WO2020226366A1 - 대장암 진단 마커 및 대장암 진단에 필요한 정보를 제공하는 방법 - Google Patents

대장암 진단 마커 및 대장암 진단에 필요한 정보를 제공하는 방법 Download PDF

Info

Publication number
WO2020226366A1
WO2020226366A1 PCT/KR2020/005778 KR2020005778W WO2020226366A1 WO 2020226366 A1 WO2020226366 A1 WO 2020226366A1 KR 2020005778 W KR2020005778 W KR 2020005778W WO 2020226366 A1 WO2020226366 A1 WO 2020226366A1
Authority
WO
WIPO (PCT)
Prior art keywords
cips
pbmc
stat3
sample
crc
Prior art date
Application number
PCT/KR2020/005778
Other languages
English (en)
French (fr)
Inventor
강은숙
김희철
윤재원
Original Assignee
사회복지법인 삼성생명공익재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 사회복지법인 삼성생명공익재단 filed Critical 사회복지법인 삼성생명공익재단
Priority to EP20801458.9A priority Critical patent/EP3964835A4/en
Priority to US17/594,925 priority patent/US20220221462A1/en
Publication of WO2020226366A1 publication Critical patent/WO2020226366A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood
    • G01N33/4915Blood using flow cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57419Specifically defined cancers of colon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57446Specifically defined cancers of stomach or intestine
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/30Staining; Impregnating ; Fixation; Dehydration; Multistep processes for preparing samples of tissue, cell or nucleic acid material and the like for analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • G01N33/5047Cells of the immune system
    • G01N33/505Cells of the immune system involving T-cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5091Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing the pathological state of an organism
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/52Assays involving cytokines
    • G01N2333/54Interleukins [IL]
    • G01N2333/5412IL-6
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/52Assays involving cytokines
    • G01N2333/54Interleukins [IL]
    • G01N2333/5428IL-10
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2440/00Post-translational modifications [PTMs] in chemical analysis of biological material
    • G01N2440/14Post-translational modifications [PTMs] in chemical analysis of biological material phosphorylation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/52Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis

Definitions

  • the present invention relates to a colorectal cancer diagnostic marker, a method of providing information necessary for colorectal cancer diagnosis using the same, and a method of providing information for monitoring a colorectal cancer treatment response using the same.
  • colonoscopy is mainly performed to check for the presence of colon cancer.
  • a process of emptying the intestine was essential.
  • Such colonoscopy is recommended as a screening test for colon cancer, but due to the inconvenience of the above process, only some subjects are being tested.
  • colonoscopy can cause some serious side effects, such as intestinal perforation or intestinal bleeding.
  • Fecal occult blood test is also used as a screening test, but it has a disadvantage of low sensitivity.
  • CEA protein in blood as a diagnostic marker that can confirm the presence or absence of colon cancer by blood test.
  • the sensitivity varies depending on the stage, it is reported to be about 30% in the 1st and 2nd stages, and 75% or more in the 3rd and 4th stages, so its utilization as a screening test is poor. Except for this, there is no well established situation until now.
  • ctDNA circulating tumor DNA
  • STAT proteins are known as STAT 1, 2, 3, 4, 5A, 5B, and 6 as a transcription factor of the JAK signaling system.
  • STAT protein is activated through phosphorylation by specific cytokine stimulation and reactions between its receptors, inducing the secretion of cytokines through signal transduction to the nucleus, and is involved in the differentiation, survival, and activity of cells, especially immune cells.
  • the way to see the STAT phosphorylation response to cytokine stimulation of blood immune cells through phospho-flow analysis is performed by simple blood collection, and the results can be confirmed within a day.
  • flow cytometry it is possible to give immunological and clinical significance by confirming the degree of phosphorylation of various STAT proteins in various immune cells.
  • an object of the present invention is to provide a marker for diagnosing colon cancer.
  • Another object of the present invention is to provide a method of providing information necessary for colorectal cancer diagnosis.
  • Another object of the present invention is to provide a method of providing information for monitoring colorectal cancer treatment response.
  • the present invention relates to a colorectal cancer diagnostic marker, a method of providing information necessary for colorectal cancer diagnosis using the same, and a method of providing information for monitoring a colorectal cancer treatment response using the same.
  • An example of the present invention relates to a method of providing information necessary for colorectal cancer diagnosis, including the following steps.
  • the first sample may be obtained from an organ, tissue, or cell of the specimen. Further, the first sample may include lymphocytes, for example, may include peripheral blood, but is not limited thereto.
  • the first sample may be prepared by the following steps:
  • Cytokine treatment step of treating the isolated monocytes with cytokines Cytokine treatment step of treating the isolated monocytes with cytokines
  • Phosphorylation staining step to perform phosphorylation staining.
  • the cytokine treated in the first sample may be IL-10.
  • the concentration of IL-10 is 9.0 to 11.0 ng/ml, 9.0 to 10.8 ng/ml, 9.0 to 10.6 ng/ml, 9.0 to 10.4 ng/ml, 9.0 to 10.2 ng/ml, 9.2 to 11.0 ng /ml, 9.2 to 10.8 ng/ml, 9.2 to 10.6 ng/ml, 9.2 to 10.4 ng/ml, 9.2 to 10.2 ng/ml, 9.4 to 11.0 ng/ml, 9.4 to 10.8 ng/ml, 9.4 to 10.6 ng/ ml, 9.4 to 10.4 ng/ml, 9.4 to 10.2 ng/ml, 9.6 to 11.0 ng/ml, 9.6 to 10.8 ng/ml, 9.6 to 10.6 ng/ml, 9.6 to 10.4 ng/ml, 9.6 to 10.4 ng/ml, 9.6 to 10.2 ng/ml, 9.6 to 11.0 ng/ml, 9.6 to
  • the second sample may be obtained from an organ, tissue, or cell of the specimen.
  • the second sample may include lymphocytes, for example, may include peripheral blood, but is not limited thereto.
  • the second sample may be prepared by the following steps:
  • Cytokine treatment step of treating the isolated monocytes with cytokines Cytokine treatment step of treating the isolated monocytes with cytokines
  • Phosphorylation staining step to perform phosphorylation staining.
  • the cytokine treated in the second sample may be IL-6.
  • the concentration of IL-6 is 19.0 to 21.0 ng/ml, 19.0 to 20.8 ng/ml, 19.0 to 20.6 ng/ml, 19.0 to 20.4 ng/ml, 19.0 to 20.2 ng/ml, 19.2 to 21.0 ng /ml, 19.2 to 20.8 ng/ml, 19.2 to 20.6 ng/ml, 19.2 to 20.4 ng/ml, 19.2 to 20.2 ng/ml, 19.4 to 21.0 ng/ml, 19.4 to 20.8 ng/ml, 19.4 to 20.6 ng/ ml, 19.4 to 20.4 ng/ml, 19.4 to 20.2 ng/ml, 19.6 to 21.0 ng/ml, 19.6 to 20.8 ng/ml, 19.6 to 20.6 ng/ml, 19.6 to 20.4 ng/ml, 19.6 to 20.2 ng/ml , 19.8 to 21.0 ng/ml, 19.8 to 20.8 ng/ml, 19.8
  • the measurement of the phosphorylation level of STAT3 may be measured using flow cytometry, but is not limited thereto.
  • Another example of the present invention relates to a method of providing information for monitoring colorectal cancer treatment response comprising the following steps:
  • the first sample may be obtained from an organ, tissue, or cell of a specimen.
  • the first sample may include lymphocytes, for example, may include peripheral blood, but is not limited thereto.
  • the first sample may be prepared by the following steps:
  • Cytokine treatment step of treating the isolated monocytes with cytokines Cytokine treatment step of treating the isolated monocytes with cytokines
  • Phosphorylation staining step to perform phosphorylation staining.
  • the cytokine treated in the first sample may be IL-10.
  • the concentration of IL-10 is 9.0 to 11.0 ng/ml, 9.0 to 10.8 ng/ml, 9.0 to 10.6 ng/ml, 9.0 to 10.4 ng/ml, 9.0 to 10.2 ng/ml, 9.2 to 11.0 ng /ml, 9.2 to 10.8 ng/ml, 9.2 to 10.6 ng/ml, 9.2 to 10.4 ng/ml, 9.2 to 10.2 ng/ml, 9.4 to 11.0 ng/ml, 9.4 to 10.8 ng/ml, 9.4 to 10.6 ng/ ml, 9.4 to 10.4 ng/ml, 9.4 to 10.2 ng/ml, 9.6 to 11.0 ng/ml, 9.6 to 10.8 ng/ml, 9.6 to 10.6 ng/ml, 9.6 to 10.4 ng/ml, 9.6 to 10.4 ng/ml, 9.6 to 10.2 ng/ml, 9.6 to 11.0 ng/ml, 9.6 to
  • the second sample may be obtained from an organ, tissue, or cell of the specimen.
  • the second sample may include lymphocytes, for example, may include peripheral blood, but is not limited thereto.
  • the second sample may be prepared by the following steps:
  • Cytokine treatment step of treating the isolated monocytes with cytokines Cytokine treatment step of treating the isolated monocytes with cytokines
  • Phosphorylation staining step to perform phosphorylation staining.
  • the cytokine treated in the second sample may be IL-6.
  • the concentration of IL-6 is 19.0 to 21.0 ng/ml, 19.0 to 20.8 ng/ml, 19.0 to 20.6 ng/ml, 19.0 to 20.4 ng/ml, 19.0 to 20.2 ng/ml, 19.2 to 21.0 ng /ml, 19.2 to 20.8 ng/ml, 19.2 to 20.6 ng/ml, 19.2 to 20.4 ng/ml, 19.2 to 20.2 ng/ml, 19.4 to 21.0 ng/ml, 19.4 to 20.8 ng/ml, 19.4 to 20.6 ng/ ml, 19.4 to 20.4 ng/ml, 19.4 to 20.2 ng/ml, 19.6 to 21.0 ng/ml, 19.6 to 20.8 ng/ml, 19.6 to 20.6 ng/ml, 19.6 to 20.4 ng/ml, 19.6 to 20.2 ng/ml , 19.8 to 21.0 ng/ml, 19.8 to 20.8 ng/ml, 19.8
  • the specimen may be a patient undergoing colorectal cancer treatment, and may be, for example, a patient who has undergone colon cancer surgery.
  • the method of providing information for monitoring of the present invention cannot be used in patients receiving chemoimmunotherapy or immunotherapy as a method of treating colon cancer.
  • the phosphorylation level of STAT3 may be measured using flow cytometry, but is not limited thereto.
  • the term "Th cell” refers to a helper T cell or a helper T cell, as a cell that plays an important role in the functioning of the immune system, and is a kind of lymphocyte. It does not perform cytotoxic or phagocytosis, and does not directly kill infected (body) cells or antigens, so it is useless in the absence of other immune cells.
  • Helper T cells (Th cells) play a role in activating and directing other immune cells, and especially play a very important role in the immune system.
  • Helper T cells are essential for B cell antibody production, activation of cytotoxic T cells, and antibacterial activity of macrophages and other phagocytic cells.
  • the name of the helper T cell or the helper T cell is because it helps a lot in the activities of other cells.
  • Tc cell refers to a cytotoxic T cell (CD8+, TC) or a killer T cell, and is a type of lymphocyte, and a somatic or tumor cell infected with a virus Can destroy Cytotoxic T cells remove cells infected with antigens such as viruses and cells that have been damaged or have lost their function.
  • Most cytotoxic T cells have a T cell receptor (TCR), so they can recognize peptides of specific antigens attached to type I MHC molecules located on the surface of all cells.
  • TCR T cell receptor
  • a glycoprotein called CD8 is located on the surface of cytotoxic T cells and binds to the constant region of the type I MHC molecule. The binding between CD8 and MHC molecules makes the binding between cytotoxic T cells (TC) and target cells stronger.
  • CD8+ T cells generally appear to perform predetermined cytotoxic activities in the immune system.
  • the present invention relates to a colorectal cancer diagnostic marker, a method of providing information necessary for colorectal cancer diagnosis using the same, and a method of providing information for monitoring a colorectal cancer treatment response using the same, and the diagnostic sensitivity and specificity are significantly improved. have.
  • FIG. 1 is a graph showing the results of the difference between IL-6 stimulation-induced STAT1 phosphorylation in healthy human blood immune cells, cancer patient blood immune cells, and tumor immune cells according to an embodiment of the present invention.
  • FIG. 2 is a graph showing a result of the difference in IL-6 stimulation-induced STAT3 phosphorylation in healthy human blood immune cells, cancer patient blood immune cells, and tumor immune cells according to an embodiment of the present invention.
  • FIG. 3 is a graph showing the results of the difference between IL-10 stimulation-induced STAT3 phosphorylation in healthy human blood immune cells, cancer patient blood immune cells, and tumor immune cells according to an embodiment of the present invention.
  • FIG. 4 is a graph showing a result of the difference between IL-2 stimulation-induced STAT5 phosphorylation in healthy human blood immune cells, cancer patient blood immune cells, and tumor immune cells according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram schematically representing changes in blood immune cells and tumor immune cells of a cancer patient using the results of FIGS. 1 to 4 as a baseline value of healthy blood immune cells according to an embodiment of the present invention.
  • FIG. 6 is a result of experimenting the change in phosphorylation of each STAT for each cytokine after co-culturing the blood immune cells of a healthy human in various ratios with a colon cancer cell line according to an embodiment of the present invention.
  • A PBMC only
  • B direct culture of PBMC+HCT116 (1:1)
  • C direct culture of PBMC+HCT116 (1:10)
  • D indirect culture of PBMC+HCT116 (1:10)
  • FIG. 9 is a colon cancer patient and a healthy person according to an embodiment of the present invention to find a combination of cytokine and STAT (IL-6/pSTAT3 and IL-10/pSTAT3) that has the greatest difference in colorectal cancer based on each item. It is a diagram showing the distribution of patients (red dots) and healthy people (green dots).
  • FIG. 10 is a process for verifying the performance of the model using a validation cohort after creating a statistical model by finding a characteristic useful for distinguishing between a cancer patient and a normal person in a training cohort according to an embodiment of the present invention It is a schematic diagram showing.
  • FIG. 11 is an ROC analysis result showing the performance of a statistical model using the two characteristics (IL-6/pSTAT3 and IL-10/pSTAT3) presented in this study in a training cohort according to an embodiment of the present invention.
  • FIG. 12 is an ROC analysis result showing the performance of a statistical model using the two characteristics (IL-6/pSTAT3 and IL-10/pSTAT3) presented in this study in a validation cohort according to an embodiment of the present invention.
  • FIG. 13 is an ROC analysis result showing the performance of a statistical model using the two characteristics (IL-6/pSTAT3 and IL-10/pSTAT3) presented in this study in a training and validation cohort according to an embodiment of the present invention (black line ), and ROC analysis results showing the performance of a statistical model that simultaneously applied the two characteristics (IL-6/pSTAT3 and IL-10/pSTAT3) presented in this study and a previously known colon cancer marker (CEA) in the training and validation cohort. Is (red dotted line).
  • the test subjects included the colon cancer group and the healthy group.
  • the colorectal cancer group was selected from patients diagnosed with colon cancer by biopsy collected during colonoscopy, before surgery and chemotherapy.
  • patients with oral consent about 10 ml of fresh peripheral blood was collected in a test tube containing heparin as an anticoagulant before surgery.
  • Healthy people's blood was sold in sales from an external tissue bank (Gangnam Severance Human Derivatives Bank). The blood was expedited to our laboratory on the same day it was collected.
  • Monocytes were isolated from fresh whole blood using a specific gravity solution (1.077) such as Ficoll.
  • the separation method followed a conventional method. Briefly, after 1:1 dilution of whole blood with RPMI1640 medium, Ficoll and diluted whole blood are sequentially transferred to a 50 ml test tube at a ratio of 1:1. After centrifugation at 1,300 rpm (350 g) for 20 minutes, the separated monocyte layer between Ficoll and plasma is carefully recovered.
  • FBS Fetal Bovine Serum
  • the unstim test tube can be shared even with other cytokines.
  • the optimal concentration for each cytokine is shown in Table 1 below. Optimal concentration and reaction time were established through prior experiments.
  • test tube was taken out and rapidly treated with a final concentration of 1.5% paraformaldehyde, and then left at room temperature at 25° C. for 10 minutes, and then centrifuged at 1,000 rpm (300 g) for 10 minutes to remove the supernatant. Then, the cells were well suspended into single cells using a mixer (vortex), and the cells were fixed by adding 1.0 ml of a cold 100% methanol stock solution stored at -20°C or lower. During the addition process, care is taken to ensure that the cells are sufficiently single-celled by mixing them on the mixer. Then, fix it in a -70°C freezer for at least 1 hour.
  • test tubes for cytokine stimulation The composition of the test tubes for cytokine stimulation is shown in Table 2, and the composition of the antibody reagent used for each test tube is shown in Table 3.
  • the median MFI (median MFI) of the degree of pSTAT expression (fluorescence intensity, MFI) for each cytokine stimulation on the histogram was determined under unstim and stim conditions. was derived. And finally, expressed as a ratio of stim MFI/unstim MFI, and the results are shown in Table 4.
  • pSTAT1 and pSTAT3 induced by IL-6 were significantly reduced in tumor infiltrating lymphocytes (TILs).
  • TILs tumor infiltrating lymphocytes
  • CIPS signature cytokine-induced phosphorylated STAT signature
  • IL-6-induced pSTAT1 was similarly observed in Helper T, regulatory T and cytotoxic T cells, and pSTAT3 was similarly observed in cytotoxic T cells. However, it was confirmed that IL-10-induced pSTAT3 was similar in TIL and healthy control cells, whereas it was significantly increased in peripheral blood lymphocytes of patients.
  • colon cancer cell line HCT116 American Type Culture Collection, ATCC CCL-247
  • peripheral blood mononuclear cells of normal subjects were simultaneously cultured in vitro.
  • the cell mixing conditions and the number of each cell during the in vitro co-culture experiment are shown in Table 6.
  • the degree of phosphorylation of STAT protein for each cytokine was measured, and the results are shown in Fig. 6 and Tables 13 to 15. (Table 13: Th, Table 14: Treg, Table 15: Tc)
  • the co-culture was carried out under two conditions. That is, the ratio of tumor cells and monocytes of a normal person is 1:1 and 1:10, respectively, but in the first condition, two types of cells are directly mixed in one experimental well and cultured simultaneously (direct), and the second condition is the diaphragm In this experimental well (transwell), tumor cells are placed in the upper layer of the septum and monocytes of a normal person are placed in the lower layer, and then cultured simultaneously (indirect).
  • the CIPS signatures of 30 CRC patients and 15 healthy individuals were clustered. Specifically, the distance between the sample results was analyzed using the hierarchical clustering method using the R language, and a heatmap was created using the gplot R package to plot them, and the results are shown in FIG. 7.
  • the two CIPS patterns i.e., IL-6-induced pSTAT3 in Tc cells and IL-10-induced pSTAT3 in Th cells, were applied simultaneously with the above two CIPS patterns, which are known as conventional CRC tumor markers in tumor patients and normal subjects. Differentiating ability was analyzed. Specifically, by using the previously established model, a case of cancer patient with a probability of 50% or more was predicted in each patient, and the result was compared with the value actually labeled (cancer patient vs. healthy person). In the case of tumor patients, CEA is basically all measurements, so in addition to the already obtained test values and the two markers derived from this experiment, they were analyzed in the same manner and model, and the results are shown in FIGS. 13 and 16.
  • the present invention relates to a colorectal cancer diagnostic marker, a method of providing information necessary for colorectal cancer diagnosis using the same, and a method of providing information for monitoring a colorectal cancer treatment response using the same.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Oncology (AREA)
  • Hospice & Palliative Care (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Ecology (AREA)
  • Dispersion Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Toxicology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Physiology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 대장암 진단 마커, 이를 이용한 대장암 진단에 필요한 정보를 제공하는 방법 및 이를 이용한 대장암 치료반응 모니터링을 위한 정보를 제공하는 방법에 관한 것이다.

