WO2020225260A1 - Dispositif de traitement des eaux par rayonnement ultraviolet en canal ouvert de station d'épuration - Google Patents

Dispositif de traitement des eaux par rayonnement ultraviolet en canal ouvert de station d'épuration Download PDF

Info

Publication number
WO2020225260A1
WO2020225260A1 PCT/EP2020/062452 EP2020062452W WO2020225260A1 WO 2020225260 A1 WO2020225260 A1 WO 2020225260A1 EP 2020062452 W EP2020062452 W EP 2020062452W WO 2020225260 A1 WO2020225260 A1 WO 2020225260A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultraviolet
cleaning
tubes
upright
fluid
Prior art date
Application number
PCT/EP2020/062452
Other languages
English (en)
Inventor
Pierre Jean Vialle
Patrick BORDAS
André Bordas
Antoine AUBRUN
Alexandre PESTOURIE
Original Assignee
Uvgermi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uvgermi filed Critical Uvgermi
Priority to EP20723407.1A priority Critical patent/EP3966168A1/fr
Publication of WO2020225260A1 publication Critical patent/WO2020225260A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • C02F1/325Irradiation devices or lamp constructions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/32Details relating to UV-irradiation devices
    • C02F2201/322Lamp arrangement
    • C02F2201/3225Lamps immersed in an open channel, containing the liquid to be treated
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/32Details relating to UV-irradiation devices
    • C02F2201/322Lamp arrangement
    • C02F2201/3227Units with two or more lamps
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/32Details relating to UV-irradiation devices
    • C02F2201/324Lamp cleaning installations, e.g. brushes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Definitions

