WO2020225881A1 - Barrier material and product equipped with same - Google Patents

Barrier material and product equipped with same Download PDF

Info

Publication number
WO2020225881A1
WO2020225881A1 PCT/JP2019/018437 JP2019018437W WO2020225881A1 WO 2020225881 A1 WO2020225881 A1 WO 2020225881A1 JP 2019018437 W JP2019018437 W JP 2019018437W WO 2020225881 A1 WO2020225881 A1 WO 2020225881A1
Authority
WO
WIPO (PCT)
Prior art keywords
barrier material
group
base material
silane
composition
Prior art date
Application number
PCT/JP2019/018437
Other languages
French (fr)
Japanese (ja)
Inventor
崇之 鈴木
龍一郎 福田
智彦 小竹
Original Assignee
昭和電工マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工マテリアルズ株式会社 filed Critical 昭和電工マテリアルズ株式会社
Priority to JP2021518255A priority Critical patent/JP7338678B2/en
Priority to CN201980098216.7A priority patent/CN114096406A/en
Priority to PCT/JP2019/018437 priority patent/WO2020225881A1/en
Publication of WO2020225881A1 publication Critical patent/WO2020225881A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00

Definitions

  • the present invention relates to a barrier material and a product including the barrier material.
  • Patent Document 1 describes a barrier film laminate in which a barrier film having an inorganic oxide layer is laminated.
  • the present invention provides a barrier material placed on a substrate.
  • this barrier material the water vapor permeability A 1 from the side opposite to the base material to the base material side is smaller than the water vapor permeability A 2 from the base material side of the barrier material to the side opposite to the base material.
  • a barrier material even if water invades the base material side, the water can be released to the side opposite to the base material, so that moisture absorption to the base material can be remarkably suppressed. Further, according to such a barrier material, by performing heat drying or the like with the barrier material arranged, the moisture in the base material is released to the outside, and the base material can be efficiently dried.
  • the ratio of the water vapor transmission rate A 2 with respect to the water vapor transmission rate A 1 may be 1.3 or more.
  • the barrier material according to one embodiment may contain a polysiloxane compound doped with a metal atom.
  • the polysiloxane compound may have a silicon atom bonded to three oxygen atoms.
  • the ratio of the total number of silicon atoms bonded to 3 oxygen atoms and the number of silicon atoms bonded to 4 oxygen atoms to the total number of silicon atoms in the polysiloxane compound is 30% or more. Good.
  • 90% or more of the oxygen atoms in the polysiloxane compound may be bonded to silicon atoms.
  • the barrier material may consist of a cured product of the barrier material forming composition applied on the above-mentioned base material.
  • the composition for forming a barrier material may contain at least a part of a silane oligomer modified with a metal alkoxide.
  • the silane oligomer may have a silicon atom bonded to three oxygen atoms.
  • the ratio of the total number of silicon atoms bonded to 3 oxygen atoms and the number of silicon atoms bonded to 4 oxygen atoms to the total number of silicon atoms in the silane oligomer may be 50% or more. ..
  • the barrier material forming composition may further contain a silane monomer.
  • the present invention also provides a product comprising a base material and the barrier material disposed on the base material.
  • the present invention is a barrier material arranged on a base material, and can provide a barrier material capable of suppressing moisture absorption of the base material at a high level. Further, the present invention can provide a product including the barrier material.
  • the numerical range indicated by using “-” indicates a range including the numerical values before and after "-" as the minimum value and the maximum value, respectively.
  • the term “A or B” may include either A or B, and may include both. Unless otherwise specified, the materials exemplified in this embodiment may be used alone or in combination of two or more.
  • FIG. 1 is a schematic cross-sectional view showing a preferred embodiment of the barrier material.
  • Barrier material 10 of FIG. 1 is disposed on the substrate 20, the water vapor permeability A 1 from the opposite side surface 11 and the substrate 20 to the surface 12 of the substrate 20 side, the surface of the base material 20 side It is smaller than the water vapor permeability A 2 from 12 to the surface 11 opposite to the base material 20.
  • a plurality of barrier materials 10 may be formed on the base material 20, and it is preferable that the water vapor permeability A 1 is smaller than the water vapor permeability A 2 in all of them.
  • the barrier material according to the present embodiment even when water invades the base material side, the water can be released to the side opposite to the base material, so that moisture absorption to the base material can be remarkably suppressed. .. Further, according to the barrier material according to the present embodiment, by performing heat drying or the like with the barrier material arranged, the moisture in the base material is released to the outside, and the base material can be efficiently dried.
  • the ratio of the water vapor permeability A 2 to the water vapor permeability A 1 may be, for example, 1.1 or more, preferably 1.3 or more, and more preferably 1.5 or more. As a result, the above-mentioned effect is more prominently exhibited.
  • the upper limit of the ratio of the water vapor transmission rate A 2 to water vapor permeability A 1 is not particularly limited.
  • the ratio (A 2 / A 1 ) may be, for example, 30 or less, 20 or less, or 10 or less.
  • the water vapor permeability A 1 may be, for example, 5000 g / m 2 ⁇ day or less, and is preferably 4000 g / m 2 ⁇ day or less, more preferably 4000 g / m 2 ⁇ day or less from the viewpoint of further suppressing the invasion of water into the base material side. It is 3000 g / m 2 ⁇ day or less.
  • the lower limit of the water vapor permeability A 1 is not particularly limited.
  • the water vapor permeability A 1 may be, for example, 100 g / m 2 ⁇ day or more.
  • the water vapor transmission rate A 1 described above, per 20 ⁇ m thick, 40 ° C. shows the value at 95% RH.
  • the water vapor permeability A 2 may be, for example, 500 g / m 2 ⁇ day or more, and is preferably 2000 g / m 2 ⁇ day from the viewpoint that the above-mentioned effect due to the release of water that has penetrated into the base material side can be obtained more remarkably. Above, more preferably 4000 g / m 2 ⁇ day or more.
  • the upper limit of the water vapor permeability A 2 is not particularly limited.
  • the water vapor permeability A 2 may be, for example, 10000 g / m 2 ⁇ day or less.
  • the water vapor permeability A 2 described above indicates a value at 40 ° C. and 95% RH per 20 ⁇ m thickness.
  • the water vapor permeability A 1 and the water vapor permeability A 2 indicate the values measured by the method of JIS K 7129.
  • the material constituting the barrier material according to this embodiment is not particularly limited.
  • the barrier material preferably contains a polysiloxane compound, more preferably a metal atom-doped polysiloxane compound.
  • the voids in the barrier material can be easily controlled by controlling the structure of the silicon atom in the polysiloxane compound, and the above-mentioned relationship between the water vapor permeability A 1 and the water vapor permeability A 2 can be easily satisfied. ..
  • the polysiloxane compound has a siloxane skeleton. Further, in the polysiloxane compound, the metal atom is bonded to the silicon atom constituting the polysiloxane skeleton via the oxygen atom.
  • the silicon atom contained in the polysiloxane compound is a silicon atom bonded to one oxygen atom (M unit), a silicon atom bonded to two oxygen atoms (D unit), and a silicon atom bonded to three oxygen atoms. It can be distinguished into (T unit) and a silicon atom (Q unit) bonded to four oxygen atoms.
  • M unit silicon atom bonded to one oxygen atom
  • D unit silicon atom bonded to two oxygen atoms
  • Q unit silicon atom bonded to four oxygen atoms.
  • Examples of the M unit, the D unit, the T unit, and the Q unit include the formulas (M), (D), (T), and (Q) described later, respectively.
  • the ratio of the total number of T units and Q units to the total number of silicon atoms may be, for example, 30% or more, preferably 50% or more, and more preferably 70% or more. It is more preferably 90% or more, and may be 100%. According to such a polysiloxane compound, the moisture resistance of the barrier material is further improved.
  • the polysiloxane compound preferably contains T units.
  • the content of T units in the polysiloxane compound may be, for example, 10% or more, 20% or more, 30% or more, 40% or more or 50% or more, and 70% or more, based on the total number of silicon atoms. Is more preferable, 80% or more is more preferable, 90% or more is further preferable, and 100% may be used. According to such a polysiloxane compound, the flexibility and dehumidifying property tend to be further improved.
  • the molar ratio (M / Si) of the metal atom M to the total number of silicon atoms (Si) may be, for example, 0.0001 or more, preferably 0.001 or more. This tends to result in better curability.
  • the molar ratio (M / Si) may be, for example, 0.5 or less, preferably 0.2 or less. This tends to make the transparency even better.
  • the oxygen atoms of the polysiloxane compound are bonded to at least one silicon atom.
  • the polysiloxane compound contains a small amount of alcoholic hydroxyl groups (C—OH), ether bonds (COC) and the like, the moisture resistance and dehumidification properties tend to be further improved.
  • C—OH alcoholic hydroxyl groups
  • COC ether bonds
  • the oxygen atoms in the polysiloxane compound for example, 90% or more is preferably bonded to a silicon atom, 95% or more is preferably bonded to a silicon atom, and 99% or more is bonded to a silicon atom. It is more preferable that they are bonded.
  • the barrier material may have transparency.
  • Such a barrier material can be suitably used as a coating material for covering an image sensor in an application that requires transparency, for example, an image sensor package.
  • having transparency here means that the visible light transmittance (light transmittance of 550 nm) per 1 mm of thickness is 80% or more.
  • the barrier material has a visible light transmittance (light transmittance of 550 nm) per 1 mm of thickness preferably 80% or more, more preferably 85% or more, still more preferably 90% or more. ..
  • the visible light transmittance of the barrier material is measured by a spectrophotometer.
  • the shape of the barrier material is not particularly limited.
  • the barrier material may be formed into a film, for example, and such a barrier material can be used as a moisture-proof barrier film. Further, the barrier material may be formed so as to cover the base material, and in this case, contact of the base material with moisture can be prevented.
  • the barrier material may be composed of, for example, a cured product of the barrier material forming composition described later.
  • a preferred embodiment of the barrier material forming composition will be described.
  • composition for forming barrier material contains a silane oligomer, and at least a part of the silane oligomer is modified with a metal alkoxide.
  • Such a composition has the above-mentioned water vapor permeability A 1 and water vapor permeability A 2 by appropriately adjusting the composition of silicon atoms in the silane oligomer (ratio of M unit, D unit, T unit and Q unit).
  • a barrier material satisfying the relationship can be easily formed on the base material.
  • the composition for forming the barrier material may be, for example, liquid or paste. From the viewpoint of facilitating application to the base material, the composition for forming the barrier material is preferably a liquid composition.
  • a silane oligomer is a polymer of a silane monomer and has a structure in which a plurality of silicon atoms are linked via oxygen atoms.
  • the silane oligomer represents a polymer having a molecular weight of 100,000 or less.
  • the silane oligomer modified with a metal alkoxide is a compound formed by the reaction of the silane oligomer and the metal alkoxide, and a silicon atom derived from the silane oligomer and a metal atom derived from the metal alkoxide are interposed via an oxygen atom. It can also be said that the compound has a bonded structure.
  • the silane oligomer modified with the metal alkoxide may be a reaction product of the silane oligomer and the metal alkoxide, or may be a reaction product of the silane monomer and the metal alkoxide. Good. In the latter case, the silane monomer reacted with the metal alkoxide may further react with another silane monomer to form a silane oligomer structure, and the silane oligomer formed by the reaction between the silane monomers reacted with the metal alkoxide. It may be a thing.
  • composition according to this aspect it is not necessary that all the silane oligomers contained in the composition are modified with metal alkoxide, and at least a part of the silane oligomers may be modified with metal alkoxide.
  • the silicon atom contained in the silane oligomer is a silicon atom bonded to one oxygen atom (M unit), a silicon atom bonded to two oxygen atoms (D unit), and a silicon atom bonded to three oxygen atoms (M unit). It can be distinguished into a silicon atom (Q unit) bonded to four oxygen atoms (T unit). Examples of the M unit, the D unit, the T unit, and the Q unit include the following equations (M), (D), (T), and (Q), respectively.
  • R represents an atom (hydrogen atom or the like) or an atomic group (alkyl group or the like) other than the oxygen atom bonded to silicon. Information on the content of these units can be obtained by Si-NMR.
  • the ratio of the total number of T units and Q units to the total number of silicon atoms is preferably 50% or more, more preferably 70% or more, further preferably 90% or more. It may be 100%. According to such a silane oligomer, a barrier material having more excellent moisture resistance can be obtained.
  • the silane oligomer preferably contains T units.
  • the content of T units in the silane oligomer is, for example, 10% or more, preferably 20% or more, 30% or more, 40% or more, 50% or more, 70% or more, 80% or more with respect to the total number of silicon atoms. Alternatively, it is 90% or more, and may be 100%.
  • Such silane oligomers tend to be more flexible and dehumidifying.
  • the silane oligomer may be one that mainly contains Q units.
  • the content of the Q unit in the silane oligomer is, for example, 50% or more, preferably 70% or more, more preferably 80% or more, and 90% or more, based on the total number of silicon atoms. Is more preferable, and may be 100%.
  • Such silane oligomers tend to have better moisture resistance and transparency.
  • the silane oligomer preferably has an alkyl group or an aryl group as R in the above formulas (M), (D), (T) and (Q).
  • an alkyl group having 6 or less carbon atoms is preferable, and an alkyl group having 4 or less carbon atoms is more preferable.
  • Specific examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group and the like, of which a methyl group, an ethoxy group and a propyl group are preferable, and a methyl group is more preferable.
  • Examples of the aryl group include a phenyl group and a substituted phenyl group.
  • the substituent of the substituted phenyl group include an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group and a cyano group.
  • a phenyl group is preferable.
  • the weight average molecular weight of the silane oligomer may be, for example, 400 or more, preferably 600 or more, and more preferably 1000 or more.
  • the weight average molecular weight of the silane oligomer may be, for example, 30,000 or less, preferably 10,000 or less, and more preferably 6000 or less.
  • the weight average molecular weight of the silane oligomer indicates the value of the weight average molecular weight expressed in polystyrene conversion measured by gel permeation chromatography (GPC).
  • the metal alkoxide can be represented by, for example, M (OR 1 ) n .
  • M represents an n-valent metal atom and R 1 represents an alkyl group.
  • n represents a positive number of 1 or more.
  • N is preferably 2 to 5, and more preferably 3 to 4.
  • Examples of M include aluminum, titanium, zirconium, niobium and the like, of which aluminum, titanium and zirconium are preferable, and aluminum is more preferable.
  • examples of the metal alkoxide include aluminum alkoxide, titanium alkoxide, zirconium alkoxide, niobium alkoxide and the like, of which aluminum alkoxide, titanium alkoxide and zirconium alkoxide are preferable, and aluminum alkoxide is more preferable.
  • an alkyl group having 1 to 6 carbon atoms is preferable, and an alkyl group having 2 to 4 carbon atoms is more preferable.
  • Specific examples of the alkyl group of R 1 include a methyl group, an ethyl group, a propyl group, a butyl group and the like, of which an ethyl group, a propyl group and a butyl group are preferable, and a propyl group and a butyl group are more preferable.
  • the composition according to this embodiment may contain a modified silane oligomer in which a silane oligomer is modified with 0.1 to 50 parts by mass of a metal alkoxide with respect to 100 parts by mass of the silane oligomer.
  • the amount of the metal alkoxide is preferably 1 part by mass or more, more preferably 5 parts by mass or more, preferably 30 parts by mass or less, and more preferably 20 parts by mass or less with respect to 100 parts by mass of the silane oligomer. Higher amounts of metal alkoxides tend to result in better curability, and lower amounts of metal alkoxides tend to improve transparency.
  • the composition according to this embodiment may further contain a silane monomer.
  • a silane monomer for example, the contents of T unit and Q unit in the barrier material can be adjusted, and effects such as transparency and flexibility can be imparted to the barrier material depending on the application. Further, by blending a silane monomer, a barrier material having more excellent moisture resistance tends to be obtained.
  • the content of the silane monomer is not particularly limited, but may be, for example, 10 parts by mass or more, preferably 20 parts by mass or more, and more preferably 30 parts by mass or more with respect to 100 parts by mass of the silane oligomer. As a result, the above-mentioned effect is more prominently exhibited.
  • the content of the silane monomer may be, for example, 100 parts by mass or less, 60 parts by mass or less, preferably 50 parts by mass or less, and more preferably 40 parts by mass or less. Within such a range, the curability tends to be good.
  • silane oligomer does not include the mass of the metal alkoxide that modifies the silane oligomer, and the total amount of the silane oligomer portion of the modified silane oligomer and the unmodified silane oligomer is 100 parts by mass. Means that.
  • silane monomer a trifunctional monomer containing a silicon atom bonded to three oxygen atoms and a tetrafunctional monomer containing a silicon atom bonded to four oxygen atoms can be preferably used.
  • Examples of the trifunctional monomer include alkyltrialkoxysilanes and aryltrialkoxysilanes.
  • Alkoxytrialkoxysilane is a silane compound in which one alkyl group and three alkoxy groups are bonded to a silicon atom.
  • Aryltrialkoxysilane is a silane compound in which one aryl group and three alkoxy groups are bonded to a silicon atom.
  • alkyl group of the alkyltrialkoxysilane an alkyl group having 6 or less carbon atoms is preferable, and an alkyl group having 4 or less carbon atoms is more preferable.
  • Specific examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group and the like, of which a methyl group, an ethyl group and a propyl group are preferable, and a methyl group is more preferable.
  • alkoxy group of the alkyltrialkoxysilane an alkoxy group having 6 or less carbon atoms is preferable, and an alkoxy group having 4 or less carbon atoms is more preferable.
  • alkoxy group examples include a methoxy group, an ethoxy group, a propoxy group, a butoxy group and the like. Of these, a methoxy group, an ethoxy group and a propoxy group are preferable, and a methoxy group and an ethoxy group are more preferable.
  • Examples of the aryl group of the aryltrialkoxysilane include a phenyl group and a substituted phenyl group.
  • Examples of the substituent of the substituted phenyl group include an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group and a cyano group.
  • the aryl group is preferably a phenyl group.
  • an alkoxy group of the aryltrialkoxysilane an alkoxy group having 6 or less carbon atoms is preferable, and an alkoxy group having 4 or less carbon atoms is more preferable.
  • alkoxy group examples include a methoxy group, an ethoxy group, a propoxy group, a butoxy group and the like. Of these, a methoxy group, an ethoxy group and a propoxy group are preferable, and a methoxy group and an ethoxy group are more preferable.
  • trifunctional monomer examples include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane and the like.
  • Tetraalkoxysilane is a silane compound in which four alkoxy groups are bonded to a silicon atom.
  • an alkoxy group having 6 or less carbon atoms is preferable, and an alkoxy group having 4 or less carbon atoms is more preferable.
  • Specific examples of the alkoxy group include a methoxy group, an ethoxy group, a propoxy group, a butoxy group and the like. Of these, a methoxy group, an ethoxy group and a propoxy group are preferable, and a methoxy group and an ethoxy group are more preferable.
  • tetrafunctional monomer examples include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, and the like.
  • the silane monomer includes a silane monomer having a reactive functional group selected from the group consisting of a vinyl group, an epoxy group, a glycidyl group, a (meth) acryloyl group, an amino group, an isocyanate group, an isocyanurate group and a mercapto group.
  • a reactive silane monomer When the above composition contains such a silane monomer, a barrier material having further excellent followability and adhesion to a base material is formed.
  • a vinyl group, an epoxy group (more preferably a glycidyl group), and a (meth) acryloyl group are used from the viewpoint of further improving the flexibility of the barrier material and the adhesion to the member.
  • Amino group, isocyanate group, isocyanurate group and mercapto group are preferably selected, and an amino group is more preferable.
  • the reactive silane monomer preferably has a silicon atom bonded to three oxygen atoms.
  • a silane monomer represented by the following formula (A-1) can be preferably used.