Description

대장암 진단 마커 및 대장암 진단에 필요한 정보를 제공하는 방법
본 특허출원은 2019년 05월 03일에 대한민국 특허청에 제출된 대한민국 특허출원 제10-2019-0052556호에 대하여 우선권을 주장하며, 상기 특허출원의 개시 사항은 본 명세서에 참조로서 삽입된다.
본 발명은 대장암 진단 마커, 이를 이용한 대장암 진단에 필요한 정보를 제공하는 방법 및 이를 이용한 대장암 치료반응 모니터링을 위한 정보를 제공하는 방법에 관한 것이다.
통상적으로 대장암의 유무를 검사하기 위해서 대장 내시경 검사를 주로 시행하고 있다. 하지만, 대장 내시경 검사를 진행하기 위해서는 장을 비우는 과정이 필수적으로 필요하였다. 이러한 대장 내시경 검사는 대장암의 선별검사로 권고되고 있으나, 상기와 같은 과정의 불편함 때문에 일부 대상에서만 검사가 진행되고 있다. 또한, 대장 내시경 검사는 장 천공이나 장 출혈 등의 몇 가지 중대한 부작용이 생길 수 있다. 대변 잠혈검사도 선별검사로 이용되고 있으나 민감도가 낮은 단점이 있다.
대장암의 유무를 혈액검사로 확인할 수 있는 진단 마커는 혈액에서 CEA 단백을 검출하는 것이 알려져 있다. 그러나 민감도가 병기에 따라 달라 1, 2기의 경우에는 약 30%, 3, 4기에 이르러 75% 이상으로 보고되고 있어 선별검사로의 활용도가 떨어진다. 이를 제외하고는 현재까지 잘 정립된 것이 없는 실정이다. 최근 분자유전학 기법의 발전으로 circulating tumor DNA (ctDNA) 및 엑소좀을 이용한 혈액기반 암진단법이 활발히 연구되고 있다. 그러나 이는 특이 표적이 밝혀져야 활용도가 증가되고 성능이 최적화 될 수 있다.
따라서, 부작용이 적고 간단한 혈액 채취 등으로 검사가 용이하며, 진단적 민감도가 높은 검사에 대한 필요가 존재한다. Signal transducer and activator of transcription (STAT) 단백은 JAK 신호전달체계의 하위 전사요소 (transcription factor)로 STAT 1, 2, 3, 4, 5A, 5B, 6가 알려져 있다. 각 STAT 단백은 특이적인 사이토카인 자극과 그 수용체간 반응에 의하여 인산화를 통해 활성화되어 핵으로 신호 전달을 통해 사이토카인을 분비를 유도하고, 세포 특히 면역세포의 분화, 생존, 활성에 관여한다. Phospho-flow 분석을 통해 혈액 면역 세포의 사이토카인 자극에 대한 STAT 인산화 반응을 보는 방법은 간단한 혈액 채취로 검사가 진행되며 하루내 그 결과를 확인할 수 있다. 또한 유세포 분석법의 장점을 이용하여 다양한 면역세포에서 여러 STAT 단백의 인산화 정도를 확인하므로써 면역학적, 임상적 의의를 부여할 수 있다.
이에, 본 발명의 목적은 대장암 진단용 마커를 제공하는 것이다.
본 발명의 다른 목적은 대장암 진단에 필요한 정보를 제공하는 방법을 제공하는 것이다.
본 발명의 또 다른 목적은 대장암 치료반응 모니터링을 위한 정보를 제공하는 방법을 제공하는 것이다.
본 발명은 대장암 진단 마커, 이를 이용한 대장암 진단에 필요한 정보를 제공하는 방법 및 이를 이용한 대장암 치료반응 모니터링을 위한 정보를 제공하는 방법에 관한 것이다.
이하 본 발명을 더욱 자세히 설명하고자 한다.
본 발명의 일 예는 하기의 단계를 포함하는 대장암 진단에 필요한 정보를 제공하는 방법에 관한 것이다.
제1 시료에 포함된 Th 세포에서 STAT3의 인산화 수치를 측정하는 단계; 및
제2 시료에 포함된 Tc 세포에서 STAT3의 인산화 수치를 측정하는 단계.
본 발명에 있어서 제1 시료는 검체의 기관, 조직, 세포로부터 수득한 것일 수 있다. 또한, 상기 제1 시료는 림프구를 포함하는 것일 수 있으며, 예를 들어, 말초혈을 포함하는 것일 수 있으나, 이에 한정되는 것은 아니다.
본 발명에 있어서 제1 시료는 하기의 단계에 의해 준비 되는 것일 수 있다:
혈액에 포함된 단핵구를 분리하는 단핵구 분리 단계;
분리된 단핵구에 사이토카인을 처리하는 사이토카인 처리 단계; 및
인산화 염색을 수행하는 인산화 염색 단계.
본 발명에 있어서 상기 제1 시료에 처리하는 사이토카인은 IL-10인 것일 수 있다.
본 발명에 있어서 상기 IL-10의 농도는 9.0 내지 11.0 ng/ml, 9.0 내지 10.8 ng/ml, 9.0 내지 10.6 ng/ml, 9.0 내지 10.4 ng/ml, 9.0 내지 10.2 ng/ml, 9.2 내지 11.0 ng/ml, 9.2 내지 10.8 ng/ml, 9.2 내지 10.6 ng/ml, 9.2 내지 10.4 ng/ml, 9.2 내지 10.2 ng/ml, 9.4 내지 11.0 ng/ml, 9.4 내지 10.8 ng/ml, 9.4 내지 10.6 ng/ml, 9.4 내지 10.4 ng/ml, 9.4 내지 10.2 ng/ml, 9.6 내지 11.0 ng/ml, 9.6 내지 10.8 ng/ml, 9.6 내지 10.6 ng/ml, 9.6 내지 10.4 ng/ml, 9.6 내지 10.2 ng/ml, 9.8 내지 11.0 ng/ml, 9.8 내지 10.8 ng/ml, 9.8 내지 10.6 ng/ml, 9.8 내지 10.4 ng/ml, 9.8 내지 10.2 ng/ml, 예를 들어, 10.0 ng/ml인 것일 수 있다.
본 발명에 있어서 제2 시료는 검체의 기관, 조직, 세포로부터 수득한 것일 수 있다. 또한, 상기 제2 시료는 림프구를 포함하는 것일 수 있으며, 예를 들어, 말초혈을 포함하는 것일 수 있으나, 이에 한정되는 것은 아니다.
본 발명에 있어서 제2 시료는 하기의 단계에 의해 준비 되는 것일 수 있다:
혈액에 포함된 단핵구를 분리하는 단핵구 분리 단계;
분리된 단핵구에 사이토카인을 처리하는 사이토카인 처리 단계; 및
인산화 염색을 수행하는 인산화 염색 단계.
본 발명에 있어서 상기 제2 시료에 처리하는 사이토카인은 IL-6인 것일 수 있다.
본 발명에 있어서 상기 IL-6의 농도는 19.0 내지 21.0 ng/ml, 19.0 내지 20.8 ng/ml, 19.0 내지 20.6 ng/ml, 19.0 내지 20.4 ng/ml, 19.0 내지 20.2 ng/ml, 19.2 내지 21.0 ng/ml, 19.2 내지 20.8 ng/ml, 19.2 내지 20.6 ng/ml, 19.2 내지 20.4 ng/ml, 19.2 내지 20.2 ng/ml, 19.4 내지 21.0 ng/ml, 19.4 내지 20.8 ng/ml, 19.4 내지 20.6 ng/ml, 19.4 내지 20.4 ng/ml, 19.4 내지 20.2 ng/ml, 19.6 내지 21.0 ng/ml, 19.6 내지 20.8 ng/ml, 19.6 내지 20.6 ng/ml, 19.6 내지 20.4 ng/ml, 19.6 내지 20.2 ng/ml, 19.8 내지 21.0 ng/ml, 19.8 내지 20.8 ng/ml, 19.8 내지 20.6 ng/ml, 19.8 내지 20.4 ng/ml, 19.8 내지 20.2 ng/ml, 예를 들어, 20.0 ng/ml인 것일 수 있으나, 이에 한정되는 것은 아니다.
본 발명에 있어서 STAT3의 인산화 수치의 측정은 유동세포계수법 (flow cytometry)을 이용하여 측정하는 것일 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 다른 일 예는 하기의 단계를 포함하는 대장암 치료반응 모니터링을 위한 정보를 제공하는 방법에 관한 것이다:
제1 시료에 포함된 Th 세포에서 STAT3의 인산화 수치를 측정하는 단계; 및
제2 시료에 포함된 Tc 세포에서 STAT3의 인산화 수치를 측정하는 단계.
본 발명에 있어서 상기 제1 시료는 검체의 기관, 조직, 세포로부터 수득한 것일 수 있다. 또한, 상기 제1 시료는 림프구를 포함하는 것일 수 있으며, 예를 들어, 말초혈을 포함하는 것일 수 있으나, 이에 한정되는 것은 아니다.
본 발명에 있어서 제1 시료는 하기의 단계에 의해 준비 되는 것일 수 있다:
혈액에 포함된 단핵구를 분리하는 단핵구 분리 단계;
분리된 단핵구에 사이토카인을 처리하는 사이토카인 처리 단계; 및
인산화 염색을 수행하는 인산화 염색 단계.
본 발명에 있어서 상기 제1 시료에 처리하는 사이토카인은 IL-10인 것일 수 있다.
본 발명에 있어서 상기 IL-10의 농도는 9.0 내지 11.0 ng/ml, 9.0 내지 10.8 ng/ml, 9.0 내지 10.6 ng/ml, 9.0 내지 10.4 ng/ml, 9.0 내지 10.2 ng/ml, 9.2 내지 11.0 ng/ml, 9.2 내지 10.8 ng/ml, 9.2 내지 10.6 ng/ml, 9.2 내지 10.4 ng/ml, 9.2 내지 10.2 ng/ml, 9.4 내지 11.0 ng/ml, 9.4 내지 10.8 ng/ml, 9.4 내지 10.6 ng/ml, 9.4 내지 10.4 ng/ml, 9.4 내지 10.2 ng/ml, 9.6 내지 11.0 ng/ml, 9.6 내지 10.8 ng/ml, 9.6 내지 10.6 ng/ml, 9.6 내지 10.4 ng/ml, 9.6 내지 10.2 ng/ml, 9.8 내지 11.0 ng/ml, 9.8 내지 10.8 ng/ml, 9.8 내지 10.6 ng/ml, 9.8 내지 10.4 ng/ml, 9.8 내지 10.2 ng/ml, 예를 들어, 10.0 ng/ml인 것일 수 있으나, 이에 한정되는 것은 아니다.
본 발명에 있어서 제2 시료는 검체의 기관, 조직, 세포로부터 수득한 것일 수 있다. 또한, 상기 제2 시료는 림프구를 포함하는 것일 수 있으며, 예를 들어, 말초혈을 포함하는 것일 수 있으나, 이에 한정되는 것은 아니다.
본 발명에 있어서 제2 시료는 하기의 단계에 의해 준비 되는 것일 수 있다:
혈액에 포함된 단핵구를 분리하는 단핵구 분리 단계;
분리된 단핵구에 사이토카인을 처리하는 사이토카인 처리 단계; 및
인산화 염색을 수행하는 인산화 염색 단계.
본 발명에 있어서 상기 제2 시료에 처리하는 사이토카인은 IL-6인 것일 수 있다.
본 발명에 있어서 상기 IL-6의 농도는 19.0 내지 21.0 ng/ml, 19.0 내지 20.8 ng/ml, 19.0 내지 20.6 ng/ml, 19.0 내지 20.4 ng/ml, 19.0 내지 20.2 ng/ml, 19.2 내지 21.0 ng/ml, 19.2 내지 20.8 ng/ml, 19.2 내지 20.6 ng/ml, 19.2 내지 20.4 ng/ml, 19.2 내지 20.2 ng/ml, 19.4 내지 21.0 ng/ml, 19.4 내지 20.8 ng/ml, 19.4 내지 20.6 ng/ml, 19.4 내지 20.4 ng/ml, 19.4 내지 20.2 ng/ml, 19.6 내지 21.0 ng/ml, 19.6 내지 20.8 ng/ml, 19.6 내지 20.6 ng/ml, 19.6 내지 20.4 ng/ml, 19.6 내지 20.2 ng/ml, 19.8 내지 21.0 ng/ml, 19.8 내지 20.8 ng/ml, 19.8 내지 20.6 ng/ml, 19.8 내지 20.4 ng/ml, 19.8 내지 20.2 ng/ml, 예를 들어, 20.0 ng/ml 인 것일 수 있으나, 이에 한정되는 것은 아니다.
본 발명에 있어서 상기 검체는 대장암 치료 중인 환자일 수 있으며, 예를 들어, 대장암 수술을 받은 환자일 수 있다. 대장암 치료 방법으로 화학면역요법 또는 면역치료를 받는 환자에는 본 발명의 모니터링을 위한 정보를 제공하는 방법을 사용할 수 없다.
본 발명에 있어서 STAT3의 인산화 수치의 측정은 유동세포계수법을 이용하여 측정하는 것일 수 있으나, 이에 한정되는 것은 아니다.
