WO2020225658A1 - Outil vibrant et système vibratoire comprenant un tel outil - Google Patents

Outil vibrant et système vibratoire comprenant un tel outil Download PDF

Info

Publication number
WO2020225658A1
WO2020225658A1 PCT/IB2020/054058 IB2020054058W WO2020225658A1 WO 2020225658 A1 WO2020225658 A1 WO 2020225658A1 IB 2020054058 W IB2020054058 W IB 2020054058W WO 2020225658 A1 WO2020225658 A1 WO 2020225658A1
Authority
WO
WIPO (PCT)
Prior art keywords
tool
fixing
main face
face
plane
Prior art date
Application number
PCT/IB2020/054058
Other languages
English (en)
Inventor
Maxime ROTEN
Jean-Christophe ROTEN
Original Assignee
Roten Maxime
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roten Maxime filed Critical Roten Maxime
Publication of WO2020225658A1 publication Critical patent/WO2020225658A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B3/00Methods or apparatus specially adapted for transmitting mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/10Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating making use of vibrations, e.g. ultrasonic welding
    • B23K20/106Features related to sonotrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C3/00Dental tools or instruments
    • A61C3/02Tooth drilling or cutting instruments; Instruments acting like a sandblast machine
    • A61C3/03Instruments operated by vibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/093Compacting only using vibrations or friction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B37/00Boring by making use of ultrasonic energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/2602Mould construction elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/14Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the particular extruding conditions, e.g. in a modified atmosphere or by using vibration
    • B29C48/146Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the particular extruding conditions, e.g. in a modified atmosphere or by using vibration in the die
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/34Treatment of water, waste water, or sewage with mechanical oscillations
    • C02F1/36Treatment of water, waste water, or sewage with mechanical oscillations ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0089Implanting tools or instruments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F2005/001Cutting tools, earth boring or grinding tool other than table ware
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/40Removing or ejecting moulded articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/08Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/816General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the mounting of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8167Quick change joining tools or surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/82Pressure application arrangements, e.g. transmission or actuating mechanisms for joining tools or clamps
    • B29C66/824Actuating mechanisms
    • B29C66/8242Pneumatic or hydraulic drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/84Specific machine types or machines suitable for specific applications
    • B29C66/847Drilling standard machine type
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides

Definitions

  • Vibrating tool and vibratory system comprising such a tool
  • the present invention relates to a vibrating tool, namely a tool whose use is when this tool is subjected to vibration, in order to perform the operation for which this tool is intended.
  • a vibrating tool namely a tool whose use is when this tool is subjected to vibration
  • sonotrode type ultrasonic tools are vibrating tools used for the application of ultrasound in various processes.
  • the boosters used for fixing and increasing the amplitude of vibration in ultrasonic systems are also vibrating tools.
  • the tool according to the present invention is a tool subjected to a vibratory excitation which transfers this excitation to another element.
  • This element can be a fluidic element, a gaseous element, a liquid element, a flexible and two-dimensional element such as for example a fabric, or a solid element such as another metal part for example.
  • this tool is metallic. According to one possibility, this tool forms an integral whole. In particular, but in a nonlimiting manner, this tool is subjected to a vibratory excitation of ultrasound type.
  • this tool forms a sonotrode, namely a metal part subjected to an excitation in the form of a wave ultrasound and which restores this excitation to another element.
  • Ultrasonic uncles are understood as waves having a frequency between 20 KHz and 70 KHz.
  • the sonotrode resonates in frequency by "contracting” and by "expanding" x times per second (x being the frequency) in an amplitude generally of a few micrometers (for example from 13 to 130 ⁇ m approximately).
  • the present invention also relates to a vibratory system comprising such a vibrating tool.
  • a booster, or amplitude modifier mounted on the transducer and which makes it possible to increase or reduce the amplitude produced by the
  • This tool has a geometry and a dimension depending on various parameters, including:
  • a frequent shape of sonotrode corresponds to a generally conical shape for welding or else a chisel or blade shape with a triangular section for cutting (linear sonotrode).
  • a sonotrode type tool includes not only a useful area or work area but also specific areas at least for mounting the tool in the transmission chain of the vibratory excitation (this chain forming a vibratory system), and for the useful area or work area.
  • This vibratory system comprises, optionally at the level of the tool or of another part, at least one specific zone for fixing this vibratory system in the installation or the machine.
  • the booster comprises an annular flange facing the nodal point of vibration, in order to allow the rigid fixing of the vibratory system on a support such as a machine frame.
  • a nodal zone is a zone surrounding a nodal point, and in which the deformation is very limited, this deformation being zero in one or more directions at the location of the nodal point.
  • An annular mounting portion is attached to the flange between the contact portion and the outer perimeter.
  • the annular mount portion is constructed such that it resonates at about the predetermined frequency, and in operation the contact portion of the mount is coupled to the sonotrode at a point forming an outer bearing surface where the sonotrode forms a node at said predetermined frequency.
  • transducer a support structure spaced from the sonotrode and extending from the support structure interface in a direction substantially parallel to a longitudinal axis of the sonotrode; and a flange mounted on the support structure at the radial oscillating displacement node of the support structure.
  • Document US1806022016 provides for an integrated flexural mounting for dynamic isolation of ultrasonic transducers for use with a wire cabling machine.
  • the transducer has a generally elongated body having front, rear, and main portions.
  • the transducer has mounting flanges for mounting the transducer to the wiring machine.
  • the mounting flanges have at least two integral flexures that connect the mounting flange to the main portion of the transducer body and define at least one flex port.
  • sonotrode fixing systems proposed hitherto are complex, and require different assembly parts, require significant assembly and disassembly time and have geometries and dimensions which limit the possible applications of the sonotrode.
  • An object of the present invention is to provide a vibrating tool free from the limitations of known vibrating tools.
  • Another object of the invention is to provide a vibrating tool which can be used not only for its function in vibratory mode, but also which can be directly and simply fixed to a support or a machine frame or another installation. .
  • said tool being massive and defining:
  • first main face and of said second main face being circumscribed in a rectangle, whereby the first face and the second face each define four sides
  • a first plane P1 being the mean plane formed between the first main face and the second main face
  • a second plane P2 and a third plane of symmetry P3 orthogonal to the first main face and to the second main face
  • the second plane P2 and the third plane P3 being orthogonal to each other
  • the second plane P2 forming a mean plane between two opposite sides of said border forming end faces
  • the third plane of symmetry P3 forming a plane of symmetry between the two other opposite sides of said border forming lateral faces
  • said edge forming at least two recesses located on two opposite sides of said edge forming the side faces
  • said tool being arranged so that during vibration at a predefined working frequency fO, certain areas of the part form nodal areas and at least one functional area which exhibits deformation during said vibratory excitation,
  • said tool comprising at least one fixing orifice suitable for connecting said tool to another element, and
  • said tool further comprising at least one mounting hole
  • mean plane means the plane located midway between two faces or opposite sides of the tool.
  • a vibrating tool having such a geometry is able to vibrate while keeping nodal zones suitable for fixing the tool.
  • This solution has the particular advantage over the prior art of allowing direct maintenance of the vibrating tool (for example as a sonotrode) on a machine or a system, at least at through the fixing hole. [0021] In this way, thanks in particular to the geometry of the tool which does not include a projecting portion for the fixing, it does not disturb the natural mode of vibration of the tool unlike many vibrating tools of prior art.
  • the tool according to the present invention has a geometry which has nodal points surrounded by nodal zones making it possible to fix the tool to a rigid and fixed external element, while keeping the freedom required for the propagation of the mechanical wave and to the vibratory excitation of the tool in its own mode outside the nodal zones, comprising functional zones. It is indeed possible to hold the tool in three directions with sufficient precision, while allowing the tool to vibrate without restriction.
  • the functional zone corresponds to a zone of the tool with a significant variation in deformation, of high amplitude, which is used as mechanical vibration during the use of the tool.
  • the recesses correspond to recessed areas, such as notches or cutouts, which are symmetrical on either side of the third plane of symmetry P3.
  • each recess is disposed at mid-length of the side face which carries it.
  • each recess is centered on the lateral face which carries it.
  • each recess extends from the first main face to the second main face.
  • the first main face and the second main face are mutually parallel and are essentially plane. In certain configurations, they are effectively entirely plane (and the first plane P1 forms a plane of symmetry between the first main face and the second main face) and in other configurations at least one of them comprises a zone in relief, in particular a protruding or recessed zone such as a cavity / an indentation which can in particular serve as a mold or a counter-mold respectively.
  • the first main face and the second main face have the same contour, that is to say that they have the same shape and the same size, in other words the outline of the first main face and of the second main face are superimposable.
  • the tool is in one piece.
  • the invention provides a particular design of a different vibrating tool, in particular an ultrasonic tool of the sonotrode or booster type, which can be attached directly to the frame of a machine.
  • the tool in question is free from the limitations of the possibility of integrating known tools of the sonotrode or booster type into a mechanical system as well as the possibilities of fixings known and used until now.
  • such a tool allows in particular to be mounted as a sonotrode in a conventional system comprising a transducer and a booster, which makes it compatible with systems for generating and amplifying waves.
  • existing vibratory systems in particular systems for generating and amplifying existing ultrasonic waves.
  • the vibrating tool according to the invention can be used according to various functions which can easily be integrated into industrial manufacturing systems or processes, such as existing ones, or also according to new possibilities. of use.
  • FIG. 1 is a projection view of the tool of Figure 1 along its front face in direction II of Figure 1,
  • FIG. 3 is a side view in projection of the tool of Figure 1 along one of its sides in direction III of Figure 1,
  • Figures 4A and 4B are front views similar to that of Figure 2 at two distinct times during the vibration of the tool of Figure 1, the lines in shaded lines indicating the nodal areas,
  • FIG. 5 is a view similar to that of Figure 3 during the vibration of the tool of Figure 1,
  • Figures 6A and 6B are front views similar respectively to those of Figures 4A and 4B during the vibration of a tool according to a second embodiment, the lines in shaded lines indicating the nodal areas,
  • FIG. 7 is a perspective view of the tool according to the second embodiment, after mounting on a support plate
  • Figure 8 is a perspective view similar to Figure 1 for a tool according to a third embodiment of the invention.
  • Figure 9 is a perspective view similar to Figure 1 for a tool according to a fourth embodiment of the invention.
  • FIG. 10 is a perspective view similar to Figure 1 for a tool according to a fifth embodiment of the invention.
  • FIG. 11 is a perspective view similar to Figure 1 for a tool according to a sixth embodiment of the invention.
  • Figure 12 is a perspective view similar to Figure 1 for a tool according to a seventh embodiment of the invention.
  • FIG. 13 is a perspective view similar to Figure 1 for a tool according to an eighth embodiment of the invention.
  • FIG. 14 is a front view similar to Figure 2 for the tool of Figure 13 according to the eighth embodiment of the invention, in direction XIV of Figure 13, - Figures 15 and 16 are front views similar respectively to those of Figures 4A and 4B during the vibration of a tool according to the eighth embodiment of the invention, the lines in shaded lines indicating the nodal areas,
  • Figure 17 is a side view similar to that of Figure 3
  • FIGS. 18 and 19 show perspective views of a tool according to a first variant of the second embodiment, for which a mounting hole makes it possible to receive an accessory
  • FIG. 20 shows a perspective view of a tool according to a second variant of the second embodiment, for which several mounting holes allow each to receive an accessory
  • FIG. 21 shows a perspective view of a tool according to a third variant of the second embodiment, for which two portions of the front face are recessed and form a cavity,
  • FIG. 22 shows a perspective view of a tool according to a fourth variant of the second embodiment, for which a portion of the front face is further forward and forms a projection or protrusion,
  • FIG. 23 shows a perspective view of a tool according to the third embodiment of the invention mounted directly with a transducer generating vibratory energy at the desired frequency
  • FIG. 24 shows a perspective view of a tool according to the third embodiment of the invention mounted on a booster or amplitude modifier, which is associated with a transducer generating vibratory energy at the desired frequency, said tool forming a sonotrode,
  • FIG. 25 illustrates a general perspective and exploded view of an assembly in which a vibrating tool according to the third mode embodiment of the invention is used as a fixing part on an ultrasonic press
  • FIG. 26 shows a perspective view of an assembly with two tools according to the third embodiment, mounted in series and serving respectively as booster or amplitude modifier mounted on a transducer, and sonotrode,
  • FIG. 27 is a perspective view similar to Figure 1 for a tool according to a ninth embodiment of the invention.
  • FIG. 28 shows a perspective view of an assembly with two tools according to the ninth embodiment, mounted in series perpendicular to each other, and with a transducer,
  • FIG. 29 illustrates a general perspective and exploded view of an assembly in which a vibrating tool according to a tenth embodiment of the invention is used as an injection mold
  • FIG. 30 illustrates a general perspective and exploded view of an assembly in which a vibrating tool according to an eleventh embodiment of the invention is used as an extrusion die
  • Figure 31 is a partial view of Figure 30, showing after assembly, in perspective and in section along the direction XXXI of Figure 30, the assembly of the vibrating tool used as an extrusion die,
  • FIG. 32 illustrates a general perspective and exploded view of an assembly in which a vibrating tool according to the third embodiment of the invention is used as a powder pressing die
  • Figure 33 is a partial view of Figure 32, after assembly, showing in perspective and in section along the direction XXXIII of Figure 32, the assembly of the vibrating tool used as a powder pressing die,
  • FIG. 34 illustrates a general perspective and exploded view of an assembly in which a vibrating tool according to a twelfth embodiment of the invention is used as the outer cage of a ball bearing system
  • Figure 35 is a partial view of Figure 34, after assembly, showing in perspective and in section along the direction XXXV of Figure 34, the assembly of the vibrating tool used as the outer cage of a ball bearing system ,
  • Figure 37 is a partial view of Figure 36, showing after assembly, in perspective and in section along the direction XXXVII of Figure 36, the assembly of the vibrating tool used as a fluid treatment die,
  • FIG. 38 is a graphic representation of the deformation of the tool over a period P of vibration, with the amplitude of vibration A on the ordinate and time on the abscissa,
  • FIG. 39 shows a tool according to Figure 8 in an assembly, shown in exploded perspective, allowing a rigid fixing of this tool on a non-vibrating support,
  • FIG. 40 is a perspective view of a tool according to a variant of the third embodiment, for which bosses or rings forming fixing connections, surround and extend the fixing holes,
  • FIG. 41 is a side view in projection of the tool of Figure 40 along one of its sides in the direction X of Figure 40,
  • Figures 42 and 43 are sectional views of the tool of Figure 40 in the direction X, respectively for through fixing holes and for fixing holes extending only in the length of the boss,
  • Figure 44 shows a tool according to Figure 40 in an assembly similar to that of Figure 39, shown in exploded perspective, allowing a rigid fixation of this tool on a non-vibrating support,
  • FIGS. 45 and 46 are respectively perspective and side views of an ultrasonic drilling machine using the tool of Figure 40,
  • FIG. 48 is a perspective view from below of a tool according to a first variant of the eighth embodiment, for which working orifices are present and form passages for the circulation of a liquid,
  • Figure 49 shows the tool of Figure 48 in section along a plane perpendicular to the Y axis, this section being partial and affecting the working portion or lower part of the tool,
  • FIG. 50 and 51 represent respectively in perspective and in exploded view an assembly in which a tool according to the first variant of the eighth embodiment is used as an injection mold,
  • FIG. 52 is a front view of a tool according to a second
  • Figures 53 and 54 show a tool according to figure 8 in a
  • FIG. 1 showing a vibrating tool 100 according to a first embodiment of the invention.
  • This vibrating tool has the general shape of a rectangular parallelepiped notched along the two opposite sides forming the flanks or lateral faces.
  • the depth P of the tool 100 corresponds to the distance separating the first main face 110 of the second main face 120, along a Y axis.
  • This border 130 encircles the tool 100.
  • This border 130 defines four symmetrical faces two by two which define the four sides of the first main face 110 and of the second face main 120.
  • This border 130 defines two end faces 131 and 133 on two opposite sides of the tool. Between these two end faces 131 and 133, the length L of the outiMOO is defined (along a Z axis). This edge 130 also defines two lateral faces 132 and 134 or flanks on the two other opposite sides of the tool 100. Between these two lateral faces 132 and 134, the width I of the tool is defined (along an axis X orthogonal to l 'Z axis). In this first embodiment, the end faces 131 and 133 are plane and parallel to each other, and also parallel to the plane (X, Y).
  • the X, Y, Z axes define an orthogonal coordinate system.
  • the tool 100 has three planes of symmetry P1, P2 and P3, orthogonal to each other.
  • the first plane of symmetry P1 is a plane of symmetry for the tool 100, parallel to the plane (X, Z), located between the first main face 110 and the second main face 120 (it is a mean plane with respect to the first main face 110 and to the second main face 120).
  • the second plane of symmetry P2 is a plane of symmetry for the tool 100, parallel to the plane (X, Y), between the two end faces 131 and 133.
  • the third plane of symmetry P3 is a plane of symmetry for l 'tool 100, parallel to the plane (Y, Z), between the two side faces 132 and 134.
  • the two side faces 132 and 134 have a recess, 136, extending from the first main face 110 to the second main face 120, therefore over the entire depth P of the tool 100, over approximately 1 / 2 of the length L of the tool 100, at an equal distance from the first end face 110 and from the second end face 120.
  • recesses 136 present, in projection on the first face
  • the main 110 (or on the second main face 120), a U-shape, with two branches and a curved junction zone between the branches and the base of the U.
  • the two branches of the U of the profile of the recesses 136 are curved and flared.
  • These two branches of the U of the profile of the recesses 136 can also be rectilinear, flared or parallel to each other.
  • the tool 100 forms a massive object which has the following orifices:
  • a mounting hole 138 extends into the tool 100 from the face
  • end 131 for example in the form of a bore or an internal thread, in the center of the end face 131 to respect the symmetry of the tool 100 and allow correct operation when it is subjected to
  • said mounting hole 138 is centered on one of end faces 131 or 133, with said mounting hole 138 being at the intersection of the first plane P1 and the third plane P3; optionally, another mounting hole 138 extends into tool 100 from the other end face 133; preferably and in the cases shown, this mounting orifice 138 or these mounting orifice 138 has (have) a circular section and are rectilinear (in the Y direction);
  • fixing holes 140 extend throughout the depth P of the tool 100 from the first main face 110, and are distributed symmetrically with respect to the planes of symmetry P2 and P3. These fixing orifices 140 are for example in the form of a bore or an internal thread; preferably and in the cases shown, this fixing hole 140 or these fixing holes 140 has (have) a circular section and are rectilinear (in the direction Y).
  • the mounting hole 138 (or the two mounting holes) which opens (s) into the edge 130 ser (ven) t to connect the tool 100 to an element having vibratory energy, directly, or well in an indirect way. If there are two mounting holes, the other mounting hole assembly can be used to connect the tool 100, directly, or else indirectly, to another element of the vibratory excitation transmission chain (this chain forming a vibratory system).
  • the fixing orifice (s) 140 opens out in the first main face 110 or else in the second main face 120 or else both in the first main face 110 and in the second main face 120.
  • the or the fixing holes 140 may be through holes, or non-through holes such as blind holes which are open on either one of the first main face and the second main face (in this case, the various holes fixing 140 can all open on the same face or some on the first main face and others on the second main face).
  • the fixing hole or holes 140 serve to fix the tool 100, directly, or else indirectly, to another element which is intended to act as a support for fixing the tool 100 and the 'whole vibratory system which is attached to it directly or indirectly.
  • the fixing hole (s) 140 may have different shapes and dimensions, while remaining centered on and limited in extension on the nodal zones 180.
  • the fixing hole (s) 140 may allow a rod housed in this fixing hole but not connected to a fixed part, to rotate according to an alternating rotational movement, for example in an assembly forming a drill, as will be described below in relation to FIGS. 45 to 47.
  • the mounting orifice (s) 138, as well as the fixing orifice (s) 140 are for example bores, and in particular threaded bores (threads).
  • FIG. 5 is a view similar to that of FIG. 3 of this tool 100 when it is subjected to vibratory energy at a working frequency fO, corresponding in particular to its natural mode. It can thus be seen in this FIG. 5 that the main faces 110 and 120 remain plane or quasi-plane and parallel to each other. This remains the case throughout the duration of the vibratory excitation of the tool 100. This situation allows the tool to be attached by virtually non-deformed areas to a rigid base, such as a machine frame, which therefore does not vibrate since no vibratory energy is transmitted to it by the fixing holes 140 and by the main faces 110 and 120.
  • FIGS. 4A and 4B are views similar to the front figure of FIG. 2 of this tool 100 when it is subjected to vibratory energy at a working frequency fO, corresponding in particular to its natural mode, at two different moments corresponding to the two extreme strains, respectively a maximum contraction strain and a maximum elongation strain. These two different moments correspond to the maximum amplitudes of the positive and negative phase of the period P of vibration of the system as illustrated in figure 38.
  • ends 131 and 133 are deformed by taking a curved shape, the profile of which (projection on the first main face 110) is alternately concave (in FIG. 4A) and convex (in FIG. 4B), and the spatial extension in direction of the X axis changes from a maximum (convex shape of side faces 132, 134 in Figure 4A) to a minimum (concave shape of side faces 132, 134 in Figure 4B). It can also be seen in these FIGS. 4A and 4B that the side faces 132 and 134 also change their general shape by deformation, taking a generally curved shape at the edges.
  • the profile of these lateral faces 132 and 134 is alternately concave and convex, and the spatial extension in the direction of the Z axis passes from a minimum (convex shape on the FIG. 4A) to a maximum (concave shape in FIG. 4B), also with a variation in the spatial extension along the Z axis of the recesses 136 between a minimum in FIG. 4A and a maximum in FIG. 4B.
  • the fixing holes 140 are placed at the location of the nodal points of the tool, and therefore remain in a position which is fixed in the tool and which remains identical with respect to the other fixing holes 140.
  • these nodal zones 180 extend throughout the depth of the tool 100, around each fixing hole 140, between the first main face 110 and the second main face 120. Outside the nodal zones 180, zones are formed functional 190 having a deformation during the vibration of the tool 100 and capable of constituting a work zone for the vibration of the tool or of another element to be made to vibrate during the use of the tool 100.
  • the tool comprises at least one fixing hole 140 which is centered on a nodal point.
  • said fixing orifice passes right through said tool, between the first main face 110 and the second main face 120.
  • Other spatial arrangements remain possible.
  • This second embodiment of the tool 100 is visible at rest in FIG. 7, once mounted on a support 200 by one of its main faces 110 and 120, by means of fixing elements 210 mounted in the orifices. fixing 140.
  • the tool 100 uses the same arrangements as those previously described in relation to the first embodiment.
  • this working orifice 150 further comprises a working orifice 150 formed of a hole of circular section passing through said tool between the first main face 110 and the second main face 120 in the Y direction (it extends rectilinearly).
  • this working orifice 150 is in the center of the main faces 110 and 120.
  • the working orifice 150 has a section of shape modified during the setting. vibration of the tool 100, in this case an oval shape, extending alternately in the X direction (FIG. 6A) and in the Z direction (FIG. 6B).
  • this deformation at the level of the working orifice 150 makes it possible to use this region of the vibrating tool 100, comprising the working orifice 150 which is located at least partially, or even
  • a single working orifice 150 is present, located at the center of the main faces 110 and 120 and extending in the Y direction,
  • a single working orifice 150 is present, located in the center of the side faces 132 and 134 and extending in the direction X,
  • the working orifice 150 (or the working orifices 150) is (are) crossing (s) between two opposite sides of the rim 130.
  • said tool 100 thus further comprises at least one working orifice 150 passing right through said vibrating tool 100.
  • the working orifice 150 passes through between the first main face 110 and the second face. main 120.
  • the working orifice 150 passes through between the two opposite sides of the edge 130 forming the side faces 132, 134.
  • said working orifice 150 (or working orifices 150) is (are) located at least partially in a zone subjected to vibration and deformation and in particular in a functional zone 190. According to a variant adaptable to all the configurations of spatial positions previously stated for the one or more working orifice (s) 150, this (or these) working orifice (s) 150 may not pass through between two opposite faces of the tool 100.
  • the support 200 and the tool remain in position relative to each other even during the vibration of the tool 100.
  • the fixing elements 210 for example pins fixing, extend both in the support 200 and in the fixing holes 140 which do not undergo, or very little, deformation during the vibration of the tool 100.
  • the vibrating tool 100 is held precisely on the support 200 (for example a machine support plate) by four fixing points corresponding to the four fixing holes 140.
  • a washer (not visible in FIG. 7) or any other spacer element, is arranged around each fixing element 210, between the support 200 and the tool 100, thus creating a spacing between support 200 and the tool 100.
  • spacers 237 are visible in the assemblies of Figures 25, 29, 32, 33, 34 and 36.
  • the spacers 237 are not rigidly fixed to the tool 100: they are placed between the fixing plate (formed for example of the support 200) and the tool 100 so as to define a clearance with the fixing plate and define the position on it, but without tightening. In this way, the spacers 237 do not vibrate during the
  • an anti-friction sleeve is also provided between each fixing element 210 and said fixing hole 140.
  • the tool 100 uses the same arrangements and parts as those previously described in relation to the second embodiment.
  • This tool 100 of the third embodiment further comprises adjustment orifices 160. These adjustment orifices 160 pass through the tool 100, and they extend between the first main face 110 and the second main face 120.
  • adjustment orifices 160 make it possible in particular to adjust the working frequency fO of the tool 100.
  • the presence of these adjustment orifices 160 also makes it possible to keep nodal zones 180.
  • the number and the arrangement of these orifices adjustment 160 can therefore vary from one vibrating tool to another.
  • two of these adjustment orifices 160 intersect with the second plane of symmetry P2 and two of these adjustment orifices 160 intersect with the third plane of symmetry P3. In each of these two pairs of adjustment orifices 160, the two adjustment orifices 160 are located on either side of the working orifice 150.
  • this adjustment orifice 160 different arrangements are possible for this adjustment orifice 160, among which the following:
  • adjustment orifices 160 are present, distributed over the main faces 110 and 120, and extending along between these main faces 110 and 120 in the Y direction,
  • a single adjustment orifice 160 is present, located in the center of the side faces 132 and 134 and extending in the direction X,
  • adjustment orifices 160 are present, distributed around the center of the side faces 132 and 134 and extending in the X direction, and extending along between these main faces 110 and 120 and the side faces 132 and 134 in the Y direction.
  • adjustment orifices 160 are present, distributed around the center of the end faces 131 and 133 and extending in the Z direction, and extending along between these main faces 110 and 120 and the faces
  • the adjustment orifice 160 (or the adjustment orifices 160) is (are) crossing (s) between two opposite sides of the rim 130.
  • said tool thus further comprises at least one adjustment orifice 160 passing right through said vibrating tool 100.
  • said adjustment orifice 160 (or the adjustment orifices 160) is (are) located at least partially in a zone subjected to vibration and deformation and in particular in a functional zone 190.
  • one or more adjustment orifices 160 extend (den) t between the end faces 131 and 133 in the Z direction.
  • one or more of these adjustment orifices 160 is used for heating or cooling the part, in particular when the tool 100 is used as a mold for plastic injection. A fluid is then circulated therein for maintaining a certain temperature of the mold (see an application in FIGS. 48 and 49, in the form of the channels 170).
  • the mounting hole (s) 138, as well as the mounting hole (s) 140 can be completed (s) by a ring, a mounting connector or any other intermediate element facilitating the mounting between the tool 100 and the element to be connected to this tool through the fixing hole 140 or the mounting hole 138 concerned.
  • this ring, this fixing connector or any other intermediate element is screwed, driven out or fixed in any other way on the first main face 110 and / or the second main face 120.
  • this ring, this connection of fixing or this other intermediate element has a symmetry of revolution about an axis centered on the orifice concerned, and is therefore of circular section.
  • this ring, this fixing connector or this other intermediate element protrudes from the first main face 110 and / or from the second main face 120, projecting from this face, while forming an extension of the fixing hole 140 or delimiting said fixing hole 140.
  • this protruding portion may result from an added boss or else from a boss present on the first main face 110 and / or the second main face 120, as an integral portion of the tool 100 mass, facing and in the extension of the hole in question, as shown in Figures 40 to 44 for the fixing holes 140.
  • this projecting portion may also include a re-entrant shoulder defining a stop face and a narrower end portion (extent of the contour, for example in diameter) and optionally threaded.
  • the fixing holes 140 do not pass right through the tool 100 while extending a little in the part. massive tool 100 (which corresponds to the tool in its version of FIG. 8) and also passing through the bosses 141, the fixing holes 140 also opening out at the free end of the bosses 141: in fact the realization of 'a drilling in the form of a blind hole from the free end of the bosses 141 can generate a e extension of this fixing hole 140 throughout the length of the boss 141 and beyond (for example a few millimeters) in the solid part of the tool 100.
  • Figure 9 showing an outiMOO according to a fourth embodiment, with a perspective view corresponding to that of Figure 1 or Figure 8.
  • This fourth embodiment of the tool 100 is visible at rest in FIG. 9.
  • the tool 100 uses the same arrangements and parts as those previously described in relation to the third embodiment previously described in relation to FIG. 8.
  • This tool 100 of the fourth embodiment further comprises on the end faces 131 and 133 a recess 131a, 133a on which the mounting hole 138 opens.
  • These recess 131a, 133a extend between the first main face 110 and the second main face 120.
  • Each of these recesses 131a, 133a corresponds to a recessed area, such as a notch or a cutout, which is symmetrical on either side of the third plane of symmetry P3 and on either side and other of the second plane of symmetry P2.
  • These recesses 131a, 133a extend over the entire
  • FIG. 10 showing a tool 100 according to a fifth embodiment, with a perspective view corresponding to that of Figures 1, 8 'and 9.
  • This fifth embodiment of the tool 100 is visible at rest in FIG. 10.
  • the tool 100 uses the same arrangements and parts as those previously described in relation to the first embodiment previously described in relation to FIG. 1 except for the following aspects :
  • the depth P of the tool 100 (in the Y direction) is greater than that of the tool 100 in FIG. 1, and corresponds substantially to half the length L (in the Z direction).
  • the width I of the tool 100 (in the direction X) is greater than that of the tool 100 of FIG. 1 and is substantially equal to the length L (in the direction Z),
  • Two adjustment orifices 160 extend between the first main face 110 and the second main face 120; these two adjustment orifices 160 intersect with the third plane of symmetry P3, which also intersects with the mounting orifices 138 opening into the end faces 131 and 133,
  • each of the two adjustment holes 160 is located between two fixing holes 140 in the direction X,
  • each of the working orifices 150 extends between the two side faces 132 and 134, parallel to the X direction, each of the working orifices 150 having a section in the shape of a quarter of a circle, the four working orifices 150 being arranged around the center of the two side faces 132 and 134, the corner of their section near this center in order to define between them a circular overall section.
  • the four working orifices 150 are grouped together in a single working orifice of circular section extending between the two side faces 132 and 134.
  • the four working openings 150 have a cross-section
  • FIG. 11 showing a tool 100 according to a sixth embodiment, with a perspective view corresponding to that of Figures 1, and 8 to 10.
  • This sixth embodiment of the tool 100 is visible at rest in FIG. 11.
  • the tool 100 uses the same arrangements and parts as those previously described in relation to the third embodiment previously described in relation to FIG. 8 except for the following aspects :
  • the border 130 defines a profile of the tool 100 in the form of a lying H
  • the side faces 132 and 134 comprise a recess 136 which have, in projection on the first main face 110 (or on the second main face 120), a U-shape whose branches are closer than in the cases of Figures 1 to 10, the extension in direction Z (according to the Length L) of the recesses 136 corresponding approximately to 1/3 of the length L,
  • the depth P of the tool 100 corresponds to that of the tool 100 of FIG. 1,
  • the end faces 131 and 133 are shown without recess 137 but according to a variant not shown, the end faces 131 and 133 are also provided with a recess 137, U-shaped, which extends between the first main face 110 and the second main face 120,
  • This possible recess 137 then preferably extends in the Z direction over approximately one sixth of the length L of the tool 100, and in the X direction over approximately half of the width I of the tool 100,
  • the recesses 136 (and 137) have a U-shape, with two branches and a curved junction zone between the branches and the base of the U, with the two branches of the U of the profile of the recesses 136 (and 137) which are rectilinear and parallel to each other,
  • the fixing holes 140 open into the corners of the first main face 110 and of the second main face 120, taken in pairs, the fixing holes 140 are located on either side of each recess 136, substantially at the end of the branches of the H that the first main face 110 and the second main face 120 form in projection,
  • the adjustment orifices 160 being located near the junction zones between the base and the branches of the U delimited by the recess 136 of the side faces 132 and 134, symmetrically placed with respect to the plane P2 and P3,
  • the working orifice 150 opens out at the center of the first main face 110 and of the second main face 120: this working orifice passes through and has a larger diameter than in the case of the third embodiment previously described in relation to FIG. 8: it can in particular serve as a cage for a ball bearing.
  • FIG. 12 showing a tool 100 according to a seventh embodiment, with a perspective view corresponding to that of Figures 1, and 8 to 11.
  • This seventh embodiment of the tool 100 is visible at rest in FIG. 12.
  • the tool 100 uses the same arrangements and parts as those previously described in relation to the third embodiment previously described in relation to FIG. 8 except for the following aspects :
  • the edge 130 delimits an H profile of the tool 100
  • the side faces 132 and 134 comprise a recess 136 which have, in projection on the first main face 110 (or on the second main face 120), a U-shape whose branches are closer than in the cases of Figures 1 to 11, the extension in the Z direction (along the Length L) of the recesses 136 corresponding to approximately one fifth of the length L,
  • the depth P of the tool 100 (in the direction Y) is similar to that of the tool 100 of FIG. 1,.