  • R A1 represents a reactive functional group
  • L 1 is alkanediyl group or an oxy alkanediyl group - indicates (-OL 2.
  • Group, L 2 represented by the showing the alkanediyl group), p is It represents an integer greater than or equal to 0 (preferably an integer of 0 to 3), where RA2 represents an alkyl or aryl group.
  • p is preferably 0 to 3, and more preferably 0.
  • RA1 is an epoxy group, a glycidyl group, a (meth) acryloyl group, an amino group, an isocyanate group, an isocyanurate group or a mercapto group
  • p is preferably an integer of 1 or more, and preferably 1 to 3. More preferably, it is further preferably 1.
  • R A1 is a vinyl group, a glycidyl group, or (meth) acryloyl group
  • L 1 is oxy alkanediyl group
  • R A1 is an amino group, isocyanate group, isocyanurate group or a mercapto group, it is preferred that L 1 is alkanediyl group.
  • an alkane diyl group having 2 to 10 carbon atoms is preferable, and an alkane diyl group having 2 to 8 carbon atoms is more preferable.
  • alkyl group in RA2 an alkyl group having 6 or less carbon atoms is preferable, and an alkyl group having 4 or less carbon atoms is more preferable.
  • Specific examples of the alkyl group include methyl group, ethyl group, propyl group (n-propyl group, isopropyl group), butyl group (n-butyl group, sec-butyl group, isobutyl group, tert-butyl group) and the like. Be done.
  • a phenyl group is preferable.
  • RA2 is preferably an alkyl group.
  • the content of the reactive silane monomer may be, for example, 0.01 part by mass or more, preferably 0.05 part by mass or more, and more preferably 0.1 part by mass or more with respect to 100 parts by mass of the silane oligomer. .. As a result, the followability and the adhesion tend to be further improved.
  • the content of the reactive silane monomer may be, for example, 5 parts by mass or less, preferably 4 parts by mass or less, and more preferably 2 parts by mass or less. This tends to further improve the thermal stability of the cured product.
  • composition according to this embodiment may further contain a liquid medium.
  • liquid medium include water and an organic solvent.
  • organic solvent examples include alcohols, ethers, ketones, esters, hydrocarbons and the like.
  • acetonitrile, acetamide, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone and the like can also be used.
  • the composition may contain water and alcohols as a liquid medium. By using such a liquid medium, it becomes easy to obtain a barrier material having excellent transparency.
  • alcohols those that can be vaporized by heating at the time of forming the barrier material are preferable.
  • alcohols having 6 or less carbon atoms are preferable, and alcohols having 1 to 4 carbon atoms are more preferable.
  • alcohols corresponding to the alkoxy group of the metal alkoxide may be used. That is, for example, when the metal alkoxide has a tert-butoxy group, tert-butyl alcohol may be used as the alcohol. This tends to further improve transparency.
  • the content of the liquid medium is not particularly limited, and may be, for example, a content having a viscosity suitable for coating the composition.
  • the viscosity of the composition is not particularly limited, and may be appropriately adjusted according to the thickness of the barrier material to be produced, the coating method, the shape of the object, and the like.
  • the viscosity of the composition at 25 ° C. may be, for example, 1 to 6000 mPa ⁇ s, preferably 5 to 3000 mPa ⁇ s. Such a composition makes it easier to apply to the object and to form a barrier material on the object.
  • the molar ratio (M / Si) of the metal atom M derived from the metal alkoxide to the total number of silicon atoms derived from the silane oligomer and the silane monomer may be, for example, 0.0001 or more. It is preferably 0.001 or more. This tends to result in better curability.
  • the molar ratio (M / Si) may be, for example, 0.5 or less, preferably 0.2 or less. This tends to improve transparency.
  • composition according to this embodiment may further contain a curing catalyst.
  • the curing catalyst is not particularly limited as long as it promotes the polymerization reaction of the silane oligomer and the silane monomer.
  • the curing catalyst examples include acid catalysts containing hydrochloric acid, nitric acid, sulfuric acid, acetic acid, phosphoric acid and the like, metal catalysts containing tin, titanium, aluminum, zinc, iron, cobalt, manganese and the like, aliphatic amines, ammonium hydroxide and water.
  • acid catalysts containing hydrochloric acid, nitric acid, sulfuric acid, acetic acid, phosphoric acid and the like metal catalysts containing tin, titanium, aluminum, zinc, iron, cobalt, manganese and the like, aliphatic amines, ammonium hydroxide and water.
  • metal catalysts containing tin, titanium, aluminum, zinc, iron, cobalt, manganese and the like examples include a base catalyst containing tetraethylammonium oxide, sodium carbonate, sodium hydroxide and the like.
  • the content of the curing catalyst may be, for example, 0.1 part by mass or more, preferably 1 part by mass or more, 20 parts by mass or less, and 10 parts by mass or less with respect to 100 parts by mass of the silane oligomer. preferable.
  • the composition according to this embodiment may further contain components other than the above.
  • other components include resins having a hydroxyl group in the molecular structure, metal oxide particles, metal oxide fibers, and the like.
  • the resin having a hydroxyl group in the molecular structure include polyvinyl alcohol and the like.
  • the metal oxide particles include silica particles and alumina particles, and these particles are preferably nano-sized (for example, the particle size is 1 nm or more and less than 1000 nm) (that is, nanosilica particles, nanoalumina). Particles are preferred).
  • the metal oxide fiber examples include alumina fiber, and the fiber diameter of these metal oxide fibers is preferably nano-sized (for example, the fiber diameter is 1 nm or more and less than 1000 nm) (that is, alumina nanofiber is preferable). .).
  • the content of the above other components is not particularly limited as long as the above effects can be obtained, and may be, for example, 50 parts by mass or less, preferably 40 parts by mass or less with respect to 100 parts by mass of the silane oligomer. Is. Further, the content of the other components may be, for example, 10 parts by mass or more, or 20 parts by mass or more, based on 100 parts by mass of the silane oligomer.
  • Examples of the method for producing the composition according to this aspect include the following methods.
  • the present production method comprises a modification step of reacting a silane oligomer with a metal alkoxide to modify at least a part of the silane oligomer with the metal alkoxide.
  • the metal alkoxide reacts with the silane oligomer to form a metal atom-oxygen atom-silicon atom bond.
  • the above reaction may be carried out in a liquid medium.
  • the liquid medium include the same as above.
  • the amount of the liquid medium is not particularly limited, and may be, for example, an amount such that the concentration of the silane oligomer in the reaction solution is 50 to 99% by mass (preferably 80 to 95% by mass).
  • reaction conditions for the above reaction are not particularly limited.
  • the reaction temperature of the above reaction may be 60 to 100 ° C. or 70 to 90 ° C.
  • the reaction time of the above reaction may be, for example, 0.5 to 5.0 hours, or 1.0 to 3.0 hours.
  • the present production method may further include a step of adding a silane oligomer to the reaction solution after the modification step.
  • a composition containing a silane oligomer modified with a metal alkoxide and an unmodified silane oligomer can be obtained.
  • the present production method may further include a step of adding a silane monomer to the reaction solution after the modification step. That is, in the present production method, the first step of preparing a silane oligomer at least partially modified with a metal alkoxide and the second step of mixing the modified silane oligomer and the silane monomer to obtain a composition for forming a barrier material.
  • the method may include the above-mentioned step, and the first step may be the above-mentioned modification step. As a result, a composition containing a silane monomer is obtained.
  • the present production method may further include a step of adding other components to the reaction solution after the modification step.
  • the present production method may further include a step of adding a liquid medium to the reaction solution after the modification step, or a step of replacing the liquid medium in the reaction solution after the modification step with another liquid medium.
  • the production method comprises a modification step of reacting a silane monomer with a metal alkoxide to form a silane oligomer that is at least partially modified with the metal alkoxide.
  • a silane oligomer is formed by polymerization of the silane monomer, and the formed silane oligomer may be modified with a metal alkoxide.
  • a silane oligomer moiety may be formed by the reaction of the modified silane monomer with another silane monomer.
  • the above reaction may be carried out in a liquid medium.
  • the liquid medium include the same as above.
  • the amount of the liquid medium is not particularly limited, and may be, for example, an amount such that the concentration of the silane monomer in the reaction solution is 50 to 99% by mass (preferably 80 to 95% by mass).
  • reaction conditions for the above reaction are not particularly limited.
  • the reaction temperature of the above reaction may be 60 to 100 ° C. or 70 to 90 ° C.
  • the reaction time of the above reaction may be, for example, 0.5 to 5.0 hours, or 1.0 to 3.0 hours.
  • the present production method may further include a step of adding a silane oligomer to the reaction solution after the modification step.
  • a composition containing a silane oligomer modified with a metal alkoxide and an unmodified silane oligomer can be obtained.
  • the present production method may further include a step of adding a silane monomer to the reaction solution after the modification step. That is, in the present production method, the first step of preparing a silane oligomer at least partially modified with a metal alkoxide and the second step of mixing the modified silane oligomer and the silane monomer to obtain a composition for forming a barrier material.
  • the method may include the above-mentioned step, and the first step may be the above-mentioned modification step. As a result, a composition containing a silane monomer is obtained.
  • the present production method may further include a step of adding other components to the reaction solution after the modification step.
  • the present production method may further include a step of adding a liquid medium to the reaction solution after the modification step, or a step of replacing the liquid medium in the reaction solution after the modification step with another liquid medium.
  • the method for producing a barrier material according to the present embodiment includes a heating step of heating the above-mentioned composition to form a barrier material.
  • the silane oligomer and the silane monomer in the composition are polymerized by heating to form a polysiloxane compound.
  • the metal atom derived from the metal alkoxide is doped in the polysiloxane compound.
  • the liquid medium in the composition may be removed by heating. That is, the heating step may be a step of forming a barrier material containing a polysiloxane compound by heating and drying the composition.
  • the heating temperature in the heating step is not particularly limited as long as the silane oligomer can be polymerized.
  • the heating temperature is preferably a temperature at which the liquid medium volatilizes.
  • the heating temperature may be, for example, 70 ° C. or higher, preferably 100 ° C. or higher.
  • the heating temperature may be, for example, 200 ° C. or lower, preferably 170 ° C. or lower.
  • the present production method may further include a coating step of coating the composition.
  • the heating step can be said to be a step of heating the applied composition.
  • the method of applying the composition is not particularly limited, and may be appropriately changed depending on the shape of the object to be applied, the thickness of the barrier material, and the like.
  • the composition may be applied to an object to which moisture resistance is to be imparted, and a barrier material may be formed on the object. Further, in the present manufacturing method, a barrier material having a predetermined shape may be manufactured and then the manufactured barrier material may be applied onto the object.
  • the application of the barrier material according to the present embodiment is not particularly limited, and can be suitably applied to various applications requiring moisture resistance.
  • the barrier material can be suitably used as a moisture-proof barrier material for electronic parts.
  • the barrier material according to the present embodiment can sufficiently suppress destruction due to expansion of water that has entered the inside in a high temperature environment (for example, 100 ° C. or higher).
  • a high temperature environment for example, 100 ° C. or higher.
  • the barrier material for example, it can be suitably used for applications such as a moisture-proof barrier material for electronic parts used in a high-temperature environment, and a moisture-proof barrier material for electronic parts that undergo a high-temperature process at the time of mounting.
  • it can be suitably used as a moisture-proof barrier material for power semiconductors, a moisture-proof barrier material for image sensors, a moisture-proof barrier material for displays, and the like.
  • barrier material The preferred form of the use of the barrier material will be described in detail below, but the use of the barrier material is not limited to the following.
  • the application according to one form relates to a product having a moisture-proof treated member.
  • a product includes a member (base material) and a barrier material formed on the member.
  • the barrier material may be formed on one member or may be formed on a plurality of members.
  • the barrier material may be formed, for example, to cover one or more members.
  • Such a product includes a first step of applying the barrier material forming composition on the member and a second step of heating the applied composition to form the barrier material on the member. Manufactured by the manufacturing method.
  • the electronic components include a substrate, a cover glass, an image sensor arranged between the substrate and the cover glass, a support member for supporting the cover glass and the image sensor on the substrate, and a cover glass and a support member.
  • the barrier material provided on the joint portion of the above is provided.
  • the above barrier material has excellent moisture resistance, and even when used in a high temperature environment, it can sufficiently suppress destruction due to expansion of water that has entered the inside. Therefore, the electronic component has excellent moisture resistance, and even if moisture enters the gap between the cover glass and the substrate, damage to the cover glass, the support member, etc. due to the expansion of the moisture is sufficiently prevented. ..
  • a coating step of applying a barrier material forming composition to a joint portion between a support member and a cover glass and a coating step of heating the applied composition to form a barrier material on the joint portion can be manufactured by a manufacturing method including a barrier material forming step.
  • the electronic component includes a substrate, an image sensor arranged on the substrate, and the barrier material provided on the image sensor.
  • the barrier material can be excellent in moisture resistance and transparency. Therefore, the barrier material can also be suitably used as a sealing material for sealing the image sensor. Since such an electronic component can form an image sensor package without using a cover glass, it can be expected that the component size can be reduced and the handleability can be improved.
  • the visible light transmittance (550 nm) of the barrier material per 1 mm of thickness is preferably 95% or more, more preferably 97% or more, and further preferably 99% or more.
  • Such electronic components include, for example, a coating step of applying a barrier material forming composition on an image sensor and a barrier material forming step of heating the applied composition to form a barrier material on the image sensor.
  • a coating step of applying a barrier material forming composition on an image sensor and a barrier material forming step of heating the applied composition to form a barrier material on the image sensor.
  • the application according to one form relates to a product provided with a moisture-proof member.
  • a product includes a moisture-proof member having a barrier material and a base material, and may be, for example, an assembly of a plurality of members including the moisture-proof member.
  • Such a product includes a first step of applying the barrier material forming composition onto a base material and heating to prepare a moisture-proof member having the barrier material and the base material, and a plurality of members including the moisture-proof member. It can be manufactured by a manufacturing method comprising a second step of assembling.
  • the electronic component includes a substrate, at least one component selected from the group consisting of a MEMS sensor, a wireless module, and a camera module, and a moisture-proof member having a barrier material and a base material.
  • the barrier material is excellent in moisture resistance and dehumidification. Therefore, the electronic component has excellent moisture resistance, and deterioration of sensing characteristics due to moisture absorption is sufficiently prevented.
  • Such electronic components include, for example, a step of applying a barrier material forming composition on a base material and heating the base material to produce a moisture-proof member having the barrier material and the base material, and a plurality of members including the moisture-proof member. It can be manufactured by a manufacturing method including an assembling step.
  • Example 1 [Preparation of composition for forming barrier material]
  • Aluminum sec-butoxide (manufactured by Matsumoto Fine Chemical Industries, Ltd., product name: AL-3001, hereinafter abbreviated as "AL-3001") is 3.8 parts by mass, and tert-butyl alcohol (manufactured by Wako Pure Chemical Industries, Ltd.) is 7.
  • tert-butyl alcohol manufactured by Wako Pure Chemical Industries, Ltd.
  • silane oligomer manufactured by Momentive Performance Materials, product name: XC31-B2733
  • TEOS tetraethoxysilane
  • a curing catalyst manufactured by Momentive, product name: CR-15, hereinafter abbreviated as “CR-15”
  • [Making barrier material] -Preparation of sample for measuring water vapor permeability
  • an acetate film manufactured by Holbein Art Materials Co., Ltd., thickness 0.08 mm
  • This acetate film was applied by tipping it into a composition for forming a barrier material.
  • the barrier-forming composition was coated only on one side of the acetate film.
  • the barrier-forming composition was dried by drying the coated substrate at 150 ° C. for 4 hours.
  • the thickness of the formed barrier material was 20 ⁇ m.
  • the water vapor permeability is set to a thickness of 20 ⁇ m from an approximate straight line obtained by preparing a plurality of samples in which barrier materials having different thicknesses are formed and plotting the thickness on the horizontal axis and the water vapor permeability on the vertical axis. It can also be obtained by calculating the water vapor permeability.
  • -Preparation of sample for measuring hygroscopicity As the sample for measuring hygroscopicity, a laminated board (manufactured by Hitachi Chemical Co., Ltd.) was used as the base material. Since this base material has copper foil on both sides, the copper foil was removed by etching only one side. The etched surface was coated with a barrier material forming composition using a bar coater.
  • the hygroscopicity is the hygroscopicity at a thickness of 20 ⁇ m from an approximate straight line obtained by preparing a plurality of samples in which barrier materials having different thicknesses are formed and plotting the thickness on the horizontal axis and the hygroscopicity on the vertical axis. It can also be obtained by calculating.
  • A J t ⁇ [2a + b + (b 2 + 4aJ t ) 0.5 ] / [2 (a + b-J t )] ⁇
  • a 1 the substrate of the sample is composed of barrier material and the substrate in the dry end, was done by the barrier material to the high end.
  • a 2 is a base material of the sample being formed by a barrier material and the substrate on the high humidity side, was barrier material by the low humidity side.
  • Moisture absorption of the sample was carried out by holding the sample in a constant humidity and constant temperature bath kept at a temperature of 85 ° C. and a humidity of 85% RH for 168 hours. After that, the weight of the sample was measured, and the rate of change from the weight before the moisture absorption treatment was measured to calculate the moisture absorption rate as shown in the following formula.
  • the dehumidifying treatment was carried out by holding the hygroscopically treated sample in a constant temperature bath kept at 120 ° C. for 1 hour. Then, the weight of the sample was measured, and the rate of change from the weight before the moisture absorption treatment was measured to calculate the moisture absorption rate after the dehumidification treatment. Using this value, the dehumidification rate was calculated by the following formula. When the moisture absorbed by the moisture absorption treatment can be completely dehumidified by the dehumidification treatment, the dehumidification rate becomes 100%.
  • Example 2 The silane oligomer of Example 1 was TSR165 (manufactured by Momentive), tetraethoxysilane was phenyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., product name: KBM-103), and the curing catalyst was aminopropyltriethoxysilane (Shin-Etsu Chemical).
  • a barrier material was formed and evaluated in the same manner as in Example 1 except that the product name was changed to KBE-903)) manufactured by Co., Ltd. The results are shown in Table 1.
  • Comparative Example 1 As Comparative Example 1, Optoace WP-140 was used. The sample for measuring water vapor permeability and the sample for measuring hygroscopicity were prepared in the same manner as in Example 1 except for the drying conditions. The drying conditions were carried out by keeping at room temperature for 24 hours.

