WO2014091762A1 - Sealant for led device and led device using same - Google Patents

Sealant for led device and led device using same Download PDF

Info

Publication number
WO2014091762A1
WO2014091762A1 PCT/JP2013/007334 JP2013007334W WO2014091762A1 WO 2014091762 A1 WO2014091762 A1 WO 2014091762A1 JP 2013007334 W JP2013007334 W JP 2013007334W WO 2014091762 A1 WO2014091762 A1 WO 2014091762A1
Authority
WO
WIPO (PCT)
Prior art keywords
ppm
led device
group
sealant
led
Prior art date
Application number
PCT/JP2013/007334
Other languages
French (fr)
Japanese (ja)
Inventor
後藤 賢治
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2014551897A priority Critical patent/JPWO2014091762A1/en
Publication of WO2014091762A1 publication Critical patent/WO2014091762A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5435Silicon-containing compounds containing oxygen containing oxygen in a ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2244Oxides; Hydroxides of metals of zirconium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body

Definitions

  • the present invention relates to an LED device sealant and an LED device using the same.
  • a white LED device in which a phosphor such as a YAG phosphor is arranged in the vicinity of a gallium nitride (GaN) blue LED (Light Emitting Diode) chip has been proposed.
  • the blue light emitted from the blue LED chip and the yellow light emitted from the phosphor in response to the blue light are mixed to obtain white light.
  • a white LED device in which various phosphors are arranged in the vicinity of the blue LED chip has also been developed.
  • white light is obtained by mixing blue light emitted from the blue LED chip and red light, green light, or the like emitted from the phosphor upon receiving the blue light.
  • a white LED device In a general white LED device, an LED chip and its mounting part are covered with a wavelength conversion layer in which phosphor particles are dispersed in a transparent resin (for example, Patent Document 1).
  • a transparent resin for example, Patent Document 1
  • the transparent resin has high gas permeability. For this reason, when the white LED device is used in an environment containing sulfur gas or moisture, there is a problem that the metal wiring and the light reflecting surface of the LED element are deteriorated and the light extraction efficiency from the LED device is lowered.
  • Patent Document 1 it has been proposed to form a barrier layer made of a curable resin material or the like between the LED element and the wavelength conversion layer. It has also been proposed to form a barrier layer made of a polymer such as tetraalkoxysilane or trialkoxyvinylsilane between the LED element and the wavelength conversion layer (Patent Document 2). Furthermore, a barrier layer in which the composition ratio in the layer of tetrafunctional alkoxysilane, trifunctional alkoxysilane, and bifunctional alkoxysilane is changed has also been proposed (Patent Document 3).
  • the barrier layer of Patent Document 1 is made of resin, there is a problem that the gas barrier property is not sufficient. Further, since the barrier layers of Patent Document 2 and Patent Document 3 have a large amount of organic groups in the film, the barrier layer may be deteriorated with time by heat or light. Also, the sealing material of Patent Document 4 has a large amount of organic groups in the film. Therefore, there is a problem that the gas barrier property is low and the light extraction efficiency of the LED device is lowered with time.
  • an object of the present invention is to provide a sealant for an LED device that can form a dense film with little distortion, and an LED device using the same.
  • the first aspect of the present invention relates to the following LED device sealant.
  • An LED device encapsulant comprising a polysiloxane compound, a silane coupling agent, and metal oxide fine particles, the LED device encapsulant being held at 65 ° C. for 12 hours, and then at 150 ° C.
  • the solid Si-nuclear magnetic resonance spectrum of the cured film which was cured by holding for 3 hours in the region has a peak top position in the region of chemical shift of ⁇ 120 ppm to ⁇ 90 ppm and a full width at half maximum of greater than 5.0 ppm to 12 ppm.
  • the peak top position is in the region of chemical shift of ⁇ 80 ppm to ⁇ 40 ppm and the half width is greater than 5.0 ppm and less than or equal to 12 ppm, and the silanol content of the cured film is
  • the sealing agent for LED devices which is more than 10 mass% and 30 mass% or less.
  • An LED element a sealing layer that covers the LED element, and a wavelength conversion layer that is formed on the sealing layer and includes a transparent resin and phosphor particles, and the sealing layer is the aforementioned
  • An LED device which is a cured film of the sealant for an LED device according to any one of [1] to [3].
  • the sealant for an LED device of the present invention a dense film with little distortion can be obtained. That is, it is possible to obtain a film that hardly causes cracks and has high gas barrier properties. Therefore, if the LED device sealing layer is formed using the LED device sealing agent, the high light extraction efficiency of the LED device can be maintained over a long period of time.
  • LED Device Sealant The LED device sealant of the present invention (hereinafter sometimes simply referred to as “sealant”) is a composition for forming a sealing layer of an LED device described later.
  • the sealant of the present invention includes a polysiloxane compound, a silane coupling agent, and metal oxide fine particles.
  • the sealant may contain an organometallic compound containing a metal element other than Si, a solvent, or the like as necessary.
  • the sealing layer in the conventional LED device contains many organic groups in the film. For this reason, there is a problem that the gas barrier property is not sufficient or deteriorates with time. On the other hand, if the amount of organic groups in the film is reduced, the film is likely to be distorted and cracks are likely to occur. Therefore, it is difficult to form a dense film with little distortion.
  • the cured product of the sealant of the present invention has little distortion despite the small amount of organic groups. This is because the metal oxide fine particles are contained in the sealant of the present invention, so that stress generated when the sealant is cured is relieved by the metal oxide fine particles. Therefore, according to the sealing agent of this invention, a sealing layer with few cracks and high gas-barrier property is obtained.
  • Polysiloxane compound The polysiloxane compound contained in the sealant is obtained by polymerizing a tetrafunctional, trifunctional, or bifunctional silane compound.
  • the polysiloxane compound is obtained, for example, by polymerizing alkoxysilane or aryloxysilane represented by the following general formula (I). Si (OR) n Y 4-n (I)
  • n represents the number of alkoxy groups or aryloxy groups (OR) and is an integer of 2 or more and 4 or less.
  • R each independently represents an alkyl group or a phenyl group, and preferably represents an alkyl group having 1 to 5 carbon atoms or a phenyl group.
  • Y represents a hydrogen atom or a monovalent organic group.
  • the monovalent organic group represented by Y include an aliphatic group having 1 to 1000 carbon atoms, preferably 500 or less, more preferably 100 or less, still more preferably 50 or less, and particularly preferably 6 or less.
  • An alicyclic group, an aromatic group, and an alicyclic aromatic group are included.
  • These monovalent organic groups may be an aliphatic group, an alicyclic group, an aromatic group, or a group in which alicyclic aromatic groups are bonded to each other through a linking group.
  • the linking group may be an atom such as O, N, or S, or an atomic group containing these.
  • the monovalent organic group represented by Y may have a substituent.
  • substituents include, for example, halogen atoms such as F, Cl, Br, and I; vinyl group, methacryloxy group, acryloxy group, styryl group, mercapto group, epoxy group, epoxycyclohexyl group, glycidoxy group, amino group, cyano group
  • An organic functional group such as a group, a nitro group, a sulfonic acid group, a carboxy group, a hydroxy group, an acyl group, an alkoxy group, an imino group, and a phenyl group.
  • the alkoxysilane or aryloxysilane represented by the general formula (I) can be, for example, the following tetrafunctional silane compound, trifunctional silane compound, bifunctional silane compound, or the like.
  • tetrafunctional silane compounds include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, tetrapentyloxysilane, tetraphenyloxysilane, trimethoxymonoethoxysilane, dimethoxydiethoxysilane, triethoxymono Methoxysilane, trimethoxymonopropoxysilane, monomethoxytributoxysilane, monomethoxytripentyloxysilane, monomethoxytriphenyloxysilane, dimethoxydipropoxysilane, tripropoxymonomethoxysilane, trimethoxymonobutoxysilane, dimethoxydibutoxysilane , Triethoxymonopropoxysilane, diethoxydipropoxysilane, tributoxymonopropoxysilane, dimethoxymonoethoxy
  • trifunctional silane compounds include trimethoxysilane, triethoxysilane, tripropoxysilane, tripentyloxysilane, triphenyloxysilane, dimethoxymonoethoxysilane, diethoxymonomethoxysilane, dipropoxymonomethoxysilane, di Propoxymonoethoxysilane, dipentyloxylmonomethoxysilane, dipentyloxymonoethoxysilane, dipentyloxymonopropoxysilane, diphenyloxylmonomethoxysilane, diphenyloxymonoethoxysilane, diphenyloxymonopropoxysilane, methoxyethoxypropoxysilane, monopropoxydimethoxysilane Monopropoxydiethoxysilane, monobutoxydimethoxysilane, monopentyloxydiethoxysilane, monophenyl Monohydrosilane compounds such as ruoxydiethoxysi
  • bifunctional silane compound examples include dimethoxysilane, diethoxysilane, dipropoxysilane, dipentyloxysilane, diphenyloxysilane, methoxyethoxysilane, methoxypropoxysilane, methoxypentyloxysilane, methoxyphenyloxysilane, ethoxypropoxy.
  • the polysiloxane compound is prepared by hydrolyzing the above alkoxysilane or aryloxysilane in the presence of an acid catalyst, water, and an organic solvent, followed by a condensation reaction.
  • the polysiloxane compound may be obtained by previously mixing a tetrafunctional silane compound, a trifunctional silane compound, or a bifunctional silane compound at a desired molar ratio, and randomly polymerizing the compound.
  • a block copolymer may be prepared by polymerizing a trifunctional silane compound or a bifunctional silane compound alone to some extent to form an oligomer, and then polymerizing only the tetrafunctional silane compound to the oligomer.
  • the ratio of the amount of the tetrafunctional silane compound to the total amount of the bifunctional silane compound, the trifunctional silane compound, and the tetrafunctional silane compound of the polysiloxane compound contained in the sealing agent is preferably 20% by mass or more, and more preferably. Is 25 to 70% by mass, more preferably 30 to 60% by mass. When the ratio of the tetrafunctional silane compound is 20% by mass or more, a film having a high gas barrier property is easily obtained.
  • the polysiloxane compound is more preferably a polymer obtained by polymerizing a tetrafunctional silane compound and a trifunctional silane compound, and particularly preferably a polymer obtained by polymerizing a tetrafunctional silane compound and a trifunctional monomethylsilane compound.
  • the polymerization ratio between the tetrafunctional silane compound and the trifunctional silane compound is not limited, but the polymerization molar ratio is preferably 3: 7 to 7: 3, and more preferably 4: 6 to 6: 4.
  • the mass average molecular weight of the polysiloxane compound is preferably 1000 to 3000, more preferably 1200 to 2700, and further preferably 1500 to 2000. When the mass average molecular weight of the polysiloxane compound is in the above range, the viscosity of the sealant tends to fall within a desired range.
  • the mass average molecular weight of the polysiloxane compound is a value (polystyrene conversion) measured by gel permeation chromatography.
  • the mass average molecular weight of the polysiloxane compound is adjusted by reaction conditions (particularly reaction time) at the time of preparing the polysiloxane compound.
  • the polysiloxane compound is preferably contained in the sealing agent in an amount of 0.1 to 50% by mass. Further, it is preferably contained in the solid content of the sealant (all components excluding the solvent) in an amount of 50 to 90% by mass, more preferably 60 to 80% by mass. When the amount of the polysiloxane compound is within the above range, the gas barrier property of the sealing layer obtained by curing the sealing agent is increased.
  • Silane coupling agent contains a silane coupling agent
  • the sealing layer obtained by curing the sealing agent and the LED element especially a wiring or a reflective layer made of a metal
  • the kind of silane coupling agent is not particularly limited, and may be a known silane coupling agent.
  • Silane coupling agents include vinyl group-containing silane coupling agents such as vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, vinyltris (2-methoxyethoxy) silane, and vinyltrichlorosilane; ⁇ -glycidoxypropyltri Methoxysilane, ⁇ -glycidoxypropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ - (3,4 Epoxycyclohexyl) Epoxy group-containing silane coupling agents such as ethyltriethoxysilane; 3-methacryloxypropyltrimethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, and the like Sily
  • the silane coupling agent is preferably contained in the solid content of the sealing agent in an amount of 0.01 to 10% by mass, preferably 0.1 to 5.0% by mass.
  • the silane coupling agent is contained in an amount of 0.01% by mass or more, the adhesion between the sealing layer and the LED element is likely to increase.
  • the sealant contains metal oxide fine particles. As described above, when the metal oxide fine particles are contained in the sealant, the stress generated when the polysiloxane compound is polymerized is easily relieved, and the sealing layer obtained by curing the sealant has cracks. It becomes difficult to occur.
  • the type of metal oxide fine particles is not particularly limited, but the refractive index of the metal oxide fine particles is preferably higher than the refractive index of the polysiloxane compound.
  • the refractive index of the sealing layer obtained by curing the sealing agent is increased.
  • the refractive index of an LED element (LED chip) is considerably higher than that of a polysiloxane compound. Therefore, when the refractive index of the sealing layer is increased by the metal oxide fine particles; the refractive index difference between the LED element and the sealing layer is reduced, and the reflection of light at the interface between the LED element and the sealing layer is reduced. That is, the light extraction efficiency of the LED device is increased.
  • the refractive index of the metal oxide fine particles is preferably 1.8 or more, and more preferably 2.0 or more.
  • the refractive index of the metal oxide fine particles is measured by the Becke line method.
  • the average primary particle size of the metal oxide fine particles is preferably 1 to 100 nm, more preferably 1 to 80 nm, and still more preferably 1 to 50 nm. When the average primary particle size of the metal oxide fine particles is within such a range, the above-described crack suppressing effect and refractive index improving effect are easily obtained.
  • the average primary particle size of the metal oxide fine particles is measured by a Coulter counter method.
  • the metal oxide fine particles include zirconium oxide, titanium oxide, tin oxide, cerium oxide, niobium oxide, and zinc oxide. Among these, since the refractive index is high, the metal oxide fine particles are preferably zirconium oxide fine particles.
  • the sealant may contain only one kind of metal oxide fine particles or two or more kinds.
  • the metal oxide fine particles may have a surface treated with a silane coupling agent or a titanium coupling agent.
  • the surface-treated metal oxide fine particles are easily dispersed uniformly in the sealant.
  • the metal oxide fine particles are preferably contained in the solid content of the sealant in an amount of 10 to 60% by mass, more preferably 15 to 45% by mass, and still more preferably 20 to 30% by mass.
  • the amount of the metal oxide fine particles is 10% by mass or more, the above-described crack suppressing effect is sufficiently obtained, and the refractive index improving effect is also sufficiently obtained.
  • fine-particles since the polysiloxane compound (binder) is fully contained, the intensity
  • the sealant may contain an organometallic compound containing a metal element other than Si.
  • the organometallic compound can be a metal alkoxide or metal chelate of a divalent or higher metal element other than Si.
  • the metal alkoxide or metal chelate forms a metalloxane bond with a polysiloxane compound, a LED chip, or a hydroxyl group present on the surface of the wavelength conversion layer.
  • the metalloxane bond is very strong.
  • the adhesion between the sealing layer obtained by curing the metal alkoxide or the metal chelate and the LED chip and the adhesion between the sealing layer and the wavelength conversion layer are enhanced.
  • a part of the metal alkoxide or metal chelate forms a nano-sized cluster composed of a metalloxane bond in the sealing layer obtained by curing the sealing agent.
  • This cluster functions as a photocatalyst for converting hydrogen sulfide gas having high metal corrosivity into sulfur dioxide gas having low corrosivity. Therefore, when a metal alkoxide or a metal chelate is contained in the sealant, the resistance to sulfide gas of the LED device is also increased.
  • the refractive index of the cured product of the organometallic compound is preferably 1.48 or more, more preferably 1.50 to 1.90, still more preferably 1.55 to 1.80.
  • the refractive index of the organometallic compound is 1.48 or more, the refractive index of the sealing layer obtained by curing the sealing agent tends to increase.
  • the refractive index is measured on a film cured by holding the organometallic compound at 65 ° C. for 12 hours and then holding at 150 ° C. for 3 hours.
  • the refractive index of the cured product of the organometallic compound is measured by the Becke line method or the like.
  • the metal element contained in the metal alkoxide or metal chelate is preferably a group 4 or group 13 metal element other than the Si element, and a compound represented by the following general formula (III) is preferable.
  • M m + X n Y mn (III) M represents a Group 4 or Group 13 metal element, and m represents the valence (3 or 4) of M.
  • X represents a hydrolyzable group, and n represents the number of X groups (an integer of 2 or more and 4 or less). However, m ⁇ n. Y represents a monovalent organic group.
  • the group 4 or group 13 metal element represented by M is preferably aluminum, zirconium, or titanium, and more preferably zirconium.
  • the cured product of zirconium alkoxide or chelate does not have an absorption wavelength in the emission wavelength region of the general LED chip 3 (particularly blue light (wavelength 420 to 485 nm)). That is, the light emitted from the LED chip is hardly absorbed by the cured product of zirconium alkoxide or chelate.
  • the hydrolyzable group represented by X may be a group that is hydrolyzed with water to form a hydroxyl group.
  • the hydrolyzable group include a lower alkoxy group having 1 to 5 carbon atoms, an acetoxy group, a butanoxime group, a chloro group and the like.
  • all the groups represented by X may be the same group or different groups.
  • the hydrolyzable group represented by X is hydrolyzed and released. Therefore, a group that is neutral and light-boiling is preferable after the hydrolysis. Therefore, the group represented by X is preferably a lower alkoxy group having 1 to 5 carbon atoms, more preferably a methoxy group or an ethoxy group.
  • the monovalent organic group represented by Y can be a monovalent organic group contained in a general silane coupling agent.
  • the organic group represented by Y may be an aliphatic group, an alicyclic group, an aromatic group, or a group in which an alicyclic aromatic group is bonded via a linking group.
  • the linking group may be an atom such as O, N, or S, or an atomic group containing these.
  • the organic group represented by Y may have a substituent.
  • substituents include halogen atoms such as F, Cl, Br, and I; vinyl group, methacryloxy group, acryloxy group, styryl group, mercapto group, epoxy group, epoxycyclohexyl group, glycidoxy group, amino group, cyano group, Organic groups such as nitro group, sulfonic acid group, carboxy group, hydroxy group, acyl group, alkoxy group, imino group and phenyl group are included.
  • metal alkoxide or metal chelate of aluminum represented by the general formula (III) include aluminum triisopropoxide, aluminum tri-n-butoxide, aluminum tri-t-butoxide, aluminum triethoxide and the like.
  • metal alkoxide or metal chelate of zirconium represented by the general formula (III) include zirconium tetramethoxide, zirconium tetraethoxide, zirconium tetra n-propoxide, zirconium tetra i-propoxide, zirconium tetra n- Examples include butoxide, zirconium tetra-i-butoxide, zirconium tetra-t-butoxide, zirconium dimethacrylate dibutoxide, dibutoxyzirconium bis (ethylacetoacetate) and the like.
  • metal alkoxide or metal chelate of the titanium element represented by the general formula (III) include titanium tetraisopropoxide, titanium tetra n-butoxide, titanium tetra i-butoxide, titanium methacrylate triisopropoxide, titanium tetra Examples include methoxypropoxide, titanium tetra n-propoxide, titanium tetraethoxide, titanium lactate, titanium bis (ethylhexoxy) bis (2-ethyl-3-hydroxyhexoxide), titanium acetylacetonate and the like.
  • metal alkoxides or metal chelates exemplified above are a part of commercially available organometallic alkoxides or metal chelates.
  • Metal alkoxides or metal chelates shown in the list of coupling agents and related products in Chapter 9 “Optimum Utilization Technology of Coupling Agents” published by the National Institute of Science and Technology are also applicable to the present invention.
  • the amount of the metal alkoxide or metal chelate (organometallic compound) contained in the sealing agent is preferably 5 to 100 parts by mass, more preferably 8 to 40 parts by mass with respect to 100 parts by mass of the polysiloxane compound. More preferably, it is 10 to 15 parts by mass.
  • the amount of the metal alkoxide or metal chelate is 5 parts by mass or more, the above-described adhesion improving effect is easily obtained.
  • the quantity of a metal alkoxide or a metal chelate is 100 mass parts or less, the preservability of a sealing agent is favorable.
  • the sealing agent contains a solvent as necessary. Any solvent may be used as long as it can dissolve or uniformly disperse the above-described polysiloxane compound and silane coupling agent.
  • the solvent include monohydric alcohols such as methanol, ethanol, propanol and n-butanol; alkyl carboxylic acid esters such as methyl-3-methoxypropionate and ethyl-3-ethoxypropionate; ethylene glycol, diethylene glycol, Polyhydric alcohols such as propylene glycol, glycerin, trimethylolpropane, hexanetriol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol mono Propyl ether, diethylene glycol monobutyl ether, propylene glycol mono Mono Mono Mono
  • the solvent preferably contains water.
  • the amount of water is preferably 0.1 to 20% by mass, more preferably 0.1 to 10% by mass, based on the total mass of the sealant. If the amount of water contained in the sealant is too small, the polysiloxane compound may not be sufficiently hydrolyzed when forming the sealing layer of the LED device. On the other hand, when the amount of water contained in the sealant is excessive, the polysiloxane compound is hydrolyzed during storage of the sealant, and the sealant may be gelled.
  • the solvent preferably contains an organic solvent having a boiling point of 150 ° C. or higher (for example, ethylene glycol, propylene glycol, etc.).
  • an organic solvent having a boiling point of 150 ° C. or higher is contained, the storage stability of the sealant is increased. In addition, the solvent is less likely to volatilize in the coating apparatus, and the sealing agent can be applied stably.
  • the boiling point of the solvent contained in the sealant is preferably 250 ° C. or lower. When the boiling point of the solvent exceeds 250 ° C., the drying property of the sealant decreases.