  • the present invention belongs to the general field of the treatment of fluids, in particular systems for disinfection by ultraviolet radiation, commonly referred to as “UV reactors”, and relates more particularly to a device for the treatment of water by ultraviolet radiation in an open channel of a wastewater treatment plant. .
  • UV-C a part of the ultraviolet radiation
  • UV-C a part of the ultraviolet radiation
  • UV disinfection is a technology that has proven itself in terms of safety, reliability, efficiency and economic benefits over the years. For example, more than 15% of wastewater treatment plants in North America currently use UV disinfection as the primary method of disinfection.
  • UV reactors are described in documents CN107200380A, US2002162969A1, US2013153515A1, KR101308426B1,
  • the well-mastered UV disinfection process finds applications in several fields, in particular the treatment of water and more particularly of wastewater at the outlet of purification stations.
  • UV reactors It is known practice to install UV reactors at the outlet of purification stations to treat wastewater before it is reused or rejected.
  • the reactors are said to be in open channel, unlike the so-called closed UV reactors whose most widespread application is the treatment of drinking water, and crossed by water between an inlet section and an outlet section delimiting an effective treatment area.
  • Open channel UV reactors are mainly used in municipal water / wastewater treatment plants for water recycling and reduction of pollutant drainage into the environment.
  • the UV lamps are arranged either parallel to the direction of flow of the fluid or perpendicular to it.
  • UV reactors incorporate chemical cleanings based on surfactant additives alone or mixed in situ with high pressure water jets or compressed air.
  • Document US2005023482A1 describes such a chemical cleaning.
  • UV reactors with ultrasonic cleaning of the sheaths, the induced ultrasonic vibrations making it possible to interrupt the scaling of the reactor components, as described in document WO9927972A1.
  • Document CN107827201A discloses, for example, a UV reactor comprising quartz sheaths, the outer walls of which are coated with a superhydrophobic layer to limit the deposits of aqueous or suspended pollutants in water.
  • the main aim of the present invention is to overcome the limitations of the prior art by proposing a UV reactor which has reduced bulk, by an innovative compact arrangement of the UV lamps, and an automated physicochemical cleaning system of improved efficiency.
  • the present invention relates to a device for treating fluid by ultraviolet radiation in the open channel of a wastewater treatment plant, comprising a plurality of ultraviolet tubes, each consisting of an ultraviolet lamp placed in a protective sheath, a body in which said tubes are installed parallel to each other, a system for cleaning the protective sheaths, an electrical unit and an auxiliary unit containing a tank for cleaning product
  • This device is remarkable in that the ultraviolet tubes are arranged so inclined with respect to a horizontal direction of fluid flow, and in that the cleaning system comprises photocatalytic media in contact with the protective sleeves.
  • the body has a parallelepiped shape and comprises a base extended along a longitudinal axis of the device, two uprights, an upstream upright and a downstream upright, perpendicular to the base, and two sidewalls, each side comprising a couple triangular plates spaced apart, placed at two opposite angles of said side so as to define an opening parallel to the UV tubes.
  • each upright comprises two parallel and spaced bars defining openings corresponding to a fluid inlet at the level of the upstream upright and to a fluid outlet at the level of the downstream upright, the ultraviolet tubes being entirely contained in a delimited treatment volume. by said inlet and outlet and the base.
  • the upstream upright comprises two adjustable joints, each being placed along a bar of said upright, to sealingly connect the inlet of the treatment device and the walls of the sewage treatment plant channel.
  • the ultraviolet lamps are mercury vapor and produce monochromatic UV-C radiation
  • the protective sheaths are made of quartz, the quartz having a high transmittance of the radiated wavelengths.
  • the cleaning system comprises cleaning rings, each being placed around an ultraviolet tube and provided with a part supplied with the cleaning product and a part supporting a photocatalytic medium. More particularly, the cleaning system comprises several cleaning assemblies, each of said assemblies comprising several integral cleaning rings.
  • the rings of a cleaning assembly can for example be juxtaposed and connected by a plate.
  • photocatalytic media are based on titanium dioxide.
  • the cleaning system is mounted to slide along the ultraviolet tubes, driven by a mechanism comprising a gear motor.
  • the body has gripping means for lifting and moving the device.
  • the inclination of the body of the treatment device is adjustable by a means bearing on a bottom of the sewage treatment plant channel, such as a wedge, so as to vary the height covered by the radiation from the tubes. ultraviolet (10), to match the height of the fluid in the channel.
  • FIG. 1 a perspective view of the device for treatment by ultraviolet radiation according to a first embodiment of the invention
  • Figure 2 a detail of Figure 1 showing the arrangement of part of the cleaning system for the protective sheaths of ultraviolet lamps;
  • FIG. 3 a partial perspective view of the treatment device with the cover of the electrical unit open;
  • FIG. 4 a perspective view of the device for treatment by ultraviolet radiation according to a second embodiment of the invention
  • Figure 5 a front view of the treatment device showing adjustment joints at the level of the upstream post.
  • UV reactor is used laconically to denote, according to a common meaning in the field of water treatment, a device for the essentially bactericidal treatment of water or other fluids by ultraviolet radiation.
  • FIG. 1 shows a UV reactor 100 according to the invention mainly comprising a plurality of ultraviolet tubes 10, a support body 20 in which said tubes are mounted, a cleaning system (30, 35) of the ultraviolet tubes, an electrical unit 40, for a motorization of the cleaning system and an electrical connection of the ultraviolet tubes, and an auxiliary unit 50 making it possible, among other things, to store a cleaning chemical.
  • the UV reactor 100 is connected to a control and power part placed in a remote cabinet, not shown, of the programmable logic controller type for example.
  • the ultraviolet tubes 10 are parallel and arranged inclined with respect to a horizontal plane (XY). According to the illustrated embodiment, the ultraviolet tubes 10 are arranged in superimposed rows, each row comprising a determined number of tubes.
  • Each ultraviolet tube 10 consists of an ultraviolet lamp 11 placed, coaxially, inside a tubular and transparent protective sheath 12.
  • Ultraviolet lamps 11 produce ultraviolet radiation suitable for the targeted bactericidal and germicidal treatments and are for example low-pressure (LP) amalgam lamps and / or medium-pressure (MP) mercury vapor lamps, preferably amalgam lamps.
  • LP low-pressure
  • MP medium-pressure
  • BP producing monochromatic UV-C ultraviolet radiation with a wavelength of 254 nm, more precisely 253.7 nm, close to a germicidal sensitivity peak (265 nm) for microorganisms such as bacteria, viruses and mainly protozoa .
  • Each ultraviolet lamp 11 is placed in a protective sheath 12 which protects it from environmental attacks and insulates it electrically and thermally from water.
  • the protective sheaths 12 have a cylindrical shape with a circular base and dimensions suitable for receiving the lamps 11.
  • the sheaths 12 have an internal diameter substantially greater than that of the lamps 11, to allow the insertion and the sliding of the lamps. the latter, and a length extending at least over the entire radiating part of the lamps 11.