Landscapes

  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A barrier material disposed over a base material wherein, the water vapor permeability A1 from the side facing away from the base material to the base material side of the barrier material is smaller than the water vapor permeability A2 from the base material side to the side facing away from the base material of the barrier material.

Description

バリア材及びそれを備える製品Barrier material and products equipped with it
 本発明は、バリア材及びそれを備える製品に関する。 The present invention relates to a barrier material and a product including the barrier material.
 従来から、電子部品に形成された空隙部に湿気が混入することを避けるため、バリアフィルム等によって電子部品を封止することが検討されている。例えば、特許文献1には、無機酸化物層を備えるバリアフィルムを積層させた、バリアフィルム積層体が記載されている。 Conventionally, it has been studied to seal an electronic component with a barrier film or the like in order to prevent moisture from entering the voids formed in the electronic component. For example, Patent Document 1 describes a barrier film laminate in which a barrier film having an inorganic oxide layer is laminated.
特開2011-093195号公報Japanese Unexamined Patent Publication No. 2011-093195
 本発明は、基材上に配置されるバリア材であって、当該基材の吸湿を高水準で抑制することが可能な、バリア材を提供することを目的とする。また、本発明は、当該バリア材を備える製品を提供することを目的とする。 An object of the present invention is to provide a barrier material that is arranged on a base material and can suppress moisture absorption of the base material at a high level. Another object of the present invention is to provide a product provided with the barrier material.
 本発明は、基材上に配置されたバリア材を提供する。このバリア材において、上記基材と反対側から上記基材側への水蒸気透過度Aは、上記バリア材の上記基材側から上記基材と反対側への水蒸気透過度Aより小さい。 The present invention provides a barrier material placed on a substrate. In this barrier material, the water vapor permeability A 1 from the side opposite to the base material to the base material side is smaller than the water vapor permeability A 2 from the base material side of the barrier material to the side opposite to the base material.
 このようなバリア材によれば、基材側に水分が侵入した場合でも当該水分を基材と反対側に放出することができるため、基材への吸湿を顕著に抑制することができる。また、このようなバリア材によれば、バリア材を配置した状態で加熱乾燥等を行うことで、基材中の水分が外部に放出し、基材を効率よく乾燥させることができる。 According to such a barrier material, even if water invades the base material side, the water can be released to the side opposite to the base material, so that moisture absorption to the base material can be remarkably suppressed. Further, according to such a barrier material, by performing heat drying or the like with the barrier material arranged, the moisture in the base material is released to the outside, and the base material can be efficiently dried.
 一態様において、上記水蒸気透過度Aに対する上記水蒸気透過度Aの比(A/A)は、1.3以上であってよい。 In one embodiment, the ratio of the water vapor transmission rate A 2 with respect to the water vapor transmission rate A 1 (A 2 / A 1 ) may be 1.3 or more.
 一態様に係るバリア材は、金属原子がドープされたポリシロキサン化合物を含むものであってよい。 The barrier material according to one embodiment may contain a polysiloxane compound doped with a metal atom.
 一態様において、上記ポリシロキサン化合物は、3個の酸素原子と結合したケイ素原子を有していてよい。 In one embodiment, the polysiloxane compound may have a silicon atom bonded to three oxygen atoms.
 一態様において、上記ポリシロキサン化合物中のケイ素原子の総数に対する、3個の酸素原子と結合したケイ素原子及び4個の酸素原子と結合したケイ素原子の合計数の割合は、30%以上であってよい。 In one embodiment, the ratio of the total number of silicon atoms bonded to 3 oxygen atoms and the number of silicon atoms bonded to 4 oxygen atoms to the total number of silicon atoms in the polysiloxane compound is 30% or more. Good.
 一態様において、上記ポリシロキサン化合物中の酸素原子のうち、90%以上がケイ素原子と結合していてよい。 In one embodiment, 90% or more of the oxygen atoms in the polysiloxane compound may be bonded to silicon atoms.
 一態様に係るバリア材は、上記基材上に塗布されたバリア材形成用組成物の硬化物からなるものであってよい。このとき、上記バリア材形成用組成物は、少なくとも一部が金属アルコキシドで修飾されたシランオリゴマーを含んでいてよい。 The barrier material according to one embodiment may consist of a cured product of the barrier material forming composition applied on the above-mentioned base material. At this time, the composition for forming a barrier material may contain at least a part of a silane oligomer modified with a metal alkoxide.
 一態様において、上記シランオリゴマーは、3個の酸素原子と結合したケイ素原子を有していてよい。 In one embodiment, the silane oligomer may have a silicon atom bonded to three oxygen atoms.
 一態様において、上記シランオリゴマー中のケイ素原子の総数に対する、3個の酸素原子と結合したケイ素原子及び4個の酸素原子と結合したケイ素原子の合計数の割合は、50%以上であってよい。 In one embodiment, the ratio of the total number of silicon atoms bonded to 3 oxygen atoms and the number of silicon atoms bonded to 4 oxygen atoms to the total number of silicon atoms in the silane oligomer may be 50% or more. ..
 一態様において、上記バリア材形成用組成物はシランモノマーを更に含んでいてよい。 In one embodiment, the barrier material forming composition may further contain a silane monomer.
 本発明はまた、基材と、上記基材上に配置された上記バリア材と、を備える、製品を提供する。 The present invention also provides a product comprising a base material and the barrier material disposed on the base material.
 本発明は、基材上に配置されるバリア材であって、当該基材の吸湿を高水準で抑制することが可能な、バリア材を提供することができる。また、本発明は、当該バリア材を備える製品を提供することができる。 The present invention is a barrier material arranged on a base material, and can provide a barrier material capable of suppressing moisture absorption of the base material at a high level. Further, the present invention can provide a product including the barrier material.
バリア材の好適な一態様を示す模式断面図である。It is a schematic cross-sectional view which shows one preferable aspect of a barrier material.
 以下、本発明の好適な実施形態について説明する。本明細書において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。「A又はB」とは、A及びBのいずれか一方を含んでいればよく、両方を含んでいてもよい。本実施形態で例示する材料は、特に断らない限り、1種を単独で又は2種以上を組み合わせて用いることができる。 Hereinafter, preferred embodiments of the present invention will be described. In the present specification, the numerical range indicated by using "-" indicates a range including the numerical values before and after "-" as the minimum value and the maximum value, respectively. The term "A or B" may include either A or B, and may include both. Unless otherwise specified, the materials exemplified in this embodiment may be used alone or in combination of two or more.
<バリア材>
 本実施形態に係るバリア材は、基材上に配置されており、当該基材と反対側から基材側への水蒸気透過度Aが、基材側から基材と反対側への水蒸気透過度Aより小さい。図1は、バリア材の好適な一態様を示す模式断面図である。図1のバリア材10は、基材20上に配置されており、基材20と反対側の面11から基材20側の面12への水蒸気透過度Aが、基材20側の面12から基材20と反対側の面11への水蒸気透過度Aより小さい。図1に示すとおり、基材20には、複数のバリア材10が形成されていてよく、その全てにおいて、水蒸気透過度Aが水蒸気透過度Aより小さいことが好ましい。
<Barrier material>
Barrier material according to the present embodiment is disposed on a substrate, the water vapor transmission rate A 1 from the opposite side with the substrate to the substrate side, moisture vapor transmission from the substrate side to the side opposite to the substrate Degree A less than 2 . FIG. 1 is a schematic cross-sectional view showing a preferred embodiment of the barrier material. Barrier material 10 of FIG. 1 is disposed on the substrate 20, the water vapor permeability A 1 from the opposite side surface 11 and the substrate 20 to the surface 12 of the substrate 20 side, the surface of the base material 20 side It is smaller than the water vapor permeability A 2 from 12 to the surface 11 opposite to the base material 20. As shown in FIG. 1, a plurality of barrier materials 10 may be formed on the base material 20, and it is preferable that the water vapor permeability A 1 is smaller than the water vapor permeability A 2 in all of them.
 本実施形態に係るバリア材によれば、基材側に水分が侵入した場合でも当該水分を基材と反対側に放出することができるため、基材への吸湿を顕著に抑制することができる。また、本実施形態に係るバリア材によれば、バリア材を配置した状態で加熱乾燥等を行うことで、基材中の水分が外部に放出し、基材を効率よく乾燥させることができる。 According to the barrier material according to the present embodiment, even when water invades the base material side, the water can be released to the side opposite to the base material, so that moisture absorption to the base material can be remarkably suppressed. .. Further, according to the barrier material according to the present embodiment, by performing heat drying or the like with the barrier material arranged, the moisture in the base material is released to the outside, and the base material can be efficiently dried.
 水蒸気透過度Aに対する水蒸気透過度Aの比(A/A)は、例えば1.1以上であってよく、好ましくは1.3以上、より好ましくは1.5以上である。これにより上述の効果がより顕著に奏される。 The ratio of the water vapor permeability A 2 to the water vapor permeability A 1 (A 2 / A 1 ) may be, for example, 1.1 or more, preferably 1.3 or more, and more preferably 1.5 or more. As a result, the above-mentioned effect is more prominently exhibited.
 水蒸気透過度Aに対する水蒸気透過度Aの比(A/A)の上限は特に限定されない。比(A/A)は、例えば30以下であってよく、20以下であってもよく、10以下であってもよい。 The upper limit of the ratio of the water vapor transmission rate A 2 to water vapor permeability A 1 (A 2 / A 1 ) is not particularly limited. The ratio (A 2 / A 1 ) may be, for example, 30 or less, 20 or less, or 10 or less.
 水蒸気透過度Aは、例えば5000g/m・day以下であってよく、基材側への水分の侵入がより抑制される観点からは、好ましくは4000g/m・day以下、より好ましくは3000g/m・day以下である。水蒸気透過度Aの下限は特に限定されない。水蒸気透過度Aは、例えば100g/m・day以上であってよい。なお、上述の水蒸気透過度Aは、厚さ20μm当たりの、40℃、95%RHにおける値を示す。 The water vapor permeability A 1 may be, for example, 5000 g / m 2 · day or less, and is preferably 4000 g / m 2 · day or less, more preferably 4000 g / m 2 · day or less from the viewpoint of further suppressing the invasion of water into the base material side. It is 3000 g / m 2 · day or less. The lower limit of the water vapor permeability A 1 is not particularly limited. The water vapor permeability A 1 may be, for example, 100 g / m 2 · day or more. Incidentally, the water vapor transmission rate A 1 described above, per 20μm thick, 40 ° C., shows the value at 95% RH.
 水蒸気透過度Aは、例えば500g/m・day以上であってよく、基材側に侵入した水分の放出による上述の効果がより顕著に得られる観点から、好ましくは2000g/m・day以上、より好ましくは4000g/m・day以上である。水蒸気透過度Aの上限は特に限定されない。水蒸気透過度Aは、例えば10000g/m・day以下であってよい。なお、上述の水蒸気透過度Aは、厚さ20μm当たりの、40℃、95%RHにおける値を示す。 The water vapor permeability A 2 may be, for example, 500 g / m 2 · day or more, and is preferably 2000 g / m 2 · day from the viewpoint that the above-mentioned effect due to the release of water that has penetrated into the base material side can be obtained more remarkably. Above, more preferably 4000 g / m 2 · day or more. The upper limit of the water vapor permeability A 2 is not particularly limited. The water vapor permeability A 2 may be, for example, 10000 g / m 2 · day or less. The water vapor permeability A 2 described above indicates a value at 40 ° C. and 95% RH per 20 μm thickness.
 なお、本明細書中、水蒸気透過度A及び水蒸気透過度Aは、JIS K 7129の方法で測定される値を示す。 In the present specification, the water vapor permeability A 1 and the water vapor permeability A 2 indicate the values measured by the method of JIS K 7129.
 本実施形態に係るバリア材を構成する材質は特に限定されない。 The material constituting the barrier material according to this embodiment is not particularly limited.
 好適な一態様において、バリア材は、ポリシロキサン化合物を含むことが好ましく、金属原子がドープされたポリシロキサン化合物を含むことがより好ましい。このようなバリア材は、ポリシロキサン化合物中のケイ素原子の構造制御によってバリア材中の空隙をコントロールしやすく、上述の水蒸気透過度A及び水蒸気透過度Aの関係を容易に満たすことができる。 In a preferred embodiment, the barrier material preferably contains a polysiloxane compound, more preferably a metal atom-doped polysiloxane compound. In such a barrier material, the voids in the barrier material can be easily controlled by controlling the structure of the silicon atom in the polysiloxane compound, and the above-mentioned relationship between the water vapor permeability A 1 and the water vapor permeability A 2 can be easily satisfied. ..
 ポリシロキサン化合物は、シロキサン骨格を有している。また、ポリシロキサン化合物中、金属原子は、酸素原子を介してポリシロキサン骨格を構成するケイ素原子と結合している。 The polysiloxane compound has a siloxane skeleton. Further, in the polysiloxane compound, the metal atom is bonded to the silicon atom constituting the polysiloxane skeleton via the oxygen atom.
 ポリシロキサン化合物に含まれるケイ素原子は、1個の酸素原子と結合したケイ素原子(M単位)、2個の酸素原子と結合したケイ素原子(D単位)、3個の酸素原子と結合したケイ素原子(T単位)及び4個の酸素原子と結合したケイ素原子(Q単位)に区別することができる。M単位、D単位、T単位及びQ単位としては、それぞれ後述の式(M)、(D)、(T)及び(Q)が例示できる。 The silicon atom contained in the polysiloxane compound is a silicon atom bonded to one oxygen atom (M unit), a silicon atom bonded to two oxygen atoms (D unit), and a silicon atom bonded to three oxygen atoms. It can be distinguished into (T unit) and a silicon atom (Q unit) bonded to four oxygen atoms. Examples of the M unit, the D unit, the T unit, and the Q unit include the formulas (M), (D), (T), and (Q) described later, respectively.
 ポリシロキサン化合物において、ケイ素原子の総数に対するT単位及びQ単位の合計数の割合は、例えば30%以上であってよく、50%以上であることが好ましく、70%以上であることがより好ましく、90%以上であることが更に好ましく、100%であってもよい。このようなポリシロキサン化合物によれば、バリア材の防湿性が一層向上する。 In the polysiloxane compound, the ratio of the total number of T units and Q units to the total number of silicon atoms may be, for example, 30% or more, preferably 50% or more, and more preferably 70% or more. It is more preferably 90% or more, and may be 100%. According to such a polysiloxane compound, the moisture resistance of the barrier material is further improved.
 好適な一態様において、ポリシロキサン化合物はT単位を含有していることが好ましい。ポリシロキサン化合物におけるT単位の含有量は、ケイ素原子の総数に対して、例えば10%以上、20%以上、30%以上、40%以上又は50%以上であってよく、70%以上であることが好ましく、80%以上であることがより好ましく、90%以上であることが更に好ましく、100%であってもよい。このようなポリシロキサン化合物によれば、柔軟性及び脱湿性が一層向上する傾向がある。 In a preferred embodiment, the polysiloxane compound preferably contains T units. The content of T units in the polysiloxane compound may be, for example, 10% or more, 20% or more, 30% or more, 40% or more or 50% or more, and 70% or more, based on the total number of silicon atoms. Is more preferable, 80% or more is more preferable, 90% or more is further preferable, and 100% may be used. According to such a polysiloxane compound, the flexibility and dehumidifying property tend to be further improved.
ポリシロキサン化合物において、ケイ素原子(Si)の総数に対する金属原子Mのモル比(M/Si)は、例えば0.0001以上であってよく、0.001以上であることが好ましい。これにより、硬化性がより良好になる傾向がある。また、上記モル比(M/Si)は、例えば0.5以下であってよく、0.2以下であることが好ましい。これにより、透明性が一層良好になる傾向がある。 In the polysiloxane compound, the molar ratio (M / Si) of the metal atom M to the total number of silicon atoms (Si) may be, for example, 0.0001 or more, preferably 0.001 or more. This tends to result in better curability. The molar ratio (M / Si) may be, for example, 0.5 or less, preferably 0.2 or less. This tends to make the transparency even better.
 ポリシロキサン化合物は、酸素原子の大部分が少なくとも1つのケイ素原子と結合していることが好ましい。ポリシロキサン化合物中に、アルコール性水酸基(C-OH)、エーテル結合(C-O-C)等が少ないことで、防湿性及び脱湿性が一層向上する傾向がある。例えば、ポリシロキサン化合物中の酸素原子のうち、例えば90%以上がケイ素原子と結合していることが好ましく、95%以上がケイ素原子と結合していることが好ましく、99%以上がケイ素原子と結合していることが更に好ましい。 It is preferable that most of the oxygen atoms of the polysiloxane compound are bonded to at least one silicon atom. When the polysiloxane compound contains a small amount of alcoholic hydroxyl groups (C—OH), ether bonds (COC) and the like, the moisture resistance and dehumidification properties tend to be further improved. For example, of the oxygen atoms in the polysiloxane compound, for example, 90% or more is preferably bonded to a silicon atom, 95% or more is preferably bonded to a silicon atom, and 99% or more is bonded to a silicon atom. It is more preferable that they are bonded.
 バリア材は透明性を有していてもよい。このようなバリア材は、透明性が要求される用途、例えばイメージセンサパッケージにおけるイメージセンサ上を被覆する被覆材として、好適に用いることができる。なお、ここで透明性を有するとは、厚さ1mm当たりの可視光透過率(550nmの光透過率)が80%以上であることを示す。 The barrier material may have transparency. Such a barrier material can be suitably used as a coating material for covering an image sensor in an application that requires transparency, for example, an image sensor package. In addition, having transparency here means that the visible light transmittance (light transmittance of 550 nm) per 1 mm of thickness is 80% or more.
 バリア材は、厚さ1mm当たりの可視光透過率(550nmの光透過率)が、80%以上であることが好ましく、85%以上であることがより好ましく、90%以上であることが更に好ましい。バリア材の可視光透過率は、分光光度計により測定される。 The barrier material has a visible light transmittance (light transmittance of 550 nm) per 1 mm of thickness preferably 80% or more, more preferably 85% or more, still more preferably 90% or more. .. The visible light transmittance of the barrier material is measured by a spectrophotometer.
 バリア材の形状は特に限定されない。バリア材は、例えば、フィルム状に成形されていてよく、このようなバリア材は防湿バリアフィルムとして用いることができる。また、バリア材は、基材を被覆するように形成されていてよく、この場合、基材の湿気との接触を防止することができる。 The shape of the barrier material is not particularly limited. The barrier material may be formed into a film, for example, and such a barrier material can be used as a moisture-proof barrier film. Further, the barrier material may be formed so as to cover the base material, and in this case, contact of the base material with moisture can be prevented.
 バリア材は、例えば、後述のバリア材形成用組成物の硬化物から構成されていてよい。以下、バリア材形成用組成物の好適な一態様について説明する。 The barrier material may be composed of, for example, a cured product of the barrier material forming composition described later. Hereinafter, a preferred embodiment of the barrier material forming composition will be described.
<バリア材形成用組成物>
 本態様のバリア材形成用組成物は、シランオリゴマーを含み、当該シランオリゴマーの少なくとも一部は金属アルコキシドで修飾されている。
<Composition for forming barrier material>
The composition for forming a barrier material of this embodiment contains a silane oligomer, and at least a part of the silane oligomer is modified with a metal alkoxide.
 このような組成物は、シランオリゴマーにおけるケイ素原子の構成(M単位、D単位、T単位及びQ単位の割合)を適宜調整することで、上述の水蒸気透過度A及び水蒸気透過度Aの関係を満たすバリア材を、基材上に容易に形成することができる。 Such a composition has the above-mentioned water vapor permeability A 1 and water vapor permeability A 2 by appropriately adjusting the composition of silicon atoms in the silane oligomer (ratio of M unit, D unit, T unit and Q unit). A barrier material satisfying the relationship can be easily formed on the base material.
 バリア材形成用組成物は、例えば液状であってもペースト状であってもよい。基材への塗布が容易となる観点からは、バリア材形成用組成物は、液状組成物であることが好ましい。 The composition for forming the barrier material may be, for example, liquid or paste. From the viewpoint of facilitating application to the base material, the composition for forming the barrier material is preferably a liquid composition.
 シランオリゴマーはシランモノマーの重合体であり、複数のケイ素原子が酸素原子を介して連結された構造を有する。本明細書中、シランオリゴマーは、分子量が100000以下の重合体を示す。 A silane oligomer is a polymer of a silane monomer and has a structure in which a plurality of silicon atoms are linked via oxygen atoms. In the present specification, the silane oligomer represents a polymer having a molecular weight of 100,000 or less.