  • This recess 137 extends in the Z direction over approximately one fifth or one sixth of the length L of the tool 100, and in the X direction over approximately half of the width I of the tool 100,
  • the recesses 136 and 137 have a U-shape, with two branches and a curved junction zone between the branches and the base of the U, with the two branches of the U of the profile of the recesses 136 and 137 which are rectilinear and parallel to each other ,
  • the four fixing holes 140 open into the corners of the first main face 110 and of the second main face 120, taken in pairs, the fixing holes 140 are located on either side of each recess 137, substantially at the same 'end of the branches of the H which form in projection the first main face 110 and the second main face 120,
  • the adjustment orifices 160 are eight in number, surrounding the working orifice 150, two adjustment orifices 160 being located on either side of each recess 136, and two adjustment orifices 160 being located near the zones junction between the base and the branches of the U delimited by the recess 137 of the end faces 131 and 133,
  • the working orifice 150 opens out in the center of the first main face 110 and of the second main face 120.
  • the planes P1 and P3 remain planes of symmetry while the plane P2 is a mean plane which is not a plane of symmetry.
  • the plane P2 is located at approximately 1/3 of the distance L starting from the end face 131.
  • the tool 100 of this eighth embodiment has, in projection on the first main face 110 (or the second main face 120) a shape which is therefore different in the part contiguous to the first end face 131, called the fixing portion 102, and which extends from this face
  • end 133 called the working portion 104, and which extends from this end face 131 in the Z direction to the position of the bottom of the recesses 136.
  • the fixing portion 102 projecting into the first face main 110, as can be seen in FIG. 14, there is a generally oblong shape oriented in the X direction, and for the working portion 104 a general shape of a rectangle, close to a square.
  • the recesses 136 have a U-shaped outline with an arcuate base. End face 131 (end face 133) extends substantially planar parallel to the X, Y plane, with a depressed area around mounting hole 138.
  • the edge 130 or the outline of the main face 110 follows an outline with a first convex portion, followed by a second concave portion at the location of the recess 136, then a rounded angle and convex up to a third rectilinear portion parallel to the Z axis.
  • Two fixing holes 140 are located in the fixing portion 102, facing each convex portion of the edge 130.
  • Two adjustment holes 160 arranged in the plane of symmetry P3 (Y, Z), one substantially in the middle of the working portion 104, and the other between the two recesses 136, make it possible to adjust the behavior in deformation (see FIGS. 15 to 17).
  • a working hole 150 It is possible to additionally place one or more of the following: a working hole 150, a raised area (such as 191 or 192 of Figures 21 and 22) or a mounting hole 138 / 139 in which is mounted an insert (such as the insert 220 of Figures 17 to 19) in the functional area 190 of the working portion 104.
  • a working hole 150 a raised area (such as 191 or 192 of Figures 21 and 22) or a mounting hole 138 / 139 in which is mounted an insert (such as the insert 220 of Figures 17 to 19) in the functional area 190 of the working portion 104.
  • This tool 100 further comprises, compared to the tool previously described in relation to FIG. 7, an additional 138 mounting hole in which is mounted an insert 220 (here in the form of a cylindrical rod of circular section), for to form a vibrant whole.
  • this additional mounting hole 138 opens onto the first main face 110, equidistant between the end faces 131 and 133, next to the central working hole 150 in a plane parallel to the plane (X, Y).
  • the second variant of the second embodiment of the tool 100 visible in FIG.
  • a vibrating assembly is formed with this tool 100 and four added elements 220 (here in the form of a cylindrical rod of circular section).
  • This insert or these insert elements 220 being fixed to the tool 100, is / are subjected to the vibrations of the tool 100 and thus enters (s) in vibration at the same frequency as the tool 100. They can thus be used to define a new work surface 190.
  • this insert 220 there may be mentioned a rod forming an accessory which can take the function of mixer or stirrer of a liquid or viscous product. It is also possible to use an insert 220 such as an insert for the cavity of a mold for plastic injection.
  • a vibrating assembly comprising a tool 100 and at least one insert 220 on said additional mounting hole 138 which intersects at least one functional zone 190.
  • FIGS. 21 and 22 showing in perspective respectively a third and a fourth variant of the second embodiment of the tool 100, in which the first main face 110 comprises one or more zone (s) in relief 191 or 192.
  • the tool 100 further comprises, with respect to the tool
  • these raised areas 191 are arranged at an equal distance between the end faces 131 and 133, on either side of the working orifice 150 (central on the first main face 110) while being
  • the tool 100 further comprises, with respect to the tool previously described in relation to FIG. 7, a projecting zone, forming a protrusion 192 with respect to the rest of the face 110.
  • this raised area 191 or 192 is disposed at an equal distance between the end faces 131 and 133, between the working orifice 150 (central on the first main face 110) and the side face 134.
  • a single hollow relief zone 191 can be provided, arranged like the projecting relief zone described above. in relation to FIG. 22 either one can provide two protruding relief zones 192 arranged like the recessed relief zones 191 previously described in relation to FIG. 21, or else it is possible to provide more than two relief zones (recessed 191 or protruding 192 or both recessed areas 191 and protruding areas).
  • these relief zones 191 or 192 are rectangular in shape in their extent in the Y direction (depth): other shapes can be provided.
  • This raised zone 191 or 192 can be used to form a mold portion, male or female, with a view to the manufacture of a part, in particular a plastic part, by injection.
  • the vibrations of the tool 100 make it possible to facilitate demoulding while keeping intact the micro-relief of the surface of the part originating from the surface microstructuring of the mold, the part of which male and / or female is formed at least in part on the tool 100 vibrated during demolding.
  • This (or these) zone (s) in relief 191 or 192 can also be used, to form one (or more) mold portion (s), male (s) and / or female (s), with a view to manufacturing a part, in particular a powder-based part, by pressing.
  • the application of vibratory waves during the pressing of the part in the mold makes it possible to reduce the friction of the powder pressed against the walls and to homogenize the distribution of the powder and therefore of the microstructure of the final part, during the pressing.
  • the vibration of the tool after pressing can also help to facilitate the ejection of the part obtained by pressing powder.
  • the tool 100 thus further comprises on at least one of said first main face 110 and of said second main face 120, a raised area, recessed 191 or protruding 192, by compared to the rest of the face.
  • the tool 100 has four nodal areas 180 and four fixing holes 140.
  • the tool then has three planes of symmetry, namely the first plane P1 (parallel to the plane (X , Z)), the second plane P2 (parallel to the plane (X, Y)) and the third plane P3 (parallel to the plane (Y, Z).
  • the plane P1 is a plane of symmetry of the tool 100, which is located between the two main faces 110 and 120.
  • the plane P2 is a plane of symmetry of the tool 100, which is located between the two end faces 131 and 133.
  • the plane P3 is a plane of symmetry of the tool 100, which is located between the two side faces 132 and 134.
  • the recesses 136 in the side faces 132 and 134 are symmetrical with respect to the planes P1, P2 and P3.
  • the recesses 136 in the side faces 132 and 134 are symmetrical with respect to the planes P1 and P3.
  • the distance separating the first main face 110 from the second main face 120 and forming the depth P is smaller than or equal to the width I, measured between the side faces 132, 134 of the edge 130.
  • Figure 23 illustrates a vibratory system 250 comprising a tool 100 according to the third embodiment of the invention mounted through its mounting hole 138 with a transducer 230 generating vibratory energy.
  • Tool 100 can be fixed directly or indirectly (with one or more intermediate pieces) to transducer 230.
  • Another tool 100 can be used according to one of the different embodiments presented in this text.
  • the transducer 230 is mounted at its end (via a fixing zone) to the tool 100 and the latter is fixed by means of its fixing holes 140 to a machine frame or other system.
  • the connection between the tool 100 and transducer 230 of Figure 23, or with any other element connected to a mounting port 138 (or 139) is direct or indirect.
  • this connection is effected for example by means of a connection element 231, in particular a connection tube.
  • a connection tube is solid or hollow, and is threaded at its ends for a threaded connection with the tool and with the transducer 230 or any other element mounted on the mounting hole 138 (or 139) of the tool 100.
  • Such a connecting element 231 is used when two parts cannot, because of their respective geometry, be directly connected to each other as in the illustrated figures, it can therefore be omitted in certain cases of figures not shown.
  • the tool 100 can form the fixing element of the vibratory assembly and also act as a sonotrode serving to restore the vibratory energy to another element.
  • the vibratory system 250 is associated with a standard sonotrode 232 mounted on the other mounting hole 138 of the tool 100, opposite the transducer 230.
  • the fixing holes 140 of the tool receive screws 233 each mounted in a fixing sleeve 234 for fixing to a fixing head 235 of the assembly forming for example an ultrasonic press.
  • Spacer elements 237 are used, for example in the form of metal or rubber washers or elastic or spring elements, which are placed between the tool 100 and the fixing head 235 (or other support part such as a frame), at the level of the fixing holes 140.
  • these spacers 237 are washers mounted around the fixing screws 233. These spacers 237 allow the assembly comprising the tool 100 d avoid a vibration absorption area at the attachment location of the tool 100, which minimizes not only energy loss but also noise.
  • the tool 100 then serves as a fastening element for the vibrating assembly.
  • the fixing head 235 is for example mounted on a pneumatic cylinder which allows vertical movement and thus an adaptation of the distance of the sonotrode 232 relative to the support table 236 of the press.
  • Figure 24 illustrates another vibratory system 251 comprising a tool 100 according to the third embodiment of the invention mounted directly through its mounting hole 138 with a booster 240, which is mounted through its other end to a transducer 230 generating vibratory energy.
  • a tool 100 can be used according to one of the different embodiments presented in the present text and in the other figures.
  • the booster 240 is mounted to a machine frame or other system to serve as a fastener for the vibrating assembly.
  • the tool 100 can for example form a sonotrode which will restore the vibratory energy on another element
  • Figure 26 is a variant of the assembly of Figure 25, forming a vibratory system 252, in which the booster 240 of the assembly of Figure 24 is replaced by another tool 100 'according to the third embodiment of the invention mounted by its mounting hole 138.
  • This second tool 100 'of the assembly of FIG. 25 can be another tool 100' according to one among the different embodiments presented in the present text and in the other figures, and in particular a different tool from the first tool 100.
  • This second tool 100 ′ and the first tool 100 can thus fulfill the functions according to these different configurations :
  • FIG. 27 showing a tool 100 according to a ninth embodiment, in a view corresponding to that of Figure 1.
  • This second embodiment of the tool 100 is visible at rest and alone on the figure 27, and in figure 28 when mounted in a
  • the tool 100 uses the same arrangements as those previously described in relation to the first embodiment.
  • this (these) additional mounting hole (s) 139 is a bore or an internal thread, which is arranged for example in the center of the corresponding side face 132 (134 ), and in particular in the center of the recess 136.
  • the tool according to the ninth embodiment can be fixed both by one of its mounting holes 138 and by one additional mounting holes 139, or by only one of the mounting tools 138, 139.
  • This tool 100 according to the ninth embodiment of the mounting of FIG. 27 (and FIG. 28) can be another tool 100 according to FIG. 'one of the different embodiments presented in the present text and in the other figures, and in particular a tool different from the first embodiment, with in addition one or two additional mounting holes 139.
  • Figure 28 is a variant of the assembly of figure 26, forming a vibratory system 253, in which the tool 100 'of the assembly of figure 26 is replaced by another tool 100' according to the ninth embodiment of the invention mounted by its mounting hole 138 from the end face 131 to the transducer 230 and by its mounting hole 139 from the side face 134 to a mounting hole 138 from the end face 131 of another tool 100 according to the ninth embodiment (or another embodiment) forming for example a sonotrode which will restore the vibratory energy to another element.
  • the second vibrating tool 100 'constitutes an element for fixing the vibratory system.
  • said tool constitutes a sonotrode, namely a vibrating element, when it is subjected to vibrations, in particular ultrasonic vibrations, and applies this vibratory energy to a gas, a liquid, a solid.
  • a sonotrode is used in particular in machining, welding and mixing, in particular by ultrasound.
  • the tool 100 (100 ') according to the invention is able to vibrate with a working frequency fo, which is according to one possibility a
  • This working frequency fO is for example between 20 kHz and 70 kHz, in particular between 20 kHz and 40 kHz and it is preferably of the order of 20 kHz.
  • the present invention also relates to a vibratory system intended to work at a determined frequency fO, comprising:
  • a transducer 230 capable of generating a vibratory excitation at a frequency f;
  • a tool 100 or a vibrating assembly said tool being fixed, directly or indirectly, to the transducer 230 by said mounting hole 138.
  • said vibratory system further comprises a booster 240 mounted on said transducer 230 and capable of amplifying
  • transducer 230 and tool 100 is not always shown in the figures, but it should be considered as an alternative mounting possibility.
  • a booster 240 model which has an internal cooling system will be chosen. Such a booster 240 with cooling serves as a thermal barrier to the
  • This thermal barrier avoids the risk of depolarization (loss of its permanent magnetization by a ferromagnetic material) of the ferromagnetic elements (piezoelectric element) of the transducer 230 by maintaining a temperature below the Curie temperature, ideally below 50 degrees Celsius, when the working temperature of the tool 100 is higher than the ambient temperature.
  • a pulse generator reference 840 in figures 44 to 47
  • the connection elements between the tool 100 and the transducer 230 reference 231 in figures 24, 26, 44 and 47
  • FIG. 29 showing in perspective and exploded a portion of a plastic injection machine in which the mold comprises, in the part of its carcass 303, a tool 100 according to the second embodiment which is interposed between the part of the carcass 303, by means of fixing wedges or spacers 237, and the part of the carcass 304 during injection.
  • the tool 100 has a working orifice 150 serving as a cavity for the plastic injection of a part.
  • the mobile part of the carcass 303 of the mold further comprises an ejection system composed of an ejector rod 302 movably mounted therein and being partially introduced into the tool 100 during the injection and then completely introduced through tool 100 at the time of ejection.
  • the two outer carcasses 303 and 304 of the mold are separated, the transducer 230 or other device generating vibratory energy at the desired frequency, causing the tool 100 to vibrate, whereby the part from material injection plastic is easily ejected from its cavity composed of the working orifice 150 of the tool 100, without damaging the surface structure of the part produced.
  • a plastic injection machine comprising a plastic injection mold, and a vibratory system as defined previously, comprising a tool 100, in which the first main face or the second main face of the tool is arranged, by means of fixing wedges or spacers 237, against a surface of the mold or of a part integral with the mold.
  • the setting in vibration of the tool 100 causes the vibration of the injection cavity of the mold composed of a working orifice 150, in particular during the discharge of the mold.
  • FIG. 30 showing in perspective and exploded a portion of a plastic extrusion machine in which a tool 100 according to the invention has a central working hole 150 opening between its first main face and his second side
  • the tool 100 is placed between a connection sleeve 402 upstream, and in val, an outlet end of the die 404 also provided with an outlet channel.
  • connection sleeve 402 upstream, and in val, an outlet end of the die 404 also provided with an outlet channel.
  • connection sleeve 402 whose extrusion channel is placed coaxially with the working orifice 150 of the tool.
  • the setting in vibration of the tool 100 contributes to reducing the pressure necessary for the extrusion of the material through the tool 100 as well as the outlet end of the die 404.
  • the setting in vibration of tool 100 also offers the possibility of extruding geometries of more complex shape which may also include thinner walls.
  • a plastic extrusion machine comprising a vibratory system as described above, and in this machine the tool 100 comprises a working orifice 150 forming a section of the extrusion die.
  • the orifices serves as a cooling channel 170 allowing the passage of a fluid (liquid or gas) for cooling or possibly heating of the tool 100.
  • Figure 32 showing in perspective and exploded a portion of a powder pressing machine (press) in which the female part of the mold comprises the working orifice 150 of a tool 100 according to the third embodiment.
  • a part of the frame 502 is disposed, by means of fixing wedges or spacers 237, against one of the main faces 110, 120 of the tool 100 and comprises a through orifice 504 coaxial with the working orifice 150
  • a first pressing punch 506 (upper punch in Figures 32 and 33), is able to move back and forth into and out of the working orifice 150 and a second pressing punch 508 (lower punch in Figures 32 and 33) ), is able to come and go through the orifice 504 of the frame and in and out of the working orifice 150.
  • the vibrating tool 100 can thus be integrated into a module for manufacturing parts by pressing, such as carbide inserts for machining in machine tools.
  • the vibrating tool 100 according to the invention can be used as part of a pressing die.
  • the application of vibratory waves makes it possible to reduce the friction of the powder pressed against the walls and
  • the vibration of the tool after pressing can also help to facilitate the ejection of the part obtained by pressing powder.
  • a powder pressing machine comprising a machine frame, at least one pressing punch movable in translation between a rest position and a working position, and a vibratory system as described above. , in which the first face or the second face of the tool is disposed, by
  • a tool 100 according to the invention has a central working orifice 150
  • a device is obtained with a ball bearing comprising a support plate and a shaft 604 mounted to rotate around its axis by means of rolling balls 602, and a vibratory system as described above, in which said support plate is disposed against the first main face or the second main face of the tool, by means of fixing wedges or spacers 237, and fixing elements connecting said support plate to said tool, wherein the fastening elements are arranged in the fastening holes, wherein said tool is provided with a through opening in said functional area, wherein said through opening is adapted to form an outer ring of the
  • said rolling balls 604 being interposed between said shaft and said through opening of the tool.
  • FIG. 36 showing in perspective and exploded an assembly of parts relating to a fluid treatment system, in which the female part of the mold comprises the working orifice 150 of a tool 100 according to the third embodiment.
  • This working port 150 is a continuation of an upstream pipe fitting 702 and a downstream pipe fitting 702, and it is also coaxial with the channels of these fittings 702.
  • the system further includes a mounting bracket 704 forming a frame with a passage for said upstream pipe 702 which is provided with at least one connection portion fixed to a nodal zone of the tool 100.
  • a possible application of this machine relates to the disinfection of water by cavitation. In this case, bacteriologically contaminated water can be treated as it passes through the working orifice 150 of the tool. Indeed, during the vibration of the tool 100, mechanical waves propagate in the water and form cavities filled with air which, within the moving liquid, act on the viruses and bacteria that are found. in water, especially by destroying them.
  • the setting in vibration of the tool 100 for the use of microfluidic devices makes it possible, through the vibrations, to reduce the friction forces during the circulation of the fluid in the microfluidic device.
  • a machine for the treatment of liquid circulating in a pipe by vibrating said liquid, said machine comprising a vibratory system as described above, in which said tool is provided with an orifice of working in said functional zone, which is able to form a passage for said liquid,
  • connection assembly for example a support flange of the sonotrode
  • connection assembly comprising a first piece of
  • connection and a second connection piece each
  • connection face with the tool, disposed against the tool, a passage aligned with the working orifice, a sleeve portion aligned with said passage and allowing the connection of the upstream portion, respectively downstream of the pipe, and to the minus one fixing hole
  • first main face 110 the second main face 120
  • connection face of the first (the second) connection part of the connection assembly in order to allow continuity of the fluid path.
  • spacers are used. 237 (see figure 36 showing washers around fasteners which are set screws) between each main face of the tool and the facing face (which is that of pipe fitting 702 in figure 36).
  • spacers 237 such as washers, can be used at the locations of these bearing areas to avoid contact between a functional area and the flat surface of a machine or installation when vibrating .
  • the first face and the second face of the tool remain flat and parallel to each other while the tool is subjected to the vibratory excitation.
  • spacers 237 when they are in the form of washers surrounding a fixing rod, such as the fixing sleeves 234 described above, allow a gap with the element supporting the tool (such as a machine frame): these spacing elements 237 then do not provide a mechanical link between the tool and its support (it is the fixing rod which provides the mechanical connection between the tool and its support) but provide clearance dimensional required for mounting tool 100.
  • fixing shims 2308 it is desired to use fixing shims 238, not only to create the spacing between the tool 100 and the element supporting the tool (such as a machine frame or a plate. support), but also to contribute to the rigid fixation of the vibrating tool 100 on the element supporting the tool (and not vibrating) and to the absorption of the forces generated by the vibrations of the tool 100.
  • FIG. 39 and FIG. 53 illustrate such cases: the fixing wedges 238 are fixed elements, in particular screwed (or embedded or hooped or welded), in the fixing holes 140 of the tool 100, on one or the other of the first main face 110 and the second main face 120 of the tool 100.
  • These fixing wedges 238 are provided with a through passage or partially passing through The first face of a support plate 801 having
  • Fasteners 210 are each mounted through a through opening 802 from the second face (rear face) of the backing plate 801, extending to 'to the through or partially through passage of one of the fixing wedges.
  • the fixing wedge 238 with a partially through passage (possible for figure 39) and in order to ensure the mechanical strength of the assembly, provision is made to securely attach the end portion of the locking elements.
  • This rigid mechanical connection, total (without degree of freedom), between each fixing element 210 and its associated fixing wedge 238, is for example produced by screwing (cooperation between a male thread on the end portion of the fixing elements 210 , then formed of fixing screws 233, and a female thread in the through passage of the fixing wedge 238) or by embedding / embedding, shrinking or welding.
  • screwing cooperation between a male thread on the end portion of the fixing elements 210 , then formed of fixing screws 233, and a female thread in the through passage of the fixing wedge 238) or by embedding / embedding, shrinking or welding.
  • the fixing is completely rigid and allows the forces undergone by the tool 100 to be taken up at the level of the fixing wedges 238 which constitute a physical extension of the tool 100 and undergo all the vibrations and deformations which reach them via the fixing holes 140, including the reciprocating movement of rotation around the nodal point, from where a work in torsion of the fixing wedges 238.
  • the vibrations of the tool 100 are generated by the transducer 230 which is connected via a connecting element 231 (and a possible booster 240 not shown) to the mounting hole 138 of the tool 100.
  • these fixing wedges 238 are considered rigidly fixed to the tool 100 and therefore undergo, at the time of the vibration of the tool 100, the torsional movement of the nodal point to which they are attached. These fixing wedges 238 are therefore an integral part of the assembly.
  • the fixing wedges 238 are made of a material which is not rigid, or not very rigid (with a Young's modulus of less than 20 GPa). In this second case, with fixing wedges 238 made of flexible material, it is possible to absorb the vibrations for a
  • the fixing wedges 238 are made of synthetic material such as a plastic material (such as rubber, polyamide or styrenic polymer)
  • fixing screws 233 (or more generally fixing elements such as 210) mounted each in one of the through openings 802 of the support plate 801 extending to the partially through passage of one of the fixing wedges 238, and these fixing wedges 238 making it possible to form, with the fixing screws 233 ( or more generally fixing elements such as 210), a rigid connection without a degree of freedom between the end portion of the through openings 802 of the support plate 801 with the fixing holes 140 of the tool 100.
  • transducer 230 via a connecting element 231) and the fixing holes 140 of the tool 100 receive screws 233 each mounted, from one of the faces 110, 120 of the tool 100, in a fixing sleeve 234 for a fixing the end portion of these screws 233 in the openings 802 of a support plate 801 used for the final assembly in the system using the tool 100, this support plate 801 being placed opposite the other faces 110, 120 of tool 100.
  • Elements spacers 237 in the form of washers are mounted around the fixing screws 233, in the extension of the fixing sleeves 234 between the support plate 801 and the other of the faces 110, 120 of the tool 100. According to such a configuration , more generally, at least one spacer element 237 disposed against the first main face 10 or the second main face 120 of the tool 100 is used, said elements
  • spacer 237 having a through passage, a support plate 801 placed against said spacer elements 237 with through openings 802 in correspondence with the fixing holes 140, and fixing sleeves 234 each mounted in one of the openings
  • fixing sockets 234 having a through passage, fixing screws 233 are each mounted through the fixing sockets 234 up to the
  • Figure 44 which shows an assembly similar to that of Figure 39, except that the tool is not that of Figure 8 associated with fixing wedges 238 but a tool 100 compliant to that of Figures 40 to 42 or that of Figure 43, namely a tool 100 with bosses 141 at the location of the fixing holes 140 and surrounding these fixing holes 140.
  • the arrangement of Figure 44 resumes the situation of the tool 100 of FIGS. 40 to 43, namely that the bosses 141 form portions of the tool which protrude with respect to the first main face 110 or with respect to the second main face 120.
  • FIG. 45 to 47 showing an ultrasonic drilling machine 800 which uses the tool 100 of Figure 8 with fixing wedges 238 and a similar assembly to that of Figure 39.
  • this ultrasonic drilling machine 800 can use the tool 100 of figure 40 and a similar assembly to that of figure 44 or 53, with bosses 141 instead of the fixing wedges 238.
  • some of the fixing holes 140 (three out of four in the example of Figures 45 to 47) are equipped with either a boss 141 or a clamp 238 (as in the example of figures 45 to 47) and secures the tool to a fixed support element, and another of these fixing holes 140.
  • fixing holes 140 As one of these fixing holes is not used for mounting on said fixed support element , the latter (a support plate 801 'in Figures 45 to 47) has no opening through rsante 802 corresponding (therefore only three through openings 802 for the support plate 801 'of Figures 45 to 47.
  • These (three) fixing holes 140 securing the tool 100 on the support plate 801' cooperate with three elements fixing 210 (three fixing screws 233 in figures 45 to 47) as previously described in relation to figures 39 and 44.
  • the last fixing hole 140 (fourth fixing hole 140 in figures 45 to 47) receives, on the main face of the tool opposite to that looking at the support plate 801 ′, a rotary rod 820.
  • This rotary rod 820 has a first end rigidly mounted in the latter fixing hole 140, for example by a threaded connection (as an alternative to this screwing, we can design a setting, shrinking, or welding).
  • This rigid connection between this rotary rod 820 and the last fixing hole 140 causes, when the tool 100 vibrates, a reciprocating rotary movement (back and forth movement) thus a percussion movement (axial reciprocating movement) of the rotary rod 820 forming a drilling bit which can thus perform a drilling operation.
  • the second, free end of this rotary rod 820 is shaped with a relief adapted to the material to be drilled.
  • the material of the drilling rod 820 is adapted to the type of drilling to be carried out, in particular to the material to be drilled.
  • This rotary rod 820 is rectilinear over its entire length in FIGS. 45 to 47, and is in this case designed to perform circular bores. In other cases not shown, this rotary rod 820 is rectilinear except in its second end which is curved, in particular in an arc of a circle. Such a drilling bit with a non-rectilinear free end, in particular curved, makes it possible, with a movement of the hand also curved, to produce non-rectilinear holes. Indeed, in this case, the head of the drilling rod 820 performs a rotation in a reciprocating movement capable of performing a drilling in the form of an arc of a circle.
  • a geometrically well-defined drilling rod 820 rotates according to a movement combining a rotating reciprocating motion and axial reciprocation (percussion) very stable and very precise, using, if necessary, masses positioned on the rod. drilling 820. It can also amplify the excitation movement of its point of attachment to the tool 100 with masses adjusted over the length of this drilling rod 820. Such masses are visible in FIGS. 45 to 47.
  • the geometry of a drilling rod can be shaped by conventional machining such as turning and milling but also by an MIM injection process (metal injection molding) followed by a debinding and sintering operation.
  • a body 830 is integrally connected to the support plate 801 '.
  • This body 830 comprises a hand grip 832 associated with a trigger 836 for controlling the vibration of the tool 100, and with a cable for the electrical supply of the transducer 230, of the possible booster 240, and of the generator. 'pulses 840.
  • This cable includes the control part of the pulse generator 840, that is to say the transmission of the signal from the trigger 836 to the pulse generator 840 for the activation of the transducer 230, as well as the feed portion of the transducer 230 from the pulse generator 840.
  • Another application relates to orthopedic surgery.
  • this tool conforms to that of Fig. 13 with two differences.
  • the first difference with the tool of FIG. 13 is that the tool of FIG. 48 additionally comprises channels for the circulation of fluid 170 (liquid or gas) extending into the working portion 104 forming the body of the 'tool. These channels 170 make it possible to circulate a liquid in the body of the tool 100 for cooling or
  • the bores forming these channels 170 open out on the faces 132, 1 33 and 134 because they are made in the form of two series of bores: a first series of holes parallel to the Z direction opens into the end face 133, and a second series of holes parallel to the X direction opens into the two side faces 132 and 134, intersecting with the first series of holes (see on figure 49).
  • These holes are used to circulate a liquid (cooling or heating) in the tool 100: it should be noted that this liquid will also be subjected to ultrasound, treatment follows and in particular disinfection by ultrasound due to the cavitation which occurs in this liquid, in particular from the 'water.
  • end 133 define the inlet 171 and the outlet 172 of the liquid in the tool 100 and the holes of the second series opening onto the side faces 132 and 134 pass through the tool along the X axis and connect the inlet 171 and the outlet 172 of the liquid in the tool 100.
  • the ends of the bores of the second series are closed by plugs 173 in order to define a circuit with a single inlet 171 and a single outlet 172 .
  • the tool of figure 48 is adapted to serve as a mold.
  • it comprises on one of its main faces 110 and 120 a raised area, in particular a recessed area 191 forming a cavity / an imprint contributing to forming the mold.
  • This recessed area 191 communicates with through working orifices 150 which extend between the first main face 110 and the second main face 120: these working orifices serve as housing for the ejector rods 302 which act at the time of discharge. of the mold.
  • the adjustment orifice 160' is located substantially in the middle of the working portion 104 and is connected to the recessed zone 191.
  • the adjustment orifice 160 ' serves as a feed channel for the injection of plastic material into the recessed area 191.
  • Figure 50 shows in perspective a portion of the mold of a plastic injection machine
  • FIG. 51 shows in perspective and exploded a portion of a plastic injection machine in which the mold comprises, in the part of its carcass 303, a tool 100
  • Tool 100 has a recessed area 191 forming a cavity / cavity for plastic injection of a part.
  • the movable part of the carcass 303 of the mold further comprises an ejection system composed of ejector rods 302 movably mounted therein and being partially introduced into the tool 100 during the injection and then completely introduced through the. tool 100 at the time of ejection. After the injection, during the
  • the two outer carcasses 303 and 304 of the mold are separated, the transducer 230 or other device generating vibratory energy at the desired frequency, vibrating the tool 100, whereby the part resulting from the injection of material plastic is easily ejected from its cavity composed of the recessed region 191 of the tool 100, and this, without damaging the surface structure of the part produced.
  • a plastic injection machine comprising a plastic injection mold, and a vibratory system as defined previously, comprising a tool 100, in which the first main face or the second main face of the tool is placed, by means of fixing wedges 238 or spacers 237, against a surface of the mold or of a part integral with the mold.
  • the setting in vibration of the tool 100 causes the vibration of the injection cavity of the mold composed of the recessed zone 191, in particular during the unloading of the mold.
  • FIG 52 Another and second variant of the eighth embodiment of the tool 100 is shown in Figure 52.
  • This tool differs from that of Figures 13 to 17 in that it comprises two fixing portions 102, on the part on the other side of the working portion 104. Therefore, the two side faces 132 and 134 each have two recesses 136, four fixing holes 140 are present (two per fixing portion 102) and three adjustment holes 160 are present. (one substantially in the middle of the working portion 104, and each of the other two respectively adjacent to one and the other of the fixing portions 102, between the two recesses 136). It appears that the designs of vibrating tools which have just been described make it possible to maintain a vibratory mode which causes the contraction and expansion of the tool in particular over the length of the latter, namely between the faces of the tool. 'ends, but also over the width of the tool, namely between the side faces of the border.
  • the tool has a dimensional ratio between its width and its length (measured at rest therefore without vibratory stress or excitation, respectively between the side faces of the edge and between the end faces of the edge) which is between 0.6 and 0.9, and preferably between 0.7 and 0.85.
  • the tool is made of a material
  • the tool can be machined. by conventional processes such as milling and wire EDM but also by processes such as metal 3D printing (selective laser sintering) or the combination of milling and 3D printing processes for the manufacture of a same tool 100.
  • Fluid circulation channel (liquid or gas)