  • the protective sheaths 12 are made of a transparent material, at least at the wavelengths of the ultraviolet radiation emitted by the lamps 11, such as quartz which is characterized by its high transmittance for the radiated wavelengths.
  • the body 20, has a generally parallelepipedal shape resulting from an assembly of bars and plates, and comprises a horizontal base 21, two vertical uprights, upstream 22a and downstream 22b according to the direction of flow. of a fluid passing through the UV reactor 100, and an upper cross member making it possible to support the units 40 and 50.
  • the base 21 constitutes the element by which the UV reactor 100 rests on the ground, or on any other horizontal or slightly inclined surface of a sewage treatment plant channel for example, and has a rectangular shape with two opposite sides, preferably transverse, are surmounted by uprights 22a and 22b.
  • the uprights, upstream 22a and downstream 22b each consist of two spaced vertical bars respectively defining an inlet E and an outlet S of the fluid.
  • the body 20 further comprises two facing plates 23, each of said plates being arranged diagonally at the level of a lateral face of the body 20, adjacent to the inlet E and the outlet S.
  • the plates 23 extend along the ultraviolet tubes 10 and cover them laterally. Longitudinal slots are made in each plate 23 in order to facilitate the flow and transfer of the fluid passing through the UV reactor 100.
  • the structure of the body 20 can thus be assimilated to a triangulated assembly, or lattice, at the level of each lateral face of said body, in which horizontal and vertical bars and diagonal plates define two pyramidal volumes on one side and on the other side.
  • another of the ultraviolet tubes 10 and between the inlet E and the outlet S. constitute useful treatment volumes in which the ultraviolet radiation of the tubes 10 is concentrated.
  • the body 20 is provided with a ramp 24 at the level of the inlet E disposed between the diagonal plates 23 and having a sufficient length to cover the lower ends of the ultraviolet tubes 10 which do not constitute radiating surfaces, and to avoid thereby a less effective contact between the passing fluid and said ends.
  • the body 20 is therefore characterized by its incomplete design opposing a minimum of obstacles to the flow of the fluid, and the ultraviolet tubes 10 are characterized by their inclined arrangement within the structure of said body which makes it possible to optimize the treatment of the fluid.
  • fluid passing through with respect to the horizontal or vertical tubes of the prior art by maximizing the effective treatment sections, sections which correspond to the projections of the straight flow sections on the upper and lower faces of the set of ultraviolet tubes 10.
  • the diagonal arrangement is that which allows the installation of the tubes of greater length.
  • the UV reactor 100 is characterized by largely stripped side faces which make it more suitable for operation as a module in a battery of UV reactors side by side over the entire width of the reactor. a wastewater treatment plant channel, so as to avoid the formation of dead flow zones between two successive reactors, zones in which the fluid would not be reached by the ultraviolet radiation from the lamps.
  • dead zones can, for example, form in the case of reactors with full or almost full side faces preventing the ultraviolet radiation of the lamps from reaching the leaking fluid between two side faces placed side by side, each belonging to a different UV reactor.
  • the UV reactor 100 is more suitable for operating alone in a sewage treatment plant channel having a width substantially equal to the thickness of said reactor.
  • the UV reactor 100 has on its upstream upright 22a two adjustable joints 221, one joint along each longitudinal side of said upright, to connect the inlet of the reactor to the walls of the channel so tight and thus limit leaks between the walls of the channel and the side faces of the reactor.
  • each side face of the UV reactor 100 has a diagonal opening, along the ultraviolet tubes 10, which divides it into two screens 26 and which allows the UV radiation from the lamps to reach a possible flow out of the reactor that the seals 221 n would not have prevented.
  • adjustable seals 221 and mostly solid side faces allows the flow to be channeled to the UV tube bundle 10 for optimal treatment.
  • a device for tilting the body of the UV reactor, resting on the civil engineering parts of said channel makes it possible to adjust the tilt. of the reactor so as to adjust the height covered by the radiation from the lamps.
  • the ultraviolet tubes 10 Due to the conditions of use of the UV reactor 100, the ultraviolet tubes 10 remain immersed for a prolonged period in waste water or other industrial effluents. Consequently, deposits of various kinds (dirt, lime, and other pollutants) form on the protective sheaths 12 enveloping the ultraviolet lamps 11.
  • the UV reactor cleaning system 100 makes it possible, according to an advantageous aspect of the invention, to automatically clean and maintain the sheaths 12 by a physical action and a chemical action, and for this purpose comprises cleaning rings provided with two sub parts: a powered sub part with a cleaning product and a photocatalytic medium in contact with the sheaths 12.
  • the cleaning system mainly comprises several cleaning assemblies 30 each comprising several cleaning rings 31 juxtaposed and assembled in a plate 32.
  • Each cleaning assembly 30 is positioned in a row of ultraviolet tubes 10 and thus comprises as many rings 31 as there are. tubes 10 in said row, so that each ring 31 surrounds a tube 10.
  • each row of tubes 10 is provided with two cleaning assemblies 30 spaced by a distance substantially equal to half the length of the tube. length of said row.
  • the cleaning system consisting of the assemblies 30 and other elements described below, is mounted to slide in the oblique direction of the ultraviolet tubes 10.
  • the tubes 10 represent guides in translation of the rings 31, the latter effecting a programmed reciprocating movement actuated by a motorized mechanism adapted so as to sweep the entire external surface of the tubes 10 subject to pollutant deposits.
  • a suitable cleaning product, such as an acid, stored in a tank, not shown, placed in the auxiliary unit 50 is injected at the level of the protective sheaths 12 by means of a distribution circuit comprising a pipe 35, a network of 36 orifices and necessary fittings.
  • the orifices 36 thus make it possible to inject onto the sheaths 12 of the reactor the cleaning product which acts chemically on the outer surface of said sheaths to remove various deposits formed and prevent the formation of deposits during the operation of the cleaning system.
  • Each cleaning ring 31 comprises an internal support in contact with the external surfaces of the protective sheaths 12, on which a photocatalyst component is deposited to form the photocatalytic medium.
  • the photocatalytic medium can be based on titanium dioxide and causes a reaction of degradation of pollutants under the effect of ultraviolet radiation.
  • the cleaning system is automated and can be triggered at regular intervals, after a determined operating time of the UV reactor, or in response to detection of an anomaly in the irradiance of UV radiation produced by UV lamps.
  • the UV reactor can be fitted with UV radiation sensors placed in one or more sheaths and allowing the cleaning system to be triggered when the irradiance of the UV radiation captured falls below a certain threshold, due to the presence of unwanted deposits on the sheaths surrounding the ultraviolet lamps.
  • the chemical cleaning and the physical cleaning take place simultaneously with high efficiency due in part to the movement of the cleaning system along the ultraviolet tubes 10.
  • the cleaning system is coupled to a geared motor 41, placed under a cover 42 of the electrical unit 40, which allows said system to be driven in a reciprocating motion along the tubes 10.
  • the auxiliary unit 50 may include, in addition to the cleaning product reservoir, other elements such as a product level indicator and an injection pump.