 本明細書中、金属アルコキシドで修飾されたシランオリゴマーとは、シランオリゴマーと金属アルコキシドの反応により形成される化合物であり、シランオリゴマー由来のケイ素原子と金属アルコキシド由来の金属原子とが酸素原子を介して結合した構造を有する化合物ということもできる。 In the present specification, the silane oligomer modified with a metal alkoxide is a compound formed by the reaction of the silane oligomer and the metal alkoxide, and a silicon atom derived from the silane oligomer and a metal atom derived from the metal alkoxide are interposed via an oxygen atom. It can also be said that the compound has a bonded structure.
 金属アルコキシドで修飾されたシランオリゴマー(以下、場合により「修飾シランオリゴマー」と称する)は、シランオリゴマーと金属アルコキシドとの反応物であってよく、シランモノマーと金属アルコキシドとの反応物であってもよい。後者の場合、金属アルコキシドと反応したシランモノマーが更に他のシランモノマーと反応してシランオリゴマー構造を形成したものであってよく、シランモノマー同士の反応により形成されたシランオリゴマーが金属アルコキシドと反応したものであってもよい。 The silane oligomer modified with the metal alkoxide (hereinafter, sometimes referred to as “modified silane oligomer”) may be a reaction product of the silane oligomer and the metal alkoxide, or may be a reaction product of the silane monomer and the metal alkoxide. Good. In the latter case, the silane monomer reacted with the metal alkoxide may further react with another silane monomer to form a silane oligomer structure, and the silane oligomer formed by the reaction between the silane monomers reacted with the metal alkoxide. It may be a thing.
 なお、本態様に係る組成物は、組成物に含まれるシランオリゴマーの全てが金属アルコキシドで修飾されている必要はなく、シランオリゴマーの少なくとも一部が金属アルコキシドで修飾されていればよい。 In the composition according to this aspect, it is not necessary that all the silane oligomers contained in the composition are modified with metal alkoxide, and at least a part of the silane oligomers may be modified with metal alkoxide.
 シランオリゴマーに含まれるケイ素原子は、1個の酸素原子と結合したケイ素原子(M単位)、2個の酸素原子と結合したケイ素原子(D単位)、3個の酸素原子と結合したケイ素原子(T単位)及び4個の酸素原子と結合したケイ素原子(Q単位)に区別することができる。M単位、D単位、T単位及びQ単位としては、それぞれ以下の式(M)、(D)、(T)及び(Q)が例示できる。 The silicon atom contained in the silane oligomer is a silicon atom bonded to one oxygen atom (M unit), a silicon atom bonded to two oxygen atoms (D unit), and a silicon atom bonded to three oxygen atoms (M unit). It can be distinguished into a silicon atom (Q unit) bonded to four oxygen atoms (T unit). Examples of the M unit, the D unit, the T unit, and the Q unit include the following equations (M), (D), (T), and (Q), respectively.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記式中、Rはケイ素に結合する酸素原子以外の原子(水素原子等)又は原子団(アルキル基等)を示す。これらの単位の含有量に関する情報は、Si-NMRにより得ることができる。 In the above formula, R represents an atom (hydrogen atom or the like) or an atomic group (alkyl group or the like) other than the oxygen atom bonded to silicon. Information on the content of these units can be obtained by Si-NMR.
 シランオリゴマーにおいて、ケイ素原子の総数に対するT単位及びQ単位の合計数の割合は、50%以上であることが好ましく、70%以上であることがより好ましく、90%以上であることが更に好ましく、100%であってもよい。このようなシランオリゴマーによれば、防湿性に一層優れたバリア材が得られる。 In the silane oligomer, the ratio of the total number of T units and Q units to the total number of silicon atoms is preferably 50% or more, more preferably 70% or more, further preferably 90% or more. It may be 100%. According to such a silane oligomer, a barrier material having more excellent moisture resistance can be obtained.
 好適な一形態として、シランオリゴマーはT単位を含有していることが好ましい。シランオリゴマーにおけるT単位の含有量は、ケイ素原子の総数に対して、例えば10%以上であり、好ましくは20%以上、30%以上、40%以上、50%以上、70%以上、80%以上又は90%以上であり、100%であってもよい。このようなシランオリゴマーは、柔軟性及び脱湿性がより向上する傾向がある。 As a preferred form, the silane oligomer preferably contains T units. The content of T units in the silane oligomer is, for example, 10% or more, preferably 20% or more, 30% or more, 40% or more, 50% or more, 70% or more, 80% or more with respect to the total number of silicon atoms. Alternatively, it is 90% or more, and may be 100%. Such silane oligomers tend to be more flexible and dehumidifying.
 他の形態として、シランオリゴマーはQ単位を主に含有するものであってもよい。このとき、シランオリゴマーにおけるQ単位の含有量は、ケイ素原子の総数に対して、例えば50%以上であり、70%以上であることが好ましく、80%以上であることがより好ましく、90%以上であることが更に好ましく、100%であってもよい。このようなシランオリゴマーは、防湿性及び透明性がより向上する傾向がある。 As another form, the silane oligomer may be one that mainly contains Q units. At this time, the content of the Q unit in the silane oligomer is, for example, 50% or more, preferably 70% or more, more preferably 80% or more, and 90% or more, based on the total number of silicon atoms. Is more preferable, and may be 100%. Such silane oligomers tend to have better moisture resistance and transparency.
 シランオリゴマーは、上述の式(M)、(D)、(T)及び(Q)中のRとして、アルキル基又はアリール基を有していることが好ましい。 The silane oligomer preferably has an alkyl group or an aryl group as R in the above formulas (M), (D), (T) and (Q).
 アルキル基としては、炭素数6以下のアルキル基が好ましく、炭素数4以下のアルキル基がより好ましい。アルキル基の具体例としては、メチル基、エチル基、プロピル基、ブチル基等が挙げられ、これらのうちメチル基、エトキシ基、プロピル基が好ましく、メチル基がより好ましい。 As the alkyl group, an alkyl group having 6 or less carbon atoms is preferable, and an alkyl group having 4 or less carbon atoms is more preferable. Specific examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group and the like, of which a methyl group, an ethoxy group and a propyl group are preferable, and a methyl group is more preferable.
 アリール基としては、フェニル基、置換フェニル基等が挙げられる。置換フェニル基の置換基としては、アルキル基、ビニル基、メルカプト基、アミノ基、ニトロ基、シアノ基等が挙げられる。アリール基としては、フェニル基が好ましい。 Examples of the aryl group include a phenyl group and a substituted phenyl group. Examples of the substituent of the substituted phenyl group include an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group and a cyano group. As the aryl group, a phenyl group is preferable.
 シランオリゴマーの重量平均分子量は、例えば400以上であってよく、好ましくは600以上、より好ましくは1000以上である。また、シランオリゴマーの重量平均分子量は、例えば30000以下であってよく、好ましくは10000以下、より好ましくは6000以下である。シランオリゴマーの重量平均分子量が大きいと柔軟性及び脱湿性がより向上する傾向があり、小さいと防湿性及び透明性がより向上する傾向がある。なお、本明細書中、シランオリゴマーの重量平均分子量は、ゲル・パーミエーション・クロマトグラフィー(GPC)により測定したポリスチレン換算で表される重量平均分子量の値を示す。 The weight average molecular weight of the silane oligomer may be, for example, 400 or more, preferably 600 or more, and more preferably 1000 or more. The weight average molecular weight of the silane oligomer may be, for example, 30,000 or less, preferably 10,000 or less, and more preferably 6000 or less. When the weight average molecular weight of the silane oligomer is large, the flexibility and dehumidifying property tend to be improved, and when the weight average molecular weight is small, the moisture resistance and transparency tend to be further improved. In the present specification, the weight average molecular weight of the silane oligomer indicates the value of the weight average molecular weight expressed in polystyrene conversion measured by gel permeation chromatography (GPC).
 金属アルコキシドは、例えば、M(ORで表すことができる。Mはn価の金属原子を示し、Rはアルキル基を示す。nは1以上の正数を示す。 The metal alkoxide can be represented by, for example, M (OR 1 ) n . M represents an n-valent metal atom and R 1 represents an alkyl group. n represents a positive number of 1 or more.
 nは好ましくは2~5であり、より好ましくは3~4である。 N is preferably 2 to 5, and more preferably 3 to 4.
 Mとしては、アルミニウム、チタン、ジルコニウム、ニオブ等が挙げられ、これらのうちアルミニウム、チタン、ジルコニウムが好ましく、アルミニウムがより好ましい。すなわち、金属アルコキシドとしては、アルミニウムアルコキシド、チタンアルコキシド、ジルコニウムアルコキシド、ニオブアルコキシド等が挙げられ、これらのうちアルミニウムアルコキシド、チタンアルコキシド、ジルコニウムアルコキシドが好ましく、アルミニウムアルコキシドがより好ましい。 Examples of M include aluminum, titanium, zirconium, niobium and the like, of which aluminum, titanium and zirconium are preferable, and aluminum is more preferable. That is, examples of the metal alkoxide include aluminum alkoxide, titanium alkoxide, zirconium alkoxide, niobium alkoxide and the like, of which aluminum alkoxide, titanium alkoxide and zirconium alkoxide are preferable, and aluminum alkoxide is more preferable.
 Rとしては、炭素数1~6アルキル基が好ましく、炭素数2~4のアルキル基がより好ましい。Rのアルキル基の具体例としては、メチル基、エチル基、プロピル基、ブチル基等が挙げられ、これらのうちエチル基、プロピル基、ブチル基が好ましく、プロピル基、ブチル基がより好ましい。 As R 1 , an alkyl group having 1 to 6 carbon atoms is preferable, and an alkyl group having 2 to 4 carbon atoms is more preferable. Specific examples of the alkyl group of R 1 include a methyl group, an ethyl group, a propyl group, a butyl group and the like, of which an ethyl group, a propyl group and a butyl group are preferable, and a propyl group and a butyl group are more preferable.
 本態様に係る組成物は、シランオリゴマーを、当該シランオリゴマー100質量部に対して0.1~50質量部の金属アルコキシドで修飾した修飾シランオリゴマーを含むものであってよい。金属アルコキシドの量は、シランオリゴマー100質量部に対して、好ましくは1質量部以上、より好ましくは5質量部以上であり、好ましくは30質量部以下、より好ましくは20質量部以下である。金属アルコキシドの量が多いと硬化性がより良好になる傾向があり、金属アルコキシドの量を少なくすることで透明性がより向上する傾向がある。 The composition according to this embodiment may contain a modified silane oligomer in which a silane oligomer is modified with 0.1 to 50 parts by mass of a metal alkoxide with respect to 100 parts by mass of the silane oligomer. The amount of the metal alkoxide is preferably 1 part by mass or more, more preferably 5 parts by mass or more, preferably 30 parts by mass or less, and more preferably 20 parts by mass or less with respect to 100 parts by mass of the silane oligomer. Higher amounts of metal alkoxides tend to result in better curability, and lower amounts of metal alkoxides tend to improve transparency.
 本態様に係る組成物は、シランモノマーを更に含んでいてよい。シランモノマーを配合することで、例えば、バリア材におけるT単位及びQ単位の含有量を調整することができ、用途に応じてバリア材に透明性、柔軟性等の効果を付与することができる。また、シランモノマーを配合することで、防湿性に一層優れるバリア材が得られる傾向がある。 The composition according to this embodiment may further contain a silane monomer. By blending the silane monomer, for example, the contents of T unit and Q unit in the barrier material can be adjusted, and effects such as transparency and flexibility can be imparted to the barrier material depending on the application. Further, by blending a silane monomer, a barrier material having more excellent moisture resistance tends to be obtained.
 シランモノマーの含有量は特に限定されないが、シランオリゴマー100質量部に対して、例えば10質量部以上であってよく、好ましくは20質量部以上、より好ましくは30質量部以上である。これにより上述の効果がより顕著に奏される。また、シランモノマーの含有量は、例えば100質量部以下であってよく、60質量部以下であってよく、好ましくは50質量部以下、より好ましくは40質量部以下である。このような範囲とすることで、硬化性が良好になる傾向がある。なお、本明細書中、「シランオリゴマー100質量部」は、シランオリゴマーを修飾する金属アルコキシドの質量は含まず、修飾シランオリゴマーのシランオリゴマー部分と未修飾シランオリゴマーの合計量を100質量部とすることを意味する。 The content of the silane monomer is not particularly limited, but may be, for example, 10 parts by mass or more, preferably 20 parts by mass or more, and more preferably 30 parts by mass or more with respect to 100 parts by mass of the silane oligomer. As a result, the above-mentioned effect is more prominently exhibited. The content of the silane monomer may be, for example, 100 parts by mass or less, 60 parts by mass or less, preferably 50 parts by mass or less, and more preferably 40 parts by mass or less. Within such a range, the curability tends to be good. In the present specification, "100 parts by mass of silane oligomer" does not include the mass of the metal alkoxide that modifies the silane oligomer, and the total amount of the silane oligomer portion of the modified silane oligomer and the unmodified silane oligomer is 100 parts by mass. Means that.
 シランモノマーとしては、3個の酸素原子と結合したケイ素原子を含有する3官能モノマー、及び、4個の酸素原子と結合したケイ素原子を含有する4官能モノマーを好適に用いることができる。 As the silane monomer, a trifunctional monomer containing a silicon atom bonded to three oxygen atoms and a tetrafunctional monomer containing a silicon atom bonded to four oxygen atoms can be preferably used.
 3官能モノマーとしては、アルキルトリアルコキシシラン、アリールトリアルコキシシラン等が挙げられる。アルキルトリアルコキシシランは、ケイ素原子に1つのアルキル基と3つのアルコキシ基が結合したシラン化合物である。また、アリールトリアルコキシシランは、ケイ素原子に1つのアリール基と3つのアルコキシ基が結合したシラン化合物である。 Examples of the trifunctional monomer include alkyltrialkoxysilanes and aryltrialkoxysilanes. Alkoxytrialkoxysilane is a silane compound in which one alkyl group and three alkoxy groups are bonded to a silicon atom. Aryltrialkoxysilane is a silane compound in which one aryl group and three alkoxy groups are bonded to a silicon atom.
 アルキルトリアルコキシシランのアルキル基としては、炭素数6以下のアルキル基が好ましく、炭素数4以下のアルキル基がより好ましい。アルキル基の具体例としては、メチル基、エチル基、プロピル基、ブチル基等が挙げられ、これらのうちメチル基、エチル基、プロピル基が好ましく、メチル基がより好ましい。また、アルキルトリアルコキシシランのアルコキシ基としては、炭素数6以下のアルコキシ基が好ましく、炭素数4以下のアルコキシ基がより好ましい。アルコキシ基の具体例としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等が挙げられ、これらのうちメトキシ基、エトキシ基、プロポキシ基が好ましく、メトキシ基、エトキシ基がより好ましい。 As the alkyl group of the alkyltrialkoxysilane, an alkyl group having 6 or less carbon atoms is preferable, and an alkyl group having 4 or less carbon atoms is more preferable. Specific examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group and the like, of which a methyl group, an ethyl group and a propyl group are preferable, and a methyl group is more preferable. Further, as the alkoxy group of the alkyltrialkoxysilane, an alkoxy group having 6 or less carbon atoms is preferable, and an alkoxy group having 4 or less carbon atoms is more preferable. Specific examples of the alkoxy group include a methoxy group, an ethoxy group, a propoxy group, a butoxy group and the like. Of these, a methoxy group, an ethoxy group and a propoxy group are preferable, and a methoxy group and an ethoxy group are more preferable.
 アリールトリアルコキシシランのアリール基としては、フェニル基、置換フェニル基等が挙げられる。置換フェニル基の置換基としては、アルキル基、ビニル基、メルカプト基、アミノ基、ニトロ基、シアノ基等が挙げられる。当該アリール基としては、フェニル基が好ましい。また、アリールトリアルコキシシランのアルコキシ基としては、炭素数6以下のアルコキシ基が好ましく、炭素数4以下のアルコキシ基がより好ましい。アルコキシ基の具体例としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等が挙げられ、これらのうちメトキシ基、エトキシ基、プロポキシ基が好ましく、メトキシ基、エトキシ基がより好ましい。 Examples of the aryl group of the aryltrialkoxysilane include a phenyl group and a substituted phenyl group. Examples of the substituent of the substituted phenyl group include an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group and a cyano group. The aryl group is preferably a phenyl group. Further, as the alkoxy group of the aryltrialkoxysilane, an alkoxy group having 6 or less carbon atoms is preferable, and an alkoxy group having 4 or less carbon atoms is more preferable. Specific examples of the alkoxy group include a methoxy group, an ethoxy group, a propoxy group, a butoxy group and the like. Of these, a methoxy group, an ethoxy group and a propoxy group are preferable, and a methoxy group and an ethoxy group are more preferable.
 3官能モノマーの具体例としては、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン等が挙げられる。 Specific examples of the trifunctional monomer include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane and the like.
 4官能モノマーとしては、テトラアルコキシシラン等が挙げられる。テトラアルコキシシランは、ケイ素原子に4つのアルコキシ基が結合したシラン化合物である。 Examples of the tetrafunctional monomer include tetraalkoxysilane. Tetraalkoxysilane is a silane compound in which four alkoxy groups are bonded to a silicon atom.
 テトラアルコキシシランのアルコキシ基としては、炭素数6以下のアルコキシ基が好ましく、炭素数4以下のアルコキシ基がより好ましい。アルコキシ基の具体例としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等が挙げられ、これらのうちメトキシ基、エトキシ基、プロポキシ基が好ましく、メトキシ基、エトキシ基がより好ましい。 As the alkoxy group of tetraalkoxysilane, an alkoxy group having 6 or less carbon atoms is preferable, and an alkoxy group having 4 or less carbon atoms is more preferable. Specific examples of the alkoxy group include a methoxy group, an ethoxy group, a propoxy group, a butoxy group and the like. Of these, a methoxy group, an ethoxy group and a propoxy group are preferable, and a methoxy group and an ethoxy group are more preferable.
 4官能モノマーの具体例としては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン等が挙げられる。 Specific examples of the tetrafunctional monomer include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, and the like.
 また、シランモノマーとしては、ビニル基、エポキシ基、グリシジル基、(メタ)アクリロイル基、アミノ基、イソシアネート基、イソシアヌレート基及びメルカプト基からなる群より選択される反応性官能基を有するシランモノマー(以下、反応性シランモノマーともいう。)を用いることもできる。上記組成物がこのようなシランモノマーを含むと、基材への追従性及び密着性に一層優れたバリア材が形成される。 The silane monomer includes a silane monomer having a reactive functional group selected from the group consisting of a vinyl group, an epoxy group, a glycidyl group, a (meth) acryloyl group, an amino group, an isocyanate group, an isocyanurate group and a mercapto group. Hereinafter, it may also be referred to as a reactive silane monomer). When the above composition contains such a silane monomer, a barrier material having further excellent followability and adhesion to a base material is formed.
 反応性シランモノマーによって上記効果が奏される理由は必ずしも明らかではないが、バリア材の形成時に、反応性官能基同士の反応、反応性官能基とシラノール基との反応等によってシロキサン結合以外の架橋構造が形成され、これにより、優れた防湿性及び柔軟性が実現されると考えられる。また、バリア材の形成時に、反応性シランモノマーの反応性官能基が対象物表面に存在する官能基と結合することにより、より優れた防湿性及び柔軟性が実現されるとも考えられる。 The reason why the above effect is exhibited by the reactive silane monomer is not always clear, but at the time of forming the barrier material, cross-linking other than the siloxane bond is carried out by the reaction between the reactive functional groups, the reaction between the reactive functional group and the silanol group, and the like. It is believed that a structure is formed, which provides excellent moisture resistance and flexibility. It is also considered that when the barrier material is formed, the reactive functional group of the reactive silane monomer is bonded to the functional group existing on the surface of the object to realize more excellent moisture resistance and flexibility.
 反応性シランモノマーが有する反応性官能基としては、バリア材の柔軟性及び部材への密着性がより向上する観点からは、ビニル基、エポキシ基(より好ましくはグリシジル基)、(メタ)アクリロイル基、アミノ基、イソシアネート基、イソシアヌレート基及びメルカプト基からなる群より選択されることが好ましく、アミノ基がより好ましい。 As the reactive functional group contained in the reactive silane monomer, a vinyl group, an epoxy group (more preferably a glycidyl group), and a (meth) acryloyl group are used from the viewpoint of further improving the flexibility of the barrier material and the adhesion to the member. , Amino group, isocyanate group, isocyanurate group and mercapto group are preferably selected, and an amino group is more preferable.
 反応性シランモノマーは、3個の酸素原子と結合したケイ素原子を有していることが好ましい。 The reactive silane monomer preferably has a silicon atom bonded to three oxygen atoms.
