WO2016047745A1 - Coating liquid, production method for led device using same, and led device - Google Patents

Coating liquid, production method for led device using same, and led device Download PDF

Info

Publication number
WO2016047745A1
WO2016047745A1 PCT/JP2015/077076 JP2015077076W WO2016047745A1 WO 2016047745 A1 WO2016047745 A1 WO 2016047745A1 JP 2015077076 W JP2015077076 W JP 2015077076W WO 2016047745 A1 WO2016047745 A1 WO 2016047745A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating solution
silane compound
coating liquid
reflective layer
ratio
Prior art date
Application number
PCT/JP2015/077076
Other languages
French (fr)
Japanese (ja)
Inventor
禄人 田口
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2016047745A1 publication Critical patent/WO2016047745A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a coating solution, an LED device manufacturing method using the same, and an LED device.
  • a phosphor such as a YAG phosphor has been placed in the vicinity of a gallium nitride (GaN) blue LED (Light Emitting Diode) chip, and has received blue light and blue light emitted from the blue LED chip.
  • GaN gallium nitride
  • An LED device that obtains white light by mixing yellow light emitted from a phosphor is widely used.
  • various phosphors are arranged in the vicinity of the blue LED chip, and blue light emitted from the blue LED chip and red light and green light emitted from the phosphor upon receiving blue light are mixed to obtain white light.
  • Equipment has also been developed.
  • White LED devices have a variety of uses, for example, there is a demand as an alternative to fluorescent lamps and incandescent lamps.
  • Such an illuminating device has a configuration in which a plurality of white LED devices are combined, and how to increase the light extraction efficiency of each white LED device is important in realizing cost reduction and long life. come.
  • a reflector having a high light reflectance is disposed around the LED element.
  • Such a reflector is generally formed of metal plating or the like.
  • a reflector made of metal plating cannot be formed on the entire surface of the substrate in order to prevent electrical conduction. Therefore, there is a problem that light is absorbed by the substrate in the region where the reflector is not formed.
  • Patent Document 1 a reflector in which metal plating is covered with a resin layer
  • Patent Document 2 a reflector in which metal plating is covered with a white resin layer
  • Patent Document 3 a method of creating a reflective layer made of light diffusing particles and a ceramic binder on an LED substrate has been proposed.
  • the reflector is made of resin, or when the reflector surface made of metal plating is coated with resin as in the technique of Patent Document 1, the resin deteriorates due to heat or light, and the light reflection of the reflective layer over time. There is a problem that the property is lowered or electricity is conducted. In particular, in applications where a large amount of light is required, such as in-vehicle headlights, the resin is likely to deteriorate.
  • Patent Document 3 if the reflector surface is covered with a reflective layer made of light diffusing particles and a ceramic binder, a decrease in reflectance due to coloring as shown in Patent Document 2 can be suppressed. .
  • the coating solution of Patent Document 3 has a problem that cracks are likely to occur during curing because of a large volume change (volume shrinkage) due to curing.
  • volume shrinkage volume change
  • the thickness of the reflective layer in order to increase the reflectivity it is necessary to increase the number of coatings, and there is a problem that the tact time increases.
  • the reflective layer obtained by increasing the number of coatings tends to be difficult to obtain a sufficient reflectivity because it is not homogeneous or has a low density.
  • the present invention has been made in view of the above circumstances. For example, when a coating layer formed on a substrate of an LED device is cured to obtain a reflective layer, cracks at the time of curing are satisfactorily suppressed, and high reflectance is achieved. It is an object of the present invention to provide a coating liquid capable of obtaining a cured film that has a reflectance and can maintain the reflectance over a long period of time, and an LED device using the coating liquid.
  • R4 (mol%) both conditions of the following formula 1 and formula 2 are satisfied, 0 ⁇ R2 ⁇ 40 (Formula 1)
  • 0 ⁇ R4 / R3 ⁇ 2 (Formula 2)
  • the volume of the coating solution is A and the volume of the cured product obtained by heat-curing the coating solution at 150 ° C.
  • a substrate, an LED element disposed on the substrate, a reflective layer disposed around the LED element on the substrate, and a wavelength conversion layer disposed on the light emitting direction of the LED element The LED device, wherein the reflective layer is a cured film of the coating liquid according to any one of [1] to [9].
  • a coating layer formed on a substrate of an LED device is cured to obtain a reflective layer, cracks during curing are satisfactorily suppressed, and the reflectance is high. It is possible to provide a coating liquid capable of obtaining a cured film that can be maintained for a long period of time and an LED device using the coating liquid.
  • the coating liquid of the present invention is a composition for forming a reflective layer of an LED device, and the coating liquid contains a white pigment, a silane compound, and a solvent.
  • the coating liquid may contain inorganic particles, clay mineral particles, a silane coupling agent, and the like.
  • a resin is often used for the binder of the reflective layer of the conventional LED device.
  • the resin may be colored or deteriorated by heat or light, and there has been a problem that the light extraction efficiency tends to decrease.
  • it has been studied to form a reflective layer by curing a coating film of a coating solution containing a polysiloxane precursor and a white pigment.
  • the volume change of the coating film when curing the coating film is large, and cracks are likely to occur due to the stress. This crack is likely to occur particularly when the thickness of the coating film is large.
  • the reflective layer having such a crack has a low reflectivity and causes a reduction in light extraction efficiency of the LED device.
  • the coating liquid of the present invention 1) reduces the volume change due to curing, and 2) reduces the content ratio of the tetrafunctional silane compound in the polysiloxane precursor. Thereby, generation
  • the solvent content is preferably kept below a certain level.
  • the content ratio of the tetrafunctional silane compound By setting the content ratio of the tetrafunctional silane compound to a certain value or less, the hardness (or crosslinking density) of the cured product of the coating film can be prevented from becoming excessively high, and the stress generated in the coating film can be alleviated. As a result, a cured film having a high reflectance can be obtained by suppressing cracks during curing.
  • the coating solution since the coating solution has a small solvent content, it can be formed into a thick film even with a small number of coatings. Thereby, the obtained cured film is homogeneous and dense, and can have a higher reflectance. As a result, the light extraction efficiency of the LED device can be increased.
  • the binder of the reflective layer obtained from the coating solution is polysiloxane, the reflective layer is hardly deteriorated by light or heat. Therefore, an LED device having a reflective layer made of a cured film of the coating liquid can maintain high light extraction efficiency over a long period of time.
  • the coating liquid of the present invention contains an alkoxysilane compound.
  • the alkoxysilane compound is a compound that is hydrolyzed and polycondensed into a polysiloxane when the coating solution is cured. And polysiloxane becomes a binder of the above-mentioned reflective layer.
  • the alkoxysilane compound includes at least one of a bifunctional alkoxysilane compound, a trifunctional alkoxysilane compound, and a tetrafunctional alkoxysilane compound.
  • the ratio of the bifunctional alkoxysilane compound to the total amount of the alkoxysilane compound is R2 (mol%)
  • the ratio of the trifunctional alkoxysilane compound is R3 (mol%)
  • the ratio of the tetrafunctional alkoxysilane compound is R4 (mol%).
  • the polysiloxane when R2 is 40 or more, the polysiloxane contains a relatively large amount of organic groups derived from bifunctional alkoxysilane. As a result, it is difficult to form a sufficient siloxane bond between the reflective layer obtained by curing the coating solution and the OH group or the like on the substrate surface, and the adhesion between the reflective layer and the substrate is lowered. In addition, the gas barrier property of the reflective layer may be reduced, and the resistance to sulfurization may be reduced.
  • the value of R4 / R3 is preferably 2 or less, more preferably 0 ⁇ R4 / R3 ⁇ 1.5, and further preferably 0 ⁇ R4 / R3 ⁇ 1.
  • the ratio of the bifunctional alkoxysilane compound, the trifunctional alkoxysilane compound, and the tetrafunctional alkoxysilane compound with respect to the total amount of the alkoxysilane compound in the coating solution is determined by the solid Si of the sample obtained by drying and solidifying the coating solution at 150 ° C. Each can be determined from the NMR spectrum.
  • the spectrum of solid-state Si-NMR (Nuclear Magnetic Resonance) will be described.
  • the tetrafunctional alkoxysilane compound polymer (polysiloxane) is represented by the SiO 2 ⁇ nH 2 O characteristic formula, but structurally, oxygen atoms O are bonded to the apexes of the silicon atom Si tetrahedron. These silicon atoms have a structure in which silicon atoms Si are further bonded to these oxygen atoms O and spread in a net shape.
  • the schematic diagrams (A) and (B) below show the Si—O net structure, ignoring the tetrahedral structure.
  • the schematic diagram (A) shows a case where all of the oxygen atoms O are bonded to other Si atoms in the Si—O net structure.
  • the schematic diagram (B) shows a case where part of the oxygen atom O is replaced with another member (here, —H) in the Si—O net structure.
  • the Si atoms derived from the tetrafunctional alkoxysilane compound include four atoms (Q 4 ) bonded to —OSi, and three Si atoms as shown in the schematic diagram (B). Atom (Q 3 ) or the like bonded to —OSi.
  • a peak based on the silicon atoms derived from the tetrafunctional alkoxysilane compound are collectively referred to as Q sites, the peak derived from each atom, Q 4 peak, Q 3 peak, called ....
  • Q 0 to Q 4 peaks derived from the Q site are referred to as a Q n peak group.
  • the Q n peak group of the silica film containing no organic substituent is usually observed as a multimodal peak continuous in the region of ⁇ 80 to ⁇ 130 ppm chemical shift.
  • a silicon atom that is, silicon derived from a trifunctional alkoxysilane compound in which three oxygen atoms are bonded and one non-oxygen atom (usually carbon) is bonded is generally referred to as a T site. Is done.
  • the peak derived from the T site is observed as each peak of T 0 to T 3 as in the case of the Q site.
  • each peak derived from the T site is referred to as a Tn peak group.
  • the T n peak group is generally observed as a multimodal peak continuous in a region on the higher magnetic field side (usually chemical shift of ⁇ 80 to ⁇ 40 ppm) than the Q n peak group.
  • a silicon atom that is, silicon derived from a bifunctional alkoxysilane compound in which two oxygen atoms are bonded and two atoms other than oxygen (usually carbon) are bonded is generally referred to as a D site. Is done.
  • the peak derived from the D site is also observed as each peak of D 0 to D n (D n peak group), which is further than the peak group of Q n and T n. It is observed as a multimodal peak in the region on the high magnetic field side (usually the region with a chemical shift of ⁇ 3 to ⁇ 40 ppm).
  • FIG. 3 is an example of the spectrum of solid-state Si-NMR, and the spectrum of the cured product of the alkoxysilane compound contained in the coating solution of the present invention is not limited to this.
  • the horizontal axis indicates the chemical shift
  • the vertical axis indicates “relative strength” depending on the abundance of the compound having each structure.
  • D11 indicates actual measurement data.
  • D12 indicates data modeled by a Gaussian function.
  • D13 shows a difference spectrum.
  • the peak P11 represents the D n peak group, the peak top of the D n peak group is present in the vicinity of chemical shift -20.0Ppm.
  • the peak P12 represents the T n peak group, the peak top of the T n peak group is present in the vicinity of chemical shift -60.0Ppm.
  • the peak P13 represents a Q n peak group, the peak top of the Q n peak group is present in the vicinity of a chemical shift -100.0 ⁇ -110 ppm. That is, the spectrum of FIG. 3 shows that silicon derived from a bifunctional alkoxysilane compound, silicon derived from a trifunctional alkoxysilane compound, and silicon derived from a tetrafunctional alkoxysilane compound are included.
  • the area ratio of the respective peak groups of D n , T n , and Q n is equal to the molar ratio of silicon atoms placed in the environment corresponding to each peak group. Therefore, Q n peak group, T n peak group, and to the total area of the D n peak group, the ratio of the area of each peak group, the total amount of the alkoxysilane compound contained in the coating liquid (the total molar amount of silicon atoms) And the molar ratio of each alkoxysilane compound (tetrafunctional alkoxysilane compound, trifunctional alkoxysilane compound, and bifunctional alkoxysilane compound).
  • the alkoxysilane compound may be in a monomer state; however, at least a part is preferably a polymer (oligomer) of bifunctional alkoxysilane, trifunctional alkoxysilane, or tetrafunctional alkoxysilane. If the alkoxysilane compound is an oligomer in which several to several tens of monomers are polymerized in advance, shrinkage when the coating solution is cured is reduced, and cracks are less likely to occur when the reflective layer is formed.
  • each R 1 independently represents an alkyl group or a phenyl group, preferably an alkyl group having 1 to 5 carbon atoms, or a phenyl group.
  • tetrafunctional alkoxysilane compounds include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, tetrapentyloxysilane, tetraphenyloxysilane, trimethoxymonoethoxysilane, dimethoxydiethoxysilane, and triethoxymono.
  • Trifunctional alkoxysilane compound examples include compounds represented by the following general formula (III).
  • R 2 Si (OR 3 ) 3 (III) In the general formula (III), each R 3 independently represents an alkyl group or a phenyl group, preferably an alkyl group having 1 to 5 carbon atoms, or a phenyl group.
  • R 2 represents a hydrogen atom or an alkyl group.
  • trifunctional alkoxysilane compound examples include trimethoxysilane, triethoxysilane, tripropoxysilane, tripentyloxysilane, triphenyloxysilane, dimethoxymonoethoxysilane, diethoxymonomethoxysilane, dipropoxymonomethoxysilane, Dipropoxymonoethoxysilane, dipentyloxylmonomethoxysilane, dipentyloxymonoethoxysilane, dipentyloxymonopropoxysilane, diphenyloxylmonomethoxysilane, diphenyloxymonoethoxysilane, diphenyloxymonopropoxysilane, methoxyethoxypropoxysilane, monopropoxydimethoxy Silane, monopropoxydiethoxysilane, monobutoxydimethoxysilane, monopentyloxydiethoxysila Monohydrosilane compounds such as monophenyloxydieth,
  • R 2 represented by the general formula (III) of these trifunctional alkoxysilane compounds is a methyl group
  • the hydrophobicity of the resulting reflective layer surface becomes low.
  • the composition for forming a wavelength conversion layer becomes easy to spread.
  • the adhesion between the reflective layer and the wavelength conversion layer is enhanced.
  • the trifunctional alkoxysilane compound in which R 2 represented by the general formula (III) is a methyl group include methyltrimethoxysilane and methyltriethoxysilane, and is particularly preferably methyltrimethoxysilane. .
  • each R 5 independently represents an alkyl group or a phenyl group, preferably an alkyl group having 1 to 5 carbon atoms, or a phenyl group.
  • R 4 represents a hydrogen atom or an alkyl group.
  • bifunctional alkoxysilane compound examples include dimethoxysilane, diethoxysilane, dipropoxysilane, dipentyloxysilane, diphenyloxysilane, methoxyethoxysilane, methoxypropoxysilane, methoxypentyloxysilane, methoxyphenyloxysilane, ethoxy Propoxysilane, ethoxypentyloxysilane, ethoxyphenyloxysilane, methyldimethoxysilane, methylmethoxyethoxysilane, methyldiethoxysilane, methylmethoxypropoxysilane, methylmethoxypentyloxysilane, methylmethoxyphenyloxysilane, ethyldipropoxysilane, ethyl Methoxypropoxysilane, ethyldipentyloxysilane, ethyldiphenyloxysilane,
  • An oligomer that can be an alkoxysilane compound is prepared by mixing a bifunctional alkoxysilane compound, a trifunctional alkoxysilane compound, and a tetrafunctional alkoxysilane compound in a desired ratio and reacting them in the presence of an acid catalyst, water, and a solvent. can get.
  • the molecular weight of the oligomer is adjusted by the reaction time, temperature, water concentration, and the like.
  • the oligomer preferably has a weight average molecular weight of 500 to 20000 as measured by GPC (gel permeation chromatograph), more preferably 1000 to 10,000, and even more preferably 1500 to 6000. If the degree of polymerization of the oligomer is too high, the viscosity of the coating solution may become excessively high, or the alkoxysilane compound may precipitate in the coating solution.
  • GPC gel permeation chromatograph
  • solvents for preparing oligomers include monohydric alcohols such as methanol, ethanol, propanol and n-butanol; alkyl carboxylic acid esters such as methyl-3-methoxypropionate and ethyl-3-ethoxypropionate; ethylene Polyhydric alcohols such as glycol, diethylene glycol, propylene glycol, glycerin, trimethylolpropane, hexanetriol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl Ether, diethylene glycol monopropyl ether, diethylene glycol monobutyl ether, pro Monoethers of polyhydric alcohols such as lenglycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol
  • the total amount of alkoxysilane compound contained in the coating solution is preferably 3 to 40% by mass with respect to the total mass of components other than the solvent (including water) contained in the coating solution. More preferably, it is 5 to 30% by mass.
  • the total amount of the alkoxysilane compound is less than 3% by mass, the white pigment is not sufficiently bound in the resulting reflective layer. As a result, pigment powder is easily generated on the surface of the reflective layer.
  • the total amount of the alkoxysilane compound exceeds 40% by mass, the amount of the white pigment is relatively reduced, and the light reflectivity of the reflective layer tends to be low.
  • the solvent contained in the coating solution includes water or an organic solvent.
  • the organic solvent may be any organic solvent that is compatible with the aforementioned alkoxysilane compound and can uniformly disperse the white pigment or the like. Examples of such organic solvents include monohydric alcohols, dihydric or higher polyhydric alcohols, ester solvents and the like.
  • Examples of monohydric alcohols include methanol, ethanol, propanol, butanol and the like.
  • the polyhydric alcohol may be either a diol or a triol.
  • Examples of the polyhydric alcohol include ethylene glycol, propylene glycol, diethylene glycol, glycerin, 1,3-butanediol, 1,4-butanediol, and preferably ethylene glycol, propylene glycol, 1,3-butane. Diol, 1,4-butanediol and the like are included.
  • Examples of the ester solvent include methyl-3-methoxypropionate, methyl acetate, ethyl acetate, propyl acetate, butyl acetate and the like.
  • the organic solvent preferably contains at least one of a monohydric alcohol and a polyhydric alcohol.
  • the solvent can further include water.
  • water When water is contained in the coating solution, water enters between the layers of the clay mineral particles, the clay mineral particles swell, and the viscosity of the coating solution is more likely to increase.
  • the water content is preferably 0 to 30% by mass, more preferably 0 to 20% by mass, based on the entire solvent.
  • the total amount of the solvent contained in the coating solution is preferably 10 to 45% by mass and more preferably 20 to 40% by mass with respect to the total amount of the coating solution from the viewpoint of setting the volume ratio before and after curing in the above range. preferable. If the total amount of the solvent is excessively small, the fluidity of the coating solution becomes too low and the coating stability tends to be lowered. On the other hand, if the total amount of the solvent is excessively large, the volume change before and after curing becomes too large.
  • the white pigment contained in the coating liquid plays a role of reflecting light emitted from the LED element in the reflective layer.
  • the white pigment is a particle having an average primary particle size of more than 100 nm and 20 ⁇ m or less, and a refractive index of light having a wavelength of 587.6 nm of 1.6 or more.
  • the average primary particle size of the white pigment is preferably larger than 100 nm and not larger than 10 ⁇ m, more preferably 200 nm to 2.5 ⁇ m.
  • the “average primary particle size” refers to the value of D50 measured with a laser diffraction particle size distribution meter. Examples of the laser diffraction particle size distribution measuring device include a laser diffraction particle size distribution measuring device manufactured by Shimadzu Corporation.
  • white pigments include barium carbonate, barium sulfate, zinc oxide, magnesium oxide, calcium oxide, titanium oxide, aluminum oxide, zirconium oxide, zinc sulfide, barium sulfate, yttrium oxide, aluminum hydroxide, boron nitride, aluminum nitride, Examples include potassium titanate, barium titanate, aluminum titanate, strontium titanate, calcium titanate, magnesium titanate, and hydroxyapatite. Among these, titanium oxide, aluminum oxide, barium sulfate, zinc oxide, yttrium oxide, boron nitride, and aluminum nitride are particularly preferable.
  • the resulting reflective layer has high thermal conductivity. As a result, the heat generated from the LED element can be quickly released from the substrate. Therefore, the temperature of the LED device can be kept low, and the device life can be extended.
  • the amount of the white pigment contained in the coating solution is preferably 50 to 98% by mass, more preferably 60 to 98% by mass, and still more preferably based on the mass of the solid content after heat curing of the coating solution. Is 70 to 95% by mass.
  • the mass of the solid content after heat curing of the coating solution is the mass of a cured product obtained by curing the coating solution at 150 ° C. for 1 hour.
  • the amount of the white pigment can be specified by analyzing the blending amount at the time of preparing the coating solution and the following procedures 1) to 3). That is, 1) SEM-EDX analysis is performed on the cured product obtained by curing the coating solution at 150 ° C. for 1 hour, and the contrast of the SEM photograph and the ratio of each element in the area are obtained. 2) The cured product of the coating solution is structurally analyzed by XRD to identify the type of white pigment. 3) The content ratio of the white pigment specified in 2) above in the cured product is determined from the elemental ratio determined in 1) above.
  • the coating solution may further contain inorganic particles.
  • the inorganic particles are particles made of an inorganic material other than the white pigment described above.
  • the inorganic particles can be, for example, metal oxide fine particles having an average particle size of 5 nm or more and less than 100 nm.
  • metal oxide fine particles When the metal oxide fine particles are contained in the coating solution, fine irregularities are generated on the surface of the resulting reflective layer, and an anchor effect is easily exhibited between the reflective layer and other layers.
  • metal oxide fine particles are contained in the coating solution, the stress generated in the film during the polycondensation of the alkoxysilane compound is relaxed, and cracks are less likely to occur in the resulting reflective layer.
  • the type of metal oxide fine particles is not particularly limited, but is relatively easy to obtain from the group of aluminum oxide, zirconium oxide, zinc oxide, tin oxide, yttrium oxide, cerium oxide, titanium oxide, copper oxide, and bismuth oxide. One or more selected metal oxide fine particles are preferable.
  • the surface of the metal oxide fine particles may be treated with a silane coupling agent or a titanium coupling agent. By the surface treatment, the compatibility between the metal oxide fine particles and the alkoxysilane compound or the organic solvent is increased.
  • the average particle diameter of the metal oxide fine particles is preferably 5 to 100 nm, more preferably 5 to 80 nm, still more preferably 5 to 50 nm in consideration of the respective effects described above. By setting the average particle diameter in such a range, fine irregularities can be formed on the surface of the reflective layer, and the anchor effect described above can be obtained.
  • the average particle diameter of the metal oxide fine particles is measured, for example, by a Coulter counter method.
  • the metal oxide fine particles may be porous, and the specific surface area is preferably 200 m 2 / g or more. If the metal oxide fine particles are porous, impurities are easily adsorbed in the porous voids.
  • the amount of the metal oxide fine particles contained in the coating solution is preferably 0.1 to 20% by mass with respect to the total mass (total amount of solid content) of components other than the solvent contained in the coating solution. More preferably, it is ⁇ 10% by mass. If the amount of the metal oxide fine particles is too small, the above-described anchor effect is not sufficient. On the other hand, if the amount is too large, the amount of the alkoxysilane compound is relatively reduced, and the strength of the resulting reflective layer may be reduced.
  • the inorganic particles may include other inorganic particles having an average primary particle size of 100 nm or more and 100 ⁇ m or less.
  • the gaps between the white pigments are filled with the inorganic particles, and the viscosity of the coating liquid tends to increase.
  • the binder in the gaps between the particles such as white pigment particles and inorganic particles is filled with the inorganic fine particles, the crack resistance during curing can be improved.
  • Examples of other inorganic particles include oxide particles such as silicon oxide, fluoride particles such as magnesium fluoride, and mixtures thereof.
  • the other inorganic particles are preferably oxide particles, and particularly preferably silicon oxide.
  • the surface of other inorganic particles may be treated with a silane coupling agent or a titanium coupling agent. By the surface treatment, compatibility between the other inorganic particles and the alkoxysilane compound or the organic solvent is increased.
  • the content of other inorganic particles contained in the coating solution is preferably 0.1 to 10% by mass, more preferably 0.2 to 7% by mass, based on the total mass of the coating solution. . This is because if the other inorganic particles exceed 10% by mass, cracks are likely to occur during the formation of the reflective layer, and if it is less than 0.1%, the thickening effect of the coating solution is reduced.
  • the average particle diameter of the other inorganic particles is preferably 100 nm or more and 50 ⁇ m or less, and more preferably 1 ⁇ m or more and 30 ⁇ m or less from the viewpoint of filling a gap generated at the interface between the white pigments.
  • the average particle diameter of other inorganic particles can be measured by, for example, a Coulter counter method.
  • Clay mineral particles The coating liquid may contain clay mineral particles. When clay mineral particles are contained in the coating solution, the viscosity of the coating solution increases, and sedimentation of the white pigment is suppressed. Examples of clay mineral particles include layered silicate minerals, imogolite, allophane and the like. These particles have a very large surface area and can increase the viscosity of the coating solution in a small amount.
  • the layered silicate mineral is preferably a clay mineral having a mica structure, a kaolinite structure, or a smectite structure.
  • the layered silicate mineral particles tend to form a card house structure when the coating solution is left standing.
  • the viscosity of the coating solution is greatly increased.
  • the card house structure is apt to collapse by applying a certain pressure, thereby reducing the viscosity of the coating solution. That is, when the layered silicate mineral particles are contained in the coating solution, the viscosity of the coating solution increases in a stationary state, and the viscosity of the coating solution decreases when a certain pressure is applied.
  • layered silicate minerals include natural or synthetic hectrite, saponite, stevensite, hydelite, montmorillonite, nontrinite, bentonite, laponite and other smectite clay minerals, and Na-type tetralithic fluoric mica.
  • Non-swelling mica such as swellable mica genus clay minerals such as Li-type tetralithic fluorine mica, Na-type fluorine teniolite, Li-type fluorine teniolite, muscovite, phlogopite, fluorine phlogopite, sericite, potassium tetrasilicon mica Genus clay minerals, vermiculite and kaolinite, or mixtures thereof.
  • swellable mica genus clay minerals such as Li-type tetralithic fluorine mica, Na-type fluorine teniolite, Li-type fluorine teniolite, muscovite, phlogopite, fluorine phlogopite, sericite, potassium tetrasilicon mica Genus clay minerals, vermiculite and kaolinite, or mixtures thereof.
  • Examples of commercial products of clay mineral particles include Laponite XLG (synthetic hectorite analogue manufactured by LaPorte, UK), Laponite RD (Synthetic hectorite analogue produced by LaPorte, UK), Thermabis (Synthetic product, Henkel, Germany) Hectorite-like substance), smecton SA-1 (saponite-like substance manufactured by Kunimine Industry Co., Ltd.), Bengel (natural bentonite sold by Hojun Co., Ltd.), Kunivia F (natural montmorillonite sold by Kunimine Industry Co., Ltd.), bee gum ( Natural hectorite manufactured by Vanderbilt, USA, Daimonite (synthetic swellable mica manufactured by Topy Industries, Ltd.), Micromica (synthetic non-swellable mica, manufactured by Coop Chemical Co., Ltd.), Somasifu (Coop Chemical Co., Ltd.) ) Synthetic swelling mica), SWN (Synthetic s
  • the content of clay mineral particles is preferably from 0.1 to 5% by mass, more preferably from 0.1 to 3% by mass, based on the total mass of the coating solution.
  • the content of clay mineral particles is small, the viscosity of the coating solution is difficult to increase, and the white pigment tends to settle.
  • the content of the clay mineral particles is excessive, the viscosity of the coating solution becomes too high, and the coating solution may not be discharged uniformly from the coating device.
  • the surface of the clay mineral particles may be modified (surface treatment) with an ammonium salt or the like in consideration of compatibility with the solvent in the coating solution.
  • the total content of the inorganic particles and the clay mineral particles is preferably 2% by mass or less based on the total mass of the coating liquid (or the solid content of the coating liquid) from the viewpoint of improving the coating stability of the coating liquid. It is more preferable that it is 1.8 mass% or less.
  • the coating solution may further contain a silane coupling agent.
  • a silane coupling agent When the silane coupling agent is contained in the coating solution, the adhesion between the resulting reflective layer and the substrate is increased, and the durability of the LED device is improved.
  • silane coupling agents include vinyltrimethoxysilane, vinyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyl Methyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3 -Acryloxypropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, N-2- (aminoethy
  • the amount of the silane coupling agent contained in the coating solution is preferably 0.5 to 10% by mass relative to the total mass of components other than the solvent (including water) contained in the coating solution. % Is more preferable. If the amount of the silane coupling agent is too small, the adhesion between the resulting reflective layer and the substrate is not sufficiently increased, and if it is too large, the heat resistance may be lowered.
  • the coating solution may contain a metal alkoxide or metal chelate containing a metal element other than Si element.
  • the metal alkoxide or metal chelate forms a metalloxane bond with the aforementioned alkoxysilane compound or a hydroxyl group present on the substrate surface during the formation of the reflective layer. Since the metalloxane bond is very strong, when the coating liquid contains a metal alkoxide or a metal chelate, the adhesion between the resulting reflective layer and the substrate increases.
  • a part of the metal alkoxide or metal chelate forms a nano-sized cluster composed of a metalloxane bond in the cured film (reflective layer) of the coating solution. Due to the photocatalytic effect of this cluster, it is possible to oxidize a highly corrosive sulfide gas or the like existing in the vicinity of the LED device and change it to a sulfur dioxide gas or the like having a low corrosivity.
  • the metal element contained in the metal alkoxide or metal chelate is preferably a group 4 or group 13 metal element other than Si, and a compound represented by the following general formula (V) is preferable.
  • M m + X n Y mn (V) M represents a group 4 or group 13 metal element (excluding Si), and m represents the valence of M (3 or 4).
  • X represents a hydrolyzable group, and n represents the number of X groups (an integer of 2 or more and 4 or less). However, m ⁇ n. Y represents a monovalent organic group.
  • the group 4 or group 13 metal element represented by M is preferably aluminum, zirconium, or titanium, and particularly preferably zirconium.
  • a cured product of zirconium alkoxide or chelate does not have an absorption wavelength in the emission wavelength region of a general LED element (particularly blue light (wavelength 420 to 485 nm). That is, the cured product contains light from the LED element. Is difficult to absorb.
  • the hydrolyzable group represented by X may be a group that is hydrolyzed with water to form a hydroxyl group.
  • the hydrolyzable group include a lower alkoxy group having 1 to 5 carbon atoms, an acetoxy group, a butanoxime group, a chloro group and the like.
  • all the groups represented by X may be the same group or different groups.
  • the hydrolyzable group represented by X is hydrolyzed and released during the formation of the reflective layer. Therefore, the compound produced after hydrolysis from the group represented by X is preferably neutral and light boiling. Therefore, the group represented by X is preferably a lower alkoxy group having 1 to 5 carbon atoms, more preferably a methoxy group or an ethoxy group.
  • the monovalent organic group represented by Y may be a monovalent organic group contained in a general silane coupling agent. Specifically, the aliphatic group, alicyclic group, aromatic group, fatty acid having 1 to 1000 carbon atoms, preferably 500 or less, more preferably 100 or less, further preferably 40 or less, and particularly preferably 6 or less. It may be a ring aromatic group.
  • the organic group represented by Y may be an aliphatic group, an alicyclic group, an aromatic group, or a group in which an alicyclic aromatic group is bonded via a linking group.
  • the linking group may be an atom such as O, N, or S, or an atomic group containing these.
  • the organic group represented by Y may have a substituent.
  • substituents include halogen atoms such as F, Cl, Br, and I; vinyl group, methacryloxy group, acryloxy group, styryl group, mercapto group, epoxy group, epoxycyclohexyl group, glycidoxy group, amino group, cyano group, Organic groups such as nitro group, sulfonic acid group, carboxy group, hydroxy group, acyl group, alkoxy group, imino group and phenyl group are included.
  • metal alkoxide or metal chelate represented by the general formula (V) include aluminum triisopropoxide, aluminum tri-n-butoxide, aluminum tri-t-butoxide, aluminum triethoxide and the like.
  • metal alkoxide or metal chelate of zirconium represented by the general formula (V) include zirconium tetramethoxide, zirconium tetraethoxide, zirconium tetra n-propoxide, zirconium tetra i-propoxide, zirconium tetra n- Examples include butoxide, zirconium tetra-i-butoxide, zirconium tetra-t-butoxide, zirconium dimethacrylate dibutoxide, dibutoxyzirconium bis (ethylacetoacetate) and the like.
  • metal alkoxide or metal chelate of the titanium element represented by the general formula (V) include titanium tetraisopropoxide, titanium tetra n-butoxide, titanium tetra i-butoxide, titanium methacrylate triisopropoxide, titanium tetra Examples include methoxypropoxide, titanium tetra n-propoxide, titanium tetraethoxide, titanium lactate, titanium bis (ethylhexoxy) bis (2-ethyl-3-hydroxyhexoxide), titanium acetylacetonate and the like.
  • metal alkoxides or metal chelates exemplified above are a part of commercially available organometallic alkoxides or metal chelates.
  • Metal alkoxides or metal chelates shown in the list of coupling agents and related products in Chapter 9 “Optimum Utilization Technology of Coupling Agents” published by the National Institute of Science and Technology are also applicable to the present invention.
  • the amount of the metal alkoxide or metal chelate contained in the coating solution is preferably 1 to 10% by mass relative to the total mass of components other than the solvent (including water) contained in the coating solution, and 2 to 7 parts by mass It is more preferable that If the content is too small, the effect of improving the adhesion cannot be obtained, and if the content is too large, the storage stability of the coating solution decreases.
  • the coating solution may contain components other than the white pigment, alkoxysilane compound, organic solvent, inorganic particles, clay mineral particles, silane coupling agent, metal alkoxide, or metal chelate as necessary. Good.
  • the preparation method of the coating solution may be a method of mixing raw materials such as white pigments, alkoxysilane compounds, organic solvents, inorganic particles, clay mineral particles, silane coupling agents, A method of mixing a plurality of raw materials in advance and mixing the mixed liquids later may be used. In order to enhance the thickening effect of inorganic particles and clay mineral particles, it is preferable to disperse one or both of inorganic particles and clay mineral particles in a solvent and then mix with the remaining components. The following method is mentioned as an example of the preparation method of a coating liquid.
  • a composition containing an alkoxysilane compound (oligomer) by mixing a bifunctional alkoxysilane compound, a trifunctional alkoxysilane compound, and a tetrafunctional alkoxysilane compound in an arbitrary ratio and polymerizing them in the presence of water, an organic solvent, and a catalyst.
  • a composition containing an organic solvent, inorganic particles, clay mineral particles, silane coupling agent and the like is prepared.
  • the composition containing an alkoxysilane compound, the composition containing an inorganic particle etc., and a white pigment are fully mixed, and a coating liquid is obtained.
  • the coating liquid in order to improve the uniformity in the coating liquid, it is preferable to disperse all or part of the raw material of the coating liquid with the following apparatus. Moreover, in order to improve the dispersibility of a white pigment, it is preferable to disperse
  • Mixing / dispersing device is, for example, a magnetic stirrer, an ultrasonic dispersing device, a homogenizer, a stirring mill, a blade kneading stirring device, a thin-film swirling type dispersing device, a high-pressure impact dispersing device, a rotation and revolution mixer, etc. Can be done.
  • the viscosity of the coating solution measured at 25 ° C. with a vibration viscometer is preferably more than 5 mPa ⁇ s and not more than 2000 mPa ⁇ s.
  • VISCOMATE MODEL VM-10A manufactured by Seconic Corporation
  • the above value is a value one minute after the vibrator is immersed in the liquid. If the viscosity of the coating solution exceeds 5 mPa ⁇ s, the white pigment is difficult to settle. On the other hand, if it is 2000 mPa ⁇ s or less, the coating stability from various coating devices tends to increase.
  • the volume change before and behind hardening of a coating liquid is small from a viewpoint of preventing the crack at the time of making it harden
  • the volume ratio B / A before and after curing satisfies the condition of the following formula 3. It is preferable. 0.2 ⁇ B / A ⁇ 0.7 (Formula 3)
  • B / A is less than 0.2, the volume change due to curing is large, so that a large stress is likely to occur. For this reason, cracks at the time of curing tend to occur, particularly when a thick film is applied and formed.
  • B / A is more than 0.7, the fluidity of the coating liquid is lowered, and the stability of the ejection amount during film formation tends to be lowered.
  • a more preferable range of B / A is 0.25 ⁇ B / A ⁇ 0.6, and further preferably 0.30 ⁇ B / A ⁇ 0.6.
  • the volume ratio B / A before and after curing can be measured by the following procedure. 1) The volume of the coating solution is measured with a graduated cylinder in an atmosphere of 25 ° C., and is defined as volume A before curing. 2) After coating the coating solution on a Teflon (registered trademark) substrate, the coating film is heated and cured at 150 ° C. for 1 hour, and then peeled from the Teflon (registered trademark) substrate to obtain a cured product. The weight of the obtained cured product is measured in an atmosphere at 25 ° C. Furthermore, the specific gravity of the obtained cured product is measured in an atmosphere of 25 ° C. by Archimedes method. Then, the volume B of the cured product is calculated from the weight of the cured product and the specific gravity measured by the Archimedes method. 3) The volume ratio B / A is calculated from the volume A measured in 1) and the volume B calculated in 2).
  • the volume ratio before and after curing can be adjusted mainly by the solvent content ratio of the coating solution.
  • FIG. 1 shows a schematic cross-sectional view of an LED device 100 having a reflective layer made of a cured film of the aforementioned coating solution
  • FIG. FIG. 1 corresponds to a cross-sectional view taken along line AA in FIG.
  • the LED device 100 includes the substrate 1, the LED element 2 disposed on the substrate 1, and the reflective layer 21 disposed at least around the LED element 2 on the substrate 1. Moreover, it further has the wavelength conversion layer 11 arrange
  • the LED device 100 of the present invention has a reflective layer 21 that reflects the emitted light of the LED element 2 and the like to the light extraction surface 10A side. Therefore, the light extraction efficiency from the LED device 100 of the present invention is very high. Further, since the binder of the reflective layer 21 is polysiloxane, it is resistant to light and heat, and the reflective layer 21 is unlikely to deteriorate. Therefore, according to the LED device 100 of the present invention, high light extraction efficiency is maintained over a long period of time.
  • the substrate 1 preferably has insulating properties and heat resistance, and is preferably made of a ceramic resin or a heat resistant resin.
  • the heat resistant resin include liquid crystal polymer, polyphenylene sulfide, aromatic nylon, epoxy resin, hard silicone resin, polyphthalic acid amide and the like.
  • the substrate 1 may contain an inorganic filler.
  • the inorganic filler can be titanium oxide, zinc oxide, alumina, silica, barium titanate, calcium phosphate, calcium carbonate, white carbon, talc, magnesium carbonate, boron nitride, glass fiber, and the like.
  • the substrate 1 may have a cavity as shown in FIG. 1, but may have a flat plate shape.
  • an electrode 3 made of metal is formed on the substrate 1, and the electrode 3 has a function of supplying electricity to the LED element 2 from a power source (not shown) arranged outside the substrate 1.
  • the shape of the electrode 3 is not particularly limited, and is appropriately selected according to the type and application of the light emitting device 100.
  • the method for producing the substrate 1 having the electrodes 3 is not particularly limited, and is generally obtained by integrally molding a lead frame having a desired shape and a resin.
  • the LED element 2 is an element that is electrically connected to the electrode 3 formed on the substrate 1 and emits light of a specific wavelength.
  • the LED element 2 is disposed on the bottom surface 1 a of the truncated cone-shaped cavity (concave portion) of the substrate 1.
  • the wavelength of light emitted from the LED element 2 is not particularly limited.
  • the LED element 2 may be, for example, an element that emits blue light (light of about 420 nm to 485 nm) or an element that emits ultraviolet light. Furthermore, an element that emits green light, red light, or the like may be used.
  • the configuration of the LED element 2 is not particularly limited.
  • the LED element 2 is an element that emits blue light
  • the LED element 2 includes an n-GaN compound semiconductor layer (cladding layer), an InGaN compound semiconductor layer (light emitting layer), and a p-GaN compound semiconductor layer. It may be a laminate of (clad layer) and a transparent electrode layer.
  • the shape of the LED element 2 is not particularly limited, and may have, for example, a light emitting surface of 200 to 300 ⁇ m ⁇ 200 to 300 ⁇ m.
  • the height of the LED element 2 is usually about 50 to 200 ⁇ m.
  • the LED element 2 may be one in which light is extracted not only from the top surface but also from the side surface and the bottom surface. In the LED device 100 shown in FIG. 1, only one LED element 2 is disposed on the substrate 1, but a plurality of LED elements 2 may be disposed on the substrate 1.
  • connection method between the LED element 2 and the electrode 3 is not particularly limited.
  • the LED element 2 and the electrode 3 may be connected via a metal wire 4 as shown in FIG.
  • the LED element 2 and the electrode 3 may be connected via a protruding electrode (not shown).
  • a mode in which the LED element 2 and the electrode 3 are connected via the metal wire 4 is referred to as a wire bonding type.
  • a mode in which the LED element 2 and the electrode 3 are connected via a protruding electrode is called a flip chip bonding type.
  • the reflective layer 21 is a layer that reflects the emitted light from the LED element 2 and the fluorescence emitted by the phosphor contained in the wavelength conversion layer 11 to the light extraction surface 10 ⁇ / b> A side of the LED device 100. By providing the reflective layer 21, the amount of light extracted from the light extraction surface 10A of the LED device 100 increases. The reflective layer 21 is obtained by applying and curing the above-described coating solution.
  • the reflective layer 21 is disposed on the substrate 1 excluding the region where the LED elements 2 are disposed.
  • the reflective layer 21 is arranged in a mortar shape continuously from the bottom surface 1 a to the side surface 1 b of the truncated cone-shaped cavity (concave portion) of the substrate 1.
  • the reflection layer 21 is formed in a ring shape concentric with the wavelength conversion layer 11 on the outer periphery of the wavelength conversion layer 11 in a top view.
  • the reflective layer 21 is formed on the surface of the substrate 1 at least outside the region where the LED elements 2 are arranged.
  • the arrangement region of the LED element 2 refers to a light emitting surface of the LED element 2 and a connection portion between the LED element 2 and the electrode 3. That is, the reflective layer 21 is formed in a region that does not hinder the emission of light from the LED element 2 and the connection between the LED element 2 and the electrode 3.
  • the reflective layer 21 is also formed on the inner wall surface 1b of the cavity. This is because when the reflective layer 21 is formed on the cavity inner wall surface 1b, the light traveling in the horizontal direction on the surface of the wavelength conversion layer 11 can be reflected by the reflective layer 21 and extracted.
  • the reflective layer 21 may be formed in the gap between the LED element 2 and the substrate 1.
  • the thickness of the reflective layer 21 may be 5 ⁇ m or more, preferably 20 ⁇ m or more, more preferably 40 ⁇ m or more, and particularly preferably 60 ⁇ m or more. If the thickness of the reflective layer 21 is less than 5 ⁇ m, the light reflectivity of the reflective layer 21 may not be sufficient, and the light extraction efficiency may not be sufficient.
  • the thickness of the reflective layer 21 may be 300 ⁇ m or less, preferably 250 ⁇ m or less, more preferably 200 ⁇ m or less. If the thickness of the reflective layer 21 exceeds 300 ⁇ m, cracks may easily occur in the reflective layer 21.
  • the thickness of the reflective layer 21 means the maximum thickness of the reflective layer 21 formed on the light emitting surface of the LED element 2.
  • the thickness of the reflective layer 21 can be measured with a laser holo gauge.
  • the reflective layer 21 may be a cured product of a coating film of the coating liquid of the present invention. Since the coating liquid of the present invention has a small volume change due to curing and a small content of the tetrafunctional silane compound, the occurrence of cracks during curing can be satisfactorily suppressed. Moreover, since the coating liquid of this invention has few solvent content ratios, the hardened
  • the wavelength conversion layer 11 includes phosphor particles and a binder.
  • the phosphor particles receive light (excitation light) emitted from the LED element 2 and emit fluorescence. By mixing the excitation light and the fluorescence, the color of the light from the LED device 100 becomes a desired color. For example, when the light from the LED element 2 is blue and the fluorescence emitted from the phosphor included in the wavelength conversion layer 11 is yellow, the light from the LED device 100 is white.
  • the wavelength conversion layer 11 may cover the LED element 2.
  • the wavelength conversion layer 11 may cover the reflective layer 21 together with the LED element 2.
  • the phosphor particles contained in the wavelength conversion layer 11 may be anything that is excited by the light emitted from the LED element 2 and emits fluorescence having a wavelength different from that of the emitted light from the LED element 2.
  • examples of phosphor particles that emit yellow fluorescence include YAG (yttrium, aluminum, garnet) phosphors.
  • the YAG phosphor receives blue light (wavelength 420 nm to 485 nm) emitted from the blue LED element, and emits yellow fluorescence (wavelength 550 nm to 650 nm).
  • the phosphor particles are, for example, 1) An appropriate amount of flux (fluoride such as ammonium fluoride) is mixed with a mixed raw material having a predetermined composition, and pressed to form a molded body. 2) The obtained molded body is packed in a crucible and fired in air at a temperature range of 1350 to 1450 ° C. for 2 to 5 hours to obtain a sintered body.
  • flux fluoride such as ammonium fluoride
  • a mixed raw material having a predetermined composition is obtained by sufficiently mixing oxides such as Y, Gd, Ce, Sm, Al, La, and Ga, or compounds that easily become oxides at high temperatures in a stoichiometric ratio. .
  • the mixed raw material which has a predetermined composition mixes the solution which dissolved 1) the rare earth elements of Y, Gd, Ce, and Sm in the acid in stoichiometric ratio, and oxalic acid, and obtains a coprecipitation oxide. 2) It can also be obtained by mixing this coprecipitated oxide with aluminum oxide or gallium oxide.
  • the kind of the phosphor is not limited to the YAG phosphor, and may be another phosphor such as a non-garnet phosphor that does not contain Ce.
  • the average particle diameter of the phosphor particles is preferably 1 ⁇ m to 50 ⁇ m, and more preferably 10 ⁇ m or less.
  • the particle diameter of the phosphor particles is too large, a gap generated at the interface between the phosphor particles and the binder becomes large. Thereby, the intensity
  • the average particle diameter of the phosphor particles refers to the value of D50 measured with a laser diffraction particle size distribution meter. Examples of the laser diffraction particle size distribution measuring device include a laser diffraction particle size distribution measuring device manufactured by Shimadzu Corporation.
  • the binder contained in the wavelength conversion layer 11 can be a transparent resin or a translucent ceramic.
  • the transparent resin can be, for example, a silicone resin and an epoxy resin.
  • the thickness of the wavelength conversion layer 11 is preferably about 25 ⁇ m to 5 mm. If the wavelength conversion layer 11 is too thick, the concentration of the phosphor particles becomes excessively low, and the phosphor particles may not be uniformly dispersed.
  • the thickness of the wavelength conversion layer 11 means the maximum thickness of the wavelength conversion layer 11 formed on the light emitting surface of the LED element 2.
  • the thickness of the wavelength conversion layer 11 can be measured with a laser holo gauge.
  • the binder is a transparent resin, the amount of phosphor particles contained in the wavelength conversion layer 11 is generally 5 to 15% by mass.
  • the translucent ceramic may be the same as the polysiloxane contained in the reflective layer.
  • the thickness of the wavelength conversion layer 11 is preferably 5 to 200 ⁇ m.
  • the thickness of the wavelength conversion layer 11 means the maximum thickness of the wavelength conversion layer 11 formed on the light emitting surface of the LED element 2. The thickness of the wavelength conversion layer 11 can be measured with a laser holo gauge.
  • the amount of phosphor particles contained in the wavelength conversion layer 11 is preferably 60 to 95% by mass.
  • FIG. 1 shows an example in which the wavelength conversion layer is disposed so as to be in contact with the LED element, but the present invention is not limited to this, and the wavelength conversion layer may not be in contact with the LED element.
  • the wavelength conversion layer only needs to be arranged in the light emitting direction of the LED element; even if a space is formed between the wavelength conversion layer and the LED element or other layers are arranged.
  • the other layers may be a light-transmitting layer or a sealing layer containing polysiloxane or the like contained in the above-described reflective layer as a binder.
  • the aforementioned LED device can be manufactured through the following three steps. (1) The process of preparing the board
  • the LED device manufacturing method may further include (4) a step of forming a wavelength conversion layer containing phosphor particles on the reflective layer as necessary.
  • substrate with which the LED element and the electrode were connected is prepared.
  • it may be a step of preparing a substrate having the above-described electrodes, fixing the LED element to the substrate, and connecting the electrode of the substrate to the cathode electrode and the anode electrode of the LED element.
  • the method for connecting the LED element and the electrode and the method for fixing the LED element to the substrate are not particularly limited, and may be the same as a conventionally known method.
  • the coating liquid coating process is a process in which the coating liquid is applied to at least the surrounding area of the LED element on the substrate, that is, the area where the reflective layer is formed.
  • the coating liquid of the present invention has a low solvent content and a relatively high viscosity. Accordingly, it is possible to form a coating film having a certain thickness or more with a small number of coatings. For example, a coating film having a thickness after curing of 40 ⁇ m or more can be formed by application twice or less, preferably once.
  • the method for applying the coating solution is not particularly limited as long as it is a method capable of applying the coating solution to a desired region, and known coating methods such as blade coating, spin coating coating, dispenser coating, spray coating, and inkjet method coating. It can be. Of these, dispenser coating is preferred because a highly viscous coating solution can be stably coated.
  • the coating solution curing step may be a step of forming a reflective layer by heating and curing a coating solution coated on a substrate.
  • the solvent in the coating solution is removed and the alkoxysilane compound is hydrolyzed and polycondensed.
  • the temperature at which the coating solution is cured is preferably 20 to 200 ° C., more preferably 25 to 150 ° C. If the heating temperature is less than 20 ° C, the solvent in the coating film may not be sufficiently evaporated. When the heating temperature is less than 100 ° C., the alkoxysilane compound may not be sufficiently polymerized.
  • the coating solution has a small solvent content ratio and a small volume change before and after curing, the stress generated in the coating film during curing can be reduced. Moreover, since the ratio of the tetrafunctional silane compound contained in the coating liquid is small and the hardness of the cured product does not become too high, the stress generated in the coating film can be relaxed. As a result, the occurrence of cracks during curing can be satisfactorily suppressed.
  • Wavelength conversion layer formation process may be a process of apply
  • the composition for wavelength conversion layer contains phosphor particles and a binder component.
  • the binder component can be a transparent resin contained in the wavelength conversion layer or a precursor thereof, or a polysiloxane precursor (alkoxysilane compound). Moreover, a solvent is contained in the composition for wavelength conversion layers as needed.
  • the solvent is a hydrocarbon such as toluene or xylene; a ketone such as acetone or methyl ethyl ketone; an ether such as diethyl ether or tetrahydrofuran; propylene glycol monomethyl ether acetate, ethyl It may be an ester such as acetate.
  • the binder component is an alkoxysilane compound
  • the solvent can be the same as the organic solvent contained in the coating solution.
  • the mixing of the composition for wavelength conversion layer can be performed, for example, with a stirring mill, a blade kneading stirring device, a thin-film swirling disperser, or the like.
  • a stirring mill a blade kneading stirring device, a thin-film swirling disperser, or the like.
  • the method for applying the composition for wavelength conversion layer is appropriately selected depending on the type of binder, and can be, for example, dispenser application or spray application. Moreover, this is hardened after application
  • the curing method and curing conditions of the wavelength conversion layer composition are appropriately selected depending on the type of resin. An example of the curing method is heat curing.
  • Silane Compound Solution 1 19.5 mass% of tetramethoxysilane (76.0 mol% with respect to the entire silane compound), 5.5 mass% of methyltrimethoxysilane (24.0 mol% with respect to the entire silane compound), 60 mass% of methanol, 14.99% by mass of water and 0.01% by mass of nitric acid were mixed and stirred at 23 ° C. for 3 hours, and then reacted at 26 ° C. with stirring for 3 days to obtain a silane compound solution 1 containing a polysiloxane oligomer. Obtained.
  • Silane compound solutions 2-11, 14-20> Silane compound solutions 2 to 11 and 14 to 20 were obtained in the same manner as silane compound solution 1 except that the composition was changed to the composition shown in Table 1.
  • a silane compound solution 12 is obtained by mixing 15.5% by mass of tetramethoxysilane, 9.5% by mass of methyltrimethoxysilane, 60% by mass of methanol, 14.99% by mass of water and 0.01% by mass of nitric acid. It was.
  • ⁇ Silane compound solution 13> Water and dilute nitric acid were added to 0.1 mol of ethyltrimethoxysilane to prepare a molar ratio of alkoxide: water: dilute nitric acid of 1: 3: 0.002. This solution was stirred in a sealed container at 20 ° C. for 3 hours, and then further aged at 60 ° C. for 48 hours to cause hydrolysis and polycondensation reactions to proceed. The upper phase rich in methanol produced by the reaction was removed and dried at 60 ° C. for 3 hours to obtain a silane compound solution 13.
  • the weight average molecular weight of the polysiloxane oligomer in the obtained silane compound solution and measurement of solid Si-NMR were performed by the following methods.
  • Weight average molecular weight of polysiloxane oligomer The weight average molecular weight of the polysiloxane oligomer in the obtained silane compound solution was measured by GPC using polystyrene equivalent weight average molecular weight.
  • compositions of the resulting silane compound solutions 1 to 20 are shown in Table 1.
  • Silicia 470 Silica (Silicia 470, manufactured by Fuji Silysia Chemical) average particle size of 14 ⁇ m
  • SP-1 Silica (Microbead SP-1, manufactured by JGC Catalysts & Chemicals) average particle size of 5 ⁇ m
  • VM2270 Silica (VM-2270, manufactured by Dow Corning) average particle size of 5 to 15 ⁇ m SS-50F: Silica (Nip seal SS-50F, manufactured by Tosoh Silica) Average particle size 1.2 ⁇ m Alu-C: Alumina (AEROXIDE Alu-C, Nippon Aerosil) primary particle size 13nm A300: Silica (Nippon Aerosil Co., Ltd.) average primary particle size: 7 nm
  • RX300 Silica (manufactured by Nippon Aerosil Co., Ltd.) Average primary particle size: 7 nm
  • F3 Silica (high silica F3, manufactured by Nichetsu) Average particle diameter: 3
  • ZR-210 ZrO 2 particles (TECNADIS-Zr-210, manufactured by TECNAN) Average particle size: 10 to 15 nm
  • Ti-210 TiO 2 particles (TECNADIS-TI-210, manufactured by TECNAN) average particle diameter of 10 to 15 nm
  • KBM-403 3-glycidoxypropyltrimethoxysilane (KBM-403, manufactured by Shin-Etsu Silicone)
  • KBM-903 3-aminopropyltrimethoxysilane (KBM-903, manufactured by Shin-Etsu Silicone)
  • KBM-802 3-mercaptopropylmethyldimethoxysilane (KBM-802, manufactured by Shin-Etsu Silicone)
  • KBE-846 Bis (triethoxysilylpropyl) tetrasulfide (KBE-846, manufactured by Shin-Etsu Silicone)
  • Titanium oxide SX-3103 Made by Sakai Chemical Industry Co., Ltd. Titanium oxide: D-918 Made by Sakai Chemical Industry Co., Ltd. Titanium oxide: JR Teica Co., Ltd. Titanium oxide: JR-405 Made by Teika Co., Ltd. Titanium oxide: CR-93 Made by Ishihara Sangyo Titanium oxide: CR-95 Made by Ishihara Sangyo Aluminum oxide: HD-11 Made by Nikkato Barium sulfate: NFJ-3-1999 Made by Yamanishi Boron nitride: AP-100S Made by MARUKA
  • the viscosity and coating amount stability of the obtained coating solution, the volume ratio B / A before and after curing, crack resistance, reflectance and adhesion were evaluated by the following methods.
  • ⁇ Viscosity> The viscosity of the coating solution was measured using a vibration viscometer VISCOMATE MODEL VM-10A (manufactured by Seconic). The measurement temperature was 25 ° C., and the measured value after 1 minute was used after the vibrator was immersed in the liquid.
  • the coating amount stability was evaluated according to the following criteria. ⁇ : Mass change rate was less than 3%. ⁇ : Mass change rate was 3% or more and less than 6%. X: Mass change rate was 6% or more.
  • cured material was computed from the weight of the obtained hardened
  • ⁇ Reflectance measurement 1> The coating solution was applied once to a transparent 1 mm glass plate and cured by heat treatment at 150 ° C. for 1 hour to prepare a measurement sample having a reflective layer having a thickness of 20 ⁇ m. Then, the reflectance of each sample was measured with a spectrophotometer V-670 (manufactured by JASCO Corporation). Evaluation was performed according to the following criteria. ⁇ : The reflectance at a film thickness of 20 ⁇ m is 95% or more ⁇ : The reflectance at a film thickness of 20 ⁇ m is less than 95%
  • ⁇ Reflectance measurement 2> The coating solution was applied once to a transparent 1 mm glass plate and cured by heat treatment at 150 ° C. for 1 hour to prepare a measurement sample having a reflective layer having a thickness of 60 ⁇ m. Then, the reflectance of each sample was measured with a spectrophotometer V-670 (manufactured by JASCO Corporation). Evaluation was performed according to the following criteria. A: Reflectance is 98% or more at a film thickness of 60 ⁇ m. ⁇ : Cracks occur at a film thickness of 60 ⁇ m and are not evaluated.
  • ⁇ Tape peeling experiment> A coating solution was applied on a silver plate and cured by heat treatment at 150 ° C. for 1 hour to prepare a measurement sample having a reflective layer having a thickness of 20 ⁇ m.
  • the work of attaching Nichiban cello tape (registered trademark) (24 mm) to the formed reflective layer and immediately peeling it off was repeated 20 times. And the state of the reflective layer was observed with the microscope for every operation
  • No separation was observed after 10 times of operation, but after 20 times of operation, it was slightly peeled off.
  • the reflective layer was peeled off at the 10th working time.
  • Tables 3 to 6 show the evaluation results of the examples and comparative examples.
  • the cured products of the coating liquids of Examples 1 to 70 in which the composition of the silane compound satisfies Formulas 1 and 2 and the volume ratio B / A before and after curing satisfies Formula 3 show high crack resistance and adhesion. It can also be seen that a high reflectance can be obtained.
  • the cured products of the coating solutions of Comparative Examples 1 to 5 whose composition in the silane compound does not satisfy Formula 2 have low crack resistance
  • the cured products of the coating solutions of Comparative Examples 6 and 7 that do not satisfy Formula 1 It turns out that the nature is low.
  • the cured product of the coating solution of Comparative Example 9 in which the volume ratio B / A before and after curing is too large has low crack resistance and reflectance
  • the coating solution of Comparative Example 10 in which the volume ratio B / A before and after curing is too small is liquid. It turns out that discharge property is low.
  • Example 11 From the comparison between Example 11 and Example 36, the coating liquid of Example 11 in which the silane compound has been oligomerized in advance has more cracks during curing than the coating liquid of Example 36 in which the silane compound is a monomer. It is highly suppressed and it can be seen that the resulting cured product has a high reflectance. This is presumably because the pre-oligomerized silane compound has less volume change due to polymerization than the monomeric silane compound.
  • a coating layer formed on a substrate of an LED device is cured to obtain a reflective layer, cracks during curing are satisfactorily suppressed, and the reflectance is high. It is possible to provide a coating liquid capable of obtaining a cured film that can be maintained for a long period of time and an LED device using the coating liquid.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Paints Or Removers (AREA)

Abstract

The purpose of the present invention is to provide: a coating liquid that suitably minimizes cracks during curing and that makes it possible to obtain a cured film having high reflectance and the ability to maintain said reflectance over a long period of time when, for example, a coating film formed on a substrate for an LED device is cured in order to obtain a reflective layer; and an LED device that uses the coating liquid. This coating liquid contains a white pigment, a silane compound, and a solvent. The coating liquid satisfies 0≤R2<40 (formula 1) and 0≤R4/R3≤2 (formula 2) when, within the total amount of the silane compound, the ratio of a bifunctional silane compound is denoted by R2 (mol%), the ratio of a trifunctional silane compound is denoted by R3 (mol%), and the ratio of a tetrafunctional silane compound is denoted by R4 (mol%). In addition, the volume ratio B/A of the coating liquid before and after curing thereof satisfies 0.2≤B/A≤0.7 (formula 3) when the volume of the coating liquid is denoted by A and the volume of a cured product obtained by curing the coating liquid is denoted by B.