본 발명에 있어서 용어 "Th 세포"는 보조 T세포 (Helper T cell) 또는 도움 T세포를 의미하는 것으로, 면역계의 작용에 중요한 역할을 하는 세포로서, 림프구의 일종이다. 세포독성작용이나 식세포작용을 하지 않으며, 감염된 (체)세포나 항원을 직접 죽이지도 못하기 때문에 다른 면역 세포들이 없는 상태에서는 무용지물이다. 보조 T세포 (Th 세포)는 다른 면역 세포들을 활성화시키고 지휘하는 역할을 하며, 특히 면역계에 매우 중요한 역할을 담당하고 있다. 보조 T세포는 B세포의 항체 생산과, 세포독성 T세포의 활성화, 대식세포를 비롯한 식세포의 항박테리아 활동 촉진 등에 필수적이다. 보조 T세포, 또는 도움 T세포라는 이름이 붙여진 것도 이처럼 다른 세포의 활동에 많은 도움을 주고 있기 때문이다.
본 발명에 있어서 용어 "Tc 세포"는 세포독성 T세포 (cytotoxic T cell, CD8+, TC) 또는 킬러 T세포 (killer T cell)를 의미하는 것으로, 림프구의 한 종류이며, 바이러스에 감염된 체세포나 종양 세포를 파괴할 수 있다. 세포독성 T세포는 바이러스 등의 항원에 감염된 세포, 손상되거나 제 기능을 상실한 세포 등을 제거한다. 대부분의 세포독성 T세포는 T세포 수용체 (TCR)을 가지고 있어 모든 세포의 표면에 위치한 I형 MHC 분자에 붙어있는 특정한 항원의 펩타이드를 인식할 수 있다. 또한 CD8이라는 당단백질이 세포독성 T세포의 표면에 위치하여 I형 MHC 분자의 불변부위와 결합한다. CD8과 MHC 분자간의 결합은 세포독성 T세포 (TC)와 표적 세포간의 결합을 더욱 강하게 만든다. CD8+ T 세포는 일반적으로 면역계에서 미리 정해진 세포독성 활동을 수행하는 것으로 보인다.
본 발명은 대장암 진단 마커, 이를 이용한 대장암 진단에 필요한 정보를 제공하는 방법 및 이를 이용한 대장암 치료반응 모니터링을 위한 정보를 제공하는 방법에 관한 것으로, 진단적 민감도 및 특이도가 현저히 향상된 효과가 있다.
도 1은 본 발명의 실시예에 따라 건강한 사람의 혈액 면역 세포와 암환자의 혈액 면역 세포 및 종양 면역 세포에서 IL-6 자극에 의한 STAT1 인산화의 차이가 존재한다는 결과를 보여주는 그래프이다.
도 2는 본 발명의 실시예에 따라 건강한 사람의 혈액 면역 세포와 암환자의 혈액 면역 세포 및 종양 면역 세포에서 IL-6 자극에 의한 STAT3 인산화의 차이가 존재한다는 결과를 보여주는 그래프이다.
도 3은 본 발명의 실시예에 따라 건강한 사람의 혈액 면역 세포와 암환자의 혈액 면역 세포 및 종양 면역 세포에서 IL-10 자극에 의한 STAT3 인산화의 차이가 존재한다는 결과를 보여주는 그래프이다.
도 4는 본 발명의 실시예에 따라 건강한 사람의 혈액 면역 세포와 암환자의 혈액 면역 세포 및 종양 면역 세포에서 IL-2 자극에 의한 STAT5 인산화의 차이가 존재한다는 결과를 보여주는 그래프이다.
도 5는 본 발명의 실시예에 따라 도 1 내지 4의 결과를 건강인 혈액 면역 세포의 값을 기저 값으로 하여 암환자의 혈액 면역 세포 및 종양 면역 세포에서의 변화를 도식적으로 표현한 모식도이다.
도 6은 본 발명의 실시예에 따라 건강한 사람의 혈액 면역세포를 대장암 세포주와 다양한 비율로 동시배양 후 각 cytokine에 대한 각 STAT의 인산화의 변화를 실험한 결과이다. 전반적으로 기저 값(A)에 비해 대장암 세포주와 동시 배양된 면역세포(B, C, D)에서 통계적으로 유의하게 감소된 패턴을 보이고 있다. (A: PBMC only, B: direct culture of PBMC+HCT116 (1:1), C: direct culture of PBMC+HCT116 (1:10), D: indirect culture of PBMC+HCT116 (1:10))
도 7은 본 발명의 실시예에 따라 각 사이토카인에 대한 각 STAT의 인산화 정도를 가지고 군집 분석을 실시하였고, 결과적으로 두 그룹으로 나누어 졌으며, 한 그룹은 대장암 환자가 주로 분포하였고 나머지 그룹에는 건강한 사람이 주로 분포함을 보여주고 있다.
도 8은 본 발명의 실시예에 따라 각 사이토카인에 대한 각 STAT의 인산화 정도를 가지고 PCA (principal component analysis)를 수행하였으며, 대장암 환자 (붉은색 점)과 건강한 사람 (녹색 점)이 서로 구분이 되고 있음을 보여주고 있다.
도 9는 본 발명의 실시예에 따라 대장암 환자와 건강한 사람에서 가장 차이가 큰 사이토카인과 STAT의 조합 (IL-6/pSTAT3 and IL-10/pSTAT3)을 찾아 각 항목을 축으로 하여 대장암환자 (붉은색 점)과 건강인 (녹색 점)의 분포를 도식화 한 그림이다.
도 10은 본 발명의 실시예에 따라 트래이닝 코호트 (training cohort)에서 암환자와 정상인의 구분에 유용한 특성을 찾아내어 통계 모델을 만든 후 밸리데이션 코호트 (validation cohort)를 이용하여 모델의 성능을 검증하는 과정을 보여준 모식도이다.
도 11은 본 발명의 실시예에 따라 트래이닝 코호트에서 본 연구에서 제시한 2가지 특성 (IL-6/pSTAT3 and IL-10/pSTAT3)을 이용한 통계 모델의 성능을 보여주는 ROC 분석 결과이다.
도 12는 본 발명의 실시예에 따라 밸리데이션 코호트에서 본 연구에서 제시한 2가지 특성 (IL-6/pSTAT3 and IL-10/pSTAT3)을 이용한 통계 모델의 성능을 보여주는 ROC 분석 결과이다.
도 13은 본 발명의 실시예에 따라 트래이닝 및 밸리데이션 코호트에서 본 연구에서 제시한 2가지 특성 (IL-6/pSTAT3 및 IL-10/pSTAT3)을 이용한 통계 모델의 성능을 보여주는 ROC 분석 결과 (검은선) 및 트래이닝 및 밸리데이션 코호트에서 본 연구에서 제시한 2가지 특성 (IL-6/pSTAT3 및 IL-10/pSTAT3)과 기존에 알려진 대장암 표지자 (CEA)를 동시에 적용한 통계 모델의 성능을 보여주는 ROC 분석 결과이다 (붉은점선).
제1 시료에 포함된 Th 세포에서 STAT3의 인산화 수치를 측정하는 단계; 및 제2 시료에 포함된 Tc 세포에서 STAT3의 인산화 수치를 측정하는 단계;를 포함하는 대장암 진단에 필요한 정보를 제공하는 방법.
이하, 본 발명을 하기의 실시예에 의하여 더욱 상세히 설명한다. 그러나 이들 실시예는 본 발명을 예시하기 위한 것일 뿐이며, 본 발명의 범위가 이들 실시예에 의하여 한정되는 것은 아니다.
실험예 1. 검체의 채취
피험자군은 대장암군과 건강인 군을 포함하였다. 대장암군은 대장내시경중 채취 조직검사에서 대장암으로 진단된 환자 중 수술 및 항암치료 이전의 환자를 대상으로 하였다. 구두로 동의한 환자에서 수술 전 신선한 말초혈액을 헤파린이 항응고제로 포함된 시험관에 약 10 ml 채혈하였다. 건강인의 혈액은 외부 조직은행 (강남세브란스 인체유래물은행)에서 분양 받았다. 혈액은 채취된 당일에 본원의 검사실로 신속 배송되었다.
실험예 2. 세포 분리, 자극 및 고정
신선한 전혈에서 Ficoll과 같은 비중액 (1.077)을 이용하여 단핵구를 분리하였다. 분리방법은 통상적인 방법에 따랐다. 간단히 기술하면 전혈을 RPMI1640 배지로 1:1 희석한 후 50ml 시험관에 Ficoll 과 희석된 전혈을 1:1 의 비율로 순서대로 옮긴다. 1,300 rpm (350g)에서 20분간 원심분리후 Ficoll 과 혈장 사이에 분리된 단핵구 층을 조심스럽게 회수한다. 분리된 단핵구를 0.5 X 106 내지 1.0 X 106 세포/ml 의 농도로 10% FBS (Fetal Bovine Serum)가 포함된 RPMI1640 배양액에 부유시킨 후, 확인하고자 하는 사이토카인 수에 따라 아래 시험관 1-4 (시험관 1: 사이토카인 1 자극 없음 (unstimulated, unstim), 시험관 2: 사이토카인 1 자극 (stimulated, stim), 시험관 3: 사이토카인 2 자극 없음 (unstimulated, unstim), 시험관 4: 사이토카인 2 자극 (stimulated, stim)……)와 같은 조건으로 준비한 시험관에 각 1.0 ml씩 분주하고 여기에 표 1에 따라 해당 사이토카인을 추가한 후 37℃ 배양기에서 15분간 반응시켰다. 이때 측정하고자 하는 인산화 STAT 단백 (phosphorylated STAT, pSTAT)표적이 동일한 경우에는 다른 사이토카인이라도 unstim 시험관을 공유할 수 있다. 각 사이토카인 별 최적의 농도는 하기 표 1에 나타내었다. 최적 농도 및 반응 시간은 사전 실험을 통하여 확립하였다.
그 다음, 시험관을 꺼내어 최종농도 1.5% 파라포름알데하이드 (paraformaldehyde)로 신속하게 처리한 후, 10분간 25℃ 실온에 방치하였다가 1,000rpm (300g)에서 10분간 원심분리를 통해 상층액을 제거하였다. 그 다음, 혼합기 (vortex)를 이용하여 세포를 단일세포로 잘 부유시키고, -20℃ 이하에 보관하였던 1.0 ml 의 차가운 100% 메탄올 원액을 첨가하여 세포를 고정하였다. 첨가 과정에도 혼합기 위에서 세포를 혼합하면서 첨가하여 충분히 단일세포로 존재하도록 주의를 기울인다. 그 다음, -70℃ 냉동고에서 1 시간 이상 고정시킨다.
사이토카인 IL-6 IL-10 IL-2
농도 20ng/ml 10ng/ml 20ng/ml
실험예 3. 인산화 염색 및 유세포 분석
1000rpm (300g)에서 10분간 원심분리를 통해 상층 메탄올을 제거 후, 0.5% BSA (Bovine Serum Albumin)을 포함하는 PBS (Phosphate buffered saline)로 3회 세척하여 잔여액을 완전히 제거하였다. 확인하고자 하는 pSTAT에 대한 단클론성 항체 및 세포 분획을 확인할 수 있는 단클론성 항체 혼합액 (cocktail)을 제조한 후, 최종 100ul 가 되도록 세포부유액과 혼합 반응시켰다. 암소에서 30분간 반응 후 0.5% BSA 포함 PBS 액으로 1회 세척 후 300ul 로 재부유한 후 유세포분석기를 이용하여 획득 및 분석하였다.
사이토카인 자극을 위한 시험관 조성은 표 2에 나타내었으며, 각 시험관 별 사용한 항체시약의 조성은 표 3에 나타내었다.
또한, 특정 단클론성 마커로 조력 T 세포와 세포독성 T 세포를 구분한 후 히스토그램상에서 각각의 사이토카인 자극에 대한 pSTAT 발현 정도(형광 강도, MFI)의 중간 값 (median MFI)을 unstim 과 stim 조건에서 도출하였다. 그리고 최종적으로 stim MFI/unstim MFI 의 비로서 표기하여, 그 결과를 표 4에 나타내었다.
시험관 1 2 3 4 5 6
자극물질 None None IL-6 IL-6 IL-10 IL-2
농도. - - 20ng/ml 20ng/ml 10ng/ml 20ng/ml
염색항체/ 시험관 1 2 3 4 5 6
pSTAT 1 (FITC) 5 - 5 - - -
pSTAT 3 (FITC) - 5 - 5 5 -
pSTAT 3 (FITC)5 - - - - - 5
CD25 (PE) 2 2 2 2 2 2
CD3 (PercpCY5.5) 10 10 10 10 10 10
CD4 (PE-CY7) 5 5 5 5 5 5
CD45(APC-CY7) 5 5 5 5 5 5
실시예 1. 면역세포에서 사이토카인에 대한 STAT 인산화 반응 정도
환자의 말초혈액과 종양조직 그리고 건강한 대조군 말초혈액 면역세포에서 IL-6, IL-10 그리고 IL-2 에 반응하여 STAT 단백이 인산화되는 정도 (pSTAT)를 관찰하여, 그 결과를 도 1 내지 도 5 및 표 4-7 (Peripheral blood) 내지 표 8-11 (Tumor site)에 나타내었다.