Abstract

Dispositif (100) de traitement de fluide par rayonnement ultraviolet en canal ouvert de station d'épuration, comportant une pluralité de tubes à ultraviolets (10), chacun étant constitué d'une lampe à ultraviolets (11) placée dans une gaine de protection (12), un corps (20) dans lequel lesdits tubes sont installés parallèles entre eux, un système de nettoyage des gaines de protection, une unité électrique (40) et une unité auxiliaire (50) contenant un réservoir de produit de nettoyage, les tubes à ultraviolets (10) sont agencés de façon inclinée par rapport à une direction horizontale d'écoulement de fluide, et le système de nettoyage comporte un média photocatalytique au contact des gaines de protection.

Description

Dispositif de traitement des eaux par rayonnement ultraviolet en canal ouvert de station d’épuration
DOMAINE TECHNIQUE
La présente invention appartient au domaine général du traitement des fluides, notamment des systèmes de désinfection par rayonnement ultraviolet, communément désignés par « réacteurs UV », et concerne plus particulièrement un dispositif de traitement des eaux par rayonnement ultraviolet en canal ouvert de station d’épuration.
ÉTAT DE L’ART
Nul besoin de rappeler que la gestion de l’eau comme ressource est un enjeu majeur et primordial dans nos sociétés, voire parfois critique dans certaines régions du monde. L’utilisation de l’eau, qu’elle soit domestique ou industrielle, nécessite souvent des traitements préalables tels que la filtration, la désinfection, la chloration et la stérilisation, afin de rendre une eau potable, pour sa consommation, ou simplement saine pour tout autre usage ou rejet dans l’environnement. Ces traitements peuvent être effectués de diverses manières impliquant différents phénomènes physiques et biophysiques comme la destruction de microorganismes par des radiations à fort pouvoir ionisant, suffisant pour désactiver des microorganismes en stoppant leur multiplication, voire même pour les annihiler complètement.
À cet effet, il est connu et d’usage de traiter l’eau par rayonnement ultraviolet afin d’éliminer aussi bien les bactéries que les virus sans générer le moindre produit toxique ni même modifier les propriétés organoleptiques de l’eau traitée. Le principe consiste à utiliser l’action stérilisante et germicide d’une partie du rayonnement ultraviolet appelée les UV-C, correspondant à un intervalle conventionnel de longueurs d’onde entre 280 et 100 nm (les plus courtes du spectre UV), et caractérisée par les UV les plus énergétiques. Ces UV-C sont générés artificiellement par des lampes utilisées dans les réacteurs UV, qui peuvent présenter des formes et des dimensions différentes selon l’application visée.
La désinfection UV est une technologie qui a fait ses preuves en termes de sécurité, de fiabilité, d’efficacité et d’avantages économiques au fil des années. À titre d’exemple, plus de 15% des usines de traitement des eaux usées en Amérique du Nord utilisent actuellement la désinfection UV comme principale méthode de désinfection.
Des exemples de réacteurs UV sont décrits dans les documents CN107200380A, US2002162969A1 , US2013153515A1 , KR101308426B1 ,
CA2526060A1 et CA2668593A1.
Le procédé bien maîtrisé de la désinfection par UV trouve des applications dans plusieurs domaines, notamment le traitement des eaux et plus particulièrement des eaux usées en sortie de stations d’épuration.
Il est connu d’installer des réacteurs UV en sortie de stations d’épuration pour traiter les eaux usées avant leur réutilisation ou leur rejet. Dans ce cas, les réacteurs sont dits en canal ouvert, contrairement aux réacteurs UV dits fermés dont l’application la plus répandue est le traitement d’eau potable, et traversés par les eaux entre une section d’entrée et une section de sortie délimitant une zone effective de traitement. Les réacteurs UV en canal ouvert sont principalement utilisés dans les usines municipales de traitement des eaux/eaux usées pour le recyclage de l’eau et la réduction du drainage de polluants dans l’environnement.
Les documents CA2526060A1 et US2008044320A1 décrivent des réacteurs UV en canal ouvert.
Dans ces réacteurs, les lampes UV sont agencées soit parallèlement à la direction d’écoulement du fluide, soit perpendiculairement à celle-ci.
Les débits d’eaux dans ce type d’installation sont généralement importants et nécessitent l’utilisation de plusieurs réacteurs UV agencés en modules, chaque réacteur disposant de plusieurs lampes UV (plusieurs dizaines dans certains réacteurs). De ce fait, l’entretien de ce type d’installation devient plus critique.
En effet, en raison d’une immersion prolongée dans des eaux polluées, des dépôts minéraux et/ou organiques se forment sur les gaines de protection des lampes UV, généralement en quartz, et ont pour effet d’altérer l’efficacité du réacteur en bloquant (en absorbant) une partie du rayonnement ultraviolet.
Le nettoyage des gaines de protection des lampes dans les réacteurs UV est une problématique connue dans l’art, certains réacteurs intègrent des dispositifs de nettoyage automatisés comportant généralement des organes de nettoyage, tels que des brosses rotatives, dont l’action mécanique permet de désincruster les surfaces des gaines. Le document CN107200380A décrit ce type de nettoyage.
D’autres réacteurs UV incorporent des nettoyages chimiques à base d’additifs tensioactifs seuls ou mélangés in situ avec des jets d’eau à haute pression ou de l’air comprimé. Le document US2005023482A1 décrit un tel nettoyage chimique.
Les solutions mécaniques et chimiques précitées peuvent être combinées pour améliorer l’efficacité du nettoyage comme dans le réacteur UV décrit dans le document CA2668593A1 et qui comporte un système de nettoyage hybride par flux d’eau, d’air ou de gaz avec l’emploi de détergents et par des moyens mécaniques tels que des essuie-glaces.
Il existe également des réacteurs UV avec un nettoyage des gaines par ultrasons, les vibrations ultrasonores induites permettant d’interrompre l’entartrage des composants du réacteur, comme décrit dans le document W09927972A1.
Le document CN107827201A divulgue par exemple un réacteur UV comportant des gaines en quartz dont les parois extérieures sont revêtues d’une couche superhydrophobe pour limiter les dépôts de polluants aqueux ou en suspension dans l’eau.
Cependant, l’efficacité de ces solutions reste limitée et ne permet pas de dispenser les utilisateurs d’entretenir fréquemment leurs réacteurs UV.
PRÉSENTATION DE L’INVENTION
La présente invention a pour but principal de pallier les limitations de l’art antérieur en proposant un réacteur UV qui présente un encombrement réduit, par une disposition compacte innovante des lampes UV, et un système de nettoyage physicochimique automatisé d’efficacité améliorée. À cet effet, la présente invention concerne un dispositif de traitement de fluide par rayonnement ultraviolet en canal ouvert de station d’épuration, comportant une pluralité de tubes à ultraviolets, chacun étant constitué d’une lampe à ultraviolets placée dans une gaine de protection, un corps dans lequel lesdits tubes sont installés parallèles entre eux, un système de nettoyage des gaines de protection, une unité électrique et une unité auxiliaire contenant un réservoir de produit de nettoyage Ce dispositif est remarquable en ce que les tubes à ultraviolets sont agencés de façon inclinée par rapport à une direction horizontale d’écoulement de fluide, et en ce que le système de nettoyage comporte des médias photocatalytiques au contact des gaines de protection.
Selon un mode de réalisation particulièrement avantageux, le corps présente une forme parallélépipédique et comporte un socle étendu suivant un axe longitudinal du dispositif, deux montants, un montant amont et un montant aval, perpendiculaires au socle, et deux flancs, chaque flanc comportant un couple de plaques triangulaires espacées, placées à deux angles opposés dudit flanc de sorte à définir une ouverture parallèle aux tubes à ultraviolets.