Description

塗布液、それを用いたLED装置の製造方法およびLED装置Coating liquid, LED device manufacturing method using the same, and LED device
 本発明は、塗布液、それを用いたLED装置の製造方法およびLED装置に関する。 The present invention relates to a coating solution, an LED device manufacturing method using the same, and an LED device.
 近年、窒化ガリウム(GaN)系の青色LED(Light Emitting Diode:発光ダイオード)チップの近傍に、YAG蛍光体等の蛍光体を配置し、青色LEDチップから出射する青色光と、青色光を受けた蛍光体から出射する黄色光とを混色し、白色光を得るLED装置が広く用いられている。また、各種蛍光体を青色LEDチップの近傍に配置し、青色LEDチップから出射する青色光と、青色光を受けて蛍光体が出射する赤色光と緑色光とを混色し、白色光を得るLED装置も開発されている。 In recent years, a phosphor such as a YAG phosphor has been placed in the vicinity of a gallium nitride (GaN) blue LED (Light Emitting Diode) chip, and has received blue light and blue light emitted from the blue LED chip. An LED device that obtains white light by mixing yellow light emitted from a phosphor is widely used. Also, various phosphors are arranged in the vicinity of the blue LED chip, and blue light emitted from the blue LED chip and red light and green light emitted from the phosphor upon receiving blue light are mixed to obtain white light. Equipment has also been developed.
 白色LED装置には様々な用途があり、例えば、蛍光灯や白熱電灯の代替品としての需要がある。このような照明装置は白色LED装置を複数個組み合わせた構成になっており、個々の白色LED装置の光取り出し効率をいかに上昇させるかがコスト低減、長寿命化を実現させる上で重要になってくる。 White LED devices have a variety of uses, for example, there is a demand as an alternative to fluorescent lamps and incandescent lamps. Such an illuminating device has a configuration in which a plurality of white LED devices are combined, and how to increase the light extraction efficiency of each white LED device is important in realizing cost reduction and long life. come.
 従来のLED装置では、LED素子を配置する基板等が、LED素子の出射光や、蛍光体が発する蛍光を吸収しやすく、光取り出し性が十分でない、との問題があった。そこで、一般的なLED装置には、LED素子の周囲に、光反射率が高いリフレクタが配置されている。このようなリフレクタは、一般的に金属メッキ等から形成されている。
 しかし、金属メッキからなるリフレクタは、電気の導通を防ぐため、基板全面に形成することができない。そのため、リフレクタが形成されていない領域では、基板に光が吸収されてしまう、という問題があった。
In the conventional LED device, there is a problem that the substrate on which the LED element is arranged easily absorbs the emitted light of the LED element and the fluorescence emitted from the phosphor, and the light extraction property is not sufficient. Therefore, in a general LED device, a reflector having a high light reflectance is disposed around the LED element. Such a reflector is generally formed of metal plating or the like.
However, a reflector made of metal plating cannot be formed on the entire surface of the substrate in order to prevent electrical conduction. Therefore, there is a problem that light is absorbed by the substrate in the region where the reflector is not formed.
 一方、金属メッキを樹脂層で覆ったリフレクタや(特許文献1)、白色の樹脂層で、金属メッキを覆ったリフレクタも提案されている(特許文献2)。また、LED基板上に光拡散粒子とセラミックバインダからなる反射層を作成する方法も提案されている(特許文献3)。 On the other hand, a reflector in which metal plating is covered with a resin layer (Patent Document 1), and a reflector in which metal plating is covered with a white resin layer have also been proposed (Patent Document 2). In addition, a method of creating a reflective layer made of light diffusing particles and a ceramic binder on an LED substrate has been proposed (Patent Document 3).
特開2005-136379号公報JP 2005-136379 A 特開2011-23621号公報JP 2011-23621 A 国際公開第2014/017108号International Publication No. 2014/017108
 しかしながら、リフレクタが樹脂からなる場合や、特許文献1の技術のように、金属メッキからなるリフレクタ表面を樹脂で被覆した場合には、樹脂が熱や光により劣化し、経時で反射層の光反射性が低下したり、電気が導通したりするという問題があった。特に、車載用のヘッドライト等、大光量が必要とされる用途において、樹脂が劣化しやすかった。 However, when the reflector is made of resin, or when the reflector surface made of metal plating is coated with resin as in the technique of Patent Document 1, the resin deteriorates due to heat or light, and the light reflection of the reflective layer over time. There is a problem that the property is lowered or electricity is conducted. In particular, in applications where a large amount of light is required, such as in-vehicle headlights, the resin is likely to deteriorate.
 また、特許文献2にある技術のように、白色顔料を含有した熱硬化性樹脂で被覆した場合であっても、有機物を主骨格としたエポキシ等の材料は高温で着色し、その結果、反射率の低下を招き、光取出し効率が低下するという問題があった。比較的耐熱性の高いシリコーン樹脂を使用した場合であっても、シリコーンはガスを透過し易い性質を持っていることから、銀や銀メッキを被覆して使用する場合には、空気中に存在する微量の硫化水素により、銀が変色して反射率が低下する、すなわち光取出し効率が低下することを防ぐことはできなかった。 Moreover, even when it is a case where it is coated with a thermosetting resin containing a white pigment as in the technique in Patent Document 2, materials such as epoxy having an organic substance as a main skeleton are colored at a high temperature, resulting in reflection. There is a problem that the light extraction efficiency is lowered due to a decrease in the rate. Even when using a silicone resin with relatively high heat resistance, silicone has the property of being easily permeable to gas, so when it is used coated with silver or silver plating, it exists in the air. It was not possible to prevent silver from being discolored and the reflectivity from being lowered, that is, the light extraction efficiency from being lowered due to a small amount of hydrogen sulfide.
 特許文献3に記載されているように、リフレクタ表面を、光拡散粒子とセラミックバインダからなる反射層で被覆すれば、特許文献2に示されるような着色による反射率の低下を抑制することができる。しかしながら、特許文献3の塗布液は、硬化による体積変化(体積収縮)が大きいことから、硬化時にクラックが生じやすいという問題があった。また、反射率を高めるために反射層を厚膜化しようとすると、塗布回数を多くする必要があり、タクトタイムが増大するという問題があった。さらに、塗布回数を多くして得られる反射層は、均質でなかったり、密度が低かったりし、十分な反射率が得られにくい傾向があった。 As described in Patent Document 3, if the reflector surface is covered with a reflective layer made of light diffusing particles and a ceramic binder, a decrease in reflectance due to coloring as shown in Patent Document 2 can be suppressed. . However, the coating solution of Patent Document 3 has a problem that cracks are likely to occur during curing because of a large volume change (volume shrinkage) due to curing. Further, when it is attempted to increase the thickness of the reflective layer in order to increase the reflectivity, it is necessary to increase the number of coatings, and there is a problem that the tact time increases. Furthermore, the reflective layer obtained by increasing the number of coatings tends to be difficult to obtain a sufficient reflectivity because it is not homogeneous or has a low density.
 本発明は、上記事情に鑑みてなされたものであり、例えばLED装置の基板上に形成した塗膜を硬化させて反射層を得る際の、硬化時のクラックを良好に抑制し、高い反射率を有し、かつ当該反射率を長期間に亘り維持しうる硬化膜を得ることができる塗布液およびそれを用いたLED装置を提供することを目的とする。 The present invention has been made in view of the above circumstances. For example, when a coating layer formed on a substrate of an LED device is cured to obtain a reflective layer, cracks at the time of curing are satisfactorily suppressed, and high reflectance is achieved. It is an object of the present invention to provide a coating liquid capable of obtaining a cured film that has a reflectance and can maintain the reflectance over a long period of time, and an LED device using the coating liquid.
 [1] 白色顔料と、シラン化合物と、溶媒とを含む塗布液であって、前記シラン化合物総量中の2官能シラン化合物の比率をR2(モル%)、3官能シラン化合物の比率をR3(モル%)、4官能シラン化合物の比率をR4(モル%)としたときに、下記式1および式2の両条件を満たし、
  0≦R2<40           (式1)
  0≦R4/R3≦2         (式2)
 前記塗布液の体積をAとし、前記塗布液を150℃で1時間加熱硬化させて得られる硬化物の体積をBとしたとき、硬化前後の体積比B/Aが下記式3の条件を満たす、塗布液。
  0.2≦B/A≦0.7         (式3)
 [2] 前記シラン化合物のモル比が、下記式4の条件を満たす、[1]に記載の塗布液。
 0≦R4/R3≦1.5    (式4)
 [3] 前記硬化前後の体積比B/Aが、下記式5の条件を満たす、[1]または[2]に記載の塗布液。
 0.25≦B/A≦0.6    (式5)
 [4] 前記溶媒が、1価のアルコールおよび2価以上の多価アルコールの少なくとも一方を含有する、[1]~[3]のいずれかに記載の塗布液。
 [5] 前記2官能シラン化合物、前記3官能シラン化合物、前記4官能シラン化合物からなる群から選ばれる少なくとも1種が、あらかじめ重合されている、[1]~[4]のいずれかに記載の塗布液。
 [6] 無機粒子または粘土鉱物粒子をさらに含む、[1]~[5]のいずれかに記載の塗布液。
 [7] シランカップリング剤をさらに含む、[1]~[6]のいずれかに記載の塗布液。
 [8] 粘度が5mPa・sを超え、2000mPa・s以下である、[1]~[7]のいずれかに記載の塗布液。
 [9] 白色顔料と、シラン化合物と、溶媒とを含む塗布液であって、前記シラン化合物総量中の2官能シラン化合物の比率をR2(モル%)、3官能シラン化合物の比率をR3(モル%)、4官能シラン化合物の比率をR4(モル%)としたときに、下記式1および式2の両条件を満たし、
  0≦R2<40           (式1)
  0≦R4/R3≦2         (式2)
 前記溶媒の含有比率が、前記塗布液に対して10~45質量%の範囲である、塗布液。
 [10] 基板と、前記基板上に配置されたLED素子と、前記基板上の前記LED素子の少なくとも周囲に配置された反射層と、前記LED素子の光の出射方向上に配置された波長変換層とを含むLED装置の製造方法であって、前記基板上に、[1]~[9]のいずれか一項に記載の塗布液を塗布する工程と、前記塗布した塗布液を硬化させて、前記反射層を形成する工程と、を含む、LED装置の製造方法。
 [11] 前記塗布液を、1回または2回塗布し、前記塗布した塗布液を硬化させて、厚み40μm以上の前記反射層を形成する、[10]に記載のLED装置の製造方法。
 [12] 基板と、前記基板上に配置されたLED素子と、前記基板上の前記LED素子の周囲に配置された反射層と、前記LED素子の光の出射方向上に配置された波長変換層とを有するLED装置であって、前記反射層が、[1]~[9]のいずれかに記載の塗布液の硬化膜である、LED装置。
 [13] 前記波長変換層は、前記LED素子と接している、[12]に記載のLED装置。
 [14] 前記反射層が、前記基板と前記LED素子との間にさらに配置されている、[12]または[13]に記載のLED装置。
[1] A coating liquid containing a white pigment, a silane compound, and a solvent, wherein the ratio of the bifunctional silane compound in the total amount of the silane compound is R2 (mol%), and the ratio of the trifunctional silane compound is R3 (mol). %) When the ratio of the tetrafunctional silane compound is R4 (mol%), both conditions of the following formula 1 and formula 2 are satisfied,
0 ≦ R2 <40 (Formula 1)
0 ≦ R4 / R3 ≦ 2 (Formula 2)
When the volume of the coating solution is A and the volume of the cured product obtained by heat-curing the coating solution at 150 ° C. for 1 hour is B, the volume ratio B / A before and after curing satisfies the condition of the following formula 3. Application liquid.
0.2 ≦ B / A ≦ 0.7 (Formula 3)
[2] The coating solution according to [1], wherein the molar ratio of the silane compound satisfies the condition of the following formula 4.
0 ≦ R4 / R3 ≦ 1.5 (Formula 4)
[3] The coating solution according to [1] or [2], wherein the volume ratio B / A before and after the curing satisfies the condition of the following formula 5.
0.25 ≦ B / A ≦ 0.6 (Formula 5)
[4] The coating liquid according to any one of [1] to [3], wherein the solvent contains at least one of a monohydric alcohol and a dihydric or higher polyhydric alcohol.
[5] The method according to any one of [1] to [4], wherein at least one selected from the group consisting of the bifunctional silane compound, the trifunctional silane compound, and the tetrafunctional silane compound is polymerized in advance. Coating liquid.
[6] The coating solution according to any one of [1] to [5], further comprising inorganic particles or clay mineral particles.
[7] The coating solution according to any one of [1] to [6], further including a silane coupling agent.
[8] The coating solution according to any one of [1] to [7], wherein the viscosity is more than 5 mPa · s and not more than 2000 mPa · s.
[9] A coating liquid containing a white pigment, a silane compound, and a solvent, wherein the ratio of the bifunctional silane compound in the total amount of the silane compound is R2 (mol%), and the ratio of the trifunctional silane compound is R3 (mol). %) When the ratio of the tetrafunctional silane compound is R4 (mol%), both conditions of the following formula 1 and formula 2 are satisfied,
0 ≦ R2 <40 (Formula 1)
0 ≦ R4 / R3 ≦ 2 (Formula 2)
A coating solution, wherein a content ratio of the solvent is in a range of 10 to 45% by mass with respect to the coating solution.
[10] A substrate, an LED element disposed on the substrate, a reflective layer disposed at least around the LED element on the substrate, and a wavelength conversion disposed on the light emitting direction of the LED element A method of manufacturing an LED device including a layer, the step of applying the coating liquid according to any one of [1] to [9] on the substrate, and curing the applied coating liquid. And a step of forming the reflective layer.
[11] The method for manufacturing an LED device according to [10], wherein the coating liquid is applied once or twice, and the applied coating liquid is cured to form the reflective layer having a thickness of 40 μm or more.
[12] A substrate, an LED element disposed on the substrate, a reflective layer disposed around the LED element on the substrate, and a wavelength conversion layer disposed on the light emitting direction of the LED element The LED device, wherein the reflective layer is a cured film of the coating liquid according to any one of [1] to [9].
[13] The LED device according to [12], wherein the wavelength conversion layer is in contact with the LED element.
[14] The LED device according to [12] or [13], wherein the reflective layer is further disposed between the substrate and the LED element.
 本発明によれば、例えばLED装置の基板上に形成した塗膜を硬化させて反射層を得る際の、硬化時のクラックを良好に抑制し、高い反射率を有し、かつ当該反射率を長期間に亘り維持しうる硬化膜を得ることができる塗布液およびそれを用いたLED装置を提供できる。 According to the present invention, for example, when a coating layer formed on a substrate of an LED device is cured to obtain a reflective layer, cracks during curing are satisfactorily suppressed, and the reflectance is high. It is possible to provide a coating liquid capable of obtaining a cured film that can be maintained for a long period of time and an LED device using the coating liquid.
本発明のLED装置の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the LED apparatus of this invention. 本発明のLED装置の一例を示す上面図である。It is a top view which shows an example of the LED device of this invention. 固体Si-NMRのスペクトルの一例を示すグラフである。2 is a graph showing an example of a solid-state Si-NMR spectrum.
 1.塗布液
 本発明の塗布液は、LED装置の反射層を形成するための組成物であり、当該塗布液には、白色顔料と、シラン化合物と、溶媒とが含まれる。塗布液には、白色顔料の他に、無機粒子や、粘土鉱物粒子、シランカップリング剤等が含まれてもよい。
1. Coating liquid The coating liquid of the present invention is a composition for forming a reflective layer of an LED device, and the coating liquid contains a white pigment, a silane compound, and a solvent. In addition to the white pigment, the coating liquid may contain inorganic particles, clay mineral particles, a silane coupling agent, and the like.
 従来のLED装置の反射層のバインダには、樹脂が用いられることが多かった。しかし、樹脂は熱や光によって着色したり、劣化したりすることがあり、光取り出し効率が低下しやすいという問題があった。そこで、ポリシロキサン前駆体と白色顔料とを含む塗布液の塗膜を硬化させて反射層を形成することも検討されている。しかしながら、塗膜を硬化させる際の塗膜の体積変化が大きく、その応力によってクラックが生じやすい。このクラックは、特に塗膜の膜厚が大きいときに生じやすい。そのようなクラックを有する反射層は、反射率が低く、LED装置の光取り出し効率を低下させる原因となる。 A resin is often used for the binder of the reflective layer of the conventional LED device. However, the resin may be colored or deteriorated by heat or light, and there has been a problem that the light extraction efficiency tends to decrease. Thus, it has been studied to form a reflective layer by curing a coating film of a coating solution containing a polysiloxane precursor and a white pigment. However, the volume change of the coating film when curing the coating film is large, and cracks are likely to occur due to the stress. This crack is likely to occur particularly when the thickness of the coating film is large. The reflective layer having such a crack has a low reflectivity and causes a reduction in light extraction efficiency of the LED device.
 これに対して本発明の塗布液は、1)硬化による体積変化を少なくし、かつ2)ポリシロキサン前駆体中の4官能のシラン化合物の含有割合を少なくしている。それにより、塗膜を硬化する際のクラックの発生を良好に抑制しうる。具体的には、1)硬化による体積変化を一定以下とすることで、硬化時に塗膜に生じる応力を少なくすることができる。硬化による体積変化を一定以下とするためには、溶媒含有比率を一定以下とすることが好ましい。2)4官能シラン化合物の含有割合を一定以下とすることで、塗膜の硬化物の硬度(または架橋密度)が過剰に高くならないようにし、塗膜に生じる応力を緩和できる。これらの結果、硬化時のクラックを良好に抑制し、高い反射率を有する硬化膜を得ることができる。 On the other hand, the coating liquid of the present invention 1) reduces the volume change due to curing, and 2) reduces the content ratio of the tetrafunctional silane compound in the polysiloxane precursor. Thereby, generation | occurrence | production of the crack at the time of hardening a coating film can be suppressed favorably. Specifically, 1) By setting the volume change due to curing to a certain value or less, the stress generated in the coating film during curing can be reduced. In order to keep the volume change due to curing below a certain level, the solvent content is preferably kept below a certain level. 2) By setting the content ratio of the tetrafunctional silane compound to a certain value or less, the hardness (or crosslinking density) of the cured product of the coating film can be prevented from becoming excessively high, and the stress generated in the coating film can be alleviated. As a result, a cured film having a high reflectance can be obtained by suppressing cracks during curing.
 また、当該塗布液は溶媒含有比率が少ないことから、少ない塗布回数でも厚膜に形成できる。それにより、得られる硬化膜は、均質かつ密度が高く、一層高い反射率を有しうる。これらにより、LED装置の光取り出し効率を高めうる。 In addition, since the coating solution has a small solvent content, it can be formed into a thick film even with a small number of coatings. Thereby, the obtained cured film is homogeneous and dense, and can have a higher reflectance. As a result, the light extraction efficiency of the LED device can be increased.
 さらに、当該塗布液から得られる反射層のバインダは、ポリシロキサンであるため、反射層が光や熱によって劣化し難い。従って、当該塗布液の硬化膜からなる反射層を有するLED装置は、高い光取り出し効率を長期間に亘って維持しうる。 Furthermore, since the binder of the reflective layer obtained from the coating solution is polysiloxane, the reflective layer is hardly deteriorated by light or heat. Therefore, an LED device having a reflective layer made of a cured film of the coating liquid can maintain high light extraction efficiency over a long period of time.
 1-1.アルコキシシラン化合物
 本発明の塗布液には、アルコキシシラン化合物が含まれる。アルコキシシラン化合物は、塗布液の硬化時に加水分解及び重縮合して、ポリシロキサンとなる化合物である。そして、ポリシロキサンは、前述の反射層のバインダとなる。
1-1. Alkoxysilane Compound The coating liquid of the present invention contains an alkoxysilane compound. The alkoxysilane compound is a compound that is hydrolyzed and polycondensed into a polysiloxane when the coating solution is cured. And polysiloxane becomes a binder of the above-mentioned reflective layer.
 アルコキシシラン化合物には、2官能アルコキシシラン化合物、3官能アルコキシシラン化合物、及び4官能アルコキシシラン化合物のうち、少なくとも一種が含まれる。そして、アルコキシシラン化合物の総量に対する、2官能アルコキシシラン化合物の比率をR2(モル%)、3官能アルコキシシラン化合物の比率をR3(モル%)、4官能アルコキシシラン化合物の比率をR4(モル%)、としたときに、下記式1及び式2の両条件が満たされる。
  0≦R2<40           (式1)
  0≦R4/R3≦2         (式2)
 なお、R2、R3、及びR4の合計は100モル%である。
The alkoxysilane compound includes at least one of a bifunctional alkoxysilane compound, a trifunctional alkoxysilane compound, and a tetrafunctional alkoxysilane compound. The ratio of the bifunctional alkoxysilane compound to the total amount of the alkoxysilane compound is R2 (mol%), the ratio of the trifunctional alkoxysilane compound is R3 (mol%), and the ratio of the tetrafunctional alkoxysilane compound is R4 (mol%). , Both conditions of the following formula 1 and formula 2 are satisfied.
0 ≦ R2 <40 (Formula 1)
0 ≦ R4 / R3 ≦ 2 (Formula 2)
In addition, the sum total of R2, R3, and R4 is 100 mol%.
 式1において、R2が40以上であると、ポリシロキサン中に、2官能アルコキシシラン由来の有機基が比較的多く含まれる。その結果、塗布液を硬化して得られる反射層と、基板表面のOH基等との間で十分なシロキサン結合が形成され難く、反射層と基板との密着性が低くなる。また当該反射層のガスバリア性が低下し、硫化耐性が低下するおそれがある。 In Formula 1, when R2 is 40 or more, the polysiloxane contains a relatively large amount of organic groups derived from bifunctional alkoxysilane. As a result, it is difficult to form a sufficient siloxane bond between the reflective layer obtained by curing the coating solution and the OH group or the like on the substrate surface, and the adhesion between the reflective layer and the substrate is lowered. In addition, the gas barrier property of the reflective layer may be reduced, and the resistance to sulfurization may be reduced.
 一方、式2においてR4/R3の値が2を超える、つまり4官能アルコキシシラン化合物の量が過剰であると、ポリシロキサン中での架橋密度が過度に高まる。そのため、アルコキシシラン化合物の硬化時に応力が緩和されにくく、クラックが発生するおそれがある。そのため、R4/R3の値は、2以下であることが好ましく、0≦R4/R3≦1.5であることがより好ましく、0≦R4/R3<1であることがさらに好ましい。 On the other hand, if the value of R4 / R3 exceeds 2 in Formula 2, that is, if the amount of the tetrafunctional alkoxysilane compound is excessive, the crosslinking density in the polysiloxane is excessively increased. For this reason, stress is not easily relieved when the alkoxysilane compound is cured, and cracks may occur. Therefore, the value of R4 / R3 is preferably 2 or less, more preferably 0 ≦ R4 / R3 ≦ 1.5, and further preferably 0 ≦ R4 / R3 <1.
 塗布液中におけるアルコキシシラン化合物の総量に対する、2官能アルコキシシラン化合物、3官能アルコキシシラン化合物、及び4官能アルコキシシラン化合物の比率は、塗布液を150℃で乾燥固化させて得られた試料の固体Si-NMRのスペクトルからそれぞれ求めることができる。 The ratio of the bifunctional alkoxysilane compound, the trifunctional alkoxysilane compound, and the tetrafunctional alkoxysilane compound with respect to the total amount of the alkoxysilane compound in the coating solution is determined by the solid Si of the sample obtained by drying and solidifying the coating solution at 150 ° C. Each can be determined from the NMR spectrum.
 固体Si-NMR(核磁気共鳴(Nuclear Magnetic Resonance))のスペクトルについて説明する。
 4官能アルコキシシラン化合物の重合体(ポリシロキサン)は、SiO・nHOの示性式で表されるが、構造的には、ケイ素原子Siの四面体の各頂点に酸素原子Oが結合され、これらの酸素原子Oに更にケイ素原子Siが結合してネット状に広がった構造を有する。
The spectrum of solid-state Si-NMR (Nuclear Magnetic Resonance) will be described.
The tetrafunctional alkoxysilane compound polymer (polysiloxane) is represented by the SiO 2 · nH 2 O characteristic formula, but structurally, oxygen atoms O are bonded to the apexes of the silicon atom Si tetrahedron. These silicon atoms have a structure in which silicon atoms Si are further bonded to these oxygen atoms O and spread in a net shape.
 以下の模式図(A)及び(B)は、上記の四面体構造を無視し、Si-Oのネット構造を表わしたものである。模式図(A)は、Si-Oのネット構造において、酸素原子Oがいずれも他のSi原子と結合した場合を表す。一方、模式図(B)は、Si-Oのネット構造において、酸素原子Oの一部が他の成員(ここでは-H)で置換された場合を表す。4官能アルコキシシラン化合物由来のSi原子には、模式図(A)に示されるように、4個の-OSiと結合した原子(Q)や、模式図(B)に示されるように3個の-OSiと結合した原子(Q)等がある。固体Si-NMRのスペクトルでは、これらが異なるピークとして観測される。そして、4官能アルコキシシラン化合物由来のケイ素原子に基づくピークは、Qサイトと総称され、上記各原子由来のピークは、Qピーク、Qピーク、・・・と呼ばれる。本明細書においてはQサイトに由来するQ~Qの各ピークをQピーク群と呼ぶこととする。有機置換基を含まないシリカ膜のQピーク群は、通常ケミカルシフト-80~-130ppmの領域に連続した多峰性のピークとして観測される。
Figure JPOXMLDOC01-appb-C000001
The schematic diagrams (A) and (B) below show the Si—O net structure, ignoring the tetrahedral structure. The schematic diagram (A) shows a case where all of the oxygen atoms O are bonded to other Si atoms in the Si—O net structure. On the other hand, the schematic diagram (B) shows a case where part of the oxygen atom O is replaced with another member (here, —H) in the Si—O net structure. As shown in the schematic diagram (A), the Si atoms derived from the tetrafunctional alkoxysilane compound include four atoms (Q 4 ) bonded to —OSi, and three Si atoms as shown in the schematic diagram (B). Atom (Q 3 ) or the like bonded to —OSi. In the solid-state Si-NMR spectrum, these are observed as different peaks. Then, a peak based on the silicon atoms derived from the tetrafunctional alkoxysilane compound, are collectively referred to as Q sites, the peak derived from each atom, Q 4 peak, Q 3 peak, called .... In this specification, Q 0 to Q 4 peaks derived from the Q site are referred to as a Q n peak group. The Q n peak group of the silica film containing no organic substituent is usually observed as a multimodal peak continuous in the region of −80 to −130 ppm chemical shift.
Figure JPOXMLDOC01-appb-C000001
 一方、酸素原子が3つ結合し、酸素以外の原子(通常は炭素である。)が1つ結合しているケイ素原子(つまり、3官能アルコキシシラン化合物由来のケイ素)は、一般にTサイトと総称される。Tサイトに由来するピークはQサイトの場合と同様に、T~Tの各ピークとして観測される。本明細書においてはTサイトに由来する各ピークをTピーク群と呼ぶこととする。Tピーク群は一般にQピーク群より高磁場側(通常ケミカルシフト-80~-40ppm)の領域に連続した多峰性のピークとして観測される。 On the other hand, a silicon atom (that is, silicon derived from a trifunctional alkoxysilane compound) in which three oxygen atoms are bonded and one non-oxygen atom (usually carbon) is bonded is generally referred to as a T site. Is done. The peak derived from the T site is observed as each peak of T 0 to T 3 as in the case of the Q site. In this specification, each peak derived from the T site is referred to as a Tn peak group. The T n peak group is generally observed as a multimodal peak continuous in a region on the higher magnetic field side (usually chemical shift of −80 to −40 ppm) than the Q n peak group.
 さらに、酸素原子が2つ結合するとともに、酸素以外の原子(通常は炭素である)が2つ結合しているケイ素原子(つまり、2官能アルコキシシラン化合物由来のケイ素)は、一般にDサイトと総称される。Dサイトに由来するピークも、QサイトやTサイトに由来するピーク群と同様に、D~Dの各ピーク(Dピーク群)として観測され、QやTのピーク群より更に、高磁場側の領域(通常ケミカルシフト-3~-40ppmの領域)に、多峰性のピークとして観測される。 Furthermore, a silicon atom (that is, silicon derived from a bifunctional alkoxysilane compound) in which two oxygen atoms are bonded and two atoms other than oxygen (usually carbon) are bonded is generally referred to as a D site. Is done. Similarly to the peak group derived from the Q site and the T site, the peak derived from the D site is also observed as each peak of D 0 to D n (D n peak group), which is further than the peak group of Q n and T n. It is observed as a multimodal peak in the region on the high magnetic field side (usually the region with a chemical shift of −3 to −40 ppm).
 ここで、固体Si-NMR測定を行うと、図3に示されるようなスペクトルが得られる。ただし、図3は、固体Si-NMRのスペクトルの一例であり、本発明の塗布液に含まれるアルコキシシラン化合物の硬化物のスペクトルはこれに限定されない。図3中、横軸はケミカルシフトを示しており、縦軸は各構造の化合物の存在量に依存した「相対強度」を示している。 Here, when a solid Si-NMR measurement is performed, a spectrum as shown in FIG. 3 is obtained. However, FIG. 3 is an example of the spectrum of solid-state Si-NMR, and the spectrum of the cured product of the alkoxysilane compound contained in the coating solution of the present invention is not limited to this. In FIG. 3, the horizontal axis indicates the chemical shift, and the vertical axis indicates “relative strength” depending on the abundance of the compound having each structure.