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Dentistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Materials Engineering (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Structural Engineering (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

L'invention concerne un outil (100) apte à vibrer lorsqu'il est soumis à une excitation vibratoire de fréquence f. L'outil (100) définit un premier plan P1 moyen formé entre une première face principale (110) et une deuxième face principale (120), un deuxième plan P2 et un troisième plan P3 orthogonaux à la première face principale (110) et à la deuxième face principale (120), le troisième plan P3 formant un plan de symétrie,*ladite bordure (130) formant au moins deux renfoncements (136), ledit outil (100) comportant au moins un orifice de fixation (140) et au moins un orifice de montage (138).

Description

Outil vibrant et système vibratoire comprenant un tel outil
Domaine technique
[0001] La présente invention concerne un outil vibrant, à savoir un outil dont l'utilisation s'effectue lorsque cet outil est soumis à une vibration, afin de réaliser l'opération pour laquelle cet outil est prévu. Par exemple, les outils à ultrasons de type sonotrode sont des outils vibrants utilisés pour l'application des ultrasons dans divers procédés. Selon un autre exemple, les boosters utilisés pour la fixation et l'augmentation d'amplitude de vibration dans les systèmes à ultrasons sont également des outils vibrants.
[0002] Parmi les systèmes à ultrasons, on peut citer de manière non limitative les systèmes à soudure plastique, tels que les presses électriques de soudage ultrasons, les systèmes de scellage, de tranchage, de découpage ou d'assemblage à ultrasons. Ces systèmes ou installations permettent notamment de réaliser les applications industrielles suivantes :
- soudage de pièces en plastique et en métal,
- découpage d'aliments, de textile, de plastique, de tissus organiques,
- le nettoyage de pièces par des bains à ultrason,
- le tamisage de poudre....
[0003] L'outil selon la présente invention est un outil soumis à une excitation vibratoire qui reporte cette excitation sur un autre élément. Cet élément peut être un élément fluidique, un élément gazeux, un élément liquide, un élément souple et bidimensionnel comme par exemple un tissu, ou un élément solide comme une autre pièce métallique par exemple.
Selon une possibilité, cet outil est métallique. Selon une possibilité, cet outil forme un ensemble intégral. En particulier, mais de façon non limitative, cet outil est soumis à une excitation vibratoire de type ultrason.
[0004] Notamment, selon une possibilité, cet outil forme une sonotrode, à savoir une pièce métallique soumis à une excitation sous forme d'onde ultrason et qui restitue cette excitation à un autre élément. Les oncles ultrasons s'entendent comme des ondes présentant une fréquence comprise entre 20 KHz et 70 KHz. Ainsi, la sonotrode résonne en fréquence en se "contractant" et en se "dilatant" x fois par seconde (x étant la fréquence) dans une amplitude généralement de quelques micromètres (par exemple de 13 à 130 pm environ).
[0005] La présente invention concerne également un système vibratoire comportant un tel outil vibrant.
Etat de la technique
[0006] Dans ces systèmes vibratoires, on trouve classiquement différents organes fonctionnels, parmi lesquels un générateur d'ultrasons, un bâti, une table d'appui, une tête de fixation mobile par rapport au bâti, :
- un convertisseur piezo-électrique (ou transducteur) qui est relié
électriquement au générateur d'ultrasons et qui est monté sur la tête de fixation ; ce transducteur a pour fonction de transformer la fréquence électrique en vibrations mécaniques de même fréquence,
- un booster, ou modificateur d'amplitude, monté sur le transducteur et qui permet d'augmenter ou de réduire l'amplitude produite par le
transducteur, et
- une sonotrode montée sur le booster et qui transmet l'énergie
ultrasonore à la pièce à souder ou à couper et qui forme le dernier élément en aval de la chaîne acoustique, et forme l'outil de travail.
[0007] Cet outil présente une géométrie et une dimension dépendant de différents paramètres, parmi lesquels :
- la fréquence vibratoire utilisée pour l'excitation,
- la zone de contact ou surface utile de la sonotrode qui est utilisée appliquer et retransmettre l'énergie vibratoire, et pour accomplir une tâche...
A cet effet, actuellement les concepteurs de sonotrode partent d'une barre de matière ronde ou carré qui est ajustée : - en longueur pour correspondre grossièrement à la fréquence s'excitation,
- par différentes détails géométriques pour correspondre à l'application et à la fréquence s'excitation qui sera utilisée (ajustement plus fin). Parmi les différents types de sonotrodes connues, une forme fréquente de sonotrode correspond à une forme générale conique pour de la soudure ou bien une forme de burin ou de lame à section triangulaire pour de la découpe (sonotrode linéaire).
[0008] Par ailleurs, un outil de type sonotrode comporte non seulement une zone utile ou zone de travail mais également des zones spécifiques au moins pour le montage de l'outil dans la chaîne de transmission de l'excitation vibratoire (cette chaîne formant un système vibratoire), et pour la zone utile ou zone de travail.
[0009] Ce système vibratoire comporte, éventuellement au niveau de l'outil ou d'une autre partie, au moins une zone spécifique pour fixer ce système vibratoire dans l'installation ou la machine. Par exemple, classiquement le booster comporte une flasque annulaire en regard du point nodal de vibration, afin de permettre la fixation rigide du système vibratoire sur un support tel qu'un bâti de machine. On profite donc de l'existence d'une zone nodale pour effectuer cette fixation. Une telle zone nodale est une zone entourant un point nodal, et dans laquelle la déformation est très limitée, cette déformation étant nulle dans une ou plusieurs directions à l'emplacement du point nodal.
[0010] Le fait que le système vibratoire ne peut être fixé qu'au point nodal sur le booster empêche d'utiliser le système vibratoire pour d'autres applications, notamment du fait de l'encombrement de ce mode de fixation. En outre, la sonotrode ne peut être contact qu'avec la pièce à traiter par cette sonotrode formant outil, faute de quoi si un autre élément venait en contact avec la sonotrode, il s'ensuivrait un effet de grippage néfaste au bon déroulement du traitement de la pièce. [0011] Le document EP2300217 décrit un système de fixation de sonotrodes. Dans le document, EP2300217, le support comprend une partie de contact ayant une surface d'appui intérieure qui est utilisée pour mettre en contact la sonotrode. Une bride s'étend vers l'extérieur à partir de l'arbre de liaison et se termine par un périmètre extérieur. Une partie de montage annulaire est fixée à la bride entre la partie de contact et le périmètre extérieur. La partie de montage annulaire est construite de telle sorte qu'elle entre en résonance environ à la fréquence prédéterminée, et en fonctionnement, la partie de contact de la monture est couplée à la sonotrode en un point formant une surface d'appui extérieure où la sonotrode forme un nœud à ladite fréquence prédéterminée.
[0012] Les documents US1805284912 et US1806022016 décrivent un système de fixation d'un ensemble transducteur et sonotrode. Dans le document US1805284912, on propose une interface de structure de support positionnée à un nœud de déplacement oscillant longitudinal du
transducteur ; une structure de support espacée de la sonotrode et s'étendant depuis l'interface de structure de support dans une direction sensiblement parallèle à un axe longitudinal de la sonotrode ; et une bride montée sur la structure de support au nœud de déplacement oscillant radial de la structure de support. Le document US1806022016 prévoit un montage intégré en flexion pour l'isolation dynamique des transducteurs ultrasonores à utiliser avec une machine de câblage par fil. Le transducteur présente un corps de forme généralement allongée ayant des parties avant, arrière et principale. Le transducteur possède des brides de montage pour le montage du transducteur sur la machine de câblage. Les brides de montage ont au moins deux flexions intégrées qui relient la bride de montage à la partie principale du corps du transducteur et définissent au moins un orifice de flexion.
[0013] Pour les systèmes de fixation d'un outil ou autre élément vibrant se pose le problème de tenir compte des différentes composantes de la déformation en fonctionnement vibratoire. En général, un compromis est effectué pour le choix de l'emplacement de fixation afin de tenir compte à la fois de la composante axiale et de la composante radiale de la déformation, pour que le point de fixation soit le plus proche possible à la fois d'un point nodal axial et d'un point nodal radial. Des brides ou autres portions en excroissance sont utilisées pour servir de zone de fixation et perturbent le comportement vibratoire de la sonotrode.
[0014] On comprend que les systèmes de fixation de sonotrodes proposés jusqu'alors sont complexes, et exigent différentes pièces au montage, requièrent un temps de montage et démontage significatif et présentent des géométries et encombrements qui limitent les applications possibles de la sonotrode.
Bref résumé de l'invention
[0015] Un but de la présente invention est de proposer un outil vibrant exempt des limitations des outils vibrants connus.
[0016] Un autre but de l'invention est de fournir un outil vibrant qui puisse être utilisé non seulement pour sa fonction en mode vibratoire, mais également qui puisse être directement et simplement fixé à un support ou un bâti de machine ou une autre installation.
[0017] Selon l'invention, ces buts sont atteints notamment au moyen d'un outil apte à vibrer lorsqu'il est soumise à une excitation vibratoire de fréquence f,
ledit outil étant massif et définissant :
- une première face principale et une deuxième face principale
essentiellement planes, présentant le même contour et parallèles entre elles, la projection orthogonale de ladite première face principale et de ladite deuxième face principale étant circonscrite dans un rectangle, ce par quoi la première face et la deuxième face définissent chacune quatre côtés, et
- une bordure encerclant ledit outil et constituée de surfaces
perpendiculaires à ladite première face principale et à ladite deuxième face principale, *ledit outil définissant trois plans: un premier plan P1 étant le plan moyen formé entre la première face principale et la deuxième face principale, un deuxième plan P2 et un troisième plan de symétrie P3 orthogonaux à la première face principale et à la deuxième face principale , le deuxième plan P2 et le troisième plan P3 étant orthogonaux entre eux, le deuxième plan P2 formant un plan moyen entre deux côtés opposés de ladite bordure formant des faces d'extrémités et le troisième plan de symétrie P3 formant un plan de symétrie entre les deux autres côtés opposés de ladite bordure formant des faces latérales,
*ladite bordure formant au moins deux renfoncements situés sur deux côtés opposés de ladite bordure formant les faces latérales,
ledit outil étant agencé de sorte que pendant la vibration à une fréquence de travail fO prédéfinie, certaines zones de la pièce forment des zones nodales et au moins une zone fonctionnelle qui présente une déformation pendant ladite excitation vibratoire,
ledit outil comportant au moins un orifice de fixation apte à relier ledit outil à un autre élément, et
ledit outil comportant en outre au moins un orifice de montage
débouchant dans la bordure et apte à relier ledit outil à un élément présentant une énergie vibratoire.
[0018] Dans le présente texte, l'expression « plan moyen » signifie le plan situé à mi-distance de deux faces ou côtés opposés de l'outil.
[0019] Le demandeur a trouvé qu'un outil vibrant présentant une telle géométrie est apte à vibrer tout en gardant des zones nodales aptes à la fixation de l'outil.
[0020] Cette solution présente notamment l'avantage par rapport à l'art antérieur de permettre d'effectuer un maintien direct de l'outil vibrant (par exemple à titre de sonotrode) sur une machine ou un système, et ce au moins au moyen de l’orifice de fixation. [0021] De cette façon, grâce notamment à la géométrie de l'outil qui ne comporte pas de portion en saillie pour la fixation, on ne perturbe pas le mode propre de vibration de l'outil contrairement à bon nombre d'outils vibrants de l'art antérieur.
[0022] L'outil selon la présente invention présente une géométrie qui présente des points nodaux entourés de zones nodales permettant de fixer l'outil à un élément extérieur rigide et fixe, tout en gardant la liberté requise pour la propagation de l'onde mécanique et à l'excitation vibratoire de l'outil à son mode propre en dehors des zones nodales, comprenant des zones fonctionnelles. Il est en effet possible de maintenir l'outil dans trois directions de manière suffisamment précise, tout en laissant l'outil vibrer sans restriction. La zone fonctionnelle correspond à une zone de l'outil avec une variation de déformation importante, de forte amplitude, qui est utilisée à titre de vibration mécanique lors de la mise en oeuvre de l'outil.
[0023] Les renfoncements correspondent à des zones en retrait, telles que des encoches ou des découpes, qui sont symétriques de part et d'autre du troisième plan de symétrie P3. Par exemple, chaque renfoncement est disposé à mi-longueur de la face latérale qui le porte. Selon une possibilité, chaque renfoncement est centré sur la face latérale qui le porte. Selon une possibilité, chaque renfoncement s'étend depuis la première face principale jusqu'à la deuxième face principale.
[0024] La première face principale et la deuxième face principale sont parallèles entre elles et sont essentiellement planes. Dans certaines configurations, elles sont effectivement entièrement planes (et le premier plan P1 forme un plan de symétrie entre la première face principale et la deuxième face principale) et dans d'autres configuration l'une au moins d'entre elle comporte une zone en relief, notamment une zone en saillie ou en creux telle qu'une cavité/une empreinte pouvant en particulier servir respectivement de moule ou de contre-moule. La première face principale et la deuxième face principale présentent le même contour, c'est-à-dire qu'elles présentent la même forme et la même taille, en d'autres termes le contour de la première face principale et de la deuxième face principale sont superposables.
[0025] Selon un mode de réalisation, l'outil est monobloc.
[0026] L'invention propose une conception particulière d'outil vibrant différente, notamment un outil à ultrasons de type sonotrode ou booster, qui puisse être fixé directement au bâti d'une machine. L'outil en question est exempt des limitations de possibilité d'intégration des outils connus de type sonotrode ou booster dans un système mécanique ainsi que des possibilités de fixations connues et utilisées jusqu'à présent.
[0027] Comme on le verra ci-après, un tel outil permet notamment d'être monté comme sonotrode à un système conventionnel comportant un transducteur et un booster, ce qui le rend compatible avec des systèmes de génération et d'amplification d'ondes vibratoires existants, notamment des systèmes de génération et d'amplification d'ondes ultrasonores existants.
[0028] De plus, comme il sera exposé ci-après l'outil vibrant selon l'invention est utilisable selon des fonctionnalités diverses facilement intégrables dans des systèmes ou des procédés de fabrication industriels, tels que ceux existants, ou également selon de nouvelles possibilités d'utilisation.
Brève description des figures
[0029] Des exemples non limitatifs de mise en oeuvre de l'invention sont indiqués dans la description illustrée par les figures annexées dans lesquelles :
- La figure 1 illustre en perspective un outil vibrant conforme à la
présente invention selon un premier mode de réalisation, - La figure 2 est une vue en projection de l'outil de la figure 1 selon sa face avant selon la direction II de la figure 1,
- La figure 3 est une vue de côté en projection de l'outil de la figure 1 selon un de ses côtés selon la direction III de la figure 1,
- Les figures 4A et 4B sont des vues de face analogues à celle de la figure 2 à deux moments distincts pendant la mise en vibration de l'outil de la figure 1, les lignes en traits tillés indiquant les zones nodales,
- La figure 5 est une vue analogue à celle de la figure 3 pendant la mise en vibration de l'outil de la figure 1,
- Les figures 6A et 6B sont des vues de face analogues respectivement à celles des figures 4A et 4B pendant la mise en vibration d'un outil selon un deuxième mode de réalisation, les lignes en traits tillés indiquant les zones nodales,
- La figure 7 est une vue en perspective de l'outil selon le deuxième mode de réalisation, après montage sur une plaque de support,
- La figure 8 est une vue en perspective similaire à la figure 1 pour un outil conforme à un troisième mode de réalisation de l'invention,
- La figure 9 est une vue en perspective similaire à la figure 1 pour un outil conforme à un quatrième mode de réalisation de l'invention,
- La figure 10 est une vue en perspective similaire à la figure 1 pour un outil conforme à un cinquième mode de réalisation de l'invention,
- La figure 11 est une vue en perspective similaire à la figure 1 pour un outil conforme à un sixième mode de réalisation de l'invention,
- La figure 12 est une vue en perspective similaire à la figure 1 pour un outil conforme à un septième mode de réalisation de l'invention,
- La figure 13 est une vue en perspective similaire à la figure 1 pour un outil conforme à un huitième mode de réalisation de l'invention,
- La figure 14 est une vue de face similaire à la figure 2 pour l'outil de la figure 13 selon le huitième mode de réalisation de l'invention, selon la direction XIV de la figure 13, - Les figures 15 et 16 sont des vues de face analogues respectivement à celles des figures 4A et 4B pendant la mise en vibration d'un outil selon le huitième mode de réalisation de l'invention, les lignes en traits tillés indiquant les zones nodales,
- La figure 17 est une vue de côté analogue à celle de la figure 3
pendant la mise en vibration de l'outil des figures 14 à 16 selon le huitième mode de réalisation de l'invention, selon la direction XVII de la figure 13,
- Les figures 18 et 19 représentent des vues en perspective d'un outil selon une première variante du deuxième mode de réalisation, pour laquelle un orifice de montage permet de recevoir un accessoire,
- La figure 20 représente une vue en perspective d'un outil selon une deuxième variante du deuxième mode de réalisation, pour laquelle plusieurs orifices de montage permettent de recevoir chacun un accessoire,
- La figure 21 représente une vue en perspective d'un outil selon une troisième variante du deuxième mode de réalisation, pour laquelle deux portions de la face avant sont en retrait et forment une cavité,
- La figure 22 représente une vue en perspective d'un outil selon une quatrième variante du deuxième mode de réalisation, pour laquelle une portion de la face avant est davantage en avant et forme une saillie ou protrusion,
- La figure 23 représente une vue en perspective d'un outil selon le troisième mode de réalisation de l'invention monté directement avec un transducteur générant l'énergie vibratoire à la fréquence souhaitée,
- La figure 24 représente une vue en perspective d'un outil selon le troisième mode de réalisation de l'invention monté sur un booster ou modificateur d'amplitude, lequel est associé à un transducteur générant l'énergie vibratoire à la fréquence souhaitée, ledit outil formant une sonotrode,
- La figure 25 illustre une vue générale en perspective et en éclaté d'un assemblage dans lequel un outil vibrant selon le troisième mode de réalisation de l'invention est utilisé comme pièce de fixation sur une presse à ultrason,
- La figure 26 représente une vue en perspective d'un montage avec deux outils selon le troisième mode de réalisation, montés en série et servant respectivement de booster ou modificateur d'amplitude monté sur un transducteur, et de sonotrode,
- La figure 27 est une vue en perspective similaire à la figure 1 pour un outil conforme à un neuvième mode de réalisation de l'invention,
- La figure 28 représente une vue en perspective d'un montage avec deux outils selon le neuvième mode de réalisation, montés en série perpendiculairement l'un à l'autre, et avec un transducteur,
- La figure 29 illustre une vue générale en perspective et en éclaté d'un assemblage dans lequel un outil vibrant selon un dixième mode de réalisation de l'invention est utilisé comme moule d'injection,
- La figure 30 illustre une vue générale en perspective et en éclaté d'un assemblage dans lequel un outil vibrant selon un onzième mode de réalisation de l'invention est utilisé comme matrice d'extrusion,
- La figure 31 est une vue partielle de la figure 30, montrant après montage, en perspective et en coupe selon la direction XXXI de la figure 30, le montage de l'outil vibrant utilisé comme matrice d'extrusion,
- La figure 32 illustre une vue générale en perspective et en éclaté d'un assemblage dans lequel un outil vibrant selon le troisième mode de réalisation de l'invention est utilisé comme matrice de pressage de poudre,
- La figure 33 est une vue partielle de la figure 32, après montage, montrant en perspective et en coupe selon la direction XXXIII de la figure 32, le montage de l'outil vibrant utilisé comme matrice de pressage de poudre,
- La figure 34 illustre une vue générale en perspective et en éclaté d'un assemblage dans lequel un outil vibrant selon un douzième mode de réalisation de l'invention est utilisé comme cage extérieure d'un système de roulement à billes,
- La figure 35 est une vue partielle de la figure 34, après montage, montrant en perspective et en coupe selon la direction XXXV de la figure 34, le montage de l'outil vibrant utilisé comme cage extérieure d'un système de roulement à billes,
- La figure 36 illustre une vue générale en perspective et en éclaté
d'un assemblage dans lequel un outil vibrant selon une variante du troisième mode de réalisation de l'invention est utilisé comme matrice de traitement de fluide,
- La figure 37 est une vue partielle de la figure 36, montrant après montage, en perspective et en coupe selon la direction XXXVII de la figure 36, le montage de l'outil vibrant utilisé comme matrice de traitement de fluide,
- La figure 38 est une représentation graphique de la déformation de l'outil sur une période P de vibration, avec l'amplitude de vibration A en ordonnée et le temps en abscisse,
- La figure 39 montre un outil selon la figure 8 dans un assemblage, représenté en perspective éclatée, permettant une fixation rigide de cet outil sur un support non vibrant,
- La figure 40 est une vue en perspective d'un outil selon une variante du troisième mode de réalisation, pour laquelle des bossages ou des bagues formant raccords de fixation, entourent et prolongent les orifices de fixation,
- La figure 41 est une vue de côté en projection de l'outil de la figure 40 selon un de ses côtés selon la direction X de la figure 40,
- Les figures 42 et 43 sont des vues en coupe de l'outil de la figure 40 selon la direction X, respectivement pour des orifices de fixation traversants et pour des orifices de fixation s'étendant seulement dans la longueur du bossage,
La figure 44 montre un outil selon la figure 40 dans un assemblage similaire à celui de la figure 39, représenté en perspective éclatée, permettant une fixation rigide de cet outil sur un support non vibrant,
- Les figures 45 et 46 sont des vues respectivement en perspective et de côté d'une machine de perçage à ultrason utilisant l'outil de la figure 40,
- La figure 47 est une représentation en perspective éclatée de la
machine de perçage à ultrason de la figure 45,
- La figure 48 est une vue en perspective depuis le dessous d'un outil selon une première variante du huitième mode de réalisation, pour laquelle des orifices de travail sont présents et forment des passages pour la circulation d'un liquide,
- La figure 49 représente l'outil de la figure 48 en coupe selon un plan perpendiculaire à l'axe Y, cette coupe étant partielle et affectant la portion de travail ou partie inférieure de l'outil,
- Les figures 50 et 51 représentent respectivement en perspective et en éclaté un assemblage dans lequel un outil selon la première variante du huitième mode de réalisation est utilisé comme moule d'injection,
- La figure 52 est une vue de face d'un outil selon une deuxième
variante du huitième mode de réalisation, pour laquelle il y a deux portions de fixation, de part et d'autre de la portion de travail, et
- Les figures 53 et 54 montrent un outil selon la figure 8 dans un
assemblage, représenté en perspective éclatée, permettant une fixation rigide avec reprise des efforts de cet outil sur un support non vibrant.
Exemple(s) de mode de réalisation de l'invention
[0030] On se rapporte à la figure 1 représentant un outil vibrant 100 selon un premier mode de réalisation de l'invention. Cet outil vibrant présente une forme générale de parallélépipède rectangle échancré le long des deux côtés opposés formant les flancs ou faces latérales. On distingue une première face principale 110 (à l'avant sur la figure 1) et une deuxième face principale 120 (cachée à l'arrière sur la figure 1), planes et parallèles entre elles et entre lesquelles le contour de l'outil 100 suit une bordure 130. La profondeur P de l'outil 100 correspond à la distance séparant la première face principale 110 de la deuxième face principale 120, selon un axe Y. Cette bordure 130 encercle l'outil 100. Cette bordure 130 définit quatre faces symétriques deux à deux qui délimitent les quatre côtés de la première face principale 110 et de la deuxième face principale 120. Cette bordure 130 définit deux faces d'extrémité 131 et 133 sur deux côtés opposés de l'outil. Entre ces deux faces d'extrémité 131 et 133 on définit la longueur L de l'outiMOO (selon un axe Z). Cette bordure 130 définit également deux faces latérales 132 et 134 ou flancs sur les deux autres côtés opposés de l'outil 100. Entre ces deux faces latérales 132 et 134 on définit la largeur I de l'outil (selon un axe X orthogonal à l'axe Z). Dans ce premier mode de réalisation, les faces d'extrémité 131 et 133 sont planes et parallèles entre elles, et également parallèle au plan (X, Y).
[0031] Les axes X, Y, Z définissent un repère orthogonal. Dans ce premier mode de réalisation, l'outil 100 présente trois plans de symétrie P1, P2 et P3, orthogonaux entre eux. Le premier plan de symétrie P1 est un plan de symétrie pour l'outil 100, parallèle au plan (X, Z), situé entre la première face principale 110 et la deuxième face principale 120 (c'est un plan moyen par rapport à la première face principale 110 et à la deuxième face principale 120). Le deuxième plan de symétrie P2 est un plan de symétrie pour l'outil 100, parallèle au plan (X, Y), entre les deux faces d'extrémité 131 et 133. Le troisième plan de symétrie P3 est un plan de symétrie pour l'outil 100, parallèle au plan (Y, Z), entre les deux faces latérales 132 et 134.
[0032] Les deux faces latérales 132 et 134 présentent un renfoncement, 136, s'étendant depuis la première face principale 110 jusqu'à la deuxième face principale 120, donc sur toute la profondeur P de l'outil 100, sur environ 1/2 de la longueur L de l'outil 100, à égale distance de la première face d'extrémité 110 et de la deuxième face d'extrémité 120. Ces
renfoncements 136 présentent, en projection sur la première face
principale 110 (ou sur la deuxième face principale 120), une forme en U, avec deux branches et une zone de jonction courbe entre les branches et la base du U. Dans le cas du premier mode de réalisation, comme on le voit sur les figures 1 et 2, les deux branches du U du profil des renfoncements 136 sont courbes et évasées. Ces deux branches du U du profil des renfoncements 136 peuvent aussi être rectilignes, évasées ou parallèles entre elles. Alternativement, on peut avoir une forme d'arc de cercle pour les deux branches du U du profil des renfoncements 136.
[0033] L'outil 100 forme un objet massif qui comporte les orifices suivants :
- un orifice de montage 138 s'étend dans l'outil 100 depuis la face
d'extrémité 131, par exemple sous forme d'un alésage ou d'un taraudage, au centre de la face d'extrémité 131 pour respecter la symétrie de l'outil 100 et permettre un fonctionnement correct lorsqu'il est soumis à
l'excitation vibratoire ; de manière optimale, ledit orifice de montage 138 est centré sur l'une des faces d'extrémité 131 ou 133, avec ledit orifice de montage 138 qui est à l'intersection du premier plan P1 et du troisième plan P3 ; de manière optionnelle, un autre orifice de montage 138 s'étend dans l'outil 100 depuis l'autre face d'extrémité 133 ; de préférence et dans les cas représentés, cet orifice de montage 138 ou ces orifice de montage 138 présente(nt) une section circulaire et sont rectilignes (selon la direction Y) ;
et
