WO2020226069A1 - データ収集装置、信号発生位置特定システム、データ収集方法、信号発生位置特定方法、及びプログラム - Google Patents
データ収集装置、信号発生位置特定システム、データ収集方法、信号発生位置特定方法、及びプログラム Download PDFInfo
- Publication number
- WO2020226069A1 WO2020226069A1 PCT/JP2020/017546 JP2020017546W WO2020226069A1 WO 2020226069 A1 WO2020226069 A1 WO 2020226069A1 JP 2020017546 W JP2020017546 W JP 2020017546W WO 2020226069 A1 WO2020226069 A1 WO 2020226069A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- data
- time
- signal
- reference signal
- unit
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08C—TRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
- G08C15/00—Arrangements characterised by the use of multiplexing for the transmission of a plurality of signals over a common path
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W64/00—Locating users or terminals or network equipment for network management purposes, e.g. mobility management
- H04W64/003—Locating users or terminals or network equipment for network management purposes, e.g. mobility management locating network equipment
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/18—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using ultrasonic, sonic, or infrasonic waves
- G01S5/22—Position of source determined by co-ordinating a plurality of position lines defined by path-difference measurements
Definitions
- the present invention relates to a data collection device, a signal generation position identification system, a data collection method, a signal generation position identification method, and a program.
- the present application claims priority based on Japanese Patent Application No. 2019-89162 filed in Japan on May 9, 2019, the contents of which are incorporated herein by reference.
- the deviation (deviation) of the signal waveform of the elastic waves observed by the observation devices installed at multiple points is analyzed using a data analysis device.
- a data analysis device For example, Patent Document 1.
- the signal waveform of the elastic wave obtained by each observation device is transmitted as an analog signal to the data analysis device by wired communication or wireless communication.
- the data analysis device samples each of the collected analog signals, analyzes the deviation (deviation) of the signal waveform of the elastic wave, and identifies the source of the elastic wave.
- the sampling time for each device may differ depending on the deviation of the oscillator mounted on each observation device (sampling based on the device-specific time).
- the data observation device restores the signal waveform by using each collected sampling data as it is, there is a problem that the accuracy of the analysis of the signal waveform is lowered.
- the present invention has been made in view of the above technical background, and an object of the present invention is to provide a technique capable of improving the accuracy of signal waveform analysis.
- One aspect of the present invention is a reference signal indicating a first time, which is a time measured by an external device, and is a reference signal for receiving the reference signal transmitted from the external device at a first time interval.
- a signal receiving unit a time signal generating unit that measures the time at a second time interval and generates a time signal indicating the second time, which is the time measured, and the reference signal received by the reference signal receiving unit.
- the parameter generation unit to be used, the signal reception unit that receives an analog signal indicating the signal waveform of the observed signal, and the analog signal received by the signal reception unit are sampled at the second time interval to generate sampling data.
- It is a data collecting device including a sampling unit and a data processing unit that performs interpolation processing on the sampling data generated by the sampling unit based on the parameter value generated by the parameter generation unit.
- one aspect of the present invention is the above-mentioned data collecting device, and the data processing unit performs linear interpolation processing on the sampling data.
- one aspect of the present invention is the above-mentioned data collecting device, and the parameter generation unit generates the parameter value based on the deviation between the first time and the second time.
- one aspect of the present invention is a signal generation position specifying system including a plurality of data collection devices and a data analysis device, wherein the data collection device is a time measured by the data analysis device.
- a reference signal indicating the time of 1 the reference signal receiving unit that receives the reference signal transmitted from the data analyzer at the first time interval, and the time are measured at the second time interval.
- a time signal generator that generates a time signal indicating a second time, a first time indicated by the reference signal received by the reference signal receiver, and the reference signal receiver receive the reference signal.
- a parameter generator that generates a parameter value based on the second time based on the time signal generated by the time signal generator at the time of receiving the data, and an analog signal indicating the signal waveform of the observed signal.
- the sampling unit that samples the analog signal received by the signal receiving unit at the second time interval to generate sampling data, and the sampling data generated by the sampling unit.
- a data processing unit that performs interpolation processing based on the parameter values generated by the parameter generation unit and generates interpolated data, and the interpolated data generated by the data processing unit are transmitted to the data analysis device.
- the data analysis device includes a reference signal generation unit that generates the reference signal at the first time interval, and the data collection unit that collects the reference signal generated by the reference signal generation unit.
- the reference signal transmitting unit to be transmitted to the device, the data receiving unit that receives the interpolated data transmitted from the plurality of data collecting devices, and the plurality of interpolated data received by the data receiving unit are analyzed.
- This is a signal generation position specifying system including a data analysis unit for specifying the signal generation position.
- one aspect of the present invention is a signal generation position specifying system, in which the data analysis unit restores the signal waveforms from a plurality of the interpolated data, and based on the deviation of the restored signal waveforms. The position of occurrence is specified.
- one aspect of the present invention is a reference signal indicating a first time, which is a time measured by an external device, and receives the reference signal transmitted from the external device at a first time interval.
- a reference signal reception step a time signal generation step that measures the time at a second time interval and generates a time signal indicating the second time, which is the time measured, and a time signal generation step that is received by the reference signal reception step. Parameters based on the first time indicated by the reference signal and the second time based on the time signal generated by the time signal generation step at the time when the reference signal is received by the reference signal receiving step.
- the parameter generation step for generating a value, the signal receiving step for receiving an analog signal indicating the signal waveform of the observed signal, and the analog signal received by the signal receiving step are sampled and sampled at the second time interval.
- a data collection method including a sampling step for generating data and a data processing step for performing interpolation processing on the sampling data generated by the sampling step based on the parameter value generated by the parameter generation step. is there.
- one aspect of the present invention is a signal generation position specifying method by a signal generation position specifying system having a plurality of data collecting devices and a data analysis device, and is a time measured by the data analysis device.
- a reference signal indicating the time of 1 a reference signal generation step for generating the reference signal at the first time interval, and a reference signal for transmitting the reference signal generated by the reference signal generation step to the data acquisition device.
- the signal generation step the first time indicated by the reference signal received by the reference signal receiving step, and the time generated by the time signal generation step at the time when the reference signal is received by the reference signal receiving step.
- a parameter generation step that generates a parameter value based on the second time based on the signal, a signal reception step that receives an analog signal indicating the signal waveform of the observed signal, and a signal reception step that received the data.
- An analog signal is sampled at the second time interval to generate sampling data, and the sampling data generated by the sampling step is interpolated based on the parameter value generated by the parameter generation step.
- a data processing step that performs processing and generates interpolated data
- a data transmission step that transmits the interpolated data generated by the data processing step to the data analysis device, and transmission from the plurality of data collection devices.
- a data receiving step for receiving the interpolated data
- a data analysis step for identifying a generation position of the signal by analyzing a plurality of the interpolated data received by the data receiving step. It is a signal generation position specifying method having.