 図3中、D11は実測データを示す。D12はガウス関数にてモデル化したデータを示す。D13は差スペクトルを示す。また、ピークP11は、Dピーク群を示し、当該Dピーク群のピークトップは、ケミカルシフト-20.0ppm近傍に存在する。また、ピークP12は、Tピーク群を示し、当該Tピーク群のピークトップは、ケミカルシフト-60.0ppm近傍に存在する。さらに、ピークP13は、Qピーク群を示し、当該Qピーク群のピークトップは、ケミカルシフト-100.0~-110ppm近傍に存在する。つまり、図3のスペクトルは、2官能アルコキシシラン化合物由来のケイ素、3官能アルコキシシラン化合物由来のケイ素、4官能アルコキシシラン化合物由来のケイ素が含まれることを示している。 In FIG. 3, D11 indicates actual measurement data. D12 indicates data modeled by a Gaussian function. D13 shows a difference spectrum. The peak P11 represents the D n peak group, the peak top of the D n peak group is present in the vicinity of chemical shift -20.0Ppm. The peak P12 represents the T n peak group, the peak top of the T n peak group is present in the vicinity of chemical shift -60.0Ppm. Further, the peak P13 represents a Q n peak group, the peak top of the Q n peak group is present in the vicinity of a chemical shift -100.0 ~ -110 ppm. That is, the spectrum of FIG. 3 shows that silicon derived from a bifunctional alkoxysilane compound, silicon derived from a trifunctional alkoxysilane compound, and silicon derived from a tetrafunctional alkoxysilane compound are included.
 これらのD、T、Qの各ピーク群の互いの面積比は、各ピーク群に対応する環境におかれたケイ素原子のモル比と夫々等しい。そのため、Qピーク群、Tピーク群、及びDピーク群の合計面積に対する、各ピーク群の面積の割合が、塗布液に含まれるアルコキシシラン化合物の総量(ケイ素原子の全モル量)に対する、各アルコキシシラン化合物(4官能アルコキシシラン化合物、3官能アルコキシシラン化合物、及び2官能アルコキシシラン化合物)のモル比率と等しくなる。 The area ratio of the respective peak groups of D n , T n , and Q n is equal to the molar ratio of silicon atoms placed in the environment corresponding to each peak group. Therefore, Q n peak group, T n peak group, and to the total area of the D n peak group, the ratio of the area of each peak group, the total amount of the alkoxysilane compound contained in the coating liquid (the total molar amount of silicon atoms) And the molar ratio of each alkoxysilane compound (tetrafunctional alkoxysilane compound, trifunctional alkoxysilane compound, and bifunctional alkoxysilane compound).
 ここで、アルコキシシラン化合物は、モノマーの状態であってもよいが;少なくとも一部が、2官能アルコキシシラン、3官能アルコキシシラン、または4官能アルコキシシランの重合体(オリゴマー)であることが好ましい。アルコキシシラン化合物が、あらかじめ数個~数十個のモノマーが重合したオリゴマーであると、塗布液を硬化させたときの収縮が少なくなり、反射層形成時にクラックが発生しにくくなる。 Here, the alkoxysilane compound may be in a monomer state; however, at least a part is preferably a polymer (oligomer) of bifunctional alkoxysilane, trifunctional alkoxysilane, or tetrafunctional alkoxysilane. If the alkoxysilane compound is an oligomer in which several to several tens of monomers are polymerized in advance, shrinkage when the coating solution is cured is reduced, and cracks are less likely to occur when the reflective layer is formed.
 ・4官能アルコキシシラン化合物
 4官能アルコキシシラン化合物の例には、下記一般式(IV)で表される化合物が含まれる。
  Si(OR   …(IV)
 上記一般式(IV)中、Rはそれぞれ独立にアルキル基またはフェニル基を表し、好ましくは炭素数1~5のアルキル基、またはフェニル基を表す。
-Tetrafunctional alkoxysilane compound Examples of the tetrafunctional alkoxysilane compound include compounds represented by the following general formula (IV).
Si (OR 1 ) 4 (IV)
In the general formula (IV), each R 1 independently represents an alkyl group or a phenyl group, preferably an alkyl group having 1 to 5 carbon atoms, or a phenyl group.
 4官能アルコキシシラン化合物の具体例には、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシランテトラブトキシシラン、テトラペンチルオキシシラン、テトラフェニルオキシシラン、トリメトキシモノエトキシシラン、ジメトキシジエトキシシラン、トリエトキシモノメトキシシラン、トリメトキシモノプロポキシシラン、モノメトキシトリブトキシシラン、モノメトキシトリペンチルオキシシラン、モノメトキシトリフェニルオキシシラン、ジメトキシジプロポキシシラン、トリプロポキシモノメトキシシラン、トリメトキシモノブトキシシラン、ジメトキシジブトキシシラン、トリエトキシモノプロポキシシラン、ジエトキシジプロポキシシラン、トリブトキシモノプロポキシシラン、ジメトキシモノエトキシモノブトキシシラン、ジエトキシモノメトキシモノブトキシシラン、ジエトキシモノプロポキシモノブトキシシラン、ジプロポキシモノメトキシモノエトキシシラン、ジプロポキシモノメトキシモノブトキシシラン、ジプロポキシモノエトキシモノブトキシシラン、ジブトキシモノメトキシモノエトキシシラン、ジブトキシモノエトキシモノプロポキシシラン、モノメトキシモノエトキシモノプロポキシモノブトキシシランなどのアルコキシシラン、またはアリールオキシシラン等が含まれる。これらの中でもテトラメトキシシラン、テトラエトキシシランが好ましい。 Specific examples of tetrafunctional alkoxysilane compounds include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, tetrapentyloxysilane, tetraphenyloxysilane, trimethoxymonoethoxysilane, dimethoxydiethoxysilane, and triethoxymono. Methoxysilane, trimethoxymonopropoxysilane, monomethoxytributoxysilane, monomethoxytripentyloxysilane, monomethoxytriphenyloxysilane, dimethoxydipropoxysilane, tripropoxymonomethoxysilane, trimethoxymonobutoxysilane, dimethoxydibutoxysilane , Triethoxymonopropoxysilane, diethoxydipropoxysilane, tributoxymonopropoxysilane, dimethoxymonoethoxy Nobutoxysilane, diethoxymonomethoxymonobutoxysilane, diethoxymonopropoxymonobutoxysilane, dipropoxymonomethoxymonoethoxysilane, dipropoxymonomethoxymonobutoxysilane, dipropoxymonoethoxymonobutoxysilane, dibutoxymonomethoxymonoethoxy Examples thereof include alkoxysilanes such as silane, dibutoxymonoethoxymonopropoxysilane, monomethoxymonoethoxymonopropoxymonobutoxysilane, and aryloxysilane. Among these, tetramethoxysilane and tetraethoxysilane are preferable.
 ・3官能アルコキシシラン化合物
 3官能アルコキシシラン化合物の例には、下記一般式(III)で表される化合物が含まれる。
  RSi(OR       (III)
 上記一般式(III)中、Rは、それぞれ独立にアルキル基またはフェニル基を表し、好ましくは炭素数1~5のアルキル基、またはフェニル基を表す。また、Rは、水素原子またはアルキル基を表す。
Trifunctional alkoxysilane compound Examples of the trifunctional alkoxysilane compound include compounds represented by the following general formula (III).
R 2 Si (OR 3 ) 3 (III)
In the general formula (III), each R 3 independently represents an alkyl group or a phenyl group, preferably an alkyl group having 1 to 5 carbon atoms, or a phenyl group. R 2 represents a hydrogen atom or an alkyl group.
 3官能アルコキシシラン化合物の具体例には、トリメトキシシラン、トリエトキシシラン、トリプロポキシシラン、トリペンチルオキシシラン、トリフェニルオキシシラン、ジメトキシモノエトキシシラン、ジエトキシモノメトキシシラン、ジプロポキシモノメトキシシラン、ジプロポキシモノエトキシシラン、ジペンチルオキシルモノメトキシシラン、ジペンチルオキシモノエトキシシラン、ジペンチルオキシモノプロポキシシラン、ジフェニルオキシルモノメトキシシラン、ジフェニルオキシモノエトキシシラン、ジフェニルオキシモノプロポキシシラン、メトキシエトキシプロポキシシラン、モノプロポキシジメトキシシラン、モノプロポキシジエトキシシラン、モノブトキシジメトキシシラン、モノペンチルオキシジエトキシシラン、モノフェニルオキシジエトキシシラン等のモノヒドロシラン化合物;メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリペンチルオキシシラン、メチルモノメトキシジエトキシシラン、メチルモノメトキシジプロポキシシラン、メチルモノメトキシジペンチルオキシシラン、メチルモノメトキシジフェニルオキシシラン、メチルメトキシエトキシプロポキシシラン、メチルモノメトキシモノエトキシモノブトキシシラン等のモノメチルシラン化合物;エチルトリメトキシシラン、エチルトリプロポキシシラン、エチルトリペンチルオキシシラン、エチルトリフェニルオキシシラン、エチルモノメトキシジエトキシシラン、エチルモノメトキシジプロポキシシラン、エチルモノメトキシジペンチルオキシシラン、エチルモノメトキシジフェニルオキシシラン、エチルモノメトキシモノエトキシモノブトキシシラン等のモノエチルシラン化合物;プロピルトリメトキシシラン、プロピルトリエトキシシラン、プロピルトリペンチルオキシシラン、プロピルトリフェニルオキシシラン、プロピルモノメトキシジエトキシシラン、プロピルモノメトキシジプロポキシシラン、プロピルモノメトキシジペンチルオキシシラン、プロピルモノメトキシジフェニルオキシシラン、プロピルメトキシエトキシプロポキシシラン、プロピルモノメトキシモノエトキシモノブトキシシラン等のモノプロピルシラン化合物;ブチルトリメトキシシラン、ブチルトリエトキシシラン、ブチルトリプロポキシシラン、ブチルトリペンチルオキシシラン、ブチルトリフェニルオキシシラン、ブチルモノメトキシジエトキシシラン、ブチルモノメトキシジプロポキシシラン、ブチルモノメトキシジペンチルオキシシラン、ブチルモノメトキシジフェニルオキシシラン、ブチルメトキシエトキシプロポキシシラン、ブチルモノメトキシモノエトキシモノブトキシシラン等のモノブチルシラン化合物が含まれる。 Specific examples of the trifunctional alkoxysilane compound include trimethoxysilane, triethoxysilane, tripropoxysilane, tripentyloxysilane, triphenyloxysilane, dimethoxymonoethoxysilane, diethoxymonomethoxysilane, dipropoxymonomethoxysilane, Dipropoxymonoethoxysilane, dipentyloxylmonomethoxysilane, dipentyloxymonoethoxysilane, dipentyloxymonopropoxysilane, diphenyloxylmonomethoxysilane, diphenyloxymonoethoxysilane, diphenyloxymonopropoxysilane, methoxyethoxypropoxysilane, monopropoxydimethoxy Silane, monopropoxydiethoxysilane, monobutoxydimethoxysilane, monopentyloxydiethoxysila Monohydrosilane compounds such as monophenyloxydiethoxysilane; methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, methyltripentyloxysilane, methylmonomethoxydiethoxysilane, methylmonomethoxydipropoxysilane, methylmono Monomethylsilane compounds such as methoxydipentyloxysilane, methylmonomethoxydiphenyloxysilane, methylmethoxyethoxypropoxysilane, methylmonomethoxymonoethoxymonobutoxysilane; ethyltrimethoxysilane, ethyltripropoxysilane, ethyltripentyloxysilane, ethyltri Phenyloxysilane, ethylmonomethoxydiethoxysilane, ethylmonomethoxydipropoxysilane, ethylmonomethoxydipe Monoethylsilane compounds such as tiloxysilane, ethylmonomethoxydiphenyloxysilane, ethylmonomethoxymonoethoxymonobutoxysilane; propyltrimethoxysilane, propyltriethoxysilane, propyltripentyloxysilane, propyltriphenyloxysilane, propylmono Monopropylsilane compounds such as methoxydiethoxysilane, propylmonomethoxydipropoxysilane, propylmonomethoxydipentyloxysilane, propylmonomethoxydiphenyloxysilane, propylmethoxyethoxypropoxysilane, propylmonomethoxymonoethoxymonobutoxysilane; butyltrimethoxy Silane, butyltriethoxysilane, butyltripropoxysilane, butyltripentyloxysilane, butyl Mono, such as triphenyloxysilane, butylmonomethoxydiethoxysilane, butylmonomethoxydipropoxysilane, butylmonomethoxydipentyloxysilane, butylmonomethoxydiphenyloxysilane, butylmethoxyethoxypropoxysilane, butylmonomethoxymonoethoxymonobutoxysilane A butylsilane compound is included.
 これらの3官能アルコキシシラン化合物の一般式(III)で表されるRがメチル基であると、得られる反射層表面の疎水性が低くなる。これにより、反射層上に波長変換層を成膜する場合、波長変換層を成膜するための組成物が濡れ広がりやすくなる。その結果、反射層と波長変換層との密着性が高まる。一般式(III)で表されるRがメチル基である3官能アルコキシシラン化合物の例には、メチルトリメトキシシラン、及びメチルトリエトキシシランが含まれ、メチルトリメトキシシランであることが特に好ましい。 When R 2 represented by the general formula (III) of these trifunctional alkoxysilane compounds is a methyl group, the hydrophobicity of the resulting reflective layer surface becomes low. Thereby, when forming a wavelength conversion layer on a reflective layer, the composition for forming a wavelength conversion layer becomes easy to spread. As a result, the adhesion between the reflective layer and the wavelength conversion layer is enhanced. Examples of the trifunctional alkoxysilane compound in which R 2 represented by the general formula (III) is a methyl group include methyltrimethoxysilane and methyltriethoxysilane, and is particularly preferably methyltrimethoxysilane. .
 ・2官能アルコキシシラン化合物
 2官能アルコキシシラン化合物の例には、下記一般式(II)で表される化合物が含まれる。
  R Si(OR     (II)
 上記一般式(II)中、Rはそれぞれ独立にアルキル基またはフェニル基を表し、好ましくは炭素数1~5のアルキル基、またはフェニル基を表す。また、Rは水素原子またはアルキル基を表す。
-Bifunctional alkoxysilane compound Examples of the bifunctional alkoxysilane compound include compounds represented by the following general formula (II).
R 4 2 Si (OR 5 ) 2 (II)
In the general formula (II), each R 5 independently represents an alkyl group or a phenyl group, preferably an alkyl group having 1 to 5 carbon atoms, or a phenyl group. R 4 represents a hydrogen atom or an alkyl group.
 2官能のアルコキシシラン化合物の具体例には、ジメトキシシラン、ジエトキシシラン、ジプロポキシシラン、ジペンチルオキシシラン、ジフェニルオキシシラン、メトキシエトキシシラン、メトキシプロポキシシラン、メトキシペンチルオキシシラン、メトキシフェニルオキシシラン、エトキシプロポキシシラン、エトキシペンチルオキシシラン、エトキシフェニルオキシシラン、メチルジメトキシシラン、メチルメトキシエトキシシラン、メチルジエトキシシラン、メチルメトキシプロポキシシラン、メチルメトキシペンチルオキシシラン、メチルメトキシフェニルオキシシラン、エチルジプロポキシシラン、エチルメトキシプロポキシシラン、エチルジペンチルオキシシラン、エチルジフェニルオキシシラン、プロピルジメトキシシラン、プロピルメトキシエトキシシラン、プロピルエトキシプロポキシシラン、プロピルジエトキシシラン、プロピルジペンチルオキシシラン、プロピルジフェニルオキシシラン、ブチルジメトキシシラン、ブチルメトキシエトキシシラン、ブチルジエトキシシラン、ブチルエトキシプロポキシシシラン、ブチルジプロポキシシラン、ブチルメチルジペンチルオキシシラン、ブチルメチルジフェニルオキシシラン、ジメチルジメトキシシラン、ジメチルメトキシエトキシシラン、ジメチルジエトキシシラン、ジメチルジペンチルオキシシラン、ジメチルジフェニルオキシシラン、ジメチルエトキシプロポキシシラン、ジメチルジプロポキシシラン、ジエチルジメトキシシラン、ジエチルメトキシプロポキシシラン、ジエチルジエトキシシラン、ジエチルエトキシプロポキシシラン、ジプロピルジメトキシシラン、ジプロピルジエトキシシラン、ジプロピルジペンチルオキシシラン、ジプロピルジフェニルオキシシラン、ジブチルジメトキシシラン、ジブチルジエトキシシラン、ジブチルジプロポキシシラン、ジブチルメトキシペンチルオキシシラン、ジブチルメトキシフェニルオキシシラン、メチルエチルジメトキシシラン、メチルエチルジエトキシシラン、メチルエチルジプロポキシシラン、メチルエチルジペンチルオキシシラン、メチルエチルジフェニルオキシシラン、メチルプロピルジメトキシシラン、メチルプロピルジエトキシシラン、メチルブチルジメトキシシラン、メチルブチルジエトキシシラン、メチルブチルジプロポキシシラン、メチルエチルエトキシプロポキシシラン、エチルプロピルジメトキシシラン、エチルプロピルメトキシエトキシシラン、ジプロピルジメトキシシラン、ジプロピルメトキシエトキシシラン、プロピルブチルジメトキシシラン、プロピルブチルジエトキシシラン、ジブチルメトキシエトキシシラン、ジブチルメトキシプロポキシシラン、ジブチルエトキシプロポキシシラン等が含まれる。中でもジメトキシシラン、ジエトキシシラン、メチルジメトキシシラン、メチルジエトキシシランが好ましい。 Specific examples of the bifunctional alkoxysilane compound include dimethoxysilane, diethoxysilane, dipropoxysilane, dipentyloxysilane, diphenyloxysilane, methoxyethoxysilane, methoxypropoxysilane, methoxypentyloxysilane, methoxyphenyloxysilane, ethoxy Propoxysilane, ethoxypentyloxysilane, ethoxyphenyloxysilane, methyldimethoxysilane, methylmethoxyethoxysilane, methyldiethoxysilane, methylmethoxypropoxysilane, methylmethoxypentyloxysilane, methylmethoxyphenyloxysilane, ethyldipropoxysilane, ethyl Methoxypropoxysilane, ethyldipentyloxysilane, ethyldiphenyloxysilane, propyldimethoxysilane , Propylmethoxyethoxysilane, propylethoxypropoxysilane, propyldiethoxysilane, propyldipentyloxysilane, propyldiphenyloxysilane, butyldimethoxysilane, butylmethoxyethoxysilane, butyldiethoxysilane, butylethoxypropoxysilane, butyldipropoxy Silane, butylmethyldipentyloxysilane, butylmethyldiphenyloxysilane, dimethyldimethoxysilane, dimethylmethoxyethoxysilane, dimethyldiethoxysilane, dimethyldipentyloxysilane, dimethyldiphenyloxysilane, dimethylethoxypropoxysilane, dimethyldipropoxysilane, diethyldimethoxy Silane, diethylmethoxypropoxysilane, diethyldiethoxysilane Diethylethoxypropoxysilane, dipropyldimethoxysilane, dipropyldiethoxysilane, dipropyldipentyloxysilane, dipropyldiphenyloxysilane, dibutyldimethoxysilane, dibutyldiethoxysilane, dibutyldipropoxysilane, dibutylmethoxypentyloxysilane, dibutylmethoxy Phenyloxysilane, methylethyldimethoxysilane, methylethyldiethoxysilane, methylethyldipropoxysilane, methylethyldipentyloxysilane, methylethyldiphenyloxysilane, methylpropyldimethoxysilane, methylpropyldiethoxysilane, methylbutyldimethoxysilane, methyl Butyldiethoxysilane, methylbutyldipropoxysilane, methylethylethoxypropoxy Run, ethylpropyldimethoxysilane, ethylpropylmethoxyethoxysilane, dipropyldimethoxysilane, dipropylmethoxyethoxysilane, propylbutyldimethoxysilane, propylbutyldiethoxysilane, dibutylmethoxyethoxysilane, dibutylmethoxypropoxysilane, dibutylethoxypropoxysilane, etc. Is included. Of these, dimethoxysilane, diethoxysilane, methyldimethoxysilane, and methyldiethoxysilane are preferable.
 ・オリゴマー
 アルコキシシラン化合物でありうるオリゴマーは、2官能アルコキシシラン化合物、3官能アルコキシシラン化合物、及び4官能アルコキシシラン化合物を所望の比率で混合し、酸触媒、水、溶媒の存在下で反応させて得られる。オリゴマーの分子量は、反応時間、温度、水の濃度等により調整される。
-Oligomer An oligomer that can be an alkoxysilane compound is prepared by mixing a bifunctional alkoxysilane compound, a trifunctional alkoxysilane compound, and a tetrafunctional alkoxysilane compound in a desired ratio and reacting them in the presence of an acid catalyst, water, and a solvent. can get. The molecular weight of the oligomer is adjusted by the reaction time, temperature, water concentration, and the like.
 オリゴマーは、GPC(ゲルパーミエーションクロマトグラフ)で測定される重量平均分子量が500~20000であることが好ましく、より好ましくは1000~10000であり、さらに好ましくは1500~6000である。オリゴマーの重合度が高すぎると塗布液の粘度が過度に高くなったり、アルコキシシラン化合物が塗布液中で析出することがある。 The oligomer preferably has a weight average molecular weight of 500 to 20000 as measured by GPC (gel permeation chromatograph), more preferably 1000 to 10,000, and even more preferably 1500 to 6000. If the degree of polymerization of the oligomer is too high, the viscosity of the coating solution may become excessively high, or the alkoxysilane compound may precipitate in the coating solution.
 オリゴマー調製用の溶媒の例には、メタノール、エタノール、プロパノール、n-ブタノール等の一価アルコール;メチル-3-メトキシプロピオネート、エチル-3-エトキシプロピオネート等のアルキルカルボン酸エステル;エチレングリコール、ジエチレングリコール、プロピレングリコール、グリセリン、トリメチロールプロパン、ヘキサントリオール等の多価アルコール;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル等の多価アルコールのモノエーテル類、あるいはこれらのモノアセテート類;酢酸メチル、酢酸エチル、酢酸ブチル等のエステル類;アセトン、メチルエチルケトン、メチルイソアミルケトン等のケトン類;エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジプロピルエーテル、エチレングリコールジブチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル等の多価アルコールの水酸基をすべてアルキルエーテル化した多価アルコールエーテル類;等が含まれる。これらは1種単独で添加してもよく、また2種以上を添加してもよい。 Examples of solvents for preparing oligomers include monohydric alcohols such as methanol, ethanol, propanol and n-butanol; alkyl carboxylic acid esters such as methyl-3-methoxypropionate and ethyl-3-ethoxypropionate; ethylene Polyhydric alcohols such as glycol, diethylene glycol, propylene glycol, glycerin, trimethylolpropane, hexanetriol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl Ether, diethylene glycol monopropyl ether, diethylene glycol monobutyl ether, pro Monoethers of polyhydric alcohols such as lenglycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, or their monoacetates; esters such as methyl acetate, ethyl acetate, butyl acetate Ketones such as acetone, methyl ethyl ketone, methyl isoamyl ketone; ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dipropyl ether, ethylene glycol dibutyl ether, propylene glycol dimethyl ether, propylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol Methyl Polyhydric alcohols ethers and polyvalent all alkyl etherifying hydroxyl groups of alcohols such Chirueteru; and the like. These may be added alone or in combination of two or more.
 ・アルコキシシラン化合物の含有量
 塗布液に含まれるアルコキシシラン化合物の総量は、塗布液に含まれる溶媒(水を含む)以外の成分の総質量に対して、3~40質量%であることが好ましく、5~30質量%であることがより好ましい。アルコキシシラン化合物の総量が、3質量%未満であると、得られる反射層において、白色顔料が十分に結着され難くなる。その結果、反射層の表面に顔料粉が発生し易い。また、アルコキシシラン化合物の総量が、40質量%を超えると、相対的に白色顔料の量が少なくなり、反射層の光の反射性が低くなりやすい。
-Content of alkoxysilane compound The total amount of alkoxysilane compound contained in the coating solution is preferably 3 to 40% by mass with respect to the total mass of components other than the solvent (including water) contained in the coating solution. More preferably, it is 5 to 30% by mass. When the total amount of the alkoxysilane compound is less than 3% by mass, the white pigment is not sufficiently bound in the resulting reflective layer. As a result, pigment powder is easily generated on the surface of the reflective layer. On the other hand, when the total amount of the alkoxysilane compound exceeds 40% by mass, the amount of the white pigment is relatively reduced, and the light reflectivity of the reflective layer tends to be low.
 1-2.溶媒
 塗布液に含まれる溶媒には、水または有機溶媒が含まれる。有機溶媒は、前述のアルコキシシラン化合物と相溶性があり、白色顔料等を均一に分散可能な有機溶媒であればよい。そのような有機溶媒の例には、1価のアルコール、2価以上の多価アルコール、エステル系溶媒などが含まれる。
1-2. Solvent The solvent contained in the coating solution includes water or an organic solvent. The organic solvent may be any organic solvent that is compatible with the aforementioned alkoxysilane compound and can uniformly disperse the white pigment or the like. Examples of such organic solvents include monohydric alcohols, dihydric or higher polyhydric alcohols, ester solvents and the like.
 1価のアルコールの例には、メタノール、エタノール、プロパノール、ブタノール等が含まれる。多価アルコールは、ジオールまたはトリオールのいずれであってもよい。多価アルコールの例には、エチレングリコール、プロピレングリコール、ジエチレングリコール、グリセリン、1,3-ブタンジオール、1,4-ブタンジオールなどが挙げられ、好ましくは、エチレングリコール、プロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール等が含まれる。エステル系溶媒の例には、メチル-3-メトキシプロピオネート、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル等が含まれる。 Examples of monohydric alcohols include methanol, ethanol, propanol, butanol and the like. The polyhydric alcohol may be either a diol or a triol. Examples of the polyhydric alcohol include ethylene glycol, propylene glycol, diethylene glycol, glycerin, 1,3-butanediol, 1,4-butanediol, and preferably ethylene glycol, propylene glycol, 1,3-butane. Diol, 1,4-butanediol and the like are included. Examples of the ester solvent include methyl-3-methoxypropionate, methyl acetate, ethyl acetate, propyl acetate, butyl acetate and the like.
 これらの中でも、有機溶媒は、1価のアルコールおよび多価アルコールの少なくとも一方を含むことが好ましい。 Among these, the organic solvent preferably contains at least one of a monohydric alcohol and a polyhydric alcohol.
 溶媒には、水がさらに含まれうる。塗布液に水が含まれると、粘土鉱物粒子の層間に水が入り込んで粘土鉱物粒子が膨潤し、塗布液の粘度がより高まりやすくなる。水の含有割合は、溶媒全体に対して0~30質量%であることが好ましく、0~20質量%であることがより好ましい。 The solvent can further include water. When water is contained in the coating solution, water enters between the layers of the clay mineral particles, the clay mineral particles swell, and the viscosity of the coating solution is more likely to increase. The water content is preferably 0 to 30% by mass, more preferably 0 to 20% by mass, based on the entire solvent.
 塗布液に含まれる溶媒の総量は、硬化前後の体積比を上記範囲にする観点から、塗布液全量に対して10~45質量%であることが好ましく、20~40質量%であることがより好ましい。溶媒の総量が過剰に少ないと、塗布液の流動性が低くなりすぎて、塗布安定性が低下しやすい。一方、溶媒の総量が過剰に多いと、硬化前後の体積変化が大きくなりすぎるため、厚膜にするとクラックが入りやすい。 The total amount of the solvent contained in the coating solution is preferably 10 to 45% by mass and more preferably 20 to 40% by mass with respect to the total amount of the coating solution from the viewpoint of setting the volume ratio before and after curing in the above range. preferable. If the total amount of the solvent is excessively small, the fluidity of the coating solution becomes too low and the coating stability tends to be lowered. On the other hand, if the total amount of the solvent is excessively large, the volume change before and after curing becomes too large.
 1-3.白色顔料
 塗布液に含まれる白色顔料は、反射層において、LED素子が発する光等を反射する役割を果たす。本発明において、白色顔料とは、平均一次粒径が100nmより大きく、20μm以下であり、かつ波長587.6nmの光の屈折率が1.6以上である粒子とする。白色顔料の平均一次粒径は、100nmより大きく10μm以下であることが好ましく、さらに好ましくは200nm~2.5μmである。「平均一次粒径」とは、レーザー回折式粒度分布計で測定されるD50の値をいう。レーザー回折式粒度分布測定装置の例には、島津製作所製のレーザー回折式粒度分布測定装置等がある。
1-3. White pigment The white pigment contained in the coating liquid plays a role of reflecting light emitted from the LED element in the reflective layer. In the present invention, the white pigment is a particle having an average primary particle size of more than 100 nm and 20 μm or less, and a refractive index of light having a wavelength of 587.6 nm of 1.6 or more. The average primary particle size of the white pigment is preferably larger than 100 nm and not larger than 10 μm, more preferably 200 nm to 2.5 μm. The “average primary particle size” refers to the value of D50 measured with a laser diffraction particle size distribution meter. Examples of the laser diffraction particle size distribution measuring device include a laser diffraction particle size distribution measuring device manufactured by Shimadzu Corporation.
 白色顔料の例には、炭酸バリウム、硫酸バリウム、酸化亜鉛、酸化マグネシウム、酸化カルシウム、酸化チタン、酸化アルミニウム、酸化ジルコニウム、硫化亜鉛、硫酸バリウム、酸化イットリウム、水酸化アルミニウム、窒化ホウ素、窒化アルミニウム、チタン酸カリウム、チタン酸バリウム、チタン酸アルミニウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、ヒドロキシアパタイト等が含まれる。これらの中でも、酸化チタン、酸化アルミニウム、硫酸バリウム、酸化亜鉛、酸化イットリウム、窒化ホウ素、及び窒化アルミニウムが特に好ましい。 Examples of white pigments include barium carbonate, barium sulfate, zinc oxide, magnesium oxide, calcium oxide, titanium oxide, aluminum oxide, zirconium oxide, zinc sulfide, barium sulfate, yttrium oxide, aluminum hydroxide, boron nitride, aluminum nitride, Examples include potassium titanate, barium titanate, aluminum titanate, strontium titanate, calcium titanate, magnesium titanate, and hydroxyapatite. Among these, titanium oxide, aluminum oxide, barium sulfate, zinc oxide, yttrium oxide, boron nitride, and aluminum nitride are particularly preferable.
 白色顔料に窒化ホウ素が含まれると、得られる反射層の熱伝導性が高くなる。その結果、LED素子から発生した熱を、速やかに基板から逃がすことができる。したがって、LED装置の温度を低く保つことができ、装置寿命を長くすることができる。 When boron nitride is contained in the white pigment, the resulting reflective layer has high thermal conductivity. As a result, the heat generated from the LED element can be quickly released from the substrate. Therefore, the temperature of the LED device can be kept low, and the device life can be extended.
 塗布液に含まれる白色顔料の量は、塗布液の加熱硬化後の固形分の質量に対して、50~98質量%であることが好ましく、より好ましくは60~98質量%であり、さらに好ましくは70~95質量%である。白色顔料の量が50質量%以上であると、得られる反射層の光反射性が十分に高まりやすい。一方、白色顔料の含有量が95質量%以下であれば、相対的にバインダの量が多くなり、白色顔料が十分に結着されやすい。塗布液の加熱硬化後の固形分の質量は、塗布液を150℃で1時間硬化させて得られる硬化物の質量である。一方、白色顔料の量は、塗布液調製時の配合量や、以下の1)~3)の手順で分析することによって特定されうる。即ち、1)塗布液を150℃で1時間硬化させた硬化物をSEM-EDX分析し、SEM写真のコンストラストと面積中の元素別比率を求める。2)塗布液の硬化物をXRDで構造分析して、白色顔料の種類を特定する。3)前記2)で特定した白色顔料の上記硬化物中の含有比率を、前記1)で求めた元素別比率から求める。 The amount of the white pigment contained in the coating solution is preferably 50 to 98% by mass, more preferably 60 to 98% by mass, and still more preferably based on the mass of the solid content after heat curing of the coating solution. Is 70 to 95% by mass. When the amount of the white pigment is 50% by mass or more, the light reflectivity of the resulting reflective layer is likely to be sufficiently increased. On the other hand, when the content of the white pigment is 95% by mass or less, the amount of the binder is relatively increased and the white pigment is easily bound. The mass of the solid content after heat curing of the coating solution is the mass of a cured product obtained by curing the coating solution at 150 ° C. for 1 hour. On the other hand, the amount of the white pigment can be specified by analyzing the blending amount at the time of preparing the coating solution and the following procedures 1) to 3). That is, 1) SEM-EDX analysis is performed on the cured product obtained by curing the coating solution at 150 ° C. for 1 hour, and the contrast of the SEM photograph and the ratio of each element in the area are obtained. 2) The cured product of the coating solution is structurally analyzed by XRD to identify the type of white pigment. 3) The content ratio of the white pigment specified in 2) above in the cured product is determined from the elemental ratio determined in 1) above.
 1-4.無機粒子
 塗布液には、無機粒子がさらに含まれてもよい。無機粒子は、前述の白色顔料以外の無機物からなる粒子である。無機粒子は、例えば平均粒径が5nm以上100nm未満の金属酸化物微粒子等でありうる。塗布液中に金属酸化物微粒子が含まれると、得られる反射層表面に細かな凹凸が生じ、反射層と他の層との間にアンカー効果が発現しやすい。また、塗布液に金属酸化物微粒子が含まれると、アルコキシシラン化合物の重縮合時に膜に生じる応力が緩和され、得られる反射層にクラックが生じ難くなる。
1-4. Inorganic particles The coating solution may further contain inorganic particles. The inorganic particles are particles made of an inorganic material other than the white pigment described above. The inorganic particles can be, for example, metal oxide fine particles having an average particle size of 5 nm or more and less than 100 nm. When the metal oxide fine particles are contained in the coating solution, fine irregularities are generated on the surface of the resulting reflective layer, and an anchor effect is easily exhibited between the reflective layer and other layers. Moreover, when metal oxide fine particles are contained in the coating solution, the stress generated in the film during the polycondensation of the alkoxysilane compound is relaxed, and cracks are less likely to occur in the resulting reflective layer.