 反応性シランモノマーとしては、例えば、下記式(A-1)で表されるシランモノマーを好適に用いることができる。 As the reactive silane monomer, for example, a silane monomer represented by the following formula (A-1) can be preferably used.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式中、RA1は反応性官能基を示し、Lはアルカンジイル基又はオキシアルカンジイル基(-OL-で表される基、Lはアルカンジイル基を示す。)を示し、pは0以上の整数(好ましくは0~3の整数)を示し、RA2はアルキル基又はアリール基を示す。 Wherein, R A1 represents a reactive functional group, L 1 is alkanediyl group or an oxy alkanediyl group - indicates (-OL 2. Group, L 2 represented by the showing the alkanediyl group), p is It represents an integer greater than or equal to 0 (preferably an integer of 0 to 3), where RA2 represents an alkyl or aryl group.
 RA1がビニル基であるとき、pは0~3であることが好ましく、0であることがより好ましい。 When RA1 is a vinyl group, p is preferably 0 to 3, and more preferably 0.
 RA1がエポキシ基、グリシジル基、(メタ)アクリロイル基、アミノ基、イソシアネート基、イソシアヌレート基又はメルカプト基であるとき、pは1以上の整数であることが好ましく、1~3であることがより好ましく、1であることが更に好ましい。 When RA1 is an epoxy group, a glycidyl group, a (meth) acryloyl group, an amino group, an isocyanate group, an isocyanurate group or a mercapto group, p is preferably an integer of 1 or more, and preferably 1 to 3. More preferably, it is further preferably 1.
 RA1がビニル基、グリシジル基又は(メタ)アクリロイル基であるとき、Lはオキシアルカンジイル基であることが好ましい。 When R A1 is a vinyl group, a glycidyl group, or (meth) acryloyl group, it is preferred that L 1 is oxy alkanediyl group.
 RA1がアミノ基、イソシアネート基、イソシアヌレート基又はメルカプト基であるとき、Lはアルカンジイル基であることが好ましい。 When R A1 is an amino group, isocyanate group, isocyanurate group or a mercapto group, it is preferred that L 1 is alkanediyl group.
 L及びLおけるアルカンジイル基としては、炭素数2~10のアルカンジイル基が好ましく、炭素数2~8のアルカンジイル基がより好ましい。 As the alkanediyl group in L 1 and L 2, an alkane diyl group having 2 to 10 carbon atoms is preferable, and an alkane diyl group having 2 to 8 carbon atoms is more preferable.
 RA2におけるアルキル基としては、炭素数6以下のアルキル基が好ましく、炭素数4以下のアルキル基がより好ましい。アルキル基の具体例としては、メチル基、エチル基、プロピル基(n-プロピル基、イソプロピル基)、ブチル基(n-ブチル基、sec-ブチル基、イソブチル基、tert-ブチル基)等が挙げられる。 As the alkyl group in RA2, an alkyl group having 6 or less carbon atoms is preferable, and an alkyl group having 4 or less carbon atoms is more preferable. Specific examples of the alkyl group include methyl group, ethyl group, propyl group (n-propyl group, isopropyl group), butyl group (n-butyl group, sec-butyl group, isobutyl group, tert-butyl group) and the like. Be done.
 RA2におけるアリール基としては、フェニル基が好ましい。 The aryl group in R A2, a phenyl group is preferable.
 RA2はアルキル基であることが好ましい。 RA2 is preferably an alkyl group.
 反応性シランモノマーの含有量は、シランオリゴマー100質量部に対して、例えば0.01質量部以上であってよく、好ましくは0.05質量部以上、より好ましくは0.1質量部以上である。これにより、追従性及び密着性がより向上する傾向がある。また、反応性シランモノマーの含有量は、例えば5質量部以下であってよく、好ましくは4質量部以下、より好ましくは2質量部以下である。これにより、硬化物の熱安定性がより向上する傾向がある。 The content of the reactive silane monomer may be, for example, 0.01 part by mass or more, preferably 0.05 part by mass or more, and more preferably 0.1 part by mass or more with respect to 100 parts by mass of the silane oligomer. .. As a result, the followability and the adhesion tend to be further improved. The content of the reactive silane monomer may be, for example, 5 parts by mass or less, preferably 4 parts by mass or less, and more preferably 2 parts by mass or less. This tends to further improve the thermal stability of the cured product.
 本態様に係る組成物は、液状媒体を更に含んでいてよい。液状媒体としては、水及び有機溶媒が挙げられる。 The composition according to this embodiment may further contain a liquid medium. Examples of the liquid medium include water and an organic solvent.
 有機溶媒としては、例えば、アルコール類、エーテル類、ケトン類、エステル類、炭化水素類等が挙げられる。また、これらの他に、アセトニトリル、アセトアミド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等も用いることができる。 Examples of the organic solvent include alcohols, ethers, ketones, esters, hydrocarbons and the like. In addition to these, acetonitrile, acetamide, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone and the like can also be used.
 組成物は、液状媒体として水及びアルコ-ル類を含んでいてよい。このような液状媒体を用いることで、透明性に優れるバリア材が得られやすくなる。 The composition may contain water and alcohols as a liquid medium. By using such a liquid medium, it becomes easy to obtain a barrier material having excellent transparency.
 アルコール類としては、バリア材形成時の加熱によって気化させることができるものが好ましい。アルコール類としては、例えば、炭素数6以下のアルコール類が好ましく、炭素数1~4のアルコール類がより好ましい。 As the alcohols, those that can be vaporized by heating at the time of forming the barrier material are preferable. As the alcohols, for example, alcohols having 6 or less carbon atoms are preferable, and alcohols having 1 to 4 carbon atoms are more preferable.
 アルコール類としては、例えば、金属アルコキシドのアルコキシ基に対応するアルコール類を用いてもよい。すなわち、例えば金属アルコキシドがtert-ブトキシ基を有するとき、アルコール類としてtert-ブチルアルコールを用いてよい。これにより、透明性が一層向上する傾向がある。 As the alcohols, for example, alcohols corresponding to the alkoxy group of the metal alkoxide may be used. That is, for example, when the metal alkoxide has a tert-butoxy group, tert-butyl alcohol may be used as the alcohol. This tends to further improve transparency.
 液状媒体の含有量は特に限定されず、例えば、組成物の塗布に好適な粘度となる含有量としてよい。組成物の粘度は特に限定されず、作製するバリア材の厚さ、塗布方法、対象物の形状等に応じて適宜調整してよい。 The content of the liquid medium is not particularly limited, and may be, for example, a content having a viscosity suitable for coating the composition. The viscosity of the composition is not particularly limited, and may be appropriately adjusted according to the thickness of the barrier material to be produced, the coating method, the shape of the object, and the like.
 組成物の25℃における粘度は、例えば1~6000mPa・sであってよく、5~3000mPa・sであることが好ましい。このような組成物によれば、対象物への塗布及び対象物上へのバリア材の形成が一層容易となる。 The viscosity of the composition at 25 ° C. may be, for example, 1 to 6000 mPa · s, preferably 5 to 3000 mPa · s. Such a composition makes it easier to apply to the object and to form a barrier material on the object.
 本態様に係る組成物において、シランオリゴマー及びシランモノマーに由来するケイ素原子の総数に対する、金属アルコキシドに由来する金属原子Mのモル比(M/Si)は、例えば0.0001以上であってよく、0.001以上であることが好ましい。これにより、硬化性がより良好になる傾向がある。また、上記モル比(M/Si)は、例えば0.5以下であってよく、0.2以下であることが好ましい。これにより、透明性がより向上する傾向がある。 In the composition according to this embodiment, the molar ratio (M / Si) of the metal atom M derived from the metal alkoxide to the total number of silicon atoms derived from the silane oligomer and the silane monomer may be, for example, 0.0001 or more. It is preferably 0.001 or more. This tends to result in better curability. The molar ratio (M / Si) may be, for example, 0.5 or less, preferably 0.2 or less. This tends to improve transparency.
 本態様に係る組成物は、硬化触媒を更に含有していてよい。硬化触媒は、シランオリゴマー及びシランモノマーの重合反応を促進するものであればよく、特に限定されない。 The composition according to this embodiment may further contain a curing catalyst. The curing catalyst is not particularly limited as long as it promotes the polymerization reaction of the silane oligomer and the silane monomer.
 硬化触媒としては、例えば塩酸、硝酸、硫酸、酢酸、リン酸等を含む酸触媒、スズ、チタン、アルミ、亜鉛、鉄、コバルト、マンガン等を含む金属触媒、脂肪族アミン、水酸化アンモニウム、水酸化テトラエチルアンモニウム、炭酸ナトリウム、水酸化ナトリウム等を含む塩基触媒等が挙げられる。 Examples of the curing catalyst include acid catalysts containing hydrochloric acid, nitric acid, sulfuric acid, acetic acid, phosphoric acid and the like, metal catalysts containing tin, titanium, aluminum, zinc, iron, cobalt, manganese and the like, aliphatic amines, ammonium hydroxide and water. Examples thereof include a base catalyst containing tetraethylammonium oxide, sodium carbonate, sodium hydroxide and the like.
 硬化触媒の含有量は、例えば、シランオリゴマー100質量部に対して、0.1質量部以上であってよく、1質量部以上が好ましく、20質量部以下であってよく、10質量部以下が好ましい。 The content of the curing catalyst may be, for example, 0.1 part by mass or more, preferably 1 part by mass or more, 20 parts by mass or less, and 10 parts by mass or less with respect to 100 parts by mass of the silane oligomer. preferable.
 本態様に係る組成物は、上記以外の他の成分を更に含有していてよい。他の成分としては、例えば、分子構造中に水酸基を有する樹脂、金属酸化物粒子、金属酸化物ファイバー等が挙げられる。分子構造中に水酸基を有する樹脂としては、例えば、ポリビニルアルコール等が挙げられる。また、金属酸化物粒子としては、例えば、シリカ粒子、アルミナ粒子等が挙げられ、これらの粒子はナノサイズ(例えば粒径が1nm以上1000nm未満)であることが好ましい(すなわち、ナノシリカ粒子、ナノアルミナ粒子が好ましい。)。金属酸化物ファイバーとしては、例えば、アルミナファイバー等が挙げられ、これら金属酸化物ファイバーの繊維径はナノサイズ(例えば繊維径が1nm以上1000nm未満)であることが好ましい(すなわち、アルミナナノファイバーが好ましい。)。 The composition according to this embodiment may further contain components other than the above. Examples of other components include resins having a hydroxyl group in the molecular structure, metal oxide particles, metal oxide fibers, and the like. Examples of the resin having a hydroxyl group in the molecular structure include polyvinyl alcohol and the like. Further, examples of the metal oxide particles include silica particles and alumina particles, and these particles are preferably nano-sized (for example, the particle size is 1 nm or more and less than 1000 nm) (that is, nanosilica particles, nanoalumina). Particles are preferred). Examples of the metal oxide fiber include alumina fiber, and the fiber diameter of these metal oxide fibers is preferably nano-sized (for example, the fiber diameter is 1 nm or more and less than 1000 nm) (that is, alumina nanofiber is preferable). .).
 上記の他の成分の含有量は、上述の効果が得られる範囲であれば特に限定されず、例えば、シランオリゴマー100質量部に対して50質量部以下であってよく、好ましくは40質量部以下である。また、上記他の成分の含有量は、シランオリゴマー100質量部に対して、例えば10質量部以上であってよく、20質量部以上であってもよい。 The content of the above other components is not particularly limited as long as the above effects can be obtained, and may be, for example, 50 parts by mass or less, preferably 40 parts by mass or less with respect to 100 parts by mass of the silane oligomer. Is. Further, the content of the other components may be, for example, 10 parts by mass or more, or 20 parts by mass or more, based on 100 parts by mass of the silane oligomer.
 本態様に係る組成物の製造方法としては、以下の方法が挙げられる。 Examples of the method for producing the composition according to this aspect include the following methods.
<組成物の製造方法1>
 本製造方法は、シランオリゴマーと金属アルコキシドとを反応させて、シランオリゴマーの少なくとも一部を金属アルコキシドで修飾する修飾工程を備える。この修飾工程では、金属アルコキシドがシランオリゴマーと反応して、金属原子-酸素原子-ケイ素原子の結合が形成される。
<Production method 1 of composition>
The present production method comprises a modification step of reacting a silane oligomer with a metal alkoxide to modify at least a part of the silane oligomer with the metal alkoxide. In this modification step, the metal alkoxide reacts with the silane oligomer to form a metal atom-oxygen atom-silicon atom bond.
 上記反応は、液状媒体中で行ってよい。液状媒体としては、上記と同じものが例示できる。液状媒体の量は特に限定されず、例えば、反応液中のシランオリゴマーの濃度が50~99質量%(好ましくは80~95質量%)となる量であってよい。 The above reaction may be carried out in a liquid medium. Examples of the liquid medium include the same as above. The amount of the liquid medium is not particularly limited, and may be, for example, an amount such that the concentration of the silane oligomer in the reaction solution is 50 to 99% by mass (preferably 80 to 95% by mass).
 上記反応の反応条件は特に限定されない。例えば、上記反応の反応温度は、60~100℃であってよく、70~90℃であってもよい。また、上記反応の反応時間は、例えば0.5~5.0時間であってよく、1.0~3.0時間であってもよい。 The reaction conditions for the above reaction are not particularly limited. For example, the reaction temperature of the above reaction may be 60 to 100 ° C. or 70 to 90 ° C. The reaction time of the above reaction may be, for example, 0.5 to 5.0 hours, or 1.0 to 3.0 hours.
 本製造方法は、修飾工程後の反応液に、シランオリゴマーを添加する工程を更に備えていてもよい。これにより、金属アルコキシドで修飾されたシランオリゴマーと、未修飾のシランオリゴマーとを含有する組成物が得られる。 The present production method may further include a step of adding a silane oligomer to the reaction solution after the modification step. As a result, a composition containing a silane oligomer modified with a metal alkoxide and an unmodified silane oligomer can be obtained.
 本製造方法は、修飾工程後の反応液に、シランモノマーを添加する工程を更に備えていてもよい。すなわち、本製造方法は、少なくとも一部が金属アルコキシドで修飾されたシランオリゴマーを準備する第一の工程と、修飾シランオリゴマーとシランモノマーとを混合して、バリア材形成用組成物を得る第二の工程と、を備える方法であってよく、第一の工程が、上記修飾工程であってよい。これにより、シランモノマーを含有する組成物が得られる。 The present production method may further include a step of adding a silane monomer to the reaction solution after the modification step. That is, in the present production method, the first step of preparing a silane oligomer at least partially modified with a metal alkoxide and the second step of mixing the modified silane oligomer and the silane monomer to obtain a composition for forming a barrier material. The method may include the above-mentioned step, and the first step may be the above-mentioned modification step. As a result, a composition containing a silane monomer is obtained.
 本製造方法はまた、修飾工程後の反応液に、他の成分を添加する工程を更に備えていてもよい。本製造方法はまた、修飾工程後の反応液に液状媒体を添加する工程、又は、修飾工程後の反応液中の液状媒体を他の液状媒体に置換する工程を更に備えていてもよい。これらの工程によって、修飾工程後の反応液から、上述の組成物の様々な態様を調製することができる。 The present production method may further include a step of adding other components to the reaction solution after the modification step. The present production method may further include a step of adding a liquid medium to the reaction solution after the modification step, or a step of replacing the liquid medium in the reaction solution after the modification step with another liquid medium. By these steps, various aspects of the above composition can be prepared from the reaction solution after the modification step.
<組成物の製造方法2>
 本製造方法は、シランモノマーと金属アルコキシドとを反応させて、少なくとも一部が金属アルコキシドで修飾されたシランオリゴマーを形成する、修飾工程を備える。修飾工程では、シランモノマーの重合によってシランオリゴマーが形成され、形成されたシランオリゴマーが金属アルコキシドにより修飾されてよい。また、修飾工程では、シランモノマーが金属アルコキシドによって修飾された後、修飾されたシランモノマーと他のシランモノマーとの反応によってシランオリゴマー部分が形成されてもよい。
<Production method 2 of composition>
The production method comprises a modification step of reacting a silane monomer with a metal alkoxide to form a silane oligomer that is at least partially modified with the metal alkoxide. In the modification step, a silane oligomer is formed by polymerization of the silane monomer, and the formed silane oligomer may be modified with a metal alkoxide. Further, in the modification step, after the silane monomer is modified with a metal alkoxide, a silane oligomer moiety may be formed by the reaction of the modified silane monomer with another silane monomer.
 上記反応は、液状媒体中で行ってよい。液状媒体としては、上記と同じものが例示できる。液状媒体の量は特に限定されず、例えば、反応液中のシランモノマーの濃度が50~99質量%(好ましくは80~95質量%)となる量であってよい。 The above reaction may be carried out in a liquid medium. Examples of the liquid medium include the same as above. The amount of the liquid medium is not particularly limited, and may be, for example, an amount such that the concentration of the silane monomer in the reaction solution is 50 to 99% by mass (preferably 80 to 95% by mass).
 上記反応の反応条件は特に限定されない。例えば、上記反応の反応温度は、60~100℃であってよく、70~90℃であってもよい。また、上記反応の反応時間は、例えば0.5~5.0時間であってよく、1.0~3.0時間であってもよい。 The reaction conditions for the above reaction are not particularly limited. For example, the reaction temperature of the above reaction may be 60 to 100 ° C. or 70 to 90 ° C. The reaction time of the above reaction may be, for example, 0.5 to 5.0 hours, or 1.0 to 3.0 hours.
 本製造方法は、修飾工程後の反応液に、シランオリゴマーを添加する工程を更に備えていてもよい。これにより、金属アルコキシドで修飾されたシランオリゴマーと、未修飾のシランオリゴマーとを含有する組成物が得られる。 The present production method may further include a step of adding a silane oligomer to the reaction solution after the modification step. As a result, a composition containing a silane oligomer modified with a metal alkoxide and an unmodified silane oligomer can be obtained.
 本製造方法は、修飾工程後の反応液に、シランモノマーを添加する工程を更に備えていてもよい。すなわち、本製造方法は、少なくとも一部が金属アルコキシドで修飾されたシランオリゴマーを準備する第一の工程と、修飾シランオリゴマーとシランモノマーとを混合して、バリア材形成用組成物を得る第二の工程と、を備える方法であってよく、第一の工程が、上記修飾工程であってよい。これにより、シランモノマーを含有する組成物が得られる。 The present production method may further include a step of adding a silane monomer to the reaction solution after the modification step. That is, in the present production method, the first step of preparing a silane oligomer at least partially modified with a metal alkoxide and the second step of mixing the modified silane oligomer and the silane monomer to obtain a composition for forming a barrier material. The method may include the above-mentioned step, and the first step may be the above-mentioned modification step. As a result, a composition containing a silane monomer is obtained.
 本製造方法はまた、修飾工程後の反応液に、他の成分を添加する工程を更に備えていてもよい。本製造方法はまた、修飾工程後の反応液に液状媒体を添加する工程、又は、修飾工程後の反応液中の液状媒体を他の液状媒体に置換する工程を更に備えていてもよい。これらの工程によって、修飾工程後の反応液から、上述の組成物の様々な態様を調製することができる。 The present production method may further include a step of adding other components to the reaction solution after the modification step. The present production method may further include a step of adding a liquid medium to the reaction solution after the modification step, or a step of replacing the liquid medium in the reaction solution after the modification step with another liquid medium. By these steps, various aspects of the above composition can be prepared from the reaction solution after the modification step.
<バリア材の製造方法>
 本実施形態に係るバリア材の製造方法は、上述の組成物を加熱して、バリア材を形成する加熱工程を備える。この製造方法では、加熱により組成物中のシランオリゴマー及びシランモノマーが重合してポリシロキサン化合物が形成される。このとき、上記組成物ではシランオリゴマーの少なくとも一部が金属アルコキシドで修飾されているため、ポリシロキサン化合物中には当該金属アルコキシド由来の金属原子がドープされる。
<Manufacturing method of barrier material>
The method for producing a barrier material according to the present embodiment includes a heating step of heating the above-mentioned composition to form a barrier material. In this production method, the silane oligomer and the silane monomer in the composition are polymerized by heating to form a polysiloxane compound. At this time, since at least a part of the silane oligomer is modified with a metal alkoxide in the above composition, the metal atom derived from the metal alkoxide is doped in the polysiloxane compound.
 加熱工程では、加熱により組成物中の液体媒体が除去されてよい。すなわち、加熱工程は、組成物の加熱乾燥により、ポリシロキサン化合物を含むバリア材を形成する工程であってよい。 In the heating step, the liquid medium in the composition may be removed by heating. That is, the heating step may be a step of forming a barrier material containing a polysiloxane compound by heating and drying the composition.
 加熱工程における加熱温度は特に限定されず、シランオリゴマーが重合可能な温度であればよい。また、組成物が液状媒体を含む場合は、加熱温度は、液状媒体が揮発する温度であることが好ましい。加熱温度は、例えば70℃以上であってよく、好ましくは100℃以上である。また、加熱温度は、例えば200℃以下であってよく、好ましくは170℃以下である。 The heating temperature in the heating step is not particularly limited as long as the silane oligomer can be polymerized. When the composition contains a liquid medium, the heating temperature is preferably a temperature at which the liquid medium volatilizes. The heating temperature may be, for example, 70 ° C. or higher, preferably 100 ° C. or higher. The heating temperature may be, for example, 200 ° C. or lower, preferably 170 ° C. or lower.