- quatre orifices de fixation 140 s'étendent dans toute la profondeur P de l'outil 100 depuis la première face principale 110, et sont répartis de manière symétrique par rapport aux plans de symétrie P2 et P3. Ces orifices de fixation 140 se présentent par exemple sous forme d'un alésage ou d'un taraudage ; de préférence et dans les cas représentés, cet orifice de fixation 140 ou ces orifices de fixation 140 présente(nt) une section circulaire et sont rectilignes (selon la direction Y).
[0034] L'orifice de montage 138 (ou les deux orifices de montage) qui débouche(nt) dans la bordure 130 ser(ven)t à relier l'outil 100 à un élément présentant une énergie vibratoire, de manière directe, ou bien de manière indirecte. En cas de présence de deux orifices de montage, l'autre orifice de montage peut servir à relier l'outil 100, de manière directe, ou bien de manière indirecte, à un autre élément de la chaîne de transmission de l'excitation vibratoire (cette chaîne formant un système vibratoire).
[0035] Le ou les orifices de fixation 140 débouche(nt) dans la première face principale 110 ou bien dans la deuxième face principale 120 ou bien à la fois dans la première face principale 110 et dans la deuxième face principale 120. Ainsi, le ou les orifices de fixation 140 peuvent être des trous débouchants, ou des trous non débouchants comme des trous borgnes qui sont ouverts sur l'une ou l'autre parmi la première face principale et la deuxième face principale (dans ce cas, les différents orifices de fixation 140 peuvent s'ouvrir tous sur la même face ou bien certains sur la première face principale et d'autres sur la deuxième face principale). Le ou les orifices de fixation 140 ser(ven)t à fixer l'outil 100, de manière directe, ou bien de manière indirecte, à un autre élément qui est destiné à faire office de support de fixation à l'outil 100 et l'ensemble du système vibratoire qui y est rattaché de manière directe ou bien de manière indirecte. Le ou les orifices de fixation 140 peuvent présenter des formes et des dimensions différentes, en restant centrés sur et limités en extension sur les zones nodales 180. Le ou les orifices de fixation 140 peuvent permettre à une tige logée dans cet orifice de fixation mais non reliée à une pièce fixe, de tourner selon un mouvement de rotation alterné, par exemple dans un assemblage formant une perceuse, comme il sera décrit plus loin en relation avec les figures 45 à 47.
[0036] Le ou les orifices de montage 138, ainsi que le ou les orifices de fixation 140 sont par exemple des alésages, et notamment des alésages filetés (taraudages).
[0037] Les figures 2 et 3 présentent également l'outil 100 selon ce premier mode de réalisation au repos (non soumis à une énergie vibratoire) respectivement de face depuis la première face principale 110 et de côté depuis la face latérale 134. [0038] La figure 5 est une vue similaire à celle de la figure 3 de cet outil 100 lorsqu'il est soumis à une énergie vibratoire selon une fréquence de travail fO, correspondant notamment à son mode propre. On voit ainsi sur cette figure 5 que les faces principales 110 et 120 restent planes ou quasi- planes et parallèles entre elles. Ceci reste le cas pendant toute la durée de l'excitation vibratoire de l'outil 100. Cette situation permet à l'outil d'être attaché par des zones quasi-non déformées à une base rigide, tel qu'un bâti de machine, qui ne vibre donc pas puisqu'aucune énergie vibratoire ne lui est transmise par les orifices de fixation 140 et par les faces principales 110 et 120.
[0039] Les figures 4A et 4B sont des vues similaires à la figure de face de la figure 2 de cet outil 100 lorsqu'il est soumis à une énergie vibratoire selon une fréquence de travail fO, correspondant notamment à son mode propre, à deux moments différents correspondant aux deux déformations extrêmes, respectivement une déformation en contraction maximale et une déformation en élongation maximale. Ces deux moments différents correspondent aux amplitudes maximales de la phase positive et négative de la période P de vibration du système comme il est illustré sur la figure 38. La période de vibration du système étant défini par un intervalle de temps P, l'amplitude maximale d'élongation a lieu au moment t= P/4 et l'amplitude maximale de contraction a lieu au moment t= 3P/4. Sur la figure 38, on a repris la forme de l'outil 100 de la figure 4A en regard du moment t= 3P/4 (amplitude A de déformation maximale en élongation négative ou maximale en contraction) et la forme de l'outil 100 de la figure 4B en regard du moment t= P/4 (amplitude A de déformation maximale en élongation positive). On voit sur les figures 4A et 4B que les faces
d'extrémités 131 et 133 se déforment en prenant une forme courbe, dont le profil (projection sur la première face principale 110) est alternativement concave (sur la figure 4A) et convexe (sur la figure 4B), et l'extension spatiale en direction de l'axe X passe d'un maximum (forme convexe des faces latérales 132, 134 sur la figure 4A) à un minimum (forme concave des faces latérales 132, 134 sur la figure 4B). On voit également sur ces figures 4A et 4B que les faces latérales 132 et 134 changent également de forme générale par déformation, en prenant une forme générale courbe aux deux déformations extrêmes : le profil de ces faces latérales 132 et 134 (projection sur la première face principale 110) est alternativement concave et convexe, et l'extension spatiale en direction de l'axe Z passe d'un minimum (forme convexe sur la figure 4A) à un maximum (forme concave sur la figure 4B), avec également une variation de l'extension spatial selon l'axe Z des renfoncements 136 entre un minimum sur la figure 4A et un maximum sur la figure 4B. On y voit également qu'il existe des zones nodales 180 entourant les orifices de fixation 140 et délimitées par des lignes en traits tillés. En effet, les orifices de fixation 140 sont placés à l'emplacement de points nodaux de l'outil, et restent donc dans une position qui est fixe dans l'outil et qui reste identique par rapport aux autres orifices de fixation 140. On comprend que ces zones nodales 180 s'étendent dans toute la profondeur de l'outil 100, autour de chaque orifice de fixation 140, entre la première face principale 110 et la deuxième face principale 120. En dehors des zones nodales 180, sont formées des zones fonctionnelles 190 présentant une déformation pendant la vibration de l'outil 100 et apte à constituer une zone de travail pour la mise en vibration de l'outil ou d'un autre élément à faire vibrer lors de l'utilisation de l'outil 100.
[0040] On comprend de ce qui précède que grâce à cet outil de forme adaptée, au moins un orifice de fixation est centré sur l'une desdites zones nodales 180. On peut ainsi disposer d'un outil vibrant 100 directement attaché par des zones quasi-non déformées à une pièce ou un élément intermédiaire qui n'est ainsi pas soumis aux vibrations de l'outil 100 est ne rentre donc pas en vibration. Il est donc possible d'éviter de recourir à un système de fixation rapporté au booster comme dans l'art antérieur, ce qui apporte outre la simplification, également un gain de place.
[0041] On comprend de ce qui précède que grâce à cet outil 100 de forme adaptée, on dispose également d'une ou de plusieurs zones fonctionnelles 190 vibrant et se déformant, notamment avec une amplitude importante de déformation, en l'occurrence une variation de déformation plus importante que dans les zones nodales 180. [0042] D'une manière générale, l'outil comporte au moins un orifice de fixation 140 qui est centré sur un point nodal. Dans le premier mode de réalisation qui vient d'être présenté au regard des figures 1 à 5, ledit orifice de fixation traverse ledit outil de part en part, entre la première face principale 110 et la deuxième face principale 120. D'autres dispositions spatiales restent possibles. De plus, on peut prévoir de former seulement deux orifices de fixation 140.
[0043] On se reporte aux figures 6A et 6B montrant un outil 100 selon un deuxième mode de réalisation, avec des vues correspondant
respectivement à celles des figures 4A et 4B. Ce deuxième mode de réalisation de l'outil 100 est visible au repos sur la figure 7, une fois monté sur un support 200 par l'une de ses faces principales 110 et 120, au moyen d'éléments de fixation 210 montés dans les orifices de fixation 140.
[0044] Dans ce cas du deuxième mode de réalisation, l'outil 100 reprend les mêmes dispositions que celles précédemment décrites en relation avec le premier mode de réalisation. Cet outil 100 du deuxième mode de
réalisation comporte en outre un orifice de travail 150 formé d'un trou de section circulaire traversant ledit outil entre la première face principale 110 et la deuxième face principale 120 selon la direction Y (il s'étend de façon rectiligne). Dans le cas du deuxième mode de réalisation Cet orifice de travail 150 est au centre des faces principales 110 et 120. Comme on le voit sur les figures 6A et 6B, l'orifice de travail 150 présente une section de forme modifiée pendant la mise en vibration de l'outil 100, en l'occurrence une forme ovale, s'étendant alternativement selon la direction X (figure 6A) et selon la direction Z (figure 6B).
[0045] D'une façon générale, cette déformation au niveau de l'orifice de travail 150 permet d'utiliser cette région de l'outil vibrant 100, comportant l'orifice de travail 150 qui est située au moins partiellement, voire
entièrement, dans une zone fonctionnelle de l'outil 100, afin de
transmettre l'énergie vibratoire de l'outil sur un élément en contact avec l'orifice de travail 150. [0046] Selon d'autres mode de réalisation, différentes dispositions sont possibles pour cet orifice de travail 150, parmi lesquelles les suivantes :
- comme pour le deuxième mode de réalisation, un seul orifice de travail 150 est présent, situé au centre des faces principales 110 et 120 et s'étendant selon la direction Y,
- plusieurs orifice de travail 150 sont présents, répartis sur les faces principales 110 et 120, et s'étendant selon entre ces faces principales 110 et 120 selon la direction Y,
- un seul orifice de travail 150 est présent, situé au centre des faces latérales 132 et 134 et s'étendant selon la direction X,
- plusieurs orifice de travail 150 sont présents, répartis autour du centre des faces latérales 132 et 134 et s'étendant selon la direction X, et s'étendant selon entre ces faces latérales 132 et 134 selon la direction Y (cas de la figure 11).
Dans ces deux derniers cas, l'orifice de travail 150 (ou les orifices de travail 150) est (sont) traversant(s) entre deux côtés opposés de la bordure 130.
De manière générale, ledit outil 100 comporte ainsi en outre au moins un orifice de travail 150 traversant de part en part ledit outil vibrant 100. Dans certains cas, l'orifice de travail 150 est traversant entre la première face principale 110 et la deuxième face principale 120. Dans d'autre cas, l'orifice de travail 150 est traversant entre les deux côtés opposés de la bordure 130 formant les faces latérales 132, 134. Également, d'une manière générale, ledit orifice de travail 150 (ou les orifices de travail 150) est (sont) situé(s) au moins partiellement dans une zone soumise à vibration et à déformation et notamment dans une zone fonctionnelle 190. Selon une variante adaptable à toutes les configurations de positions spatiales précédemment énoncées pour le ou les orifice(s) de travail 150, cet (ou ces) orifice(s) de travail 150 peu(ven)t ne pas être traversant entre deux faces opposées de l'outil 100.
[0047] Lorsque l'outil 100 est monté sur un support 200 par des éléments de fixation 210 logés dans les orifices de fixation 140 qui sont situés à l'emplacement des zones nodales 180 centrées sur les points nodaux (voir par exemple la figure 7), le support 200 et l'outil restent en position l'un par rapport à l'autre même pendant la mise en vibration de l'outil 100. En effet, les éléments de fixation 210, par exemple des goupilles de fixation, s'étendent à la fois dans le support 200 et dans les orifices de fixations 140 qui ne subissent pas, ou très peu, de déformation pendant la mise en vibration de l'outil 100. Ainsi, l'outil vibrant 100 est maintenu précisément sur le support 200 (par exemple une plaque de support machine) par quatre points de fixation correspondant aux quatre orifices de fixation 140.
Selon une possibilité, une rondelle (non visible sur la figure 7) ou tout autre élément d'espacement, est disposée autour de chaque élément de fixation 210, entre le support 200 et l'outil 100, créant ainsi un espacement entre support 200 et l'outil 100. De tels éléments d'espacement 237 sont visibles sur les montages des figures 25, 29, 32, 33, 34 et 36. Ces éléments
améliorent le fonctionnement de l'outil, notamment en évitant ou minimisant les pertes énergétiques, l'amortissement, les bruits parasites, l'usure et le risque de grippage que pourrait amener un contact avec l'élément supportant l'outil ( tel qu'un bâti machine).
Les éléments d'espacement 237 ne sont pas fixés rigidement à l'outil 100 : ils sont placés entre la plaque de fixation (formée par exemple du support 200) et l'outil 100 de manière à définir un jeu avec la plaque de fixation et définir la position sur celle-ci, mais sans serrage. De cette manière, les éléments d'espacement 237 ne rentrent pas en vibration lors du
fonctionnement de l'outil. Au moment de la vibration, la face principale (110 ou 120) en contact avec les éléments d'espacement 237 glisse
(mouvement de rotation, va-et-vient atour du point nodal) sur la face de contact de ces éléments d'espacement 237.
Selon une possibilité, prise seule ou en combinaison avec la disposition précédente, mais non représentée, on prévoit en outre une douille anti friction entre chaque élément de fixation 210 et ledit orifice de fixation 140.
[0048] Dans le cas du deuxième mode de réalisation, comme il apparaît sur la figure 7, en plus d'un premier orifice de montage 138 qui s'étend dans l'outil 100 depuis la face d'extrémité 131, un autre et deuxième orifice de montage 138 s'étend dans l'outil 100 depuis l'autre face d'extrémité 133. [0049] On se reporte à la figure 8 montrant un outiMOO selon un troisième mode de réalisation, avec une vue en perspective correspondant à celle de la figure 1. Ce troisième mode de réalisation de l'outil 100 est visible au repos sur la figure 8. Dans ce cas du troisième mode de
réalisation, l'outil 100 reprend les mêmes dispositions et parties que celles précédemment décrites en relation avec le deuxième mode de réalisation. Cet outil 100 du troisième mode de réalisation comporte en outre des orifices de réglage 160. Ces orifices de réglage 160 sont traversants dans l'outil 100, et ils s'étendent entre la première face principale 110 et la deuxième face principale 120.
[0050] Ces orifices de réglage 160 permettent notamment d'ajuster la fréquence de travail fO de l'outil 100. La présence de ces orifices de réglage 160 permet en outre de conserver des zones nodales 180. Le nombre et la disposition de ces orifices de réglage 160 peut donc varier d'un outil vibrant à un autre.
[0051] Dans le cas du troisième mode de réalisation de l'outil 100 selon la figure 8, deux de ces orifices de réglages 160 sont sécants avec le deuxième plan de symétrie P2 et deux de ces orifices de réglages 160 sont sécants avec le troisième plan de symétrie P3. Dans chacune de ces deux paires d'orifices de réglages 160, les deux orifices de réglages 160 se trouvent de part et d'autre de l'orifice de travail 150.
[0052] Selon d'autres mode de réalisation, différentes dispositions sont possibles pour cet orifice de réglage 160, parmi lesquelles les suivantes :
- comme pour le troisième mode de réalisation, plusieurs orifice de réglage 160 sont présents, répartis sur les faces principales 110 et 120, et s'étendant selon entre ces faces principales 110 et 120 selon la direction Y,
- un seul orifice de réglage 160 est présent, situé au centre des faces latérales 132 et 134 et s'étendant selon la direction X,
- plusieurs orifices de réglage 160 sont présents, répartis autour du centre des faces latérales 132 et 134 et s'étendant selon la direction X, et s'étendant selon entre ces faces principales 110 et 120 et les faces latérales 132 et 134 selon la direction Y.
- plusieurs orifices de réglage 160 sont présents, répartis autour du centre des faces d'extrémité 131 et 133 et s'étendant selon la direction Z, et s'étendant selon entre ces faces principales 110 et 120 et les faces
d'extrémité 131 et 133 selon la direction Y.
Dans ces trois derniers cas, l'orifice de réglage 160 (ou les orifices de réglage 160) est (sont) traversant(s) entre deux côtés opposés de la bordure 130.
En présence d'un ou de plusieurs orifices de réglage 160, de manière générale, ledit outil comporte ainsi en outre au moins un orifice de réglage 160 traversant de part en part ledit outil vibrant 100.
Également, d'une manière générale, ledit orifice de réglage 160 (ou les orifices de réglage 160) est (sont) situé(s) au moins partiellement dans une zone soumise à vibration et à déformation et notamment dans une zone fonctionnelle 190.
Selon une possibilité, un ou de plusieurs orifices de réglage 160 s'éten(den)t entre les faces d'extrémité 131 et 133 selon la direction Z.
Selon une possibilité, un ou plusieurs de ces orifices de réglage 160 sert pour le chauffage ou le refroidissement de la pièce, notamment lorsque l'outil 100 est utilisée comme moule pour l'injection plastique. On y fait alors circuler un fluide pour le maintien à une certaine température du moule (voir une application sur les figures 48 et 49, sous forme des canaux 170).
[0053] Également, Le ou les orifices de montage 138, ainsi que le ou les orifices de fixation 140 peu(ven)t être complété(s) par une bague, un raccord de fixation ou tout autre élément intermédiaire facilitant le montage entre l'outil 100 et l'élément à raccorder à cet outil par l'orifice de fixation 140 ou l'orifice de montage 138 concerné. Par exemple, cette bague, ce raccord de fixation ou tout autre élément intermédiaire est vissé, chassé ou fixé de toute autre manière sur la première face principale 110 et/ou la deuxième face principale 120. Selon une possibilité, cette bague, ce raccord de fixation ou cet autre élément intermédiaire présente une symétrie de révolution autour d'un axe centré sur l'orifice concerné, et est donc de section circulaire. Selon la configuration, il est possible que cette bague, ce raccord de fixation ou cet autre élément intermédiaire dépasse de la première face principale 110 et/ou de la deuxième face principale 120, en faisant saillie de cette face, tout en formant une prolongation de l'orifice de fixation 140 ou en délimitant ledit orifice de fixation 140. Par exemple, cette portion en saillie peut résulter d'un bossage ajouté ou bien d'un bossage présent sur la première face principale 110 et/ou la deuxième face principale 120, comme portion intégrante de l'outil 100 massique, en regard et dans le prolongement de l'orifice concerné, comme représenté sur les figures 40 à 44 pour les orifices de fixation 140. Selon un autre exemple, cette portion en saillie peut également comporter un épaulement rentrant définissant une face de butée et une portion terminale plus étroite (étendue du contour, par exemple en diamètre) et optionnellement filetée.
[0054] Ainsi, dans le cas de la variante du troisième mode de réalisation illustrée sur les figures 40 à 43, on retrouve l'outil 100 de la figure 8 avec des bossages 141 en forme de cylindres creux délimitant une portion de l'orifice de fixation 140 correspondant. Dans le cas de la figure 42, les orifices de fixation 140 traversent de part en part l'outil 100 en traversant complètement la partie massique de l'outil 100 (qui correspond à l'outil dans sa version de la figure 8) et les bossages 141. Dans le cas de la figure 43, les orifices de fixation 140 ne traversent pas de part en part l'outil 100 en ne s'étendant pas dans la partie massive de l'outil 100 (qui correspond à l'outil dans sa version de la figure 8) mais en traversant seulement les bossages 141. Dans un cas intermédiaire (non illustré), les orifices de fixation 140 ne traversent pas de part en part l'outil 100 tout en s'étendant un peu dans la partie massive de l'outil 100 (qui correspond à l'outil dans sa version de la figure 8) et en traversant également les bossages 141, les orifices de fixation 140 débouchant également à l'extrémité libre des bossages 141 : en effet la réalisation d'un perçage sous forme de trou borgne depuis l'extrémité libre des bossages 141 peut engendrer une extension de cet orifice de fixation 140 dans toute la longueur du bossage 141 et au-delà (par exemple sur quelques millimètres) dans la partie massive de l'outil 100. [0055] On se reporte à la figure 9 montrant un outiMOO selon un quatrième mode de réalisation, avec une vue en perspective correspondant à celle de la figure 1 ou de la figure 8. Ce quatrième mode de réalisation de l'outil 100 est visible au repos sur la figure 9. Dans ce cas du quatrième mode de réalisation, l'outil 100 reprend les mêmes dispositions et parties que celles précédemment décrites en relation avec le troisième mode de réalisation précédemment décrit en relation avec la figure8. Cet outil 100 du quatrième mode de réalisation comporte en outre sur les faces d'extrémité 131 et 133 un renfoncement 131 a, 133a sur lequel débouche l'orifice de montage 138. Ces renfoncement 131a, 133a s'étendent entre la première face principale 110 et la deuxième face principale 120. Chacun de ces renfoncement 131 a, 133a correspond à une zone en retrait, telle qu'une encoche ou une découpe, qui est symétriques de part et d'autre du troisième plan de symétrie P3 et de part et d'autre du deuxième plan de symétrie P2. Ces renfoncement 131 a, 133a s'étendent sur toute la
profondeur P de l'outil 100, sur environ 1/2 de la largeur I de l'outil 100, à égale distance de la première face latérale 132 et de la deuxième face latérale 134. Une telle situation apporte un comportement en déformation différent, notamment par l'adaptation de la géométrie de la bordure 130 à la position des zones nodales 180 souhaitée et aux déformations dans la zone fonctionnelle 190 de l'outil 100, notamment par rapport au deuxième mode de réalisation visibles sur les figures 7 et 6A+6B.
[0056] On se reporte à la figure 10 montrant un outil 100 selon un cinquième mode de réalisation, avec une vue en perspective correspondant à celle des figures 1, 8' et 9. Ce cinquième mode de réalisation de l'outil 100 est visible au repos sur la figure 10. Dans ce cas du cinquième mode de réalisation, l'outil 100 reprend les mêmes dispositions et parties que celles précédemment décrites en relation avec le premier mode de réalisation précédemment décrit en relation avec la figure 1 hormis les aspects suivants :
- la profondeur P de l'outil 100 (selon la direction Y) est plus grande que celle de l'outil 100 de la figure 1, et correspond sensiblement à la moitié de la longueur L (selon la direction Z).
- la largeur I de l'outil 100 (selon la direction X) est plus grande que celle de l'outil 100 de la figure 1 et est sensiblement égale à la longueur L (selon la direction Z),
- on retrouve quatre orifices de fixation 140 s'étendant entre la première face principale 110 et la deuxième face principale 120 et qui sont ici assez proches des coins des faces principales 110 et 120,
- deux orifices de réglages 160, de section circulaire, s'étendent entre la première face principale 110 et la deuxième face principale 120 ; ces deux orifices de réglages 160 sont sécants avec le troisième plan de symétrie P3, qui est également sécant avec les orifices de montage 138 débouchant dans les faces d'extrémité 131 et 133,
- chacun des deux orifices de réglages 160 est situé entre deux orifices de fixation 140 selon la direction X,
- quatre orifices de travail 150 s'étendent entre les deux faces latérales 132 et 134, parallèlement à la direction X, chacun des orifices de travail 150 présentant une section de forme de quart de cercle, les quatre orifices de travail 150 étant disposés autour du centre des deux faces latérales 132 et 134, le coin de leur section à proximité de ce centre afin de délimiter à eux quatre une section globale circulaire.
On comprend de ce qui précède que ces orifices de travail 150 traversent de part en part l'outil 100 entre les deux faces latérales 132 et 134 à mi- distance des faces d'extrémité 131 et 133, dans le volume d'une bande centrale de l'outil, tandis que les orifices de fixation 140 et les orifice de réglage 160 traversent de part en part l'outil 100 entre les deux faces d'extrémité 131 et 133 dans le volume d'une bande d'extrémité de l'outil 100, à savoir de part et d'autre de la bande centrale (ces bandes
d'extrémité formant le haut et le bas de l'outil sur la figure 11).
Une telle situation apporte notamment un comportement en déformation et une position des zones nodales 180 différente, mais également plusieurs orifices de travail 150 s'étendant parallèlement entre eux selon la direction X (largeur I de l'outil) et qui sont notamment propices à un écoulement turbulent et une meilleure action de l'énergie vibratoire lorsqu'ils sont traversés par un liquide. Alternativement, dans une variante non
représentée, les quatre orifices de travail 150 sont regroupés en un seul orifice de travail de section circulaire s'étendant entre les deux faces latérales 132 et 134. Alternativement, dans une variante non représentée, les quatre orifices de travail 150 présentent une section de forme
différente, par exemple une forme de cercle.
[0057] On se reporte à la figure 11 montrant un outil 100 selon un sixième mode de réalisation, avec une vue en perspective correspondant à celle des figures 1, et 8 à 10. Ce sixième mode de réalisation de l'outil 100 est visible au repos sur la figure 11. Dans ce cas du sixième mode de réalisation, l'outil 100 reprend les mêmes dispositions et parties que celles précédemment décrites en relation avec le troisième mode de réalisation précédemment décrit en relation avec la figure 8 hormis les aspects suivants :
- la bordure 130 délimite un profil de l'outil 100 en forme de H couché,
- les faces latérales 132 et 134 comportent un renfoncement 136 qui présentent, en projection sur la première face principale 110 (ou sur la deuxième face principale 120), une forme en U dont les branches sont plus proches que dans les cas des figures 1 à 10, l'extension en direction Z (selon la Longueur L) des renfoncements 136 correspondant environ à 1/3 de la longueur L,
-la profondeur P de l'outil 100 (selon la direction Y) correspond à celle de l'outil 100 de la figure 1,
- les faces d'extrémités 131 et 133 sont représentées sans renfoncement 137 mais selon une variante non représentée, les faces d'extrémités 131 et 133 sont également pourvues d'un renfoncement 137, en forme de U, qui s'étend entre la première face principale 110 et la deuxième face principale 120,
- cet éventuel renfoncement 137 s'étend alors de préférence selon la direction Z sur environ un sixième de la longueur L de l'outil 100, et selon la direction X sur environ la moitié de la largeur I de l'outil 100,
- les renfoncements 136 (et 137) présentent une forme en U, avec deux branches et une zone de jonction courbe entre les branches et la base du U, avec les deux branches du U du profil des renfoncements 136 (et 137) qui sont rectilignes et parallèles entre elles,
- les quatre orifices de fixation 140 débouchent dans les coins de la première face principale 110 et de la deuxième face principale 120, pris deux à deux les orifices de fixation 140 sont situés de part et d'autre de chaque renfoncement 136, sensiblement à l'extrémité des branches du H que forme en projection la première face principale 110 et la deuxième face principale 120,
- les orifices de réglage 160 étant situés à proximité des zones de jonction entre la base et les branches du U délimité par le renfoncement 136 des faces latérales 132 et 134, symétriquement placé par rapport au plan P2 et P3,
- l'orifice de travail 150 débouche au centre de la première face principale 110 et de la deuxième face principale 120 : cet orifice de travail est traversant et présente un diamètre plus grand que dans le cas du troisième mode de réalisation précédemment décrit en relation avec la figure 8 : il peut notamment servir de cage pour un roulement à billes.
[0058] On se reporte à la figure 12 montrant un outil 100 selon un septième mode de réalisation, avec une vue en perspective correspondant à celle des figures 1, et 8 à 11. Ce septième mode de réalisation de l'outil 100 est visible au repos sur la figure 12. Dans ce cas du septième mode de réalisation, l'outil 100 reprend les mêmes dispositions et parties que celles précédemment décrites en relation avec le troisième mode de réalisation précédemment décrit en relation avec la figure 8 hormis les aspects suivants :
- la bordure 130 délimite un profil en H de l'outil 100,
- les faces latérales 132 et 134 comportent un renfoncement 136 qui présentent, en projection sur la première face principale 110 (ou sur la deuxième face principale 120), une forme en U dont les branches sont plus proches que dans les cas des figures 1 à 11, l'extension en direction Z (selon la Longueur L) des renfoncements 136 correspondant environ à un cinquième de la longueur L,