 金属酸化物微粒子の種類は、特に制限されないが、比較的入手が容易である、酸化アルミニウム、酸化ジルコニウム、酸化亜鉛、酸化スズ、酸化イットリウム、酸化セリウム、酸化チタン、酸化銅、酸化ビスマスの群から選択される1種以上の金属酸化物微粒子であることが好ましい。 The type of metal oxide fine particles is not particularly limited, but is relatively easy to obtain from the group of aluminum oxide, zirconium oxide, zinc oxide, tin oxide, yttrium oxide, cerium oxide, titanium oxide, copper oxide, and bismuth oxide. One or more selected metal oxide fine particles are preferable.
 金属酸化物微粒子の表面は、シランカップリング剤やチタンカップリング剤で処理されていてもよい。表面処理によって、金属酸化物微粒子と、アルコキシシラン化合物や有機溶媒との相溶性が高まる。 The surface of the metal oxide fine particles may be treated with a silane coupling agent or a titanium coupling agent. By the surface treatment, the compatibility between the metal oxide fine particles and the alkoxysilane compound or the organic solvent is increased.
 金属酸化物微粒子の平均粒径は、上述したそれぞれの効果を考慮して5~100nmであることが好ましく、より好ましくは5~80nm、さらに好ましくは5~50nmである。このような範囲の平均粒径とすることで、反射層表面に微細な凹凸を形成でき、前述のアンカー効果が得られる。金属酸化物微粒子の平均粒径は、例えばコールターカウンター法によって測定される。 The average particle diameter of the metal oxide fine particles is preferably 5 to 100 nm, more preferably 5 to 80 nm, still more preferably 5 to 50 nm in consideration of the respective effects described above. By setting the average particle diameter in such a range, fine irregularities can be formed on the surface of the reflective layer, and the anchor effect described above can be obtained. The average particle diameter of the metal oxide fine particles is measured, for example, by a Coulter counter method.
 また、金属酸化物微粒子は、多孔質であってもよく、その比表面積は200m/g以上であることが好ましい。金属酸化物微粒子が多孔質であると、多孔質の空隙部に不純物が吸着されやすい。 The metal oxide fine particles may be porous, and the specific surface area is preferably 200 m 2 / g or more. If the metal oxide fine particles are porous, impurities are easily adsorbed in the porous voids.
 塗布液に含まれる金属酸化物微粒子の量は、塗布液に含まれる溶媒以外の成分の総質量(固形分の総量)に対して0.1~20質量%であることが好ましく、0.1~10質量%であることがより好ましい。金属酸化物微粒子の量が少なすぎると、前述のアンカー効果が十分とならない。一方で、多すぎると、相対的にアルコキシシラン化合物の量が減少し、得られる反射層の強度が低下するおそれがある。 The amount of the metal oxide fine particles contained in the coating solution is preferably 0.1 to 20% by mass with respect to the total mass (total amount of solid content) of components other than the solvent contained in the coating solution. More preferably, it is ˜10% by mass. If the amount of the metal oxide fine particles is too small, the above-described anchor effect is not sufficient. On the other hand, if the amount is too large, the amount of the alkoxysilane compound is relatively reduced, and the strength of the resulting reflective layer may be reduced.
 一方、無機粒子には、平均一次粒径が100nm以上100μm以下である、他の無機粒子が含まれてもよい。このような他の無機粒子が含まれると、白色顔料どうしの隙間が当該無機粒子によって埋まり、塗布液の粘度が高まりやすい。また、白色顔料粒子や無機粒子などの粒子間の隙間にあるバインダが、当該無機微粒子によって埋められるため、硬化時のクラック耐性も高めうる。 Meanwhile, the inorganic particles may include other inorganic particles having an average primary particle size of 100 nm or more and 100 μm or less. When such other inorganic particles are contained, the gaps between the white pigments are filled with the inorganic particles, and the viscosity of the coating liquid tends to increase. Further, since the binder in the gaps between the particles such as white pigment particles and inorganic particles is filled with the inorganic fine particles, the crack resistance during curing can be improved.
 他の無機粒子の例には、酸化ケイ素などの酸化物粒子、フッ化マグネシウムなどのフッ化物粒子や、これらの混合物が含まれる。他の無機粒子は、好ましくは酸化物粒子であり、特に好ましくは酸化ケイ素である。他の無機粒子の表面は、シランカップリング剤やチタンカップリング剤で処理されていてもよい。表面処理によって、他の無機粒子と、アルコキシシラン化合物や有機溶媒との相溶性が高まる。 Examples of other inorganic particles include oxide particles such as silicon oxide, fluoride particles such as magnesium fluoride, and mixtures thereof. The other inorganic particles are preferably oxide particles, and particularly preferably silicon oxide. The surface of other inorganic particles may be treated with a silane coupling agent or a titanium coupling agent. By the surface treatment, compatibility between the other inorganic particles and the alkoxysilane compound or the organic solvent is increased.
 塗布液に含まれる、他の無機粒子の含有量は、塗布液の全質量に対して0.1~10質量%であることが好ましく、0.2~7質量%であることが、より好ましい。他の無機粒子が10質量%を超えると、反射層の成膜時にクラックが生じ易く、0.1%未満であると塗布液の増粘効果が低くなるからである。 The content of other inorganic particles contained in the coating solution is preferably 0.1 to 10% by mass, more preferably 0.2 to 7% by mass, based on the total mass of the coating solution. . This is because if the other inorganic particles exceed 10% by mass, cracks are likely to occur during the formation of the reflective layer, and if it is less than 0.1%, the thickening effect of the coating solution is reduced.
 他の無機粒子の平均粒径は、白色顔料どうしの界面に生じる隙間を埋めるとの観点から、100nm以上50μm以下であることが好ましく、1μm以上30μm以下であることが、より好ましい。他の無機粒子の平均粒径は、例えばコールターカウンター法によって測定することができる。 The average particle diameter of the other inorganic particles is preferably 100 nm or more and 50 μm or less, and more preferably 1 μm or more and 30 μm or less from the viewpoint of filling a gap generated at the interface between the white pigments. The average particle diameter of other inorganic particles can be measured by, for example, a Coulter counter method.
 1-5.粘土鉱物粒子
 塗布液には、粘土鉱物粒子が含まれてもよい。塗布液に粘土鉱物粒子が含まれると、塗布液の粘度が高まり、白色顔料の沈降が抑制される。粘土鉱物粒子の例には、層状ケイ酸塩鉱物、イモゴライト、アロフェン等が含まれる。これらの粒子は、表面積が非常に大きく、少量で塗布液の粘度を高めることができる。
1-5. Clay mineral particles The coating liquid may contain clay mineral particles. When clay mineral particles are contained in the coating solution, the viscosity of the coating solution increases, and sedimentation of the white pigment is suppressed. Examples of clay mineral particles include layered silicate minerals, imogolite, allophane and the like. These particles have a very large surface area and can increase the viscosity of the coating solution in a small amount.
 ここで、層状ケイ酸塩鉱物は、雲母構造、カオリナイト構造、またはスメクタイト構造を有する粘土鉱物が好ましい。層状ケイ酸塩鉱物粒子は、塗布液の静置状態でカードハウス構造を形成しやすい。層状ケイ酸塩鉱物粒子がカードハウス構造を形成すると、塗布液の粘度が大幅に高まる。一方で、カードハウス構造は、一定の圧力を加える崩れやすく、これにより塗布液の粘度が低下する。すなわち、塗布液に層状ケイ酸塩鉱物粒子が含まれると、静置状態では塗布液の粘度が高くなり、一定の圧力をかけた場合には塗布液の粘度が低くなる。 Here, the layered silicate mineral is preferably a clay mineral having a mica structure, a kaolinite structure, or a smectite structure. The layered silicate mineral particles tend to form a card house structure when the coating solution is left standing. When the layered silicate mineral particles form a card house structure, the viscosity of the coating solution is greatly increased. On the other hand, the card house structure is apt to collapse by applying a certain pressure, thereby reducing the viscosity of the coating solution. That is, when the layered silicate mineral particles are contained in the coating solution, the viscosity of the coating solution increases in a stationary state, and the viscosity of the coating solution decreases when a certain pressure is applied.
 このような層状ケイ酸塩鉱物の例には、天然または合成の、ヘクトライト、サポナイト、スチブンサイト、ハイデライト、モンモリロナイト、ノントライト、ベントナイト、ラポナイト等のスメクタイト属粘土鉱物や、Na型テトラシリシックフッ素雲母、Li型テトラシリシックフッ素雲母、Na型フッ素テニオライト、Li型フッ素テニオライト等の膨潤性雲母属粘土鉱物、白雲母、金雲母、フッ素金雲母、絹雲母、カリウム四ケイ素雲母等の非膨潤性雲母属粘土鉱物、およびバーミキュラライトやカオリナイト、またはこれらの混合物が含まれる。 Examples of such layered silicate minerals include natural or synthetic hectrite, saponite, stevensite, hydelite, montmorillonite, nontrinite, bentonite, laponite and other smectite clay minerals, and Na-type tetralithic fluoric mica. Non-swelling mica such as swellable mica genus clay minerals such as Li-type tetralithic fluorine mica, Na-type fluorine teniolite, Li-type fluorine teniolite, muscovite, phlogopite, fluorine phlogopite, sericite, potassium tetrasilicon mica Genus clay minerals, vermiculite and kaolinite, or mixtures thereof.
 粘土鉱物粒子の市販品の例には、ラポナイトXLG(英国、ラポート社製合成ヘクトライト類似物質)、ラポナイトRD(英国、ラポート社製合成ヘクトライト類似物質)、サーマビス(独国、ヘンケル社製合成ヘクトライト類似物質)、スメクトンSA-1(クニミネ工業(株)製サポナイト類似物質)、ベンゲル(ホージュン(株)販売の天然ベントナイト)、クニビアF(クニミネ工業(株)販売の天然モンモリロナイト)、ビーガム(米国、バンダービルト社製の天然ヘクトライト)、ダイモナイト(トピー工業(株)製の合成膨潤性雲母)、ミクロマイカ(コープケミカル(株)製の合成非膨潤性雲母)、ソマシフ(コープケミカル(株)製の合成膨潤性雲母)、SWN(コープケミカル(株)製の合成スメクタイト)、SWF(コープケミカル(株)製の合成スメクタイト)、M-XF((株)レプコ製の白雲母)、S-XF((株)レプコ製の金雲母)、PDM-800(トピー工業(株)製のフッ素金雲母)、セリサイトOC-100R(オーケム通商(株)製の絹雲母)、PDM-K(G)325(トピー工業(株)製のカリウム四ケイ素雲母)等が含まれる。 Examples of commercial products of clay mineral particles include Laponite XLG (synthetic hectorite analogue manufactured by LaPorte, UK), Laponite RD (Synthetic hectorite analogue produced by LaPorte, UK), Thermabis (Synthetic product, Henkel, Germany) Hectorite-like substance), smecton SA-1 (saponite-like substance manufactured by Kunimine Industry Co., Ltd.), Bengel (natural bentonite sold by Hojun Co., Ltd.), Kunivia F (natural montmorillonite sold by Kunimine Industry Co., Ltd.), bee gum ( Natural hectorite manufactured by Vanderbilt, USA, Daimonite (synthetic swellable mica manufactured by Topy Industries, Ltd.), Micromica (synthetic non-swellable mica, manufactured by Coop Chemical Co., Ltd.), Somasifu (Coop Chemical Co., Ltd.) ) Synthetic swelling mica), SWN (Synthetic smectite manufactured by Coop Chemical Co., Ltd.), SWF Synthetic smectite manufactured by Co-op Chemical Co., Ltd., M-XF (white mica manufactured by Repco Co., Ltd.), S-XF (metal mica manufactured by Repco Co., Ltd.), PDM-800 (manufactured by Topy Industries, Ltd.) Fluorine phlogopite mica), sericite OC-100R (sericite produced by Oakem Tsusho Co., Ltd.), PDM-K (G) 325 (potassium tetrasilicon mica produced by Topy Industries, Ltd.), and the like.
 粘土鉱物粒子の含有量は、塗布液の全質量に対して0.1~5質量%であることが好ましく、0.1~3質量%であることがより好ましい。粘土鉱物粒子の含有量が少ないと、塗布液の粘度が高まりにくく、白色顔料が沈降しやすくなる。一方、粘土鉱物粒子の含有量が過剰であると、塗布液の粘度が高くなり過ぎて、塗布液が塗布装置から均一に吐出されないおそれがある。 The content of clay mineral particles is preferably from 0.1 to 5% by mass, more preferably from 0.1 to 3% by mass, based on the total mass of the coating solution. When the content of clay mineral particles is small, the viscosity of the coating solution is difficult to increase, and the white pigment tends to settle. On the other hand, if the content of the clay mineral particles is excessive, the viscosity of the coating solution becomes too high, and the coating solution may not be discharged uniformly from the coating device.
 粘土鉱物粒子の表面は、塗布液での溶媒との相溶性を考慮して、アンモニウム塩等で修飾(表面処理)されていてもよい。 The surface of the clay mineral particles may be modified (surface treatment) with an ammonium salt or the like in consideration of compatibility with the solvent in the coating solution.
 無機粒子および粘土鉱物粒子の合計含有量は、塗布液の塗布安定性を高める観点などから、塗布液(または塗布液の固形分)の総質量に対して2質量%以下であることが好ましく、1.8質量%以下であることがより好ましい。 The total content of the inorganic particles and the clay mineral particles is preferably 2% by mass or less based on the total mass of the coating liquid (or the solid content of the coating liquid) from the viewpoint of improving the coating stability of the coating liquid. It is more preferable that it is 1.8 mass% or less.
 1-6.シランカップリング剤
 塗布液には、さらにシランカップリング剤が含まれてもよい。塗布液にシランカップリング剤が含まれると、得られる反射層と基板との密着性が高まり、LED装置の耐久性が向上する。
1-6. Silane coupling agent The coating solution may further contain a silane coupling agent. When the silane coupling agent is contained in the coating solution, the adhesion between the resulting reflective layer and the substrate is increased, and the durability of the LED device is improved.
 シランカップリング剤の例には、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシランの塩酸塩、3-ウレイドプロピルトリメトキシシラン、3-クロロプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、3-イソシアネートプロピルトリエトキシシラン等が含まれる。塗布液には、これらが一種のみで含まれてもよく、二種以上含まれてもよい。 Examples of silane coupling agents include vinyltrimethoxysilane, vinyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyl Methyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3 -Acryloxypropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, N-2- (aminoethyl) -3-A Nopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N-phenyl-3-aminopropyltriethoxysilane, N- (vinyl) Benzyl) -2-aminoethyl-3-aminopropyltrimethoxysilane hydrochloride, 3-ureidopropyltrimethoxysilane, 3-chloropropyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane Bis (triethoxysilylpropyl) tetrasulfide, 3-isocyanatopropyltriethoxysilane and the like. These coating solutions may contain only one kind or two or more kinds.
 塗布液に含まれるシランカップリング剤の量は、塗布液に含まれる溶媒(水を含む)以外の成分の総質量に対して0.5~10質量%であることが好ましく、1~7質量%であることが、より好ましい。シランカップリング剤が少なすぎると、得られる反射層と基板との密着性が十分に高まらず、多すぎると耐熱性が低下する恐れがある。 The amount of the silane coupling agent contained in the coating solution is preferably 0.5 to 10% by mass relative to the total mass of components other than the solvent (including water) contained in the coating solution. % Is more preferable. If the amount of the silane coupling agent is too small, the adhesion between the resulting reflective layer and the substrate is not sufficiently increased, and if it is too large, the heat resistance may be lowered.
 1-7.金属アルコキシドまたは金属キレート
 塗布液には、Si元素以外の金属元素を含む金属アルコキシドまたは金属キレートが含まれてもよい。金属アルコキシドまたは金属キレートは、反射層成膜時に、前述のアルコキシシラン化合物や、基板表面に存在する水酸基と、メタロキサン結合を形成する。当該メタロキサン結合は非常に強固であるため、塗布液に金属アルコキシドまたは金属キレートが含まれると、得られる反射層と基板との密着性が高まる。
1-7. Metal alkoxide or metal chelate The coating solution may contain a metal alkoxide or metal chelate containing a metal element other than Si element. The metal alkoxide or metal chelate forms a metalloxane bond with the aforementioned alkoxysilane compound or a hydroxyl group present on the substrate surface during the formation of the reflective layer. Since the metalloxane bond is very strong, when the coating liquid contains a metal alkoxide or a metal chelate, the adhesion between the resulting reflective layer and the substrate increases.
 また、金属アルコキシドまたは金属キレートの一部は、塗布液の硬化膜(反射層)中で、メタロキサン結合からなるナノサイズのクラスタを形成する。このクラスタの光触媒効果で、LED装置近傍に存在する金属腐食性の高い硫化ガス等を酸化し、腐食性の低い二酸化硫黄ガス等に変化させることが可能である。 Further, a part of the metal alkoxide or metal chelate forms a nano-sized cluster composed of a metalloxane bond in the cured film (reflective layer) of the coating solution. Due to the photocatalytic effect of this cluster, it is possible to oxidize a highly corrosive sulfide gas or the like existing in the vicinity of the LED device and change it to a sulfur dioxide gas or the like having a low corrosivity.
 金属アルコキシドまたは金属キレートに含まれる金属元素は、Si以外の4族または13族の金属元素であることが好ましく、以下の一般式(V)で表される化合物が好ましい。
  Mm+m-n   (V)
 一般式(V)中、Mは4族または13族の金属元素(Siを除く)を表し、mはMの価数(3または4)を表す。Xは加水分解性基を表し、nはX基の数(2以上4以下の整数)を表す。ただし、m≧nである。Yは1価の有機基を表す。
The metal element contained in the metal alkoxide or metal chelate is preferably a group 4 or group 13 metal element other than Si, and a compound represented by the following general formula (V) is preferable.
M m + X n Y mn (V)
In the general formula (V), M represents a group 4 or group 13 metal element (excluding Si), and m represents the valence of M (3 or 4). X represents a hydrolyzable group, and n represents the number of X groups (an integer of 2 or more and 4 or less). However, m ≧ n. Y represents a monovalent organic group.
 一般式(V)において、Mで表される4族または13族の金属元素は、アルミニウム、ジルコニウム、チタンであることが好ましく、ジルコニウムであることが特に好ましい。ジルコニウムのアルコキシドまたはキレートの硬化物は、一般的なLED素子の発光波長域(特に青色光(波長420~485nm)に吸収波長を有さない。つまり、当該硬化物には、LED素子からの光が吸収され難い。 In the general formula (V), the group 4 or group 13 metal element represented by M is preferably aluminum, zirconium, or titanium, and particularly preferably zirconium. A cured product of zirconium alkoxide or chelate does not have an absorption wavelength in the emission wavelength region of a general LED element (particularly blue light (wavelength 420 to 485 nm). That is, the cured product contains light from the LED element. Is difficult to absorb.
 一般式(V)において、Xで表される加水分解性基は、水で加水分解され、水酸基を生成する基でありうる。加水分解性基の好ましい例には、炭素数が1~5の低級アルコキシ基、アセトキシ基、ブタノキシム基、クロル基等が含まれる。一般式(V)において、Xで表される基は、全て同一の基であってもよく、異なる基であってもよい。 In the general formula (V), the hydrolyzable group represented by X may be a group that is hydrolyzed with water to form a hydroxyl group. Preferable examples of the hydrolyzable group include a lower alkoxy group having 1 to 5 carbon atoms, an acetoxy group, a butanoxime group, a chloro group and the like. In general formula (V), all the groups represented by X may be the same group or different groups.
 Xで表される加水分解性基は、反射層の成膜時に加水分解されて遊離する。そのためXで表される基から加水分解後に生成する化合物は、中性かつ軽沸であることが好ましい。そこで、Xで表される基は、炭素数1~5の低級アルコキシ基であることが好ましく、より好ましくはメトキシ基、またはエトキシ基である。 The hydrolyzable group represented by X is hydrolyzed and released during the formation of the reflective layer. Therefore, the compound produced after hydrolysis from the group represented by X is preferably neutral and light boiling. Therefore, the group represented by X is preferably a lower alkoxy group having 1 to 5 carbon atoms, more preferably a methoxy group or an ethoxy group.
 一般式(V)において、Yで表される1価の有機基は、一般的なシランカップリング剤に含まれる1価の有機基でありうる。具体的には、炭素数が1~1000、好ましくは500以下、より好ましくは100以下、さらに好ましくは40以下、特に好ましくは6以下である脂肪族基、脂環族基、芳香族基、脂環芳香族基でありうる。Yで表される有機基は、脂肪族基、脂環族基、芳香族基、及び脂環芳香族基が連結基を介して結合した基であってもよい。連結基は、O、N、S等の原子またはこれらを含む原子団であってもよい。 In the general formula (V), the monovalent organic group represented by Y may be a monovalent organic group contained in a general silane coupling agent. Specifically, the aliphatic group, alicyclic group, aromatic group, fatty acid having 1 to 1000 carbon atoms, preferably 500 or less, more preferably 100 or less, further preferably 40 or less, and particularly preferably 6 or less. It may be a ring aromatic group. The organic group represented by Y may be an aliphatic group, an alicyclic group, an aromatic group, or a group in which an alicyclic aromatic group is bonded via a linking group. The linking group may be an atom such as O, N, or S, or an atomic group containing these.
 Yで表される有機基は、置換基を有してもよい。置換基の例には、F、Cl、Br、I等のハロゲン原子;ビニル基、メタクリロキシ基、アクリロキシ基、スチリル基、メルカプト基、エポキシ基、エポキシシクロヘキシル基、グリシドキシ基、アミノ基、シアノ基、ニトロ基、スルホン酸基、カルボキシ基、ヒドロキシ基、アシル基、アルコキシ基、イミノ基、フェニル基等の有機基が含まれる。 The organic group represented by Y may have a substituent. Examples of the substituent include halogen atoms such as F, Cl, Br, and I; vinyl group, methacryloxy group, acryloxy group, styryl group, mercapto group, epoxy group, epoxycyclohexyl group, glycidoxy group, amino group, cyano group, Organic groups such as nitro group, sulfonic acid group, carboxy group, hydroxy group, acyl group, alkoxy group, imino group and phenyl group are included.
 一般式(V)で表されるアルミニウムの金属アルコキシドまたは金属キレートの具体例には、アルミニウムトリイソプロポキシド、アルミニウムトリn-ブトキシド、アルミニウムトリt-ブトシキド、アルミニウムトリエトキシド等が含まれる。 Specific examples of the metal alkoxide or metal chelate represented by the general formula (V) include aluminum triisopropoxide, aluminum tri-n-butoxide, aluminum tri-t-butoxide, aluminum triethoxide and the like.
 一般式(V)で表されるジルコニウムの金属アルコキシドまたは金属キレートの具体例には、ジルコニウムテトラメトキシド、ジルコニウムテトラエトキシド、ジルコニウムテトラn-プロポキシド、ジルコニウムテトラi-プロポキシド、ジルコニウムテトラn-ブトキシド、ジルコニウムテトラi-ブトキシド、ジルコニウムテトラt-ブトキシド、ジルコニウムジメタクリレートジブトキシド、ジブトキシジルコニウムビス(エチルアセトアセテート)等が含まれる。 Specific examples of the metal alkoxide or metal chelate of zirconium represented by the general formula (V) include zirconium tetramethoxide, zirconium tetraethoxide, zirconium tetra n-propoxide, zirconium tetra i-propoxide, zirconium tetra n- Examples include butoxide, zirconium tetra-i-butoxide, zirconium tetra-t-butoxide, zirconium dimethacrylate dibutoxide, dibutoxyzirconium bis (ethylacetoacetate) and the like.
 一般式(V)で表されるチタン元素の金属アルコキシドまたは金属キレートの具体例には、チタンテトライソプロポキシド、チタンテトラn-ブトキシド、チタンテトラi-ブトキシド、チタンメタクリレートトリイソプロポキシド、チタンテトラメトキシプロポキシド、チタンテトラn-プロポキシド、チタンテトラエトキシド、チタンラクテート、チタニウムビス(エチルヘキソキシ)ビス(2-エチル-3-ヒドロキシヘキソキシド)、チタンアセチルアセトネート等が含まれる。 Specific examples of the metal alkoxide or metal chelate of the titanium element represented by the general formula (V) include titanium tetraisopropoxide, titanium tetra n-butoxide, titanium tetra i-butoxide, titanium methacrylate triisopropoxide, titanium tetra Examples include methoxypropoxide, titanium tetra n-propoxide, titanium tetraethoxide, titanium lactate, titanium bis (ethylhexoxy) bis (2-ethyl-3-hydroxyhexoxide), titanium acetylacetonate and the like.
 ただし、上記で例示した金属アルコキシドまたは金属キレートは、入手容易な市販の有機金属アルコキシドまたは金属キレートの一部である。科学技術総合研究所発行の「カップリング剤最適利用技術」9章のカップリング剤及び関連製品一覧表に示される金属アルコキシドまたは金属キレートも、本発明に適用できる。 However, the metal alkoxides or metal chelates exemplified above are a part of commercially available organometallic alkoxides or metal chelates. Metal alkoxides or metal chelates shown in the list of coupling agents and related products in Chapter 9 “Optimum Utilization Technology of Coupling Agents” published by the National Institute of Science and Technology are also applicable to the present invention.
 塗布液に含まれる金属アルコキシドまたは金属キレートの量は、塗布液に含まれる溶媒(水を含む)以外の成分の総質量に対して1~10質量%であることが好ましく、2~7質量部であることがより好ましい。これらの含有量が、少なすぎると密着性向上効果等が得られず、多すぎると塗布液の保存性が低下する。 The amount of the metal alkoxide or metal chelate contained in the coating solution is preferably 1 to 10% by mass relative to the total mass of components other than the solvent (including water) contained in the coating solution, and 2 to 7 parts by mass It is more preferable that If the content is too small, the effect of improving the adhesion cannot be obtained, and if the content is too large, the storage stability of the coating solution decreases.
 1-8.その他の成分
 塗布液には、必要に応じて、上記の白色顔料、アルコキシシラン化合物、有機溶媒、無機粒子、粘土鉱物粒子、シランカップリング剤、金属アルコキシドまたは金属キレート以外の成分が含まれてもよい。
1-8. Other components The coating solution may contain components other than the white pigment, alkoxysilane compound, organic solvent, inorganic particles, clay mineral particles, silane coupling agent, metal alkoxide, or metal chelate as necessary. Good.
 1-9.塗布液の調製方法
 塗布液の調製方法は、白色顔料、アルコキシシラン化合物、有機溶媒、無機粒子、粘土鉱物粒子、シランカップリング剤等の原料を、一括して混合する方法であってもよく、複数の原料を予め混合して、後から混合液同士を混合する方法であってもよい。無機粒子や粘土鉱物粒子の増粘効果を高めるためには、無機粒子及び粘土鉱物粒子のいずれか一方、あるいは両方を、溶媒に分散させてから、残りの成分と混合することが好ましい。塗布液の調製方法の一例として、以下の方法が挙げられる。
1-9. Preparation method of coating solution The preparation method of the coating solution may be a method of mixing raw materials such as white pigments, alkoxysilane compounds, organic solvents, inorganic particles, clay mineral particles, silane coupling agents, A method of mixing a plurality of raw materials in advance and mixing the mixed liquids later may be used. In order to enhance the thickening effect of inorganic particles and clay mineral particles, it is preferable to disperse one or both of inorganic particles and clay mineral particles in a solvent and then mix with the remaining components. The following method is mentioned as an example of the preparation method of a coating liquid.
 2官能アルコキシシラン化合物、3官能アルコキシシラン化合物、及び4官能アルコキシシラン化合物を任意の比率で混合し、水、有機溶媒、触媒の存在下で重合させて、アルコキシシラン化合物(オリゴマー)を含む組成物を調製する。一方で、有機溶媒、無機粒子、粘土鉱物粒子、シランカップリング剤等を含む組成物を調製する。そして、アルコキシシラン化合物を含む組成物と、無機粒子等を含む組成物と、白色顔料とを十分に混合して、塗布液を得る。 A composition containing an alkoxysilane compound (oligomer) by mixing a bifunctional alkoxysilane compound, a trifunctional alkoxysilane compound, and a tetrafunctional alkoxysilane compound in an arbitrary ratio and polymerizing them in the presence of water, an organic solvent, and a catalyst. To prepare. On the other hand, a composition containing an organic solvent, inorganic particles, clay mineral particles, silane coupling agent and the like is prepared. And the composition containing an alkoxysilane compound, the composition containing an inorganic particle etc., and a white pigment are fully mixed, and a coating liquid is obtained.
 ここで、塗布液中の均一性を高めるために、塗布液の原料のすべて、または一部を、以下の装置で分散することが好ましい。また、白色顔料の分散性を高めるためには、白色顔料を少なくとも1回、以下の装置で分散することが好ましい。以下の装置で白色顔料を分散すると、白色顔料の凝集が低減され、より緻密で反射率の高い塗膜が得られる。 Here, in order to improve the uniformity in the coating liquid, it is preferable to disperse all or part of the raw material of the coating liquid with the following apparatus. Moreover, in order to improve the dispersibility of a white pigment, it is preferable to disperse | distribute a white pigment at least once with the following apparatuses. When the white pigment is dispersed with the following apparatus, aggregation of the white pigment is reduced, and a denser and highly reflective coating film is obtained.
 ・混合/分散装置
 混合液の撹拌、分散は、例えば、マグネチックスターラー、超音波分散装置、ホモジナイザー、撹拌ミル、ブレード混練撹拌装置、薄膜旋回型分散機、高圧衝撃式分散装置、自転公転ミキサーなどで行うことができる。
・ Mixing / dispersing device Mixing / dispersing of the mixed solution is, for example, a magnetic stirrer, an ultrasonic dispersing device, a homogenizer, a stirring mill, a blade kneading stirring device, a thin-film swirling type dispersing device, a high-pressure impact dispersing device, a rotation and revolution mixer, etc. Can be done.