Plus particulièrement, chaque montant comporte deux barres parallèles et écartées définissant des ouvertures correspondant à une entrée de fluide au niveau du montant amont et à une sortie de fluide au niveau du montant aval, les tubes à ultraviolets étant entièrement contenus dans un volume de traitement délimité par lesdites entrée et sortie et le socle.
Avantageusement, le montant amont comporte deux joints ajustables, chacun étant placé le long d’une barre dudit montant, pour raccorder de façon étanche l’entrée du dispositif de traitement et des parois du canal de station d’épuration.
Selon un mode de réalisation, les lampes à ultraviolets sont à vapeur de mercure et produisent un rayonnement UV-C monochromatique, et les gaines de protection sont en quartz, le quartz présentant une haute transmittance des longueurs d’ondes rayonnées.
De façon avantageuse, le système de nettoyage comporte des bagues de nettoyage, chacune étant placée autour d’un tube à ultraviolets et pourvue d’une partie alimentée par le produit de nettoyage et d’une partie supportant un média photocatalytique. Plus particulièrement, le système de nettoyage comporte plusieurs ensembles de nettoyage, chacun desdits ensembles compotant plusieurs bagues de nettoyage solidaires. Les bagues d’un ensemble de nettoyage peuvent par exemple être juxtaposées et reliées par une plaque.
Par exemple, les médias photocatalytiques sont à base de dioxyde de titane.
Avantageusement, le système de nettoyage est monté coulissant le long des tubes à ultraviolets, entraîné par un mécanisme comportant un motoréducteur.
En outre, le corps comporte des moyens de préhension pour soulever et déplacer le dispositif.
De façon avantageuse, l’inclinaison du corps du dispositif de traitement est réglable par un moyen prenant appui sur une fond du canal de station d’épuration, tel qu’une cale, de sorte à faire varier la hauteur couverte par le rayonnement des tubes à ultraviolets (10), pour s’adapter à la hauteur du fluide dans le canal.
Les concepts fondamentaux de l’invention venant d’être exposés ci-dessus dans leur forme la plus élémentaire, d’autres détails et caractéristiques ressortiront plus clairement à la lecture de la description qui suit et en regard des dessins annexés, donnant à titre d’exemple non limitatif un mode de réalisation d’un dispositif de traitement conforme aux principes de l’invention.
BRÈVE DESCRIPTION DES FIGURES
Les figures ainsi que les éléments d’une même figure ne sont pas nécessairement à la même échelle. Sur l’ensemble des figures, les éléments identiques ou équivalents portent la même référence numérique.
Il est ainsi illustré en :
[Figure 1 ] : une vue en perspective du dispositif de traitement par rayonnement ultraviolet selon un premier mode de réalisation de l’invention ;
[Figure 2] : un détail de la figure 1 montrant la disposition d’une partie du système de nettoyage des gaines de protection des lampes à ultraviolets ;
[Figure 3] : une vue partielle en perspective du dispositif de traitement avec le capot de l’unité électrique ouvert ;
[Figure 4] : une vue en perspective du dispositif de traitement par rayonnement ultraviolet selon un deuxième mode de réalisation de l’invention ; [Figure 5] : une vue de face du dispositif de traitement montrant des joints d’ajustement au niveau du montant amont.
DESCRIPTION DÉTAILLÉE DE MODES DE RÉALISATION
La terminologie employée dans la présente description ne doit en aucun cas être interprétée de manière limitative ou restrictive. Elle est simplement employée en conjonction avec une description détaillée de certains modes de réalisation de l’invention.
Dans le mode de réalisation décrit ci-après, on fait référence à un dispositif de traitement des eaux par rayonnement ultraviolet destiné principalement aux stations d’épurations. Cet exemple, non limitatif, est donné pour une meilleure compréhension de l’invention et n’exclut pas l’installation dudit dispositif dans d’autres milieux.
Dans la suite de la description, l’expression « réacteur UV » est employée de façon laconique pour désigner, selon une acception commune dans le domaine du traitement des eaux, un dispositif de traitement essentiellement bactéricide de l’eau ou d’autres fluides par rayonnement ultraviolet.
La figure 1 représente un réacteur UV 100 selon l’invention comportant principalement une pluralité de tubes à ultraviolets 10, un corps support 20 dans lequel lesdits tubes sont montés, un système de nettoyage (30, 35) des tubes à ultraviolets, une unité électrique 40, pour une motorisation du système de nettoyage et un branchement électrique des tubes à ultraviolets, et une unité auxiliaire 50 permettant entre autres de stocker un produit chimique de nettoyage.
Selon un usage courant, le réacteur UV 100 est connecté à une partie commande et puissance placée dans une armoire déportée non représentée, de type automate programmable par exemple.
Les tubes à ultraviolets 10 sont parallèles et disposés de façon inclinée par rapport à un plan horizontal (XY). Selon l’exemple de réalisation illustré, les tubes à ultraviolets 10 sont agencés en rangées superposées, chaque rangée comprenant un nombre déterminé de tubes.
Chaque tube à ultraviolets 10 est constitué d’une lampe à ultraviolets 11 placée, de façon coaxiale, à l’intérieur d’une gaine de protection 12 tubulaire et transparente. Les lampes à ultraviolets 11 produisent un rayonnement ultraviolet adapté aux traitements bactéricides et germicides visés et sont par exemple des lampes à amalgame basse pression (BP) et/ou des lampes à vapeur de mercure moyenne pression (MP), de préférence des lampes à amalgame BP produisant un rayonnement ultraviolet UV-C monochromatique avec une longueur d’onde de 254 nm, plus précisément de 253,7 nm, proche d’un pic de sensibilité germicide (265 nm) pour les microorganismes de type bactéries, virus et protozoaires essentiellement.
Chaque lampe à ultraviolets 11 est placée dans une gaine de protection 12 qui la protège des agressions du milieu et l’isole électriquement et thermiquement de l’eau.
Les gaines de protection 12 présentent une forme cylindrique à base circulaire et des dimensions adaptées à la réception des lampes 11. Autrement dit, les gaines 12 ont un diamètre interne sensiblement supérieur à celui des lampes 11 , pour permettre l’insertion et le coulissement de ces dernières, et une longueur s’étendant au moins sur toute la partie rayonnante des lampes 11. Les gaines de protection 12 sont réalisées dans un matériau transparent, au moins aux longueurs d’ondes du rayonnement ultraviolet émis par les lampes 1 1 , comme le quartz qui se caractérise par sa haute transmittance pour les longueurs d’ondes rayonnées.
Le corps 20, selon l’exemple de réalisation illustré, présente une forme globalement parallélépipédique issue d’un assemblage de barres et de plaques, et comporte un socle 21 horizontal, deux montants verticaux, amont 22a et aval 22b selon le sens d’écoulement d’un fluide traversant le réacteur UV 100, et une traverse supérieure permettant de supporter les unités 40 et 50. Le socle 21 constitue l’élément par lequel le réacteur UV 100 repose sur le sol, ou sur tout autre surface horizontale ou légèrement inclinée d’un canal de station d’épuration par exemple, et présente une forme rectangulaire dont deux côtés opposés, de préférence transversaux, sont surmontés des montants 22a et 22b. Les montants, amont 22a et aval 22b, sont constitués chacun de deux barres verticales espacées définissant respectivement une entrée E et une sortie S du fluide. Le corps 20 comporte en outre deux plaques 23 en vis-à-vis, chacune desdites plaques étant agencée en diagonale au niveau d’une face latérale du corps 20, adjacente à l’entrée E et à la sortie S. Les plaques 23 s’étendent suivant les tubes à ultraviolets 10 et les couvrent latéralement. Des fentes longitudinales sont ménagées dans chaque plaque 23 afin de faciliter l’écoulement et le transvasement du fluide traversant le réacteur UV 100.