la profondeur P de l'outil 100 (selon la direction Y) est similaire celle de l'outil 100 de la figure 1, .
- les faces d'extrémités 131 et 133 sont également pourvues d'un
renfoncement 137, en forme de U, qui s'étend entre la première face principale 110,
- ce renfoncement 137 s'étend selon la direction Z sur environ un cinquième ou un sixième de la longueur L de l'outil 100, et selon la direction X sur environ la moitié de la largeur I de l'outil 100,
- les renfoncements 136 et 137 présentent une forme en U, avec deux branches et une zone de jonction courbe entre les branches et la base du U, avec les deux branches du U du profil des renfoncements 136 et 137 qui sont rectilignes et parallèles entre elles,
- les quatre orifices de fixation 140 débouchent dans les coins de la première face principale 110 et de la deuxième face principale 120, pris deux à deux les orifices de fixation 140 sont situés de part et d'autre de chaque renfoncement 137, sensiblement à l'extrémité des branches du H que forme en projection la première face principale 110 et la deuxième face principale 120,
- les orifices de réglage 160 sont au nombre de huit, entourant l'orifice de travail 150, deux orifices de réglage 160 étant situés de part et d'autre de chaque renfoncement 136, et deux orifices de réglage 160 étant situés à proximité des zones de jonction entre la base et les branches du U délimité par le renfoncement 137 des faces d'extrémité 131 et 133,
- l'orifice de travail 150 débouche au centre de la première face principale 110 et de la deuxième face principale 120.
. Une telle situation apporte notamment un comportement en déformation et une position des zones nodales 180 différente, mais également de disposer d'une zone de travail 190 plus étendue.
[0059] On se rapporte maintenant aux figures 13 à 17, représentant un huitième mode de réalisation de l'outil 100 selon l'invention,
respectivement selon des vues conformes à la figure 1 (en perspective au repos), à la figure 2 (de face et au repos), à la figure 4A (de face et en vibration selon une première déformation extrême), à la figure 4B (de face et en vibration selon une deuxième déformation extrême) et à la figure 5 (de côté depuis une face latérale et en vibration). Dans le cas de ce huitième mode de réalisation de l'outil 100, les plans P1 et P3 restent des plans de symétrie tandis que le plan P2 est un plan moyen qui n'est pas un plan de symétrie. Le plan P2 se situe à environ 1/3 de la distance L en partant de la face d'extrémité 131. [0060] Comme on peut le voir notamment sur la figure 14, l'outil 100 de ce huitième mode de réalisation présente, en projection sur la première face principale 110 (ou la deuxième face principale 120) une forme qui est donc différente dans la partie contigüe à la première face d'extrémité 131, appelée portion de fixation 102, et qui s'étend depuis cette face
d'extrémité 131 en direction Z jusqu'à la position du fond des
renfoncement 136, et dans la partie contigüe à la deuxième face
d'extrémité 133, appelée portion de travail 104, et qui s'étend depuis cette face d'extrémité 131 en direction Z jusqu'à la position du fond des renfoncement 136. Dans la portion de fixation 102, en projection dans la première face principale 110, comme on le voit sur la figure 14, on trouve une forme générale oblongue orientée selon la direction X, et pour la portion de travail 104 une forme générale de rectangle, proche d'un carré. Les renfoncements 136 présentent un contour en U avec une base en arc de cercle. La face d'extrémité 131 (la face d'extrémité 133) s'étend de manière pratiquement plane parallèlement au plan X, Y, avec une zone en dépression autour de l'orifice de montage 138. Depuis la face d'extrémité 131 et jusqu'à la face d'extrémité 133, la bordure 130 ou le contour de la face principale 110 suit un contour avec une première portion convexe, suivie d'une deuxième portion concave à l'emplacement du renfoncement 136, puis un angle arrondi et convexe jusqu'à une troisième portion rectiligne parallèle à l'axe Z. Deux orifices de fixation 140 sont situés dans la portion de fixation 102, en regard de chaque portion convexe de la bordure 130. Deux orifices de réglages 160 disposés dans le plan de symétrie P3 (Y, Z), l'un sensiblement au milieu de la portion de travail 104, et l'autre entre les deux renfoncements 136, permettent d'ajuster le comportement en déformation (voir figures 15 à 17).
./ci, Il est possible de placer en outre l'un ou plusieurs parmi les éléments suivants: un orifice de travail 150, une zone en relief (tel que 191 ou 192 des figures 21 et 22) ou un orifice de montage 138/139 dans lequel est monté un élément rapporté ( tel que l'élément rapporté 220 des figures 17 à 19) dans la zone fonctionnelle 190 de la portion de travail 104.
[0061] On se reporte aux figures 18 et 19 montrant une première variante du deuxième mode de réalisation de l'outil 100, avec une vue en perspective. Cet outil 100 comporte en outre, par rapport à l'outil précédemment décrit en relation avec la figure 7, un orifice de montage 138supplémentaire dans lequel est monté un élément rapporté 220 (ici sous forme d'une tige cylindrique de section circulaire), pour former un ensemble vibrant. Dans le cas représenté sur les figures 18 et 19, cet orifice de montage 138 supplémentaire débouche sur la première face principale 110, à égale distance entre les faces d'extrémité 131 et 133, à côté de l'orifice de travail 150 central dans un plan parallèle au plan (X, Y). Dans le cas de la deuxième variante du deuxième mode de réalisation de l'outil 100 visible sur la figure 20, on dispose de quatre orifices de montage 138 supplémentaires qui débouchent sur la première face principale 110, deux d'entre eux étant à égale distance entre les faces d'extrémité 131 et 133, de part et d'autre de l'orifice de travail 150 central et les deux autres étant à égale distance entre les faces latérales 132 et 134, de part et d'autre de l'orifice de travail 150. Ainsi, on forme un ensemble vibrant avec cet outil 100 et quatre éléments rapportés 220 (ici sous forme d'une tige cylindrique de section circulaire). Cet élément rapporté ou ces éléments rapportés 220, étant fixé (s) sur l'outil 100, est/sont soumis aux vibrations de l'outil 100 et rentre(nt) ainsi en vibration à la même fréquence que l'outil 100. Ils peuvent ainsi servir à définir une nouvelle surface de travail 190. A titre d'exemple de cet élément rapporté 220, on peut citer une tige formant un accessoire qui peut prendre la fonction de mélangeur ou agitateur d'un produit liquide ou visqueux. Il est aussi possible de d'utiliser un élément rapporté 220 tel qu'un insert pour la cavité d'un moule pour l'injection plastique.
Comme il ressort de ce qui précède, on forme ainsi un ensemble vibrant comprenant un outil 100 et au moins un élément rapporté 220 sur ledit orifice de montage 138 supplémentaire qui recoupe au moins une zone fonctionnelle 190.
[0062] On se reporte aux figures 21 et 22 montrant en perspective respectivement une troisième et une quatrième variante du deuxième mode de réalisation de l'outil 100, dans lesquelles la première face principale 110 comporte une ou plusieurs zone(s) en relief 191 ou 192. Dans le cas de la troisième variante du deuxième mode de réalisation illustré sur la figure 21, l'outil 100 comporte en outre, par rapport à l'outil
précédemment décrit en relation avec la figure 7, deux zones en retrait, formant chacune une cavité 191 par rapport au reste de la face 110.
Sur la figure 21, ces zones en relief 191 sont disposées à égale distance entre les faces d'extrémité 131 et 133, de part et d'autre de l'orifice de travail 150 (central sur la première face principale 110) en étant
symétriques l'une de l'autre par rapport au plan P3.
Dans le cas de la quatrième variante du deuxième mode de réalisation, l'outil 100 comporte en outre, par rapport à l'outil précédemment décrit en relation avec la figure 7, une zone en saillie, formant une protrusion 192 par rapport au reste de la face 110. Sur les figures 21 et 22, cette zone en relief 191 ou 192 est disposée à égale distance entre les faces d'extrémité 131 et 133, entre l'orifice de travail 150 (central sur la première face principale 110) et la face latérale 134.
On peut prévoir d'autres positions et d'autres étendues de ces zones en relief 191 ou 192 sur la première face principale 110. Notamment, on peut prévoir une seule zone en relief en creux 191 disposée comme la zone en relief en saillie précédemment décrite en relation avec la figure 22 ou bien on peut prévoir deux zones en relief en saillie 192 disposées comme les zone en relief en creux 191 précédemment décrites en relation avec la figure 21, ou bien on peut prévoir davantage que deux zones en relief (en creux 191 ou en saillie 192 ou à la fois des zones en creux 191 et des zones en saillie).
Sur les figures 21 et 22, ces zones en relief 191 ou 192 sont de forme rectangulaire dans leur son étendue selon la direction Y (profondeur) : on peut prévoir d'autres formes.
Cette zone en relief 191 ou 192 peut servir, à former une portion de moule, mâle ou femelle, en vue de la fabrication d'une pièce, notamment une pièce plastique, par injection.
Ainsi, lors de l'éjection de la pièce hors du moule, les vibrations de l'outil 100 permettent de faciliter le démoulage tout en conservant intact le micro relief de la surface de la pièce provenant de la microstructuration de surface du moule dont la partie mâle et/ou femelle est formée au moins en partie sur l'outil 100 mis en vibration lors du démoulage.
Cette (ou ces) zone(s) en relief 191 ou 192 peu(ven)t aussi servir, à former une (ou plusieurs) portion(s) de moule, mâle(s) et/ou femelle(s), en vue de la fabrication d'une pièce, notamment une pièce à base de poudre, par pressage.
Ainsi, l'application des ondes vibratoires lors du pressage de la pièce dans le moule, permet de diminuer la friction de la poudre pressée contre les parois et d'homogénéiser la répartition de la poudre donc de la microstructure de la pièce finale, pendant le pressage. La mise en vibration de l'outil après le pressage peut également contribuer à faciliter l'éjection de la pièce obtenue par pressage de poudre. Comme il ressort de ce qui précède, l'outil 100 comporte en outre ainsi sur l'une au moins de ladite première face principale 110 et de ladite deuxième face principale 120, une zone en relief, en retrait 191 ou en saillie 192, par rapport au reste de la face.
[0063] Dans le cas des figures 1 à 12, l'outil 100 comporte quatre zones nodales 180 et quatre orifices de fixation 140. L'outil présente alors trois plans de symétrie, à savoir le premier plan P1 (parallèle au plan (X, Z)), le deuxième plan P2 (parallèle au plan (X, Y)) et le troisième plan P3 (parallèle au plan (Y, Z).
[0064] Dans le cas des figures 1 à 17, le plan P1 est un plan de symétrie de l'outil 100, qui est situé entre les deux faces principales 110 et 120.
[0065] Dans le cas des figures 1 à 12 et 18 à 22, le plan P2 est un plan de symétrie de l'outil 100, qui est situé entre les deux faces d'extrémité 131 et 133.
[0066] Dans le cas des figures 1 à 17, le plan P3 est un plan de symétrie de l'outil 100, qui est situé entre les deux faces latérales 132 et 134.
[0067] Dans le cas des figures 1 à 12 et 18 à 22, les renfoncements 136 dans les faces latérales 132 et 134 sont symétriques par rapport aux plans P1, P2 et P3. [0068] Dans le cas des figures 13 à 17, les renfoncements 136 dans les faces latérales 132 et 134 sont symétriques par rapport aux plans P1 et P3.
[0069] Dans le cas des différents modes de réalisations représentés pour l'outil 100, la distance séparant la première face principale 110 de la deuxième face principale 120 et formant la profondeur P est plus petite que ou égale à la largeur I, mesurée entre les faces latérales 132, 134 de la bordure 130. Ainsi, avec cette relation P < I , on obtient un outil vibrant dans de bonnes conditions.
[0070] La figure 23 illustre un système vibratoire 250 comprenant un outil 100 selon le troisième mode de réalisation de l'invention monté par son orifice de montage 138 avec un transducteur 230 générant l'énergie vibratoire. L'outil 100 peut être fixé directement ou indirectement (avec une ou plusieurs pièces intermédiaires) au transducteur 230. On peut utiliser un autre outil 100 selon l'un parmi les différents modes de réalisation présentés dans le présent texte. Le transducteur 230 est monté par son extrémité (via une zone de fixation) à l'outil 100 et celui-ci est fixé au moyen de ses orifices de fixation 140 à un bâti machine ou un autre système.-La liaison entre l'outil 100 et le transducteur 230 de la figure 23, ou avec tout autre élément relié à un orifice de montage 138 (ou 139) est directe ou indirecte. Dans le second cas, cette liaison s'effectue par exemple à l'aide d'un élément de raccordement 231, notamment un tube de raccordement. Un tel tube de raccordement est plein ou creux, et est taraudé à ses extrémités pour une liaison filetée avec l'outil et avec le transducteur 230 ou tout autre élément monté sur l'orifice de montage 138 (ou 139) de l'outil 100. Un tel élément de raccordement 231 est utilisé lorsque deux pièces ne peuvent pas, à cause de leur géométrie respective, être directement raccordées entre elles comme dans les figures illustrées, il peut donc être omis dans certains cas de figures non représentés.
[0071] De cette façon, l'outil 100 peut former l'élément de fixation de l'ensemble vibratoire et aussi faire office de sonotrode servant à restituer l'énergie vibratoire sur un autre élément. Sur la figure 25, le système vibratoire 250 est associé à une sonotrode standard 232 montée sur l'autre orifice de montage 138 de l'outil 100, à l'opposé du transducteur 230. Dans cet exemple d'assemblage de la figure 25, les orifices de fixation 140 de l'outil reçoivent des vis 233 montées chacune dans une douille de fixation 234 pour une fixation sur une tête de fixation 235 de l'assemblage formant par exemple une presse à ultrason.
On utilise des éléments d'espacement 237, par exemple sous forme de rondelles métalliques ou en caoutchouc ou d'éléments élastiques ou ressort, qui sont placée entre l'outil 100 et la tête de fixation 235 (ou une autre pièce de support comme un bâti), au niveau des orifices de fixation 140. Sur la figure 23, Ces éléments d'espacement 237 sont des rondelles montées autour des vis de fixation 233. Ces éléments d'espacement 237 permettent à l'assemblage comportant l'outil 100 d'éviter une zone d'absorption des vibrations à l'emplacement de fixation de l'outil 100, ce qui minimise non seulement la perte énergétique mais également le bruit. L'outil 100 sert alors d'élément de fixation à l'ensemble vibrant. La tête de fixation 235 est par exemple montée sur un vérin pneumatique qui permet un déplacement vertical et ainsi une adaptation de la distance de la sonotrode 232 par rapport à la table d'appui 236 de la presse.
[0072] La figure 24 illustre un autre système vibratoire 251 comprenant un outil 100 selon le troisième mode de réalisation de l'invention monté directement par son orifice de montage 138 avec un booster 240, lequel est monté par son autre extrémité à un transducteur 230 générant l'énergie vibratoire. On peut utiliser un autre outil 100 selon l'un parmi les différents modes de réalisation présentés dans le présent texte et sur les autres figures. Dans cet exemple, Le booster 240 est monté à un bâti de machine ou un autre système afin de servir d'élément de fixation à l'ensemble vibrant. De cette façon, l'outil 100 peut par exemple former une sonotrode qui va restituer l'énergie vibratoire sur un autre élément
La figure 26 est une variante du montage de la figure 25, formant un système vibratoire 252, dans lequel le booster 240 du montage de la figure 24 est remplacé par un autre outil 100' selon le troisième mode de réalisation de l'invention monté par son orifice de montage 138. Ce second outil 100' du montage de la figure 25 peut être un autre outil 100' selon l'un parmi les différents modes de réalisation présentés dans le présent texte et sur les autres figures, et en particulier un outil différent du premier outil 100. Ce second outil 100' et le premier outil 100 peuvent ainsi remplir les fonctionnalités selon ces différentes configurations :
- outil 100' servant d'élément de fixation du système vibratoire et l'outil 100 de sonotrode
- outil 100' servant de sonotrode et l'outil 100 servant d'élément de fixation du système vibratoire
[0073] On se reporte à la figure 27 montrant un outil 100 selon un neuvième mode de réalisation, selon une vue correspondant à celle de la figure 1. Ce deuxième mode de réalisation de l'outil 100 est visible au repos et seul sur la figure 27, et sur la figure 28 une fois monté dans un
assemblage formant un système vibratoire 253
Dans ce cas de ce neuvième mode de réalisation, l'outil 100 reprend les mêmes dispositions que celles précédemment décrites en relation avec le premier mode de réalisation. Cet outil 100 du neuvième mode de
réalisation comporte en outre un orifice de montage supplémentaire 139 (deux orifices de montage supplémentaires 139), débouchant sur la face latérale 134 (et sur la face latérale 132). En particulier, comme dans le cas des figures 27 et 28, cet (ces) orifice(s) de montage supplémentaire(s)139 est un alésage ou un taraudage, lequel est disposé par exemple au centre de la face latérale correspondante 132 (134), et en particulier au centre du renfoncement 136. De cette façon, on comprend que l'on peut fixer l'outil selon le neuvième mode de réalisation à la fois par l'un de ses orifices de montage 138 et par l'un des orifices de montage supplémentaires 139, ou par l'un seulement des outils de montage 138, 139. Cet outil 100 selon le neuvième mode de réalisation du montage de la figure 27 (et la figure 28) peut être un autre outil 100 selon l'un parmi les différents modes de réalisation présentés dans le présent texte et sur les autres figures, et en particulier un outil différent du premier mode de réalisation, avec en plus un ou deux orifices de montage supplémentaires 139.
La figure 28 est une variante du montage de la figure 26, formant un système vibratoire 253, dans lequel l'outil 100' du montage de la figure 26 est remplacé par un autre outil 100' selon le neuvième mode de réalisation de l'invention monté par son orifice de montage 138 de la face d'extrémité 131 au transducteur 230 et par son orifice de montage 139 de la face latérale 134 à un orifice de montage 138 de la face d'extrémité 131 d'un autre outil 100 selon le neuvième mode de réalisation (ou un autre mode de réalisation) formant par exemple une sonotrode qui va restituer l'énergie vibratoire sur un autre élément.
Dans ce cas, le second outil vibrant 100' constitue un élément de fixation du système vibratoire.
[0074] Il apparaît que selon certaines applications de l'outil vibrant 100 selon l'invention, ledit outil constitue une sonotrode , à savoir un élément vibrant, lorsqu'il est soumis à des vibrations, en particulier des vibrations ultrasoniques, et applique cette énergie vibratoire à un gaz, un liquide, un solide. Une telle sonotrode est utilisée notamment dans l'usinage, le soudage et le mélange, notamment par ultrasons.
[0075] Par ailleurs, l'outil 100 (100') selon l'invention est apte à vibrer avec une fréquence de travail fo, qui est selon une possibilité une
fréquence appartenant au domaine de l'ultrason. Cette fréquence de travail fO est par exemple comprise entre 20 kHz et 70 kHz, notamment entre 20 kHz et 40kHz et elle est de préférence de l'ordre de 20 kHz
(notamment comprise entre 19 et 21 kHz).
[0076] On comprend que la présente invention porte également sur un système vibratoire destiné à travailler à une fréquence déterminée fO, comprenant :
- un transducteur 230 apte à générer une excitation vibratoire selon une fréquence f ;
- un outil 100 ou un ensemble vibrant, ledit outil étant fixé, directement ou indirectement, au transducteur 230 par ledit orifice de montage 138.
Selon une possibilité, ledit système vibratoire comprend en outre un booster 240 monté sur ledit transducteur 230 et apte à amplifier
l'amplitude de vibration générée par le transducteur 230, ledit outil 100 étant fixé, directement ou indirectement, au booster 240 par ledit orifice de montage 138. La présence de ce booster 240 intercalé entre le
transducteur 230 et l'outil 100 n'est pas toujours indiquée sur les figures, mais il faut le considérer comme une possibilité alternative de montage. Dans les cas d'utilisation de l'outil 100 avec une température de travail plus importante que la température ambiante, on choisira un modèle de booster 240 qui présente un système de refroidissement interne. Un tel booster 240 avec refroidissement sert de barrière thermique au
transducteur 230 auquel le booster 240 est relié. Cette barrière thermique évite le risque de dépolarisation (perte de son aimantation permanente par un matériau ferromagnétique) des éléments ferromagnétiques (élément piézo-électrique) du transducteur 230 en maintenant une température inférieure à la température de Curie, idéalement inférieur à 50 degrés Celsius, lorsque la température de travail de l'outil 100 est plus élevée que la température ambiante. Également, la présence d'un générateur d'impulsions (référence 840 sur les figures 44 à 47) ainsi que les éléments de raccordement entre l'outil 100 et le transducteur 230 (référence 231 sur les figures 24, 26, 44 et 47) ne sont pas toujours indiqués, mais il faut les considérer comme des éléments utiles du montage pour faire fonctionner l'outil et les éléments associés.
[0077] On se rapporte à la figure 29 montrant en perspective et en éclaté une portion d'une machine d'injection plastique dans laquelle le moule comporte, dans la partie de sa carcasse 303, un outil 100 selon le deuxième mode de réalisation qui est intercalé entre la partie de la carcasse 303, par l'intermédiaire de cales de fixation ou éléments d'espacement 237, et la partie de la carcasse 304 pendant l'injection. L'outil 100 comporte un orifice de travail 150 servant de cavité pour l'injection plastique d'une pièce. La partie mobile de la carcasse 303 du moule comporte en plus un système d'éjection composé d'une tige éjecteur 302 montée mobile dans celle-ci et étant partiellement introduite dans l'outil 100 pendant l'injection et ensuite complètement introduite au travers de l'outil 100 au moment de l'éjection. Après l'injection, pendant le démoulage, les deux carcasses extérieures 303 et 304 du moule sont écartées, le transducteur 230 ou autre dispositif générant l'énergie vibratoire à la fréquence souhaitée, mettant en vibration l'outil 100, ce par quoi la pièce issue de l'injection de matière plastique est aisément éjectée de sa cavité composée de l'orifice de travail 150 de l'outil 100, et ce, sans endommager la structure de surface de la pièce produite.
Ainsi, on obtient d'une manière plus générale une machine d'injection plastique comportant un moule d'injection plastique, et un système vibratoire tel que défini auparavant, comprenant un outil 100, dans lequel la première face principale ou la deuxième face principale de l'outil est disposée, par l'intermédiaire de cales de fixation ou éléments d'espacement 237, contre une surface du moule ou d'une pièce solidaire du moule. La mise en vibration de l'outil 100 entraîne la vibration de la cavité d'injection du moule composée d'un orifice de travail 150, en particulier lors de la décharge du moule.
[0078] On se rapporte à la figure 30 montrant en perspective et en éclaté une portion d'une machine d'extrusion plastique dans laquelle un outil 100 conforme à l'invention présente un orifice de travail 150 central débouchant entre sa première face principale et sa deuxième face
principale et qui forme un tronçon de la filière d'extrusion. A cet effet, l'outil 100 est placé entre une douille de raccord 402 en amont, et en val, un embout de sortie de la filière 404 également muni d'un canal de sortie. Sur la Figure 31, on voit en coupe l'outil 100 et son transducteur associé 230, ainsi que la douille de raccord 402 dont le canal d'extrusion vient se placer de manière coaxiale avec l'orifice de travail 150 de l'outil. Dans ce cas, la mise en vibration de l'outil 100 contribue à réduire la pression nécessaire à l'extrusion de la matière au travers de l'outil 100 ainsi que l'embout de sortie de la filière 404. La mise en vibration de l'outil 100 offre aussi la possibilité d'extruder des géométries de forme plus complexes pouvant comporter aussi des parois plus fines.
Ainsi, on obtient d'une manière plus générale une machine d'extrusion plastique comportant un système vibratoire tel que précédemment décrit, et dans cette machine l'outil 100 comporte un orifice de travail 150 formant un tronçon de la filière d'extrusion. Également, sur cette figure 31, comme sur les figures 29, 30 et 31, un ou plusieurs des orifices sert de canal de refroidissement 170 permettant le passage d'un fluide (liquide ou gaz) pour le refroidissement ou éventuellement le réchauffement de l'outil 100. [0079] On se rapporte à la figure 32 montrant en perspective et en éclaté une portion d'une machine de pressage de poudre (presse) dans laquelle la partie femelle du moule comporte l'orifice de travail 150 d'un outil 100 selon le troisième mode de réalisation. Une partie du bâti 502 est disposé, par l'intermédiaire de cales de fixation ou éléments d'espacement 237, contre une des faces principales 110, 120 de l'outil 100 et comporte un orifice traversant 504 coaxial avec l'orifice de travail 150. Un premier poinçon de pressage 506 (poinçon supérieur sur les figures 32 et 33), est apte à aller et venir dans et hors de l'orifice de travail 150 et un deuxième poinçon de pressage 508 (poinçon inférieur sur les figures 32 et 33), est apte à aller et venir au travers de l'orifice 504 du bâti et dans et hors de l'orifice de travail 150. On retrouve ces éléments sur la figure en coupe d la figure 33.
Selon une possibilité de mise en oeuvre, l'outil vibrant 100 peut ainsi être intégré dans un module de fabrication de pièces par pressage, telles que des plaquettes en carbure pour l'usinage dans des machines-outils. L'outil vibrant 100 selon l'invention peut être utilisé comme partie d'une matrice de pressage. Dans ce cas, l'application des ondes vibratoires permet de diminuer la friction de la poudre pressée contre les parois et
d'homogénéiser la répartition de la poudre donc de la microstructure de la pièce finale, pendant le pressage. La mise en vibration de l'outil après le pressage peut également contribuer à faciliter l'éjection de la pièce obtenue par pressage de poudre.
Ainsi, on obtient d'une manière plus générale une machine de pressage de poudre comprenant un bâti de machine, au moins un poinçon de pressage mobile en translation entre une position de repos et une position de travail, et un système vibratoire tel que précédemment décrit, dans lequel la première face ou la deuxième face de l'outil est disposée, par
l'intermédiaire de cales de fixation ou d'éléments d'espacement 237, contre une surface dudit bâti ou d'une pièce solidaire dudit bâti, dans lequel ledit outil est muni d'une ouverture traversante dans ladite zone fonctionnelle, dans laquelle ladite ouverture traversante est apte à former un réceptacle formant un moule pour le pressage de poudre dans la position de travail dudit poinçon. [0080] On se rapporte à la figure 34 montrant en perspective et en éclaté un palier par roulement à billes. Dans le cas présenté, un outil 100 conforme à l'invention présente un orifice de travail 150 central
débouchant entre sa première face principale et sa deuxième face
principale et qui forme une cage extérieure pour des trains de billes 602 entourant un arbre tournant 604.
Ainsi, on obtient d'une manière plus générale un dispositif avec roulement à billes comprenant une plaque de support et un arbre 604 monté rotatif autour de son axe au moyens de billes de roulement 602, et un système vibratoire tel que précédemment décrit, dans lequel ladite plaque de support est disposée, contre la première face principale ou la deuxième face principale de l'outil, par l'intermédiaire de cales de fixation ou éléments d'espacement 237, et des éléments de fixation reliant ladite plaque de support audit outil, dans lequel les éléments de fixation sont disposés dans les orifices de fixation, dans lequel ledit outil est muni d'une ouverture traversante dans ladite zone fonctionnelle, dans laquelle ladite ouverture traversante est apte à former une bague extérieure du
roulement à billes, lesdites billes de roulement 604 étant interposées entre ledit arbre et ladite ouverture traversante de l'outil.