 混合液の撹拌に用いられる撹拌装置としては公知のものを全て使用できる。例えば、ウルトラタラックス(IKAジャパン社製)、TKホモミクサー(プライミクス社製)、TKパイプラインホモミクサー(プライミクス社製)、TKフィルミックス(プライミクス社製)、クレアミックス(エム・テクニック社製)、クレアSS5(エム・テクニック社製)、キャビトロン(ユーロテック社製)、ファインフローミル(太平洋機工社製)、真空乳化攪拌機(日本精機製作所社製)のようなメディアレス撹拌機、ビスコミル(アイメックス製)、アペックスミル(寿工業社製)、スターミル(アシザワ、ファインテック社製)、DMPA・Sスーパーフロー(日本アイリッヒ社製)、エムピーミル(井上製作所社製)、スパイクミル(井上製作所社製)、マイティーミル(井上製作所社製)、SCミル(三井鉱山社製)などのメディア攪拌機等や圧力式ホモジナイザー(エスエムテー社製)、アルティマイザー(スギノマシン社製)、ナノマイザー(吉田機械社製)、NANO3000(美粒社製)などの高圧衝撃式分散装置が挙げられる。また、あわとり練太郎(シンキー社製)などの自転公転式ミキサーや超音波分散装置も好適に用いることが可能である。 All known devices can be used as the stirring device used for stirring the mixed solution. For example, Ultra Turrax (manufactured by IKA Japan), TK homomixer (manufactured by Primix), TK pipeline homomixer (manufactured by Primics), TK Philmix (manufactured by Primix), Claremix (manufactured by M Technique), Medialess stirrers such as Claire SS5 (made by M Technique), Cavitron (made by Eurotech), Fine Flow Mill (made by Taiheiyo Kiko), vacuum emulsifier stirrer (made by Nippon Seiki Seisakusho), Viscomill (made by IMEX) ), Apex Mill (manufactured by Kotobuki Kogyo Co., Ltd.), Star Mill (manufactured by Ashizawa, Finetech Co., Ltd.), DMPA / S Super Flow (manufactured by Eirich Japan), MP Mill (manufactured by Inoue Seisakusho), spike mill (manufactured by Inoue Seisakusho) Mighty mill (Inoue Seisakusho Co., Ltd.), SC mill (Mitsui Mining Co., Ltd.) Media agitator like and a pressure type homogenizer (such as manufactured by SMT Co., Ltd.), Ultimizer (Sugino Machine Ltd.), Nanomizer (manufactured by Yoshida Kikai), and a high-pressure impact type dispersing device such as NANO 3000 (manufactured by Bitsubusha). In addition, a rotating / revolving mixer such as Awatori Nertaro (manufactured by Shinky Corp.) or an ultrasonic dispersing device can be suitably used.
 1-10.塗布液の物性
 ・塗布液の粘度
 塗布液の振動式粘度計にて25℃で測定される粘度は、5mPa・s超2000mPa・s以下であることが好ましい。振動式粘度計の一例としては、VISCOMATE MODEL VM-10A(セコニック社製)が挙げられる。また上記値は、振動子を液体に浸漬してから、1分後の値とする。塗布液の粘度が5mPa・s超であれば、白色顔料が沈降し難い。一方、2000mPa・s以下であると、各種塗布装置からの塗布安定性が高まりやすい。
1-10. Physical Properties of Coating Solution Viscosity of Coating Solution The viscosity of the coating solution measured at 25 ° C. with a vibration viscometer is preferably more than 5 mPa · s and not more than 2000 mPa · s. As an example of the vibration type viscometer, VISCOMATE MODEL VM-10A (manufactured by Seconic Corporation) can be mentioned. The above value is a value one minute after the vibrator is immersed in the liquid. If the viscosity of the coating solution exceeds 5 mPa · s, the white pigment is difficult to settle. On the other hand, if it is 2000 mPa · s or less, the coating stability from various coating devices tends to increase.
 ・塗布液の体積比
 本発明では、塗布液を塗布した後、硬化させる際のクラックを防止する観点から、塗布液の硬化前後の体積変化は小さいことが好ましい。硬化前の塗布液の体積をA、塗布液を150℃で1時間硬化させて得られる硬化物の体積をBとしたとき、硬化前後の体積比B/Aが、下記式3の条件を満たすことが好ましい。
  0.2≦B/A≦0.7      (式3)
-Volume ratio of coating liquid In this invention, it is preferable that the volume change before and behind hardening of a coating liquid is small from a viewpoint of preventing the crack at the time of making it harden | cure after apply | coating a coating liquid. When the volume of the coating solution before curing is A and the volume of the cured product obtained by curing the coating solution at 150 ° C. for 1 hour is B, the volume ratio B / A before and after curing satisfies the condition of the following formula 3. It is preferable.
0.2 ≦ B / A ≦ 0.7 (Formula 3)
 B/Aが0.2未満であると、硬化による体積変化が大きいため、大きな応力が生じやすい。そのため、特に厚膜に塗布形成した際に、硬化時のクラックが生じやすい。B/Aが0.7超であると、塗布液の流動性が低下し、成膜時の吐出量の安定性が低下しやすい。より好ましいB/Aの範囲は、0.25≦B/A≦0.6であり、さらに好ましくは0.30≦B/A≦0.6でありうる。 If B / A is less than 0.2, the volume change due to curing is large, so that a large stress is likely to occur. For this reason, cracks at the time of curing tend to occur, particularly when a thick film is applied and formed. When B / A is more than 0.7, the fluidity of the coating liquid is lowered, and the stability of the ejection amount during film formation tends to be lowered. A more preferable range of B / A is 0.25 ≦ B / A ≦ 0.6, and further preferably 0.30 ≦ B / A ≦ 0.6.
 硬化前後の体積比B/Aは、以下の手順で測定することができる。
 1)塗布液の体積を、25℃雰囲気下、メスシリンダーで測定し、硬化前の体積Aとする。
 2)塗布液をテフロン(登録商標)基板上に塗布した後、該塗膜を150℃で1時間加熱硬化させた後、テフロン(登録商標)基板から剥離して硬化物を得る。得られた硬化物の重量を、25℃雰囲気下で測定する。さらに、得られた硬化物の比重を、アルキメデス法により25℃雰囲気下で測定する。そして、硬化物の重量とアルキメデス法により測定した比重とから、硬化物の体積Bを算出する。
 3)前記1)で測定された体積Aと、前記2)で算出された体積Bとから、体積比B/Aを算出する。
The volume ratio B / A before and after curing can be measured by the following procedure.
1) The volume of the coating solution is measured with a graduated cylinder in an atmosphere of 25 ° C., and is defined as volume A before curing.
2) After coating the coating solution on a Teflon (registered trademark) substrate, the coating film is heated and cured at 150 ° C. for 1 hour, and then peeled from the Teflon (registered trademark) substrate to obtain a cured product. The weight of the obtained cured product is measured in an atmosphere at 25 ° C. Furthermore, the specific gravity of the obtained cured product is measured in an atmosphere of 25 ° C. by Archimedes method. Then, the volume B of the cured product is calculated from the weight of the cured product and the specific gravity measured by the Archimedes method.
3) The volume ratio B / A is calculated from the volume A measured in 1) and the volume B calculated in 2).
 硬化前後の体積比は、主に、塗布液の溶媒含有比率によって調整されうる。硬化前後の体積変化を上記範囲とするためには、塗布液中の溶媒含有比率を小さくすること;具体的には、10質量%以上45質量%以下とすることが好ましい。 The volume ratio before and after curing can be adjusted mainly by the solvent content ratio of the coating solution. In order to make the volume change before and after curing within the above range, it is preferable to reduce the solvent content ratio in the coating solution; specifically, it is preferably 10% by mass or more and 45% by mass or less.
 2.LED装置
 前述の塗布液の硬化膜からなる反射層を有するLED装置100の概略断面図を図1に示し、上面図を図2に示す。図1は、図2のA-A線断面図に相当する。前述のように、LED装置100は、基板1と、基板1上に配置されたLED素子2と、基板1上のLED素子2の少なくとも周囲に配置された反射層21を有する。また、必要に応じて、LED素子の光の出射方向上に配置された波長変換層11をさらに有する。
2. LED Device FIG. 1 shows a schematic cross-sectional view of an LED device 100 having a reflective layer made of a cured film of the aforementioned coating solution, and FIG. FIG. 1 corresponds to a cross-sectional view taken along line AA in FIG. As described above, the LED device 100 includes the substrate 1, the LED element 2 disposed on the substrate 1, and the reflective layer 21 disposed at least around the LED element 2 on the substrate 1. Moreover, it further has the wavelength conversion layer 11 arrange | positioned on the light emission direction of an LED element as needed.
 本発明のLED装置100は、LED素子2の出射光等を、光取り出し面10A側に反射する反射層21を有する。したがって、本発明のLED装置100からの光取り出し効率が非常に高い。また、反射層21のバインダは、ポリシロキサンであるため、光や熱に強く、反射層21が劣化し難い。したがって、本発明のLED装置100によれば、長期間に亘って、高い光取り出し効率が維持される。 The LED device 100 of the present invention has a reflective layer 21 that reflects the emitted light of the LED element 2 and the like to the light extraction surface 10A side. Therefore, the light extraction efficiency from the LED device 100 of the present invention is very high. Further, since the binder of the reflective layer 21 is polysiloxane, it is resistant to light and heat, and the reflective layer 21 is unlikely to deteriorate. Therefore, according to the LED device 100 of the present invention, high light extraction efficiency is maintained over a long period of time.
 2-1.基板
 基板1は、絶縁性及び耐熱性を有することが好ましく、セラミック樹脂や耐熱性樹脂からなることが好ましい。耐熱性樹脂の例には、液晶ポリマー、ポリフェニレンスルフィド、芳香族ナイロン、エポキシ樹脂、硬質シリコーンレジン、ポリフタル酸アミド等が含まれる。
2-1. Substrate The substrate 1 preferably has insulating properties and heat resistance, and is preferably made of a ceramic resin or a heat resistant resin. Examples of the heat resistant resin include liquid crystal polymer, polyphenylene sulfide, aromatic nylon, epoxy resin, hard silicone resin, polyphthalic acid amide and the like.
 基板1には、無機フィラーが含まれていてもよい。無機フィラーは、酸化チタン、酸化亜鉛、アルミナ、シリカ、チタン酸バリウム、リン酸カルシウム、炭酸カルシウム、ホワイトカーボン、タルク、炭酸マグネシウム、窒化ホウ素、グラスファイバー等でありうる。 The substrate 1 may contain an inorganic filler. The inorganic filler can be titanium oxide, zinc oxide, alumina, silica, barium titanate, calcium phosphate, calcium carbonate, white carbon, talc, magnesium carbonate, boron nitride, glass fiber, and the like.
 基板1は、図1に示されるように、キャビティを有していてもよいが、平板状であってもよい。 The substrate 1 may have a cavity as shown in FIG. 1, but may have a flat plate shape.
 また、基板1には、金属からなる電極3が形成されており、当該電極3は、基板1の外部に配置される電源(図示せず)から、LED素子2に電気を供給する機能を有する。電極3の形状は特に制限されず、発光装置100の種類や用途等に合わせて適宜選択される。電極3を有する基板1の作製方法は特に制限されず、一般的には、所望の形状のリードフレームと、樹脂とを一体成型して得られる。 In addition, an electrode 3 made of metal is formed on the substrate 1, and the electrode 3 has a function of supplying electricity to the LED element 2 from a power source (not shown) arranged outside the substrate 1. . The shape of the electrode 3 is not particularly limited, and is appropriately selected according to the type and application of the light emitting device 100. The method for producing the substrate 1 having the electrodes 3 is not particularly limited, and is generally obtained by integrally molding a lead frame having a desired shape and a resin.
 2-2.LED素子
 LED素子2は、基板1に形成された電極3と電気的に接続されて、特定の波長の光を発する素子である。図1に示されるLED装置100では、LED素子2は、基板1の円錐台状のキャビティ(凹部)の底面1aに配置されている。
2-2. LED element The LED element 2 is an element that is electrically connected to the electrode 3 formed on the substrate 1 and emits light of a specific wavelength. In the LED device 100 shown in FIG. 1, the LED element 2 is disposed on the bottom surface 1 a of the truncated cone-shaped cavity (concave portion) of the substrate 1.
 LED素子2が出射する光の波長は特に制限されない。LED素子2は、例えば青色光(420nm~485nm程度の光)を発する素子であってもよく、紫外光を発する素子であってもよい。またさらに、緑色光や赤色光等を発する素子であってもよい。 The wavelength of light emitted from the LED element 2 is not particularly limited. The LED element 2 may be, for example, an element that emits blue light (light of about 420 nm to 485 nm) or an element that emits ultraviolet light. Furthermore, an element that emits green light, red light, or the like may be used.
 LED素子2の構成は、特に制限されない。LED素子2が、青色光を発する素子である場合、LED素子2は、n-GaN系化合物半導体層(クラッド層)と、InGaN系化合物半導体層(発光層)と、p-GaN系化合物半導体層(クラッド層)と、透明電極層との積層体等でありうる。 The configuration of the LED element 2 is not particularly limited. When the LED element 2 is an element that emits blue light, the LED element 2 includes an n-GaN compound semiconductor layer (cladding layer), an InGaN compound semiconductor layer (light emitting layer), and a p-GaN compound semiconductor layer. It may be a laminate of (clad layer) and a transparent electrode layer.
 また、LED素子2の形状は特に制限されず、例えば200~300μm×200~300μmの発光面を有するものでありうる。またLED素子2の高さは、通常50~200μm程度である。LED素子2は、上面だけでなく、側面や底面からも光が取り出されるものであってもよい。なお、図1に示されるLED装置100には、基板1に1つのLED素子2のみが配置されているが、基板1に複数のLED素子2が配置されてもよい。 Further, the shape of the LED element 2 is not particularly limited, and may have, for example, a light emitting surface of 200 to 300 μm × 200 to 300 μm. The height of the LED element 2 is usually about 50 to 200 μm. The LED element 2 may be one in which light is extracted not only from the top surface but also from the side surface and the bottom surface. In the LED device 100 shown in FIG. 1, only one LED element 2 is disposed on the substrate 1, but a plurality of LED elements 2 may be disposed on the substrate 1.
 LED素子2と前述の電極3との接続方法は特に制限されない。例えばLED素子2と電極3とが、図1に示されるように、金属ワイヤ4を介して接続されてもよい。また、LED素子2と電極3とが、突起電極(図示せず)を介して接続されてもよい。LED素子2と電極3とが、金属ワイヤ4を介して接続される態様をワイヤボンディング型という。一方、LED素子2と電極3とが突起電極を介して接続される態様をフリップチップボンディング型という。 The connection method between the LED element 2 and the electrode 3 is not particularly limited. For example, the LED element 2 and the electrode 3 may be connected via a metal wire 4 as shown in FIG. Moreover, the LED element 2 and the electrode 3 may be connected via a protruding electrode (not shown). A mode in which the LED element 2 and the electrode 3 are connected via the metal wire 4 is referred to as a wire bonding type. On the other hand, a mode in which the LED element 2 and the electrode 3 are connected via a protruding electrode is called a flip chip bonding type.
 2-3.反射層
 反射層21は、LED素子2からの出射光や、波長変換層11に含まれる蛍光体が発する蛍光を、LED装置100の光取り出し面10A側に反射する層である。反射層21が配設されることで、LED装置100の光取り出し面10Aから取り出される光量が増加する。当該反射層21は、前述の塗布液を塗布し、硬化させて得られる。
2-3. Reflective Layer The reflective layer 21 is a layer that reflects the emitted light from the LED element 2 and the fluorescence emitted by the phosphor contained in the wavelength conversion layer 11 to the light extraction surface 10 </ b> A side of the LED device 100. By providing the reflective layer 21, the amount of light extracted from the light extraction surface 10A of the LED device 100 increases. The reflective layer 21 is obtained by applying and curing the above-described coating solution.
 図1に示されるLED装置100では、反射層21が、LED素子2の配置領域を除く基板1上に配置されている。反射層21は、基板1の円錐台状のキャビティ(凹部)の底面1aから側面1bに連続して、すり鉢状に配置されている。反射層21は、上面視において、波長変換層11の外周に波長変換層11と同心円状のリング状に形成されている。 In the LED device 100 shown in FIG. 1, the reflective layer 21 is disposed on the substrate 1 excluding the region where the LED elements 2 are disposed. The reflective layer 21 is arranged in a mortar shape continuously from the bottom surface 1 a to the side surface 1 b of the truncated cone-shaped cavity (concave portion) of the substrate 1. The reflection layer 21 is formed in a ring shape concentric with the wavelength conversion layer 11 on the outer periphery of the wavelength conversion layer 11 in a top view.
 反射層21は、基板1の表面のうち、少なくともLED素子2の配置領域以外に形成される。LED素子2の配置領域とは、LED素子2の発光面、及びLED素子2と電極3との接続部をいう。つまり、反射層21は、LED素子2からの光の出射、及びLED素子2と電極3との接続を阻害しない領域に形成される。 The reflective layer 21 is formed on the surface of the substrate 1 at least outside the region where the LED elements 2 are arranged. The arrangement region of the LED element 2 refers to a light emitting surface of the LED element 2 and a connection portion between the LED element 2 and the electrode 3. That is, the reflective layer 21 is formed in a region that does not hinder the emission of light from the LED element 2 and the connection between the LED element 2 and the electrode 3.
 図1及び図2に示されるように、基板1がキャビティを有する場合、キャビティ内壁面1bにも、反射層21が形成されることが好ましい。反射層21がキャビティ内壁面1bに形成されると、波長変換層11表面に水平な方向に進む光を、反射層21で反射させて、取り出すことができるからである。 As shown in FIGS. 1 and 2, when the substrate 1 has a cavity, it is preferable that the reflective layer 21 is also formed on the inner wall surface 1b of the cavity. This is because when the reflective layer 21 is formed on the cavity inner wall surface 1b, the light traveling in the horizontal direction on the surface of the wavelength conversion layer 11 can be reflected by the reflective layer 21 and extracted.
 また、フリップチップボンディング型の発光装置100では、LED素子2と基板1との隙間に反射層21が形成されてもよい。 In the flip chip bonding type light emitting device 100, the reflective layer 21 may be formed in the gap between the LED element 2 and the substrate 1.
 反射層21の厚みは、5μm以上、好ましくは20μm以上、さらに好ましくは40μm以上、特に好ましくは60μm以上でありうる。反射層21の厚みが5μm未満であると、反射層21の光反射性が十分ではなく、光取り出し効率が十分でない場合がある。反射層21の厚みは、300μm以下、好ましくは250μm以下、より好ましくは200μm以下でありうる。反射層21の厚みが、300μmを超えると、反射層21にクラックが発生しやすい場合がある。 The thickness of the reflective layer 21 may be 5 μm or more, preferably 20 μm or more, more preferably 40 μm or more, and particularly preferably 60 μm or more. If the thickness of the reflective layer 21 is less than 5 μm, the light reflectivity of the reflective layer 21 may not be sufficient, and the light extraction efficiency may not be sufficient. The thickness of the reflective layer 21 may be 300 μm or less, preferably 250 μm or less, more preferably 200 μm or less. If the thickness of the reflective layer 21 exceeds 300 μm, cracks may easily occur in the reflective layer 21.
 反射層21の厚みは、LED素子2の発光面上に成膜された反射層21の最大厚みを意味する。反射層21の厚みは、レーザホロゲージで測定することができる。 The thickness of the reflective layer 21 means the maximum thickness of the reflective layer 21 formed on the light emitting surface of the LED element 2. The thickness of the reflective layer 21 can be measured with a laser holo gauge.
 反射層21は、本発明の塗布液の塗膜の硬化物でありうる。本発明の塗布液は、硬化による体積変化が少なく、かつ4官能シラン化合物の含有割合も少ないため、硬化時のクラックの発生が良好に抑制されうる。また、本発明の塗布液は溶媒含有比率が少ないため、得られる硬化物は均質かつ高い密度を有しうる。これらの結果、反射層21は高い反射率を有しうる。 The reflective layer 21 may be a cured product of a coating film of the coating liquid of the present invention. Since the coating liquid of the present invention has a small volume change due to curing and a small content of the tetrafunctional silane compound, the occurrence of cracks during curing can be satisfactorily suppressed. Moreover, since the coating liquid of this invention has few solvent content ratios, the hardened | cured material obtained can have a homogeneous and high density. As a result, the reflective layer 21 can have a high reflectance.
 2-4.波長変換層
 波長変換層11は、蛍光体粒子及びバインダが含まれる。蛍光体粒子はLED素子2が出射する光(励起光)を受けて、蛍光を発する。励起光と蛍光とが混ざることで、LED装置100からの光の色が所望の色となる。例えば、LED素子2からの光が青色であり、波長変換層11に含まれる蛍光体が発する蛍光が黄色であると、LED装置100からの光が白色となる。
2-4. Wavelength Conversion Layer The wavelength conversion layer 11 includes phosphor particles and a binder. The phosphor particles receive light (excitation light) emitted from the LED element 2 and emit fluorescence. By mixing the excitation light and the fluorescence, the color of the light from the LED device 100 becomes a desired color. For example, when the light from the LED element 2 is blue and the fluorescence emitted from the phosphor included in the wavelength conversion layer 11 is yellow, the light from the LED device 100 is white.
 波長変換層11は、LED素子2を被覆すればよく、例えば図1に示されるように、LED素子2とともに、反射層21を被覆してもよい。 The wavelength conversion layer 11 may cover the LED element 2. For example, as shown in FIG. 1, the wavelength conversion layer 11 may cover the reflective layer 21 together with the LED element 2.
 波長変換層11に含まれる蛍光体粒子は、LED素子2から出射する光により励起されて、LED素子2からの出射光と異なる波長の蛍光を発するものであればよい。例えば、黄色の蛍光を発する蛍光体粒子の例には、YAG(イットリウム・アルミニウム・ガーネット)蛍光体等がある。YAG蛍光体は、青色LED素子から出射される青色光(波長420nm~485nm)を受けて、黄色の蛍光(波長550nm~650nm)を発する。 The phosphor particles contained in the wavelength conversion layer 11 may be anything that is excited by the light emitted from the LED element 2 and emits fluorescence having a wavelength different from that of the emitted light from the LED element 2. For example, examples of phosphor particles that emit yellow fluorescence include YAG (yttrium, aluminum, garnet) phosphors. The YAG phosphor receives blue light (wavelength 420 nm to 485 nm) emitted from the blue LED element, and emits yellow fluorescence (wavelength 550 nm to 650 nm).
 蛍光体粒子は、例えば1)所定の組成を有する混合原料に、フラックス(フッ化アンモニウム等のフッ化物)を適量混合して加圧し、これを成形体とする。2)得られた成形体を坩堝に詰め、空気中で1350~1450℃の温度範囲で、2~5時間焼成し、焼結体とすることで得られる。 The phosphor particles are, for example, 1) An appropriate amount of flux (fluoride such as ammonium fluoride) is mixed with a mixed raw material having a predetermined composition, and pressed to form a molded body. 2) The obtained molded body is packed in a crucible and fired in air at a temperature range of 1350 to 1450 ° C. for 2 to 5 hours to obtain a sintered body.
 所定の組成を有する混合原料は、Y、Gd、Ce、Sm、Al、La、Ga等の酸化物、または高温で容易に酸化物となる化合物を、化学両論比で十分に混合して得られる。また、所定の組成を有する混合原料は、1)Y、Gd、Ce、Smの希土類元素を化学両論比で酸に溶解した溶液と、シュウ酸とを混合し、共沈酸化物を得る。2)この共沈酸化物と、酸化アルミニウム、または酸化ガリウムとを混合しても得られる。 A mixed raw material having a predetermined composition is obtained by sufficiently mixing oxides such as Y, Gd, Ce, Sm, Al, La, and Ga, or compounds that easily become oxides at high temperatures in a stoichiometric ratio. . Moreover, the mixed raw material which has a predetermined composition mixes the solution which dissolved 1) the rare earth elements of Y, Gd, Ce, and Sm in the acid in stoichiometric ratio, and oxalic acid, and obtains a coprecipitation oxide. 2) It can also be obtained by mixing this coprecipitated oxide with aluminum oxide or gallium oxide.
 蛍光体の種類は、YAG蛍光体に限定されるものではなく、例えばCeを含まない非ガーネット系蛍光体等、他の蛍光体であってもよい。 The kind of the phosphor is not limited to the YAG phosphor, and may be another phosphor such as a non-garnet phosphor that does not contain Ce.
 蛍光体粒子の平均粒径は1μm~50μmであることが好ましく、10μm以下であることがより好ましい。蛍光体粒子の粒径が大きいほど発光効率(波長変換効率)が高くなる。一方、蛍光体粒子の粒径が大きすぎると、蛍光体粒子とバインダとの界面に生じる隙間が大きくなる。これにより、波長変換層の硬化膜の強度が低下しやすい。蛍光体粒子の平均粒径は、レーザー回折式粒度分布計で測定されるD50の値をいう。レーザー回折式粒度分布測定装置の例には、島津製作所製のレーザー回折式粒度分布測定装置等がある。 The average particle diameter of the phosphor particles is preferably 1 μm to 50 μm, and more preferably 10 μm or less. The larger the particle size of the phosphor particles, the higher the light emission efficiency (wavelength conversion efficiency). On the other hand, when the particle diameter of the phosphor particles is too large, a gap generated at the interface between the phosphor particles and the binder becomes large. Thereby, the intensity | strength of the cured film of a wavelength conversion layer tends to fall. The average particle diameter of the phosphor particles refers to the value of D50 measured with a laser diffraction particle size distribution meter. Examples of the laser diffraction particle size distribution measuring device include a laser diffraction particle size distribution measuring device manufactured by Shimadzu Corporation.
 波長変換層11に含まれるバインダは、透明樹脂または透光性セラミックでありうる。透明樹脂は、例えばシリコーン樹脂及びエポキシ樹脂等でありうる。バインダが透明樹脂である場合、波長変換層11の厚みは25μm~5mm程度であることが好ましい。波長変換層11の厚みが厚すぎると、蛍光体粒子の濃度が過剰に低くなり、蛍光体粒子が均一に分散されない場合がある。波長変換層11の厚みは、LED素子2の発光面上に成膜された波長変換層11の最大厚みを意味する。波長変換層11の厚みは、レーザホロゲージで測定することができる。また、バインダが透明樹脂である場合、波長変換層11中に含まれる蛍光体粒子の量は、一般には5~15質量%である。 The binder contained in the wavelength conversion layer 11 can be a transparent resin or a translucent ceramic. The transparent resin can be, for example, a silicone resin and an epoxy resin. When the binder is a transparent resin, the thickness of the wavelength conversion layer 11 is preferably about 25 μm to 5 mm. If the wavelength conversion layer 11 is too thick, the concentration of the phosphor particles becomes excessively low, and the phosphor particles may not be uniformly dispersed. The thickness of the wavelength conversion layer 11 means the maximum thickness of the wavelength conversion layer 11 formed on the light emitting surface of the LED element 2. The thickness of the wavelength conversion layer 11 can be measured with a laser holo gauge. When the binder is a transparent resin, the amount of phosphor particles contained in the wavelength conversion layer 11 is generally 5 to 15% by mass.
 一方、透光性セラミックは、反射層に含まれるポリシロキサンと同様でありうる。バインダがポリシロキサンである場合、波長変換層11の厚みは5~200μmであることが好ましい。バインダがポリシロキサンである場合に、波長変換層11の厚みが過剰に厚いと、波長変化層11にクラック等が生じやすくなる。バインダがポリシロキサンである場合も、波長変換層11の厚みは、LED素子2の発光面上に成膜された波長変換層11の最大厚みを意味する。波長変換層11の厚みは、レーザホロゲージで測定することができる。 On the other hand, the translucent ceramic may be the same as the polysiloxane contained in the reflective layer. When the binder is polysiloxane, the thickness of the wavelength conversion layer 11 is preferably 5 to 200 μm. When the binder is polysiloxane and the wavelength conversion layer 11 is excessively thick, cracks or the like are likely to occur in the wavelength change layer 11. Even when the binder is polysiloxane, the thickness of the wavelength conversion layer 11 means the maximum thickness of the wavelength conversion layer 11 formed on the light emitting surface of the LED element 2. The thickness of the wavelength conversion layer 11 can be measured with a laser holo gauge.
 また、バインダがポリシロキサンである場合、波長変換層11に含まれる蛍光体粒子の量は60~95質量%であることが好ましい。波長変換層11に含まれる蛍光体粒子の濃度は高いほど好ましい。蛍光体粒子の濃度が高いと、波長変換層11の強度が高まりやすい。ただし、透光性セラミックの含有比率が少な過ぎると、蛍光体粒子を十分に保持できない場合がある。 Further, when the binder is polysiloxane, the amount of phosphor particles contained in the wavelength conversion layer 11 is preferably 60 to 95% by mass. The higher the concentration of the phosphor particles contained in the wavelength conversion layer 11, the better. If the concentration of the phosphor particles is high, the strength of the wavelength conversion layer 11 tends to increase. However, if the content ratio of the translucent ceramic is too small, the phosphor particles may not be sufficiently retained.
 図1では、波長変換層がLED素子と接するように配置された例を示したが、これに限定されず、波長変換層はLED素子と接していなくてもよい。即ち、波長変換層は、LED素子の光の出射方向上に配置されていればよく;波長変換層とLED素子との間には空間が形成されたり、他の層が配置されたりしてもよい。他の層の例には、前述の反射層に含まれるポリシロキサンなどをバインダとして含む透光層や封止層でありうる。 FIG. 1 shows an example in which the wavelength conversion layer is disposed so as to be in contact with the LED element, but the present invention is not limited to this, and the wavelength conversion layer may not be in contact with the LED element. In other words, the wavelength conversion layer only needs to be arranged in the light emitting direction of the LED element; even if a space is formed between the wavelength conversion layer and the LED element or other layers are arranged. Good. Examples of the other layers may be a light-transmitting layer or a sealing layer containing polysiloxane or the like contained in the above-described reflective layer as a binder.
 3.LED装置の製造方法
 前述のLED装置は、以下の3つ工程を経て製造することができる。
 (1)LED素子が実装された基板を準備する工程
 (2)LED素子が配置された基板のLED素子の少なくとも周囲に、前述の塗布液を塗布する工程
 (3)基板上に塗布した塗布液を硬化させて、反射層を形成する工程
3. Manufacturing Method of LED Device The aforementioned LED device can be manufactured through the following three steps.
(1) The process of preparing the board | substrate with which the LED element was mounted (2) The process of apply | coating the above-mentioned coating liquid to at least circumference | surroundings of the LED element of the board | substrate with which the LED element was arrange | positioned (3) The coating liquid apply | coated on the board | substrate The process of forming a reflective layer by curing
 LED装置の製造方法には、必要に応じて(4)反射層上に、蛍光体粒子を含む波長変換層を形成する工程がさらに含まれてもよい。 The LED device manufacturing method may further include (4) a step of forming a wavelength conversion layer containing phosphor particles on the reflective layer as necessary.
 (1)LED素子準備工程