  • Si-nuclear magnetic resonance spectrum has a peak where the peak top position is in the region of chemical shift of ⁇ 80 ppm to ⁇ 40 ppm and the half width is greater than 5.0 ppm and not more than 12 ppm.
  • Silanol content is 10 More than 30% by mass and less than 30% by mass
  • the silicon atom that forms the cured film of the sealant usually has four oxygen atoms bonded; three oxygen atoms and one non-oxygen atom (carbon atom, etc.) bonded; two oxygen atoms and oxygen There are two bonded atoms.
  • a silicon atom to which four oxygen atoms are bonded is called a Q site.
  • Peaks derived from the Q site (Q n peak group), solid Si- nucleus has a peak top in the region of the chemical shift -120 ⁇ -90 ppm magnetic resonance spectrum, it is observed as a peak of a continuous multimodal .
  • T site A silicon atom to which three oxygen atoms and one atom other than oxygen are bonded is called a T site. Peaks derived from the T site (T n peak group), solid Si- nucleus has a peak top in the region of chemical shift -80 ⁇ -40 ppm magnetic resonance spectrum, is observed as a peak of a continuous multimodal .
  • a silicon atom to which two oxygen atoms and two atoms other than oxygen are bonded is called a D site.
  • the half-width of the Q n peak group is not more than greater than 5.0 ppm 12 ppm, preferably 5.5 ⁇ 12 ppm, more preferably 6.0 to 11 ppm.
  • T n FWHM of peaks is less than or equal to greater than 5.0 ppm 12 ppm, preferably 5.5 ⁇ 12 ppm, more preferably from 6.0 ⁇ 11 ppm. That is, the cured film of the encapsulant has a relatively small half-value width of the Q n peak group and the T n peak group, and a low internal stress.
  • the ratio of the area of the Q n peak group to the total area of the Q n peak group, the T n peak group, and the D n peak group is preferably 10% to 70%, and preferably 30% to 60%. Is more preferable.
  • the area ratio of each peak group is proportional to the composition ratio of each site. Then, the area of the Q n peak group becomes excessive; the words Q site is excessive, the crosslinking density increases, spread distribution of bond angle, half-width tends to spread.
  • the amounts of Q site, T site, and D site are adjusted by the polymerization ratio of the tetrafunctional silane compound, the trifunctional silane compound, and the bifunctional silane compound during polymerization of the polysiloxane compound.
  • the (iii) silanol content of the cured film of the sealant is more than 10% by mass and 30% by mass or less, preferably 11 to 29% by mass, and more preferably 11 to 28% by mass.
  • the adhesion between the sealing layer obtained by curing the sealing agent and the other layers tends to increase.
  • the amount of remaining silanol is too large, the silanols may be dehydrated and condensed over time, and the film may be distorted over time.
  • the silanol content is also adjusted by the ratio of Q site, T site, and D site contained in the cured film.
  • the ratio of T sites or D sites increases, the silanol content tends to decrease.
  • the ratio of the Q site increases, the silanol content tends to increase.
  • the half width and silanol content are calculated by measuring the cured film of the sealant with a solid Si-NMR apparatus.
  • the silanol content is calculated from the ratio of the silanol-derived peak area (usually manifested in a chemical shift of ⁇ 50 to 150 ppm) to the total peak area of the spectrum measured with a solid-state Si-NMR apparatus.
  • the above-mentioned sealing agent has the LED element 10, the sealing layer 5, and the wavelength conversion layer 6 formed on the sealing layer 5 which are shown by the schematic sectional drawing of FIG.1 and FIG.2, for example. It is used for forming the sealing layer 5 of the LED device 100.
  • the LED element 10 may include a package 1, an LED chip 2, a metal reflective layer 3, and the like.
  • Package 1 may be, for example, a liquid crystal polymer or ceramic, but the material is not particularly limited as long as it has insulating properties and heat resistance.
  • the shape is not particularly limited, and may be concave as shown in FIG. 1, for example, or may be flat as shown in FIG.
  • the emission wavelength of the LED chip 2 is not particularly limited.
  • the LED chip 2 may emit blue light (light of about 420 nm to 485 nm), or may emit ultraviolet light, for example.
  • the configuration of the LED chip 2 is not particularly limited.
  • the LED chip 2 includes an n-GaN compound semiconductor layer (cladding layer), an InGaN compound semiconductor layer (light emitting layer), and a p-GaN compound semiconductor layer (cladding layer). Layer) and a transparent electrode layer.
  • the LED chip 2 may have a light emitting surface of 200 to 300 ⁇ m ⁇ 200 to 300 ⁇ m, for example.
  • the height of the LED chip 2 is usually about 50 to 200 ⁇ m.
  • the metal reflection layer 3 is made of a metal such as silver, and reflects light emitted from the LED chip 2 toward the light extraction surface.
  • the metal reflection layer 3 may also serve as a metal wiring that supplies current to the LED chip 2.
  • the LED chip 2 may be electrically connected to the metal electrode (metal reflective layer) 3 via a wire 4, and as shown in FIG. 2, the LED chip 2 is a protruding electrode.
  • the metal electrode (metal reflective layer 3) may be electrically connected via 7.
  • a mode in which the LED chip 2 is connected to the metal electrode 3 through the wire 4 is referred to as a wire bonding type, and a mode in which the LED chip 2 is connected to the metal electrode (metal reflective layer) 3 through the protruding electrode 7 is referred to as a flip chip type.
  • LED device 100 shown in FIGS. 1 and 2 only one LED chip 2 is disposed in the package 1; however, a plurality of LED chips 2 may be disposed in the package 1.
  • the sealing layer 5 is made of a cured film of the above-described sealing agent.
  • the sealing layer 5 serves to protect the LED chip 2 and the metal reflective layer 3 of the LED element 10 from hydrogen sulfide gas or the like.
  • the thickness of the sealing layer 5 is preferably 0.3 to 10 ⁇ m, more preferably 0.5 to 5 ⁇ m, still more preferably 0.7 to 2 ⁇ m. If the thickness of the sealing layer 5 is less than 0.3 ⁇ m, sufficient gas barrier properties may not be obtained. On the other hand, when the thickness of the sealing layer 5 exceeds 10 ⁇ m, cracks are likely to occur in the sealing layer 5, and the strength of the sealing layer 5 tends to decrease.
  • the thickness of the sealing layer 5 means the maximum thickness of the sealing layer 5 disposed on the LED chip 2 described above. The layer thickness is measured using a laser holo gauge.
  • the wavelength conversion layer 6 is a layer that converts light of a specific wavelength emitted from the LED chip 2 into light of another specific wavelength.
  • the wavelength conversion layer 6 is a layer in which phosphor particles are dispersed in a transparent resin.
  • the phosphor particles are excited by the wavelength of light emitted from the LED chip 2 (excitation wavelength), and emit fluorescent light having a wavelength different from the excitation wavelength.
  • excitation wavelength the wavelength of light emitted from the LED chip 2
  • fluorescent light having a wavelength different from the excitation wavelength.
  • a white LED device can be obtained by adding phosphor particles that emit yellow fluorescence to the wavelength conversion layer 6.
  • the phosphor particles that emit yellow fluorescence include YAG (yttrium, aluminum, garnet) phosphors.
  • the YAG phosphor emits yellow (wavelength 550 nm to 650 nm) fluorescence using blue light (wavelength 420 nm to 485 nm) emitted from the blue LED element as excitation light.
  • the phosphor particles are, for example, 1) an appropriate amount of a fluoride such as ammonium fluoride is mixed and pressed into a mixed raw material having a predetermined composition to obtain a molded body, and 2) the obtained molded body is put into a crucible. It is manufactured by packing and firing in air at a temperature range of 1350 to 1450 ° C. for 2 to 5 hours to obtain a sintered body.
  • a fluoride such as ammonium fluoride
  • a mixed raw material having a predetermined composition can be obtained by sufficiently mixing oxides of Y, Gd, Ce, Sm, Al, La, Ga, or compounds that easily become oxides at high temperatures in a stoichiometric ratio. it can.
  • the mixed raw material having a predetermined composition includes a coprecipitation oxide obtained by coprecipitation with oxalic acid in a solution in which a rare earth element of Y, Gd, Ce, and Sm is dissolved in acid at a stoichiometric ratio, and aluminum oxide It can be obtained by mixing with gallium oxide.
  • the kind of the phosphor particles is not limited to the YAG phosphor, and may be other phosphor particles such as a non-garnet phosphor not containing Ce.
  • the average primary particle diameter of the phosphor particles is preferably 1 ⁇ m or more and 50 ⁇ m or less, and more preferably 10 ⁇ m or less.
  • the larger the particle size of the phosphor particles the higher the light emission efficiency (wavelength conversion efficiency).
  • the particle size of the phosphor particles is too large, the adhesion between the phosphor particles and the transparent resin is lowered, and the strength of the wavelength conversion layer is lowered.
  • the average primary particle diameter of the phosphor particles is measured by, for example, a Coulter counter method.
  • the amount of phosphor particles contained in the wavelength conversion layer 6 is preferably 5 to 15% by mass, more preferably 9 to 11% by mass, based on the total amount of the wavelength conversion layer.
  • the transparent resin contained in the wavelength conversion layer 6 is not particularly limited as long as it is a thermosetting resin transparent to visible light.
  • transparent resins include epoxy-modified silicone resins, alkyd-modified silicone resins, acrylic-modified silicone resins, polyester-modified silicone resins, phenyl silicone resins and other silicone resins; epoxy resins; acrylic resins; methacrylic resins; transparent resins such as urethane resins Etc. are included.
  • a phenyl silicone resin is particularly preferable. When the transparent resin is a phenyl silicone resin, the moisture resistance of the LED device 100 is increased.
  • the thickness of the wavelength conversion layer 6 is usually preferably 25 ⁇ m to 5 mm, more preferably 0.5 to 3 mm. If the wavelength conversion layer is too thick, the phosphor particle concentration in the wavelength conversion layer becomes excessively low, and the phosphor particles may not be uniformly dispersed.
  • the manufacturing method of the LED device of this invention includes the following three processes. 1) A step of preparing an LED element including an LED chip and a metal reflective layer 2) A step of applying the above-mentioned sealing agent so as to cover the LED chip and the metal reflective layer, and forming a sealing layer 3) The sealing A step of forming a wavelength conversion layer containing phosphor particles and a transparent resin on the stop layer
  • an LED element is prepared.
  • it may be a step of electrically connecting a metal reflective layer formed on a package and an LED chip and fixing the LED chip to the package.
  • the method for connecting the metal reflecting portion and the LED chip and the method for fixing the LED chip to the package are not particularly limited, and may be the same as a conventionally known method.
  • Sealing layer forming step The sealing agent described above is applied so as to cover the LED chip and the metal reflective layer of the LED element.
  • Covering the LED chip and the metal reflective layer refers to covering at least the light emitting surface of the LED chip and the metal reflective layer. For example, as shown in FIG. It does not have to be coated.
  • the means for applying the sealant is not particularly limited.
  • a conventionally known method such as a bar coating method, a spin coating method, a spray coating method, a dispensing method, a jet dispensing method, or the like can be used.
  • a thin sealing layer can be formed.
  • the polysiloxane compound After applying the sealing agent, the polysiloxane compound is dried and cured by heating the coating film to 100 ° C. or higher, preferably 150 to 300 ° C. If the heating temperature is less than 100 ° C., water generated during dehydration condensation of the polysiloxane compound cannot be sufficiently removed, and the gas barrier property of the sealing layer may be lowered.
  • Wavelength conversion layer forming step A wavelength conversion layer is formed on the aforementioned sealing layer.
  • the wavelength conversion layer is obtained by preparing a composition for forming a wavelength conversion layer containing a transparent resin or a precursor thereof and phosphor particles, and applying and curing the composition on the light transmitting layer.
  • the wavelength conversion layer forming composition includes a transparent resin or a precursor thereof and phosphor particles.
  • a solvent, various additives, etc. may be contained as needed.
  • the solvent is not particularly limited as long as it can dissolve the transparent resin or its precursor.
  • the solvent can be, for example, hydrocarbons such as toluene and xylene; ketones such as acetone and methyl ethyl ketone; ethers such as diethyl ether and tetrahydrofuran; esters such as propylene glycol monomethyl ether acetate and ethyl acetate;
  • the mixing of the composition for forming a wavelength conversion layer can be performed, for example, with a stirring mill, a blade kneading stirring device, a thin film swirl type dispersing machine, or the like. By adjusting the stirring conditions, it is possible to suppress the precipitation of the phosphor particles in the wavelength conversion layer forming composition.
  • the method for applying the wavelength conversion layer forming composition is not particularly limited.
  • the wavelength conversion layer forming composition can be applied by a general application apparatus such as the aforementioned dispenser.
  • the curing method and curing conditions of the wavelength conversion layer forming composition are appropriately selected depending on the type of the transparent resin.
  • An example of the curing method is heat curing.
  • ⁇ Preparation of phosphor particles The method for preparing phosphor particles used in Examples and Comparative Examples is shown.
  • As the phosphor material 7.41 g of Y 2 O 3 , 4.01 g of Gd 2 O 3 , 0.63 g of CeO 2 , and 7.77 g of Al 2 O 3 were sufficiently mixed.
  • An appropriate amount of ammonium fluoride was mixed as a flux to this and filled in an aluminum crucible.
  • the packing is fired at a temperature range of 1350 to 1450 ° C. for 2 to 5 hours in a reducing atmosphere in which hydrogen-containing nitrogen gas is circulated to obtain a fired product ((Y 0.72 Gd 0.24 ) 3 Al 5 O 12 : Ce 0.04 ).
  • the obtained fired product was pulverized, washed, separated, and dried to obtain yellow phosphor particles having an average particle diameter of about 10 ⁇ m.
  • the emission wavelength of excitation light with a wavelength of 465 nm was measured, it had a peak wavelength at a wavelength of approximately 570 nm.
  • a polysiloxane compound-containing solution, 1 part by mass of a silane coupling agent (3-glycidoxypropyltrimethoxysilane), and 10 parts by mass of a slurry in which ZrO 2 fine particles are dispersed (TECNADIS-ZR-220: manufactured by TECNAN) It mixed and the sealing agent for LED devices was prepared.
  • the polysiloxane compound-containing solution was added so that the amount of the polysiloxane compound was 89 parts by mass.
  • An aromatic polyamide circular package (substrate) (opening diameter 3 mm, bottom diameter 2 mm, opening wall inclination angle 60 °) was prepared. Wiring made of silver plating is formed on the bottom surface of the package.
  • One blue LED chip (cuboid shape: 200 ⁇ m ⁇ 300 ⁇ m ⁇ 100 ⁇ m) was fixed to the center of the opening of the circular package with a die-bonding adhesive. Furthermore, the anode electrode and the cathode electrode of the LED chip were each connected to the electrode with a wire (gold wire) to obtain an LED element.
  • the aforementioned sealing agent for LED device was applied with a spray device so as to cover the LED chip and the wiring of the LED element, and dried at 150 ° C. for 1 hour to form a sealing layer.
  • the thickness of the sealing layer was 0.9 ⁇ m.
  • methyl silicone manufactured by Shin-Etsu Chemical Co., Ltd .: KER-2500
  • the wavelength conversion layer composition was applied onto the sealing layer with a dispenser and heated at 150 ° C. for 1 hour to form a wavelength conversion layer; the LED element, the sealing layer, and the wavelength conversion layer were laminated. An LED device was obtained.
  • the thickness of the wavelength conversion layer was 1000 ⁇ m.
  • Example 2 An LED device encapsulant was prepared in the same manner as in Example 1 except that the silane coupling agent was changed to 3-methacryloxypropyltrimethoxysilane to produce an LED device.
  • Example 3 An LED device sealant was prepared in the same manner as in Example 1 except that the silane coupling agent was changed to 3-aminopropyltriethoxysilane, and an LED device was produced.
  • Example 4 An LED device encapsulant was prepared in the same manner as in Example 1 except that the silane coupling agent was changed to 3-mercaptopropylmethyldimethoxysilane to produce an LED device.
  • a solution containing a polysiloxane compound, 10 parts by mass of a silane coupling agent (X-41-1810: manufactured by Shin-Etsu Chemical Co., Ltd.), 10 parts by mass of a slurry in which TiO 2 fine particles are dispersed (TECNADIS-TI-220: manufactured by TECNAN) Were mixed to prepare an LED device sealant.
  • the polysiloxane compound-containing solution was added so that the amount of the polysiloxane compound was 80 parts by mass.
  • the aforementioned sealing agent for LED device was applied with a spray device so as to cover the LED chip and the wiring of the LED element, and dried at 150 ° C. for 1 hour to form a sealing layer. Then, the composition for wavelength conversion layers was formed similarly to Example 1, and the LED device was obtained.
  • Example 6 In the same manner as in Example 5, a polysiloxane compound-containing solution was prepared. 10 parts by mass of the polysiloxane-containing solution, 30 parts by mass of a silane coupling agent (X-41-1053: manufactured by Shin-Etsu Chemical Co., Ltd.), and a slurry in which Al 2 O 3 fine particles are dispersed (TECNADIS-AL-220: manufactured by TECNAN) Part and 10 parts by mass of zirconium dimethacrylate dibutoxide were mixed to prepare an LED device sealant. The polysiloxane compound-containing solution was added so that the amount of the polysiloxane compound was 50 parts by mass.
  • a silane coupling agent X-41-1053: manufactured by Shin-Etsu Chemical Co., Ltd.
  • TECNADIS-AL-220 manufactured by TECNAN
  • the aforementioned sealing agent for LED device was applied with a spray device so as to cover the LED chip and the wiring of the LED element, and dried at 150 ° C. for 1 hour to form a sealing layer. Then, the composition for wavelength conversion layers was formed similarly to Example 1, and the LED device was obtained.
  • the refractive index of the cured product of zirconium dimethacrylate dibutoxide was 1.64.
  • the refractive index of the cured product of zirconium dimethacrylate dibutoxide was measured as follows. Zirconium dimethacrylate dibutoxide was cured at 65 ° C. for 12 hours and then at 150 ° C. for 3 hours.
  • the cured product was finely crushed, placed in a refractive index standard solution, and placed on a slide glass. Then, a cover glass was placed, a line (Becke line) shining around the sample fragments was observed with a microscope with a narrowed aperture, and the refractive index was measured.
  • a line Becke line
  • Bifunctional component trifunctional as in Example 1, except that the amount of dimethyldimethoxysilane was 5.2 g, the amount of methyltrimethoxysilane was 17.6 g, and the amount of tetramethoxysilane was 39.4 g.
  • the polysiloxane-containing solution 5 parts by mass of a silane coupling agent (3-chloropropyltrichlorosilane), 20 parts by mass of a slurry in which TiO 2 fine particles are dispersed (TECNADIS-TI-220: manufactured by TECNAN), titanium tetran -5 parts by mass of butoxide was mixed to prepare an LED device sealant.
  • the polysiloxane compound-containing solution was added so that the amount of the polysiloxane compound was 50 parts by mass.
  • the aforementioned sealing agent for LED device was applied with a spray device so as to cover the LED chip and the wiring of the LED element, and dried at 150 ° C. for 1 hour to form a sealing layer. Then, the composition for wavelength conversion layers was formed similarly to Example 1, and the LED device was obtained.
  • the refractive index of the cured product of titanium tetra n-butoxide was 1.70.
  • the refractive index of the cured product of titanium tetra n-butoxide was measured as follows. Titanium tetra n-butoxide was cured at 65 ° C. for 12 hours and then at 150 ° C. for 3 hours. The cured product was finely crushed, placed in a refractive index standard solution, and placed on a slide glass. Then, a cover glass was placed, a line (Becke line) shining around the sample fragments was observed with a microscope with a narrowed aperture, and the refractive index was measured.
  • Example 3 In the same manner as in Example 1, a polysiloxane-containing solution was prepared. An LED device was obtained in the same manner as in Example 1 except that the polysiloxane-containing solution was applied by a spray device so as to cover the LED chip and the wiring of the LED element.
  • Example 4 In the same manner as in Example 1, a polysiloxane-containing solution was prepared. The polysiloxane-containing solution and 5 parts by mass of a silane coupling agent (aminopropyltrimethoxysilane) were mixed to prepare an LED device sealing agent. The polysiloxane compound-containing solution was added so that the amount of the polysiloxane compound was 95 parts by mass.
  • a silane coupling agent aminopropyltrimethoxysilane
  • the aforementioned sealing agent for LED device was applied with a spray device so as to cover the LED chip and the wiring of the LED element, and dried at 150 ° C. for 1 hour to form a sealing layer. Then, the composition for wavelength conversion layers was formed similarly to Example 1, and the LED device was obtained.
  • Difunctional component Trifunctional component: Tetrafunctional component As in Example 1, except that the amount of dimethyldimethoxysilane was 25.9 g, the amount of methyltrimethoxysilane was 17.6 g, and the amount of tetramethoxysilane was 13.1 g.
  • a polysiloxane-containing solution containing a polysiloxane compound (polymerization molar ratio) 5: 3: 2 was obtained.
  • LED was applied in the same manner as in Example 1 except that the polysiloxane-containing solution was applied with a spray device so as to cover the LED chip and the wiring of the LED element and dried at 150 ° C. for 1 hour to form a sealing layer. Got the device.
  • the half-value width, and the chemical shift -80ppm or more -40ppm peaks present in the following areas of the peaks present in the following areas chemical shift -120ppm or -90 ppm (Q n peak group) T
  • the half width of ( n peak group) was determined.
  • the ratio of the peak area derived from silanol to the total peak area was determined, and the silanol content (%) was determined.
  • ⁇ Heat heat resistance evaluation> The LED devices fabricated in each example and comparative example were stored for 1000 hours in an environment of 85 ° C. and humidity of 85% Rh.
  • the total luminous flux value before and after the test was measured, and the ratio of the total luminous flux value after the test to the total luminous flux value before the test was calculated.
  • the total luminous flux was measured with a spectral radiance meter (CS-2000, manufactured by Konica Minolta Sensing).
  • the bond angle distortion (half width) was small because many organic groups derived from the trifunctional silane compound remained in the film and sufficient siloxane bonds were not formed.
  • the crosslinking density was low and the film was not dense, the resistance to sulfidation and heat-and-moisture resistance were low.
  • the LED device manufactured using the sealant for an LED device of the present invention has high gas barrier properties and light extraction properties. Therefore, both can be applied to indoor and outdoor lighting devices.