- one aspect of the present invention is a program for operating a computer as the above-mentioned data collection device.
- the accuracy of signal waveform analysis can be improved.
- FIG. 1 is a block diagram showing an overall configuration of a signal generation position specifying system 1 according to an embodiment of the present invention.
- the signal generation position specifying system 1 includes a plurality of data collecting devices 10 and a data analysis device 20.
- the signal generation position identification system 1 is a system for identifying the generation position of the elastic wave by analyzing elastic waves such as sound waves observed at at least two observation points.
- the signal generation position identification system 1 is used, for example, when identifying the generation position of water leakage, gas leakage, etc. by acquiring sound waves from sound sensors installed at a plurality of locations along a pipe such as water supply or gas. be able to.
- sound sensors installed at a plurality of locations along a pipe such as water supply or gas. be able to.
- it is desirable that such sensors such as sound sensors are arranged along the piping, for example, in a net shape and fixedly.
- the data collecting device 10 is an information processing device such as a leak detector.
- the plurality of data collecting devices 10 are installed, for example, in the vicinity of sensors (not shown) installed at a plurality of locations.
- the data collection device 10 acquires an input signal from a nearby sensor.
- the input signal is an analog signal showing the signal waveform of an elastic wave measured by a nearby sensor. Although only two data collection devices 10 are shown in FIG. 1, three or more data collection devices 10 may be used.
- the data collecting device 10 itself may be configured to include a sensor.
- the data collecting device 10 measures the current time at a predetermined time interval and generates a time signal.
- the time signal is a signal indicating the current time measured by the data collecting device 10.
- the data collection device 10 generates digitized sampling data by sampling the acquired analog signal at the timing when the time signal is generated.
- the data collecting device 10 receives a reference signal output from the data analysis device 20 at a predetermined time interval.
- the reference signal is a signal indicating the current time measured by the data analysis device 20.
- the data collecting device 10 generates a parameter value based on the deviation between the time indicated by the received reference signal and the time indicated by the time signal generated at the time when the reference signal is received.
- the data collecting device 10 performs interpolation processing (for example, linear interpolation processing, etc.) on the generated sampling data based on the above parameter values. As a result, the data collection device 10 generates sampling data that has undergone interpolation processing (hereinafter, referred to as “interpolated data”). The data collection device 10 transmits the generated interpolated data to the data analysis device 20.
- interpolation processing for example, linear interpolation processing, etc.
- the data collection device 10 and the data analysis device 20 communicate with each other via, for example, specific low power radio such as 429 MHz (megahertz) band or 920 MHz band, or wireless communication such as short-range wireless communication.
- specific low power radio such as 429 MHz (megahertz) band or 920 MHz band
- wireless communication such as short-range wireless communication.
- the data analysis device 20 is an information processing device such as a microcomputer, an industrial computer, a personal computer, or a tablet terminal.
- the data analysis device 20 generates the above-mentioned reference signal at predetermined time intervals.
- the data analysis device 20 transmits the generated reference signal to the data collection device 10.
- the data analysis device 20 receives the interpolated data transmitted from each data collection device 10.
- the data analysis device 20 restores each signal waveform based on the received interpolated data.
- the data analysis device 20 performs analysis based on the deviations of the restored plurality of signal waveforms, and identifies the generation position of the elastic wave.
- the information indicating the specific result may be output as data to an external device, or may be output to a display unit (not shown) such as a liquid crystal display included in the data analysis device 20.
- FIG. 2A and 2B are schematic views showing the deviation of the signal waveform due to the deviation between the period of the reference signal and the period of the time signal.
- the vertical line in practice represents the period of the reference signal output from the data analysis device 20.
- the vertical line of the broken line represents the period of the time signal generated by one conventional data collecting device (hereinafter, referred to as “data collecting device A”).
- the vertical line of the alternate long and short dash line represents the period of the time signal generated by another conventional data collection device (hereinafter, referred to as “data collection device B”).
- the cycle of the time signal of the data collecting device A is shorter than the cycle of the reference signal, and the cycle of the time signal of the data collecting device B is longer than the cycle of the reference signal. That is, the clock included in the data collecting device A is faster than the clock included in the data analysis device 20, and the clock included in the data collecting device B is slower than the clock included in the data analysis device 20.
- FIG. 2B shows an example of a signal waveform when such a deviation is restored from the sampled data by the data analysis device 20 without being corrected.
- the time signal of the data collection device A and the sampled data sampled according to the time signal of the data collection device B are based on the clock of the data analysis device 20 (that is, based on the period of the reference signal). )
- the waveform is different from the actual input signal waveform shown in FIG. 2A.
- the broken line signal waveform represents a signal waveform restored based on the sampling data acquired from the data collection device A.
- the signal waveform of the alternate long and short dash line represents a signal waveform restored based on the sampling data acquired from the data collection device B.
- the sound restored based on the sampling data acquired from the data collection device A is lower than the sound actually generated at the sound generation location. Further, the sound restored based on the sampling data acquired from the data collection device A is higher than the sound actually generated at the sound generation location. In this way, even if the same sound is observed, there will be a deviation (deviation) in the restored sound.
- FIG. 3 is a schematic diagram showing a linear interpolation process by the data collecting device 10 according to the embodiment of the present invention.
- the vertical line in practice represents the period of the reference signal output from the data analysis device 20.
- the vertical line of the broken line represents the period of the time signal generated by one data collecting device 10.
- the period of the time signal of the data collecting device 10 is shorter than the period of the reference signal.
- the signal waveform shown in FIG. 3 is a waveform restored by sampling data corresponding to the period of the time signal.
- the data collecting device 10 includes a clock included in the data analysis device 20 and a clock included in the own data collecting device 10 due to a deviation between a time based on the reference signal and a time based on the time signal generated by the own data collecting device 10. Detects the deviation between the clock and. As shown in FIG. 3, the data collection device 10 generates a value of sampling data corresponding to the period of the reference signal by interpolation processing such as linear interpolation processing based on the detected clock deviation.
- the data collecting device 10 transmits the interpolated data to the data analysis device 20.
- the data analysis device 20 can acquire sampling data unified in the cycle of the reference signal from each data collection device 10.
- the data analysis device 20 can analyze the deviation (deviation) of the signal waveform based on the sampling data in which the clock deviation is corrected, so that the position where the elastic wave is generated can be specified more accurately. ..
- FIG. 4 is a block diagram showing a functional configuration of the data collection device 10 according to the embodiment of the present invention.
- the data collecting device 10 includes a time signal generating unit 101, a signal receiving unit 102, a sampling unit 103, an input buffer 104, a reference signal receiving unit 105, and a processing parameter generating unit 106. It includes a processing parameter storage unit 107, a data processing unit 108, an output buffer 109, and a data transmission unit 110.
- the time signal generation unit 101 measures the time (second time).