 LED素子準備工程では、LED素子と電極とが接続された基板を準備する。例えば前述の電極を有する基板を準備し、当該基板にLED素子を固定し、基板の電極と、LED素子のカソード電極及びアノード電極とを接続する工程でありうる。LED素子と電極との接続方法や、LED素子を基板に固定する方法は特に制限されず、従来公知の方法と同様の方法でありうる。
(1) LED element preparation process In an LED element preparation process, the board | substrate with which the LED element and the electrode were connected is prepared. For example, it may be a step of preparing a substrate having the above-described electrodes, fixing the LED element to the substrate, and connecting the electrode of the substrate to the cathode electrode and the anode electrode of the LED element. The method for connecting the LED element and the electrode and the method for fixing the LED element to the substrate are not particularly limited, and may be the same as a conventionally known method.
 (2)塗布液塗布工程
 塗布液塗布工程は、前述の塗布液を、基板上のLED素子の少なくとも周囲の領域、つまり反射層を形成する領域に塗布液を塗布する工程である。本発明の塗布液は、溶媒の含有比率が少なく、比較的高粘度である。従って、少ない塗布回数で、一定以上の膜厚の塗膜を形成することができる。例えば、2回以下、好ましくは1回の塗布で、硬化後の厚みが40μm以上の塗膜を形成できる。
(2) Coating liquid coating process The coating liquid coating process is a process in which the coating liquid is applied to at least the surrounding area of the LED element on the substrate, that is, the area where the reflective layer is formed. The coating liquid of the present invention has a low solvent content and a relatively high viscosity. Accordingly, it is possible to form a coating film having a certain thickness or more with a small number of coatings. For example, a coating film having a thickness after curing of 40 μm or more can be formed by application twice or less, preferably once.
 塗布液を塗布する方法は、所望の領域に塗布液を塗布可能な方法であれば特に制限されず、ブレード塗布、スピンコート塗布、ディスペンサー塗布、スプレー塗布、インクジェット法による塗布など、公知の塗布方法でありうる。なかでも、高粘度の塗布液でも安定して塗布できることから、ディスペンサー塗布が好ましい。 The method for applying the coating solution is not particularly limited as long as it is a method capable of applying the coating solution to a desired region, and known coating methods such as blade coating, spin coating coating, dispenser coating, spray coating, and inkjet method coating. It can be. Of these, dispenser coating is preferred because a highly viscous coating solution can be stably coated.
 (3)塗布液硬化工程
 塗布液硬化工程は、基板上に塗布した塗布液を加熱硬化させて反射層を形成する工程でありうる。塗布液硬化工程では、塗布液中の溶媒を除去すると共に、アルコキシシラン化合物を加水分解させて、重縮合させる。
(3) Coating solution curing step The coating solution curing step may be a step of forming a reflective layer by heating and curing a coating solution coated on a substrate. In the coating solution curing step, the solvent in the coating solution is removed and the alkoxysilane compound is hydrolyzed and polycondensed.
 塗布液を硬化させる際の温度は、20~200℃であることが好ましく、より好ましくは25~150℃である。加熱温度が20℃未満であると、塗膜中の溶媒が十分に揮発しない可能性がある。加熱温度が100℃未満であると、アルコキシシラン化合物の重合が十分に行われないことがありうる。 The temperature at which the coating solution is cured is preferably 20 to 200 ° C., more preferably 25 to 150 ° C. If the heating temperature is less than 20 ° C, the solvent in the coating film may not be sufficiently evaporated. When the heating temperature is less than 100 ° C., the alkoxysilane compound may not be sufficiently polymerized.
 塗布液は、溶媒含有比率が少なく、硬化前後の体積変化が少ないことから、硬化時に塗膜に生じる応力を少なくしうる。また、塗布液に含まれる4官能シラン化合物の割合が少なく、硬化物の硬度が高くなりすぎないことから、塗膜に生じる応力を緩和しうる。それらの結果、硬化時のクラックの発生を良好に抑制できる。 Since the coating solution has a small solvent content ratio and a small volume change before and after curing, the stress generated in the coating film during curing can be reduced. Moreover, since the ratio of the tetrafunctional silane compound contained in the coating liquid is small and the hardness of the cured product does not become too high, the stress generated in the coating film can be relaxed. As a result, the occurrence of cracks during curing can be satisfactorily suppressed.
 (4)波長変換層形成工程
 波長変換層形成工程は、蛍光体粒子を含む波長変換層用組成物を、LED素子を覆うように塗布し、硬化させる工程でありうる。波長変換層用組成物には、蛍光体粒子と、バインダ成分が含まれる。
(4) Wavelength conversion layer formation process A wavelength conversion layer formation process may be a process of apply | coating and hardening the composition for wavelength conversion layers containing fluorescent substance particle so that an LED element may be covered. The composition for wavelength conversion layer contains phosphor particles and a binder component.
 バインダ成分は、前述の波長変換層に含まれる透明樹脂またはその前駆体、もしくはポリシロキサン前駆体(アルコキシシラン化合物)でありうる。また、波長変換層用組成物には、必要に応じて溶媒が含まれる。バインダ成分が前述の透明樹脂またはその前駆体である場合、溶媒はトルエン、キシレンなどの炭化水素類;アセトン、メチルエチルケトンなどのケトン類;ジエチルエーテル、テトラヒドロフランなどのエーテル類、プロピレングリコールモノメチルエーテルアセテート、エチルアセテートなどのエステル類等でありうる。一方、バインダ成分がアルコキシシラン化合物である場合、溶媒は前述の塗布液に含まれる有機溶媒と同様でありうる。 The binder component can be a transparent resin contained in the wavelength conversion layer or a precursor thereof, or a polysiloxane precursor (alkoxysilane compound). Moreover, a solvent is contained in the composition for wavelength conversion layers as needed. When the binder component is the aforementioned transparent resin or a precursor thereof, the solvent is a hydrocarbon such as toluene or xylene; a ketone such as acetone or methyl ethyl ketone; an ether such as diethyl ether or tetrahydrofuran; propylene glycol monomethyl ether acetate, ethyl It may be an ester such as acetate. On the other hand, when the binder component is an alkoxysilane compound, the solvent can be the same as the organic solvent contained in the coating solution.
 また、波長変換層用組成物の混合は、例えば、撹拌ミル、ブレード混練撹拌装置、薄膜旋回型分散機等で行うことができる。撹拌条件を調整することで、波長変換層用組成物における蛍光体粒子の沈降が抑制される。 The mixing of the composition for wavelength conversion layer can be performed, for example, with a stirring mill, a blade kneading stirring device, a thin-film swirling disperser, or the like. By adjusting the stirring conditions, the precipitation of the phosphor particles in the wavelength conversion layer composition is suppressed.
 波長変換層用組成物の塗布方法は、バインダの種類等により適宜選択され、例えばディスペンサー塗布やスプレー塗布等でありうる。また、波長変換層用組成物の塗布後、これを硬化させる。波長変換層用組成物の硬化方法や硬化条件は、樹脂の種類により適宜選択される。硬化方法の一例として、加熱硬化が挙げられる。 The method for applying the composition for wavelength conversion layer is appropriately selected depending on the type of binder, and can be, for example, dispenser application or spray application. Moreover, this is hardened after application | coating of the composition for wavelength conversion layers. The curing method and curing conditions of the wavelength conversion layer composition are appropriately selected depending on the type of resin. An example of the curing method is heat curing.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
 1.シラン化合物溶液の調製
 <シラン化合物溶液1>
 テトラメトキシシラン19.5質量%(シラン化合物全体に対して76.0モル%)、メチルトリメトキシシラン5.5質量%(シラン化合物全体に対して24.0モル%)、メタノール60質量%、水14.99質量%、および硝酸0.01質量%を混合して、23℃で3時間撹拌した後、26℃で3日間撹拌しながら反応させ、ポリシロキサンオリゴマーを含有するシラン化合物溶液1を得た。
1. Preparation of Silane Compound Solution <Silane Compound Solution 1>
19.5 mass% of tetramethoxysilane (76.0 mol% with respect to the entire silane compound), 5.5 mass% of methyltrimethoxysilane (24.0 mol% with respect to the entire silane compound), 60 mass% of methanol, 14.99% by mass of water and 0.01% by mass of nitric acid were mixed and stirred at 23 ° C. for 3 hours, and then reacted at 26 ° C. with stirring for 3 days to obtain a silane compound solution 1 containing a polysiloxane oligomer. Obtained.
 <シラン化合物溶液2~11、14~20>
 表1に示される組成に変更した以外はシラン化合物溶液1と同様にしてシラン化合物溶液2~11および14~20を得た。
<Silane compound solutions 2-11, 14-20>
Silane compound solutions 2 to 11 and 14 to 20 were obtained in the same manner as silane compound solution 1 except that the composition was changed to the composition shown in Table 1.
 <シラン化合物溶液12>
 テトラメトキシシラン15.5質量%と、メチルトリメトキシシラン9.5質量%とメタノール60質量%と水14.99質量%と硝酸0.01質量%とを混合して、シラン化合物溶液12を得た。
<Silane compound solution 12>
A silane compound solution 12 is obtained by mixing 15.5% by mass of tetramethoxysilane, 9.5% by mass of methyltrimethoxysilane, 60% by mass of methanol, 14.99% by mass of water and 0.01% by mass of nitric acid. It was.
 <シラン化合物溶液13>
 エチルトリメトキシシラン0.1molに水、希硝酸を加え、アルコキシド:水:希硝酸のモル比が1:3:0.002となるように調製した。この溶液を、密閉容器中にて20℃で3時間撹拌した後、さらに60℃で48時間熟成させて、加水分解反応および重縮合反応を進行させた。反応によって生成したメタノールに富む上相を除去し、60℃で3時間乾燥させることにより、シラン化合物溶液13を得た。
<Silane compound solution 13>
Water and dilute nitric acid were added to 0.1 mol of ethyltrimethoxysilane to prepare a molar ratio of alkoxide: water: dilute nitric acid of 1: 3: 0.002. This solution was stirred in a sealed container at 20 ° C. for 3 hours, and then further aged at 60 ° C. for 48 hours to cause hydrolysis and polycondensation reactions to proceed. The upper phase rich in methanol produced by the reaction was removed and dried at 60 ° C. for 3 hours to obtain a silane compound solution 13.
 得られたシラン化合物溶液中のポリシロキサンオリゴマーの重量平均分子量と、固体Si-NMRの測定を、以下の方法で行った。 The weight average molecular weight of the polysiloxane oligomer in the obtained silane compound solution and measurement of solid Si-NMR were performed by the following methods.
 (ポリシロキサンオリゴマーの重量平均分子量)
 得られたシラン化合物溶液中のポリシロキサンオリゴマーの重量平均分子量は、GPCによりポリスチレン換算の重量平均分子量を測定した。
(Weight average molecular weight of polysiloxane oligomer)
The weight average molecular weight of the polysiloxane oligomer in the obtained silane compound solution was measured by GPC using polystyrene equivalent weight average molecular weight.
 (固体Si-NMRの測定)
 得られたシラン化合物溶液を150℃で硬化させた固体を試料として、固体Si-NMRの測定を行った。そして、Q成分に対応するピークと、T成分に対応するピークの面積比から、Q成分とT成分の比R4/R3を求めた。さらに、D成分に対応するピークの面積から、D成分の量R2を求めた。
(Measurement of solid Si-NMR)
Solid Si-NMR measurement was performed using a solid obtained by curing the obtained silane compound solution at 150 ° C. as a sample. Then, the ratio R4 / R3 of the Q component and the T component was obtained from the area ratio of the peak corresponding to the Q component and the peak corresponding to the T component. Further, the amount R2 of the D component was determined from the area of the peak corresponding to the D component.
 得られたシラン化合物溶液1~20の組成を表1に示す。
Figure JPOXMLDOC01-appb-T000002
The compositions of the resulting silane compound solutions 1 to 20 are shown in Table 1.
Figure JPOXMLDOC01-appb-T000002
 2.調整液の調製
 <調整液1~24の調製>
 表2に示される組成比で各成分を混合して、調整液1~24を得た。調整液の調製に用いた各成分は以下の通りである。
2. Preparation of adjustment liquid <Preparation of adjustment liquids 1 to 24>
Each component was mixed at the composition ratio shown in Table 2 to obtain Adjustment Solutions 1 to 24. Each component used for preparation of the adjustment liquid is as follows.
 (溶媒)
 EG:エチレングリコール
 PG:プロピレングリコール
 BD:1,3-ブタンジオール
 IPA:イソプロピルアルコール
 EtOH:エタノール
(solvent)
EG: ethylene glycol PG: propylene glycol BD: 1,3-butanediol IPA: isopropyl alcohol EtOH: ethanol
 (無機粒子1)
 サイリシア470:シリカ(サイリシア470、富士シリシア化学製)平均粒径14μm
 SP-1:シリカ(マイクロビードSP-1、日揮触媒化成製)平均粒径5μm
 VM2270:シリカ(VM-2270、ダウコーニング製)平均粒径5~15μm
 SS-50F:シリカ(ニップシールSS-50F、東ソー・シリカ製)平均粒径1.2μm
 Alu-C:アルミナ(AEROXIDE Alu-C、日本アエロジル製)1次粒径13nm
 A300:シリカ(日本アエロジル(株)製)平均1次粒子径:7nm
 RX300:シリカ(日本アエロジル(株)製)平均1次粒子径:7nm
 F3:シリカ(ハイシリカF3、ニッチツ社製)平均粒径:3μm
(Inorganic particles 1)
Silicia 470: Silica (Silicia 470, manufactured by Fuji Silysia Chemical) average particle size of 14 μm
SP-1: Silica (Microbead SP-1, manufactured by JGC Catalysts & Chemicals) average particle size of 5 μm
VM2270: Silica (VM-2270, manufactured by Dow Corning) average particle size of 5 to 15 μm
SS-50F: Silica (Nip seal SS-50F, manufactured by Tosoh Silica) Average particle size 1.2 μm
Alu-C: Alumina (AEROXIDE Alu-C, Nippon Aerosil) primary particle size 13nm
A300: Silica (Nippon Aerosil Co., Ltd.) average primary particle size: 7 nm
RX300: Silica (manufactured by Nippon Aerosil Co., Ltd.) Average primary particle size: 7 nm
F3: Silica (high silica F3, manufactured by Nichetsu) Average particle diameter: 3 μm
 (無機粒子2)
 ZR-210:ZrO粒子(TECNADIS-Zr-210、TECNAN社製)平均粒径10~15nm
 Ti-210:TiO粒子(TECNADIS-TI-210、TECNAN社製)平均粒径10~15nm
(Inorganic particles 2)
ZR-210: ZrO 2 particles (TECNADIS-Zr-210, manufactured by TECNAN) Average particle size: 10 to 15 nm
Ti-210: TiO 2 particles (TECNADIS-TI-210, manufactured by TECNAN) average particle diameter of 10 to 15 nm
 (層状粘土鉱物)
 MK-100:合成雲母(ミクロマイカMK-100、コープケミカル製)
 ME-100:合成雲母(ソマシフME-100、コープケミカル製)
 SWN:スメクタイト(ルーセンタイトSWN、コープケミカル社製)
 SPN:スメクタイト(ルーセンタイトSPN、コープケミカル社製)
 クニピアF:モンモリロナイト(クニピアF、クニミネ工業製)
 FSE:合成雲母(FSE、三信鉱工製)
 SA-1:サポナイト類似物質(スメクトンSA-1、クニミネ工業社製)
 HVP:天然ベントナイト(エスベンNE、ホージュン社製)
 NE:ベントナイト(ベンゲルHVP、ホージュン社製)
 イモゴライト
(Layered clay mineral)
MK-100: Synthetic mica (Micromica MK-100, manufactured by Corp Chemical)
ME-100: Synthetic mica (Somasif ME-100, manufactured by Corp Chemical)
SWN: Smectite (Lucentite SWN, manufactured by Corp Chemical)
SPN: Smectite (Lucentite SPN, manufactured by Corp Chemical)
Kunipia F: Montmorillonite (Kunipia F, manufactured by Kunimine Industries)
FSE: Synthetic mica (FSE, manufactured by Sanshin Mining Co., Ltd.)
SA-1: Saponite-like substance (Smecton SA-1, manufactured by Kunimine Industries)
HVP: Natural bentonite (Esven NE, manufactured by Hojun Co.)
NE: Bentonite (Bengel HVP, manufactured by Hojun Co.)
Imogolite
 (シランカップリング剤)
 KBM-403:3-グリシドキシプロピルトリメトキシシラン(KBM-403、信越シリコーン製)
 KBM-903:3-アミノプロピルトリメトキシシラン(KBM-903、信越シリコーン製)
 KBM-802:3-メルカプトプロピルメチルジメトキシシラン(KBM-802、信越シリコーン製)
 KBE-846:ビス(トリエトキシシリルプロピル)テトラスルフィド(KBE-846、信越シリコーン製)
Figure JPOXMLDOC01-appb-T000003
(Silane coupling agent)
KBM-403: 3-glycidoxypropyltrimethoxysilane (KBM-403, manufactured by Shin-Etsu Silicone)
KBM-903: 3-aminopropyltrimethoxysilane (KBM-903, manufactured by Shin-Etsu Silicone)
KBM-802: 3-mercaptopropylmethyldimethoxysilane (KBM-802, manufactured by Shin-Etsu Silicone)
KBE-846: Bis (triethoxysilylpropyl) tetrasulfide (KBE-846, manufactured by Shin-Etsu Silicone)
Figure JPOXMLDOC01-appb-T000003
 3.塗布液の調製および評価
 [実施例1~70、および比較例1~10]
 表3~6に示される白色顔料、シラン化合物溶液および調整液を、表3~6に示される混合比で攪拌装置にて混合し、塗布液を得た。白色顔料は、以下のものを用いた。
3. Preparation and Evaluation of Coating Solution [Examples 1 to 70 and Comparative Examples 1 to 10]
The white pigment, silane compound solution and adjustment liquid shown in Tables 3 to 6 were mixed at a mixing ratio shown in Tables 3 to 6 with a stirrer to obtain a coating solution. The following was used as the white pigment.
 (白色顔料)
 酸化チタン:SX-3103 堺化学工業社製
 酸化チタン:D-918 堺化学工業社製
 酸化チタン:JR テイカ社製
 酸化チタン:JR-405 テイカ社製
 酸化チタン:CR-93 石原産業製
 酸化チタン:CR-95 石原産業製
 酸化アルミニウム:HD-11 ニッカトー製
 硫酸バリウム:NFJ-3-1999 山西物産製
 窒化ホウ素:AP-100S MARUKA製
(White pigment)
Titanium oxide: SX-3103 Made by Sakai Chemical Industry Co., Ltd. Titanium oxide: D-918 Made by Sakai Chemical Industry Co., Ltd. Titanium oxide: JR Teica Co., Ltd. Titanium oxide: JR-405 Made by Teika Co., Ltd. Titanium oxide: CR-93 Made by Ishihara Sangyo Titanium oxide: CR-95 Made by Ishihara Sangyo Aluminum oxide: HD-11 Made by Nikkato Barium sulfate: NFJ-3-1999 Made by Yamanishi Boron nitride: AP-100S Made by MARUKA
 得られた塗布液の粘度および塗布量安定性と、硬化前後の体積比B/A、クラック耐性、反射率および密着性を、以下の方法で評価した。 The viscosity and coating amount stability of the obtained coating solution, the volume ratio B / A before and after curing, crack resistance, reflectance and adhesion were evaluated by the following methods.
 <粘度>
 塗布液の粘度は、振動式粘度計VISCOMATE MODEL VM-10A(セコニック社製)を用いて測定した。測定温度は25℃とし、振動子を液体に浸漬してから、1分後の測定値を使用した。
<Viscosity>
The viscosity of the coating solution was measured using a vibration viscometer VISCOMATE MODEL VM-10A (manufactured by Seconic). The measurement temperature was 25 ° C., and the measured value after 1 minute was used after the vibrator was immersed in the liquid.
 <塗布量安定性>
 ディスペンサーのシリンジに混合液を充填し、一定の条件下において、連続で10回のディスペンスを行い、滴下された液の合計質量を求めた。続いて、シリンジをそのまま保持した状態で、10分毎に同様の操作を行い、4時間後に同条件下において、連続で10回のディスペンスを行い、滴下された液の合計質量を求めた。
 最初の10回で滴下された液の合計質量をA、4時間後の10回で滴下された液の合計質量をBとしたとき、下記式により、質量変化率を算出した。
  質量変化率=((B-A)/A)×100%
<Coating amount stability>
The syringe of the dispenser was filled with the mixed liquid, and dispensed 10 times continuously under certain conditions, and the total mass of the dropped liquid was determined. Subsequently, the same operation was performed every 10 minutes while holding the syringe as it was, and after 10 hours, dispensing was performed 10 times continuously under the same conditions, and the total mass of the dropped liquid was obtained.
When the total mass of the liquid dropped in the first 10 times was A, and the total mass of the liquid dropped in 10 times after 4 hours was B, the mass change rate was calculated by the following formula.
Mass change rate = ((BA) / A) × 100%
 塗布量安定性を以下の基準で評価した。
 ○:質量変化率が3%未満であった。
 △:質量変化率が3%以上6%未満であった。
 ×:質量変化率が6%以上であった。
The coating amount stability was evaluated according to the following criteria.
○: Mass change rate was less than 3%.
Δ: Mass change rate was 3% or more and less than 6%.
X: Mass change rate was 6% or more.
 <体積比B/A>
 硬化前後の体積比は、以下の手順で測定した。
 1)塗布液の体積を、25℃雰囲気下、メスシリンダーで測定し、硬化前の体積Aとした。
 2)塗布液をテフロン(登録商標)基板上に塗布した後、該塗膜を150℃で1時間加熱硬化させた後、テフロン(登録商標)基板上から剥離して硬化物を得た。得られた硬化物の重量を、25℃雰囲気下で測定した。さらに、当該硬化物の比重を、アルキメデス法により25℃雰囲気下で測定した。そして、得られた硬化物の重量と、アルキメデス法により測定した比重とから、硬化物の体積Bを算出した。
 3)前記1)で測定された体積Aと、前記2)で算出された体積Bとから、硬化前後の体積比B/Aを算出した。
<Volume ratio B / A>
The volume ratio before and after curing was measured by the following procedure.
1) The volume of the coating solution was measured with a graduated cylinder in a 25 ° C. atmosphere, and was defined as volume A before curing.
2) After coating the coating solution on a Teflon (registered trademark) substrate, the coating film was heated and cured at 150 ° C. for 1 hour, and then peeled off from the Teflon (registered trademark) substrate to obtain a cured product. The weight of the obtained cured product was measured in an atmosphere at 25 ° C. Furthermore, the specific gravity of the cured product was measured in an atmosphere at 25 ° C. by the Archimedes method. And the volume B of hardened | cured material was computed from the weight of the obtained hardened | cured material, and the specific gravity measured by the Archimedes method.
3) The volume ratio B / A before and after curing was calculated from the volume A measured in 1) and the volume B calculated in 2).
 <製膜性評価(成膜時のクラック)>
 透明な1mmのガラス板に塗布液を1回で塗布し、150℃、1時間の熱処理により硬化させて、反射層を備えた測定サンプルを作製した。このときの反射層の状態を目視で観察し、以下の基準で評価した。
 ◎:膜厚60μmでもクラック発生なし
 ○:膜厚50μm以上60μm未満でクラック発生
 △:膜厚40μm以上50μm未満でクラック発生
 ×:膜厚40μmでクラック発生
<Evaluation of film formability (cracks during film formation)>
The coating solution was applied once to a transparent 1 mm glass plate and cured by heat treatment at 150 ° C. for 1 hour to prepare a measurement sample having a reflective layer. The state of the reflective layer at this time was visually observed and evaluated according to the following criteria.
◎: Crack does not occur even when the film thickness is 60 μm ○: Crack occurs when the film thickness is 50 μm or more and less than 60 μm Δ: Crack occurs when the film thickness is 40 μm or more and less than 50 μm ×: Crack occurs when the film thickness is 40 μm
 <反射率測定1>
 透明な1mmのガラス板に塗布液を1回で塗布し、150℃、1時間の熱処理により、硬化させて、厚さ20μmの反射層を備えた測定サンプルを作製した。そして、分光光度計V-670(日本分光株式会社製)により、各サンプルの反射率を測定した。評価は、以下の基準で行った。
 ○:膜厚20μmでの反射率が95%以上
 ×:膜厚20μmでの反射率が95%未満
<Reflectance measurement 1>
The coating solution was applied once to a transparent 1 mm glass plate and cured by heat treatment at 150 ° C. for 1 hour to prepare a measurement sample having a reflective layer having a thickness of 20 μm. Then, the reflectance of each sample was measured with a spectrophotometer V-670 (manufactured by JASCO Corporation). Evaluation was performed according to the following criteria.
○: The reflectance at a film thickness of 20 μm is 95% or more ×: The reflectance at a film thickness of 20 μm is less than 95%
 <反射率測定2>
 透明な1mmのガラス板に塗布液を1回で塗布し、150℃、1時間の熱処理により、硬化させて、厚さ60μmの反射層を備えた測定サンプルを作製した。そして、分光光度計V-670(日本分光株式会社製)により、各サンプルの反射率を測定した。評価は、以下の基準で行った。
 ◎:膜厚60μmでの反射率が98%以上
 -:膜厚60μmではクラック発生し、未評価
<Reflectance measurement 2>
The coating solution was applied once to a transparent 1 mm glass plate and cured by heat treatment at 150 ° C. for 1 hour to prepare a measurement sample having a reflective layer having a thickness of 60 μm. Then, the reflectance of each sample was measured with a spectrophotometer V-670 (manufactured by JASCO Corporation). Evaluation was performed according to the following criteria.
A: Reflectance is 98% or more at a film thickness of 60 μm. −: Cracks occur at a film thickness of 60 μm and are not evaluated.
 <テープ剥離実験>
 銀板上に塗布液を塗布し、150℃、1時間の熱処理により、硬化させて、厚さ20μmの反射層を備えた測定サンプルを作製した。形成された反射層にニチバン製セロテープ(登録商標)(24mm)を貼り付け、直ちに剥がす作業を20回繰り返して行った。そして、各回の作業毎に反射層の状態を顕微鏡により観察し、以下のように判断した。
 ◎:20回作業後も反射層の剥離がみられず、テープの表面に何も付着しなかった
 ○:10回作業後は剥離がみられなかったが、20回作業後には、僅かに剥離がみられた
 △:剥離は生じなかったが、1回目の作業後に、テープの表面に、白色顔料の粉が僅かに付着した
 ×:10回作業時点で反射層の剥離が発生していた
<Tape peeling experiment>
A coating solution was applied on a silver plate and cured by heat treatment at 150 ° C. for 1 hour to prepare a measurement sample having a reflective layer having a thickness of 20 μm. The work of attaching Nichiban cello tape (registered trademark) (24 mm) to the formed reflective layer and immediately peeling it off was repeated 20 times. And the state of the reflective layer was observed with the microscope for every operation | work, and it judged as follows.
A: No peeling of reflective layer was observed after 20 times of operation, and nothing adhered to the surface of the tape. ○: No separation was observed after 10 times of operation, but after 20 times of operation, it was slightly peeled off. △: No peeling occurred, but after the first work, a small amount of white pigment powder adhered to the surface of the tape. X: The reflective layer was peeled off at the 10th working time.
 各実施例および比較例の評価結果を表3~6に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Tables 3 to 6 show the evaluation results of the examples and comparative examples.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 シラン化合物の組成が式1および式2を満たし、かつ硬化前後の体積比B/Aが式3を満たす実施例1~70の塗布液の硬化物は、高いクラック耐性と密着性とを示し、かつ高い反射率が得られることがわかる。 The cured products of the coating liquids of Examples 1 to 70 in which the composition of the silane compound satisfies Formulas 1 and 2 and the volume ratio B / A before and after curing satisfies Formula 3 show high crack resistance and adhesion. It can also be seen that a high reflectance can be obtained.
 一方、シラン化合物中の組成が式2を満たさない比較例1~5の塗布液の硬化物は、クラック耐性が低く、式1を満たさない比較例6および7の塗布液の硬化物は、密着性が低いことがわかる。硬化前後の体積比B/Aが大きすぎる比較例9の塗布液の硬化物は、クラック耐性と反射率が低く、硬化前後の体積比B/Aが小さすぎる比較例10の塗布液は、液吐出性が低いことがわかる。 On the other hand, the cured products of the coating solutions of Comparative Examples 1 to 5 whose composition in the silane compound does not satisfy Formula 2 have low crack resistance, and the cured products of the coating solutions of Comparative Examples 6 and 7 that do not satisfy Formula 1 It turns out that the nature is low. The cured product of the coating solution of Comparative Example 9 in which the volume ratio B / A before and after curing is too large has low crack resistance and reflectance, and the coating solution of Comparative Example 10 in which the volume ratio B / A before and after curing is too small is liquid. It turns out that discharge property is low.
 実施例11と実施例36との対比から、シラン化合物が予めオリゴマー化されている実施例11の塗布液は、シラン化合物がモノマーである実施例36の塗布液よりも、硬化時のクラックがより高度に抑制され、得られる硬化物の反射率も高いことがわかる。これは、予めオリゴマー化させたシラン化合物は、モノマーのシラン化合物よりも、重合による体積変化が少ないためであると考えられる。 From the comparison between Example 11 and Example 36, the coating liquid of Example 11 in which the silane compound has been oligomerized in advance has more cracks during curing than the coating liquid of Example 36 in which the silane compound is a monomer. It is highly suppressed and it can be seen that the resulting cured product has a high reflectance. This is presumably because the pre-oligomerized silane compound has less volume change due to polymerization than the monomeric silane compound.
 実施例12と19の対比から、体積比B/Aが0.25以上であると、膜厚60μmでの反射率が良好となることがわかる。実施例12と17との対比から、体積比B/Aが0.3以上であると、クラック耐性がより高まることがわかる。 From the comparison between Examples 12 and 19, it can be seen that when the volume ratio B / A is 0.25 or more, the reflectance at a film thickness of 60 μm is good. From the comparison between Examples 12 and 17, it can be seen that when the volume ratio B / A is 0.3 or more, the crack resistance is further increased.
 本出願は、2014年9月26日出願の特願2014-197072に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用される。 This application claims priority based on Japanese Patent Application No. 2014-197072 filed on September 26, 2014. The contents described in the application specification and the drawings are all incorporated herein.
 本発明によれば、例えばLED装置の基板上に形成した塗膜を硬化させて反射層を得る際の、硬化時のクラックを良好に抑制し、高い反射率を有し、かつ当該反射率を長期間に亘り維持しうる硬化膜を得ることができる塗布液およびそれを用いたLED装置を提供できる。 According to the present invention, for example, when a coating layer formed on a substrate of an LED device is cured to obtain a reflective layer, cracks during curing are satisfactorily suppressed, and the reflectance is high. It is possible to provide a coating liquid capable of obtaining a cured film that can be maintained for a long period of time and an LED device using the coating liquid.
 1 基板
 2 LED素子
 3 電極
 4 金属ワイヤ
 10A 光取り出し面
 11 波長変換層
 21 反射層
 100 LED装置
DESCRIPTION OF SYMBOLS 1 Substrate 2 LED element 3 Electrode 4 Metal wire 10A Light extraction surface 11 Wavelength conversion layer 21 Reflective layer 100 LED device