Abstract

The present invention addresses the problem of providing a sealant for a light-emitting diode (LED) device, and an LED device using the same, that has low deformation and can form a compact film. In order to solve this problem, a sealant for an LED device is provided that comprises a polysiloxane compound, a silane coupling agent, and metal oxide fine particles. The solid silicon nuclear magnetic resonance spectrum of a cured film, cured by holding the sealant for an LED device at 65°C for twelve hours and then at 150°C for three hours, has a peak in which the peak top position is in a region where a chemical shift is in the range −120 ppm to −90 ppm and in which a half value width is greater than 5.0 ppm and no more than 12 ppm, and a peak in which the peak top position is in a region where a chemical shift is in the range −80 ppm to −40 ppm and a half value width is greater than 5.0 ppm and no more than 12 ppm, and the silanol content of the cured film is greater than 10% by mass and no more than 30% by mass.

Description

LED装置用封止剤、及びこれを用いたLED装置Sealant for LED device and LED device using the same
 本発明はLED装置用封止剤、及びこれを用いたLED装置に関する。 The present invention relates to an LED device sealant and an LED device using the same.
 近年、窒化ガリウム(GaN)系の青色LED(Light Emitting Diode:発光ダイオード)チップの近傍に、YAG蛍光体等の蛍光体を配置した白色LED装置が提案されている。当該白色LED装置では、青色LEDチップが出射する青色光と、青色光を受けて蛍光体が発する黄色光とを混色して白色光を得る。また、青色LEDチップの近傍に各種蛍光体を配置した白色LED装置も開発されている。当該白色LED装置では、青色LEDチップが出射する青色光と、青色光を受けて蛍光体が出射する赤色光や緑色光等を混色して白色光を得る。 Recently, a white LED device in which a phosphor such as a YAG phosphor is arranged in the vicinity of a gallium nitride (GaN) blue LED (Light Emitting Diode) chip has been proposed. In the white LED device, the blue light emitted from the blue LED chip and the yellow light emitted from the phosphor in response to the blue light are mixed to obtain white light. A white LED device in which various phosphors are arranged in the vicinity of the blue LED chip has also been developed. In the white LED device, white light is obtained by mixing blue light emitted from the blue LED chip and red light, green light, or the like emitted from the phosphor upon receiving the blue light.
 一般的な白色LED装置では、LEDチップやその実装部を、透明樹脂に蛍光体粒子を分散させた波長変換層で被覆している(例えば特許文献1)。しかし、透明樹脂は高いガス透過性を有する。そのため、硫化ガスや水分を含む環境下で白色LED装置を使用すると、LED素子の金属配線や光反射面が劣化して、LED装置からの光取り出し効率が低下するという問題があった。 In a general white LED device, an LED chip and its mounting part are covered with a wavelength conversion layer in which phosphor particles are dispersed in a transparent resin (for example, Patent Document 1). However, the transparent resin has high gas permeability. For this reason, when the white LED device is used in an environment containing sulfur gas or moisture, there is a problem that the metal wiring and the light reflecting surface of the LED element are deteriorated and the light extraction efficiency from the LED device is lowered.
 このような問題に対し、LED素子と波長変換層との間に、硬化性樹脂材料等からなるバリア層を形成することが提案されている(特許文献1)。また、LED素子と波長変換層との間に、テトラアルコキシシランやトリアルコキシビニルシラン等の重合体からなるバリア層を形成することも提案されている(特許文献2)。さらに、4官能アルコキシシラン、3官能アルコキシシラン、及び2官能アルコキシシランの層内における組成比を変化させたバリア層等も提案されている(特許文献3)。 For such problems, it has been proposed to form a barrier layer made of a curable resin material or the like between the LED element and the wavelength conversion layer (Patent Document 1). It has also been proposed to form a barrier layer made of a polymer such as tetraalkoxysilane or trialkoxyvinylsilane between the LED element and the wavelength conversion layer (Patent Document 2). Furthermore, a barrier layer in which the composition ratio in the layer of tetrafunctional alkoxysilane, trifunctional alkoxysilane, and bifunctional alkoxysilane is changed has also been proposed (Patent Document 3).
 一方、LEDチップと波長変換層との界面での反射を抑制するため、主に2官能及び3官能のシラン化合物の重合体からなる封止材をLEDチップと波長変換層との間に形成することも提案されている(特許文献4)。 On the other hand, in order to suppress reflection at the interface between the LED chip and the wavelength conversion layer, a sealing material mainly composed of a polymer of a bifunctional and trifunctional silane compound is formed between the LED chip and the wavelength conversion layer. This has also been proposed (Patent Document 4).
特開2011-096842号公報JP 2011-096842 A 特開2012-153827号公報JP 2012-1553827 A 特開2012-156384号公報JP 2012-156384 A 特開2007-112975号公報Japanese Patent Laid-Open No. 2007-112975
 しかし、特許文献1のバリア層は樹脂からなるため、ガスバリア性が十分でないとの問題があった。また、特許文献2や特許文献3のバリア層は膜中に有機基が多量に存在するため、熱や光によってバリア層が経時で劣化する恐れがあった。また、特許文献4の封止材も、膜中に有機基が多量に存在する。そのため、ガスバリア性が低く、経時でLED装置の光取り出し効率が低下するという問題があった。 However, since the barrier layer of Patent Document 1 is made of resin, there is a problem that the gas barrier property is not sufficient. Further, since the barrier layers of Patent Document 2 and Patent Document 3 have a large amount of organic groups in the film, the barrier layer may be deteriorated with time by heat or light. Also, the sealing material of Patent Document 4 has a large amount of organic groups in the film. Therefore, there is a problem that the gas barrier property is low and the light extraction efficiency of the LED device is lowered with time.
 本発明は、上述の課題に鑑みてなされたものである。すなわち、本発明の目的は、歪みが少なく、かつ緻密な膜を形成可能なLED装置用封止剤、及びこれを用いたLED装置を提供することにある。 The present invention has been made in view of the above-described problems. That is, an object of the present invention is to provide a sealant for an LED device that can form a dense film with little distortion, and an LED device using the same.
 即ち、本発明の第1は、以下のLED装置用封止剤に関する。
 [1]ポリシロキサン化合物と、シランカップリング剤と、金属酸化物微粒子とを含むLED装置用封止剤であって、前記LED装置用封止剤を65℃で12時間保持した後、150℃で3時間保持して硬化した硬化膜の固体Si-核磁気共鳴スペクトルは、ピークトップの位置がケミカルシフト-120ppm以上-90ppm以下の領域にあり、かつ半値幅が5.0ppmより大きく12ppm以下であるピークと、ピークトップの位置がケミカルシフト-80ppm以上-40ppm以下の領域にあり、かつ半値幅が5.0ppmより大きく12ppm以下であるピークと、を有し、前記硬化膜のシラノール含有率が10質量%より多く、30質量%以下である、LED装置用封止剤。
That is, the first aspect of the present invention relates to the following LED device sealant.
[1] An LED device encapsulant comprising a polysiloxane compound, a silane coupling agent, and metal oxide fine particles, the LED device encapsulant being held at 65 ° C. for 12 hours, and then at 150 ° C. The solid Si-nuclear magnetic resonance spectrum of the cured film which was cured by holding for 3 hours in the region has a peak top position in the region of chemical shift of −120 ppm to −90 ppm and a full width at half maximum of greater than 5.0 ppm to 12 ppm. And the peak top position is in the region of chemical shift of −80 ppm to −40 ppm and the half width is greater than 5.0 ppm and less than or equal to 12 ppm, and the silanol content of the cured film is The sealing agent for LED devices which is more than 10 mass% and 30 mass% or less.
 [2]Si以外の金属元素を含む有機金属化合物をさらに含む、[1]に記載のLED装置用封止剤。
 [3]前記有機金属化合物の硬化物の屈折率が1.48以上である、[1]または[2]に記載のLED装置用封止剤。
[2] The sealant for an LED device according to [1], further including an organometallic compound containing a metal element other than Si.
[3] The encapsulant for LED device according to [1] or [2], wherein the refractive index of the cured product of the organometallic compound is 1.48 or more.
 本発明の第2は、以下のLED装置に関する。
 [4]LED素子と、前記LED素子を被覆する封止層と、前記封止層上に形成され、透明樹脂及び蛍光体粒子を含む波長変換層とを有し、前記封止層が、前述の[1]~[3]のいずれかに記載のLED装置用封止剤の硬化膜である、LED装置。
2nd of this invention is related with the following LED apparatuses.
[4] An LED element, a sealing layer that covers the LED element, and a wavelength conversion layer that is formed on the sealing layer and includes a transparent resin and phosphor particles, and the sealing layer is the aforementioned An LED device, which is a cured film of the sealant for an LED device according to any one of [1] to [3].
 本発明のLED装置用封止剤によれば、ひずみが少なく、かつ緻密な膜が得られる。つまり、クラックが生じ難く、かつガスバリア性が高い膜が得られる。したがって、当該LED装置用封止剤を用いてLED装置の封止層を形成すれば、LED装置の高い光取り出し効率を、長期間に亘って維持できる。 According to the sealant for an LED device of the present invention, a dense film with little distortion can be obtained. That is, it is possible to obtain a film that hardly causes cracks and has high gas barrier properties. Therefore, if the LED device sealing layer is formed using the LED device sealing agent, the high light extraction efficiency of the LED device can be maintained over a long period of time.
本発明のLED装置の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the LED apparatus of this invention. 本発明のLED装置の他の例を示す概略断面図である。It is a schematic sectional drawing which shows the other example of the LED apparatus of this invention.
 以下、本発明を詳細に説明するが、本発明は以下の実施の形態に限定されるものではなく、その要旨の範囲内であれば種々に変更して実施することができる。 Hereinafter, the present invention will be described in detail, but the present invention is not limited to the following embodiments, and various modifications can be made within the scope of the gist.
1.LED装置用封止剤
 本発明のLED装置用封止剤(以下、単に「封止剤」と称する場合がある)は、後述のLED装置の封止層を形成するための組成物である。
1. LED Device Sealant The LED device sealant of the present invention (hereinafter sometimes simply referred to as “sealant”) is a composition for forming a sealing layer of an LED device described later.
 本発明の封止剤には、ポリシロキサン化合物、シランカップリング剤、及び金属酸化物微粒子が含まれる。封止剤には、必要に応じてSi以外の金属元素を含む有機金属化合物や溶媒等が含まれてもよい。 The sealant of the present invention includes a polysiloxane compound, a silane coupling agent, and metal oxide fine particles. The sealant may contain an organometallic compound containing a metal element other than Si, a solvent, or the like as necessary.
 前述のように、従来のLED装置における封止層は、膜中に有機基が多く含まれる。そのため、ガスバリア性が十分でなかったり、経時で劣化するという問題があった。一方で、膜中の有機基の量を少なくすると、膜に歪みが生じやすく、クラックが生じやすい。したがって、歪みの少ない緻密な膜の形成は困難であった。 As described above, the sealing layer in the conventional LED device contains many organic groups in the film. For this reason, there is a problem that the gas barrier property is not sufficient or deteriorates with time. On the other hand, if the amount of organic groups in the film is reduced, the film is likely to be distorted and cracks are likely to occur. Therefore, it is difficult to form a dense film with little distortion.
 これに対し、本発明の封止剤の硬化物は、有機基の量が少ないにも関わらず、歪みが少ない。本発明の封止剤には金属酸化物微粒子が含まれるため、封止剤の硬化時に生じる応力が、金属酸化物微粒子によって緩和されるためである。したがって、本発明の封止剤によればクラックの少ない、ガスバリア性の高い封止層が得られる。 In contrast, the cured product of the sealant of the present invention has little distortion despite the small amount of organic groups. This is because the metal oxide fine particles are contained in the sealant of the present invention, so that stress generated when the sealant is cured is relieved by the metal oxide fine particles. Therefore, according to the sealing agent of this invention, a sealing layer with few cracks and high gas-barrier property is obtained.
1-1)ポリシロキサン化合物
 封止剤に含まれるポリシロキサン化合物は、4官能、3官能、または2官能のシラン化合物を重合して得られる。ポリシロキサン化合物は、例えば以下の一般式(I)で表されるアルコキシシランまたはアリールオキシシランを重合して得られる。
 Si(OR)4-n   (I)
1-1) Polysiloxane compound The polysiloxane compound contained in the sealant is obtained by polymerizing a tetrafunctional, trifunctional, or bifunctional silane compound. The polysiloxane compound is obtained, for example, by polymerizing alkoxysilane or aryloxysilane represented by the following general formula (I).
Si (OR) n Y 4-n (I)
 一般式(I)中、nはアルコキシ基またはアリールオキシ基(OR)の数を表し、2以上4以下の整数である。また、Rは、それぞれ独立にアルキル基またはフェニル基を表し、好ましくは炭素数1~5のアルキル基、またはフェニル基を表す。 In general formula (I), n represents the number of alkoxy groups or aryloxy groups (OR) and is an integer of 2 or more and 4 or less. R each independently represents an alkyl group or a phenyl group, and preferably represents an alkyl group having 1 to 5 carbon atoms or a phenyl group.
 上記一般式(I)式中、Yは、水素原子、または1価の有機基を表す。Yで表される1価の有機基の具体例には、炭素数が1~1000、好ましくは500以下、より好ましくは100以下、さらに好ましくは50以下、特に好ましくは6以下の脂肪族基、脂環族基、芳香族基、脂環芳香族基が含まれる。これらの1価の有機基は、連結基を介して、肪族基、脂環族基、芳香族基、または脂環芳香族基同士が結合した基であってもよい。連結基は、O、N、S等の原子またはこれらを含む原子団であってもよい。また、Yで表される1価の有機基は、置換基を有していてもよい。置換基の例には、例えば、F、Cl、Br、I等のハロゲン原子;ビニル基、メタクリロキシ基、アクリロキシ基、スチリル基、メルカプト基、エポキシ基、エポキシシクロヘキシル基、グリシドキシ基、アミノ基、シアノ基、ニトロ基、スルホン酸基、カルボキシ基、ヒドロキシ基、アシル基、アルコキシ基、イミノ基、フェニル基等の有機官能基等が含まれる。 In the general formula (I), Y represents a hydrogen atom or a monovalent organic group. Specific examples of the monovalent organic group represented by Y include an aliphatic group having 1 to 1000 carbon atoms, preferably 500 or less, more preferably 100 or less, still more preferably 50 or less, and particularly preferably 6 or less. An alicyclic group, an aromatic group, and an alicyclic aromatic group are included. These monovalent organic groups may be an aliphatic group, an alicyclic group, an aromatic group, or a group in which alicyclic aromatic groups are bonded to each other through a linking group. The linking group may be an atom such as O, N, or S, or an atomic group containing these. Moreover, the monovalent organic group represented by Y may have a substituent. Examples of the substituent include, for example, halogen atoms such as F, Cl, Br, and I; vinyl group, methacryloxy group, acryloxy group, styryl group, mercapto group, epoxy group, epoxycyclohexyl group, glycidoxy group, amino group, cyano group An organic functional group such as a group, a nitro group, a sulfonic acid group, a carboxy group, a hydroxy group, an acyl group, an alkoxy group, an imino group, and a phenyl group.
 上記一般式(I)で表されるアルコキシシランまたはアリールオキシシランは、例えば以下の4官能のシラン化合物、3官能のシラン化合物、2官能のシラン化合物等でありうる。 The alkoxysilane or aryloxysilane represented by the general formula (I) can be, for example, the following tetrafunctional silane compound, trifunctional silane compound, bifunctional silane compound, or the like.
 4官能のシラン化合物の例には、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン、テトラペンチルオキシシラン、テトラフェニルオキシシラン、トリメトキシモノエトキシシラン、ジメトキシジエトキシシラン、トリエトキシモノメトキシシラン、トリメトキシモノプロポキシシラン、モノメトキシトリブトキシシラン、モノメトキシトリペンチルオキシシラン、モノメトキシトリフェニルオキシシラン、ジメトキシジプロポキシシラン、トリプロポキシモノメトキシシラン、トリメトキシモノブトキシシラン、ジメトキシジブトキシシラン、トリエトキシモノプロポキシシラン、ジエトキシジプロポキシシラン、トリブトキシモノプロポキシシラン、ジメトキシモノエトキシモノブトキシシラン、ジエトキシモノメトキシモノブトキシシラン、ジエトキシモノプロポキシモノブトキシシラン、ジプロポキシモノメトキシモノエトキシシラン、ジプロポキシモノメトキシモノブトキシシラン、ジプロポキシモノエトキシモノブトキシシラン、ジブトキシモノメトキシモノエトキシシラン、ジブトキシモノエトキシモノプロポキシシラン、モノメトキシモノエトキシモノプロポキシモノブトキシシランなどのテトラアルコキシシラン等が含まれる。これらの中でもテトラメトキシシラン、テトラエトキシシランが好ましい。 Examples of tetrafunctional silane compounds include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, tetrapentyloxysilane, tetraphenyloxysilane, trimethoxymonoethoxysilane, dimethoxydiethoxysilane, triethoxymono Methoxysilane, trimethoxymonopropoxysilane, monomethoxytributoxysilane, monomethoxytripentyloxysilane, monomethoxytriphenyloxysilane, dimethoxydipropoxysilane, tripropoxymonomethoxysilane, trimethoxymonobutoxysilane, dimethoxydibutoxysilane , Triethoxymonopropoxysilane, diethoxydipropoxysilane, tributoxymonopropoxysilane, dimethoxymonoethoxymonobutoxy Silane, diethoxymonomethoxymonobutoxysilane, diethoxymonopropoxymonobutoxysilane, dipropoxymonomethoxymonoethoxysilane, dipropoxymonomethoxymonobutoxysilane, dipropoxymonoethoxymonobutoxysilane, dibutoxymonomethoxymonoethoxysilane, Examples include tetraalkoxysilanes such as dibutoxy monoethoxy monopropoxy silane and monomethoxy monoethoxy monopropoxy monobutoxy silane. Among these, tetramethoxysilane and tetraethoxysilane are preferable.
 3官能のシラン化合物の例には、トリメトキシシラン、トリエトキシシラン、トリプロポキシシラン、トリペンチルオキシシラン、トリフェニルオキシシラン、ジメトキシモノエトキシシラン、ジエトキシモノメトキシシラン、ジプロポキシモノメトキシシラン、ジプロポキシモノエトキシシラン、ジペンチルオキシルモノメトキシシラン、ジペンチルオキシモノエトキシシラン、ジペンチルオキシモノプロポキシシラン、ジフェニルオキシルモノメトキシシラン、ジフェニルオキシモノエトキシシラン、ジフェニルオキシモノプロポキシシラン、メトキシエトキシプロポキシシラン、モノプロポキシジメトキシシラン、モノプロポキシジエトキシシラン、モノブトキシジメトキシシラン、モノペンチルオキシジエトキシシラン、モノフェニルオキシジエトキシシラン等のモノヒドロシラン化合物;メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリペンチルオキシシラン、メチルモノメトキシジエトキシシラン、メチルモノメトキシジプロポキシシラン、メチルモノメトキシジペンチルオキシシラン、メチルモノメトキシジフェニルオキシシラン、メチルメトキシエトキシプロポキシシラン、メチルモノメトキシモノエトキシモノブトキシシラン等のモノメチルシラン化合物;エチルトリメトキシシラン、エチルトリプロポキシシラン、エチルトリペンチルオキシシラン、エチルトリフェニルオキシシラン、エチルモノメトキシジエトキシシラン、エチルモノメトキシジプロポキシシラン、エチルモノメトキシジペンチルオキシシラン、エチルモノメトキシジフェニルオキシシラン、エチルモノメトキシモノエトキシモノブトキシシラン等のモノエチルシラン化合物;プロピルトリメトキシシラン、プロピルトリエトキシシラン、プロピルトリペンチルオキシシラン、プロピルトリフェニルオキシシラン、プロピルモノメトキシジエトキシシラン、プロピルモノメトキシジプロポキシシラン、プロピルモノメトキシジペンチルオキシシラン、プロピルモノメトキシジフェニルオキシシラン、プロピルメトキシエトキシプロポキシシラン、プロピルモノメトキシモノエトキシモノブトキシシラン等のモノプロピルシラン化合物;ブチルトリメトキシシラン、ブチルトリエトキシシラン、ブチルトリプロポキシシラン、ブチルトリペンチルオキシシラン、ブチルトリフェニルオキシシラン、ブチルモノメトキシジエトキシシラン、ブチルモノメトキシジプロポキシシラン、ブチルモノメトキシジペンチルオキシシラン、ブチルモノメトキシジフェニルオキシシラン、ブチルメトキシエトキシプロポキシシラン、ブチルモノメトキシモノエトキシモノブトキシシラン等のモノブチルシラン化合物が含まれる。これらの中でも、メチルトリメトキシシランおよびメチルトリエトキシシランがより好ましく、メチルトリメトキシシランがさらに好ましい。 Examples of trifunctional silane compounds include trimethoxysilane, triethoxysilane, tripropoxysilane, tripentyloxysilane, triphenyloxysilane, dimethoxymonoethoxysilane, diethoxymonomethoxysilane, dipropoxymonomethoxysilane, di Propoxymonoethoxysilane, dipentyloxylmonomethoxysilane, dipentyloxymonoethoxysilane, dipentyloxymonopropoxysilane, diphenyloxylmonomethoxysilane, diphenyloxymonoethoxysilane, diphenyloxymonopropoxysilane, methoxyethoxypropoxysilane, monopropoxydimethoxysilane Monopropoxydiethoxysilane, monobutoxydimethoxysilane, monopentyloxydiethoxysilane, monophenyl Monohydrosilane compounds such as ruoxydiethoxysilane; methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, methyltripentyloxysilane, methylmonomethoxydiethoxysilane, methylmonomethoxydipropoxysilane, methylmonomethoxydipentyl Monomethylsilane compounds such as oxysilane, methylmonomethoxydiphenyloxysilane, methylmethoxyethoxypropoxysilane, methylmonomethoxymonoethoxymonobutoxysilane; ethyltrimethoxysilane, ethyltripropoxysilane, ethyltripentyloxysilane, ethyltriphenyloxy Silane, ethyl monomethoxydiethoxysilane, ethyl monomethoxydipropoxysilane, ethyl monomethoxydipentyloxy Monoethylsilane compounds such as lan, ethylmonomethoxydiphenyloxysilane, ethylmonomethoxymonoethoxymonobutoxysilane; propyltrimethoxysilane, propyltriethoxysilane, propyltripentyloxysilane, propyltriphenyloxysilane, propylmonomethoxydi Monopropylsilane compounds such as ethoxysilane, propylmonomethoxydipropoxysilane, propylmonomethoxydipentyloxysilane, propylmonomethoxydiphenyloxysilane, propylmethoxyethoxypropoxysilane, propylmonomethoxymonoethoxymonobutoxysilane; butyltrimethoxysilane, Butyltriethoxysilane, Butyltripropoxysilane, Butyltripentyloxysilane, Butyltriphenyl Monobutylsilane compounds such as oxysilane, butylmonomethoxydiethoxysilane, butylmonomethoxydipropoxysilane, butylmonomethoxydipentyloxysilane, butylmonomethoxydiphenyloxysilane, butylmethoxyethoxypropoxysilane, butylmonomethoxymonoethoxymonobutoxysilane Is included. Among these, methyltrimethoxysilane and methyltriethoxysilane are more preferable, and methyltrimethoxysilane is more preferable.