- the time signal generator 101 includes an oscillator (not shown) such as a ceramic oscillator or a crystal oscillator, and generates a time signal indicating the time measured at a predetermined time interval (second time interval). Then, the generated time signal is output to the sampling unit 103 and the processing parameter generation unit 106.
- the predetermined time interval is, for example, 1 ⁇ s (microseconds).
- the time measured by the time signal generation unit 101 is, for example, a time indicating an elapsed time from a predetermined time point.
- the predetermined time point is, for example, a time point when the time signal generation unit 101 acquires a command output from the data analysis device 20 for instructing the data collection device 10 to start sampling.
- the time measured by the time signal generation unit 101 is not limited to the time indicating the elapsed time from such a predetermined time point, and may be, for example, the current time.
- the signal receiving unit 102 is a communication interface for communicating and connecting with an external device (for example, a sensor such as a sound sensor) that detects the generated elastic wave.
- the signal receiving unit 102 communicates with an external device via a wireless or wired communication path.
- the signal receiving unit 102 receives an analog signal indicating an elastic wave signal waveform, which is constantly output from an external device.
- the signal receiving unit 102 constantly outputs an analog signal that is constantly received to the sampling unit 103.
- the sampling unit 103 acquires an analog signal that is constantly output from the signal receiving unit 102. Further, the sampling unit 103 acquires a time signal output from the time signal generation unit 101 at a predetermined time interval (second time interval). The sampling unit 103 generates sampling data by sampling the analog signal at each time point when the time signal is acquired (that is, at predetermined time intervals). The sampling unit 103 stores the generated sampling data in the input buffer 104.
- the sampling data is, for example, data in which the time at a predetermined time interval and the quantized value of the signal waveform level are associated with each other.
- the input buffer 104 stores the sampling data generated by the sampling unit 103.
- the sampling data stored in the input buffer 104 may be deleted, for example, when the data processing unit 108 reads the data.
- the input buffer 104 is, for example, a storage medium such as a RAM (Random Access read / write Memory; readable / writable memory), a flash memory, an EEPROM (Electrically Erasable Programmable Read Only Memory), and an HDD (Hard Disk Drive), or a storage medium thereof. It is composed of any combination of storage media.
- the reference signal receiving unit 105 is a communication interface for communicating with the data analysis device 20.
- the reference signal receiving unit 105 communicates with the data analysis device 20 via a wireless communication path such as a specific low power radio or short-range wireless communication.
- the reference signal receiving unit 105 receives the reference signal transmitted from the data analysis device 20 at a predetermined time interval (first time interval).
- the reference signal referred to here is a signal indicating a time (first time) measured at a predetermined time interval (first time interval) by the data analysis device 20.
- the predetermined time interval is, for example, 1 s (second).
- the reference signal receiving unit 105 outputs the received reference signal to the processing parameter generation unit 106.
- the time measured by the data analysis device 20 is, for example, a time indicating an elapsed time from a predetermined time point.
- the predetermined time point is, for example, a time when the data analysis device 20 transmits a command for instructing the data collection device 10 to start sampling to the data collection device 10.
- the time measured by the time signal generation unit 101 is not limited to the time indicating the elapsed time from such a predetermined time point, and may be, for example, the current time.
- the processing parameter generation unit 106 acquires the reference signal output from the reference signal receiving unit 105 at a predetermined time interval (for example, 1s). Further, the machining parameter generation unit 106 acquires the time signal output from the time signal generation unit 101 at a predetermined time interval (for example, 1 ⁇ s). The processing parameter generation unit 106 determines the parameter value based on the time indicated by the acquired reference signal (first time) and the time indicated by the acquired time signal at the time when the reference signal is acquired (second time). Generate. The machining parameter generation unit 106 stores the generated parameter value in the machining parameter storage unit 107.
- the parameter value referred to here is, for example, a value (unit) indicating a deviation between the time indicated by the reference signal acquired by the machining parameter generation unit 106 and the time indicated by the time signal acquired at the time when the reference signal is acquired. : Ppm (Parts Per Million)).
- the processing parameter generation unit 106 may be configured to acquire the time signal by requesting the time signal generation unit 101 to output the time signal when the reference signal is acquired.
- the processing parameter generation unit 106 generates the parameter value after performing the correction document processing for considering the propagation time required for the propagation of the reference signal from the data analysis device 20 to the data collection device 10. You may.
- the machining parameter storage unit 107 stores the parameter values generated by the machining parameter generation unit 106.
- the parameter value stored in the processing parameter storage unit 107 may be deleted, for example, when the data processing unit 108 reads it.
- the processing parameter storage unit 107 is composed of, for example, a storage medium such as a RAM, a flash memory, an EEPROM, and an HDD, or an arbitrary combination of these storage media.
- the data processing unit 108 acquires the sampling data stored in the input buffer 104.
- the data processing unit 108 acquires sampling data when, for example, the amount of sampling data stored in the input buffer 104 reaches a predetermined amount of data.
- the data processing unit 108 may be configured to acquire sampling data at predetermined time intervals.
- the data processing unit 108 acquires the parameter value stored in the processing parameter storage unit 107.
- the data processing unit 108 acquires the parameter value when, for example, the sampling data stored in the input buffer 104 is acquired.
- the data processing unit 108 generates the interpolated data by performing the interpolation processing on the acquired sampling data based on the acquired parameter value.
- the data processing unit 108 stores the generated interpolated data in the output buffer 109.
- the interpolated data is, for example, data in which the time based on the reference signal and the value indicating the level of the signal waveform calculated by the interpolation process are associated with each other.
- the data processing unit 108 corresponds to the time based on the reference signal from, for example, the deviation between the sampling data in which the time based on the time signal and the value indicating the level of the signal waveform are associated with the value indicated by the parameter value.
- a value indicating the level of the signal waveform is calculated by, for example, interpolation processing by linear interpolation.
- the interpolation process used here is not limited to the interpolation process by linear interpolation, and for example, the interpolation process by polynomial interpolation, the interpolation process by the sampling theorem, or the like may be used.
- the output buffer 109 stores the interpolated data generated by the data processing unit 108.
- the interpolated data stored in the output buffer 109 may be deleted, for example, when the data transmission unit 110 reads the data.
- the output buffer 109 is composed of, for example, a storage medium such as RAM, flash memory, EEPROM, and HDD, or any combination of these storage media.
- the data transmission unit 110 is a communication interface for communicating with the data analysis device 20.
- the data transmission unit 110 communicates with the data analysis device 20 via a wireless communication path such as a specific low power radio or short-range wireless communication.
- the data transmission unit 110 acquires the interpolated data stored in the output buffer 109.
- the data transmission unit 110 acquires the interpolated data when, for example, the data amount of the interpolated data stored in the output buffer 109 reaches a predetermined data amount.
- the data transmission unit 110 may be configured to acquire the interpolated data at predetermined time intervals.
- the data transmission unit 110 transmits the acquired interpolated data to the data analysis device 20.