ID \ CIPS IL-2_P-STAT5_Th IL-6_P-STAT1_Th IL-6_P-STAT3_Th IL-10_P-STAT3_Th IL-2_P-STAT5_Treg IL-6_P-STAT1_Treg IL-6_P-STAT3_Treg IL-10_P-STAT3_Treg IL-2_P-STAT5_Tc IL-6_P-STAT1_Tc IL-6_P-STAT3_Tc IL-10_P-STAT3_Tc
CRC_CIPS_01 NA 2.79 1.67 0.95 NA 2.24 1.57 1.22 NA 2.52 1.68 0.95
CRC_CIPS_02 NA 1.96 3.35 1.92 NA 2.04 3.53 2.34 NA 0.89 1.3 2.27
CRC_CIPS_03 NA 6.59 3.46 2.8 NA 3.94 3.56 3.43 NA 0.89 0.92 3.47
CRC_CIPS_04 NA 16.9 3.53 3.3 NA 7.19 4.05 4.38 NA 1 1.11 5.91
CRC_CIPS_05 NA 9.68 4.1 4.03 NA 5.48 4.79 5.55 NA 1.04 1.26 7.9
CRC_CIPS_06 NA 15.7 3.53 3.14 NA 5.51 3.28 3.85 NA 1.48 1.23 4.66
CRC_CIPS_07 NA 7.09 4.07 3.37 NA 2.85 4.11 4.03 NA 1.08 1.14 5.21
CRC_CIPS_08 NA 6.75 4.66 5.46 NA 3.79 4.43 5.14 NA 1.37 1.48 6.9
CRC_CIPS_09 NA 14.4 7.66 8.34 NA 7.99 6.59 7.47 NA 1.3 1.57 9.87
CRC_CIPS_10 NA 14 7.81 9.04 NA 7.67 6.94 7.91 NA 1.33 1.24 9.86
CRC_CIPS_11 NA 1.59 3.88 3.81 NA 1.68 3.24 3.6 NA 1.14 1.38 4.4
CRC_CIPS_12 NA 3 4.4 3.41 NA 1.83 4.26 4.34 NA 1.08 1.59 5.89
CRC_CIPS_13 NA 8.23 2.86 1.46 NA 3.1 3.93 1.95 NA 1.6 1.3 1.86
CRC_CIPS_14 NA 8.15 6.83 2.55 NA 4.68 6.71 3.84 NA 0.97 1.14 3.81
CRC_CIPS_15 NA 3.75 5.26 3 NA 2.04 4.57 3.98 NA 1.64 1.14 4
ID \ CIPS IL-2_P-STAT5_Th IL-6_P-STAT1_Th IL-6_P-STAT3_Th IL-10_P-STAT3_Th IL-2_P-STAT5_Treg IL-6_P-STAT1_Treg IL-6_P-STAT3_Treg IL-10_P-STAT3_Treg IL-2_P-STAT5_Tc IL-6_P-STAT1_Tc IL-6_P-STAT3_Tc IL-10_P-STAT3_Tc
CRC_CIPS_16 NA 0.84 1.22 6.97 NA 2.75 8.7 6.59 NA 0.82 1.16 7.4
CRC_CIPS_17 NA 2.13 4.11 3.27 NA 2.09 4.42 3.81 NA 0.97 1.22 3.8
CRC_CIPS_18 NA 5 8.99 4.19 NA 2.49 11.7 7.03 NA 1.08 1.49 5.52
CRC_CIPS_19 NA 5.13 5.04 3.55 NA 4.52 6.08 5.01 NA 1.16 1.27 7.24
CRC_CIPS_20 NA 2.4 6.09 3.24 NA 2.92 7 4.09 NA 1.23 1.14 4.6
CRC_CIPS_21 NA 9.71 4.11 2.71 NA 17.6 8.53 6.33 NA 1.02 1.25 7.21
CRC_CIPS_22 NA 7.07 1.53 1.14 NA 4.64 1.02 1.29 NA 1.1 0.31 1.25
CRC_CIPS_23 NA 4.61 3.73 1.57 NA 7.29 4.46 2.04 NA 1.29 1.09 1.83
CRC_CIPS_24 NA 13.2 6.06 3.97 NA 9.5 9.11 6.95 NA 1.12 1.47 3.97
CRC_CIPS_25 5.67 NA 5.57 4.3 12.6 NA 10.4 9.59 7.16 NA 1.19 6.65
CRC_CIPS_26 3.6 5.49 5.21 3.75 6.3 3.84 10.5 10.8 4.64 1.33 1.22 5.07
CRC_CIPS_27 3.08 7.34 3.36 1.75 6.53 6.11 3.07 2.27 2.38 1.25 1.02 1.78
CRC_CIPS_28 3.97 9.2 5.56 5.42 5.93 10 5.49 6.47 3.79 1.05 1.15 5.38
CRC_CIPS_29 NA NA 6.04 5.35 NA NA 5.69 6.02 NA NA 1.42 6.02
CRC_CIPS_30 3.18 2.19 4.39 3.61 5.44 2.38 4.83 4.74 2.58 1.14 1.4 3.56
ID \ CIPS IL-2_P-STAT5_Th IL-6_P-STAT1_Th IL-6_P-STAT3_Th IL-10_P-STAT3_Th IL-2_P-STAT5_Treg IL-6_P-STAT1_Treg IL-6_P-STAT3_Treg IL-10_P-STAT3_Treg IL-2_P-STAT5_Tc IL-6_P-STAT1_Tc IL-6_P-STAT3_Tc IL-10_P-STAT3_Tc
CRC_CIPS_31 3.67 NA 5.42 NA 7.14 NA 4.98 NA 3.32 NA 1.04 NA
CRC_CIPS_32 3.36 NA 5.57 NA 6.04 NA 7.2 NA 3.37 NA 1.25 NA
CRC_CIPS_33 3.27 NA 4.57 NA 5.06 NA 5.73 NA 3.19 NA 1.16 NA
CRC_CIPS_34 3.26 NA 3 NA 5.03 NA 4.03 NA 2.53 NA 1.12 NA
CRC_CIPS_35 3.73 7.46 6.41 1.5 7.96 2.04 5.05 1.93 4.13 1.08 1.26 1.65
CRC_CIPS_36 2.96 11.1 5.82 2.7 5.96 15.1 5.94 3.91 4 1.12 1.17 2.83
CRC_CIPS_37 5.63 NA 5.4 2.25 7.48 NA 6.59 3.81 4.55 NA 1.09 2.24
CRC_CIPS_38 6.19 NA 4.74 4.15 13.8 NA 7.48 7.14 5.19 NA 1.28 4.38
CRC_CIPS_39 5.09 NA 3.65 2.98 7.18 NA 4.18 4.02 4.43 NA 1.18 3.27
CRC_CIPS_40 3.96 NA 3.72 1.72 6.8 NA 4.76 2.62 2.8 NA 0.95 1.53
ID \ CIPS IL-2_P-STAT5_Th IL-6_P-STAT1_Th IL-6_P-STAT3_Th IL-10_P-STAT3_Th IL-2_P-STAT5_Treg IL-6_P-STAT1_Treg IL-6_P-STAT3_Treg IL-10_P-STAT3_Treg IL-2_P-STAT5_Tc IL-6_P-STAT1_Tc IL-6_P-STAT3_Tc IL-10_P-STAT3_Tc
CON_CIPS_01 3.7 9.48 4.93 2.27 6.67 6.75 5.43 3.8 2.42 7.69 3.85 2.22
CON_CIPS_02 3.13 7.39 4.54 2.15 8.86 7.39 5.15 3.42 2.98 1.17 1.36 2.62
CON_CIPS_03 4.76 15.4 4.67 2.38 12.1 13.4 6 4.14 6.17 1.71 1.8 3.25
CON_CIPS_04 5.22 16 2.71 1.54 12 19.4 3.55 2.45 5.55 15.5 2.67 1.83
CON_CIPS_05 3.57 15 3.41 1.68 6.85 12.9 3.57 2.46 3.46 2.92 2.33 1.75
CON_CIPS_06 2.73 13.3 4.63 2.06 5.56 6.72 4.46 3.06 2.87 1.34 1.48 2.61
CON_CIPS_07 2.77 7.91 4.13 2.06 5.79 4.61 4.26 2.92 2.45 1.63 1.91 2.21
CON_CIPS_08 2.31 9.55 3.55 2 4.63 7.9 4.07 2.78 1.92 2.88 2.17 1.95
CON_CIPS_09 8.92 5.95 5.35 2.91 23.8 4.88 10.3 8.5 8.67 1.4 1.33 4.14
CON_CIPS_10 9.88 3.46 6.47 2.49 22 3.97 8.91 5.3 7.39 0.92 1.07 3.3
CON_CIPS_11 7.47 3.16 4.93 2.76 19.6 4.55 6.25 4.72 4.99 1.1 1.28 3.36
CON_CIPS_12 3.42 8.27 3.05 1.63 4.99 6.89 2.84 1.84 2.93 1.53 1.39 1.68
CON_CIPS_13 2.77 10.5 3.13 1.83 4.21 9.75 2.68 2.14 3.19 1.33 1.42 2.03
CON_CIPS_14 2.3 10.3 4.09 2.17 4.65 9.03 3.72 2.67 2.78 1.53 1.59 2.36
CON_CIPS_15 3.91 9.11 4.92 1.49 10.9 5.66 5.17 2.23 3.29 1.67 1.74 1.75
CON_CIPS_16 4.86 15.4 4.06 1.49 10.4 8.41 4.04 2.4 4.51 2.4 2.32 1.54
ID / CIPS IL-2_P-STAT5_Th IL-6_P-STAT1_Th IL-6_P-STAT3_Th IL-10_P-STAT3_Th IL-2_P-STAT5_Treg IL-6_P-STAT1_Treg IL-6_P-STAT3_Treg IL-10_P-STAT3_Treg IL-2_P-STAT5_Tc IL-6_P-STAT1_Tc IL-6_P-STAT3_Tc IL-10_P-STAT3_Tc
CRC_CIPS_01 NA 1 0.72   NA 1.25 0.65   NA 0.97 0.87  
CRC_CIPS_02 NA 2.05 1.77 1.39 NA 2.2 1.7 1.48 NA 1.29 1.13 1.48
CRC_CIPS_03 NA 1.56 1.98 1.09 NA 1.48 2.06 1.14 NA 0.94 1.26 1.17
CRC_CIPS_04 NA 1.34 1.16 1.51 NA 1.49 1.47 1.61 NA 1.04 0.97 1.78
CRC_CIPS_05 NA 1.01 0.84 1.61 NA 1.11 0.96 2.04 NA 1.05 0.93 2.16
CRC_CIPS_06 NA 1.35 0.91 2.28 NA 1.67 1.44 3 NA 1.23 1.06 4.3
CRC_CIPS_07 NA 1.03 1.2 2.02 NA 1.15 1.27 2.37 NA 1.02 1.03 2.43
CRC_CIPS_08 NA 1.6 1.46 3.37 NA 1.8 1.7 3.5 NA 1.11 1.27 6.12
CRC_CIPS_09 NA 0.94 1.13 2.42 NA 0.84 0.96 2.22 NA 1.06 1.01 3.49
CRC_CIPS_10 NA 0.94 1.3 2.58 NA 1 1.38 2.75 NA 0.85 1.23 4.65
CRC_CIPS_11 NA 1.12 1.26 1.46 NA 1.1 1.46 0.55 NA 1.42 1.46 3.43
CRC_CIPS_12 NA 1.04 1.14 2.01 NA 1.08 1.14 2.13 NA 1.42 1.01 2.07
CRC_CIPS_13 NA 0.59 1.18 1.37 NA 0.59 1.46 1.55 NA 0.48 0.98 1.49
CRC_CIPS_14 NA 1.13 1.92 2.01 NA 1.45 2.91 3.1 NA 0.8 1.12 2.22
CRC_CIPS_15 NA 1.24 1.01 2 NA 1.17 1.34 2.56 NA 1.12 1.07 2.85