 2官能のシラン化合物の具体例には、ジメトキシシラン、ジエトキシシラン、ジプロポキシシラン、ジペンチルオキシシラン、ジフェニルオキシシラン、メトキシエトキシシラン、メトキシプロポキシシラン、メトキシペンチルオキシシラン、メトキシフェニルオキシシラン、エトキシプロポキシシラン、エトキシペンチルオキシシラン、エトキシフェニルオキシシラン、メチルジメトキシシラン、メチルメトキシエトキシシラン、メチルジエトキシシラン、メチルメトキシプロポキシシラン、メチルメトキシペンチルオキシシラン、メチルメトキシフェニルオキシシラン、エチルジプロポキシシラン、エチルメトキシプロポキシシラン、エチルジペンチルオキシシラン、エチルジフェニルオキシシラン、プロピルジメトキシシラン、プロピルメトキシエトキシシラン、プロピルエトキシプロポキシシラン、プロピルジエトキシシラン、プロピルジペンチルオキシシラン、プロピルジフェニルオキシシラン、ブチルジメトキシシラン、ブチルメトキシエトキシシラン、ブチルジエトキシシラン、ブチルエトキシプロポキシシシラン、ブチルジプロポキシシラン、ブチルメチルジペンチルオキシシラン、ブチルメチルジフェニルオキシシラン、ジメチルジメトキシシラン、ジメチルメトキシエトキシシラン、ジメチルジエトキシシラン、ジメチルジペンチルオキシシラン、ジメチルジフェニルオキシシラン、ジメチルエトキシプロポキシシラン、ジメチルジプロポキシシラン、ジエチルジメトキシシラン、ジエチルメトキシプロポキシシラン、ジエチルジエトキシシラン、ジエチルエトキシプロポキシシラン、ジプロピルジメトキシシラン、ジプロピルジエトキシシラン、ジプロピルジペンチルオキシシラン、ジプロピルジフェニルオキシシラン、ジブチルジメトキシシラン、ジブチルジエトキシシラン、ジブチルジプロポキシシラン、ジブチルメトキシペンチルオキシシラン、ジブチルメトキシフェニルオキシシラン、メチルエチルジメトキシシラン、メチルエチルジエトキシシラン、メチルエチルジプロポキシシラン、メチルエチルジペンチルオキシシラン、メチルエチルジフェニルオキシシラン、メチルプロピルジメトキシシラン、メチルプロピルジエトキシシラン、メチルブチルジメトキシシラン、メチルブチルジエトキシシラン、メチルブチルジプロポキシシラン、メチルエチルエトキシプロポキシシラン、エチルプロピルジメトキシシラン、エチルプロピルメトキシエトキシシラン、ジプロピルジメトキシシラン、ジプロピルメトキシエトキシシラン、プロピルブチルジメトキシシラン、プロピルブチルジエトキシシラン、ジブチルメトキシエトキシシラン、ジブチルメトキシプロポキシシラン、ジブチルエトキシプロポキシシラン等が含まれる。中でもジメトキシシラン、ジエトキシシラン、メチルジメトキシシラン、メチルジエトキシシランが好ましい。 Specific examples of the bifunctional silane compound include dimethoxysilane, diethoxysilane, dipropoxysilane, dipentyloxysilane, diphenyloxysilane, methoxyethoxysilane, methoxypropoxysilane, methoxypentyloxysilane, methoxyphenyloxysilane, ethoxypropoxy. Silane, ethoxypentyloxysilane, ethoxyphenyloxysilane, methyldimethoxysilane, methylmethoxyethoxysilane, methyldiethoxysilane, methylmethoxypropoxysilane, methylmethoxypentyloxysilane, methylmethoxyphenyloxysilane, ethyldipropoxysilane, ethylmethoxy Propoxysilane, ethyldipentyloxysilane, ethyldiphenyloxysilane, propyldimethoxysilane, pro Rumethoxyethoxysilane, propylethoxypropoxysilane, propyldiethoxysilane, propyldipentyloxysilane, propyldiphenyloxysilane, butyldimethoxysilane, butylmethoxyethoxysilane, butyldiethoxysilane, butylethoxypropoxysilane, butyldipropoxysilane, Butylmethyldipentyloxysilane, butylmethyldiphenyloxysilane, dimethyldimethoxysilane, dimethylmethoxyethoxysilane, dimethyldiethoxysilane, dimethyldipentyloxysilane, dimethyldiphenyloxysilane, dimethylethoxypropoxysilane, dimethyldipropoxysilane, diethyldimethoxysilane, Diethylmethoxypropoxysilane, diethyldiethoxysilane, diethyl Toxipropoxysilane, dipropyldimethoxysilane, dipropyldiethoxysilane, dipropyldipentyloxysilane, dipropyldiphenyloxysilane, dibutyldimethoxysilane, dibutyldiethoxysilane, dibutyldipropoxysilane, dibutylmethoxypentyloxysilane, dibutylmethoxyphenyl Oxysilane, methylethyldimethoxysilane, methylethyldiethoxysilane, methylethyldipropoxysilane, methylethyldipentyloxysilane, methylethyldiphenyloxysilane, methylpropyldimethoxysilane, methylpropyldiethoxysilane, methylbutyldimethoxysilane, methylbutyl Diethoxysilane, methylbutyldipropoxysilane, methylethylethoxypropoxysilane, ethyl Includes rupropyldimethoxysilane, ethylpropylmethoxyethoxysilane, dipropyldimethoxysilane, dipropylmethoxyethoxysilane, propylbutyldimethoxysilane, propylbutyldiethoxysilane, dibutylmethoxyethoxysilane, dibutylmethoxypropoxysilane, dibutylethoxypropoxysilane, etc. It is. Of these, dimethoxysilane, diethoxysilane, methyldimethoxysilane, and methyldiethoxysilane are preferable.
 ポリシロキサン化合物は、上記アルコキシシランまたはアリールオキシシランを、酸触媒、水、有機溶剤の存在下で加水分解し、縮合反応させて調製される。ポリシロキサン化合物は、4官能シラン化合物と、3官能シラン化合物や2官能シラン化合物とを所望のモル比率で予め混合し、ランダムに重合させたものであってもよい。また3官能シラン化合物または2官能シラン化合物を単独である程度重合させてオリゴマーとした後、このオリゴマーに4官能シラン化合物のみを重合させる等して、ブロック共重合体としたものであってもよい。 The polysiloxane compound is prepared by hydrolyzing the above alkoxysilane or aryloxysilane in the presence of an acid catalyst, water, and an organic solvent, followed by a condensation reaction. The polysiloxane compound may be obtained by previously mixing a tetrafunctional silane compound, a trifunctional silane compound, or a bifunctional silane compound at a desired molar ratio, and randomly polymerizing the compound. Alternatively, a block copolymer may be prepared by polymerizing a trifunctional silane compound or a bifunctional silane compound alone to some extent to form an oligomer, and then polymerizing only the tetrafunctional silane compound to the oligomer.
 封止剤に含まれるポリシロキサン化合物の2官能シラン化合物、3官能シラン化合物、及び4官能シラン化合物の総量に対する、4官能シラン化合物の量の比率は20質量%以上であることが好ましく、より好ましくは25~70質量%であり、さらに好ましくは30~60質量%である。4官能シラン化合物の比率が20質量%以上であると、ガスバリア性の高い膜が得られやすい。 The ratio of the amount of the tetrafunctional silane compound to the total amount of the bifunctional silane compound, the trifunctional silane compound, and the tetrafunctional silane compound of the polysiloxane compound contained in the sealing agent is preferably 20% by mass or more, and more preferably. Is 25 to 70% by mass, more preferably 30 to 60% by mass. When the ratio of the tetrafunctional silane compound is 20% by mass or more, a film having a high gas barrier property is easily obtained.
 ポリシロキサン化合物は、4官能シラン化合物と3官能シラン化合物とを重合したものであることがより好ましく、4官能シラン化合物と3官能モノメチルシラン化合物とを重合したものであることが特に好ましい。4官能シラン化合物と3官能シラン化合物との重合比は制限されないが、重合モル比率が3:7~7:3であることが好ましく、4:6~6:4がより好ましい。 The polysiloxane compound is more preferably a polymer obtained by polymerizing a tetrafunctional silane compound and a trifunctional silane compound, and particularly preferably a polymer obtained by polymerizing a tetrafunctional silane compound and a trifunctional monomethylsilane compound. The polymerization ratio between the tetrafunctional silane compound and the trifunctional silane compound is not limited, but the polymerization molar ratio is preferably 3: 7 to 7: 3, and more preferably 4: 6 to 6: 4.
 ポリシロキサン化合物の質量平均分子量は、好ましくは1000~3000であり、より好ましくは1200~2700であり、さらに好ましくは1500~2000である。ポリシロキサン化合物の質量平均分子量が上記範囲であると、封止剤の粘度が所望の範囲に収まりやすくなる。ポリシロキサン化合物の質量平均分子量は、ゲルパーミエーションクロマトグラフィーで測定される値(ポリスチレン換算)である。ポリシロキサン化合物の質量平均分子量は、ポリシロキサン化合物調製時の反応条件(特に反応時間)で、調整される。 The mass average molecular weight of the polysiloxane compound is preferably 1000 to 3000, more preferably 1200 to 2700, and further preferably 1500 to 2000. When the mass average molecular weight of the polysiloxane compound is in the above range, the viscosity of the sealant tends to fall within a desired range. The mass average molecular weight of the polysiloxane compound is a value (polystyrene conversion) measured by gel permeation chromatography. The mass average molecular weight of the polysiloxane compound is adjusted by reaction conditions (particularly reaction time) at the time of preparing the polysiloxane compound.
 ポリシロキサン化合物は、封止剤中に0.1~50質量%含まれていることが好ましい。また、封止剤の固形分(溶媒を除く全成分)中に50~90質量%含まれることが好ましく、より好ましくは60~80質量%である。ポリシロキサン化合物の量が、上記範囲であると、封止剤を硬化して得られる封止層のガスバリア性が高まる。 The polysiloxane compound is preferably contained in the sealing agent in an amount of 0.1 to 50% by mass. Further, it is preferably contained in the solid content of the sealant (all components excluding the solvent) in an amount of 50 to 90% by mass, more preferably 60 to 80% by mass. When the amount of the polysiloxane compound is within the above range, the gas barrier property of the sealing layer obtained by curing the sealing agent is increased.
1-2)シランカップリング剤
 封止剤にシランカップリング剤が含まれると、封止剤を硬化して得られる封止層と、LED素子(特に金属からなる配線や反射層)との密着性が高まる。シランカップリング剤の種類は特に制限されず、公知のシランカップリング剤でありうる。
1-2) Silane coupling agent When the sealing agent contains a silane coupling agent, the sealing layer obtained by curing the sealing agent and the LED element (especially a wiring or a reflective layer made of a metal) are in close contact with each other. Increases nature. The kind of silane coupling agent is not particularly limited, and may be a known silane coupling agent.
 シランカップリング剤は、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、ビニルトリス(2-メトキシエトキシ)シラン、ビニルトリクロロシラン等のビニル基含有シランカップリング剤;γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン等のエポキシ基含有シランカップリング剤;3-メタクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン等のアクリル基含有シランカップリング剤;3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン等のメルカプト基含有シランカップリング剤;4-アミノブチルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、p-アミノフェニルトリメトキシシラン、アミノエチルアミノメチルフェネチルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(6-アミノヘキシル)アミノプロピルトリメトキシシラン等のアミノ基含有シランカップリング剤;スチリルエチルトリメトキシシラン等のスチリル基含有シランカップリング剤;β-シアノエチルトリエトキシシラン等のシアノ基含有シランカップリング剤;や、メチルジメトキシシラン、ジメチルジエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリブトキシシラン、トリメチルエトキシシラン、トリメチルメトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、フェニルトリメトキシシラン、メチルフェニルジメトキシシラン、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン、(p-クロロメチル)フェニルトリメトキシシラン、4-クロロフェニルトリメトキシシラントリメチルクロロシラン、メチルトリクロロシラン、3-クロロプロピルトリメトキシシラン、3-クロロプロピルトリクロロシラン、ジメチルジクロロシラン、トリフルオロプロピルトリメトキシシラン、ジフェニルジクロロシラン、フェニルトリアセトキシシラン等や、これらが部分的に縮合した化合物でありうる。 Silane coupling agents include vinyl group-containing silane coupling agents such as vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, vinyltris (2-methoxyethoxy) silane, and vinyltrichlorosilane; γ-glycidoxypropyltri Methoxysilane, γ-glycidoxypropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ- (3,4 Epoxycyclohexyl) Epoxy group-containing silane coupling agents such as ethyltriethoxysilane; 3-methacryloxypropyltrimethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, and the like Silyl group-containing silane coupling agents; mercapto group-containing silane coupling agents such as 3-mercaptopropyltrimethoxysilane and 3-mercaptopropylmethyldimethoxysilane; 4-aminobutyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3 -Aminopropyltriethoxysilane, p-aminophenyltrimethoxysilane, aminoethylaminomethylphenethyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, N- (6-aminohexyl) amino Amino group-containing silane coupling agents such as propyltrimethoxysilane; styryl group-containing silane coupling agents such as styrylethyltrimethoxysilane; cyano group-containing silane coupling agents such as β-cyanoethyltriethoxysilane Methyldimethoxysilane, dimethyldiethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, methyltributoxysilane, trimethylethoxysilane, trimethylmethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, diphenyl Dimethoxysilane, diphenyldiethoxysilane, phenyltrimethoxysilane, methylphenyldimethoxysilane, tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, (p-chloromethyl) phenyltrimethoxysilane, 4-chlorophenyltrimethoxy Silane Trimethylchlorosilane, Methyltrichlorosilane, 3-Chloropropyltrimethoxysilane, 3-Chloropropyltrimethyl Roshiran, dimethyldichlorosilane, trifluoropropyl trimethoxy silane, diphenyl dichlorosilane, and phenyl triacetoxy silane, can be a compound which they are partially condensed.
 シランカップリング剤は、封止剤の固形分中に0.01~10質量%含まれることが好ましく、0.1~5.0質量%含まれることが好ましい。シランカップリング剤が0.01質量%以上含まれると、封止層とLED素子との密着性が高まりやすい。 The silane coupling agent is preferably contained in the solid content of the sealing agent in an amount of 0.01 to 10% by mass, preferably 0.1 to 5.0% by mass. When the silane coupling agent is contained in an amount of 0.01% by mass or more, the adhesion between the sealing layer and the LED element is likely to increase.
1-3)金属酸化物微粒子について
 封止剤には、金属酸化物微粒子が含まれる。前述のように、封止剤に金属酸化物微粒子が含まれると、前述のポリシロキサン化合物が重合する際に生じる応力が緩和されやすく、封止剤を硬化して得られる封止層にクラックが発生し難くなる。
1-3) Metal oxide fine particles The sealant contains metal oxide fine particles. As described above, when the metal oxide fine particles are contained in the sealant, the stress generated when the polysiloxane compound is polymerized is easily relieved, and the sealing layer obtained by curing the sealant has cracks. It becomes difficult to occur.
 金属酸化物微粒子の種類は特に制限されないが、金属酸化物微粒子の屈折率が、ポリシロキサン化合物の屈折率より高いことが好ましい。屈折率の高い金属酸化物微粒子が含まれると、封止剤を硬化して得られる封止層の屈折率が高まる。一般的にLED素子(LEDチップ)の屈折率は、ポリシロキサン化合物と比較してかなり高い。そこで、金属酸化物微粒子によって封止層の屈折率が高まると;LED素子と封止層との屈折率差が小さくなり、LED素子と封止層との界面での光の反射が少なくなる。つまり、LED装置の光取り出し効率が高まる。 The type of metal oxide fine particles is not particularly limited, but the refractive index of the metal oxide fine particles is preferably higher than the refractive index of the polysiloxane compound. When metal oxide fine particles having a high refractive index are contained, the refractive index of the sealing layer obtained by curing the sealing agent is increased. In general, the refractive index of an LED element (LED chip) is considerably higher than that of a polysiloxane compound. Therefore, when the refractive index of the sealing layer is increased by the metal oxide fine particles; the refractive index difference between the LED element and the sealing layer is reduced, and the reflection of light at the interface between the LED element and the sealing layer is reduced. That is, the light extraction efficiency of the LED device is increased.
 金属酸化物微粒子の屈折率は具体的には1.8以上であることが好ましく、2.0以上であることがより好ましい。金属酸化物微粒子の屈折率は、ベッケ線法により測定される。 Specifically, the refractive index of the metal oxide fine particles is preferably 1.8 or more, and more preferably 2.0 or more. The refractive index of the metal oxide fine particles is measured by the Becke line method.
 金属酸化物微粒子の平均一次粒径は、1~100nmであることが好ましく、より好ましくは1~80nm、さらに好ましくは1~50nmである。金属酸化物微粒子の平均一次粒径が、このような範囲であると、前述のクラック抑制効果、屈折率向上効果が得られやすい。金属酸化物微粒子の平均一次粒径は、コールターカウンター法で測定される。 The average primary particle size of the metal oxide fine particles is preferably 1 to 100 nm, more preferably 1 to 80 nm, and still more preferably 1 to 50 nm. When the average primary particle size of the metal oxide fine particles is within such a range, the above-described crack suppressing effect and refractive index improving effect are easily obtained. The average primary particle size of the metal oxide fine particles is measured by a Coulter counter method.
 金属酸化物微粒子の例には、酸化ジルコニウム、酸化チタン、酸化スズ、酸化セリウム、酸化ニオブ、及び酸化亜鉛等が含まれる。これらの中でも、屈折率が高いことから、金属酸化物微粒子は酸化ジルコニウム微粒子であることが好ましい。封止剤には、金属酸化物微粒子が1種のみ含まれてもよく、2種以上が含まれてもよい。 Examples of the metal oxide fine particles include zirconium oxide, titanium oxide, tin oxide, cerium oxide, niobium oxide, and zinc oxide. Among these, since the refractive index is high, the metal oxide fine particles are preferably zirconium oxide fine particles. The sealant may contain only one kind of metal oxide fine particles or two or more kinds.
 金属酸化物微粒子は、表面がシランカップリング剤やチタンカップリング剤で処理されたものであってもよい。表面処理された金属酸化物微粒子は、封止剤に均一に分散されやすい。 The metal oxide fine particles may have a surface treated with a silane coupling agent or a titanium coupling agent. The surface-treated metal oxide fine particles are easily dispersed uniformly in the sealant.
 金属酸化物微粒子は、封止剤の固形分中に10~60質量%含まれることが好ましく、より好ましくは15~45質量%であり、さらに好ましくは20~30質量%である。金属酸化物微粒子の量が10質量%以上であると、前述のクラック抑制効果が十分に得られ、屈折率向上効果も十分に得られる。一方で、金属酸化物微粒子の60質量%以下であれば、ポリシロキサン化合物(バインダ)が十分に含まれるため、封止層の強度及びガスバリア性が高まる。 The metal oxide fine particles are preferably contained in the solid content of the sealant in an amount of 10 to 60% by mass, more preferably 15 to 45% by mass, and still more preferably 20 to 30% by mass. When the amount of the metal oxide fine particles is 10% by mass or more, the above-described crack suppressing effect is sufficiently obtained, and the refractive index improving effect is also sufficiently obtained. On the other hand, if it is 60 mass% or less of metal oxide microparticles | fine-particles, since the polysiloxane compound (binder) is fully contained, the intensity | strength and gas barrier property of a sealing layer will increase.
1-4)Si以外の金属元素を含む有機金属化合物
 封止剤には、Si以外の金属元素を含む有機金属化合物が含まれてもよい。有機金属化合物は、Si以外の2価以上の金属元素の金属アルコキシドまたは金属キレートでありうる。金属アルコキシドまたは金属キレートは、ポリシロキサン化合物や、LEDチップ、波長変換層の表面に存在する水酸基と、メタロキサン結合を形成する。当該メタロキサン結合は非常に強固である。そのため、封止剤に金属アルコキシドまたは金属キレートが含まれると、これを硬化させて得られる封止層とLEDチップとの密着性や、封止層と波長変換層との密着性が高まる。
1-4) Organometallic compound containing a metal element other than Si The sealant may contain an organometallic compound containing a metal element other than Si. The organometallic compound can be a metal alkoxide or metal chelate of a divalent or higher metal element other than Si. The metal alkoxide or metal chelate forms a metalloxane bond with a polysiloxane compound, a LED chip, or a hydroxyl group present on the surface of the wavelength conversion layer. The metalloxane bond is very strong. Therefore, when a metal alkoxide or a metal chelate is contained in the sealant, the adhesion between the sealing layer obtained by curing the metal alkoxide or the metal chelate and the LED chip and the adhesion between the sealing layer and the wavelength conversion layer are enhanced.
 一方、金属アルコキシドまたは金属キレートの一部は、封止剤を硬化して得られる封止層内で、メタロキサン結合からなるナノサイズのクラスタを形成する。このクラスタは、金属腐食性の高い硫化水素ガスを腐食性の低い二酸化硫黄ガスに変化させる光触媒として機能する。そのため、封止剤に、金属アルコキシドまたは金属キレートが含まれると、LED装置の硫化ガス耐性も高まる。 On the other hand, a part of the metal alkoxide or metal chelate forms a nano-sized cluster composed of a metalloxane bond in the sealing layer obtained by curing the sealing agent. This cluster functions as a photocatalyst for converting hydrogen sulfide gas having high metal corrosivity into sulfur dioxide gas having low corrosivity. Therefore, when a metal alkoxide or a metal chelate is contained in the sealant, the resistance to sulfide gas of the LED device is also increased.
 有機金属化合物の硬化物の屈折率は、1.48以上であることが好ましく、より好ましくは1.50~1.90であり、さらに好ましくは1.55~1.80である。有機金属化合物の屈折率が、1.48以上であると、封止剤を硬化して得られる封止層の屈折率が高まりやすい。屈折率は、有機金属化合物を65℃で12時間保持した後、150℃で3時間保持して硬化した膜について測定する。有機金属化合物の硬化物の屈折率は、ベッケ線法等により測定される。 The refractive index of the cured product of the organometallic compound is preferably 1.48 or more, more preferably 1.50 to 1.90, still more preferably 1.55 to 1.80. When the refractive index of the organometallic compound is 1.48 or more, the refractive index of the sealing layer obtained by curing the sealing agent tends to increase. The refractive index is measured on a film cured by holding the organometallic compound at 65 ° C. for 12 hours and then holding at 150 ° C. for 3 hours. The refractive index of the cured product of the organometallic compound is measured by the Becke line method or the like.