- the data transmission unit 110 may have a configuration in which a time point (transmission frame) for transmitting data to the data analysis device 20 is predetermined.
- a time point transmission frame
- the data collecting device 10 selects the interpolated data when, for example, the amount of the interpolated data stored in the output buffer 109 reaches a predetermined amount of data and the data can be transmitted. All you have to do is get it and send it.
- FIG. 5 is a block diagram showing a functional configuration of the data analysis device 20 according to the embodiment of the present invention.
- the data analysis device 20 includes a reference signal generation unit 201, a reference signal transmission unit 202, a data reception unit 203, a data storage unit 204, and a data analysis unit 205.
- the data analysis device 20 includes a reference signal generation unit 201, a reference signal transmission unit 202, a data reception unit 203, a data storage unit 204, and a data analysis unit 205.
- the reference signal generation unit 201 clocks the time (first time).
- the reference signal generation unit 201 includes an oscillator (not shown) such as a ceramic oscillator or a crystal oscillator, and generates a reference signal indicating the time measured at a predetermined time interval (first time interval). Then, the generated reference signal is output to the reference signal transmission unit 202.
- the predetermined time interval is, for example, 1 s.
- the time measured by the reference signal generation unit 201 is, for example, a time indicating an elapsed time from a predetermined time point.
- the predetermined time point is, for example, a time when the data analysis device 20 outputs a command for instructing the data collection device 10 to start sampling to the data collection device 10.
- the time measured by the reference signal generation unit 201 is not limited to the time indicating the elapsed time from such a predetermined time point, and may be, for example, the current time.
- the reference signal transmission unit 202 is a communication interface for communicating with each of the plurality of data collection devices 10.
- the reference signal transmission unit 202 communicates with each data collection device 10 via a wireless communication path such as a specific low power radio or short-range wireless communication.
- the reference signal transmission unit 202 acquires a reference signal generated by the reference signal generation unit 201 at predetermined time intervals.
- the reference signal transmission unit 202 transmits the acquired reference signal to each data collection device 10 at the predetermined time interval.
- the data receiving unit 203 is a communication interface for communicating with each of the plurality of data collecting devices 10.
- the data receiving unit 203 communicates with each data collecting device 10 via a wireless communication path such as a specific low power radio or a short-range wireless communication.
- the data receiving unit 203 receives the interpolated data transmitted from each data collecting device 10.
- the data receiving unit 203 stores each received interpolated data in the data storage unit 204.
- the data storage unit 204 stores the interpolated data output from the data reception unit 203.
- the interpolated data stored in the data storage unit 204 may be deleted, for example, when the data analysis unit 205 reads the data.
- the data storage unit 204 is composed of, for example, a storage medium such as a RAM, a flash memory, an EEPROM, and an HDD, or an arbitrary combination of these storage media.
- the data analysis unit 205 acquires the interpolated data transmitted from the plurality of data collection devices 10 stored in the data storage unit 204, respectively.
- the timing at which the data analysis unit 205 acquires the interpolated data is arbitrary.
- the timing may be, for example, a timing at which the operator who specifies the position where the elastic wave is generated wants to specify.
- the data analysis unit 205 identifies the generation position of elastic waves (signals) by analyzing a plurality of acquired data that has been subjected to interpolation processing. For example, the data analysis unit 205 restores the signal waveforms from the acquired plurality of interpolated data. Then, the data analysis unit 205 identifies the generation position of the elastic wave based on the deviation (deviation) of the restored plurality of signal waveforms.
- FIG. 6 is a flowchart showing the operation of the sampling unit 103 of the data collection device 10 according to the embodiment of the present invention.
- the operation shown in this flowchart is started, for example, when the data collecting device 10 acquires a command output from the data analysis device 20 for instructing the data collecting device 10 to start sampling.
- the operation shown in this flowchart is started, for example, when the acquisition of the analog signal constantly output from the signal receiving unit 102 is started.
- the sampling unit 103 waits for the acquisition of the time signal output from the time signal generation unit 101 at predetermined time intervals (step S101).
- the sampling unit 103 measures the level of the signal waveform based on the analog signal at the time when the time signal is acquired (step S102).
- the sampling unit 103 generates sampling data in which the time indicated by the acquired time signal and the value indicating the level of the signal waveform are associated with each other, and stores the generated sampling data in the input buffer 104 (step S103).
- the sampling unit 103 continues the above sampling process (step S104 / No), the sampling unit 103 continues to wait for the acquisition of the time signal (step S101).
- the sampling unit 103 ends the above sampling process (step S104 ⁇ Yes) the operation of the sampling unit 103 shown in the flowchart of FIG. 6 ends.
- the case of ending the sampling process is, for example, a case where the data collecting device 10 acquires an instruction output from the data analysis device 20 for instructing the data collecting device 10 to end the sampling. is there.
- the case where the sampling process is terminated is, for example, the case where the analog signal is no longer output from the signal receiving unit 102.
- FIG. 7 is a flowchart showing the operation of the processing parameter generation unit 106 of the data collection device 10 according to the embodiment of the present invention. The operation shown in this flowchart is started, for example, when the data collecting device 10 acquires a command output from the data analysis device 20 for instructing the data collecting device 10 to start sampling.
- the processing parameter generation unit 106 waits for the acquisition of the reference signal output from the reference signal receiving unit 105 at predetermined time intervals (step S201).
- the processing parameter generation unit 106 has a parameter value based on the time indicated by the acquired reference signal and the time indicated by the acquired time signal at the time when the reference signal is acquired. Is generated (step S202).
- the machining parameter generation unit 106 stores the generated parameter value in the machining parameter storage unit 107 (step S203).
- the machining parameter generation unit 106 continues to wait for the acquisition of the reference signal (step S101).
- the machining parameter generation unit 106 ends the process of generating the parameter value (step S204 ⁇ Yes)
- the operation of the machining parameter generation unit 106 shown in the flowchart of FIG. 7 ends.
- the data collecting device 10 acquires a command output from the data analysis device 20 for instructing the data collecting device 10 to end the sampling. If you do.
- FIG. 8 is a flowchart showing the operation of the data processing unit 108 of the data collecting device 10 according to the embodiment of the present invention. The operation shown in this flowchart is started, for example, when the data collecting device 10 acquires a command output from the data analysis device 20 for instructing the data collecting device 10 to start sampling.
- the data processing unit 108 confirms the amount of sampling data stored in the input buffer 104 (step S301). When the data amount of the sampling data stored in the input buffer 104 does not reach the predetermined data amount (step S302 / No), the data processing unit 108 continues to confirm the data amount of the sampling data (step S301).
- the data processing unit 108 acquires the sampling data stored in the input buffer 104. Further, in this case, the data processing unit 108 acquires the parameter value stored in the processing parameter storage unit 107 (step S303).
- the data processing unit 108 executes interpolation processing on the acquired sampling data based on the acquired parameter value (step S304).
