-09 | 2018-09-04 | 中国科学院上海微系统与信息技术研究所 | 基于单晶压电薄膜的声波谐振器及其制备方法 |
-
2019
- 2019-05-13 CN CN201910393000.5A patent/CN110224680A/zh active Pending
- 2019-11-13 WO PCT/CN2019/118087 patent/WO2020228284A1/zh active Application Filing
- 2019-11-13 US US17/608,744 patent/US20220321078A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030199105A1 (en) * | 2002-04-22 | 2003-10-23 | Kub Francis J. | Method for making piezoelectric resonator and surface acoustic wave device using hydrogen implant layer splitting |
CN101997512A (zh) * | 2010-10-28 | 2011-03-30 | 哈尔滨工业大学 | 固贴式薄膜体声波谐振器及其全绝缘布拉格反射栅制备方法 |
CN107342748A (zh) * | 2017-07-04 | 2017-11-10 | 浙江大学 | 一种基于单晶压电薄膜的体声波谐振器及其制备方法 |
CN110224680A (zh) * | 2019-05-13 | 2019-09-10 | 电子科技大学 | 一种固态反射型体声波谐振器及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN110224680A (zh) | 2019-09-10 |
US20220321078A1 (en) | 2022-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020228284A1 (zh) | 一种固态反射型体声波谐振器及其制备方法 | |
WO2020181816A1 (zh) | 一种无需制备牺牲层的空腔型体声波谐振器及其制备方法 | |
CN112953454B (zh) | 一种高频、低损耗的声表面波谐振器及其制备方法 | |
CN107342748B (zh) | 一种基于单晶压电薄膜的体声波谐振器及其制备方法 | |
CN109995340B (zh) | 一种空腔型体声波谐振器及其制备方法 | |
CN107508569B (zh) | 一种薄膜体声波谐振器的制备方法 | |
KR101856797B1 (ko) | 압전물질 주입에 대한 방법 | |
CN203851109U (zh) | 复合基板 | |
WO2023125757A1 (zh) | 一种高带宽空腔型薄膜体声波谐振器及其制备方法 | |
WO2020056835A1 (zh) | 柔性单晶兰姆波谐振器及其形成方法 | |
TWI815970B (zh) | 壓電性材料基板與支持基板的接合體、及其製造方法 | |
WO2022032699A1 (zh) | 一种声波谐振器的制作工艺及声波谐振器 | |
US20180316329A1 (en) | Composite structure and associated production method | |
WO2020228285A1 (zh) | 空腔型体声波谐振器的制备方法及空腔型体声波谐振器 | |
CN109995341B (zh) | 具有下电极保护层的空腔型体声波谐振器及其制备方法 | |
CN111446944A (zh) | 一种利于集成的空气隙型薄膜体声波谐振器及其制备方法 | |
CN111371426A (zh) | 一种基于铌酸锂的空气隙型剪切波谐振器及其制备方法 | |
JP2011135576A (ja) | エレクトレットを備える音響共振器、および前記共振器を製造する方法、切り替え可能な結合共振器フィルターへの応用 | |
CN110932694A (zh) | 一种薄膜体声波谐振器 | |
CN111654258B (zh) | 薄膜体声波谐振器制作方法、薄膜体声波谐振器及滤波器 | |
CN110994097B (zh) | 一种高频大带宽薄膜体波滤波器结构及其制备方法 | |
CN110768644B (zh) | 一种薄膜体声波谐振器及其分隔制备工艺 | |
CN115001426B (zh) | 一种基于多次键合工艺的薄膜体声波谐振器的制备方法 | |
JP7306726B2 (ja) | フィルムバルク音響波共振器の製造方法 | |
CN113452341A (zh) | 基于热致型smp的空气隙型体声波谐振器及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19928599 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19928599 Country of ref document: EP Kind code of ref document: A1 |