 金属アルコキシドまたは金属キレートに含まれる金属元素は、Si元素以外の4族または13族の金属元素であることが好ましく、以下の一般式(III)で表される化合物が好ましい。
  Mm+m-n   (III)
 一般式(III)中、Mは4族または13族の金属元素を表し、mはMの価数(3または4)を表す。Xは加水分解性基を表し、nはX基の数(2以上4以下の整数)を表す。ただし、m≧nである。Yは1価の有機基を表す。
The metal element contained in the metal alkoxide or metal chelate is preferably a group 4 or group 13 metal element other than the Si element, and a compound represented by the following general formula (III) is preferable.
M m + X n Y mn (III)
In general formula (III), M represents a Group 4 or Group 13 metal element, and m represents the valence (3 or 4) of M. X represents a hydrolyzable group, and n represents the number of X groups (an integer of 2 or more and 4 or less). However, m ≧ n. Y represents a monovalent organic group.
 一般式(III)において、Mで表される4族または13族の金属元素は、アルミニウム、ジルコニウム、チタンであることが好ましく、ジルコニウムであることが特に好ましい。ジルコニウムのアルコキシドまたはキレートの硬化物は、一般的なLEDチップ3の発光波長域(特に青色光(波長420~485nm))に吸収波長を有さない。つまり、ジルコニウムのアルコキシドまたはキレートの硬化物には、LEDチップの出射光が吸収され難い。 In the general formula (III), the group 4 or group 13 metal element represented by M is preferably aluminum, zirconium, or titanium, and more preferably zirconium. The cured product of zirconium alkoxide or chelate does not have an absorption wavelength in the emission wavelength region of the general LED chip 3 (particularly blue light (wavelength 420 to 485 nm)). That is, the light emitted from the LED chip is hardly absorbed by the cured product of zirconium alkoxide or chelate.
 一般式(III)において、Xで表される加水分解性基は、水で加水分解され、水酸基を生成する基でありうる。加水分解性基の好ましい例には、炭素数が1~5の低級アルコキシ基、アセトキシ基、ブタノキシム基、クロル基等が含まれる。一般式(III)において、Xで表される基は、全て同一の基であってもよく、異なる基であってもよい。 In the general formula (III), the hydrolyzable group represented by X may be a group that is hydrolyzed with water to form a hydroxyl group. Preferable examples of the hydrolyzable group include a lower alkoxy group having 1 to 5 carbon atoms, an acetoxy group, a butanoxime group, a chloro group and the like. In general formula (III), all the groups represented by X may be the same group or different groups.
 Xで表される加水分解性基は、加水分解されて遊離する。そのため加水分解後に生成する化合物が中性であり、かつ軽沸である基が好ましい。そこで、Xで表される基は、炭素数1~5の低級アルコキシ基であることが好ましく、より好ましくはメトキシ基、またはエトキシ基である。 The hydrolyzable group represented by X is hydrolyzed and released. Therefore, a group that is neutral and light-boiling is preferable after the hydrolysis. Therefore, the group represented by X is preferably a lower alkoxy group having 1 to 5 carbon atoms, more preferably a methoxy group or an ethoxy group.
 一般式(III)において、Yで表される1価の有機基は、一般的なシランカップリング剤に含まれる1価の有機基でありうる。具体的には、炭素数が1~1000、好ましくは500以下、より好ましくは100以下、さらに好ましくは40以下、特に好ましくは6以下である脂肪族基、脂環族基、芳香族基、脂環芳香族基でありうる。Yで表される有機基は、脂肪族基、脂環族基、芳香族基、及び脂環芳香族基が連結基を介して結合した基であってもよい。連結基は、O、N、S等の原子またはこれらを含む原子団であってもよい。 In the general formula (III), the monovalent organic group represented by Y can be a monovalent organic group contained in a general silane coupling agent. Specifically, the aliphatic group, alicyclic group, aromatic group, fatty acid having 1 to 1000 carbon atoms, preferably 500 or less, more preferably 100 or less, further preferably 40 or less, and particularly preferably 6 or less. It may be a ring aromatic group. The organic group represented by Y may be an aliphatic group, an alicyclic group, an aromatic group, or a group in which an alicyclic aromatic group is bonded via a linking group. The linking group may be an atom such as O, N, or S, or an atomic group containing these.
 Yで表される有機基は、置換基を有してもよい。置換基の例には、F、Cl、Br、I等のハロゲン原子;ビニル基、メタクリロキシ基、アクリロキシ基、スチリル基、メルカプト基、エポキシ基、エポキシシクロヘキシル基、グリシドキシ基、アミノ基、シアノ基、ニトロ基、スルホン酸基、カルボキシ基、ヒドロキシ基、アシル基、アルコキシ基、イミノ基、フェニル基等の有機基が含まれる。 The organic group represented by Y may have a substituent. Examples of the substituent include halogen atoms such as F, Cl, Br, and I; vinyl group, methacryloxy group, acryloxy group, styryl group, mercapto group, epoxy group, epoxycyclohexyl group, glycidoxy group, amino group, cyano group, Organic groups such as nitro group, sulfonic acid group, carboxy group, hydroxy group, acyl group, alkoxy group, imino group and phenyl group are included.
 一般式(III)で表されるアルミニウムの金属アルコキシドまたは金属キレートの具体例には、アルミニウムトリイソプロポキシド、アルミニウムトリn-ブトキシド、アルミニウムトリt-ブトシキド、アルミニウムトリエトキシド等が含まれる。 Specific examples of the metal alkoxide or metal chelate of aluminum represented by the general formula (III) include aluminum triisopropoxide, aluminum tri-n-butoxide, aluminum tri-t-butoxide, aluminum triethoxide and the like.
 一般式(III)で表されるジルコニウムの金属アルコキシドまたは金属キレートの具体例には、ジルコニウムテトラメトキシド、ジルコニウムテトラエトキシド、ジルコニウムテトラn-プロポキシド、ジルコニウムテトラi-プロポキシド、ジルコニウムテトラn-ブトキシド、ジルコニウムテトラi-ブトキシド、ジルコニウムテトラt-ブトキシド、ジルコニウムジメタクリレートジブトキシド、ジブトキシジルコニウムビス(エチルアセトアセテート)等が含まれる。 Specific examples of the metal alkoxide or metal chelate of zirconium represented by the general formula (III) include zirconium tetramethoxide, zirconium tetraethoxide, zirconium tetra n-propoxide, zirconium tetra i-propoxide, zirconium tetra n- Examples include butoxide, zirconium tetra-i-butoxide, zirconium tetra-t-butoxide, zirconium dimethacrylate dibutoxide, dibutoxyzirconium bis (ethylacetoacetate) and the like.
 一般式(III)で表されるチタン元素の金属アルコキシドまたは金属キレートの具体例には、チタンテトライソプロポキシド、チタンテトラn-ブトキシド、チタンテトラi-ブトキシド、チタンメタクリレートトリイソプロポキシド、チタンテトラメトキシプロポキシド、チタンテトラn-プロポキシド、チタンテトラエトキシド、チタンラクテート、チタニウムビス(エチルヘキソキシ)ビス(2-エチル-3-ヒドロキシヘキソキシド)、チタンアセチルアセトネート等が含まれる。 Specific examples of the metal alkoxide or metal chelate of the titanium element represented by the general formula (III) include titanium tetraisopropoxide, titanium tetra n-butoxide, titanium tetra i-butoxide, titanium methacrylate triisopropoxide, titanium tetra Examples include methoxypropoxide, titanium tetra n-propoxide, titanium tetraethoxide, titanium lactate, titanium bis (ethylhexoxy) bis (2-ethyl-3-hydroxyhexoxide), titanium acetylacetonate and the like.
 ただし、上記で例示した金属アルコキシドまたは金属キレートは、入手容易な市販の有機金属アルコキシドまたは金属キレートの一部である。科学技術総合研究所発行の「カップリング剤最適利用技術」9章のカップリング剤及び関連製品一覧表に示される金属アルコキシドまたは金属キレートも、本発明に適用できる。 However, the metal alkoxides or metal chelates exemplified above are a part of commercially available organometallic alkoxides or metal chelates. Metal alkoxides or metal chelates shown in the list of coupling agents and related products in Chapter 9 “Optimum Utilization Technology of Coupling Agents” published by the National Institute of Science and Technology are also applicable to the present invention.
 封止剤に含まれる金属アルコキシドまたは金属キレート(有機金属化合物)の量は、ポリシロキサン化合物100質量部に対して、5~100質量部であることが好ましく、より好ましくは8~40質量部であり、さらに好ましくは10~15質量部である。金属アルコキシドまたは金属キレートの上記量が5質量部以上であると、前述の密着性向上効果が得られやすい。また、金属アルコキシドまたは金属キレートの量が100質量部以下であれば、封止剤の保存性が良好である。 The amount of the metal alkoxide or metal chelate (organometallic compound) contained in the sealing agent is preferably 5 to 100 parts by mass, more preferably 8 to 40 parts by mass with respect to 100 parts by mass of the polysiloxane compound. More preferably, it is 10 to 15 parts by mass. When the amount of the metal alkoxide or metal chelate is 5 parts by mass or more, the above-described adhesion improving effect is easily obtained. Moreover, if the quantity of a metal alkoxide or a metal chelate is 100 mass parts or less, the preservability of a sealing agent is favorable.
1-5)溶媒
 封止剤には、必要に応じて溶媒が含まれる。溶媒は、前述のポリシロキサン化合物やシランカップリング剤を溶解、もしくは均一に分散可能なものであればよい。溶媒の例には、メタノール、エタノール、プロパノール、n-ブタノール等の一価アルコール;メチル-3-メトキシプロピオネート、エチル-3-エトキシプロピオネート等のアルキルカルボン酸エステル;エチレングリコール、ジエチレングリコール、プロピレングリコール、グリセリン、トリメチロールプロパン、ヘキサントリオール等の多価アルコール;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル等の多価アルコールのモノエーテル類、あるいはこれらのモノアセテート類;エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジプロピルエーテル、エチレングリコールジブチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル等の多価アルコールの水酸基をすべてアルキルエーテル化した多価アルコールエーテル類;酢酸メチル、酢酸エチル、酢酸ブチル等のエステル類;アセトン、アセチルアセトン、メチルエチルケトン、メチルイソアミルケトン等のケトン類;等が含まれる。封止剤中には、溶媒が1種のみ含まれてもよく、2種以上含まれてもよい。
1-5) Solvent The sealing agent contains a solvent as necessary. Any solvent may be used as long as it can dissolve or uniformly disperse the above-described polysiloxane compound and silane coupling agent. Examples of the solvent include monohydric alcohols such as methanol, ethanol, propanol and n-butanol; alkyl carboxylic acid esters such as methyl-3-methoxypropionate and ethyl-3-ethoxypropionate; ethylene glycol, diethylene glycol, Polyhydric alcohols such as propylene glycol, glycerin, trimethylolpropane, hexanetriol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol mono Propyl ether, diethylene glycol monobutyl ether, propylene glycol mono Monoethers of polyhydric alcohols such as chill ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, or monoacets thereof; ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dipropyl ether, Polyhydric alcohol ethers in which all hydroxyl groups of polyhydric alcohols such as ethylene glycol dibutyl ether, propylene glycol dimethyl ether, propylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, and diethylene glycol methyl ethyl ether are all alkyl etherified; methyl acetate, ethyl acetate, Such as butyl acetate Ethers; include like; acetone, acetylacetone, ketones such as methyl ethyl ketone and methyl isoamyl ketone. In the sealing agent, only one type of solvent may be contained, or two or more types may be contained.
 溶媒には、水が含まれることが好ましい。水の量は、封止剤全質量に対して、0.1~20質量%であることが好ましく、より好ましくは0.1~10質量%である。封止剤に含まれる水の量が少な過ぎると、LED装置の封止層を成膜する際に、ポリシロキサン化合物を十分に加水分解できない場合がある。一方、封止剤に含まれる水の量が過剰であると、封止剤の保存中にポリシロキサン化合物が加水分解され、封止剤がゲル化するおそれがある。 The solvent preferably contains water. The amount of water is preferably 0.1 to 20% by mass, more preferably 0.1 to 10% by mass, based on the total mass of the sealant. If the amount of water contained in the sealant is too small, the polysiloxane compound may not be sufficiently hydrolyzed when forming the sealing layer of the LED device. On the other hand, when the amount of water contained in the sealant is excessive, the polysiloxane compound is hydrolyzed during storage of the sealant, and the sealant may be gelled.
 溶媒には、沸点が150℃以上である有機溶媒(例えばエチレングリコールや、プロピレングリコール等)が含まれることも好ましい。沸点が150℃以上の有機溶媒が含まれると、封止剤の保存安定性が高まる。また、塗布装置内で溶媒が揮発し難くなり、封止剤を安定して塗布できる。一方、封止剤に含まれる溶媒の沸点は250℃以下であることが好ましい。溶媒の沸点が250℃を超えると、封止剤の乾燥性が低下する。 The solvent preferably contains an organic solvent having a boiling point of 150 ° C. or higher (for example, ethylene glycol, propylene glycol, etc.). When an organic solvent having a boiling point of 150 ° C. or higher is contained, the storage stability of the sealant is increased. In addition, the solvent is less likely to volatilize in the coating apparatus, and the sealing agent can be applied stably. On the other hand, the boiling point of the solvent contained in the sealant is preferably 250 ° C. or lower. When the boiling point of the solvent exceeds 250 ° C., the drying property of the sealant decreases.
1-6)封止剤の硬化膜の物性
 前述のポリシロキサン化合物、シランカップリング剤、金属酸化物微粒子、有機金属化合物、溶媒等が含まれる封止剤を65℃で12時間保持した後、150℃で3時間保持して硬化した硬化膜は、以下の特徴を有する。
 (i)固体Si-核磁気共鳴スペクトルが、ピークトップの位置がケミカルシフト-120ppm以上-90ppm以下の領域にあり、かつ半値幅が5.0ppmより大きく12ppm以下であるピークを有する
 (ii)固体Si-核磁気共鳴スペクトルが、ピークトップの位置がケミカルシフト-80ppm以上-40ppm以下の領域にあり、かつ半値幅が5.0ppmより大きく12ppm以下であるピークを有する
 (iii)シラノール含有率が10質量%より多く、30質量%以下である
1-6) Physical properties of cured film of sealant After holding a sealant containing the above polysiloxane compound, silane coupling agent, metal oxide fine particles, organometallic compound, solvent, etc. at 65 ° C. for 12 hours, The cured film cured by holding at 150 ° C. for 3 hours has the following characteristics.
(I) The solid Si-nuclear magnetic resonance spectrum has a peak whose peak top position is in the region of chemical shift of −120 ppm to −90 ppm and the half width is greater than 5.0 ppm and not more than 12 ppm. (Ii) Solid The Si-nuclear magnetic resonance spectrum has a peak where the peak top position is in the region of chemical shift of −80 ppm to −40 ppm and the half width is greater than 5.0 ppm and not more than 12 ppm. (Iii) Silanol content is 10 More than 30% by mass and less than 30% by mass
 封止剤の硬化膜を構成するケイ素原子には、通常、酸素原子が4つ結合したもの;酸素原子3つ及び酸素以外の原子(炭素原子等)1つが結合したもの;酸素原子2つと酸素以外の原子2つが結合したもの;がある。 The silicon atom that forms the cured film of the sealant usually has four oxygen atoms bonded; three oxygen atoms and one non-oxygen atom (carbon atom, etc.) bonded; two oxygen atoms and oxygen There are two bonded atoms.
 酸素原子が4つ結合したケイ素原子はQサイトと称される。Qサイトに由来するピーク群(Qピーク群)は、固体Si-核磁気共鳴スペクトルのケミカルシフト-120~-90ppmの領域にピークトップを有し、連続した多峰性のピークとして観察される。 A silicon atom to which four oxygen atoms are bonded is called a Q site. Peaks derived from the Q site (Q n peak group), solid Si- nucleus has a peak top in the region of the chemical shift -120 ~ -90 ppm magnetic resonance spectrum, it is observed as a peak of a continuous multimodal .
 酸素原子3つ及び酸素以外の原子1つが結合したケイ素原子はTサイトと称される。Tサイトに由来するピーク群(Tピーク群)は、固体Si-核磁気共鳴スペクトルのケミカルシフト-80~-40ppmの領域にピークトップを有し、連続した多峰性のピークとして観察される。 A silicon atom to which three oxygen atoms and one atom other than oxygen are bonded is called a T site. Peaks derived from the T site (T n peak group), solid Si- nucleus has a peak top in the region of chemical shift -80 ~ -40 ppm magnetic resonance spectrum, is observed as a peak of a continuous multimodal .
 酸素原子2つ、及び酸素以外の原子2つが結合したケイ素原子はDサイトと称される。Dサイトに由来するピーク群(Dピーク群)は、固体Si-核磁気共鳴スペクトルのケミカルシフト-40~0ppmの領域にピークトップを有し、連続した多峰性のピークとして観察される。 A silicon atom to which two oxygen atoms and two atoms other than oxygen are bonded is called a D site. Peaks derived from the D site (D n peak group), solid Si- nucleus has a peak top in the region of chemical shift -40 ~ 0 ppm magnetic resonance spectrum, is observed as a peak of a continuous multimodal.
 固体Si-核磁気共鳴スペクトルで検出されるQピーク群及びTピーク群の半値幅が小さければ小さいほど、シロキサン結合(Si-O-Si)の結合角の分布が狭い。つまり、硬化膜のひずみが少なく、内部応力が少ないといえる。前述のように、本発明の封止剤の硬化膜は、(i)Qピーク群の半値幅が5.0ppmより大きく12ppm以下であり、好ましくは5.5~12ppmであり、さらに好ましくは6.0~11ppmである。また、(ii)Tピーク群の半値幅が5.0ppmより大きく12ppm以下であり、好ましくは5.5~12ppmであり、さらに好ましくは6.0~11ppmである。つまり、封止剤の硬化膜は、Qピーク群及びTピーク群の半値幅がいずれも比較的小さく、内部応力が少ない。 The smaller the half width of the Q n peak group and the T n peak group detected in the solid Si-nuclear magnetic resonance spectrum, the narrower the distribution of bond angles of siloxane bonds (Si—O—Si). That is, it can be said that there is little distortion of a cured film and there is little internal stress. As described above, the cured film of the sealant of the present invention, (i) the half-width of the Q n peak group is not more than greater than 5.0 ppm 12 ppm, preferably 5.5 ~ 12 ppm, more preferably 6.0 to 11 ppm. Further, (ii) T n FWHM of peaks is less than or equal to greater than 5.0 ppm 12 ppm, preferably 5.5 ~ 12 ppm, more preferably from 6.0 ~ 11 ppm. That is, the cured film of the encapsulant has a relatively small half-value width of the Q n peak group and the T n peak group, and a low internal stress.
 ここで、Qピーク群、Tピーク群、及びDピーク群の総面積に対する、Qピーク群の面積の比率は10%~70%であることが好ましく、30~60%であることがより好ましい。各ピーク群の面積比は、各サイトの組成比に比例する。そして、Qピーク群の面積が過剰となる;つまりQサイトが過剰になると、架橋密度が高まるため、結合角の分布が広がり、半値幅が広がりやすい。Qサイト、Tサイト、Dサイトの量は、ポリシロキサン化合物重合時の、4官能シラン化合物、3官能シラン化合物、及び2官能シラン化合物の重合比率で調整される。 Here, the ratio of the area of the Q n peak group to the total area of the Q n peak group, the T n peak group, and the D n peak group is preferably 10% to 70%, and preferably 30% to 60%. Is more preferable. The area ratio of each peak group is proportional to the composition ratio of each site. Then, the area of the Q n peak group becomes excessive; the words Q site is excessive, the crosslinking density increases, spread distribution of bond angle, half-width tends to spread. The amounts of Q site, T site, and D site are adjusted by the polymerization ratio of the tetrafunctional silane compound, the trifunctional silane compound, and the bifunctional silane compound during polymerization of the polysiloxane compound.
 一方、封止剤の硬化膜の(iii)シラノール含有率は10質量%より多く30質量%以下であり、好ましくは11~29質量%であり、さらに好ましくは11~28質量%である。封止剤の硬化膜に、ある程度のシラノールが残存すると、封止剤を硬化して得られる封止層と他の層との密着性が高まりやすい。ただし、残存するシラノール量が多すぎる場合には、シラノール同士が経時で脱水縮合して、経時で膜に歪みが生じるおそれがある。 On the other hand, the (iii) silanol content of the cured film of the sealant is more than 10% by mass and 30% by mass or less, preferably 11 to 29% by mass, and more preferably 11 to 28% by mass. When a certain amount of silanol remains in the cured film of the sealing agent, the adhesion between the sealing layer obtained by curing the sealing agent and the other layers tends to increase. However, if the amount of remaining silanol is too large, the silanols may be dehydrated and condensed over time, and the film may be distorted over time.
 シラノール含有率も、硬化膜に含まれるQサイト、Tサイト、及びDサイトの比率によって調整される。TサイトまたはDサイトの比率が高まるとシラノール含有率が低下しやすい。一方、Qサイトの比率が高まると、シラノール含有率が高まりやすい。 The silanol content is also adjusted by the ratio of Q site, T site, and D site contained in the cured film. When the ratio of T sites or D sites increases, the silanol content tends to decrease. On the other hand, when the ratio of the Q site increases, the silanol content tends to increase.
 上記半値幅、及びシラノール含有率は、封止剤の硬化膜を、固体Si-NMR装置にて測定して算出される。シラノール含有率は、固体Si-NMR装置で測定されたスペクトルの全ピーク面積に対する、シラノール由来のピーク(通常、-50~150ppmのケミカルシフトに表れる)面積の比率から算出される。 The half width and silanol content are calculated by measuring the cured film of the sealant with a solid Si-NMR apparatus. The silanol content is calculated from the ratio of the silanol-derived peak area (usually manifested in a chemical shift of −50 to 150 ppm) to the total peak area of the spectrum measured with a solid-state Si-NMR apparatus.
2.LED装置
 前述の封止剤は、例えば図1及び図2の概略断面図に示される、LED素子10と、封止層5と、封止層5上に形成された波長変換層6とを有するLED装置100の封止層5の形成に用いられる。
2. LED device The above-mentioned sealing agent has the LED element 10, the sealing layer 5, and the wavelength conversion layer 6 formed on the sealing layer 5 which are shown by the schematic sectional drawing of FIG.1 and FIG.2, for example. It is used for forming the sealing layer 5 of the LED device 100.
2-1)LED素子
 LED素子10は、パッケージ1とLEDチップ2と、金属反射層3等を備えるものでありうる。
2-1) LED element The LED element 10 may include a package 1, an LED chip 2, a metal reflective layer 3, and the like.
 パッケージ1は、例えば液晶ポリマーやセラミックでありうるが、絶縁性と耐熱性を有するものであれば、その材質は特に限定されない。またその形状も特に制限はなく、例えば図1に示されるように凹状であってもよく、図2に示されるように平板状であってもよい。 Package 1 may be, for example, a liquid crystal polymer or ceramic, but the material is not particularly limited as long as it has insulating properties and heat resistance. The shape is not particularly limited, and may be concave as shown in FIG. 1, for example, or may be flat as shown in FIG.