 本製造方法は、組成物を塗布する塗布工程を更に備えていてよい。このとき、加熱工程は、塗布された組成物を加熱する工程ということができる。 The present production method may further include a coating step of coating the composition. At this time, the heating step can be said to be a step of heating the applied composition.
 組成物の塗布方法は特に限定されず、塗布する対象物の形状、バリア材の厚み等に応じて適宜変更してよい。 The method of applying the composition is not particularly limited, and may be appropriately changed depending on the shape of the object to be applied, the thickness of the barrier material, and the like.
 本製造方法では、防湿性を付与したい対象物に組成物を塗布して、当該対象物上にバリア材を形成してよい。また、本製造方法では、所定形状のバリア材を製造してから、製造されたバリア材を対象物上に適用してもよい。 In this production method, the composition may be applied to an object to which moisture resistance is to be imparted, and a barrier material may be formed on the object. Further, in the present manufacturing method, a barrier material having a predetermined shape may be manufactured and then the manufactured barrier material may be applied onto the object.
<バリア材の用途>
 本実施形態に係るバリア材の用途は特に限定されず、防湿性が要求される種々の用途に好適に適用できる。例えば、バリア材は、電子部品用の防湿バリア材として好適に用いることができる。
<Use of barrier material>
The application of the barrier material according to the present embodiment is not particularly limited, and can be suitably applied to various applications requiring moisture resistance. For example, the barrier material can be suitably used as a moisture-proof barrier material for electronic parts.
 本実施形態に係るバリア材は、高温環境下(例えば100℃以上)において、内部に侵入した水分の膨張による破壊を十分に抑制できる。バリア材としては、例えば、高温環境下で使用される電子部品用の防湿バリア材、実装時に高温工程を経る電子部品用の防湿バリア材等の用途に好適に用いることができる。具体的には、例えば、パワー半導体用防湿バリア材、イメージセンサ用防湿バリア材、ディスプレイ用防湿バリア材等として好適に用いることができる。 The barrier material according to the present embodiment can sufficiently suppress destruction due to expansion of water that has entered the inside in a high temperature environment (for example, 100 ° C. or higher). As the barrier material, for example, it can be suitably used for applications such as a moisture-proof barrier material for electronic parts used in a high-temperature environment, and a moisture-proof barrier material for electronic parts that undergo a high-temperature process at the time of mounting. Specifically, for example, it can be suitably used as a moisture-proof barrier material for power semiconductors, a moisture-proof barrier material for image sensors, a moisture-proof barrier material for displays, and the like.
 以下に、バリア材の用途の好適な一形態について詳述するが、バリア材の用途は以下に限定されない。 The preferred form of the use of the barrier material will be described in detail below, but the use of the barrier material is not limited to the following.
<用途例1>
 一形態に係る用途は、防湿処理された部材を有する製品に関する。このような製品は、部材(基材)と、部材上に形成されたバリア材とを備える。バリア材は、一つの部材上に形成されていてよく、複数の部材上に形成されていてもよい。バリア材は、例えば、一つ又は複数の部材を被覆するように形成されていてよい。
<Application example 1>
The application according to one form relates to a product having a moisture-proof treated member. Such a product includes a member (base material) and a barrier material formed on the member. The barrier material may be formed on one member or may be formed on a plurality of members. The barrier material may be formed, for example, to cover one or more members.
 このような製品は、部材上に上記バリア材形成用組成物を塗布する第一の工程と、塗布された組成物を加熱して部材上にバリア材を形成する第二の工程と、を備える製造方法によって製造される。 Such a product includes a first step of applying the barrier material forming composition on the member and a second step of heating the applied composition to form the barrier material on the member. Manufactured by the manufacturing method.
 このような用途の具体例として、例えば、以下の電子部品が挙げられる。 Specific examples of such applications include the following electronic components.
(電子部品A-1)
 一形態に係る電子部品は、基板と、カバーガラスと、基板及びカバーガラスの間に配置されたイメージセンサと、カバーガラス及びイメージセンサを基板上に支持する支持部材と、カバーガラスと支持部材との接合部上に設けられた上記バリア材と、を備える。
(Electronic component A-1)
The electronic components according to one form include a substrate, a cover glass, an image sensor arranged between the substrate and the cover glass, a support member for supporting the cover glass and the image sensor on the substrate, and a cover glass and a support member. The barrier material provided on the joint portion of the above is provided.
 上記バリア材は、防湿性に優れ、また、高温環境下で使用しても内部に侵入した水分の膨張による破壊を十分に抑制できるものである。このため、上記電子部品は、耐湿性に優れ、また、カバーガラス及び基板の間の空隙に湿気が侵入した場合でも、当該湿気の膨張によるカバーガラス、支持部材等の破損が十分に防止される。 The above barrier material has excellent moisture resistance, and even when used in a high temperature environment, it can sufficiently suppress destruction due to expansion of water that has entered the inside. Therefore, the electronic component has excellent moisture resistance, and even if moisture enters the gap between the cover glass and the substrate, damage to the cover glass, the support member, etc. due to the expansion of the moisture is sufficiently prevented. ..
 このような電子部品は、例えば、支持部材とカバーガラスとの接合部にバリア材形成用組成物を塗布する塗布工程と、塗布された組成物を加熱して、接合部上にバリア材を形成するバリア材形成工程と、を備える製造方法によって製造することができる。 For such electronic components, for example, a coating step of applying a barrier material forming composition to a joint portion between a support member and a cover glass and a coating step of heating the applied composition to form a barrier material on the joint portion. It can be manufactured by a manufacturing method including a barrier material forming step.
(電子部品A-2)
 一形態に係る電子部品は、基板と、基板上に配置されたイメージセンサと、イメージセンサ上に設けられた上記バリア材と、を備える。
(Electronic component A-2)
The electronic component according to one form includes a substrate, an image sensor arranged on the substrate, and the barrier material provided on the image sensor.
 上記バリア材は、防湿性及び透明性に優れたものとすることができる。このため、上記バリア材は、イメージセンサを封止する封止材としても好適に用いることができる。このような電子部品は、カバーガラスを用いずにイメージセンサパッケージを構成できるため、部品サイズの縮小化、取扱い性の向上等が期待できる。 The barrier material can be excellent in moisture resistance and transparency. Therefore, the barrier material can also be suitably used as a sealing material for sealing the image sensor. Since such an electronic component can form an image sensor package without using a cover glass, it can be expected that the component size can be reduced and the handleability can be improved.
 この用途において、厚さ1mm当たりのバリア材の可視光透過率(550nm)は、95%以上であることが好ましく、97%以上であることがより好ましく、99%以上であることが更に好ましい。 In this application, the visible light transmittance (550 nm) of the barrier material per 1 mm of thickness is preferably 95% or more, more preferably 97% or more, and further preferably 99% or more.
 このような電子部品は、例えば、イメージセンサ上にバリア材形成用組成物を塗布する塗布工程と、塗布された組成物を加熱して、イメージセンサ上にバリア材を形成するバリア材形成工程と、を備える製造方法によって製造することができる。 Such electronic components include, for example, a coating step of applying a barrier material forming composition on an image sensor and a barrier material forming step of heating the applied composition to form a barrier material on the image sensor. , Can be manufactured by a manufacturing method comprising.
<用途例2>
 一形態に係る用途は、防湿部材を備える製品に関する。このような製品は、バリア材及び基材を有する防湿部材を備え、例えば、当該防湿部材を含む複数の部材の組立品であってよい。
<Application example 2>
The application according to one form relates to a product provided with a moisture-proof member. Such a product includes a moisture-proof member having a barrier material and a base material, and may be, for example, an assembly of a plurality of members including the moisture-proof member.
 このような製品は、上記バリア材形成用組成物を基材上に塗布し、加熱して、バリア材及び基材を有する防湿部材を作製する第一の工程と、防湿部材を含む複数の部材を組み立てる第二の工程と、を備える製造方法によって製造することができる。 Such a product includes a first step of applying the barrier material forming composition onto a base material and heating to prepare a moisture-proof member having the barrier material and the base material, and a plurality of members including the moisture-proof member. It can be manufactured by a manufacturing method comprising a second step of assembling.
 このような用途の具体例として、例えば、以下の電子部品が挙げられる。 Specific examples of such applications include the following electronic components.
(電子部品B-1)
 一形態に係る電子部品は、基板と、MEMSセンサー、ワイヤレスモジュール及びカメラモジュールからなる群より選択される少なくとも一種の部品と、バリア材及び基材を有する防湿部材と、を備える。
(Electronic component B-1)
The electronic component according to one form includes a substrate, at least one component selected from the group consisting of a MEMS sensor, a wireless module, and a camera module, and a moisture-proof member having a barrier material and a base material.
 上記バリア材は、防湿性及び脱湿性に優れる。このため、上記電子部品は、耐湿性に優れ、吸湿によるセンシング特性の低下が十分に防止される。 The barrier material is excellent in moisture resistance and dehumidification. Therefore, the electronic component has excellent moisture resistance, and deterioration of sensing characteristics due to moisture absorption is sufficiently prevented.
 このような電子部品は、例えば、バリア材形成用組成物を基材上に塗布し、加熱することでバリア材及び基材を有する防湿部材を作製する工程と、防湿部材を含む複数の部材を組み立てる工程と、を備える製造方法によって製造することができる。 Such electronic components include, for example, a step of applying a barrier material forming composition on a base material and heating the base material to produce a moisture-proof member having the barrier material and the base material, and a plurality of members including the moisture-proof member. It can be manufactured by a manufacturing method including an assembling step.
 以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。 Although the preferred embodiment of the present invention has been described above, the present invention is not limited to the above embodiment.
 以下、実施例によって本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
(実施例1)
[バリア材形成用組成物の調製]
 アルミニウムsec-ブトキシド(マツモトファインケミカル株式会社製、製品名:AL-3001、以下「AL-3001」と略記)を3.8質量部、tert-ブチルアルコール(和光純薬工業株式会社製)を7.6質量部、水を0.3質量部、酢酸を0.3質量部、シランオリゴマー(モメンティブ・パフォーマンス・マテリアルズ社製、製品名:XC31-B2733)を64.9質量部混合した後、70℃で1時間反応させた。次いで、テトラエトキシシラン(富士フイルム和光純薬株式会社製、以下「TEOS」と略記)を23.4質量部混合した後、25℃で2時間反応させた。次いで、硬化触媒(モメンティブ社製、製品名:CR-15、以下「CR-15」と略記)を1.7質量部混合して、バリア材形成用組成物を得た。
(Example 1)
[Preparation of composition for forming barrier material]
Aluminum sec-butoxide (manufactured by Matsumoto Fine Chemical Industries, Ltd., product name: AL-3001, hereinafter abbreviated as "AL-3001") is 3.8 parts by mass, and tert-butyl alcohol (manufactured by Wako Pure Chemical Industries, Ltd.) is 7. After mixing 6 parts by mass, 0.3 parts by mass of water, 0.3 parts by mass of acetic acid, and 64.9 parts by mass of silane oligomer (manufactured by Momentive Performance Materials, product name: XC31-B2733), 70 parts by mass. The reaction was carried out at ° C. for 1 hour. Next, 23.4 parts by mass of tetraethoxysilane (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., hereinafter abbreviated as "TEOS") was mixed, and then reacted at 25 ° C. for 2 hours. Next, 1.7 parts by mass of a curing catalyst (manufactured by Momentive, product name: CR-15, hereinafter abbreviated as “CR-15”) was mixed to obtain a composition for forming a barrier material.
[バリア材の作製]
・水蒸気透過度測定用サンプルの作製
 水蒸気透過度を測定するサンプルは、基材にアセテートフィルム(ホルベイン画材社製、厚さ0.08mm)を用いた。このアセテートフィルムを、バリア材形成用組成物にティップすることで塗布を行った。この際、アセテートフィルムの片面にのみバリア形成用組成物がコートされるように行った。バリア形成用組成物の乾燥は、塗布後の基材を150℃で4時間乾燥することで行った。形成されたバリア材の厚さは20μmとした。なお、水蒸気透過度は、異なる厚さのバリア材を形成した複数のサンプルを準備して、横軸に厚さ、縦軸に水蒸気透過度をプロットして得られる近似直線から、厚さ20μmにおける水蒸気透過度を算出することで求めることもできる。
・吸湿率測定用サンプルの作製
 吸湿率を測定するサンプルは、基材に積層板(日立化成株式会社製)を用いた。この基材は両面に銅箔がついているため、片面のみエッチングすることで銅箔を除去した。このエッチングした面に対し、バーコータを用いてバリア材形成用組成物をコーティングすることで塗布を行った。その後、150℃4時間乾燥することで、厚さ20μmのバリア材を形成した。なお、基材に用いる積層板の種類は問わない。なお、吸湿率は、異なる厚さのバリア材を形成した複数のサンプルを準備して、横軸に厚さ、縦軸に吸湿率をプロットして得られる近似直線から、厚さ20μmにおける吸湿率を算出することで求めることもできる。
[Making barrier material]
-Preparation of sample for measuring water vapor permeability As the sample for measuring water vapor permeability, an acetate film (manufactured by Holbein Art Materials Co., Ltd., thickness 0.08 mm) was used as a base material. This acetate film was applied by tipping it into a composition for forming a barrier material. At this time, the barrier-forming composition was coated only on one side of the acetate film. The barrier-forming composition was dried by drying the coated substrate at 150 ° C. for 4 hours. The thickness of the formed barrier material was 20 μm. The water vapor permeability is set to a thickness of 20 μm from an approximate straight line obtained by preparing a plurality of samples in which barrier materials having different thicknesses are formed and plotting the thickness on the horizontal axis and the water vapor permeability on the vertical axis. It can also be obtained by calculating the water vapor permeability.
-Preparation of sample for measuring hygroscopicity As the sample for measuring hygroscopicity, a laminated board (manufactured by Hitachi Chemical Co., Ltd.) was used as the base material. Since this base material has copper foil on both sides, the copper foil was removed by etching only one side. The etched surface was coated with a barrier material forming composition using a bar coater. Then, it was dried at 150 ° C. for 4 hours to form a barrier material having a thickness of 20 μm. The type of laminated board used as the base material does not matter. The hygroscopicity is the hygroscopicity at a thickness of 20 μm from an approximate straight line obtained by preparing a plurality of samples in which barrier materials having different thicknesses are formed and plotting the thickness on the horizontal axis and the hygroscopicity on the vertical axis. It can also be obtained by calculating.
[評価方法]
(水蒸気透過度の測定)
 水蒸気透過度の測定は、水蒸気透過度測定器(Systec Instruments社製、LASSY L80-5000)を用いた。測定条件は温度を40℃、湿度を90%RHであり、測定面積を19.6cmとした。測定されたサンプル全体の水蒸気透過度Jから、以下の式により、バリア材単独の水蒸気透過度Aを算出した。
 A=J{[2a+b+(b+4aJ0.5]/[2(a+b-J)]}
 水蒸気透過度Aを測定する際は、バリア材と基材で構成されているサンプルの基材を低湿側に、バリア材を高湿側にすることで行った。
 水蒸気透過度Aを測定する際は、バリア材と基材で形成されているサンプルの基材を高湿側に、バリア材を低湿側にすることで行った。
[Evaluation methods]
(Measurement of water vapor permeability)
The water vapor permeability was measured by using a water vapor permeability measuring device (LASSY L80-5000, manufactured by Systec Instruments). The measurement conditions were a temperature of 40 ° C., a humidity of 90% RH, and a measurement area of 19.6 cm 2 . From the measured sample overall water vapor transmission rate J t, the following equation was calculated water vapor transmission rate A barrier material alone.
A = J t {[2a + b + (b 2 + 4aJ t ) 0.5 ] / [2 (a + b-J t )]}
When measuring the water vapor transmission rate A 1 is the substrate of the sample is composed of barrier material and the substrate in the dry end, was done by the barrier material to the high end.
When measuring the water vapor transmission rate A 2 is a base material of the sample being formed by a barrier material and the substrate on the high humidity side, was barrier material by the low humidity side.
(吸湿処理後の吸湿率)
 サンプルの吸湿は、温度を85℃、湿度を85%RHに保った恒湿恒温槽に168時間保持することで行った。その後、サンプルの重量を測定し、吸湿処理を行う前の重量との変化率を測定することで、下記式の通りに吸湿率を算出した。
Figure JPOXMLDOC01-appb-M000003
(Hygroscopicity after moisture absorption treatment)
Moisture absorption of the sample was carried out by holding the sample in a constant humidity and constant temperature bath kept at a temperature of 85 ° C. and a humidity of 85% RH for 168 hours. After that, the weight of the sample was measured, and the rate of change from the weight before the moisture absorption treatment was measured to calculate the moisture absorption rate as shown in the following formula.
Figure JPOXMLDOC01-appb-M000003
(脱湿処理後の脱湿率)
 脱湿処理は、吸湿処理を行ったサンプルを120℃に保った恒温槽で1時間保持することでおこなった。その後、サンプルの重量を測定し、吸湿処理を行う前の重量との変化率を測定することで、脱湿処理後の吸湿率を算出した。この値を用い、下記式により脱湿率を算出した。吸湿処理により吸湿した水分が、脱湿処理により完全に脱湿出来た場合、脱湿率は100%となる。
Figure JPOXMLDOC01-appb-M000004
(Dehumidification rate after dehumidification treatment)
The dehumidifying treatment was carried out by holding the hygroscopically treated sample in a constant temperature bath kept at 120 ° C. for 1 hour. Then, the weight of the sample was measured, and the rate of change from the weight before the moisture absorption treatment was measured to calculate the moisture absorption rate after the dehumidification treatment. Using this value, the dehumidification rate was calculated by the following formula. When the moisture absorbed by the moisture absorption treatment can be completely dehumidified by the dehumidification treatment, the dehumidification rate becomes 100%.
Figure JPOXMLDOC01-appb-M000004
(実施例2)
 実施例1のシランオリゴマーをTSR165(モメンティブ社製)に、テトラエトキシシランをフェニルトリメトキシシラン(信越化学株式会社製、製品名:KBM-103)に、硬化触媒をアミノプロピルトリエトキシシラン(信越化学株式会社製、製品名:KBE-903))にそれぞれ変更したこと以外は、実施例1と同様にして、バリア材を形成し、評価した。結果を表1に示す。
(Example 2)
The silane oligomer of Example 1 was TSR165 (manufactured by Momentive), tetraethoxysilane was phenyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., product name: KBM-103), and the curing catalyst was aminopropyltriethoxysilane (Shin-Etsu Chemical). A barrier material was formed and evaluated in the same manner as in Example 1 except that the product name was changed to KBE-903)) manufactured by Co., Ltd. The results are shown in Table 1.
(比較例1)
 比較例1として、オプトエースWP-140を用いた。水蒸気透過度測定用サンプル及び吸湿率測定用サンプルの作製は,実施例1と乾燥条件以外は同様に行った。乾燥条件は、室温で24時間保持することで行った。
(Comparative Example 1)
As Comparative Example 1, Optoace WP-140 was used. The sample for measuring water vapor permeability and the sample for measuring hygroscopicity were prepared in the same manner as in Example 1 except for the drying conditions. The drying conditions were carried out by keeping at room temperature for 24 hours.
(比較例2)
 基材のみを用いて、実施例1と同様の方法で、吸湿処理後の吸湿率及び脱湿処理後の脱湿率を求めた。結果を表1に示す。
(Comparative Example 2)
Using only the base material, the moisture absorption rate after the moisture absorption treatment and the dehumidification rate after the dehumidification treatment were determined by the same method as in Example 1. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 10…バリア材、20…基材。 10 ... barrier material, 20 ... base material.