La structure du corps 20 peut ainsi être assimilée à un assemblage triangulé, ou en treillis, au niveau de chaque face latérale dudit corps, dans lequel des barres horizontales et verticales et des plaques diagonales définissent deux volumes pyramidaux d’un côté et de l’autre des tubes à ultraviolets 10 et entre l’entrée E et la sortie S. De ce fait, ces deux volumes constituent des volumes utiles de traitement dans lesquels se concentrent le rayonnement ultraviolet des tubes 10.
Accessoirement, le corps 20 est pourvu d’une rampe 24 au niveau de l’entrée E disposée entre les plaques diagonales 23 et présentant une longueur suffisante pour couvrir les extrémités inférieures des tubes à ultraviolets 10 qui ne constituent pas des surfaces rayonnantes, et éviter par là-même un contact de moindre efficacité entre le fluide traversant et lesdites extrémités.
Le corps 20 se caractérise donc par sa conception lacunaire opposant un minimum d’obstacles à l’écoulement du fluide, et les tubes à ultraviolets 10 se caractérisent par leur agencement incliné au sein de la structure dudit corps qui permet d’optimiser le traitement du fluide traversant par rapport aux tubes horizontaux ou verticaux de l’art antérieur en maximisant les sections efficaces de traitement, sections qui correspondent aux projections des sections droites d’écoulement sur les faces supérieure et inférieure de l’ensemble des tubes à ultraviolets 10. De plus, pour une même longueur utile du réacteur UV, l’agencement diagonal est celui qui permet l’installation des tubes de plus grande longueur.
Le réacteur UV 100, selon l’exemple de réalisation de la figure 1 , se caractérise par des faces latérales dégarnies en majeure partie qui le rendent plus adapté à un fonctionnement en module dans une batterie de réacteurs UV accolés latéralement sur toute la largeur d’un canal de station d’épuration, de sorte à éviter la formation de zones mortes d’écoulement entre deux réacteurs successifs, zones dans lesquelles le fluide ne serait pas atteint par le rayonnement ultraviolet des lampes. De telles zones mortes peuvent par exemple se former dans le cas de réacteurs à faces latérales pleines ou quasi pleines empêchant le rayonnement ultraviolet des lampes d’atteindre le fluide fuitant entre deux faces latérales placées côte à côte, chacune appartenant à un réacteur UV différent.
Alternativement, le réacteur UV 100 selon l’exemple de réalisation des figures 4 et 5 est plus adapté à fonctionner seul dans un canal de station d’épuration présentant une largeur sensiblement égale à l’épaisseur dudit réacteur.
Pour s’adapter à la largeur du canal, le réacteur UV 100 dispose sur son montant amont 22a de deux joints ajustables 221 , un joint le long de chaque côté longitudinal dudit montant, pour raccorder l’entrée du réacteur aux parois du canal de façon étanche et limiter ainsi les fuites entre les parois du canal et les faces latérales du réacteur.
Néanmoins, chaque face latérale du réacteur UV 100 comporte une ouverture diagonale, le long des tubes à ultraviolets 10, qui la divise en deux écrans 26 et qui permet au rayonnement UV des lampes d’atteindre un éventuel écoulement hors réacteur que les joints 221 n’auraient pas empêché.
De plus, la présence de joints ajustables 221 et de faces latérales pleines en majeure partie permet de canaliser l’écoulement vers le faisceau des tubes à ultraviolets 10 pour un traitement optimal.
Par ailleurs, pour s’adapter à la hauteur d’eau dans le canal d’une station d’épuration un dispositif d’inclinaison du corps du réacteur UV prenant appui sur les parties de génie civil dudit canal, permet de régler l’inclinaison du réacteur de sorte à ajuster la hauteur couverte par le rayonnement des lampes.
En raison des conditions d’utilisation du réacteur UV 100, les tubes à ultraviolets 10 restent immergés de façon prolongée dans les eaux usées ou autres effluents industriels. Par conséquent, des dépôts de différentes natures (crasse, calcaire, et autres polluants) se forment sur les gaines de protection 12 enveloppant les lampes à ultraviolets 11.
Le système de nettoyage du réacteur UV 100 permet, selon un aspect avantageux de l’invention, de nettoyer et d’entretenir automatiquement les gaines 12 par une action physique et une action chimique, et comprend à cet effet des bagues de nettoyage pourvues de deux sous parties : une sous partie alimentée avec un produit de nettoyage et un média photocatalytique au contact des gaines 12.
Le système de nettoyage comporte principalement plusieurs ensembles de nettoyage 30 comportant chacun plusieurs bagues de nettoyage 31 juxtaposées et assemblées dans un plateau 32. Chaque ensemble de nettoyage 30 est positionné dans une rangée de tubes à ultraviolets 10 et comporte ainsi autant de bagues 31 que de tubes 10 dans ladite rangée, de sorte que chaque bague 31 entoure un tube 10. Selon l’exemple de réalisation illustré, chaque rangée de tubes 10 est munie de deux ensembles de nettoyage 30 espacés d’une distance sensiblement égale à la moitié de la longueur de ladite rangée.
Le système de nettoyage, constitué des ensembles 30 et d’autres éléments décrits dans la suite, est monté coulissant suivant la direction oblique des tubes à ultraviolets 10. En effet, les tubes 10 représentent des guides en translation des bagues 31 , ces dernières effectuant un mouvement alternatif programmé et actionné par un mécanisme motorisé adapté de sorte à balayer toute la surface externe des tubes 10 sujette aux dépôts de polluants.
Nettoyage chimique
Un produit de nettoyage adapté, tel qu’un acide, stocké dans un réservoir, non représenté, placé dans l’unité auxiliaire 50 est injecté au niveau des gaines de protection 12 au moyen d’un circuit de distribution comprenant une tuyauterie 35, un réseau d’orifices 36 et des raccords nécessaires.
Les orifices 36 permettent ainsi d’injecter sur les gaines 12 du réacteur le produit de nettoyage qui agit chimiquement sur la surface extérieure desdites gaines pour enlever différents dépôts formés et prévenir la formation de dépôts lors du fonctionnement du système de nettoyage.
Nettoyage physique
Chaque bague de nettoyage 31 comporte un support interne au contact des surfaces extérieures des gaines de protection 12, sur lequel un composant photocatalyseur est déposé pour former le média photocatalytique. Le média photocatalytique peut être à base de dioxyde de titane et provoque une réaction de dégradation des polluants sous l’effet du rayonnement ultraviolet.
Comme souligné, le système de nettoyage est automatisé et peut être déclenché à intervalles réguliers, après un temps de fonctionnement déterminé du réacteur UV, ou en réponse à une détection d’anomalie dans l’irradiance du rayonnement UV produit par les lampes UV. À cet effet, le réacteur UV peut être muni de capteurs de rayonnement UV placés dans une ou plusieurs gaines et permettant de déclencher le système de nettoyage lorsque l’irradiance du rayonnement UV capté passe en dessous d’un certain seuil, à cause de la présence de dépôts indésirables sur les gaines enveloppant les lampes à ultraviolets.
Selon un aspect avantageux de l’invention, le nettoyage chimique et le nettoyage physique s’opèrent simultanément avec une grande efficacité due en partie au mouvement du système de nettoyage le long des tubes à ultraviolets 10.
En référence à la figure 3, le système de nettoyage est couplé à un motoréducteur 41 , placé sous un capot 42 de l’unité électrique 40, qui permet d’entrainer ledit système dans un mouvement alternatif le long des tubes 10.
L’unité auxiliaire 50 peut comporter, outre le réservoir de produit de nettoyage, d’autres éléments tels qu’un indicateur de niveau de produit et une pompe d’injection.
Il ressort de la description de la présente invention que des éléments supplémentaires, usuels pour l’homme du métier, peuvent être ajoutés au réacteur UV, et que certains éléments dudit réacteur peuvent être réalisés différemment sans pour autant sortir du cadre de l’invention.