[0081] On se rapporte à la figure 36 montrant en perspective et en éclaté un assemblage de pièces concernant un système de traitement de fluide, dans laquelle la partie femelle du moule comporte l'orifice de travail 150 d'un outil 100 selon le troisième mode de réalisation. Cet orifice de travail 150 se trouve dans la continuité d'un raccord de tuyau amont 702 et d'un raccord de tuyau aval 702, et il est également coaxial aux canaux de ces raccords 702. Le système comprend en outre un support de fixation 704 formant bâti avec un passage pour ledit tuyau amont 702 qui est muni d'au moins une portion de raccordement fixée à une zone nodale de l'outil 100. Une possible application de cette machine concerne la désinfection de l'eau par cavitation. Dans ce cas, de l'eau contaminée bactériologiquement peut être traitée lors de son passage au travers de l'orifice de travail 150 de l'outil. En effet, lors la vibration de l'outil 100, des ondes mécaniques se propagent dans l'eau et forment des cavités remplies d'air qui au sein du liquide en mouvement agissent sur les virus et les bactéries qui se trouvent dans l'eau, notamment en les détruisant.
Egalement, dans un cas d'agencement non représenté, la mise en vibration de l'outil 100 pour l'utilisation de dispositifs microfluidiques, permet par les vibrations de diminuer les forces de frottement lors de la circulation du fluide dans le dispositif microfluidique.
Egalement, dans un autre cas d'agencement non représenté, on peut utiliser un outil 100 selon le sixième mode de réalisation (figure 11), avec le passage de fluide à traiter dans les multiples (en l'occurrence quatre) orifices de travail 150 traversant de part en part l'outil 100 entre les deux faces latérales 132 et 134.
Ainsi, on obtient d'une manière plus générale une machine pour le traitement de liquide circulant dans un tuyau par mise en vibration dudit liquide, ladite machine comportant un système vibratoire tel que décrit précédemment, dans lequel ledit outil est muni d'un orifice de travail dans ladite zone fonctionnelle, qui est apte à former un passage pour ledit liquide,
- un ensemble de raccordement (par exemple une flasque d'appui de la sonotrode) permettant de raccorder sur la machine d'une part une portion aval du tuyau et d'autre part une portion amont du tuyau, avec
interposition dudit outil à l'emplacement de l'orifice de travail, ledit ensemble de raccordement comprenant une première pièce de
raccordement et une deuxième pièce de raccordement, chacune
comprenant une face de raccordement avec l'outil, disposée contre l'outil, un passage aligné avec l'orifice de travail, une portion formant manchon alignée avec ledit passage et permettant le raccordement de la portion amont, respectivement aval du tuyau, et au moins un orifice de fixation
- et des éléments de fixation (au moins deux, par exemple des goupilles) reliant entre eux, ledit outil, la première pièce de raccordement et la deuxième pièce de raccordement, dans lequel les éléments de fixation sont disposés dans les orifices de fixation de l'outil et des première et deuxième pièces de raccordement. On comprend que la première face principale 110 (la deuxième face principale 120) de l'outil est disposée contre la face de raccordement de la première (la deuxième) pièce de raccordement de l'ensemble de raccordement afin de permettre une continuité du parcours fluidique. De préférence, là encore, on utilise des éléments d'espacement 237 (voir la figure 36 montrant des rondelles autour des éléments de fixations qui sont des vis de fixation) entre chaque face principale de l'outil et la face en regard (qui est celle du raccord de tuyau 702 sur la figure 36).
[0082] On comprend que les différents modes de réalisation
précédemment décrits pour l'outil selon l'invention comprennent au moins par leur première face principale ou par leur deuxième face principale qui est essentiellement plane (à savoir plane dans la grande majorité de sa surface), une zone d'appui apte à être fixée sur la surface plane d'une machine ou d'une installation, ce qui permet de conserver précisément la position de montage. Des cales de fixation 238 ou des éléments
d'espacement 237 tels que des rondelles, peuvent être utilisées aux emplacements de ces zones d'appui afin d'éviter le contact entre une zone fonctionnelle et la surface plane d'une machine ou d'une installation au moment de la mise en vibration. En général, la première face et la deuxième face de l'outil restent planes et parallèles entre elles pendant que l'outil est soumis à l'excitation vibratoire.
[0083] Ces éléments d'espacement 237 lorsqu'ils se présentent sous forme de rondelles entourant une tige de fixation, telle que les douilles de fixation 234 précédemment décrites, permettent un écart avec l'élément supportant l'outil (tel qu'un bâti machine) : ces éléments d'espacement 237 n'assurent alors pas de lien mécanique entre l'outil et son support (c'est la tige de fixation qui assure la liaison mécanique entre l'outil et son support) mais assurent le jeu dimensionnel nécessaire au montage de l'outil 100.
[0084] Dans certains cas de figures, on souhaite utiliser des cales de fixation 238, non seulement pour créer de l'espacement entre l'outil 100 et l'élément supportant l'outil (tel qu'un bâti machine ou une plaque de support), mais également pour contribuer à la fixation rigide de l'outil 100 vibrant sur l'élément supportant l'outil (et ne vibrant pas) et à la reprise des efforts engendrés par les vibrations de l'outil 100. La figure 39 et la figure 53 illustrent de tels cas de figure : les cales de fixations 238 sont des éléments fixés, notamment vissés (ou enchâssés ou frettés ou soudés), dans les orifices de fixation 140 de l'outil 100, sur l'une ou l'autre parmi la première face principale 110 et la deuxième face principale 120 de l'outil 100. Ces cales de fixation 238 sont munies d'un passage traversant ou partiellement traversant On place de l'autre côté de ces cales de fixation 238 la première face d'une plaque de support 801 présentant des
ouvertures traversantes 802 situées en correspondance des orifices de fixation 140 de l'outil 100 (au nombre de quatre ouvertures traversantes 802 sur la figure 39 et 53). Des éléments de fixation 210 (sous la forme de vis de fixation 233 sur la figure 39 et 53) sont montés chacun à travers une ouverture traversante 802 depuis la deuxième face (face arrière) de la plaque de support 801, en s'étendant jusqu'au passage traversant ou partiellement traversant de l'une des cales de fixation. Pour la variante de cale de fixation 238 avec un passage partiellement traversant (possible pour la figure 39) et afin d'assurer la tenue mécanique de l'ensemble, il est prévu d'attacher de manière solidaire la portion d'extrémité des éléments de fixation 210 avec le passage traversant de la cale de fixation 238
correspondante. Cette liaison mécanique rigide, totale (sans degré de liberté), entre chaque élément de fixation 210 et sa cale de fixation 238 associée, est par exemple réalisée par vissage (coopération entre un filetage mâle sur la portion d'extrémité des éléments de fixation 210, formées alors de vis de fixation 233, et un filetage femelle dans le passage traversant de la cale de fixation 238) ou par encastrement/enchâssement, frettage ou soudage. Pour la variante de cale de fixation 238 avec un passage
traversant (possible pour la figure 39 et pour la figure 53) et afin d'assurer la tenue mécanique de l'ensemble, il est prévu d'attacher de manière solidaire la portion d'extrémité des éléments de fixation 210, formés alors de vis de fixation 233, directement dans l'orifice de fixation 140 de l'outil 100. Les éléments de fixation 210 traversent ainsi complètement les cales de fixation 238 et viennent se fixer dans les orifices de fixation 140 de l'outil 100. Cette liaison mécanique rigide, totale (sans degré de liberté), entre chaque élément de fixation 210 et son orifice de fixation 140 associé, est par exemple réalisée par vissage (coopération entre un filetage mâle sur la portion d'extrémité des éléments de fixation 210, formées alors de vis de fixation 233, et un filetage femelle dans l'orifice de fixation 140 de l'outil 100) ou par encastrement/enchâssement, frettage ou soudage. [0085] En choisissant des cales de fixation 238 en matériau rigide, par exemple en métal, la fixation est complètement rigide et permet une reprise des efforts subis par l'outil 100 au niveau des cales de fixation 238 qui constituent une extension physique de l'outil 100 et subissent toutes les vibrations et déformations qui parviennent jusqu'à elles via les orifices de fixation 140, y compris le mouvement alternatif de rotation autour du point nodal, d'où un travail en torsion des cales de fixation 238. Pour rappel, les vibrations de l'outil 100 sont engendrées par le transducteur 230 qui est relié via un élément de raccordement 231 (et un éventuel booster 240 non représenté) à l'orifice de montage 138 de l'outil 100. En d'autres termes, ces cales de fixation 238 sont considérée fixées rigidement à l'outil 100 et subissent donc, au moment de la vibration de l'outil 100, le mouvement de torsion du point nodal auxquels elles sont rattachées. Ces cales de fixation 238 font donc partie intégrante de l'ensemble
ultrasonique en vibration une fois assemblées.
[0086] Selon une autre conception, les cales de fixation 238 sont dans un matériau qui n'est pas rigide, ou peu rigide, (avec un module de Young inférieur à 20 GPa). Dans ce second cas, avec des cales de fixation 238 en matériau souple, il est possible d'absorber les vibrations pour un
fonctionnement non seulement silencieux, mais qui ne nécessite pas de contrainte de positionnement précis entre l'outil 100 et la plaque de support 801. A titre d'exemple de ce second cas, les cales de fixation 238 sont en matériau synthétique comme une matière plastique (telle que du caoutchouc, du polyamide ou un polymère styrénique)
[0087] Comme dans le cas de la figure 53, on peut utiliser un système vibratoire tel que précédemment décrit et au moins deux cales de fixation 238 fixées dans ledit orifice de fixation 140 contre la première face principale 110 ou contre la deuxième face principale 120 de l'outil 100, lesdites cales de fixation 238 présentant un passage traversant, une plaque de support 801 placée contre lesdites cales de fixation 238 avec des ouvertures traversantes 802 en correspondance des orifices de fixation 140 et des vis de fixation 233 (ou plus généralement des éléments de fixation tels que 210) monté(e)s chacun(e) dans une des ouvertures traversantes 802 de la plaque de support 801 en s'étendant au travers d'un passage traversant de l'une des cales de fixation 238 jusqu'à l'orifice de fixation 140 de l'outil 100, et ces cales de fixation 238 permettant de former, avec les vis de fixation 233 (ou plus généralement des éléments de fixation tels que 210), une liaison rigide sans degré de liberté entre la portion d'extrémité des ouvertures traversantes 802 de la plaque de support 801 avec les orifices de fixation 140 de l'outil 100.
[0088] Comme dans le cas de la figure 39, on peut utiliser un système vibratoire tel que précédemment décrit et au moins au moins deux cales de fixation 238 fixées dans ledit orifice de fixation 140 contre la première face principale 110 ou contre la deuxième face principale 120 de l'outil 100, lesdites cales de fixation 238 présentant un passage partiellement
traversant, une plaque de support 801 placée contre lesdites cales de fixation 238 avec des ouvertures traversantes 802 en correspondance des orifices de fixation 140, et des vis de fixation 233 (ou plus généralement des éléments de fixation tels que 210) monté(e)s chacune dans une des ouvertures traversantes 802 de la plaque de support 801 en s'étendant jusqu'au passage partiellement traversant de l'une des cales de fixation 238, et ces cales de fixation 238 permettant de former, avec les vis de fixation 233 (ou plus généralement des éléments de fixation tels que 210), une liaison rigide sans degré de liberté entre la portion d'extrémité des ouvertures traversantes 802 de la plaque de support 801 avec les orifices de fixation 140 de l'outil 100.
[0089] En alternative à la figure 53, on réalise un montage visible sur la figure 54. Dans ce cas, on utilise un système vibratoire tel que
précédemment décrit (ici un outil selon la figure 8, monté sur un
transducteur 230 via un élément de raccordement 231) et les orifices de fixation 140 de l'outil 100 reçoivent des vis 233 montées chacune, depuis l'une des faces 110, 120 de l'outil 100, dans une douille de fixation 234 pour une fixation de la portion d'extrémité de ces vis 233 dans les ouvertures 802 d'une plaque de support 801 utilisé pour l'assemblage final dans le système utilisant l'outil 100, cette plaque de support 801 étant placée en regard de l'autre des faces 110, 120 de l'outil 100. Des éléments d'espacement 237 sous forme de rondelles sont montées autour des vis de fixation 233, dans le prolongement des douilles de fixation 234 entre la plaque de support 801 et l'autre des faces 110, 120 de l'outil 100. Selon une telle configuration, de manière plus générale, on utilise au moins un élément d'espacement 237 disposé contre la première face principalel 10 ou la deuxième face principale 120 de l'outil 100, lesdits éléments
d'espacement 237 présentant un passage traversant, une plaque de support 801 placée contre lesdits éléments d'espacement 237 avec des ouvertures traversantes 802 en correspondance des orifices de fixation 140, et des douilles de fixation 234 montés chacun dans une des ouvertures
traversantes 802 de la plaque de support 801 en s'étendant au travers du passage traversant de l'un des éléments d'espacement 237 et des orifices de fixations 140 de l'outil 100 jusqu'à la première face principale 110 ou la deuxième face principale 120 opposée de l'outil 100, lesdites douilles de fixation 234 présentant un passage traversant, des vis de fixation 233 sont montées chacune au travers des douilles de fixation 234 jusqu' au
ouvertures traversantes 802 de la plaque de support 801 et en formant une liaison rigide sans degré de liberté entre la portion d'extrémité des douilles de fixation 234 avec les ouvertures traversantes 802 correspondantes de la plaque support 801.
[0090] On se reporte à la figure 44 qui représente un montage similaire à celui de la figure 39, à ceci près que l'outil n'est pas celui de la figure 8 associé à des cales de fixation 238 mais un outil 100 conforme à celui des figures 40 à 42 ou celui de la figure 43, à savoir un outil 100 avec des bossages 141 à l'emplacement des orifices de fixation 140 et entourant ces orifices de fixation 140. Ainsi, l'agencement de la figure 44 reprend la situation de l'outil 100 des figures 40 à 43, à savoir que les bossages 141 forment des portions de l'outil qui sont en saillie par rapport à la première face principale 110 ou par rapport à la deuxième face principale 120. Ainsi, dans l'agencement de la figure 44, outre l'outil 100 avec les bossages 141, on retrouve le transducteur 230 monté sur l'orifice de montage 138 de l'outil 100 par l'élément de raccordement 231, et la plaque de support 801 disposée contre les bossages 141, avec une liaison rigide et fixe entre la plaque de support 801 et l'outil 100. Cette liaison est assurée par les vis de fixation 233 (ou tout autre élément de fixation) passant dans les ouvertures traversantes 802 de la plaque de support 801 en correspondance des orifices de fixation 140, en s'étendant jusqu'au passage de l'un des bossages 141 (aligné avec l'orifice de fixation 140). On forme ainsi une liaison rigide sans degré de liberté entre la portion d'extrémité des ouvertures traversantes 802 de la plaque de support 801 avec les passages des bossages 141 correspondants .
[0091] On se rapporte maintenant aux figures 45 à 47, représentant une machine de perçage à ultrason 800 qui utilise l'outil 100 de la figure 8 avec des cales de fixation 238 et un montage similaire à celui de la figure 39. A titre d'alternative non représenté, cette machine de perçage à ultrason 800 peut utiliser l'outil 100 de la figure 40 et un montage similaire à celui de la figure 44 ou 53, avec des bossages 141 au lieu des cales de fixation 238. Pour cette machine de perçage à ultrason 800, certains des orifices de fixation 140 (trois sur quatre dans l'exemple des figures 45 à 47) sont équipés soit d'un bossage 141 soit d'une cale de fixation 238 (comme dans l'exemple des figures 45 à 47) et assure la fixation de l'outil sur un élément de support fixe, et un autre de ces orifices de fixation 140. Comme l'un de ces orifices de fixation ne sert pas au montage sur ledit élément de support fixe, ce dernier (une plaque de support 801' sur les figures 45 à 47) n'a pas d'ouverture traversante 802 correspondante (donc seulement trois ouvertures traversantes 802 pour la plaque de support 801' des figures 45 à 47. Ces (trois) orifices de fixation 140 assurant la fixation de l'outil 100 sur la plaque de support 801' coopèrent avec trois éléments de fixation 210 (trois vis de fixation 233 sur les figures 45 à 47) comme il a été décrit précédemment en relation avec les figures 39 et 44. Le dernier orifice de fixation 140 (quatrième orifice de fixation 140 sur les figures 45 à 47) reçoit, sur la face principale de l'outil opposée à celle regardant la plaque de support 801', une tige rotative 820. Cette tige rotative 820 présente une première extrémité montée rigidement dans ce dernier orifice de fixation 140, par exemple par une liaison filetée (en alternative de ce vissage, on peut concevoir un enchâssement, frettage, ou soudage). Cette liaison rigide entre cette tige rotative 820 et le dernier orifice de fixation 140 entraîne, lorsque l'outil 100 vibre, un mouvement rotatif alternatif (mouvement de va-et-vient) ainsi qu'un mouvement de percussion (mouvement axial de va-et-vient) de la tige rotative 820 formant une mèche de perçage qui peut réaliser ainsi une opération de perçage. A cet effet, la deuxième extrémité, libre, de cette tige rotative 820 est conformée avec un relief adapté à la matière à percer. De la même façon, le matériau de la tige de perçage 820 est adapté au type de perçage à réaliser, notamment à la matière à percer. Cette tige rotative 820 est rectiligne sur toute sa longueur sur les figures 45 à 47, et est dans ce cas prévue pour effectuer des perçages circulaires. Dans d'autres cas non représentés, cette tige rotative 820 est rectiligne hormis dans sa deuxième extrémité qui est courbe, notamment en arc de cercle. Une telle mèche de perçage avec une extrémité libre non rectiligne, notamment courbe, permet avec un mouvement de la main également courbe de réaliser des perçages non rectilignes. En effet, dans ce cas, la tête de la tige de perçage 820 effectue une rotation selon un mouvement de va-et-vient apte à effectuer un perçage en forme d'arc de cercle.
Une tige de perçage 820 bien définie géométriquement tourne selon un mouvement combinant un va-et-vient en rotation et un va-et-vient axial (percussion) très stable et très précis, en recourant si besoin à des masses positionnées sur la tige de perçage 820. Elle peut aussi amplifier le mouvement d'excitation de son point de fixation sur l'outil 100 avec des masses ajustées sur la longueur de cette tige de perçage 820. De telles masses sont visibles sur les figures 45 à 47. La géométrie d'une tige de perçage peut être mise en forme par usinage conventionnel tel que le tournage et le fraisage mais aussi par un procédé d'injection MIM (moulage injection métallique) suivi d'une opération de déliantage et de frittage.
[0092] Pour compléter cette machine de perçage 800, un corps 830 est relié de manière solidaire à la plaque de support 801'. Ce corps 830 comporte une poignée à main 832 associée à une gâchette 836 pour la commande de la mise en vibration de l'outil 100, et à un câble pour l'alimentation électrique du transducteur 230, du booster éventuel 240, et du générateur d'impulsions 840. Ce câble comprend la partie commande du générateur d'impulsions 840, soit la transmission du signal de la gâchette 836 au générateur d'impulsions 840pour l'activation du transducteur 230, ainsi que la partie alimentation du transducteur 230 depuis le générateur d'impulsions 840.
[0093] Une possibilité est d'utiliser cette machine de perçage dans des applications médicales, notamment en chirurgie dentaire, par exemple pour réaliser le perçage dans l'os de la mâchoire en cas de pose d'implant dentaire. Avec une vibration à des fréquence d'ultrasons, notamment autour de ou plus grand que 30 KHz, on constate une moindre
détérioration des matières organiques entourant l'os percé, ce qui assure de meilleures cicatrisation et reconstitution générale des éléments organiques après intervention. Une autre application concerne la chirurgie orthopédique.
[0094] Bien sûr, on peut réaliser une machine de perçage 800 avec un autre outil 100 que celui des figures 8 et 40, en l'occurrence avec l'un quelconque des outils 100 présentés dans le présent texte et sur les figures qui l'accompagne.
[0095] On se reporte maintenant aux figures 48 et 49, correspondant à une première variante du huitième mode de réalisation de l'outil 100.
Comme on le voit sur la figure 48, cet outil est conforme à celui de la figure 13 avec deux différences. La première différence avec l'outil de la figure 13, est que l'outil de la figure 48 comporte en plus des canaux de circulation de fluide 170 (liquide ou gaz) s'étendant dans la portion de travail 104 formant le corps de l'outil. Ces canaux 170 permettent de faire circuler un liquide dans le corps de l'outil 100 pour le refroidissement ou
éventuellement le réchauffement de l'outil 100. Dans cette variante, telle que sur les figures 48 et 49, les perçages formant ces canaux 170 sont débouchants sur les faces 132, 1 33 et 134 car réalisés sous la forme de deux séries de perçages : une première série de perçages parallèles à la direction Z débouche dans la face d'extrémité 133, et une deuxième série de perçages parallèles à la direction X débouche dans les deux faces latérales 132 et 134 en intersectant avec la première série de perçage (voir sur la figure 49). Ces perçages servent à faire circuler un liquide (refroidissement ou chauffage) dans l'outil 100 : il est à noter que ce liquide allant aussi être soumis aux ultrasons, il s'ensuit un traitement et en particulier une désinfection par ultrason du fait de la cavitation qui intervient dans ce liquide, notamment de l'eau. Les perçages débouchant sur la face
d'extrémité 133 définissent l'entrée 171 et la sortie 172 du liquide dans l'outil 100 et les perçages de la deuxième série débouchant sur les faces latérales 132 et 134 traversent l'outil selon l'axe X et relient l'entrée 171 et la sortie 172 du liquide dans l'outil 100. Pendant l'utilisation de l'outil, les extrémités des perçages de la deuxième série sont refermées par des bouchons 173 afin de délimiter un circuit avec une seule entrée 171 et une seule sortie 172.
La deuxième différence avec l'outil de la figure 13, est que l'outil de la figure 48 est adapté pour servir de moule. A cet effet, il comporte sur l'une de ses faces principales 1 10 et 120 une zone en relief, en particulier une zone en creux 191 formant une cavité/une empreinte contribuant à former le moule. Cette zone en creux 191 communique avec des orifices de travail 150 traversants qui s'étendent entre la première face principale 1 10 et la deuxième face principale 120 : ces orifices de travail servent de logement pour les tiges éjecteurs 302 qui agissent au moment de la décharge du moule.
On retrouve les deux orifices de réglage 160 et 160' de la figure 13. L'orifice de réglage 160' est situé sensiblement au milieu de la portion de travail 104 et est relié à la zone en creux 191. L'orifice de réglage 160' sert de canal d'alimentation pour l'injection de matière plastique dans la zone en creux 191.
[0096] On se reporte maintenant aux figures 50 et 51 , correspondant à un montage analogue à celui de la figure 29 pour réaliser une injection plastique, et utilisant l'outil 100 précédemment décrit en relation avec les figures 48 et 49. La figure 50 montre en perspective une portion du moule d'une machine d'injection plastique et la figure 51 montre en perspective et en éclaté une portion d'une machine d'injection plastique dans laquelle le moule comporte, dans la partie de sa carcasse 303, un outil 100
précédemment décrit qui est intercalé entre la partie de la carcasse 303, par l'intermédiaire de cales de fixation 238 ou d'éléments d'espacement 237, et la partie de la carcasse 304 pendant l'injection. L'outil 100 comporte une zone en creux 191 formant une cavité/une empreinte pour l'injection plastique d'une pièce. La partie mobile de la carcasse 303 du moule comporte en plus un système d'éjection composé de tiges éjecteur 302 montées mobile dans celle-ci et étant partiellement introduites dans l'outil 100 pendant l'injection et ensuite complètement introduites au travers de l'outil 100 au moment de l'éjection. Après l'injection, pendant le
démoulage, les deux carcasses extérieures 303 et 304 du moule sont écartées, le transducteur 230 ou autre dispositif générant l'énergie vibratoire à la fréquence souhaitée, mettant en vibration l'outil 100, ce par quoi la pièce issue de l'injection de matière plastique est aisément éjectée de sa cavité composée de la zone en creux 191 de l'outil 100, et ce, sans endommager la structure de surface de la pièce produite.
Ainsi, on obtient d'une manière plus générale une machine d'injection plastique comportant un moule d'injection plastique, et un système vibratoire tel que défini auparavant, comprenant un outil 100, dans lequel la première face principale ou la deuxième face principale de l'outil est disposée, par l'intermédiaire de cales de fixation 238 ou d'éléments d'espacement 237, contre une surface du moule ou d'une pièce solidaire du moule. La mise en vibration de l'outil 100 entraîne la vibration de la cavité d'injection du moule composée de la zone en creux 191, en particulier lors de la décharge du moule.
[0097] Une autre et deuxième variante du huitième mode de réalisation de l'outil 100 est représentée sur la figure 52. Cet outil se différencie de celui des figures 13 à 17 en ce qu'il comporte deux portions de fixation 102, de part et d'autre de la portion de travail 104. De ce fait les deux faces latérales 132 et 134 comportent chacune deux renfoncements 136, quatre orifices de fixation 140 sont présents (deux par portion de fixation 102) et trois orifices de réglage 160 sont présents (un sensiblement au milieu de la portion de travail 104, et chacun des deux autres jouxtant respectivement l'une et l'autre des portions de fixation 102, entre les deux renfoncements 136). [0098] Il apparaît que les conceptions d'outils vibrants qui viennent d'être décrites permettent de conserver un mode vibratoire qui provoque la contraction et la dilatation de l'outil notamment sur la longueur de celui-ci, à savoir entre les faces d'extrémités, mais également sur la largeur de l'outil à savoir entre les faces latérales de la bordure.
[0099] Selon une possibilité, l'outil présente un rapport dimensionnel entre sa largeur et sa longueur (mesurées au repos donc sans sollicitation ou excitation vibratoire, respectivement entre les faces latérales de la bordure et entre les faces d'extrémité de la bordure) qui est compris entre 0.6 et 0.9, et de préférence entre 0.7 et 0.85.
[00100] Selon un mode de réalisation, l'outil est en un matériau
métallique. Par exemple, et de manière non limitative, un tel matériau appartient à la liste suivante : Aciers, fonte, ou encore fer, aluminium, titane et leurs alliages... [00101] Selon un mode de réalisation, l'outil peut être usiné par des procédés conventionnel tel que le fraisage et l'électroérosion à fil mais aussi par des procédés tel que l'impression 3D métallique (frittage sélectif au laser) ou la combinaison des procédés de fraisage et d'impression 3D pour la fabrication d'un même outil 100.
Numéros de référence employés sur les figures
P1 Premier plan
P2 Deuxième plan
P3 Troisième plan de symétrie
L Longueur
I Largeur
P Profondeur
100 Outil vibrant
100' Outil vibrant
102 Portion de fixation
104 Portion de travail
110 Première face principale
120 Deuxième face principale
130 Bordure
131 Face d'extrémité
132 Face latérale
133 Face d'extrémité
134 Face latérale
136 Renfoncement
137 Renfoncement
138 Orifice de montage
139 Orifice de montage
140 Orifice de fixation
141 Bossage
150 Orifice de travail
160 Orifice de réglage
170 Canal de circulation de fluide (liquide ou gaz)
171 Entrée du canal
172 Sortie du canal
173 Bouchons
180 Zone nodale
190 Zone fonctionnelle
191 Zone en relief (cavité)
192 Zone en relief (protrusion) Support
Elément de fixation
Elément rapporté
Transducteur
Elément de raccordement
Sonotrode standard
Vis de fixation
Douille de fixation
Tête de fixation
Table d'appui
Elément d'espacement (rondelle)
Cales de fixations
Booster
Système vibratoire
Système vibratoire
Système vibratoire
Système vibratoire
Tige éjecteur
Carcasse extérieure du moule
Carcasse extérieure du moule
Douille de raccord
Embout de sortie de la filière
Partie de bâti
Orifice traversant
Premier poinçon de pressage
Deuxième poinçon de pressage
Train de billes
Arbre tournant
Raccord de tuyau
Support
Machine de perçage
Plaque de support
' Plaque de support
Ouvertures traversantes de la plaque de support Tige rotative (mèche de perçage) Corps de la machine de perçage Poignée
Câble
Gâchette
Générateur d'impulsions