- the data processing unit 108 stores the interpolated data generated by the interpolation processing in the output buffer 109 (step S305).
- step S306 When the data processing unit 108 continues to execute the above interpolation processing (step S306 / No), the data processing unit 108 continues to confirm the amount of sampling data stored in the input buffer 104 (step S301).
- step S306 ⁇ Yes the operation of the data processing unit 108 shown in the flowchart of FIG. 8 ends.
- the case of ending the execution of the interpolation processing is, for example, the case where the data collecting device 10 acquires an instruction output from the data analysis device 20 for instructing the data collecting device 10 to end the sampling. Is.
- FIG. 9 is a flowchart showing the operation of the data transmission unit 110 of the data collection device 10 according to the embodiment of the present invention. The operation shown in this flowchart is started, for example, when the data collecting device 10 acquires a command output from the data analysis device 20 for instructing the data collecting device 10 to start sampling.
- the data transmission unit 110 confirms the amount of interpolated data stored in the output buffer 109 (step S401). When the data amount of the interpolated data stored in the output buffer 109 does not reach the predetermined data amount (step S402 / No), the data transmission unit 110 continues to confirm the data amount of the interpolated data (step S402 / No). Step S401).
- the data transmission unit 110 acquires the interpolated data stored in the output buffer 109. (Step S403). The data transmission unit 110 transmits the acquired interpolated data to the data analysis device 20 (step S405).
- step S405 ⁇ No When the data transmission unit 110 continues to execute the transmission processing of the interpolated data (step S405 ⁇ No), the data transmission unit 110 continues to confirm the amount of the interpolated data stored in the output buffer 109 (step S401). ). Further, when the data transmission unit 110 ends the execution of the transmission processing of the interpolated data (step S405 ⁇ Yes), the operation of the data transmission unit 110 shown in the flowchart of FIG. 9 ends.
- the case of ending the execution of the transmission processing of the interpolated data is, for example, for the data collecting device 10 to instruct the data collecting device 10 to end the sampling output from the data analysis device 20. This is the case when the instruction is obtained.
- the data collecting device 10 is a reference signal indicating the first time, which is the time measured by the external device (data analysis device 20), and is the external.
- the reference signal receiving unit 105 that receives the reference signal transmitted from the device at a predetermined first time interval, and the second time, which is the time measured by measuring the time at the predetermined second time interval.
- a parameter generation unit (machining parameter generation unit 106) that generates a parameter value based on the second time based on the time signal generated by the time signal generation unit 101, and a signal waveform of the observed signal are shown. It was generated by the signal receiving unit 102 that receives the analog signal, the sampling unit 103 that samples the analog signal received by the signal receiving unit 102 at the second time interval, and generates sampling data, and the sampling unit 103. It includes a data processing unit 108 that performs interpolation processing on the sampled data based on the parameter value generated by the parameter generation unit (machining parameter generation unit 106).
- the data collecting device 10 performs an external interpolation process using parameter values from the sampling data corresponding to the time signal generated by the own device. It is possible to generate a value of sampling data (corrected data) corresponding to the period of the reference signal acquired from the device (data analysis device 20). As a result, the data collecting device 10 can transmit the corrected data unified to the cycle of the reference signal generated by the external device to the external device (data analysis device 20). As a result, the data collecting device 10 can eliminate the deviation between the signal waveforms restored from the corrected data obtained from the plurality of data collecting devices 10 in the external device (data analysis device 20). As a result, the data collection device 10 can improve the accuracy of the analysis of the signal waveform.
- the signal generation position specifying system 1 includes a plurality of data collecting devices 10 having the above configuration and a data analysis device 20.
- the data analysis device 20 has a reference signal generation unit 201 that generates the reference signal at the first time interval, and a reference signal that transmits the reference signal generated by the reference signal generation unit 201 to the data collection device 10. Analyzing the transmission unit 202, the data receiving unit 203 that receives the interpolated data transmitted from the plurality of data collecting devices 10, and the plurality of interpolated data received by the data receiving unit 203.
- the data analysis unit 205 for specifying the generation position of the signal is provided.
- the signal generation position specifying system 1 can obtain deviations between signal waveforms restored from each corrected data generated by a plurality of data collection devices 10. Can be eliminated. As a result, the signal generation position specifying system 1 can improve the accuracy of the analysis of the signal waveform performed by the data analysis device 20.
- the "computer system” referred to here is a computer system built in the data collection device 10 and the data analysis device 20, and includes hardware such as an OS and peripheral devices.
- the "computer-readable recording medium” is a portable medium such as a flexible disk, a magneto-optical disk, a ROM, or a CD-ROM, a semiconductor memory such as a flash memory built in a computer system, and a storage such as a hard disk. It refers to a device.
- a "computer-readable recording medium” is a medium that dynamically holds a program for a short period of time, such as a communication line when a program is transmitted via a network such as the Internet or a communication line such as a telephone line.
- a program may be held for a certain period of time, such as a volatile memory inside a computer system serving as a server or a client.
- the above-mentioned program may be a program for realizing a part of the above-mentioned functions, and may be a program for realizing the above-mentioned functions in combination with a program already recorded in the computer system.
- a part or all of the data collection device 10 and the data analysis device 20 in the above-described embodiment may be realized as an integrated circuit such as an LSI (Large Scale Integration).
- LSI Large Scale Integration
- Each functional block of the data collection device 10 and the data analysis device 20 may be made into a processor individually, or a part or all of them may be integrated into a processor.
- the method of making an integrated circuit is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor. Further, when an integrated circuit technology that replaces an LSI appears due to advances in semiconductor technology, an integrated circuit based on this technology may be used.