Claims (11)

  1.  基材上に配置されたバリア材であって、
     前記バリア材の前記基材と反対側から前記基材側への水蒸気透過度Aが、前記バリア材の前記基材側から前記基材と反対側への水蒸気透過度Aより小さい、バリア材。
    A barrier material placed on a base material
    A barrier in which the water vapor permeability A 1 from the side of the barrier material opposite to the base material to the base material side is smaller than the water vapor permeability A 2 from the base material side of the barrier material to the side opposite to the base material. Material.
  2.  前記水蒸気透過度Aに対する前記水蒸気透過度Aの比(A/A)が、1.3以上である、請求項1に記載のバリア材。 The barrier material according to claim 1 , wherein the ratio (A 2 / A 1 ) of the water vapor permeability A 2 to the water vapor permeability A 1 is 1.3 or more.
  3.  金属原子がドープされたポリシロキサン化合物を含む、請求項1又は2に記載のバリア材。 The barrier material according to claim 1 or 2, which contains a polysiloxane compound doped with a metal atom.
  4.  前記ポリシロキサン化合物が、3個の酸素原子と結合したケイ素原子を有する、請求項3に記載のバリア材。 The barrier material according to claim 3, wherein the polysiloxane compound has a silicon atom bonded to three oxygen atoms.
  5.  前記ポリシロキサン化合物中のケイ素原子の総数に対する、3個の酸素原子と結合したケイ素原子及び4個の酸素原子と結合したケイ素原子の合計数の割合が、30%以上である、請求項3又は4に記載のバリア材。 The ratio of the total number of silicon atoms bonded to three oxygen atoms and the total number of silicon atoms bonded to four oxygen atoms to the total number of silicon atoms in the polysiloxane compound is 30% or more, claim 3 or The barrier material according to 4.
  6.  前記ポリシロキサン化合物中の酸素原子のうち、90%以上がケイ素原子と結合している、請求項3~5のいずれか一項に記載のバリア材。 The barrier material according to any one of claims 3 to 5, wherein 90% or more of the oxygen atoms in the polysiloxane compound are bonded to silicon atoms.
  7.  前記基材上に塗布されたバリア材形成用組成物の硬化物からなり、
     前記バリア材形成用組成物が、少なくとも一部が金属アルコキシドで修飾されたシランオリゴマーを含む、請求項1~6のいずれか一項に記載のバリア材。
    It consists of a cured product of the barrier material forming composition applied on the base material.
    The barrier material according to any one of claims 1 to 6, wherein the composition for forming a barrier material contains at least a silane oligomer modified with a metal alkoxide.
  8.  前記シランオリゴマーが、3個の酸素原子と結合したケイ素原子を有する、請求項7に記載のバリア材。 The barrier material according to claim 7, wherein the silane oligomer has a silicon atom bonded to three oxygen atoms.
  9.  前記シランオリゴマー中のケイ素原子の総数に対する、3個の酸素原子と結合したケイ素原子及び4個の酸素原子と結合したケイ素原子の合計数の割合が、50%以上である、請求項7又は8に記載のバリア材。 Claim 7 or 8 in which the ratio of the total number of silicon atoms bonded to 3 oxygen atoms and the total number of silicon atoms bonded to 4 oxygen atoms to the total number of silicon atoms in the silane oligomer is 50% or more. Barrier material described in.
  10.  前記バリア材形成用組成物がシランモノマーを更に含む、請求項7~9のいずれか一項に記載のバリア材。 The barrier material according to any one of claims 7 to 9, wherein the composition for forming a barrier material further contains a silane monomer.
  11.  基材と、
     前記基材上に配置された請求項1~10のいずれか一項に記載のバリア材と、
    を備える、製品。
    With the base material
    The barrier material according to any one of claims 1 to 10 arranged on the base material and
    The product.
PCT/JP2019/018437 2019-05-08 2019-05-08 Barrier material and product equipped with same WO2020225881A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021518255A JP7338678B2 (en) 2019-05-08 2019-05-08 Barrier material and products comprising the same
CN201980098216.7A CN114096406A (en) 2019-05-08 2019-05-08 Barrier material and product with same
PCT/JP2019/018437 WO2020225881A1 (en) 2019-05-08 2019-05-08 Barrier material and product equipped with same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/018437 WO2020225881A1 (en) 2019-05-08 2019-05-08 Barrier material and product equipped with same