Claims

R E V E N D I C A T I O N S
1. Dispositif (100) de traitement de fluide par rayonnement ultraviolet en canal ouvert de station d’épuration, comportant une pluralité de tubes à ultraviolets (10), chacun étant constitué d’une lampe à ultraviolets (11 ) placée dans une gaine de protection (12), un corps (20) dans lequel lesdits tubes sont installés parallèles entre eux, un système de nettoyage des gaines de protection, une unité électrique (40) et une unité auxiliaire (50) contenant un réservoir de produit de nettoyage, caractérisé en ce que les tubes à ultraviolets (10) sont agencés de façon inclinée par rapport à une direction horizontale d’écoulement de fluide, et en ce que le système de nettoyage comporte des médias photocatalytiques au contact des gaines de protection.
2. Dispositif selon la revendication 1 , dans lequel le corps (20) présente une forme parallélépipédique et comporte un socle (21 ) étendu suivant un axe longitudinal du dispositif, deux montants, un montant amont (22a) et un montant aval (22b), perpendiculaires au socle, et deux flancs, chaque flanc comportant un couple de plaques (26) triangulaires espacées, placées à deux angles opposés dudit flanc de sorte à définir une ouverture parallèle aux tubes à ultraviolets (10).
3. Dispositif selon la revendication 2, dans lequel chaque montant (22a, 22b) comporte deux barres parallèles et écartées définissant des ouvertures correspondant à une entrée (E) de fluide au niveau du montant amont (22a) et à une sortie (S) de fluide au niveau du montant aval (22b), les tubes à ultraviolets (10) étant entièrement contenus dans un volume de traitement délimité par lesdites entrée et sortie et le socle (21 ).
4. Dispositif selon la revendication 3, dans lequel le montant amont (22a) comporte deux joints ajustables (221 ), chacun étant placé le long d’une barre dudit montant, pour raccorder de façon étanche l’entrée (E) et des parois du canal de station d’épuration.
5. Dispositif selon l’une quelconque des revendications précédentes, dans lequel les lampes à ultraviolets (11 ) sont à vapeur de mercure et produisent un rayonnement UV-C monochromatique, et dans lequel les gaines de protection (12) sont en quartz.
6. Dispositif selon l’une quelconque des revendications précédentes, dans lequel le système de nettoyage comporte des bagues de nettoyage (31 ), chacune étant placée autour d’un tube à ultraviolets (10) et pourvue d’une partie alimentée par le produit de nettoyage et d’un média photocatalytique.
7. Dispositif selon la revendication 6, dans lequel le système de nettoyage comporte plusieurs ensembles de nettoyage (30), chacun desdits ensembles comportant plusieurs bagues de nettoyage (31 ) solidaires.
8. Dispositif selon l’une quelconque des revendications précédentes, dans lequel les médias photocatalytiques sont composés notamment de dioxyde de titane. 9. Dispositif selon l’une quelconque des revendications précédentes, dans lequel le système de nettoyage est monté coulissant le long des tubes à ultraviolets (10) entraîné par un mécanisme comportant un motoréducteur
(41 ). 10. Dispositif selon l’une quelconque des revendications précédentes, dans lequel le corps (20) comporte en outre des moyens de préhension (25) pour soulever et déplacer ledit dispositif.
11. Dispositif selon l’une quelconque des revendications précédentes, dans lequel l’inclinaison du corps (20) est réglable par un moyen prenant appui sur un fond du canal de station d’épuration de sorte à faire varier la hauteur couverte par le rayonnement des tubes à ultraviolets (10), pour s’adapter à la hauteur du fluide dans le canal.
PCT/EP2020/062452 2019-05-07 2020-05-05 Dispositif de traitement des eaux par rayonnement ultraviolet en canal ouvert de station d'épuration WO2020225260A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20723407.1A EP3966168A1 (fr) 2019-05-07 2020-05-05 Dispositif de traitement des eaux par rayonnement ultraviolet en canal ouvert de station d'épuration

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR1904743 2019-05-07
FR1904743A FR3095814B1 (fr) 2019-05-07 2019-05-07 Dispositif de traitement des eaux par rayonnement ultraviolet en canal ouvert de station d’épuration

Publications (1)

Publication Number Publication Date
WO2020225260A1 true WO2020225260A1 (fr) 2020-11-12

Family

ID=68654552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/062452 WO2020225260A1 (fr) 2019-05-07 2020-05-05 Dispositif de traitement des eaux par rayonnement ultraviolet en canal ouvert de station d'épuration

Country Status (3)

Country Link
EP (1) EP3966168A1 (fr)
FR (1) FR3095814B1 (fr)
WO (1) WO2020225260A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117049646A (zh) * 2023-10-13 2023-11-14 山东华立供水设备有限公司 一种农村饮用水消毒设备