 LEDチップ2の発光波長は特に制限されない。LEDチップ2は、例えば青色光(420nm~485nm程度の光)を発するものであってもよく、紫外光を発するものであってもよい。 The emission wavelength of the LED chip 2 is not particularly limited. The LED chip 2 may emit blue light (light of about 420 nm to 485 nm), or may emit ultraviolet light, for example.
 LEDチップ2の構成は特に制限されない。LEDチップ2の発光色が青色である場合、LEDチップ2は、n-GaN系化合物半導体層(クラッド層)と、InGaN系化合物半導体層(発光層)と、p-GaN系化合物半導体層(クラッド層)と、透明電極層との積層体でありうる。LEDチップ2は、例えば200~300μm×200~300μmの発光面を有するものでありうる。LEDチップ2の高さは、通常50~200μm程度である。 The configuration of the LED chip 2 is not particularly limited. When the emission color of the LED chip 2 is blue, the LED chip 2 includes an n-GaN compound semiconductor layer (cladding layer), an InGaN compound semiconductor layer (light emitting layer), and a p-GaN compound semiconductor layer (cladding layer). Layer) and a transparent electrode layer. The LED chip 2 may have a light emitting surface of 200 to 300 μm × 200 to 300 μm, for example. The height of the LED chip 2 is usually about 50 to 200 μm.
 金属反射層3は、銀等の金属からなり、LEDチップ2から出射する光を光取り出し面側に反射する。金属反射層3は、LEDチップ2に電流を供給する金属配線を兼ねてもよい。 The metal reflection layer 3 is made of a metal such as silver, and reflects light emitted from the LED chip 2 toward the light extraction surface. The metal reflection layer 3 may also serve as a metal wiring that supplies current to the LED chip 2.
 LEDチップ2は、図1に示されるように、金属電極(金属反射層)3とワイヤ4を介して電気的に接続されてもよく、図2に示されるように、LEDチップ2が突起電極7を介して金属電極(金属反射層3)電気的に接続されてもよい。LEDチップ2がワイヤ4を介して金属電極3に接続される態様をワイヤボンディング型といい、突起電極7を介して金属電極(金属反射層)3に接続される態様をフリップチップ型という。 As shown in FIG. 1, the LED chip 2 may be electrically connected to the metal electrode (metal reflective layer) 3 via a wire 4, and as shown in FIG. 2, the LED chip 2 is a protruding electrode. The metal electrode (metal reflective layer 3) may be electrically connected via 7. A mode in which the LED chip 2 is connected to the metal electrode 3 through the wire 4 is referred to as a wire bonding type, and a mode in which the LED chip 2 is connected to the metal electrode (metal reflective layer) 3 through the protruding electrode 7 is referred to as a flip chip type.
 図1及び図2に示すLED装置100には、パッケージ1に、1つのLEDチップ2のみが配置されているが;パッケージ1に、複数のLEDチップ2が配置されていてもよい。 In the LED device 100 shown in FIGS. 1 and 2, only one LED chip 2 is disposed in the package 1; however, a plurality of LED chips 2 may be disposed in the package 1.
2-2)封止層
 封止層5は、前述の封止剤の硬化膜からなる。封止層5は、LED素子10のLEDチップ2や金属反射層3を、硫化水素ガス等から保護する役割を果たす。
2-2) Sealing layer The sealing layer 5 is made of a cured film of the above-described sealing agent. The sealing layer 5 serves to protect the LED chip 2 and the metal reflective layer 3 of the LED element 10 from hydrogen sulfide gas or the like.
 封止層5の厚みは0.3~10μmであることが好ましく、より好ましくは0.5~5μmであり、さらに好ましくは0.7~2μmである。封止層5の厚みが0.3μm未満であると、十分なガスバリア性が得られない場合がある。一方封止層5の厚みが10μmを超えると、封止層5にクラックが生じやすく、封止層5の強度が低下しやすい。封止層5の厚みとは、前述のLEDチップ2上に配置された封止層5の最大厚みを意味する。層の厚みは、レーザホロゲージを用いて測定される。 The thickness of the sealing layer 5 is preferably 0.3 to 10 μm, more preferably 0.5 to 5 μm, still more preferably 0.7 to 2 μm. If the thickness of the sealing layer 5 is less than 0.3 μm, sufficient gas barrier properties may not be obtained. On the other hand, when the thickness of the sealing layer 5 exceeds 10 μm, cracks are likely to occur in the sealing layer 5, and the strength of the sealing layer 5 tends to decrease. The thickness of the sealing layer 5 means the maximum thickness of the sealing layer 5 disposed on the LED chip 2 described above. The layer thickness is measured using a laser holo gauge.
2-3)波長変換層
 波長変換層6は、LEDチップ2が出射した特定波長の光を、他の特定波長の光に変換する層である。波長変換層6は、透明樹脂中に蛍光体粒子が分散された層である。
2-3) Wavelength Conversion Layer The wavelength conversion layer 6 is a layer that converts light of a specific wavelength emitted from the LED chip 2 into light of another specific wavelength. The wavelength conversion layer 6 is a layer in which phosphor particles are dispersed in a transparent resin.
 蛍光体粒子は、LEDチップ2が出射する光の波長(励起波長)により励起されて、励起波長と異なる波長の蛍光を出射する。例えば、LEDチップ2から青色光が出射される場合、波長変換層6に黄色の蛍光を発する蛍光体粒子を添加することで、白色LED装置が得られる。黄色の蛍光を発する蛍光体粒子の例には、YAG(イットリウム・アルミニウム・ガーネット)蛍光体がある。YAG蛍光体は、青色LED素子から出射される青色光(波長420nm~485nm)を励起光として、黄色(波長550nm~650nm)の蛍光を発する。 The phosphor particles are excited by the wavelength of light emitted from the LED chip 2 (excitation wavelength), and emit fluorescent light having a wavelength different from the excitation wavelength. For example, when blue light is emitted from the LED chip 2, a white LED device can be obtained by adding phosphor particles that emit yellow fluorescence to the wavelength conversion layer 6. Examples of the phosphor particles that emit yellow fluorescence include YAG (yttrium, aluminum, garnet) phosphors. The YAG phosphor emits yellow (wavelength 550 nm to 650 nm) fluorescence using blue light (wavelength 420 nm to 485 nm) emitted from the blue LED element as excitation light.
 蛍光体粒子は、例えば1)所定の組成を有する混合原料に、フラックスとしてフッ化アンモニウム等のフッ化物を適量混合して加圧し、成形体を得て、2)得られた成形体を坩堝に詰め、空気中1350~1450℃の温度範囲で2~5時間焼成し、焼結体を得ることで製造される。 The phosphor particles are, for example, 1) an appropriate amount of a fluoride such as ammonium fluoride is mixed and pressed into a mixed raw material having a predetermined composition to obtain a molded body, and 2) the obtained molded body is put into a crucible. It is manufactured by packing and firing in air at a temperature range of 1350 to 1450 ° C. for 2 to 5 hours to obtain a sintered body.
 所定の組成を有する混合原料は、Y、Gd、Ce、Sm、Al、La、Gaの酸化物、または高温で容易に酸化物となる化合物を、化学両論比で十分に混合して得ることができる。あるいは、所定の組成を有する混合原料は、Y、Gd、Ce、Smの希土類元素を化学両論比で酸に溶解した溶液を、シュウ酸で共沈して得られる共沈酸化物と、酸化アルミニウム、酸化ガリウムとを混合して得ることができる。 A mixed raw material having a predetermined composition can be obtained by sufficiently mixing oxides of Y, Gd, Ce, Sm, Al, La, Ga, or compounds that easily become oxides at high temperatures in a stoichiometric ratio. it can. Alternatively, the mixed raw material having a predetermined composition includes a coprecipitation oxide obtained by coprecipitation with oxalic acid in a solution in which a rare earth element of Y, Gd, Ce, and Sm is dissolved in acid at a stoichiometric ratio, and aluminum oxide It can be obtained by mixing with gallium oxide.
 蛍光体粒子の種類は、YAG蛍光体に限定されるものではなく、例えばCeを含まない非ガーネット系蛍光体等、他の蛍光体粒子であってもよい。 The kind of the phosphor particles is not limited to the YAG phosphor, and may be other phosphor particles such as a non-garnet phosphor not containing Ce.
 蛍光体粒子の平均一次粒径は1μm以上50μm以下であることが好ましく、10μm以下であることがより好ましい。蛍光体粒子の粒径が大きいほど発光効率(波長変換効率)が高くなる。一方、蛍光体粒子の粒径が大きすぎると、蛍光体粒子と透明樹脂との密着性が低くなり、波長変換層の強度が低下する。蛍光体粒子の平均一次粒径は、例えばコールターカウンター法によって測定される。 The average primary particle diameter of the phosphor particles is preferably 1 μm or more and 50 μm or less, and more preferably 10 μm or less. The larger the particle size of the phosphor particles, the higher the light emission efficiency (wavelength conversion efficiency). On the other hand, if the particle size of the phosphor particles is too large, the adhesion between the phosphor particles and the transparent resin is lowered, and the strength of the wavelength conversion layer is lowered. The average primary particle diameter of the phosphor particles is measured by, for example, a Coulter counter method.
 波長変換層6に含まれる蛍光体粒子の量は、波長変換層全量に対して5~15質量%であることが好ましく、より好ましくは9~11質量%である。 The amount of phosphor particles contained in the wavelength conversion layer 6 is preferably 5 to 15% by mass, more preferably 9 to 11% by mass, based on the total amount of the wavelength conversion layer.
 波長変換層6に含まれる透明樹脂は、可視光に対して透明な熱硬化性樹脂であれば特に制限されない。透明樹脂の例には、エポキシ変性シリコーン樹脂、アルキッド変性シリコーン樹脂、アクリル変性シリコーン樹脂、ポリエステル変性シリコーン樹脂、フェニルシリコーン樹脂等のシリコーン樹脂;エポキシ樹脂;アクリル樹脂;メタクリル樹脂;ウレタン樹脂等の透明樹脂等が含まれる。特にフェニルシリコーン樹脂であることが好ましい。透明樹脂がフェニルシリコーン樹脂であると、LED装置100の耐湿性が高まる。 The transparent resin contained in the wavelength conversion layer 6 is not particularly limited as long as it is a thermosetting resin transparent to visible light. Examples of transparent resins include epoxy-modified silicone resins, alkyd-modified silicone resins, acrylic-modified silicone resins, polyester-modified silicone resins, phenyl silicone resins and other silicone resins; epoxy resins; acrylic resins; methacrylic resins; transparent resins such as urethane resins Etc. are included. A phenyl silicone resin is particularly preferable. When the transparent resin is a phenyl silicone resin, the moisture resistance of the LED device 100 is increased.
 波長変換層6の厚みは、通常25μm~5mmであることが好ましく、より好ましくは0.5~3mmである。波長変換層の厚みが厚すぎると、波長変換層内の蛍光体粒子濃度が過剰に低くなり、蛍光体粒子が均一に分散されない恐れがある。 The thickness of the wavelength conversion layer 6 is usually preferably 25 μm to 5 mm, more preferably 0.5 to 3 mm. If the wavelength conversion layer is too thick, the phosphor particle concentration in the wavelength conversion layer becomes excessively low, and the phosphor particles may not be uniformly dispersed.
3.LED装置の製造方法
 本発明のLED装置の製造方法は、以下の3つの工程を含む。
 1)LEDチップ及び金属反射層を含むLED素子を準備する工程
 2)LEDチップ及び金属反射層を被覆するように、前述の封止剤を塗布し、封止層を形成する工程
 3)前記封止層上に、蛍光体粒子及び透明樹脂を含む波長変換層を形成する工程
3. Manufacturing method of LED device The manufacturing method of the LED device of this invention includes the following three processes.
1) A step of preparing an LED element including an LED chip and a metal reflective layer 2) A step of applying the above-mentioned sealing agent so as to cover the LED chip and the metal reflective layer, and forming a sealing layer 3) The sealing A step of forming a wavelength conversion layer containing phosphor particles and a transparent resin on the stop layer
3-1)LED素子準備工程
 LED素子準備工程では、LED素子を準備する。例えば、パッケージに形成された金属反射層と、LEDチップとを電気的に接続し、LEDチップをパッケージに固定する工程等でありうる。金属反射部とLEDチップとの接続方法や、LEDチップをパッケージに固定する方法は特に制限されず、従来公知の方法と同様でありうる。
3-1) LED element preparation step In the LED element preparation step, an LED element is prepared. For example, it may be a step of electrically connecting a metal reflective layer formed on a package and an LED chip and fixing the LED chip to the package. The method for connecting the metal reflecting portion and the LED chip and the method for fixing the LED chip to the package are not particularly limited, and may be the same as a conventionally known method.
3-2)封止層形成工程
 LED素子のLEDチップ及び金属反射層を被覆するように、前述の封止剤を塗布する。LEDチップ及び金属反射層を被覆するとは、LEDチップの発光面と、金属反射層とを、少なくとも被覆することをいい、例えば図1に示されるように、パッケージ1の一部やワイヤ4を完全に被覆しなくともよい。
3-2) Sealing layer forming step The sealing agent described above is applied so as to cover the LED chip and the metal reflective layer of the LED element. Covering the LED chip and the metal reflective layer refers to covering at least the light emitting surface of the LED chip and the metal reflective layer. For example, as shown in FIG. It does not have to be coated.
 封止剤の塗布手段は特に制限されない。例えば、バーコート法、スピンコート法、スプレーコート法、ディスペンス法、ジェットディスペンス法等、従来公知の方法でありうる。特に、スプレーコート法によれば、薄い封止層を形成可能である。 The means for applying the sealant is not particularly limited. For example, a conventionally known method such as a bar coating method, a spin coating method, a spray coating method, a dispensing method, a jet dispensing method, or the like can be used. In particular, according to the spray coating method, a thin sealing layer can be formed.
 封止剤の塗布後、塗膜を100℃以上、好ましくは150~300℃に加熱することで、ポリシロキサン化合物を乾燥・硬化させる。加熱温度が100℃未満であると、ポリシロキサン化合物の脱水縮合時に生じる水分を十分に除去できず、封止層のガスバリア性が低下する可能性がある。 After applying the sealing agent, the polysiloxane compound is dried and cured by heating the coating film to 100 ° C. or higher, preferably 150 to 300 ° C. If the heating temperature is less than 100 ° C., water generated during dehydration condensation of the polysiloxane compound cannot be sufficiently removed, and the gas barrier property of the sealing layer may be lowered.
3-3)波長変換層形成工程
 前述の封止層上に波長変換層を形成する。波長変換層は、透明樹脂もしくはその前駆体と、蛍光体粒子とを含有する波長変換層形成用組成物を調製し、これを透光層上に塗布し、硬化させることで得られる。
3-3) Wavelength conversion layer forming step A wavelength conversion layer is formed on the aforementioned sealing layer. The wavelength conversion layer is obtained by preparing a composition for forming a wavelength conversion layer containing a transparent resin or a precursor thereof and phosphor particles, and applying and curing the composition on the light transmitting layer.
 波長変換層形成用組成物には、透明樹脂もしくはその前駆体と、蛍光体粒子とが含まれる。必要に応じて溶媒や各種添加剤等が含まれてもよい。溶媒は、上記透明樹脂またはその前駆体を溶解させることが可能なものであれば、特に制限されない。溶媒は例えばトルエン、キシレンなどの炭化水素類;アセトン、メチルエチルケトンなどのケトン類;ジエチルエーテル、テトラヒドロフランなどのエーテル類、プロピレングリコールモノメチルエーテルアセテート、エチルアセテートなどのエステル類等でありうる。 The wavelength conversion layer forming composition includes a transparent resin or a precursor thereof and phosphor particles. A solvent, various additives, etc. may be contained as needed. The solvent is not particularly limited as long as it can dissolve the transparent resin or its precursor. The solvent can be, for example, hydrocarbons such as toluene and xylene; ketones such as acetone and methyl ethyl ketone; ethers such as diethyl ether and tetrahydrofuran; esters such as propylene glycol monomethyl ether acetate and ethyl acetate;
 波長変換層形成用組成物の混合は、例えば、撹拌ミル、ブレード混練撹拌装置、薄膜旋回型分散機等で行うことができる。撹拌条件を調整することで、波長変換層形成用組成物における蛍光体粒子の沈降を抑制することができる。 The mixing of the composition for forming a wavelength conversion layer can be performed, for example, with a stirring mill, a blade kneading stirring device, a thin film swirl type dispersing machine, or the like. By adjusting the stirring conditions, it is possible to suppress the precipitation of the phosphor particles in the wavelength conversion layer forming composition.
 波長変換層形成用組成物の塗布方法は、特に制限されない。例えば前述のディスペンサー等、一般的な塗布装置により波長変換層形成用組成物を塗布することができる。また、波長変換層形成用組成物の硬化方法や硬化条件は、透明樹脂の種類により適宜選択する。硬化方法の一例として、加熱硬化が挙げられる。 The method for applying the wavelength conversion layer forming composition is not particularly limited. For example, the wavelength conversion layer forming composition can be applied by a general application apparatus such as the aforementioned dispenser. Moreover, the curing method and curing conditions of the wavelength conversion layer forming composition are appropriately selected depending on the type of the transparent resin. An example of the curing method is heat curing.
 以下、本発明を実施例により更に詳細に説明する。しかしながら、本発明の範囲はこれによって何ら制限を受けない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited by this.
<蛍光体粒子の調製>
 実施例及び比較例で使用した、蛍光体粒子の調製方法を示す。
 蛍光体原料として、Y7.41g、Gd4.01g、CeO0.63g、及びAl7.77gを十分に混合した。これにフラックスとしてフッ化アンモニウムを適量混合し、アルミ製の坩堝に充填した。当該充填物を、水素含有窒素ガスを流通させた還元雰囲気中において、1350~1450℃の温度範囲で2~5時間焼成して焼成品((Y0.72Gd0.24Al12:Ce0.04)を得た。
<Preparation of phosphor particles>
The method for preparing phosphor particles used in Examples and Comparative Examples is shown.
As the phosphor material, 7.41 g of Y 2 O 3 , 4.01 g of Gd 2 O 3 , 0.63 g of CeO 2 , and 7.77 g of Al 2 O 3 were sufficiently mixed. An appropriate amount of ammonium fluoride was mixed as a flux to this and filled in an aluminum crucible. The packing is fired at a temperature range of 1350 to 1450 ° C. for 2 to 5 hours in a reducing atmosphere in which hydrogen-containing nitrogen gas is circulated to obtain a fired product ((Y 0.72 Gd 0.24 ) 3 Al 5 O 12 : Ce 0.04 ).
 得られた焼成品を粉砕、洗浄、分離、乾燥して、平均粒径が10μm程度の黄色蛍光体粒子を得た。波長465nmの励起光における発光波長を測定したところ、おおよそ波長570nmにピーク波長を有していた。 The obtained fired product was pulverized, washed, separated, and dried to obtain yellow phosphor particles having an average particle diameter of about 10 μm. When the emission wavelength of excitation light with a wavelength of 465 nm was measured, it had a peak wavelength at a wavelength of approximately 570 nm.
[実施例1]
 メチルトリメトキシシラン29.5gと、テトラメトキシシラン32.8gと、メタノール40.0gと、アセトン40.0gとを混合し、攪拌した。この混合液に、水54.6g、及び濃度60質量%の硝酸水溶液47μLを加えた。この混合液をさらに3時間攪拌し、3官能成分:4官能成分(重合モル比)=4:6のポリシロキサン化合物を含むポリシロキサン含有溶液を得た。
[Example 1]
29.5 g of methyltrimethoxysilane, 32.8 g of tetramethoxysilane, 40.0 g of methanol, and 40.0 g of acetone were mixed and stirred. To this mixed solution, 54.6 g of water and 47 μL of an aqueous nitric acid solution having a concentration of 60% by mass were added. This mixed solution was further stirred for 3 hours to obtain a polysiloxane-containing solution containing a polysiloxane compound of trifunctional component: tetrafunctional component (polymerization molar ratio) = 4: 6.
 ポリシロキサン化合物含有溶液と、シランカップリング剤(3-グリシドキシプロピルトリメトキシシラン)1質量部と、ZrO微粒子が分散したスラリー(TECNADIS-ZR-220:TECNAN社製)10質量部とを混合し、LED装置用封止剤を調製した。なお、ポリシロキサン化合物含有溶液は、ポリシロキサン化合物の量が89質量部となるように添加した。 A polysiloxane compound-containing solution, 1 part by mass of a silane coupling agent (3-glycidoxypropyltrimethoxysilane), and 10 parts by mass of a slurry in which ZrO 2 fine particles are dispersed (TECNADIS-ZR-220: manufactured by TECNAN) It mixed and the sealing agent for LED devices was prepared. The polysiloxane compound-containing solution was added so that the amount of the polysiloxane compound was 89 parts by mass.
 芳香族ポリアミド製円形パッケージ(基板)(開口径3mm、底面直径2mm、開口部の壁面傾斜角度60°)を準備した。当該パッケージの底面には、銀メッキからなる配線が形成されているものとした。円形パッケージの開口部中央に、1つの青色LEDチップ(直方体状;200μm×300μm×100μm)をダイボンド用接着剤で固定した。さらに、LEDチップのアノード電極及びカソード電極を、それぞれワイヤ(金線)で電極に接続してLED素子を得た。 An aromatic polyamide circular package (substrate) (opening diameter 3 mm, bottom diameter 2 mm, opening wall inclination angle 60 °) was prepared. Wiring made of silver plating is formed on the bottom surface of the package. One blue LED chip (cuboid shape: 200 μm × 300 μm × 100 μm) was fixed to the center of the opening of the circular package with a die-bonding adhesive. Furthermore, the anode electrode and the cathode electrode of the LED chip were each connected to the electrode with a wire (gold wire) to obtain an LED element.
 前述のLED装置用封止剤を、スプレー装置で、前記上記LED素子のLEDチップ及び配線を覆うように塗布し、150℃で1時間乾燥させて封止層を形成した。封止層の厚みは0.9μmであった。 The aforementioned sealing agent for LED device was applied with a spray device so as to cover the LED chip and the wiring of the LED element, and dried at 150 ° C. for 1 hour to form a sealing layer. The thickness of the sealing layer was 0.9 μm.