Publications (1)

Publication Number Publication Date
WO2020225881A1 true WO2020225881A1 (en) 2020-11-12

Family

ID=73051550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018437 WO2020225881A1 (en) 2019-05-08 2019-05-08 Barrier material and product equipped with same

Country Status (3)

Country Link
JP (1) JP7338678B2 (en)
CN (1) CN114096406A (en)
WO (1) WO2020225881A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008231403A (en) * 2007-02-20 2008-10-02 Suzuka Fuji Xerox Co Ltd Two-part type thermosetting resin composition and method for producing heat-resistant transparent resin molded article
JP2010037538A (en) * 2008-07-31 2010-02-18 Korea Advanced Inst Of Sci Technol Resin composition for light emitting diode (led) sealing
WO2014091762A1 (en) * 2012-12-14 2014-06-19 コニカミノルタ株式会社 Sealant for led device and led device using same
WO2014203951A1 (en) * 2013-06-19 2014-12-24 日産化学工業株式会社 Composition for forming metal oxide film, and metal oxide film
WO2018013262A1 (en) * 2016-07-13 2018-01-18 Dow Corning Corporation Formulation containing a metal aprotic organosilanoxide compound
WO2019088191A1 (en) * 2017-10-31 2019-05-09 日立化成株式会社 Barrier material formation composition, barrier material, production method for barrier material, product, and production method for product

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002046208A (en) * 2000-08-02 2002-02-12 Dainippon Printing Co Ltd Barrier laminated film
WO2007036980A1 (en) * 2005-09-27 2007-04-05 Toppan Printing Co., Ltd. Gas barrier laminated film
KR20140007485A (en) * 2011-06-15 2014-01-17 코니카 미놀타 가부시키가이샤 Water-vapor barrier film, process for producing same, and electronic appliance including same
JP5979158B2 (en) * 2012-01-20 2016-08-24 東洋インキScホールディングス株式会社 Water vapor barrier resin, water vapor barrier coating agent, water vapor barrier film, and water vapor barrier laminate
KR101946132B1 (en) * 2014-06-17 2019-02-08 코니카 미놀타 가부시키가이샤 Gas barrier film and method for producing same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008231403A (en) * 2007-02-20 2008-10-02 Suzuka Fuji Xerox Co Ltd Two-part type thermosetting resin composition and method for producing heat-resistant transparent resin molded article
JP2010037538A (en) * 2008-07-31 2010-02-18 Korea Advanced Inst Of Sci Technol Resin composition for light emitting diode (led) sealing
WO2014091762A1 (en) * 2012-12-14 2014-06-19 コニカミノルタ株式会社 Sealant for led device and led device using same
WO2014203951A1 (en) * 2013-06-19 2014-12-24 日産化学工業株式会社 Composition for forming metal oxide film, and metal oxide film
WO2018013262A1 (en) * 2016-07-13 2018-01-18 Dow Corning Corporation Formulation containing a metal aprotic organosilanoxide compound
WO2019088191A1 (en) * 2017-10-31 2019-05-09 日立化成株式会社 Barrier material formation composition, barrier material, production method for barrier material, product, and production method for product
WO2019087286A1 (en) * 2017-10-31 2019-05-09 日立化成株式会社 Barrier material formation composition, barrier material, production method for barrier material, product, and production method for product

Also Published As

Publication number Publication date
CN114096406A (en) 2022-02-25
JP7338678B2 (en) 2023-09-05
JPWO2020225881A1 (en) 2020-11-12

Similar Documents

Publication Publication Date Title
US6361871B1 (en) Composition of organofluorine-functional silanes and/or siloxanes, process for preparing it and its use
US8815404B2 (en) Protective film and encapsulation material comprising the same
KR101523821B1 (en) Anti-reflection coating composition containing siloxane compound, anti-reflection film having controlled surface energy using the same
US20110223421A1 (en) Silicone Composition And A Method For Preparing The Same
JP6430940B2 (en) Antireflection coating composition containing siloxane compound and antireflection film using the same
JP2010116462A (en) Siloxane polymer, siloxane-based crosslinkable composition and silicone membrane
JP4279064B2 (en) Porous silica film and laminate having the same
EP3109290A1 (en) Water-repellant/oil-repellant film and production method therefor
JP6329959B2 (en) Superhydrophilic antireflection coating composition containing a siloxane compound, superhydrophilic antireflection film using the same, and method for producing the same
Klein et al. Organic–inorganic hybrid melting gels
JP2004168057A (en) Fluorine composite resin film and solar cell
JP7251479B2 (en) Barrier material-forming composition, barrier material and method for producing the same, and product and method for producing the same
JP5640310B2 (en) Composition, antireflection film substrate, and solar cell system
KR101772549B1 (en) Insulation coating composition and manufacturing method thereof
Hwang et al. Synthesis and barrier properties of poly (vinylidene chloride-co-acrylonitrile)/SiO2 hybrid composites by sol–gel process
WO2020225881A1 (en) Barrier material and product equipped with same
JP7447893B2 (en) Composition for forming barrier material, barrier material and method for producing the same, product and method for producing the same
JP2020186377A (en) Barrier material forming composition, barrier material and method for producing the same, and product and method for producing the same
JP5314616B2 (en) Manufacturing method of substrate for semiconductor element
JP2021195381A (en) Barrier material formation composition, method for manufacturing the same, barrier material, method for manufacturing the same, product and method for manufacturing the same
KR102165319B1 (en) Resin laminate
JP2022034852A (en) Barrier material forming composition and method for producing the same, barrier material and method for producing the same, and product and method for producing the same
JP5170396B2 (en) Gas barrier film coating agent and gas barrier film
Klein et al. Synthesis of Melting Gels Using Mono-Substituted and Di-Substituted Alkoxysiloxanes
Muskovin Research and development of optically transparent join with low processing temperatures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19928202

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021518255

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 14.02.22)

122 Ep: pct application non-entry in european phase

Ref document number: 19928202

Country of ref document: EP

Kind code of ref document: A1