ID / CIPS IL-2_P-STAT5_Th IL-6_P-STAT1_Th IL-6_P-STAT3_Th IL-10_P-STAT3_Th IL-2_P-STAT5_Treg IL-6_P-STAT1_Treg IL-6_P-STAT3_Treg IL-10_P-STAT3_Treg IL-2_P-STAT5_Tc IL-6_P-STAT1_Tc IL-6_P-STAT3_Tc IL-10_P-STAT3_Tc
CRC_CIPS_16 NA 1.85 2.41 1.9 NA 2.45 3.05 2.6 NA 1.08 1.05 2.66
CRC_CIPS_17 NA 0.89 1.12 1.52 NA 0.92 1.37 2.04 NA 0.77 0.92 1.4
CRC_CIPS_18 NA 0.94 1.46 2.28 NA 0.82 1.49 2.92 NA 0.89 1.25 2.78
CRC_CIPS_19 NA 0.99 1.26 2.33 NA 1.28 2.12 4.12 NA 0.89 1.08 2.19
CRC_CIPS_20 NA 1.73 3.32 1.87 NA 3.22 4.96 2.6 NA 1.08 1.21 1.87
CRC_CIPS_21 NA 1.39 1.81 2.2 NA 8.27 8.36 7.86 NA 1.1 1.22 3.74
CRC_CIPS_22 NA 1.65 2.32 1.93 NA 2.24 3 3.22 NA 0.7 0.98 1.9
CRC_CIPS_23 NA 0.94 1.06 3.72 NA 2 0.93 7.33 NA 1 1.11 4.56
CRC_CIPS_24 NA 1.53 1.73 2.35 NA 1.68 2.58 3.96 NA 1.21 1.2 2.34
CRC_CIPS_25 3.33 NA 1.86 1.68 12.7 NA 4.61 5.56 4.69 NA 1.12 2.27
CRC_CIPS_26 3.79 1.39 1.42 2.53 9.69 1.71 4.89 10.6 4.08 1.07 1.06 3
CRC_CIPS_27 3 1.05 1.26 1.4 5.93 1.04 1.3 1.68 2.4 0.92 1.04 1.45
CRC_CIPS_28 2.84 1.2 1.2 2.8 5.21 2.23 2.56 4.44 3.04 1.04 1.05 2.98
CRC_CIPS_29 4.43 1.17 1.15 1.95 6.08 1.96 1.78 2.54 4.71 1.12 1.13 2.57
CRC_CIPS_30 2.53 NA NA NA 4.52 NA NA NA 2.3 NA NA NA
ID / CIPS IL-2_P-STAT5_Th IL-6_P-STAT1_Th IL-6_P-STAT3_Th IL-10_P-STAT3_Th IL-2_P-STAT5_Treg IL-6_P-STAT1_Treg IL-6_P-STAT3_Treg IL-10_P-STAT3_Treg IL-2_P-STAT5_Tc IL-6_P-STAT1_Tc IL-6_P-STAT3_Tc IL-10_P-STAT3_Tc
CRC_CIPS_31 2.1 NA 1.06 NA 4.93 NA 2.1 NA 2.66 NA 0.92 NA
CRC_CIPS_32 2.89 NA 1.08 NA 6.79 NA 1.28 NA 3.07 NA 1.09 NA
CRC_CIPS_33 3.04 NA 1.06 NA 9.39 NA 1.1 NA 2.62 NA 1.09 NA
CRC_CIPS_34 3.1 NA NA NA 8.61 NA NA NA 2.59 NA NA NA
CRC_CIPS_35 1.28 NA NA NA 1.89 NA NA NA 1.34 NA NA NA
CRC_CIPS_36 2.35 NA 1.21 1.05 4.21 NA 1.71 NA 2.04 NA 1.11 1.15
CRC_CIPS_37 3.57 NA 1.22 1.62 7.72 NA 1.68 2.53 3.02 NA 1.13 1.61
CRC_CIPS_38 1.85 NA 1.32 1.34 7.82 NA 2.11 2.32 1.84 NA 1.38 1.49
CRC_CIPS_39 1.86 NA 1.17 1.27 4.45 NA 1.2 1.65 2.08 NA 1.09 1.38
CRC_CIPS_40 2.97 0.99 1.15 1.31 6.14 1.41 1.67 1.49 3.14 1.01 1.08 1.26
ID / CIPS IL-2_P-STAT5_Th IL-6_P-STAT1_Th IL-6_P-STAT3_Th IL-10_P-STAT3_Th IL-2_P-STAT5_Treg IL-6_P-STAT1_Treg IL-6_P-STAT3_Treg IL-10_P-STAT3_Treg IL-2_P-STAT5_Tc IL-6_P-STAT1_Tc IL-6_P-STAT3_Tc IL-10_P-STAT3_Tc
CON_CIPS_01 NA NA NA NA NA NA NA NA NA NA NA NA
CON_CIPS_02 NA NA NA NA NA NA NA NA NA NA NA NA
CON_CIPS_03 NA NA NA NA NA NA NA NA NA NA NA NA
CON_CIPS_04 NA NA NA NA NA NA NA NA NA NA NA NA
CON_CIPS_05 NA NA NA NA NA NA NA NA NA NA NA NA
CON_CIPS_06 NA NA NA NA NA NA NA NA NA NA NA NA
CON_CIPS_07 NA NA NA NA NA NA NA NA NA NA NA NA
CON_CIPS_08 NA NA NA NA NA NA NA NA NA NA NA NA
CON_CIPS_09 NA NA NA NA NA NA NA NA NA NA NA NA
CON_CIPS_10 NA NA NA NA NA NA NA NA NA NA NA NA
CON_CIPS_11 NA NA NA NA NA NA NA NA NA NA NA NA
CON_CIPS_12 NA NA NA NA NA NA NA NA NA NA NA NA
CON_CIPS_13 NA NA NA NA NA NA NA NA NA NA NA NA
CON_CIPS_14 NA NA NA NA NA NA NA NA NA NA NA NA
CON_CIPS_15 NA NA NA NA NA NA NA NA NA NA NA NA
CON_CIPS_16 NA NA NA NA NA NA NA NA NA NA NA NA
도 1 내지 5 및 표 4 내지 표 11에서 확인할 수 있듯이, IL-6 에 의해 유도되는 pSTAT1 과 pSTAT3 가 종양침윤세포 (tumor infiltrating lymphocytes, TILs)에서 유의하게 감소하였다. 또한, 말초혈액 림프구의 cytokine-induced phosphorylated STAT signature (CIPS signature)가 TILs 의 CIPS signature 를 반영함을 확인하였다.
IL-6 유도 pSTAT1 는 Helper T, regulatory T 그리고 cytotoxic T cell 모두에서, 그리고 pSTAT3 는 cytotoxic T cell 에서 유사하게 관찰되었다. 그러나 특이하게 IL-10 유도 pSTAT3 는 TIL과 건강 대조군의 세포에서 유사한 반면 환자의 말초혈액 림프구에서는 유의하게 증가됨을 확인하였다.
종합적으로 대장암 환자의 종양조직에서 유래한 면역 세포와 정상인의 혈액에서 유래한 면역세포는 IL-6 와 IL-10에 의한 세포 내 STAT 단백의 인산화 (pSTAT)정도가 통계적으로 매우 다름을 확인하였고, 대장암 환자의 혈액에서 유래한 면역세포는 그 중간 정도의 인산화가 일어남을 확인하였다.
실시예 2. 암세포주를 이용한 체외 (in vitro) 동시 배양 실험
환자유래 면역세포에서 관찰한 소견이 종양세포의 영향으로 인한 것인지를 확인하기 위하여, 대장암 세포주인 HCT116 (American Type Culture Collection, ATCC CCL-247)과 정상인의 말초혈액 단핵구를 체외 동시 배양하였다. 체외 동시배양 실험 시 세포 혼합 조건 및 각 세포 수는 표 6에 나타내었다. 각 사이토카인에 대한 STAT 단백의 인산화 정도를 측정하여, 그 결과를 도 6 및 표 13 내지 표 15에 나타내었다. (표 13: Th, 표 14: Treg, 표 15: Tc)
동시배양은 두 가지 조건에서 이루어졌다. 즉 종양세포와 정상인의 단핵구를 각각 1:1, 1:10 의 비율로 하되 첫 번째 조건에서는 두 종류의 세포를 하나의 실험 well 에서 직접 혼합하여 동시 배양하는 것이고 (direct), 두 번째 조건은 격막이 있는 실험 well (transwell)에서 격막 상층에는 종양세포를, 하층에는 정상인의 단핵구를 넣고 동시 배양하는 것이다 (indirect).
비율 종양세포 (개) 정상인의 단핵구 (개)
1:1 3 x 106 3 x 106
1:10 3 x 105 3 x 106
ID / CIPS IL-2_P-STAT5_Th IL-6_P-STAT1_Th IL-6_P-STAT3_Th IL-10_P-STAT3_Th
PBMC_01 11.72 5.98
PBMC_02 2.31 2.94 1.96 1.02
PBMC_03 3.86 1.97 1.62 1.08
PBMC_04 3.92 1.88 1.72 0.87
PBMC_05 5.51 5.62 3.07 1.55
PBMC_06 6.32 7.68 2.49 1.32
PBMC_07 6.88 2.03 2.76 1.41
PBMC_08 3.68 5.31 3.80 1.91
PBMC_09 8.03 3.10 2.34 1.67
PBMC_10 7.00 1.82 1.45 1.37
PBMC_11 8.11 1.05 1.58 1.38
PBMC_12 4.55 2.99 1.46 1.36
PBMC_13 4.04 5.49 2.29 1.57
PBMC_14 7.41 7.54 2.55 1.68
PBMC_HCT116_R1_Direct_01 3.50 0.09 0.69 1.15
PBMC_HCT116_R1_Direct_02 2.23 1.47 1.12 1.15
PBMC_HCT116_R1_Direct_03 2.69 1.17 1.20 0.95
PBMC_HCT116_R1_Direct_04 2.39 1.20 1.11 1.12
PBMC_HCT116_R1_Direct_05 2.71 1.28 1.18 1.41
PBMC_HCT116_R1_Direct_06 5.29 1.26 1.24 1.28
PBMC_HCT116_R1_Direct_07 3.07 1.58 1.34 1.22
PBMC_HCT116_R1_Direct_08 4.76 1.30 0.90 0.88
PBMC_HCT116_R10_Direct_01 2.80 0.27 0.68 0.91
PBMC_HCT116_R10_Direct_02 1.70 1.12 1.28 1.02
PBMC_HCT116_R10_Direct_03 2.47 1.68 1.43 1.09
PBMC_HCT116_R10_Direct_04 2.53 1.90 1.56 1.22
PBMC_HCT116_R10_Direct_05 1.71 1.70 1.21 1.39
PBMC_HCT116_R10_Direct_06 4.16 1.38 1.36 1.16
PBMC_HCT116_R10_Direct_07 2.49 1.55 1.16 1.30
PBMC_HCT116_R10_Direct_08 3.80 0.97 1.21 1.53
PBMC_HCT116_R10_Direct_09 5.46 1.08 1.22 1.14
PBMC_HCT116_R10_Direct_10 3.29 0.87 0.99 1.28
PBMC_HCT116_R10_Direct_11 2.71 0.95 1.05 1.12
PBMC_HCT116_R10_Direct_12 4.00 0.86 1.15 1.12
PBMC_HCT116_R10_Indirect_01 7.26 1.09 1.30 1.07
PBMC_HCT116_R10_Indirect_02 7.16 1.14 1.30 1.28
PBMC_HCT116_R10_Indirect_03 2.63 1.04 0.97 1.14
PBMC_HCT116_R10_Indirect_04 5.34 1.01 1.16 1.30
ID / CIPS IL-2_P-STAT5_Treg IL-6_P-STAT1_Treg IL-6_P-STAT3_Treg IL-10_P-STAT3_Treg