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999027972A1 (fr) 1997-12-03 1999-06-10 Darwin Lawrence C Systeme de sterilisation de l'eau comportant un dispositif a ultrasons
US20020162969A1 (en) 2001-05-01 2002-11-07 Reed Ryan M. Ultraviolet radiated water treatment tank
EP1371611A1 (fr) * 2002-06-13 2003-12-17 Malcolm Robert Snowball Dispositif pour le traitement de fluides
CA2526060A1 (fr) 2003-06-02 2004-12-16 Otv Sa Dispositif de desinfection d'eau par rayonnement ultraviolet
US20050023482A1 (en) 2001-03-15 2005-02-03 Schulz Christopher R. Ultraviolet-light-based disinfection reactor
US20080044320A1 (en) 2006-08-17 2008-02-21 Trojan Technologies Inc. Fluid treatment system
CA2668593A1 (fr) 2006-11-06 2008-05-15 Severn Trent Water Purification, Inc. Appareil de sterilisation de l'eau
US20130153515A1 (en) 2010-10-26 2013-06-20 Empire Technology Development Llc Water treatment apparatus and systems
KR101308426B1 (ko) 2011-10-25 2013-10-04 주식회사 파나시아 자외선을 이용한 밸러스트수 살균장치
US20130334438A1 (en) * 2010-12-16 2013-12-19 Trojan Technologies Radiation source module and fluid treatment system
US20150108372A1 (en) * 2012-05-04 2015-04-23 Xylem Water Solutions Herford GmbH Uv water treatment plant with open channel
CN107200380A (zh) 2017-08-01 2017-09-26 北京科泰兴达高新技术有限公司 一种紫外线消毒装置
CN107827201A (zh) 2017-12-14 2018-03-23 九江精密测试技术研究所 一种具有自清洁功能的船舶压载水紫外杀菌装置

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999027972A1 (fr) 1997-12-03 1999-06-10 Darwin Lawrence C Systeme de sterilisation de l'eau comportant un dispositif a ultrasons
US20050023482A1 (en) 2001-03-15 2005-02-03 Schulz Christopher R. Ultraviolet-light-based disinfection reactor
US20020162969A1 (en) 2001-05-01 2002-11-07 Reed Ryan M. Ultraviolet radiated water treatment tank
EP1371611A1 (fr) * 2002-06-13 2003-12-17 Malcolm Robert Snowball Dispositif pour le traitement de fluides
CA2526060A1 (fr) 2003-06-02 2004-12-16 Otv Sa Dispositif de desinfection d'eau par rayonnement ultraviolet
US20080044320A1 (en) 2006-08-17 2008-02-21 Trojan Technologies Inc. Fluid treatment system
CA2668593A1 (fr) 2006-11-06 2008-05-15 Severn Trent Water Purification, Inc. Appareil de sterilisation de l'eau
US20130153515A1 (en) 2010-10-26 2013-06-20 Empire Technology Development Llc Water treatment apparatus and systems
US20130334438A1 (en) * 2010-12-16 2013-12-19 Trojan Technologies Radiation source module and fluid treatment system
KR101308426B1 (ko) 2011-10-25 2013-10-04 주식회사 파나시아 자외선을 이용한 밸러스트수 살균장치
US20150108372A1 (en) * 2012-05-04 2015-04-23 Xylem Water Solutions Herford GmbH Uv water treatment plant with open channel
CN107200380A (zh) 2017-08-01 2017-09-26 北京科泰兴达高新技术有限公司 一种紫外线消毒装置
CN107827201A (zh) 2017-12-14 2018-03-23 九江精密测试技术研究所 一种具有自清洁功能的船舶压载水紫外杀菌装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117049646A (zh) * 2023-10-13 2023-11-14 山东华立供水设备有限公司 一种农村饮用水消毒设备
CN117049646B (zh) * 2023-10-13 2023-12-19 山东华立供水设备有限公司 一种农村饮用水消毒设备

Also Published As

Publication number Publication date
EP3966168A1 (fr) 2022-03-16
FR3095814B1 (fr) 2021-06-04
FR3095814A1 (fr) 2020-11-13

Similar Documents

Publication Publication Date Title
AU719790B2 (en) UV water disinfector
US8507874B2 (en) Fluid treatment system
FR2698865A1 (fr) Module de désinfection à ultraviolets.
JP2007502200A (ja) 光放射による液体及びガスの直列処理
FR2657277A1 (fr) Procede et installation de nettoyage de lampes a rayons ultraviolets utilises pour la desinfection d'eaux usees.
EP0721920A1 (fr) Réacteur d'irradiation uv pour le traitement de liquides
EP3966168A1 (fr) Dispositif de traitement des eaux par rayonnement ultraviolet en canal ouvert de station d'épuration
EP1606220B1 (fr) Dispositif de desinfection d'eau par rayonnement ultraviolet
KR100984948B1 (ko) 수위변동 대응 및 세척링 보호가 가능한 수로형 자외선 살균장치
FR2897053A1 (fr) Dispositif de couverture de bassin de traitement d'effluents liquides
EP0672440B1 (fr) Filtre pour l'épuration des eaux
EP2678277B1 (fr) Procede de depollution des fluides
EP1289890A1 (fr) Dispositif de dosage d'un reactif par dissolution dans un ecoulement de liquide
CA2338879C (fr) Systeme de traitement de fluide et appareil de nettoyage
FR3130633A1 (fr) Dispositif de traitement d’effluents aqueux par filtration, UV et ozone et méthode utilisant un tel dispositif
FR3127753A1 (fr) Dispositif et systeme de desinfection et de traitement d’eau par irradiation ultraviolette
FR2726309A1 (fr) Dispositif pour steriliser l'eau des piscines privees
EP0099305B1 (fr) Appareil de désinfection des éffluents gazeux dans les cellules mortuaires étanches
FR2868415A1 (fr) Procede et dispositif permettant de desinfecter un liquide au moyen d'un traitement de desinfection aux ultraviolets en remplacement de l'ozone
WO2020002515A1 (fr) Systeme de desinfection et de traitement d'eau par irradiation ultraviolette
RU2029734C1 (ru) Бактерицидный аппарат для обработки воды
FR2768718A1 (fr) Installation pour le traitement par irradiations u.v. d'un liquide
FR3126189A1 (fr) Dispositif de traitement d’un fluide par rayonnement ultraviolet
FR3077220A1 (fr) Module pour la filtration d'eau, procede de filtration, procede de lavage et installation de filtration correspondants
FR3075193A1 (fr) Systeme de purification et/ou de desinfection d'eau comprenant des moyens de creation et de maintien de vortex et de tourbillons en sens inverse du vortex et un dispositif de balayage photonique en aval du vortex et des tourbillons

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20723407

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020723407

Country of ref document: EP

Effective date: 20211207