- Signal generation position identification system 10 Data acquisition device 20 Data analysis device 101 Time signal generation unit 102 Signal reception unit 103 Sampling unit 104 Input buffer 105 Reference signal reception unit 106 Processing parameter generation unit 107 Processing parameter storage unit 108 Data processing unit 109 Output Buffer 110 Data transmission unit 201 Reference signal generation unit 202 Reference signal transmission unit 203 Data reception unit 204 Data storage unit 205 Data analysis unit
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
Abstract
Description
本願は、2019年5月9日に、日本に出願された特願2019-89162号に基づき優先権を主張し、その内容をここに援用する。
以下、信号発生位置特定システム1の全体構成について説明する。
図1は、本発明の一実施形態に係る信号発生位置特定システム1の全体構成を示すブロック図である。図1に示すように、信号発生位置特定システム1は、複数のデータ収集装置10と、データ解析装置20と、を含んで構成される。
図2A及び図2Bは、基準信号の周期と時刻信号の周期との偏差による信号波形の偏差を表す模式図である。図2Aにおいて、実践の縦線は、データ解析装置20から出力される基準信号の周期を表すものとする。また、破線の縦線は、ある1つの従来のデータ収集装置(以下、「データ収集装置A」という。)が発生させる時刻信号の周期を表すものとする。また、一点鎖線の縦線は、もう1つの従来のデータ収集装置(以下、「データ収集装置B」という。)が発生させる時刻信号の周期を表すものとする。
図3は、本発明の一実施形態に係るデータ収集装置10による線形補間処理を表す模式図である。図3において、実践の縦線は、データ解析装置20から出力される基準信号の周期を表すものとする。また、破線の縦線は、ある1つのデータ収集装置10が発生させる時刻信号の周期を表すものとする。図3に示す例においては、データ収集装置10の時刻信号の周期は基準信号の周期よりも短い。また、図3に示す信号波形は、時刻信号の周期に対応するサンプリングデータによって復元された波形である。
以下、データ収集装置10の機能構成について更に詳しく説明する。
図4は、本発明の一実施形態に係るデータ収集装置10の機能構成を示すブロック図である。図4に示すように、データ収集装置10は、時刻信号発生部101と、信号受信部102と、サンプリング部103と、入力バッファ104と、基準信号受信部105と、加工パラメータ生成部106と、加工パラメータ記憶部107と、データ加工部108と、出力バッファ109と、データ送信部110と、を含んで構成される。
から常時出力される、弾性波の信号波形を示すアナログ信号を受信する。信号受信部102は、常時受信するアナログ信号をサンプリング部103へ常時出力する。
以下、データ解析装置20の機能構成について更に詳しく説明する。
図5は、本発明の一実施形態に係るデータ解析装置20の機能構成を示すブロック図である。図5に示すように、データ解析装置20は、基準信号発生部201と、基準信号送信部202と、データ受信部203と、データ記憶部204と、データ解析部205と、を含んで構成される。
以下、サンプリング部103の動作の一例について説明する。
図6は、本発明の一実施形態に係るデータ収集装置10のサンプリング部103の動作を示すフローチャートである。本フローチャートが示す動作は、例えば、データ収集装置10が、データ解析装置20から出力される、サンプリングの開始をデータ収集装置10に対して指示するための命令を取得した時点で開始される。あるいは、本フローチャートが示す動作は、例えば、信号受信部102から常時出力されるアナログ信号の取得を開始した時点で開始される。
以下、加工パラメータ生成部106の動作の一例について説明する。
図7は、本発明の一実施形態に係るデータ収集装置10の加工パラメータ生成部106の動作を示すフローチャートである。本フローチャートが示す動作は、例えば、データ収集装置10が、データ解析装置20から出力される、サンプリングの開始をデータ収集装置10に対して指示するための命令を取得した時点で開始される。
以下、データ加工部108の動作の一例について説明する。
図8は、本発明の一実施形態に係るデータ収集装置10のデータ加工部108の動作を示すフローチャートである。本フローチャートが示す動作は、例えば、データ収集装置10が、データ解析装置20から出力される、サンプリングの開始をデータ収集装置10に対して指示するための命令を取得した時点で開始される。
以下、データ送信部110の動作の一例について説明する。
図9は、本発明の一実施形態に係るデータ収集装置10のデータ送信部110の動作を示すフローチャートである。本フローチャートが示す動作は、例えば、データ収集装置10が、データ解析装置20から出力される、サンプリングの開始をデータ収集装置10に対して指示するための命令を取得した時点で開始される。
10 データ収集装置
20 データ解析装置
101 時刻信号発生部
102 信号受信部
103 サンプリング部
104 入力バッファ
105 基準信号受信部
106 加工パラメータ生成部
107 加工パラメータ記憶部
108 データ加工部
109 出力バッファ
110 データ送信部
201 基準信号発生部
202 基準信号送信部
203 データ受信部
204 データ記憶部
205 データ解析部
Claims (8)
- 外部の装置によって計時された時刻である第1の時刻を示す基準信号であって、前記外部の装置から第1の時間間隔で送信される前記基準信号を受信する基準信号受信部と、
第2の時間間隔で時刻を計時し、計時された時刻である第2の時刻を示す時刻信号を発生させる時刻信号発生部と、
前記基準信号受信部が受信した前記基準信号が示す前記第1の時刻と、前記基準信号受信部が前記基準信号を受信した時点において前記時刻信号発生部が発生させた時刻信号に基づく前記第2の時刻と、に基づいてパラメータ値を生成するパラメータ生成部と、
観測された信号の信号波形を示すアナログ信号を受信する信号受信部と、
前記信号受信部が受信したアナログ信号を、前記第2の時間間隔でサンプリングしサンプリングデータを生成するサンプリング部と、
前記サンプリング部によって生成されたサンプリングデータに対して、前記パラメータ生成部によって生成された前記パラメータ値に基づいて補間処理を行うデータ加工部と、
を備えるデータ収集装置。 - 前記データ加工部は、
前記サンプリングデータに対して線形補間処理を行う
請求項1に記載のデータ収集装置。 - 前記パラメータ生成部は、
前記第1の時刻と前記第2の時刻との偏差に基づく前記パラメータ値を生成する
請求項1又は請求項2に記載のデータ収集装置。 - 複数のデータ収集装置と、データ解析装置と、を有する信号発生位置特定システムであって、
前記データ収集装置は、
前記データ解析装置によって計時された時刻である第1の時刻を示す基準信号であって、前記データ解析装置から第1の時間間隔で送信される前記基準信号を受信する基準信号受信部と、
第2の時間間隔で時刻を計時し、計時された時刻である第2の時刻を示す時刻信号を発生させる時刻信号発生部と、
前記基準信号受信部が受信した前記基準信号が示す前記第1の時刻と、前記基準信号受信部が前記基準信号を受信した時点において前記時刻信号発生部が発生させた時刻信号に基づく前記第2の時刻と、に基づいてパラメータ値を生成するパラメータ生成部と、
観測された信号の信号波形を示すアナログ信号を受信する信号受信部と、
前記信号受信部が受信したアナログ信号を、前記第2の時間間隔でサンプリングしサンプリングデータを生成するサンプリング部と、
前記サンプリング部によって生成されたサンプリングデータに対して、前記パラメータ生成部によって生成された前記パラメータ値に基づいて補間処理を行い、補間処理済みデータを生成するデータ加工部と、
前記データ加工部によって生成された前記補間処理済みデータを前記データ解析装置へ送信するデータ送信部と、
を備え、
前記データ解析装置は、
前記第1の時間間隔で前記基準信号を発生させる基準信号発生部と、
前記基準信号発生部が発生させた前記基準信号を前記データ収集装置へ送信する基準信号送信部と、
複数の前記データ収集装置から送信された前記補間処理済みデータをそれぞれ受信するデータ受信部と、
前記データ受信部が受信した複数の前記補間処理済みデータを解析することにより、前記信号の発生位置を特定するデータ解析部と、
を備える信号発生位置特定システム。 - 前記データ解析部は、
複数の前記補間処理済みデータから前記信号波形をそれぞれ復元し、復元された信号波形の偏差に基づいて前記発生位置を特定する
請求項4に記載の信号発生位置特定システム。 - 外部の装置によって計時された時刻である第1の時刻を示す基準信号であって、前記外部の装置から第1の時間間隔で送信される前記基準信号を受信する基準信号受信ステップと、
第2の時間間隔で時刻を計時し、計時された時刻である第2の時刻を示す時刻信号を発生させる時刻信号発生ステップと、