PBMC_01   30.51 6.61  
PBMC_02 4.01 2.29 1.75 1.48
PBMC_03 3.25 1.98 5.70 2.10
PBMC_04 10.92 9.03 1.43 0.90
PBMC_05 13.47 3.28 3.02 1.80
PBMC_06 10.96 10.74 3.28 2.57
PBMC_07 11.54 3.29 2.44 1.79
PBMC_08 6.27 4.53 2.80 2.28
PBMC_09 7.68 4.75 3.22 2.10
PBMC_10 11.00 1.63 1.35 1.41
PBMC_11 8.19 0.97 1.52 1.63
PBMC_12 4.82 1.63 1.52 1.50
PBMC_13 1.74 6.84 2.98 2.56
PBMC_14 6.36 7.70 2.94 2.06
PBMC_HCT116_R1_Direct_01 4.98 -0.12 0.52 1.78
PBMC_HCT116_R1_Direct_02 2.72 1.15 1.69 1.77
PBMC_HCT116_R1_Direct_03 1.73 0.96 1.45 1.28
PBMC_HCT116_R1_Direct_04 12.00 1.15 1.17 1.38
PBMC_HCT116_R1_Direct_05 10.88 2.14 1.27 2.15
PBMC_HCT116_R1_Direct_06 7.77 1.72 0.98 1.15
PBMC_HCT116_R1_Direct_07 8.14 1.65 1.33 1.36
PBMC_HCT116_R1_Direct_08 14.60 1.31 0.94 1.02
PBMC_HCT116_R10_Direct_01 4.94 0.11 0.51 1.47
PBMC_HCT116_R10_Direct_02 1.61 1.15 1.45 1.24
PBMC_HCT116_R10_Direct_03 1.16 2.26 1.93 1.34
PBMC_HCT116_R10_Direct_04 8.56 3.58 1.62 1.26
PBMC_HCT116_R10_Direct_05 4.27 1.45 1.16 1.68
PBMC_HCT116_R10_Direct_06 6.02 3.75 1.37 1.29
PBMC_HCT116_R10_Direct_07 5.20 1.89 1.27 1.74
PBMC_HCT116_R10_Direct_08 7.94 0.87 1.24 1.54
PBMC_HCT116_R10_Direct_09 6.89 0.96 0.96 1.31
PBMC_HCT116_R10_Direct_10 6.72 0.80 1.21 1.37
PBMC_HCT116_R10_Direct_11 2.27 0.95 1.02 1.25
PBMC_HCT116_R10_Direct_12 3.92 1.01 1.15 1.26
PBMC_HCT116_R10_Indirect_01 8.50 0.93 1.24 1.04
PBMC_HCT116_R10_Indirect_02 3.20 1.36 1.42 1.59
PBMC_HCT116_R10_Indirect_03 1.26 1.05 0.94 1.24
PBMC_HCT116_R10_Indirect_04 2.68 1.27 1.27 1.46
ID \ CIPS IL-2_P-STAT5_Tc IL-6_P-STAT1_Tc IL-6_P-STAT3_Tc IL-10_P-STAT3_Tc
PBMC_01   1.63 1.76  
PBMC_02 3.32 0.36 0.12 1.25
PBMC_03 6.04 1.22 1.06 1.27
PBMC_04 0.83 1.14 1.09 1.13
PBMC_05 6.93 1.37 1.44 1.65
PBMC_06 6.63 1.66 1.98 1.61
PBMC_07 7.88 0.94 1.00 1.70
PBMC_08 3.51 1.48 1.78 1.92
PBMC_09 4.58 1.27 1.41 2.13
PBMC_10 6.48 1.21 1.00 1.76
PBMC_11 7.95 0.95 1.11 1.70
PBMC_12 4.86 1.12 1.05 2.39
PBMC_13 4.50 2.06 1.98 1.82
PBMC_14 5.40 1.53 1.44 2.00
PBMC_HCT116_R1_Direct_01 4.15 -0.18 0.06 1.81
PBMC_HCT116_R1_Direct_02 4.22 1.24 1.00 1.39
PBMC_HCT116_R1_Direct_03 0.55 0.98 1.05 1.42
PBMC_HCT116_R1_Direct_04 5.71 1.00 1.01 1.57
PBMC_HCT116_R1_Direct_05 5.53 1.00 1.00 1.92
PBMC_HCT116_R1_Direct_06 5.64 1.07 1.04 1.52
PBMC_HCT116_R1_Direct_07 3.64 1.25 1.11 1.38
PBMC_HCT116_R1_Direct_08 9.34 1.21 0.89 1.21
PBMC_HCT116_R10_Direct_01 4.06 -0.06 0.03 1.52
PBMC_HCT116_R10_Direct_02 3.92 0.99 1.09 1.28
PBMC_HCT116_R10_Direct_03 1.94 1.18 1.10 1.53
PBMC_HCT116_R10_Direct_04 5.05 1.19 1.29 1.54
PBMC_HCT116_R10_Direct_05 2.59 1.39 1.06 1.57
PBMC_HCT116_R10_Direct_06 4.36 1.14 0.90 1.57
PBMC_HCT116_R10_Direct_07 2.56 1.30 1.16 1.53
PBMC_HCT116_R10_Direct_08 3.64 0.90 1.09 1.88
PBMC_HCT116_R10_Direct_09 5.91 1.01 1.01 1.17
PBMC_HCT116_R10_Direct_10 7.27 0.79 0.96 1.35
PBMC_HCT116_R10_Direct_11 4.39 0.98 0.98 1.22
PBMC_HCT116_R10_Direct_12 4.22 1.00 1.03 1.32
PBMC_HCT116_R10_Indirect_01 7.69 1.11 1.21 1.17
PBMC_HCT116_R10_Indirect_02 7.38 1.00 1.13 1.68
PBMC_HCT116_R10_Indirect_03 3.39 1.04 0.98 1.35
PBMC_HCT116_R10_Indirect_04 5.23 0.93 1.05 1.56
도 6 및 표 13 내지 표 15에서 확인할 수 있듯이, 종양세포와 직접 접촉배양 또는 간접배양을 한 경우 모두에서 정상인의 말초 림프구에서 종양침윤 환경의 T 세포와 유사하게 사이토카인 신호전달에 이상이 유도됨을 관찰하였다. 그리고 이는 정상세포와 종양세포주의 동시배양 비율이나 직접 및 간접배양 방식에는 영향을 받지 않았다 (1:1, 1:10). 단 IL-2 유도 pSTAT5 signature의 경우에는 Th 와 Tc 세포 및 Treg 세포 모두에서 유의한 감소가 관찰되지는 않았으며 특히 Treg 세포의 경우에는 거의 유사한 정도의 인산화를 보여 종양 환경에서도 STAT 신호전달체계에서 기능적 이상이 일어나지 않음을 시사하였다. 종합적으로 실제 환자에서의 결과와 유사하게 종양세포와 같이 배양된 면역 T 세포에서 IL-6 와 IL-10 에 의한 pSTAT정도가 통계적으로 유의하게 다르게 나타났으며, 주로 떨어지는 경우가 많았다.
실험예. 클러스터 분석 (군집분석)
30명의 CRC 환자와 15명의 건강인의 CIPS signature를 군집 분석(cluster analysis)하였다. 구체적으로, R 언어를 사용하여 hierarchical clustering방법으로 샘플 결과간의 거리를 분석하였고, 그를 도식화 하기 위해서는 gplot R 패키지를 사용하여 heatmap 을 작성하여, 그 결과를 도 7에 나타내었다.
도 7에서 확인할 수 있듯이, Th, Treg 및 Tc cells의 IL-10 유도 pSTAT3 signature 가 두 군간 뚜렷이 구분되는 것을 관찰하였다.
실험예. Principle component analysis
R 언어를 사용하여 소프트웨어에 내장된 principal component analysis 패키지를 이용하여 분석하여, 그 결과를 도 8 및 도 9에 나타내었다.
도 8에서 확인할 수 있듯이, 대장암 환자 군과 정상인 군에서 다르게 군집이 나눠지고 있음을 관찰하였다. 특히, 도 9에서 확인할 수 있듯이, Th cell에서 IL-10에 의한 P-STAT3의 수치와 Tc cell에서 IL-6에 의한 P-STAT3의 수치만으로도 대장암 군과 정상인 군이 잘 나눠짐을 볼 수 있다.
실험예. 통계학적 방법과 leave-one-out cross validation (LOOCV)
통계학적 방법과 leave-one-out cross validation (LOOCV)을 통해 두 가지의 CIPS 패턴을 확인하였다. 구체적으로, R 언어의 random Forest 패키지를 이용하여 여러 가지 CIPS중 MeanDecreaseGini(MDG)값이 가장 높은 2개의 특성을 선택하였고, R 언어에 내장된 logistic regression함수를 사용하여 모델을 수립하였다. LOOCV를 위해서는 R 코딩을 통하여 수행하였고, ROC커브를 그리기 위해서는 ROCR패키지를 활용하였다. 그 결과를 도 10 및 11에 나타내었다.
도 10 및 도 11에서 확인할 수 있듯이, Tc cell에서 IL-6 유도 P-STAT3와 Th cell에서 IL-10 유도 P-STAT3를 이용할 경우 종양군과 정상군을 감별할 수 있으며, 이때 AUC 는 0.88 임을 확인하였다. 이는 15명의 CRC 환자와 17명의 건강인을 대상으로 한 밸리데이션 코호트에서 재현되었다(AUC 0.941). 트래이닝 코호트와 밸리데이션 코호트를 합하여 분석하였을 때는 AUC 0.938 로 역시 우수함을 확인하였다.
종양환자와 정상인에서 기존의 CRC 종양 표지자로 알려져 있는 CEA 단백표지자 (Calcinoembryonic antigen)를 상기 두 가지 CIPS 패턴, 즉 Tc cell 에서 IL-6 유도 pSTAT3와 Th cell에서 IL-10 유도 pSTAT3과 동시에 적용하여 군간 감별능을 분석하였다. 구체적으로, 앞서 수립한 모델을 이용하여 각 환자에서 50% 이상 확률로 암환자인 경우를 예측하였고, 그 결과를 실제 라벨링(암환자 vs. 건강인)된 값과 비교하였다. 종양환자의 경우 CEA는 기본적으로 다 측정을 하고 있어 이미 수득한 검사 값과 이를 본 실험에서 도출해 낸 두 가지 마커에 더하여 동일한 방식과 모델로 분석하여, 그 결과를 도 13 및 표 16에 나타내었다.
CRC patients Health controls
Positive predicted 41 4
Negative predicted 4 29
도 13 및 표 16에서 확인할 수 있듯이, AUC 0.958 로 매우 우수함을 확인하여 두 가지 마커를 병행하여 진단적 이용할 경우 그 활용능이 극대화 될 수 있음을 증명하였다. 양성 예측율 91%, 음성 예측율 88% 로 나타났다.
고찰
이상의 결과를 종합하여 혈액에서 유래한 면역 T 세포에서 인터루킨에 의한 STAT 인산화를 측정하면 정상인과 대장암환자에서 그 수치가 다르게 나옴을 확인 하였고, 이러한 수치들을 조합하여 혈액으로 대장암 환자를 진단할 수 있는 기법이 가능하였다. 2개의 마커를 조합해서 사용을 해도 민감도 91% 특이도 88%의 우수한 성능을 보였으며, CEA 등의 기존에 알려진 대장암 마커와 조합하여 사용하면 그 진단적 민감도와 특이도를 더 향상 시킬 수 있는 여지가 있다.
본 발명은 대장암 진단 마커, 이를 이용한 대장암 진단에 필요한 정보를 제공하는 방법 및 이를 이용한 대장암 치료반응 모니터링을 위한 정보를 제공하는 방법에 관한 것이다.