Claims

Revendications
1. Outil (100) apte à vibrer lorsqu'il est soumis à une excitation vibratoire de fréquence f,
ledit outil (100) étant massif et définissant :
- une première face principale (110) et une deuxième face principale (120) essentiellement planes, présentant le même contour et parallèles entre elles, la projection orthogonale de ladite première face principale (110) et de ladite deuxième face principale (120) étant circonscrite dans un rectangle, ce par quoi la première face et la deuxième face définissent chacune quatre côtés, et
- une bordure (130) encerclant ledit outil (100) et constituée de surfaces perpendiculaires à ladite première face principale (110) et à ladite deuxième face principale (120) ,
*ledit outil (100) définissant trois plans: un premier plan P1 étant le plan moyen formé entre la première face principale (110) et la deuxième face principale (120), un deuxième plan P2 et un troisième plan P3 orthogonaux à la première face principale (110) et à la deuxième face principale (120), le deuxième plan P2 et le troisième plan P3 étant orthogonaux entre eux, le deuxième plan P2 formant un plan moyen entre deux côtés opposés de ladite bordure (130) formant des faces d'extrémité (131, 133) et le troisième plan P3 formant un plan de symétrie entre les deux autres côtés opposés de ladite bordure (130) formant des faces latérales (132, 134),
*ladite bordure (130) formant au moins deux renfoncements (136; 137) situés sur deux côtés opposés de ladite bordure (130) formant les faces latérales (132, 134),
ledit outil (100) étant agencé de sorte que pendant la vibration à une fréquence de travail fO prédéfinie, certaines zones de la pièce forment des zones nodales (180) et au moins une zone fonctionnelle (190) qui présente une déformation pendant ladite excitation vibratoire,
ledit outil (100) comportant au moins un orifice de fixation (140) apte à relier ledit outil (100) à un autre élément, et
ledit outil (100) comportant en outre au moins un orifice de montage (138; 139) débouchant dans la bordure (130) et apte à relier ledit outil (100) à un élément présentant une énergie vibratoire. 2. Outil (100) selon la revendication 1, dans lequel ledit orifice de fixation (140) est centré sur l'une desdites zones nodales (180).
3. Outil (100) selon l'une des revendications 1 et 2, dans lequel ledit orifice de montage (138) est centré sur l'une des faces d'extrémité (131, 133). 4. Outil (100) selon l'une des revendications 1 à 3, dans lequel la distance séparant la première face principale (110) de la deuxième face principale (120) et formant la profondeur (P) est plus petite que ou égale à la largeur (I), mesurée entre les faces latérales (132, 134) de la bordure (130).
5. Outil (100) selon l'une des revendications 1 et 2, ledit outil (100) comportant quatre zones nodales (180) et quatre orifices de fixation (140).
6. Outil (100) selon l'une des revendications 1 à 3, ledit outil (100) comportant en outre au moins un orifice de travail (150) traversant de part en part ledit outil (100) .
7. Outil (100) selon la revendication précédente, dans lequel ledit orifice de travail recoupe au moins une zone fonctionnelle (190).
8. Outil (100) selon l'une des revendications 1 à 5, ledit outil (100) comportant en outre au moins un orifice de réglage formé d'un trou traversant ledit outil (100) entre la première face principale (110) et la deuxième face principale (120) et permettant d'ajuster la fréquence de travail fO et de garder des zones nodales (180).
9. Outil (100) selon l'une des revendications 1 à 6, dans lequel le premier plan P1 forme un plan de symétrie de l'outil (100).
10. Outil (100) selon l'une des revendications 1 à 7, dans lequel le deuxième plan P2 forme un plan de symétrie de l'outil (100). 11. Outil (100) selon l'une des revendications 1 à 8, dans lequel ledit renfoncement (136 ; 137) présente, en projection sur la première face principale (110), une forme en U, avec deux branches et une zone de jonction courbe entre les branches et la base du U, ou une forme d'arc de cercle.
12. Outil (100) selon l'une des revendications 1 à 9, dans lequel ladite bordure (130) délimite un profil en H de l'outil (100).
13. Outil (100) selon l'une des revendications 1 à 10, dans lequel ledit outil (100) est monobloc. 14. Outil (100) selon l'une des revendications 1 à 11, dans lequel ledit outil
(100) présente un rapport dimensionnel entre sa largeur (I), mesurée entre les faces latérales (132, 134) de la bordure (130), et sa longueur (L), mesurée entre les faces d'extrémité (131, 133) de la bordure (130), qui est compris entre 0.6 et 0.9. 15. Outil (100) selon l'une des revendications 1 à 12, dans lequel ledit outil
(100) est en un matériau métallique.
16. Outil (100) selon l'une des revendications 1 à 13, dans lequel ledit outil (100) constitue une sonotrode.
17. Outil (100) selon l'une des revendications 1 à 14, dans lequel ledit outil (100) constitue un booster.
18. Outil (100) selon l'une des revendications 1 à 15, apte à vibrer avec une fréquence de travail fO dans le domaine de l'ultrason.
19. Outil (100) selon l'une des revendications 1 à 17, comportant en outre sur l'une au moins de ladite première face principale (110) et de ladite deuxième face principale (120), une zone en relief (191 ; 192), en retrait ou en saillie par rapport au reste de la face.
20. Outil (100) selon l'une des revendications 1 à 19, dans lequel ledit outil (100) comporte des bossages (141) en saillie par rapport à la première face principale (110) ou par rapport à la deuxième face principale (120), à l'emplacement des orifices de fixation (140) et entourant ces orifices de fixation (140).
21. Ensemble vibrant comprenant un outil (100) selon l'une des
revendications 1 à 20 et au moins un élément rapporté (220) sur un orifice de montage (138) qui recoupe au moins une zone fonctionnelle (190).
22. Système vibratoire à une fréquence déterminée fO, comprenant :
- un transducteur apte à générer une excitation vibratoire selon la fréquence fO ; et
- un outil (100) selon l'une des revendications 1 à 20 ou un ensemble vibrant selon la revendication 21, ledit outil (100) étant fixé au transducteur par ledit orifice de montage (138).
23. Système vibratoire selon la revendication précédente, comprenant en outre un booster monté sur ledit transducteur et apte à amplifier
l'amplitude de vibration générée par le transducteur (230), ledit outil (100) étant fixé au booster par ledit orifice de montage (138 ; 139).
24. Agencement comprenant un système vibratoire selon la revendication 22 ou 23 et au moins un élément d'espacement (237) ou au moins une cale de fixation (238) disposé(e) contre la première face principale (110) ou la deuxième face principale (120) de l'outil (100), et des éléments de fixation (210) reliant ledit élément d'espacement (237) ou ladite cale de fixation (238) audit outil (100), dans lequel les éléments de fixation (210) sont disposés dans les orifices de fixation (140). 25. Agencement comprenant un système vibratoire selon la revendication 22 ou 23 et au moins un élément d'espacement (237) disposé contre la première face principale (110) ou la deuxième face principale (120) de l'outil (100), lesdits éléments d'espacement (237) présentant un passage traversant, une plaque de support (801) placée contre lesdits éléments d'espacement (237) avec des ouvertures traversantes (802) en
correspondance des orifices de fixation (140), et des douilles de fixation (234) montés chacun dans une des ouvertures traversantes (802) de la plaque de support (801) en s'étendant au travers du passage traversant de l'un des éléments d'espacement (237) et des orifices de fixations (140) de l'outil (100) jusqu'à la première face principale (110) ou la deuxième face principale (120) opposée de l'outil (100), lesdites douilles de fixation (234) présentant un passage traversant, des vis de fixation (233) sont montées chacune au travers des douilles de fixation (234) jusqu' au ouvertures traversantes (802) de la plaque de support (801) et en formant une liaison rigide sans degré de liberté entre la portion d'extrémité des douilles de fixation (234) avec les ouvertures traversantes (802) correspondantes de la plaque support (801).
26. Agencement selon la revendication 24, comprenant en outre, entre chaque élément de fixation (210) et ledit orifice de fixation (140), une douille anti-friction.
27. Agencement comprenant un système vibratoire selon la revendication 22 ou 23 et au moins deux cales de fixation (238) fixées dans ledit orifice de fixation (140) contre la première face principale (110) ou contre la deuxième face principale (120) de l'outil (100), lesdites cales de fixation (238) présentant un passage traversant, une plaque de support (801) placée contre lesdites cales de fixation (238) avec des ouvertures traversantes (802) en correspondance des orifices de fixation (140), et des éléments de fixation (210, 233) montés chacun dans une des ouvertures traversantes (802) de la plaque de support (801) en s'étendant au travers d'un passage traversant de l'une des cales de fixation (238) jusqu'à l'orifice de fixation (140) de l'outil 100, et en formant une liaison rigide sans degré de liberté entre la portion d'extrémité des ouvertures traversantes (802) de la plaque de support (801) avec les orifices de fixation (140) de l'outil (100).
28. Agencement comprenant un système vibratoire selon la revendication 22 ou 23 et au moins deux cales de fixation (238) fixées dans ledit orifice de fixation (140) contre la première face principale (110) ou contre la
deuxième face principale (120) de l'outil (100), lesdites cales de fixation (238) présentant un passage partiellement traversant, une plaque de support (801) placée contre lesdites cales de fixation (238) avec des ouvertures traversantes (802) en correspondance des orifices de fixation (140), et des éléments de fixation (233, 210) montés chacun dans une des ouvertures traversantes (802) de la plaque de support (801) en s'étendant jusqu'au passage partiellement traversant de l'une des cales de fixation (238), et en formant une liaison rigide sans degré de liberté entre la portion d'extrémité des ouvertures traversantes (802) de la plaque de support (801) avec les orifices de fixation (140) de l'outil (100).
29. Agencement comprenant un système vibratoire selon la revendication 22 ou 23 avec un outil selon la revendication 20 , une plaque de support (801) placée contre les bossages (141) avec des ouvertures traversantes (802) en correspondance des orifices de fixation (140), et des éléments de fixation (210) montés chacun dans une des ouvertures traversantes (802) de la plaque de support (801) en s'étendant jusqu'au passage de l'un des bossages (141), et en formant une liaison rigide sans degré de liberté entre la portion d'extrémité des ouvertures traversantes (802) de la plaque de support (801) avec les passages des bossages (141) correspondants.
30. Machine de perçage (800)comprenant un agencement selon la
revendication précédente ou un agencement selon la revendication 27 ou 28, dans lequel certains des orifices de fixation (140) assurent la fixation avec la plaque de support (801') et comprenant en outre une tige rotative (820) montée rigidement dans un autre des orifices de fixation (140), un corps (830) relié de manière solidaire à la plaque de support (801') et comportant une poignée à main (832) associée à une gâchette (836) pour la commande de la mise en vibration de l'outil (100), et un câble pour l'alimentation électrique d'un transducteur (230) apte à être monté sur l'outil et pour l'alimentation électrique d'un générateur d'impulsions (840).
31. Machine d'injection plastique comportant un moule d'injection plastique, et un système vibratoire selon la revendication 22, dans lequel la première face principale (110) ou la deuxième face principale (120) de l'outil (100) est disposée contre une surface du moule ou d'une pièce solidaire du moule, de sorte que la mise en vibration de l'outil (100) entraîne la vibration du moule, en particulier lors de la décharge du moule.
32. Machine d'extrusion plastique comportant un système vibratoire selon la revendication 22, dans laquelle ledit outil (100) comporte un orifice de travail (150) formant un tronçon de la filière d'extrusion
33. Machine de pressage de poudre comprenant un bâti de machine, au moins un poinçon de pressage mobile en translation entre une position de repos et une position de travail, et un système vibratoire selon la
revendication 22, dans lequel la première face principale (110) ou la deuxième face principale (120) de l'outil (100) est disposée contre une surface dudit bâti ou d'une pièce solidaire dudit bâti, dans lequel ledit outil (100) est muni d'une ouverture traversante dans ladite zone fonctionnelle (190), dans laquelle ladite ouverture traversante est apte à former un réceptacle formant un moule pour le pressage de poudre dans la position de travail dudit poinçon.
34. Dispositif avec roulement à billes comprenant une plaque de support et un arbre monté rotatif autour de son axe au moyens de billes de
roulement, et un système vibratoire selon la revendication 22, dans lequel ladite plaque de support est disposée contre la première face principale (110) ou la deuxième face principale (120) de l'outil (100), et des éléments de fixation (234) reliant ladite plaque de support audit outil (100), dans lequel les éléments de fixation sont disposés dans les orifices de fixation, dans lequel ledit outil (100) est muni d'une ouverture traversante dans ladite zone fonctionnelle (190), dans laquelle ladite ouverture traversante est apte à former une bague extérieure du roulement à billes, ledites billes de roulement étant interposées entre ledit arbre et ladite ouverture tranversante de l'outil (100).
35. Machine pour le traitement de liquide circulant dans un tuyau par mise en vibration dudit liquide, ladite machine comportant un système vibratoire selon la revendication 22, dans lequel ledit outil (100) est muni d'un orifice de travail dans ladite zone fonctionnelle (190), qui est apte à former un passage pour ledit liquide,
- un ensemble de raccordement permettant de raccorder sur la machine d'une part une portion aval du tuyau et d'autre part une portion amont du tuyau, avec interposition dudit outil (100) à l'emplacement de l'orifice de travail, ledit ensemble de raccordement comprenant une première pièce de raccordement et une deuxième pièce de raccordement, chacune
comprenant une face de raccordement avec l'outil (100), disposée contre l'outil (100), un passage aligné avec l'orifice de travail, une portion formant manchon alignée avec ledit passage et permettant le raccordement de la portion amont, respectivement aval du tuyau, et au moins un orifice de fixation
- et des éléments de fixation reliant entre eux, ledit outil (100), la première pièce de raccordement et la deuxième pièce de raccordement, dans lequel les éléments de fixation sont disposés dans les orifices de fixation de l'outil (100) et des première et deuxième pièces de raccordement.
PCT/IB2020/054058 2019-05-08 2020-04-30 Outil vibrant et système vibratoire comprenant un tel outil WO2020225658A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH00609/19A CH716161A1 (fr) 2019-05-08 2019-05-08 Outil vibrant et ensemble vibrant, système vibratoire, agencement, dispositif avec roulement à billes et diverses machines comprenant un tel outil.
CH00609/19 2019-05-08

Publications (1)

Publication Number Publication Date
WO2020225658A1 true WO2020225658A1 (fr) 2020-11-12

Family

ID=66640927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2020/054058 WO2020225658A1 (fr) 2019-05-08 2020-04-30 Outil vibrant et système vibratoire comprenant un tel outil

Country Status (2)

Country Link
CH (1) CH716161A1 (fr)
WO (1) WO2020225658A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3138512A1 (fr) * 2022-07-29 2024-02-02 Safran Aircraft Engines Pièce mécanique comprenant au moins une cavité interne et procédé de fabrication d’une telle pièce

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006011593A1 (de) * 2006-03-10 2007-09-13 Dürr Dental GmbH & Co. KG Elastisch biegbarer Koppelkörper
ES1068083U (es) * 2007-03-02 2008-08-16 Compañia Española De Ultrasonidos, S.A Cabezal para soldadura ultrasonica de materiales plasticos.
EP2300217A1 (fr) 2008-05-15 2011-03-30 3M Innovative Properties Company Montage nodal résonant pour émetteurs d'ultrasons linéaires
DE102012004835A1 (de) * 2012-03-13 2013-09-19 Roland de Craigher Entkeimung von Flüssigkeiten mittels Ultraschall, Vorrichtung, Verfahren und Verwendung
US20150290873A1 (en) * 2010-10-26 2015-10-15 Gordon Hull Sonotrode and Anvil Energy Director Grids for Narrow/Complex Ultrasonic Welds of Improved Durability

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006011593A1 (de) * 2006-03-10 2007-09-13 Dürr Dental GmbH & Co. KG Elastisch biegbarer Koppelkörper
ES1068083U (es) * 2007-03-02 2008-08-16 Compañia Española De Ultrasonidos, S.A Cabezal para soldadura ultrasonica de materiales plasticos.
EP2300217A1 (fr) 2008-05-15 2011-03-30 3M Innovative Properties Company Montage nodal résonant pour émetteurs d'ultrasons linéaires
US20150290873A1 (en) * 2010-10-26 2015-10-15 Gordon Hull Sonotrode and Anvil Energy Director Grids for Narrow/Complex Ultrasonic Welds of Improved Durability
DE102012004835A1 (de) * 2012-03-13 2013-09-19 Roland de Craigher Entkeimung von Flüssigkeiten mittels Ultraschall, Vorrichtung, Verfahren und Verwendung

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3138512A1 (fr) * 2022-07-29 2024-02-02 Safran Aircraft Engines Pièce mécanique comprenant au moins une cavité interne et procédé de fabrication d’une telle pièce

Also Published As

Publication number Publication date
CH716161A1 (fr) 2020-11-13

Similar Documents

Publication Publication Date Title
FR2910826A1 (fr) Dispositif pour la production de vibrations ultrasoniques
EP2535516B1 (fr) Procédé de soudage par friction d&#39;aubes à un tambour de compresseur axial et dispositif correspondant
EP0567579B1 (fr) Unite modulaire de reacteur ultra-sonique tubulaire
WO2020225658A1 (fr) Outil vibrant et système vibratoire comprenant un tel outil
FR2715884A1 (fr) Procédé et dispositif pour le traitement de surface et la mise en précontrainte de la paroi intérieure d&#39;une cavité.
FR2881467A1 (fr) Dispositif de distribution variable d&#39;arbre a cames avec verrouillage sans jeu
FR2974524A1 (fr) Procede de realisation d&#39;un objet par solidification de poudre a l&#39;aide d&#39;un faisceau laser avec insertion d&#39;un organe d&#39;absorption de deformations
CA3027252C (fr) Procede de traitement d&#39;une surface pour l&#39;impression 3d, composant et appareil
FR3042541B1 (fr) Conduit d&#39;ejection de gaz a traitement acoustique, aeronef et procede de fabrication d&#39;un tel conduit
FR2714629A1 (fr) Procédé et dispositif d&#39;ébavurage de pièces mécaniques.
EP1141797A1 (fr) Procede de realisation de pieces mecaniques par decomposition en strates
EP1866104B1 (fr) Scelleuse a ultrasons rotative
EP1645773A1 (fr) Dispositif antivibratoire hydraulique pour véhicule et procédé de fabrication d&#39;un tel dispositif
Levina et al. Principles and application of ultrasound in pharmaceutical powder compression
CH718044A2 (fr) Ensemble électromécanique comprenant un outil apte à vibrer et procédé de montage d&#39;un tel outil.
CA2696561A1 (fr) Etau a depression a plaque de travail souple maintenue par des plots
EP1753957A1 (fr) Circulateur de fluide a membrane rigide
EP4000751A1 (fr) Outil vibrant et système vibratoire comprenant un tel outil
EP1210986A1 (fr) Outillage de vibration de grandes dimensions, notamment pour des applications de soudage
EP3037181A1 (fr) Dispositif de mise en vibration par ultrasons d&#39;un ensemble inerte pour la decoupe de produits industriels, notamment des produits alimentaires
JP3562567B2 (ja) 超音波射出成形用金型
FR3046235A1 (fr) Support interchangeable pour la fixation d&#39;une turbomachine
EP1200245B1 (fr) Procede de fabrication un profile en u pour goulotte, et profile ainsi obtenu
FR2894503A1 (fr) Procede de depoussierage de plaques alveolaires, soufflette de depoussierage
WO2023247649A1 (fr) Outil de formage incrémental vibratoire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20724569

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20724569

Country of ref document: EP

Kind code of ref document: A1