 続いて、メチルシリコーン(信越化学工業社製:KER-2500)9gと、上記蛍光体粒子とを混合脱泡し、波長変換層用組成物を得た。当該波長変換層用組成物を、前記封止層上にディスペンサで塗布し、150℃で1時間加熱して波長変換層を形成し;LED素子、封止層、及び波長変換層が積層されたLED装置を得た。波長変換層の厚みは1000μmであった。 Subsequently, 9 g of methyl silicone (manufactured by Shin-Etsu Chemical Co., Ltd .: KER-2500) and the above phosphor particles were mixed and degassed to obtain a wavelength conversion layer composition. The wavelength conversion layer composition was applied onto the sealing layer with a dispenser and heated at 150 ° C. for 1 hour to form a wavelength conversion layer; the LED element, the sealing layer, and the wavelength conversion layer were laminated. An LED device was obtained. The thickness of the wavelength conversion layer was 1000 μm.
[実施例2]
 シランカップリング剤を3-メタクリロキシプロピルトリメトキシシランに変更した以外は実施例1と同様にLED装置用封止剤を調製し、LED装置を作製した。
[Example 2]
An LED device encapsulant was prepared in the same manner as in Example 1 except that the silane coupling agent was changed to 3-methacryloxypropyltrimethoxysilane to produce an LED device.
[実施例3]
 シランカップリング剤を3-アミノプロピルトリエトキシシランに変更した以外は実施例1と同様にLED装置用封止剤を調製し、LED装置を作製した。
[Example 3]
An LED device sealant was prepared in the same manner as in Example 1 except that the silane coupling agent was changed to 3-aminopropyltriethoxysilane, and an LED device was produced.
[実施例4]
 シランカップリング剤を3-メルカプトプロピルメチルジメトキシシランに変更した以外は実施例1と同様にLED装置用封止剤を調製し、LED装置を作製した。
[Example 4]
An LED device encapsulant was prepared in the same manner as in Example 1 except that the silane coupling agent was changed to 3-mercaptopropylmethyldimethoxysilane to produce an LED device.
[実施例5]
 メチルトリメトキシシランの量を35.4gとし、テトラメトキシシランの添加量を26.2gとした以外は、実施例1と同様に、3官能成分:4官能成分(重合モル比)=6:4のポリシロキサン化合物を含むポリシロキサン含有溶液を得た。
[Example 5]
Trifunctional component: tetrafunctional component (polymerization molar ratio) = 6: 4 as in Example 1, except that the amount of methyltrimethoxysilane was 35.4 g and the amount of tetramethoxysilane added was 26.2 g. A polysiloxane-containing solution containing a polysiloxane compound was obtained.
 ポリシロキサン化合物含有溶液と、シランカップリング剤(X-41-1810:信越化学社製)10質量部と、TiO微粒子が分散したスラリー(TECNADIS-TI-220:TECNAN社製)10質量部とを混合し、LED装置用封止剤を調製した。なお、ポリシロキサン化合物含有溶液は、ポリシロキサン化合物の量が80質量部となるように添加した。 A solution containing a polysiloxane compound, 10 parts by mass of a silane coupling agent (X-41-1810: manufactured by Shin-Etsu Chemical Co., Ltd.), 10 parts by mass of a slurry in which TiO 2 fine particles are dispersed (TECNADIS-TI-220: manufactured by TECNAN) Were mixed to prepare an LED device sealant. The polysiloxane compound-containing solution was added so that the amount of the polysiloxane compound was 80 parts by mass.
 前述のLED装置用封止剤を、スプレー装置で、前記上記LED素子のLEDチップ及び配線を覆うように塗布し、150℃で1時間乾燥させて封止層を形成した。続いて、実施例1と同様に波長変換層用組成物を形成してLED装置を得た。 The aforementioned sealing agent for LED device was applied with a spray device so as to cover the LED chip and the wiring of the LED element, and dried at 150 ° C. for 1 hour to form a sealing layer. Then, the composition for wavelength conversion layers was formed similarly to Example 1, and the LED device was obtained.
[実施例6]
 実施例5と同様に、ポリシロキサン化合物含有溶液を調製した。当該ポリシロキサン含有溶液と、シランカップリング剤(X-41-1053:信越化学社製)30質量部と、Al微粒子が分散したスラリー(TECNADIS-AL-220:TECNAN社製)10質量部と、ジルコニウムジメタクリレートジブトキシド10質量部とを混合し、LED装置用封止剤を調製した。なお、ポリシロキサン化合物含有溶液は、ポリシロキサン化合物の量が50質量部となるように添加した。
[Example 6]
In the same manner as in Example 5, a polysiloxane compound-containing solution was prepared. 10 parts by mass of the polysiloxane-containing solution, 30 parts by mass of a silane coupling agent (X-41-1053: manufactured by Shin-Etsu Chemical Co., Ltd.), and a slurry in which Al 2 O 3 fine particles are dispersed (TECNADIS-AL-220: manufactured by TECNAN) Part and 10 parts by mass of zirconium dimethacrylate dibutoxide were mixed to prepare an LED device sealant. The polysiloxane compound-containing solution was added so that the amount of the polysiloxane compound was 50 parts by mass.
 前述のLED装置用封止剤を、スプレー装置で、前記上記LED素子のLEDチップ及び配線を覆うように塗布し、150℃で1時間乾燥させて封止層を形成した。続いて、実施例1と同様に波長変換層用組成物を形成してLED装置を得た。なお、ジルコニウムジメタクリレートジブトキシドの硬化物の屈折率は1.64であった。ジルコニウムジメタクリレートジブトキシドの硬化物の屈折率は、以下のように測定した。ジルコニウムジメタクリレートジブトキシドを、65℃で12時間保持した後、150℃で3時間保持して硬化させた。硬化物を細かく砕き、屈折率標準液に入れスライドガラスの上に載せた。そして、カバーガラスを載せ、絞りを絞った顕微鏡で試料の砕片の周囲に光る線(ベッケ線)を観察し屈折率を測定した。 The aforementioned sealing agent for LED device was applied with a spray device so as to cover the LED chip and the wiring of the LED element, and dried at 150 ° C. for 1 hour to form a sealing layer. Then, the composition for wavelength conversion layers was formed similarly to Example 1, and the LED device was obtained. The refractive index of the cured product of zirconium dimethacrylate dibutoxide was 1.64. The refractive index of the cured product of zirconium dimethacrylate dibutoxide was measured as follows. Zirconium dimethacrylate dibutoxide was cured at 65 ° C. for 12 hours and then at 150 ° C. for 3 hours. The cured product was finely crushed, placed in a refractive index standard solution, and placed on a slide glass. Then, a cover glass was placed, a line (Becke line) shining around the sample fragments was observed with a microscope with a narrowed aperture, and the refractive index was measured.
[実施例7]
 ジメチルジメトキシシランの量を5.2g、メチルトリメトキシシランの量を17.6gとし、テトラメトキシシランの添加量を39.4gとした以外は、実施例1と同様に、2官能成分:3官能成分:4官能成分(重合モル比)=1:3:6のポリシロキサン化合物を含むポリシロキサン含有溶液を得た。
[Example 7]
Bifunctional component: trifunctional as in Example 1, except that the amount of dimethyldimethoxysilane was 5.2 g, the amount of methyltrimethoxysilane was 17.6 g, and the amount of tetramethoxysilane was 39.4 g. Component: A polysiloxane-containing solution containing a polysiloxane compound of 4 functional components (polymerization molar ratio) = 1: 3: 6 was obtained.
 当該ポリシロキサン含有溶液と、シランカップリング剤(3-クロロプロピルトリクロロシラン)5質量部と、TiO微粒子が分散したスラリー(TECNADIS-TI-220:TECNAN社製)20質量部と、チタンテトラn-ブトキシド5質量部とを混合し、LED装置用封止剤を調製した。なお、ポリシロキサン化合物含有溶液は、ポリシロキサン化合物の量が50質量部となるように添加した。 The polysiloxane-containing solution, 5 parts by mass of a silane coupling agent (3-chloropropyltrichlorosilane), 20 parts by mass of a slurry in which TiO 2 fine particles are dispersed (TECNADIS-TI-220: manufactured by TECNAN), titanium tetran -5 parts by mass of butoxide was mixed to prepare an LED device sealant. The polysiloxane compound-containing solution was added so that the amount of the polysiloxane compound was 50 parts by mass.
 前述のLED装置用封止剤を、スプレー装置で、前記上記LED素子のLEDチップ及び配線を覆うように塗布し、150℃で1時間乾燥させて封止層を形成した。続いて、実施例1と同様に波長変換層用組成物を形成してLED装置を得た。なお、チタンテトラn-ブトキシドの硬化物の屈折率は1.70であった。チタンテトラn-ブトキシドの硬化物の屈折率は以下のように測定した。チタンテトラn-ブトキシドを、65℃で12時間保持した後、150℃で3時間保持して硬化させた。硬化物を細かく砕き、屈折率標準液に入れスライドガラスの上に載せた。そして、カバーガラスを載せ、絞りを絞った顕微鏡で試料の砕片の周囲に光る線(ベッケ線)を観察し、屈折率を測定した。 The aforementioned sealing agent for LED device was applied with a spray device so as to cover the LED chip and the wiring of the LED element, and dried at 150 ° C. for 1 hour to form a sealing layer. Then, the composition for wavelength conversion layers was formed similarly to Example 1, and the LED device was obtained. The refractive index of the cured product of titanium tetra n-butoxide was 1.70. The refractive index of the cured product of titanium tetra n-butoxide was measured as follows. Titanium tetra n-butoxide was cured at 65 ° C. for 12 hours and then at 150 ° C. for 3 hours. The cured product was finely crushed, placed in a refractive index standard solution, and placed on a slide glass. Then, a cover glass was placed, a line (Becke line) shining around the sample fragments was observed with a microscope with a narrowed aperture, and the refractive index was measured.
[比較例1]
 封止層を形成しなかった以外は、実施例1と同様にLED装置を得た。
[Comparative Example 1]
An LED device was obtained in the same manner as in Example 1 except that the sealing layer was not formed.
[比較例2]
 メチルトリメトキシシランの量を44.1g、テトラメトキシシランの量を5.5gとした以外は実施例1同様に、3官能成分:4官能成分(重合モル比)=9:1のポリシロキサン化合物を含むポリシロキサン含有溶液を得た。当該ポリシロキサン含有溶液をスプレー装置で、前記上記LED素子のLEDチップ及び配線を覆うように塗布した以外は、実施例1と同様にLED装置を得た。
[Comparative Example 2]
Polysiloxane compound of trifunctional component: tetrafunctional component (polymerization molar ratio) = 9: 1 as in Example 1, except that the amount of methyltrimethoxysilane was 44.1 g and the amount of tetramethoxysilane was 5.5 g A polysiloxane-containing solution containing was obtained. An LED device was obtained in the same manner as in Example 1 except that the polysiloxane-containing solution was applied by a spray device so as to cover the LED chip and the wiring of the LED element.
[比較例3]
 実施例1と同様に、ポリシロキサン含有溶液を調製した。当該ポリシロキサン含有溶液をスプレー装置で、前記上記LED素子のLEDチップ及び配線を覆うように塗布した以外は、実施例1と同様にLED装置を得た。
[Comparative Example 3]
In the same manner as in Example 1, a polysiloxane-containing solution was prepared. An LED device was obtained in the same manner as in Example 1 except that the polysiloxane-containing solution was applied by a spray device so as to cover the LED chip and the wiring of the LED element.
[比較例4]
 実施例1と同様に、ポリシロキサン含有溶液を調製した。当該ポリシロキサン含有溶液と、シランカップリング剤(アミノプロピルトリメトキシシラン)5質量部とを混合し、LED装置用封止剤を調製した。なお、ポリシロキサン化合物含有溶液は、ポリシロキサン化合物の量が95質量部となるように添加した。
[Comparative Example 4]
In the same manner as in Example 1, a polysiloxane-containing solution was prepared. The polysiloxane-containing solution and 5 parts by mass of a silane coupling agent (aminopropyltrimethoxysilane) were mixed to prepare an LED device sealing agent. The polysiloxane compound-containing solution was added so that the amount of the polysiloxane compound was 95 parts by mass.
 前述のLED装置用封止剤を、スプレー装置で、前記上記LED素子のLEDチップ及び配線を覆うように塗布し、150℃で1時間乾燥させて封止層を形成した。続いて、実施例1と同様に波長変換層用組成物を形成してLED装置を得た。 The aforementioned sealing agent for LED device was applied with a spray device so as to cover the LED chip and the wiring of the LED element, and dried at 150 ° C. for 1 hour to form a sealing layer. Then, the composition for wavelength conversion layers was formed similarly to Example 1, and the LED device was obtained.
[比較例5]
 ジメチルジメトキシシランの量を25.9gメチルトリメトキシシランの量を17.6g、テトラメトキシシランの量を13.1gとした以外は実施例1同様に、2官能成分:3官能成分:4官能成分(重合モル比)=5:3:2のポリシロキサン化合物を含むポリシロキサン含有溶液を得た。当該ポリシロキサン含有溶液をスプレー装置で、前記上記LED素子のLEDチップ及び配線を覆うように塗布し、150℃で1時間乾燥させて封止層を形成した以外は、実施例1と同様にLED装置を得た。
[Comparative Example 5]
Difunctional component: Trifunctional component: Tetrafunctional component As in Example 1, except that the amount of dimethyldimethoxysilane was 25.9 g, the amount of methyltrimethoxysilane was 17.6 g, and the amount of tetramethoxysilane was 13.1 g. A polysiloxane-containing solution containing a polysiloxane compound (polymerization molar ratio) = 5: 3: 2 was obtained. LED was applied in the same manner as in Example 1 except that the polysiloxane-containing solution was applied with a spray device so as to cover the LED chip and the wiring of the LED element and dried at 150 ° C. for 1 hour to form a sealing layer. Got the device.
[評価]
 (LED装置用封止剤の評価)
 各実施例及び比較例で得られたLED装置用封止剤を、以下のように評価した。LED装置用封止剤を、直径5cmのテフロン(登録商標)シャーレ上に滴下し65℃で12時間保持した後、150℃で3時間硬化させた。硬化させたサンプルを粉砕し以下の条件で固体Si-NMR測定を行い、得られたデータの波形解析を行った。
[Evaluation]
(Evaluation of sealant for LED device)
The sealing agent for LED devices obtained in each Example and Comparative Example was evaluated as follows. The LED device sealant was dropped on a Teflon (registered trademark) petri dish having a diameter of 5 cm and held at 65 ° C. for 12 hours, and then cured at 150 ° C. for 3 hours. The cured sample was pulverized and subjected to solid Si-NMR measurement under the following conditions, and the waveform analysis of the obtained data was performed.
<固体Si-NMR装置条件>
 装置:Chemagnetics社InfinityCMX-400核磁気共鳴分光装置
 29Si共鳴周波数:79.436MHz
 プローブ:7.5mmφCP/MAS用プローブ
 測定温度:室温
 試料回転数:4kHz
 測定法:シングルパルス法
 Hデカップリング周波数:50kHz
 29Siフリップ角:90゜
 29Si90゜パルス幅:5.0μs
 くり返し時間:600s
 積算回数:128回
 観測幅:30kHz
 ブロードニングファクター:20Hz
<Solid Si-NMR apparatus conditions>
Apparatus: Chemmagnetics Infinity CMX-400 nuclear magnetic resonance spectrometer 29 Si resonance frequency: 79.436 MHz
Probe: 7.5 mmφ CP / MAS probe Measurement temperature: room temperature Sample rotation speed: 4 kHz
Measurement method: Single pulse method 1 H decoupling frequency: 50 kHz
29 Si flip angle: 90 ° 29 Si90 ° pulse width: 5.0μs
Repeat time: 600s
Integration count: 128 Observation width: 30 kHz
Broadening factor: 20Hz
<波形解析>
 固体Si-NMRで測定されたデータを以下のように処理した。
 各データについて、512ポイントを測定データとして取り込み、8192ポイントにゼロフィリングしてフーリエ変換した。
 フーリエ変換後のスペクトルの各ピークについてローレンツ波形及びガウス波形或いは両者の混合により作成したピーク形状の中心位置、高さ、半値幅を可変パラメータとして、非線形最小二乗法により最適化計算を行なった。なお、ピークの同定はAIChEJournal,44(5),p.1141,1998年等を参考にした。
<Waveform analysis>
Data measured by solid-state Si-NMR was processed as follows.
For each data, 512 points were taken as measurement data, zero-filled to 8192 points, and Fourier transformed.
For each peak of the spectrum after Fourier transform, optimization calculation was performed by a non-linear least square method using the center position, height, and half width of the peak shape created by Lorentz waveform and Gaussian waveform or a mixture of both as variable parameters. The peak is identified by AIChEJournal, 44 (5), p. Reference was made to 1141, 1998, etc.
 得られた波形データから、ケミカルシフト-120ppm以上-90ppm以下の領域に存在するピーク群(Qピーク群)の半値幅、及びケミカルシフト-80ppm以上-40ppm以下の領域に存在するピーク群(Tピーク群)の半値幅を求めた。また、全ピーク面積に対するシラノール由来のピーク面積の比率を求め、シラノール含有率(%)を求めた。 From the obtained waveform data, the half-value width, and the chemical shift -80ppm or more -40ppm peaks present in the following areas of the peaks present in the following areas chemical shift -120ppm or -90 ppm (Q n peak group) (T The half width of ( n peak group) was determined. Moreover, the ratio of the peak area derived from silanol to the total peak area was determined, and the silanol content (%) was determined.
(LED装置の評価)
<硫化耐性評価>
 各実施例及び比較例で作製したLED装置を、硫化水素濃度10~15体積ppm、25℃、湿度75%Rhの環境下で48時間保存した。当該LED装置について、試験前後の全光束値を測定し、試験前の全光束値に対する、試験後の全光束値の比率を算出した。全光束は分光放射輝度計(CS-2000、コニカミノルタセンシング社製)により測定した。
(Evaluation of LED device)
<Sulfurization resistance evaluation>
The LED devices fabricated in each of the examples and comparative examples were stored for 48 hours in an environment with a hydrogen sulfide concentration of 10 to 15 volume ppm, 25 ° C., and humidity of 75% Rh. For the LED device, the total luminous flux value before and after the test was measured, and the ratio of the total luminous flux value after the test to the total luminous flux value before the test was calculated. The total luminous flux was measured with a spectral radiance meter (CS-2000, manufactured by Konica Minolta Sensing).
<湿熱耐性評価>
 各実施例及び比較例で作製したLED装置を、85℃、湿度85%Rhの環境下で1000時間保存した。当該LED装置について、試験前後の全光束値を測定し、試験前の全光束値に対する、試験後の全光束値の比率を算出した。全光束は分光放射輝度計(CS-2000、コニカミノルタセンシング社製)により測定した。
<Heat heat resistance evaluation>
The LED devices fabricated in each example and comparative example were stored for 1000 hours in an environment of 85 ° C. and humidity of 85% Rh. For the LED device, the total luminous flux value before and after the test was measured, and the ratio of the total luminous flux value after the test to the total luminous flux value before the test was calculated. The total luminous flux was measured with a spectral radiance meter (CS-2000, manufactured by Konica Minolta Sensing).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、封止層を形成しなかった場合には、硫化耐性試験後及び湿熱耐性試験後に全光束が大きく低下した(比較例1)。一方、封止層を形成したとしても、LED装置用封止剤の硬化膜の固体Si-NMRスペクトルのQピーク群(ケミカルシフト-120ppm以上-90ppm以下の領域に存在するピーク)の半値幅、及びTピーク群(ケミカルシフト-80ppm以上-40ppm以下の領域に存在するピーク群)の半値幅が狭すぎる場合には、硫化耐性及び耐湿熱性が悪かった(比較例2)。当該実施例では、3官能シラン化合物由来の有機基が膜中に多く残存し、十分なシロキサン結合が形成されなかったため、結合角の歪み(半値幅)が小さかったと推察される。しかし架橋密度が低く、膜が緻密にならなかったため、硫化耐性や耐湿熱性が低かった。 As shown in Table 1, when the sealing layer was not formed, the total luminous flux greatly decreased after the sulfidation resistance test and the wet heat resistance test (Comparative Example 1). On the other hand, even when forming the sealing layer, the half-value width of the solid Si-NMR Q n peak group of the spectrum of the cured film of the LED device sealing agent (peaks present in the following areas chemical shift -120ppm than -90 ppm) , and T n peak group when the half width of the (chemical shift -80ppm or more -40ppm following peaks present in the region) is too narrow, poor sulphide resistance and wet heat resistance (Comparative example 2). In this example, it is inferred that the bond angle distortion (half width) was small because many organic groups derived from the trifunctional silane compound remained in the film and sufficient siloxane bonds were not formed. However, since the crosslinking density was low and the film was not dense, the resistance to sulfidation and heat-and-moisture resistance were low.
 また、Qピーク群(ケミカルシフト-120ppm以上-90ppm以下の領域に存在するピーク)の半値幅、及びTピーク群(ケミカルシフト-80ppm以上-40ppm以下の領域に存在するピーク群)の半値幅が5~12ppmであったとしても、LED装置用封止剤にシランカップリング剤や金属酸化物微粒子が含まれない場合には硫化耐性や耐湿熱性が悪かった(比較例3及び4)ポリシロキサン化合物の脱水縮合時に生じる応力が緩和されず、封止層にクラックが生じたり、封止層と波長変換層との密着性や封止層とLED素子との密着性が不十分であったと推察される。 Also, half of the Q n peak group half width, and T n peak group (peak present in the following areas chemical shift -80ppm least -40ppm group) of (Chemical peaks present in the shift -120ppm than -90ppm following areas) Even when the value range was 5 to 12 ppm, when the silane coupling agent and metal oxide fine particles were not contained in the LED device sealant, the resistance to sulfidation and moist heat resistance were poor (Comparative Examples 3 and 4). The stress generated during the dehydration condensation of the siloxane compound is not relieved, cracks are generated in the sealing layer, and the adhesiveness between the sealing layer and the wavelength conversion layer and the adhesiveness between the sealing layer and the LED element are insufficient. Inferred.
 さらに、LED装置用封止剤の硬化膜のシラノール含有率が高すぎる場合(比較例5)にも、硫化耐性や耐湿熱性が低かった。当該実施例では、LED装置用封止剤の乾燥が十分ではなく、緻密な膜が形成されなかったと推察される。 Furthermore, when the silanol content of the cured film of the LED device sealant was too high (Comparative Example 5), the resistance to sulfurization and heat-and-moisture resistance were also low. In this example, it is surmised that the LED device sealant was not sufficiently dried and a dense film was not formed.
 本発明のLED装置用封止剤を用いて製造されるLED装置は、ガスバリア性及び光取り出し性が高い。したがって、屋内、屋外の照明装置等にいずれも適用可能である。 The LED device manufactured using the sealant for an LED device of the present invention has high gas barrier properties and light extraction properties. Therefore, both can be applied to indoor and outdoor lighting devices.
 1 基板(パッケージ)
 2 LEDチップ
 3 金属反射層
 4 ワイヤ
 5 封止層
 6 波長変換層
 7 突起電極
 100 LED装置
 