Claims (14)

  1.  白色顔料と、シラン化合物と、溶媒とを含む塗布液であって、
     前記シラン化合物総量中の2官能シラン化合物の比率をR2(モル%)、3官能シラン化合物の比率をR3(モル%)、4官能シラン化合物の比率をR4(モル%)としたときに、下記式1および式2の両条件を満たし、
      0≦R2<40           (式1)
      0≦R4/R3≦2         (式2)
     前記塗布液の体積をAとし、前記塗布液を150℃で1時間加熱硬化させて得られる硬化物の体積をBとしたとき、硬化前後の体積比B/Aが下記式3の条件を満たす、塗布液。
      0.2≦B/A≦0.7         (式3)
    A coating liquid containing a white pigment, a silane compound, and a solvent,
    When the ratio of the bifunctional silane compound in the total amount of the silane compound is R2 (mol%), the ratio of the trifunctional silane compound is R3 (mol%), and the ratio of the tetrafunctional silane compound is R4 (mol%), the following: Satisfy both the conditions of Equation 1 and Equation 2,
    0 ≦ R2 <40 (Formula 1)
    0 ≦ R4 / R3 ≦ 2 (Formula 2)
    When the volume of the coating solution is A and the volume of the cured product obtained by heat-curing the coating solution at 150 ° C. for 1 hour is B, the volume ratio B / A before and after curing satisfies the condition of the following formula 3. Application liquid.
    0.2 ≦ B / A ≦ 0.7 (Formula 3)
  2.  前記シラン化合物のモル比が、下記式4の条件を満たす、請求項1に記載の塗布液。
     0≦R4/R3≦1.5    (式4)
    The coating liquid according to claim 1, wherein the molar ratio of the silane compound satisfies the condition of the following formula 4.
    0 ≦ R4 / R3 ≦ 1.5 (Formula 4)
  3.  前記硬化前後の体積比B/Aが、下記式5の条件を満たす、請求項1または2に記載の塗布液。
     0.25≦B/A≦0.6    (式5)
    The coating liquid according to claim 1 or 2, wherein the volume ratio B / A before and after curing satisfies the condition of the following formula 5.
    0.25 ≦ B / A ≦ 0.6 (Formula 5)
  4.  前記溶媒が、1価のアルコールおよび2価以上の多価アルコールの少なくとも一方を含有する、請求項1~3のいずれか一項に記載の塗布液。 The coating solution according to any one of claims 1 to 3, wherein the solvent contains at least one of a monovalent alcohol and a dihydric or higher polyhydric alcohol.
  5.  前記2官能シラン化合物、前記3官能シラン化合物、前記4官能シラン化合物からなる群から選ばれる少なくとも1種が、あらかじめ重合されている、請求項1~4のいずれか一項に記載の塗布液。 The coating solution according to any one of claims 1 to 4, wherein at least one selected from the group consisting of the bifunctional silane compound, the trifunctional silane compound, and the tetrafunctional silane compound is polymerized in advance.
  6.  無機粒子または粘土鉱物粒子をさらに含む、請求項1~5のいずれか一項に記載の塗布液。 The coating solution according to any one of claims 1 to 5, further comprising inorganic particles or clay mineral particles.
  7.  シランカップリング剤をさらに含む、請求項1~6のいずれか一項に記載の塗布液。 The coating solution according to any one of claims 1 to 6, further comprising a silane coupling agent.
  8.  粘度が5mPa・sを超え、2000mPa・s以下である、請求項1~7のいずれか一項に記載の塗布液。 The coating solution according to any one of claims 1 to 7, wherein the viscosity is more than 5 mPa · s and not more than 2000 mPa · s.
  9.  白色顔料と、シラン化合物と、溶媒とを含む塗布液であって、
     前記シラン化合物総量中の2官能シラン化合物の比率をR2(モル%)、3官能シラン化合物の比率をR3(モル%)、4官能シラン化合物の比率をR4(モル%)としたときに、下記式1および式2の両条件を満たし、
      0≦R2<40           (式1)
      0≦R4/R3≦2         (式2)
     前記溶媒の含有比率が、前記塗布液に対して10~45質量%の範囲である、塗布液。
    A coating liquid containing a white pigment, a silane compound, and a solvent,
    When the ratio of the bifunctional silane compound in the total amount of the silane compound is R2 (mol%), the ratio of the trifunctional silane compound is R3 (mol%), and the ratio of the tetrafunctional silane compound is R4 (mol%), the following: Satisfy both the conditions of Equation 1 and Equation 2,
    0 ≦ R2 <40 (Formula 1)
    0 ≦ R4 / R3 ≦ 2 (Formula 2)
    A coating solution, wherein a content ratio of the solvent is in a range of 10 to 45% by mass with respect to the coating solution.
  10.  基板と、前記基板上に配置されたLED素子と、前記基板上の前記LED素子の少なくとも周囲に配置された反射層と、前記LED素子の光の出射方向上に配置された波長変換層とを含むLED装置の製造方法であって、
     前記基板上に、請求項1~9のいずれか一項に記載の塗布液を塗布する工程と、
     前記塗布した塗布液を硬化させて、前記反射層を形成する工程と、を含む、LED装置の製造方法。
    A substrate, an LED element disposed on the substrate, a reflective layer disposed at least around the LED element on the substrate, and a wavelength conversion layer disposed in a light emitting direction of the LED element. A method for manufacturing an LED device comprising:
    Applying the coating liquid according to any one of claims 1 to 9 on the substrate;
    Curing the applied coating solution to form the reflective layer.
  11.  前記塗布液を、1回または2回塗布し、
     前記塗布した塗布液を硬化させて、厚み40μm以上の前記反射層を形成する、請求項10に記載のLED装置の製造方法。
    Apply the coating solution once or twice,
    The manufacturing method of the LED device of Claim 10 which hardens the said apply | coated coating liquid and forms the said reflection layer with a thickness of 40 micrometers or more.
  12.  基板と、前記基板上に配置されたLED素子と、前記基板上の前記LED素子の周囲に配置された反射層と、前記LED素子の光の出射方向上に配置された波長変換層とを有するLED装置であって、
     前記反射層が、請求項1~9のいずれか一項に記載の塗布液の硬化膜である、LED装置。
    A substrate; an LED element disposed on the substrate; a reflective layer disposed around the LED element on the substrate; and a wavelength conversion layer disposed in a light emission direction of the LED element. An LED device,
    The LED device, wherein the reflective layer is a cured film of the coating liquid according to any one of claims 1 to 9.
  13.  前記波長変換層は、前記LED素子と接している、請求項12に記載のLED装置。 The LED device according to claim 12, wherein the wavelength conversion layer is in contact with the LED element.
  14.  前記反射層が、前記基板と前記LED素子との間にさらに配置されている、請求項12に記載のLED装置。 The LED device according to claim 12, wherein the reflective layer is further disposed between the substrate and the LED element.
PCT/JP2015/077076 2014-09-26 2015-09-25 Coating liquid, production method for led device using same, and led device WO2016047745A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014197072 2014-09-26
JP2014-197072 2014-09-26