前記基準信号受信ステップによって受信された前記基準信号が示す前記第1の時刻と、前記基準信号受信ステップによって前記基準信号が受信された時点において前記時刻信号発生ステップによって発生した時刻信号に基づく前記第2の時刻と、に基づいてパラメータ値を生成するパラメータ生成ステップと、
観測された信号の信号波形を示すアナログ信号を受信する信号受信ステップと、
前記信号受信ステップによって受信されたアナログ信号を、前記第2の時間間隔でサンプリングしサンプリングデータを生成するサンプリングステップと、
前記サンプリングステップによって生成されたサンプリングデータに対して、前記パラメータ生成ステップによって生成された前記パラメータ値に基づいて補間処理を行うデータ加工ステップと、
を有するデータ収集方法。 - 複数のデータ収集装置と、データ解析装置と、を有する信号発生位置特定システムによる信号発生位置特定方法であって、
前記データ解析装置によって計時された時刻である第1の時刻を示す基準信号であって、第1の時間間隔で前記基準信号を発生させる基準信号発生ステップと、
前記基準信号発生ステップによって発生した前記基準信号を前記データ収集装置へ送信する基準信号送信ステップと、
前記データ解析装置から前記基準信号を受信する基準信号受信ステップと、
第2の時間間隔で時刻を計時し、計時された時刻である第2の時刻を示す時刻信号を発生させる時刻信号発生ステップと、
前記基準信号受信ステップによって受信された前記基準信号が示す前記第1の時刻と、前記基準信号受信ステップによって前記基準信号が受信された時点において前記時刻信号発生ステップによって発生した時刻信号に基づく前記第2の時刻と、に基づいてパラメータ値を生成するパラメータ生成ステップと、
観測された信号の信号波形を示すアナログ信号を受信する信号受信ステップと、
前記信号受信ステップによって受信されたアナログ信号を、前記第2の時間間隔でサンプリングしサンプリングデータを生成するサンプリングステップと、
前記サンプリングステップによって生成されたサンプリングデータに対して、前記パラメータ生成ステップによって生成された前記パラメータ値に基づいて補間処理を行い、補間処理済みデータを生成するデータ加工ステップと、
前記データ加工ステップによって生成された前記補間処理済みデータを前記データ解析装置へ送信するデータ送信ステップと、
複数の前記データ収集装置から送信された前記補間処理済みデータをそれぞれ受信するデータ受信ステップと、
前記データ受信ステップによって受信された複数の前記補間処理済みデータを解析することにより、前記信号の発生位置を特定するデータ解析ステップと、
を有する信号発生位置特定方法。 - 請求項1から請求項3のうちいずれか一項のデータ収集装置としてコンピュータを機能させるためのプログラム。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/609,501 US12041576B2 (en) | 2019-05-09 | 2020-04-23 | Data collection device, signal generation position identification system, data collection method, signal generation position identification method, and program |
CA3139637A CA3139637C (en) | 2019-05-09 | 2020-04-23 | Data collection device, signal generation position identification system, data collection method, signal generation position identification method, and program |
AU2020268279A AU2020268279B2 (en) | 2019-05-09 | 2020-04-23 | Data collection device, signal generation position identification system, data collection method, signal generation position identification method, and program |
CN202080034490.0A CN114026620B (zh) | 2019-05-09 | 2020-04-23 | 数据收集装置、信号产生位置确定系统、数据收集方法、信号产生位置确定方法以及程序 |
EP20802231.9A EP3968300A4 (en) | 2019-05-09 | 2020-04-23 | DATA COLLECTION DEVICE, SIGNAL GENERATION POSITION IDENTIFICATION SYSTEM, DATA COLLECTION METHOD, SIGNAL GENERATION POSITION IDENTIFICATION METHOD AND PROGRAM |
JP2021518346A JP7545959B2 (ja) | 2019-05-09 | 2020-04-23 | データ収集装置、信号発生位置特定システム、データ収集方法、信号発生位置特定方法、及びプログラム |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019089162 | 2019-05-09 | ||
JP2019-089162 | 2019-05-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020226069A1 true WO2020226069A1 (ja) | 2020-11-12 |
Family
ID=73050590
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/017546 WO2020226069A1 (ja) | 2019-05-09 | 2020-04-23 | データ収集装置、信号発生位置特定システム、データ収集方法、信号発生位置特定方法、及びプログラム |
Country Status (7)
Country | Link |
---|---|
US (1) | US12041576B2 (ja) |
EP (1) | EP3968300A4 (ja) |
JP (1) | JP7545959B2 (ja) |
CN (1) | CN114026620B (ja) |
AU (1) | AU2020268279B2 (ja) |
CA (1) | CA3139637C (ja) |
WO (1) | WO2020226069A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7370419B1 (ja) | 2022-04-28 | 2023-10-27 | フジテコム株式会社 | データ収集装置、信号発生位置特定システム、データ収集方法、信号発生位置特定方法、及びプログラム |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5846015B2 (ja) | 1978-10-05 | 1983-10-13 | 富士写真フイルム株式会社 | 静電記録体の製造方法 |
JP2003242583A (ja) * | 2002-02-18 | 2003-08-29 | Yokogawa Electric Corp | 測定データ同期システムおよび測定データ同期方法 |
JP2008209995A (ja) * | 2007-02-23 | 2008-09-11 | Mitsubishi Electric Corp | 分散計測システムおよびその方法 |
JP2010102549A (ja) * | 2008-10-24 | 2010-05-06 | Hitachi Ltd | センサネットワークシステム、センサノード、及び基地局 |
JP2015153229A (ja) * | 2014-02-17 | 2015-08-24 | 株式会社デンソー | 物理量センサ |
JP2017033069A (ja) * | 2015-07-29 | 2017-02-09 | 株式会社デンソー | 通信システム |
JP2019012519A (ja) * | 2017-05-31 | 2019-01-24 | ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh | センサデータ処理装置 |
JP2019089162A (ja) | 2017-11-15 | 2019-06-13 | セイコーエプソン株式会社 | 力検出装置及びロボットシステム |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5846015U (ja) | 1981-09-24 | 1983-03-28 | 株式会社東芝 | 加熱調理装置 |
JP4693405B2 (ja) * | 2004-12-17 | 2011-06-01 | 株式会社日立製作所 | ノード位置測位システム、無線基地局及び位置測定方法 |
FR2889331B1 (fr) * | 2005-07-28 | 2008-02-01 | Sercel Sa | Appareil et procede de compensation de derive d'une horloge locale utilisee comme frequence d'echantillonnage |
CN102033487A (zh) * | 2009-09-29 | 2011-04-27 | 横河电机株式会社 | 测量数据同步系统和测量数据同步方法 |
JP5160599B2 (ja) * | 2010-07-28 | 2013-03-13 | 株式会社近計システム | 電力線搬送通信システム、電力線搬送通信方法、プログラムおよび記録媒体 |
JP5234079B2 (ja) * | 2010-10-01 | 2013-07-10 | オムロン株式会社 | センサ装置、センサ管理システム、センサ装置の制御方法、プログラム及びコンピュータ読み取り可能な記録媒体 |
JP5846015B2 (ja) * | 2012-03-30 | 2016-01-20 | 日本電気株式会社 | 漏洩検知方法、漏水検知方法、漏洩検知装置および漏水検知装置 |
JP5616922B2 (ja) * | 2012-04-16 | 2014-10-29 | 株式会社ソニー・コンピュータエンタテインメント | 同期信号調整装置、同期信号調整方法、映像表示装置、および同期信号発生装置 |
WO2014141464A1 (ja) * | 2013-03-15 | 2014-09-18 | 三菱電機株式会社 | 電力系統の情報を収集するマージングユニット |
JP7189499B2 (ja) * | 2018-05-07 | 2022-12-14 | オムロン株式会社 | センサシステム |
-
2020
- 2020-04-23 EP EP20802231.9A patent/EP3968300A4/en active Pending
- 2020-04-23 CN CN202080034490.0A patent/CN114026620B/zh active Active
- 2020-04-23 AU AU2020268279A patent/AU2020268279B2/en active Active
- 2020-04-23 JP JP2021518346A patent/JP7545959B2/ja active Active
- 2020-04-23 US US17/609,501 patent/US12041576B2/en active Active
- 2020-04-23 WO PCT/JP2020/017546 patent/WO2020226069A1/ja unknown
- 2020-04-23 CA CA3139637A patent/CA3139637C/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5846015B2 (ja) | 1978-10-05 | 1983-10-13 | 富士写真フイルム株式会社 | 静電記録体の製造方法 |
JP2003242583A (ja) * | 2002-02-18 | 2003-08-29 | Yokogawa Electric Corp | 測定データ同期システムおよび測定データ同期方法 |
JP2008209995A (ja) * | 2007-02-23 | 2008-09-11 | Mitsubishi Electric Corp | 分散計測システムおよびその方法 |
JP2010102549A (ja) * | 2008-10-24 | 2010-05-06 | Hitachi Ltd | センサネットワークシステム、センサノード、及び基地局 |
JP2015153229A (ja) * | 2014-02-17 | 2015-08-24 | 株式会社デンソー | 物理量センサ |
JP2017033069A (ja) * | 2015-07-29 | 2017-02-09 | 株式会社デンソー | 通信システム |
JP2019012519A (ja) * | 2017-05-31 | 2019-01-24 | ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh | センサデータ処理装置 |
JP2019089162A (ja) | 2017-11-15 | 2019-06-13 | セイコーエプソン株式会社 | 力検出装置及びロボットシステム |
Non-Patent Citations (1)
Title |
---|
See also references of EP3968300A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7370419B1 (ja) | 2022-04-28 | 2023-10-27 | フジテコム株式会社 | データ収集装置、信号発生位置特定システム、データ収集方法、信号発生位置特定方法、及びプログラム |
JP2023164046A (ja) * | 2022-04-28 | 2023-11-10 | フジテコム株式会社 | データ収集装置、信号発生位置特定システム、データ収集方法、信号発生位置特定方法、及びプログラム |
Also Published As
Publication number | Publication date |
---|---|
EP3968300A1 (en) | 2022-03-16 |
CN114026620A (zh) | 2022-02-08 |
JPWO2020226069A1 (ja) | 2020-11-12 |
CA3139637C (en) | 2024-02-13 |
AU2020268279A1 (en) | 2022-01-06 |
CN114026620B (zh) | 2024-06-25 |
EP3968300A4 (en) | 2023-01-25 |
US20220232511A1 (en) | 2022-07-21 |
US12041576B2 (en) | 2024-07-16 |
AU2020268279B2 (en) | 2023-07-27 |
JP7545959B2 (ja) | 2024-09-05 |
CA3139637A1 (en) | 2020-11-12 |
AU2020268279A8 (en) | 2022-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107896131B (zh) | 蓝牙信号调整方法、装置、测试终端、系统及可读介质 | |
US20140060196A1 (en) | Ultrasonic testing apparatus | |
CA2872949C (en) | System and method for ultrasonic testing with a single channel ultrasonic test unit | |
WO2020226069A1 (ja) | データ収集装置、信号発生位置特定システム、データ収集方法、信号発生位置特定方法、及びプログラム | |
JP2010281771A (ja) | 同期記録システム及び同期記録方法 | |
KR20170039311A (ko) | 아날로그 변환 장치 및 프로그래머블 컨트롤러 시스템 | |
JP6714462B2 (ja) | 無線センサ端末、無線センサシステムおよびセンサデータ収集方法 | |
CN112901146B (zh) | 声波测井探测中坏道的识别方法及装置 | |
GB2531152A (en) | A system and method for testing transducer elements of an acoustic probe | |
Gül et al. | Smartphone controlled ultrasonic nondestructive testing system design | |
CN112666561B (zh) | 超声扫查系统、设备、方法及终端 | |
JP2016027321A (ja) | 超音波検査方法および探触子設置治具 | |
CN101912279A (zh) | 基于智能终端设备的胎儿监护方法 | |
JP7370419B1 (ja) | データ収集装置、信号発生位置特定システム、データ収集方法、信号発生位置特定方法、及びプログラム | |
JP2015097619A (ja) | 超音波診断装置及び超音波診断装置用のプログラム | |
CN105486829A (zh) | 一种控制方法及电子设备 | |
JP2006162377A (ja) | 超音波探傷装置 | |
JP2006038694A (ja) | データサンプリングシステム | |
CN108121282B (zh) | 基底处理系统、存储介质及数据处理方法 | |
JP2008176044A (ja) | 音響測定装置 | |
CN105939508B (zh) | 一种智能自适应无线声学数字传声器 | |
JP2021043142A (ja) | 振動情報収集システム | |
CN118330563A (zh) | 放电空间的定位方法、装置、电子设备及存储介质 | |
JP2007194886A (ja) | 信号解析装置および信号解析プログラム | |
TWI442063B (zh) | 物質之相關特徵電磁訊號記錄方法及架構 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20802231 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021518346 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 3139637 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020802231 Country of ref document: EP Effective date: 20211209 |
|
ENP | Entry into the national phase |
Ref document number: 2020268279 Country of ref document: AU Date of ref document: 20200423 Kind code of ref document: A |