Claims (19)

  1. 제1 시료에 포함된 Th 세포에서 STAT3의 인산화 수치를 측정하는 단계; 및
    제2 시료에 포함된 Tc 세포에서 STAT3의 인산화 수치를 측정하는 단계;
    를 포함하는 대장암 진단에 필요한 정보를 제공하는 방법.
  2. 제1항에 있어서, 상기 제1 시료 및 제2 시료는 말초혈을 포함하는 것인, 대장암 진단에 필요한 정보를 제공하는 방법.
  3. 제1항에 있어서, 상기 STAT3의 인산화 수치의 측정은 유동세포계수법을 이용하여 측정하는 것인, 대장암 진단에 필요한 정보를 제공하는 방법.
  4. 제1항에 있어서, 상기 제1 시료는 하기의 단계에 의해 준비 되는 것인, 대장암 진단에 필요한 정보를 제공하는 방법:
    혈액에 포함된 단핵구를 분리하는 단핵구 분리 단계;
    분리된 단핵구에 사이토카인을 처리하는 사이토카인 처리 단계; 및
    인산화 염색을 수행하는 인산화 염색 단계.
  5. 제4항에 있어서, 상기 사이토카인은 IL-10인 것인, 대장암 진단에 필요한 정보를 제공하는 방법.
  6. 제4항에 있어서, 상기 사이토카인의 농도는 9.0 내지 11.0 ng/ml인 것인, 대장암 진단에 필요한 정보를 제공하는 방법.
  7. 제1항에 있어서, 상기 제2 시료는 하기의 단계에 의해 준비 되는 것인, 대장암 진단에 필요한 정보를 제공하는 방법:
    혈액에 포함된 단핵구를 분리하는 단핵구 분리 단계;
    분리된 단핵구에 사이토카인을 처리하는 사이토카인 처리 단계; 및
    인산화 염색을 수행하는 인산화 염색 단계.
  8. 제7항에 있어서, 상기 사이토카인은 IL-6인 것인, 대장암 진단에 필요한 정보를 제공하는 방법.
  9. 제7항에 있어서, 상기 사이토카인의 농도는 19.0 내지 21.0 ng/ml인 것인, 대장암 진단에 필요한 정보를 제공하는 방법.
  10. 제1 시료에 포함된 Th 세포에서 STAT3의 인산화 수치를 측정하는 단계; 및
    제2 시료에 포함된 Tc 세포에서 STAT3의 인산화 수치를 측정하는 단계;
    를 포함하는 대장암 치료반응 모니터링을 위한 정보를 제공하는 방법.
  11. 제10항에 있어서, 상기 제1 시료 및 제2 시료는 대장암 치료 중인 환자로부터 수득한 것인, 대장암 치료반응 모니터링을 위한 정보를 제공하는 방법.
  12. 제10항에 있어서, 상기 제1 시료 및 제2 시료는 말초혈을 포함하는 것인, 대장암 치료반응 모니터링을 위한 정보를 제공하는 방법.
  13. 제10항에 있어서, 상기 STAT3의 인산화 수치의 측정은 유동세포계수법을 이용하여 측정하는 것인, 대장암 치료반응 모니터링을 위한 정보를 제공하는 방법.
  14. 제10항에 있어서, 상기 제1 시료는 하기의 단계에 의해 준비 되는 것인, 대장암 치료반응 모니터링을 위한 정보를 제공하는 방법:
    혈액에 포함된 단핵구를 분리하는 단핵구 분리 단계;
    분리된 단핵구에 사이토카인을 처리하는 사이토카인 처리 단계; 및
    인산화 염색을 수행하는 인산화 염색 단계.
  15. 제14항에 있어서, 상기 사이토카인은 IL-10인 것인, 대장암 치료반응 모니터링을 위한 정보를 제공하는 방법.
  16. 제14항에 있어서, 상기 사이토카인의 농도는 9.0 내지 11.0 ng/ml인 것인, 대장암 치료반응 모니터링을 위한 정보를 제공하는 방법.
  17. 제10항에 있어서, 상기 제2 시료는 하기의 단계에 의해 준비 되는 것인, 대장암 치료반응 모니터링을 위한 정보를 제공하는 방법:
    혈액에 포함된 단핵구를 분리하는 단핵구 분리 단계;
    분리된 단핵구에 사이토카인을 처리하는 사이토카인 처리 단계; 및
    인산화 염색을 수행하는 인산화 염색 단계.
  18. 제17항에 있어서, 상기 사이토카인은 IL-6인 것인, 대장암 치료반응 모니터링을 위한 정보를 제공하는 방법.
  19. 제17항에 있어서, 상기 사이토카인의 농도는 19.0 내지 21.0 ng/ml인 것인, 대장암 치료반응 모니터링을 위한 정보를 제공하는 방법.
PCT/KR2020/005778 2019-05-03 2020-04-29 대장암 진단 마커 및 대장암 진단에 필요한 정보를 제공하는 방법 WO2020226366A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20801458.9A EP3964835A4 (en) 2019-05-03 2020-04-29 MARKERS FOR DIAGNOSIS OF COLORECTAL CANCER AND METHODS TO PROVIDE INFORMATION NECESSARY FOR DIAGNOSIS OF COLORECTAL CANCER
US17/594,925 US20220221462A1 (en) 2019-05-03 2020-04-29 Marker for diagnosing colorectal cancer and method for providing information required for diagnosis of colorectal cancer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190052556A KR102199141B1 (ko) 2019-05-03 2019-05-03 대장암 진단 마커 및 대장암 진단에 필요한 정보를 제공하는 방법
KR10-2019-0052556 2019-05-03

Publications (1)

Publication Number Publication Date
WO2020226366A1 true WO2020226366A1 (ko) 2020-11-12

Family

ID=73051511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/005778 WO2020226366A1 (ko) 2019-05-03 2020-04-29 대장암 진단 마커 및 대장암 진단에 필요한 정보를 제공하는 방법

Country Status (4)

Country Link
US (1) US20220221462A1 (ko)
EP (1) EP3964835A4 (ko)
KR (1) KR102199141B1 (ko)
WO (1) WO2020226366A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060127502A1 (en) * 2004-12-14 2006-06-15 University Of South Florida Methods for inhibiting Stat3 signaling in immune cells
US20120021941A1 (en) * 2009-01-12 2012-01-26 The Board Of Regents Of The University Of Texas System Blood test for the detection of cancer
WO2012078982A2 (en) * 2010-12-09 2012-06-14 The Ohio State University Xzh-5 inhibits constitutive and interleukin-6-induced stat3 phosphorylation in human hepatocellular carcinoma cells
KR20190052556A (ko) 2017-11-08 2019-05-16 주식회사 엠프로스 호흡 센싱 디바이스 및 이를 포함하는 호흡 모니터링 시스템

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2561368T3 (pl) * 2010-04-19 2018-03-30 Biomarker Strategies, Llc. Kompozycje i sposoby do przewidywania wrażliwości i oporności na lek oraz progresji choroby
SG10201913784YA (en) * 2012-01-25 2020-03-30 Dnatrix Inc Biomarkers and combination therapies using oncolytic virus and immunomodulation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060127502A1 (en) * 2004-12-14 2006-06-15 University Of South Florida Methods for inhibiting Stat3 signaling in immune cells
US20120021941A1 (en) * 2009-01-12 2012-01-26 The Board Of Regents Of The University Of Texas System Blood test for the detection of cancer
WO2012078982A2 (en) * 2010-12-09 2012-06-14 The Ohio State University Xzh-5 inhibits constitutive and interleukin-6-induced stat3 phosphorylation in human hepatocellular carcinoma cells
KR20190052556A (ko) 2017-11-08 2019-05-16 주식회사 엠프로스 호흡 센싱 디바이스 및 이를 포함하는 호흡 모니터링 시스템

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
See also references of EP3964835A4
WU, WEN-YONG ET AL.: "STAT3 activation in monocytes accelerates liver cancer progression", BMC CANCER, vol. 11, no. 1, 2011, pages 506, XP021111804, DOI: 10.1186/1471-2407-11-506 *
XIANG-TAO MA, WANG SHAN, YE YING-JIANG, DU RU-YU, CUI ZHI-RONG, SOMSOUK MA, WANG DR SHAN: "Constitutive activation of Stat3 signaling pathway in human colorectal carcinoma", WORLD JOURNAL OF GASTROENTEROLOGY, vol. 10, no. 11, 2004, pages 1569 - 1573, XP055759461, DOI: 10.3748/wjg.v10.i11.1569 *

Also Published As

Publication number Publication date
US20220221462A1 (en) 2022-07-14
EP3964835A4 (en) 2022-07-20
EP3964835A1 (en) 2022-03-09
KR102199141B1 (ko) 2021-01-06
KR20200127779A (ko) 2020-11-11

Similar Documents

Publication Publication Date Title
Huddlestone et al. T suppressor (TG) lymphocytes fluctuate in parallel with changes in the clinical course of patients with multiple sclerosis
WO2018194215A1 (ko) 자연살해세포의 대량증식방법
Erskine et al. Effect of infection with bovine leukosis virus on lymphocyte proliferation and apoptosis in dairy cattle
WO2013168876A1 (ko) 이식 후 면역 상태를 모니터링 하는 키트 및 이를 이용한 면역 상태의 모니터링 방법
CN107064085B (zh) 自然杀伤细胞活性测定方法
CN109991417B (zh) 一种结核病的免疫标志物及应用
WO2020226366A1 (ko) 대장암 진단 마커 및 대장암 진단에 필요한 정보를 제공하는 방법
CA2128424A1 (en) Method for determining cytolytic t cell precursors
Parthasarathy et al. Aging modifies endometrial dendritic cell function and unconventional double negative T cells in the human genital mucosa
US6482389B1 (en) Method to diagnose and monitor cellular immune deficiencies
US4801533A (en) Method of using alpha-1 acid glycoprotein on T-cells as a marker for alzheimer's disease
WO2017204446A2 (ko) 수용체 시너지 활성을 이용한 nk 세포의 활성도 검사 방법 및 이를 이용한 nk 세포의 활성도가 관련된 질환의 진단 방법
WO2020027446A1 (ko) 액체생검 다중 암 유전자 바이오마커를 이용한 유방암 조기진단 및 치료 후 모니터링 방법
Berglund-Brown et al. A core of differentially methylated CpG loci in gMDSCs isolated from neonatal and adult sources
Reyes et al. Morphological variants of leukemic cells in B chronic lymphocytic leukemia are associated with different T cell and NK cell abnormalities
Wienke et al. Human regulatory T cells at the maternal-fetal interface show functional site-specific adaptation with tumor-infiltrating-like features
RU2811001C1 (ru) Способ прогнозирования эффекторной недостаточности цитотоксических клеток по увеличению концентраций в крови молекул scd54, scd56, scd71
Kaboub et al. Discordant Effects of Janus Kinase Inhibition Ex Vivo on Inflammatory Responses in Colonic Compared to Ileal Mucosa
Han et al. Splenic T and B lymphocytes and their mitogenic response in untreated Hodgkin's disease
Heltberg et al. A study of some immunological variables in twins, discordant for multiple sclerosis
Wagner et al. A prospective study of CD45 isoform expression in haemophagocytic lymphohistiocytosis; an abnormal inherited immunophenotype in one family
Gossez et al. PD-L1 mediated T cell inhibition by regulatory plasma cells induced after sepsis and COVID-19
CN107976543A (zh) 一种结核病检测试剂盒及检测方法
WO2023121197A1 (ko) 면역 노화 평가용 조성물 및 키트
Nose et al. Clinical symptoms and the odds of human T-cell lymphotropic virus type 1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) in healthy virus carriers: application of best-fit logistic regression equation based on host genotype, age, and provirus load

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20801458

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020801458

Country of ref document: EP

Effective date: 20211203