1 Substrate (package)
2 LED chip 3 Metal reflective layer 4 Wire 5 Sealing layer 6 Wavelength conversion layer 7 Projection electrode 100 LED device

Claims (4)

  1.  ポリシロキサン化合物と、シランカップリング剤と、金属酸化物微粒子とを含むLED装置用封止剤であって、
     前記LED装置用封止剤を65℃で12時間保持した後、150℃で3時間保持して硬化した硬化膜の固体Si-核磁気共鳴スペクトルは、ピークトップの位置がケミカルシフト-120ppm以上-90ppm以下の領域にあり、かつ半値幅が5.0ppmより大きく12ppm以下であるピークと、ピークトップの位置がケミカルシフト-80ppm以上-40ppm以下の領域にあり、かつ半値幅が5.0ppmより大きく12ppm以下であるピークと、を有し、
     前記硬化膜のシラノール含有率が10質量%より多く、30質量%以下である、
     LED装置用封止剤。
    An LED device encapsulant comprising a polysiloxane compound, a silane coupling agent, and metal oxide fine particles,
    The solid Si-nuclear magnetic resonance spectrum of the cured film obtained by holding the sealant for LED device at 65 ° C. for 12 hours and then hardening at 150 ° C. for 3 hours shows that the peak top position is chemical shift −120 ppm or more − The peak in the region of 90 ppm or less and the full width at half maximum of 5.0 ppm to 12 ppm and the peak top position is in the region of chemical shift of −80 ppm to −40 ppm and the full width at half maximum is greater than 5.0 ppm. Having a peak of 12 ppm or less,
    The silanol content of the cured film is more than 10% by mass and 30% by mass or less.
    Sealant for LED device.
  2.  Si以外の金属元素を含む有機金属化合物をさらに含む、請求項1に記載のLED装置用封止剤。 The sealant for an LED device according to claim 1, further comprising an organometallic compound containing a metal element other than Si.
  3.  前記有機金属化合物の硬化物の屈折率が1.48以上である、請求項1または2に記載のLED装置用封止剤。 The LED device encapsulant according to claim 1 or 2, wherein the cured product of the organometallic compound has a refractive index of 1.48 or more.
  4.  LED素子と、前記LED素子を被覆する封止層と、前記封止層上に形成され、透明樹脂及び蛍光体粒子を含む波長変換層とを有し、
     前記封止層が、請求項1~3のいずれか一項に記載のLED装置用封止剤の硬化膜である、LED装置。
     
    An LED element, a sealing layer that covers the LED element, and a wavelength conversion layer that is formed on the sealing layer and includes a transparent resin and phosphor particles;
    An LED device, wherein the sealing layer is a cured film of the sealant for an LED device according to any one of claims 1 to 3.
PCT/JP2013/007334 2012-12-14 2013-12-12 Sealant for led device and led device using same WO2014091762A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014551897A JPWO2014091762A1 (en) 2012-12-14 2013-12-12 Sealant for LED device and LED device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012273511 2012-12-14
JP2012-273511 2012-12-14

Publications (1)

Publication Number Publication Date
WO2014091762A1 true WO2014091762A1 (en) 2014-06-19

Family

ID=50934069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/007334 WO2014091762A1 (en) 2012-12-14 2013-12-12 Sealant for led device and led device using same

Country Status (2)

Country Link
JP (1) JPWO2014091762A1 (en)
WO (1) WO2014091762A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016052658A1 (en) * 2014-10-03 2016-04-07 富士フイルム株式会社 Siloxane resin composition, transparent cured product using same, transparent pixel, microlens and solid-state imaging element
JP2020136514A (en) * 2019-02-20 2020-08-31 旭化成株式会社 Ultraviolet light-emitting device
JP2020158609A (en) * 2019-03-26 2020-10-01 リンテック株式会社 Curable composition, cured product and method for using curable composition
WO2020225881A1 (en) * 2019-05-08 2020-11-12 昭和電工マテリアルズ株式会社 Barrier material and product equipped with same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008095091A (en) * 2006-09-15 2008-04-24 Mitsubishi Chemicals Corp Fluorescent substance and its production method, fluorescent substance containing composition, light emitting device, image display device, and illuminating device
JP2008189743A (en) * 2007-02-02 2008-08-21 Central Glass Co Ltd Organic-inorganic hybrid transparent sealing material and method for producing the same
JP2010283214A (en) * 2009-06-05 2010-12-16 Konica Minolta Opto Inc Phosphor element, light emitting device, and method of manufacturing phosphor element
JP2011155188A (en) * 2010-01-28 2011-08-11 Konica Minolta Opto Inc Method for manufacturing light-emitting diode unit
WO2012105606A1 (en) * 2011-02-02 2012-08-09 独立行政法人物質・材料研究機構 Process for manufacture of phosphor-dispersed glass, and phosphor-dispersed glass
JP2012201707A (en) * 2011-03-23 2012-10-22 Panasonic Corp Coated phosphor and light emitting device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008095091A (en) * 2006-09-15 2008-04-24 Mitsubishi Chemicals Corp Fluorescent substance and its production method, fluorescent substance containing composition, light emitting device, image display device, and illuminating device
JP2008189743A (en) * 2007-02-02 2008-08-21 Central Glass Co Ltd Organic-inorganic hybrid transparent sealing material and method for producing the same
JP2010283214A (en) * 2009-06-05 2010-12-16 Konica Minolta Opto Inc Phosphor element, light emitting device, and method of manufacturing phosphor element
JP2011155188A (en) * 2010-01-28 2011-08-11 Konica Minolta Opto Inc Method for manufacturing light-emitting diode unit
WO2012105606A1 (en) * 2011-02-02 2012-08-09 独立行政法人物質・材料研究機構 Process for manufacture of phosphor-dispersed glass, and phosphor-dispersed glass
JP2012201707A (en) * 2011-03-23 2012-10-22 Panasonic Corp Coated phosphor and light emitting device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016052658A1 (en) * 2014-10-03 2016-04-07 富士フイルム株式会社 Siloxane resin composition, transparent cured product using same, transparent pixel, microlens and solid-state imaging element
KR101787492B1 (en) 2014-10-03 2017-11-15 후지필름 가부시키가이샤 Siloxane resin composition, transparent cured product using same, transparent pixel, microlens and solid-state imaging element
JP2020136514A (en) * 2019-02-20 2020-08-31 旭化成株式会社 Ultraviolet light-emitting device
JP7250560B2 (en) 2019-02-20 2023-04-03 旭化成株式会社 UV light emitting device
JP2020158609A (en) * 2019-03-26 2020-10-01 リンテック株式会社 Curable composition, cured product and method for using curable composition
WO2020225881A1 (en) * 2019-05-08 2020-11-12 昭和電工マテリアルズ株式会社 Barrier material and product equipped with same
JPWO2020225881A1 (en) * 2019-05-08 2020-11-12
CN114096406A (en) * 2019-05-08 2022-02-25 昭和电工材料株式会社 Barrier material and product with same
JP7338678B2 (en) 2019-05-08 2023-09-05 株式会社レゾナック Barrier material and products comprising the same

Also Published As

Publication number Publication date
JPWO2014091762A1 (en) 2017-01-05

Similar Documents

Publication Publication Date Title
US7923928B2 (en) Illuminating device
WO2014109293A1 (en) Led device and coating liquid used for production of same
US9269874B2 (en) Sealing material for light emitting device, light emitting device using the same, and manufacturing method for light emitting device
WO2013099193A1 (en) Sealant for led device, led device, and method for producing led device
EP2940743A1 (en) Light emitting device
WO2014103326A1 (en) Coating liquid, and led device provided with reflective layer that is formed of cured product of said coating liquid
JP2014122296A (en) Sealing material precursor solution for light-emitting device, sealing material for light-emitting device using the same, led device, and method for producing the led device
WO2014091762A1 (en) Sealant for led device and led device using same
JP2016154179A (en) Light-emitting device and manufacturing method thereof
WO2013180258A1 (en) Sealant for light-emitting device, light-emitting device using same, and production method for light-emitting device
JP5910340B2 (en) LED device and manufacturing method thereof
EP2940744A1 (en) Phosphor dispersion, led device and method for manufacturing same
JP2014127495A (en) Led device and method for manufacturing the same
JP2014041955A (en) Led device and manufacturing method of the same
JP5141107B2 (en) Lighting device
JP2014160713A (en) Led device manufacturing method
WO2016024604A1 (en) Inorganic-microparticle-containing polysilsesquioxane composition, method for producing same, light-emitting device, and method for producing same
JP2016181535A (en) Light-emitting device, and coating liquid for manufacturing light-emitting device
WO2013105514A1 (en) Led device
WO2014087629A1 (en) Translucent ceramic material for application by dispenser, and method for manufacturing led device using same
WO2016047745A1 (en) Coating liquid, production method for led device using same, and led device
WO2015025526A1 (en) Led device and method for manufacturing same
JP2014130902A (en) Reflective material and light-emitting device
WO2013187067A1 (en) Led device and production method therefor
WO2016047746A1 (en) Coating liquid, method for manufacturing led device using same, and led device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13863569

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014551897

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13863569

Country of ref document: EP

Kind code of ref document: A1