Publications (1)

Publication Number Publication Date
WO2016047745A1 true WO2016047745A1 (en) 2016-03-31

Family

ID=55581261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077076 WO2016047745A1 (en) 2014-09-26 2015-09-25 Coating liquid, production method for led device using same, and led device

Country Status (1)

Country Link
WO (1) WO2016047745A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113707788A (en) * 2020-05-22 2021-11-26 重庆康佳光电技术研究院有限公司 Back plate structure, manufacturing method thereof, mass transfer method and display device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013004922A (en) * 2011-06-21 2013-01-07 Mitsubishi Chemicals Corp Resin package for semiconductor light-emitting device and semiconductor light-emitting device having resin package
WO2014103326A1 (en) * 2012-12-27 2014-07-03 コニカミノルタ株式会社 Coating liquid, and led device provided with reflective layer that is formed of cured product of said coating liquid

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013004922A (en) * 2011-06-21 2013-01-07 Mitsubishi Chemicals Corp Resin package for semiconductor light-emitting device and semiconductor light-emitting device having resin package
WO2014103326A1 (en) * 2012-12-27 2014-07-03 コニカミノルタ株式会社 Coating liquid, and led device provided with reflective layer that is formed of cured product of said coating liquid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113707788A (en) * 2020-05-22 2021-11-26 重庆康佳光电技术研究院有限公司 Back plate structure, manufacturing method thereof, mass transfer method and display device

Similar Documents

Publication Publication Date Title
WO2014109293A1 (en) Led device and coating liquid used for production of same
WO2014103326A1 (en) Coating liquid, and led device provided with reflective layer that is formed of cured product of said coating liquid
JP5541433B1 (en) Method for manufacturing phosphor dispersion liquid and method for manufacturing LED device
WO2013099193A1 (en) Sealant for led device, led device, and method for producing led device
WO2013180259A1 (en) Sealant for light-emitting device, light-emitting device using same, and production method for light-emitting device
JPWO2014104295A1 (en) Light emitting device
JP2014138081A (en) Light emitting device, wavelength conversion-light diffusion element, method for manufacturing the same, and composition for forming light diffusion ceramic layer
WO2014103330A1 (en) Phosphor dispersion, led device and method for manufacturing same
JP2016154179A (en) Light-emitting device and manufacturing method thereof
JP2014019844A (en) Phosphor dispersion and method for manufacturing led device
JP2014130903A (en) Semiconductor light-emitting device and manufacturing method of the same
JPWO2014091762A1 (en) Sealant for LED device and LED device using the same
JP5910340B2 (en) LED device and manufacturing method thereof
JP2014127495A (en) Led device and method for manufacturing the same
WO2016047745A1 (en) Coating liquid, production method for led device using same, and led device
JP2016181535A (en) Light-emitting device, and coating liquid for manufacturing light-emitting device
WO2013180258A1 (en) Sealant for light-emitting device, light-emitting device using same, and production method for light-emitting device
JP2014160713A (en) Led device manufacturing method
JP2014141626A (en) Application liquid, reflection coating, reflection sheet, solar cell module, led illumination device and packaging substrate
WO2015049865A1 (en) Sealing agent for light emitting elements and led device
WO2016024604A1 (en) Inorganic-microparticle-containing polysilsesquioxane composition, method for producing same, light-emitting device, and method for producing same
WO2016047746A1 (en) Coating liquid, method for manufacturing led device using same, and led device
WO2016043159A1 (en) Phosphor dispersion liquid, method for manufacturing led device using same, and led device
JP2014165463A (en) Light-emitting apparatus and process of manufacturing the same
WO2013187067A1 (en) Led device and production method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15843776

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15843776

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP