WO2020223941A1 - 电子烟的抽烟口数检测方法及其电子烟 - Google Patents

电子烟的抽烟口数检测方法及其电子烟 Download PDF

Info

Publication number
WO2020223941A1
WO2020223941A1 PCT/CN2019/086103 CN2019086103W WO2020223941A1 WO 2020223941 A1 WO2020223941 A1 WO 2020223941A1 CN 2019086103 W CN2019086103 W CN 2019086103W WO 2020223941 A1 WO2020223941 A1 WO 2020223941A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
real
puffs
electronic cigarette
value
Prior art date
Application number
PCT/CN2019/086103
Other languages
English (en)
French (fr)
Inventor
贺立青
Original Assignee
东莞市麦斯莫科电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞市麦斯莫科电子科技有限公司 filed Critical 东莞市麦斯莫科电子科技有限公司
Priority to EP19926740.2A priority Critical patent/EP3777586B1/en
Priority to PCT/CN2019/086103 priority patent/WO2020223941A1/zh
Priority to US17/060,224 priority patent/US11849770B2/en
Publication of WO2020223941A1 publication Critical patent/WO2020223941A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/53Monitoring, e.g. fault detection
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/51Arrangement of sensors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/57Temperature control
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/60Devices with integrated user interfaces
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • A61M11/04Sprayers or atomisers specially adapted for therapeutic purposes operated by the vapour pressure of the liquid to be sprayed or atomised
    • A61M11/041Sprayers or atomisers specially adapted for therapeutic purposes operated by the vapour pressure of the liquid to be sprayed or atomised using heaters
    • A61M11/042Sprayers or atomisers specially adapted for therapeutic purposes operated by the vapour pressure of the liquid to be sprayed or atomised using heaters electrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/06Inhaling appliances shaped like cigars, cigarettes or pipes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3368Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • A61M2205/502User interfaces, e.g. screens or keyboards

Definitions

  • This application relates to the technical field of electronic cigarettes, in particular to a method for detecting the number of puffs of a heated electronic cigarette and the electronic cigarette.
  • one method for the electronic cigarette device to determine the number of smoking ports is realized by an air switch provided on the electronic cigarette device.
  • the air switch is used to record the airflow when the user smokes, and the number of puffs to smoke is determined according to the airflow.
  • the method of determining the number of smoking ports through other methods such as an air switch or an air pressure sensor requires the setting of a special air switch or air pressure sensor to record the data detected by the airflow, which makes the cost of the electronic cigarette relatively high.
  • the number of smoking puffs detected by tobacco-type electronic cigarettes is also calculated based on simple temperature fluctuations. Because the heat capacity of the heating object of the tobacco type electronic cigarette is small, the temperature fluctuation is prone to occur. For example, when using e-cigarettes, the e-cigarette is held by the user and may be shaken frequently. The inside of the e-cigarette is equivalent to air flowing around the e-cigarette, and the air takes away some of the heat, resulting in a lower temperature. In this case, the number of puffs calculated based on simple temperature fluctuations is often inaccurate. For example, simply set a threshold temperature, and if the temperature drops below this threshold temperature, it is considered a puff, but the number of puffs is very easy to be misjudged, and it will cause more puff counts.
  • the threshold temperature is set higher, although the probability of misjudgment will be reduced, it will cause the smoker to lightly smoke, if the heat taken away is small and the temperature drop is small, the threshold temperature will not be exceeded, thus appearing Fail to record the number of smoking. Therefore, it is difficult for tobacco-type e-cigarettes to overcome the problems of omission and misrepresentation in calculating the number of smoking.
  • a Chinese patent application with application publication number CN108991605A discloses a method for judging the number of smoking points of an electronic cigarette and an electronic cigarette.
  • the method includes the following steps: setting the target temperature of the heating element of the electronic cigarette, and detecting and acquiring the heating element The current temperature, the temperature difference is determined according to the target temperature and the current temperature; when the temperature difference is less than the start threshold, the temperature difference is repeatedly collected; when the temperature difference exceeds the start threshold, the temperature difference starts to be integrated in time, When the temperature difference is less than the starting threshold, the integration is stopped and the current integration value is determined; when the current integration value exceeds the judgment threshold, the number of smoking puffs is confirmed once, and the number of smoking puffs is not counted when the current integration value is less than the judgment threshold.
  • the above method uses integrals to determine whether to smoke, and the accuracy rate has been improved.
  • this judgment method still has accuracy and problems.
  • the temperature difference integral value of the heating part fluctuates due to certain reasons, but it is not actually smoking.
  • the number of puffs at a time will be confirmed, which is easy to cause miscalculation.
  • the startup threshold in this detection method is a fixed value.
  • the detection method will perform a port count judgment when the integral value exceeds the judgment threshold. When the integral value jumps due to system stability and other reasons, it will still perform a port count judgment, resulting in a port count error.
  • the existing e-cigarette smoking mouth count detection technology still needs to be improved and developed to make the detection scheme more reliable, stable and accurate.
  • the technical problem to be solved by this application is to address the above-mentioned shortcomings of the prior art, and provide a method for detecting the number of puffs of an electronic cigarette and an electronic cigarette with high detection accuracy.
  • the technical solution adopted by this application is: a method for detecting the number of puffs of an electronic cigarette, including the following steps: Step 1, sampling to obtain the real-time temperature of the heating component, and determining the temperature difference according to the target temperature and the real-time temperature; Step 2: Integrate the temperature difference in time and obtain the real-time integral value I; Step 3, calculate the real-time first limit H according to the integral value I; Step 4, judge whether the real-time integral value I exceeds The real-time first limit value H, if yes, determine the number of puffs per time.
  • this application calculates a limit value in real time based on the time integral of the temperature difference between the real-time temperature and the target temperature as the comparison threshold (first limit H) for judging smoking behavior.
  • the limit is not a fixed fixed value.
  • the value is a real-time value that can change with the change trend and range of the temperature difference.
  • the corresponding first limit can still be calculated based on the integral value of the current temperature difference. In order to accurately determine the smoking behavior, effectively improve the detection accuracy of the number of puffs.
  • the step 3 specifically includes: integrating the integral value I in time to obtain the real-time first limit H.
  • the current integral value I is integrated over time to determine the real-time first limit value H, and the calculation is convenient and accurate.
  • other methods can also be used to calculate the real-time first limit value H, for example, the integral value I is used to calculate the average value over a period of time to adjust the current first limit value H.
  • the step 3 specifically includes: integrating the integral value I in the current time period to obtain the real-time first limit value H.
  • the current time period is a time domain within a period of time that the current time is pushed forward, or it may be a time period related to the current time in real time.
  • the value condition of K h is limited to: the first limit value H is greater than the integral value I when not smoking, and the first limit value H is smaller than the integral value I when smoking.
  • the K h can be determined by testing and empirical heating parameters of the electronic cigarette.
  • the step (4) specifically includes: judging whether the real-time integral value I exceeds the first limit value H, and whether it continues for a preset time T3, and when the integral value I exceeds the first limit value H and continues Determine the number of puffs at a time at the preset time T3. After the integral value I exceeds the first limit value H for a preset period of time, a cigarette is determined to prevent misjudgment of smoking caused by system instability and improve the accuracy and stability of the determination.
  • a record of the number of puffs is performed when the number of puffs is determined.
  • This program can obtain the current total number of smoking cigarettes in real time, which is convenient for corresponding operations based on the total number of smoking, such as instructions, shutdown, etc.
  • the method for detecting the number of puffs of the electronic cigarette further includes step 5, judging whether the real-time temperature is in a stable state, and performing the next puff count detection when the real-time temperature is in a stable state.
  • the detection of the number of smoking holes starts from a stable state, which improves the detection accuracy.
  • the step (5) specifically includes: judging whether the integral value I exceeds a first limit H, and if otherwise judging that the real-time temperature is in a stable state.
  • the step (5) specifically includes: determining whether the integral value I is between a first limit value H and a second limit value L, and if so, determining that the real-time temperature is in a stable state. No smoking test will be performed under abnormal conditions such as system fluctuations.
  • the second limit value L is a preset value or a real-time value calculated according to the integral value I, and a real-time threshold is used to judge that the system is stable and the judgment result is accurate.
  • the integral value I is integrated in the current time period to obtain the real-time second limit value L, and the integral in the current time period is calculated by integrating to obtain the second limit value, which further improves the accuracy of determination.
  • t1 represents the current time
  • t2 represents t1- ⁇ t
  • ⁇ t is the preset time domain
  • C represents the number of samples in ⁇ t seconds
  • C ⁇ t/ ⁇ t'
  • ⁇ t' represents ⁇
  • K l is a preset constant.
  • a curve model of the variation of the integral value of the temperature difference of the heating part on the time axis is established; the curve model includes the variation along the time axis
  • the integrated value I curve, the first limit H curve and the second limit L curve are easy to monitor.
  • the step 2 specifically includes real-time integration of the temperature difference in time to obtain a real-time integration value I.
  • the temperature difference is not judged by the threshold value, but the real-time calculated temperature difference is integrated in real time to obtain the integral value I, which reduces the misjudgment of the number of mouths due to environmental fluctuations and user actions.
  • the step 1 also includes the step of performing constant temperature control: setting the target temperature of the heating component, and performing constant temperature control on the heating component based on PID control after preheating.
  • This solution allows the real-time temperature to deviate from the target temperature due to actions such as smoking, compensation control can be carried out, so that the real-time temperature will deviate from the target temperature in a later period of time, not only the temperature control speed is fast, but also the integral value of real-time integration according to time I has always been in a relatively balanced fluctuation range, so that the application can perform detection based on steady temperature changes.
  • the application also discloses an electronic cigarette, including a heating unit, one or more processors, a memory, and one or more programs, wherein the one or more programs are stored in the memory, and the programs are configured
  • the component is driven by the processor and used to execute the method for detecting the number of puffs of an electronic cigarette as described above.
  • the present application can accurately detect the number of smoking puffs and reduce misjudgments.
  • the electronic cigarette further includes a prompt module, and the processor also controls the prompt module to remind the number of puffs to smoke.
  • the prompt module prompts the number of puffs to smoke according to voice prompts, display screen prompts, or on/off lights.
  • Fig. 1 is a flowchart of the method for detecting the number of puffs of the electronic cigarette in the first embodiment of the present application.
  • Fig. 2 is a flowchart of the method for detecting the number of puffs of the electronic cigarette in the second embodiment of the present application.
  • Fig. 3 is a flowchart of the method for detecting the number of puffs of the electronic cigarette in the third embodiment of the present application.
  • Figure 4 is a schematic diagram of the temperature change of the heating part
  • Fig. 5 is a schematic diagram of the integral value I curve, the first limit value H curve, and the second limit value L curve of the present application in a two-axis table of time and variation.
  • Fig. 6 is a structural block diagram of the electronic cigarette of the present application.
  • Fig. 7 is a structural block diagram of the processor described in this application.
  • the method 100 for detecting the number of puffs of the electronic cigarette is used in heating and non-burning electronic cigarettes, including the following steps: (11) sampling to obtain the real-time temperature of the heating component; (12) determining according to the target temperature and the real-time temperature Temperature difference; (13) Integrate the temperature difference in time and obtain the real-time integral value I; (14) Calculate the real-time first limit H according to the integral value I; (15) Determine the real-time integral value Whether I exceeds the real-time first limit value H, if yes, then (16) determine the number of puffs (smoking behavior) once, if not, return to step (15).
  • the step (16) specifically is to determine the number of puffs for a single puff and record the number of puffs for a puff, at this time, the total puffs for smoking can be determined.
  • step (13) the temperature difference is integrated in real time in time and the real-time integral value I is obtained. There is no need to judge the temperature difference, and the real-time calculated temperature difference is integrated in real time. Obtaining the integral value I not only has a precise judgment result, but also facilitates the acquisition of the first limit value H in step (14).
  • step (14) specifically includes: integrating the integral value I in time to obtain the real-time first limit value H.
  • the integral value I is integrated in the current time period to obtain the real-time first limit value H.
  • the current time period is the time domain within a period of time forward from the current time, for example, the current time is t1, the current time period is the time period from t1 to t1- ⁇ t, and ⁇ t is the preset time domain.
  • the current time period may also be a time period from t1- ⁇ t1 to t1- ⁇ t2, where ⁇ t1 and ⁇ t2 are preset time domains, and ⁇ t1 is greater than ⁇ t2.
  • the current time period can also be the current time forward, the time period from the time ti to ti- ⁇ t3 when the nearest temperature difference does not exceed a threshold, and ⁇ t3 is the preset time domain. That is, the current time period is a time period corresponding to the current time t1.
  • the first limit value H adopts the formula Calculated; Among them, t1 represents the current time, t2 represents t1- ⁇ t, ⁇ t is the preset time domain, C represents the number of samples in ⁇ t seconds, C ⁇ t/ ⁇ t', ⁇ t' represents ⁇ t The sampling interval in seconds, K h is a preset constant. Introduce the sampling frequency C to improve calculation accuracy and detection accuracy. Of course, a time point corresponding to t1 can also be used to replace the current time t1, such as t1- ⁇ t1 and ti mentioned above.
  • the value condition of K h is limited to: the first limit H is greater than the integrated value I when not smoking, and the first limit H is less than the integrated value I when smoking.
  • the K h can be determined by testing and empirical heating parameters of the electronic cigarette.
  • the method 100 for detecting the number of puffs of the electronic cigarette further includes step (17), judging whether the real-time temperature is in a stable state, and if so, returning to step (15) to perform the next puff (smoking behavior) detection.
  • steps (11)-(14) are real-time calculations.
  • step (17) is executed after step (16) is executed.
  • the step (17) specifically includes: judging whether the integral value I exceeds a first limit H, and if otherwise judging that the real-time temperature is in a stable state. More preferably, the step (17) is specifically judging whether the integral value I exceeds the first limit value H for a preset time T4, and if so, judging that the real-time temperature is in a stable state.
  • the temperature difference target temperature-real-time temperature
  • the step (15) by judging whether the real-time integral value I is greater than the real-time first limit H, it is judged whether the real-time integral value I exceeds the real-time
  • the real-time integral value I exceeds the real-time first limit value
  • the step (17) determines whether the real-time integral value I exceeds the real-time first limit value by judging whether the real-time integral value I is less than the real-time first limit value H, and the real-time integral value I is less than the real-time first limit value.
  • the limit value is H, it is determined that the real-time integral value I does not exceed the first threshold value H.
  • the step (17a) specifically includes: When the integral value I is between the first limit value H and the second limit value L, it is determined that the real-time temperature is in a stable state to return to step (15).
  • the step (17a) can also be replaced by: judging whether the integral value I is between the first limit value H and the second limit value L for a preset time T4, and if so, judging the The real-time temperature is in a steady state (as shown in step 17b in Figure 3).
  • step (15) it is judged whether the real-time integral value I exceeds the real-time first limit by judging whether the real-time integral value I is greater than the real-time first limit H When the real-time integral value I is greater than the real-time first limit value H, it is determined that the real-time integral value exceeds the real-time first limit value.
  • the step (17a) judges whether the real-time integral value I is smaller than the real-time first limit value H and larger than the second limit value L to determine whether the integral value I lies between the first limit value H and the second limit value. Between L, when the real-time integrated value I is less than the real-time first limit value H and greater than the second limit value L, it is judged that the integrated value I lies between the first limit value H and the second limit value L.
  • the second limit value L is a preset value or a real-time value calculated according to the integral value I.
  • the second limit L is a real-time value.
  • it further includes a step of integrating the integral value I in the current time period to obtain the real-time second limit.
  • the value L is calculated by integrating the integral in the current time period to obtain the second limit, which further improves the detection accuracy.
  • t1 represents the current time
  • t2 represents t1- ⁇ t
  • ⁇ t is the preset time domain
  • C represents the number of samples in ⁇ t seconds
  • C ⁇ t/ ⁇ t'
  • ⁇ t' represents ⁇
  • K l is a preset constant. Introduce the number of samples C to improve calculation accuracy.
  • the step (15) specifically includes: determining whether the real-time integral value I exceeds the first limit H, And whether to continue for a preset time T3, and determine the number of puffs once when the integral value I exceeds the first limit H and continues for the preset time T3.
  • step (15) includes: (51) judging whether the real-time integral value I exceeds the first limit value H, if yes, then (52) timing, and judging whether the time lasts for the preset time T3, if yes, then (16) judging The number of puffs that occurred at one time.
  • a timer can be set.
  • the timer is started to start timing, and it is judged whether the time length is greater than the preset time length T3. If so, then (16) judge the number of puffs that occur once, among which, if in the timing process, If the real-time integral value I does not exceed the real-time first limit value H, the control timer stops timing and clears. Before restarting the detection of the number of puffs, the timer is cleared.
  • the timer is cleared.
  • the specific step of judging that the real-time temperature is in a stable state is (17b), judging whether the integral value I is between the first limit value H and the second limit value L for a preset time T4, If so, it is determined that the real-time temperature is in a stable state.
  • the step (11) also includes the step of performing constant temperature control: setting the target temperature of the heating component, and performing constant temperature control on the heating component based on PID control after preheating. Referring to Fig. 4, the temperature change of the heating part 21, from the climbing during the preheating to the final stabilization.
  • the real-time temperature difference integral value I and its first limit value H and second limit value L are calculated based on the stable temperature control state of the PID control unit, and the duration is limited, so that smoking behavior does occur. Counting is performed, which effectively avoids miscalculation and dynamics the real-time temperature status, which is more in line with the actual temperature change status to achieve more accurate detection.
  • Fig. 5 is a curve model of the amount of change on the time axis of the integral value of the heating part temperature difference established based on the integral value I, the first limit value H and the second limit value L; the curve model includes the integral value along the time axis The value I curve, the first limit H curve and the second limit L curve are easy to monitor.
  • the present application also discloses an electronic cigarette 200, including a heating part 21, one or more processors 22, a memory 23, and one or more programs 24, wherein the one or more programs 24 are stored in In the memory 23, the program 24 is configured to be driven by the processor 22 and used to execute the method 100 for detecting the number of puffs of an electronic cigarette as described above.
  • the electronic cigarette 200 further includes a prompt module 25, and the processor 22 also controls the prompt module 25 to remind the number of puffs to smoke.
  • the prompt module 25 prompts the number of puffs to smoke according to voice prompts, display screen prompts, or on/off lights.
  • the voice prompt can be the number of remaining mouths or the number of mouths drawn.
  • the prompt on the display can be to show the number of remaining mouths or the number of mouths drawn.
  • the light on/off reminder can be reminded by setting a row of LED lights on or off. If the lights are all on before smoking, one LED light will be off after a sip.
  • the way of prompting can be one or a mixture of multiple, which can be increased or decreased according to design requirements.
  • the processor 22 includes an input module 31, an MCU module 32, a driving module 33, and a measurement module 34.
  • the measurement module 34 detects the temperature of the heating part 21 and transmits the detected temperature data to the input module 31,
  • the input module 31 is connected to the MCU module 32 and inputs the temperature data detected by the measurement module 34 to the MCU module 32.
  • the MCU module 32 performs calculation processing such as proportional adjustment, integral adjustment, and differential adjustment on the temperature data to generate corresponding
  • the constant temperature control signal is sent to the driving module 33, and the driving module 33 controls the action of the heating part 21 according to the constant temperature control signal so that the heating part 21 realizes constant temperature heating, as shown in FIG. 4 for details.
  • the MCU module 32 also drives the program 24 to execute the method 100 for detecting the number of puffs of the electronic cigarette.
  • the specific process of controlling the constant temperature of the heating part 21 is common knowledge and will not be described in detail here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Operations Research (AREA)
  • Algebra (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

一种电子烟的抽烟口数检测方法(100)及其电子烟(200),抽烟口数检测方法(100)包括以下步骤:采样获取加热部件的实时温度(11),根据目标温度与实时温度确定温度差(12);对该温度差在时间上进行积分并得出实时的积分值I(13);依据积分值I计算实时的第一限值H(14);判断实时的积分值I是否超出实时的第一限值H(15),若是则确定一次抽烟口数(16)。抽烟口数检测方法(100)依据实时温度和目标温度之间温度差在时间上的积分实时计算一限值H作为判断抽烟行为的比较阈值,该限值为随着温度差的变化趋势和变化幅度而变化的实时值,当环境发生变化或者使用习惯发生变化时,依然可以依据当前温度差的积分值计算出对应的第一限值,以进行准确判断出抽烟行为,有效提高抽烟口数的检测准确性。

Description

电子烟的抽烟口数检测方法及其电子烟 技术领域
本申请涉及电子烟技术领域,特别是一种加热电子烟的抽烟口数检测方法及其电子烟。
背景技术
烟草燃烧的烟雾中存在多种致癌物质,比如焦油,长期吸入会对人体健康产生危害,而且,烟草烟雾弥散在空气中会形成二手烟,周围的人群吸入后也会对产生健康隐患,因此,多数公共场合都明文禁止吸烟。为了满足烟民需要,电子香烟应运而生。
现有技术中,电子烟设备确定吸烟口数的方法一种是通过设置在电子烟设备上的空气开关实现的。具体来说,就是通过空气开关记录用户吸烟时的气流,根据该气流确定吸烟的口数。
但是,通过空气开关或气压传感器等其他的方式确定吸烟口数的方法需要设置专门记录气流的空气开关或气压传感器检测的数据,使得电子烟的成本比较高。
另外,在烟草型电子烟检测吸烟口数中,也有根据简单的温度浮动来计算吸烟口数。由于烟草型电子烟加热对象热容量较小,容易出现温度浮动。比如,在使用电子烟时,电子烟由用户拿在手里,可能经常被晃动,在电子烟内部相当于有空气在电子烟周围流动,空气带走一部分热量,导致温度会有所降低。该情况下会使基于简单的温度飘动计算出来的吸烟口数经常不准确。比如,简单地设定一个阈值温度,温度降到这个阈值温度以下就认为吸了一口烟,但是吸烟口数非常容易误判,并且会导致多记吸烟口数。如果阈值温度设大一些,虽然误判的机率会降低,但又会导致吸烟者在轻轻吸烟时,如果带走的热量较 小并且温度降低较小,就不会超过这个阈值温度,从而出现漏记吸烟口数情况。因此目前烟草型电子烟在计算吸烟口数很难突破漏记和误记的问题。
例如,申请公布号为CN108991605A的中国申请专利申请,其公开了一种电子烟吸烟口数判断方法以及电子烟,所述方法包括以下步骤:设置电子烟发热体的目标温度,检测获取该发热体的当前温度,根据该目标温度与该当前温度确定温度差;该温度差小于启动阈值时,重复采集温度差;该温度差超出该启动阈值时,开始对该温度差在时间上进行积分,在该温度差小于该启动阈值时停止积分,并确定当前积分值;在该当前积分值超过判断阈值时,确认一次吸烟口数,在该当前积分值小于该判断阈值时不计吸烟口数。上述方法采用积分确定是否进行吸烟,准确率有所提高,但是该判断方法依然存在准确率和问题,如在加热部因一定原因造成其温度差积分值存在一定的浮动,但实际上并非在抽烟,那么按照该申请的方案,还是会确认一次抽烟口数,容易造成误计。另一方面,该检测方法中启动阀值为固定值,当环境发生变化或者用户使用频率发生变化时,其作为判断的基准启动阀值依然不变,判断结果依然不准确,不能依据环境的变化和使用的变化进行对应调整。再一方面,该检测方法在积分值超出判断阈值时即进行一次口数判断,当因为系统稳定性等原因造成积分值跳变时,依然会进行一次口数判断,造成口数误计。
因此,现有的电子烟抽烟口数检测技术还有待于改进和发展,以使得检测方案更加可靠、稳定和准确。
申请内容
本申请要解决的技术问题是针对上述现有技术的不足,提供一种电子烟的抽烟口数检测方法及其电子烟,检测准确性高。
为解决上述技术问题,本申请所采取的技术方案是:一种电子烟的抽烟口数检测方法,包括以下步骤:步骤1,采样获取加热部件的实时温度,根据目标温度与实时温度确定温度差;步骤2,对该温度差在时间上进行积分并得出实时 的积分值I;步骤3,依据所述积分值I计算实时的第一限值H;步骤4,判断实时的积分值I是否超出实时的第一限值H,若是则确定一次抽烟口数。
与现有技术相比,本申请依据实时温度和目标温度之间温度差在时间上的积分实时计算一个限值作为判断抽烟行为的比较阈值(第一限制H),该限值并非额定的固定值,而是可随着温度差的变化趋势和变化幅度而变化的实时值,当环境发生变化、使用习惯发生变化时,依然可以依据当前温度差的积分值计算出对应的第一限值,以进行准确判断出抽烟行为,有效提高抽烟口数的检测准确性。
较佳地,所述步骤3中具体包括:对所述积分值I进行在时间上的积分以获得实时的第一限值H。该方案通过对当前的积分值I进行时间上的积分以确定实时的第一限值H,计算方便准确。当然,也可以使用其他方法计算实时第一限值H,例如使用积分值I进行一段时间内的均值计算来调整当前的第一限值H。
更佳地,所述步骤3中具体包括:对所述积分值I进行在当前时间段内的积分以获得实时的第一限值H。当前时间段为当前时间向前推一段时间内的时域,也可以是与当前时间实时相关的一个时间段。
具体地,所述步骤3中,第一限值H采用公式
Figure PCTCN2019086103-appb-000001
计算得出;其中,t1表示当前时间,t2表示t1-△t,△t为预设时域,C表示△t秒内的采样次数,C=△t/△t′,△t′表示△t秒内的采样间隔,K h为预设常数。本方案引入采样次数C提高计算精准度,提高检测精度。
更具体地,K h的取值条件限制于:在不抽烟的时候第一限值H大于积分值I,在抽烟的时候第一限值H小于积分值I。该K h可由试验、经验电子烟的加热参数决定。
较佳地,所述步骤(4)具体包括:判断实时的积分值I是否超出第一限值H,且是否持续预设时间T3,并在所述积分值I超出第一限值H且持续预设时间T3时确定一次抽烟口数。在积分值I超出第一限值H预设时间段后确定一次抽烟,防止系统不稳造成的吸烟误判,提高确定准确性和稳定性。
较佳地,所述步骤(4)中:在确定一次抽烟口数时进行一次抽烟口数记录。此方案可实时获得当前吸烟的总口数,便于依据总口数进行对应操作,例如指示、关机等。
较佳地,所述电子烟的抽烟口数检测方法还包括步骤5,判断所述实时温度是否处于稳定状态,在所述实时温度处于稳定状态下时进行下一次抽烟口数检测。使得抽烟口数检测均从稳定状态下开始检测,提高检测准确率。
具体地,所述步骤(5)具体包括:判断所述积分值I是否超出第一限值H,若否则判断所述实时温度处于稳定状态。
更佳地,所述步骤(5)具体包括:判断所述积分值I是否位于第一限值H和第二限值L之间,若是则判断所述实时温度处于稳定状态。在系统波动等非正常情况下不进行抽烟口数检测。
具体地,所述第二限值L为预设值或者依据所述积分值I计算的实时值,引用实时的阈值判断系统稳定,判断结果准确。
更佳地,对所述积分值I进行在当前时间段内的积分以获得实时的第二限值L,通过积分计算当前时间段内的积分以获得第二限值,进一步提高确定准确性。
具体地,依据公式
Figure PCTCN2019086103-appb-000002
计算得出;其中,t1表示当前时间,t2表示t1-△t,△t为预设时域,C表示△t秒内的采样次数,C=△t/△t′,△t′表示△t秒内的采样间隔,K l为预设常数。本方案引入采样次数C提高计算精准度。
较佳地,基于所述的积分值I、第一限值H和第二限值L建立加热部温度差的积分值在时间轴上的变化量曲线模型;该曲线模型包括沿时间轴变化的积分值I曲线、第一限值H曲线和第二限值L曲线,便于监测。
较佳地,所述步骤2具体为,对该温度差在时间上进行实时积分并得出实时的积分值I。与现有技术相比,不对温度差进行阈值判断,而将实时计算出的温度差进行实时积分已获得积分值I,减少因为环境波动、用户动作做成的口数误判。
更佳地,所述步骤1之前还包括进行恒温控制的步骤:设置加热部件的目标温度,预热后基于PID控制对加热部件进行恒温控制。该方案使得吸烟等动作造成实时温度脱离目标温度时,可进行补偿控制,使得实时温度在后面一段时间内会反向脱离目标温度,不但温度控制速度快,而且使得按照时间进行实时积分的积分值I一直处于比较平衡的波动区间,使得本申请可基于平稳的温度变化进行检测。
本申请还公开了一种电子烟,包括加热部、一个或多个处理器、存储器和一个或者多个程序,其中所述一个或多个程序被存储在所述存储器中,所述程序被配置成由所述处理器驱动并用于执行如上所述的电子烟的抽烟口数检测方法。与现有技术相比,本申请可准确检测吸烟口数,且减小误判。
较佳地,所述电子烟还包括提示模块,所述处理器还控制所述提示模块提醒抽烟的口数。
具体地,所述提示模块依据语音提示、显示屏提示或亮/灭灯提示抽烟的口数。
附图说明
图1是本申请第一实施例中所述电子烟的抽烟口数检测方法的流程图。
图2是本申请第二实施例中所述电子烟的抽烟口数检测方法的流程图。
图3是本申请第三实施例中所述电子烟的抽烟口数检测方法的流程图。
图4是加热部的温度变化示意图;
图5本申请积分值I曲线、第一限值H曲线和第二限值L曲线的在时间和变化量两轴表中的示意图。
图6是本申请所述电子烟的结构框图。
图7是本申请所述处理器的结构框图。
具体实施方式
为详细说明本申请的技术内容、构造特征、所实现目的及效果,以下结合实施方式并配合附图详予说明。
参考图1,所述电子烟的抽烟口数检测方法100,用于加热不燃烧的电子烟中,包括以下步骤:(11)采样获取加热部件的实时温度;(12)根据目标温度与实时温度确定温度差;(13)对该温度差在时间上进行积分并得出实时的积分值I;(14)依据所述积分值I计算实时的第一限值H;(15)判断实时的积分值I是否超出实时的第一限值H,若是则(16)确定一次抽烟口数(抽烟行为),若否则返回步骤(15)。
其中,所述步骤(16)具体为确定一次抽烟口数并记录一次抽烟口数,此时可确定抽烟的总口数。
本实施例中,步骤(13)中,对该温度差在时间上进行实时积分并得出实时的积分值I,无需对温度差进行阈值判断,而将实时计算出的温度差进行实时积分已获得积分值I,不但判断结果精准,而且便于步骤(14)中第一限值H的获取。
较佳者,步骤(14)中具体包括:对所述积分值I进行在时间上的积分以获得实时的第一限值H。具体地,步骤(14)对所述积分值I进行在当前时间段内的积分以获得实时的第一限值H。其中,当前时间段为当前时间向前推一段时间内的时域,例如当前时间为t1,当前时间段为t1至t1-△t的时间段,△t为预设时域。当然,在另一实施例中,当前时间段也可以为t1-△t1至t1-△t2的时间段,△t1和△t2为预设时域,且△t1大于△t2。当然,在另一实施例中,当前时间段也可以为当前时间向前推,距离最近的温度差未超出一阈值的时间ti至ti-△t3的时间段,△t3为预设时域。即,当前时间段均为与当前时间t1相对应的一时间段。
更具体地,第一限值H采用公式
Figure PCTCN2019086103-appb-000003
计算得出;其中,t1表示当前时间,t2表示t1-△t,△t为预设时域,C表示△t秒内的采样次数,C△t/△t′,△t′表示△t秒内的采样间隔,K h为预设常数。引入采样次数C提 高计算精准度,提高检测精度。当然,也可以使用一与t1相对应的时间点替代当前时间t1,如上述的t1-△t1和ti。
其中,K h的取值条件限制于:在不抽烟的时候第一限值H大于积分值I,在抽烟的时候第一限值H小于积分值I。该K h可由试验、经验电子烟的加热参数决定。
较佳者,所述电子烟的抽烟口数检测方法100还包括步骤(17),判断所述实时温度是否处于稳定状态,若是则返回步骤(15)以进行下一次抽烟口数(抽烟行为)检测。其中,步骤(11)-(14)为实时计算。其中,执行完步骤(16)后执行步骤(17)。
较佳者,所述步骤(17)具体包括:判断所述积分值I是否超出第一限值H,若否则判断所述实时温度处于稳定状态。更佳地,所述步骤(17)具体为判断所述积分值I是否超出第一限值H且持续预设时间T4,若是则判断所述实时温度处于稳定状态。
其中,本实施例中,温度差=目标温度-实时温度,所述步骤(15)中通过判断实时的积分值I是否大于实时的第一限值H,来判断实时的积分值I是否超出实时的第一限值,在实时的积分值I大于实时的第一限值H时判定实时的积分值超出实时的第一限值。所述步骤(17)通过判断实时的积分值I是否小于实时的第一限值H,来判断实时的积分值I是否超出实时的第一限值,在实时的积分值I小于实时的第一限值H时判断实时的积分值I未超出第一阈值H。
参考图2,与第一实施例不同的是,在本申请第二实施例中,判断所述实时温度处于稳定状态的具体步骤为(17a),所述步骤(17a)具体包括:在所述积分值I是否位于第一限值H和第二限值L之间时,判断所述实时温度处于稳定状态以返回步骤(15)。可替代地,所述步骤(17a)还可以为被替代为:判断所述积分值I是否位于第一限值H和第二限值L之间且持续预设时间T4,若是则判断所述实时温度处于稳定状态(如图3中步骤17b所示)。
具体地,温度差=目标温度-实时温度,所述步骤(15)中通过判断实时的 积分值I是否大于实时的第一限值H,来判断实时的积分值I是否超出实时的第一限值,在实时的积分值I大于实时的第一限值H时判定实时的积分值超出实时的第一限值。所述步骤(17a)通过判断实时的积分值I是否小于实时的第一限值H且大于第二限值L,来判断判断所述积分值I是否位于第一限值H和第二限值L之间,在实时的积分值I小于实时的第一限值H且大于第二限值L时判断判断所述积分值I位于第一限值H和第二限值L之间。
其中,所述第二限值L为预设值或者依据所述积分值I计算的实时值。在本实施例中,第二限值L为实时值,具体地,所述步骤(17)之前还包括步骤,对所述积分值I进行在当前时间段内的积分以获得实时的第二限值L,通过积分计算当前时间段内的积分以获得第二限值,进一步提高检测准确性。
其中,依据公式
Figure PCTCN2019086103-appb-000004
计算得出;其中,t1表示当前时间,t2表示t1-△t,△t为预设时域,C表示△t秒内的采样次数,C=△t/△t′,△t′表示△t秒内的采样间隔,K l为预设常数。引入采样次数C提高计算精准度。
参考图3,为本申请第三实施例,与第二实施例不同的是,在该实施例中,所述步骤(15)具体包括:判断实时的积分值I是否超出第一限值H,且是否持续预设时间T3,并在所述积分值I超出第一限值H且持续预设时间T3时确定一次抽烟口数。
具体地,步骤(15)包括:(51)判断实时的积分值I是否超出第一限值H,若是则(52)进行计时,并判断时间是否持续预设时间T3,若是则(16)判断发生一次抽烟口数。
其中,可以设置一个计时器,步骤(52)时启动定时器开始计时,判断计时的时间长度是否大于预设时长T3,若是则(16)判断发生一次抽烟口数,其中,若在计时过程中,实时的积分值I未超出实时的第一限值H,则控制定时器停止计时并清零。在重新开始抽烟口数检测之前,均对定时器进行清零。当然,并不限于上述实施例。
在本实施例中,判断所述实时温度处于稳定状态的具体步骤为(17b),判 断所述积分值I是否位于第一限值H和第二限值L之间且持续预设时间T4,若是则判断所述实时温度处于稳定状态。
基于上述实施例,所述步骤(11)之前还包括进行恒温控制的步骤:设置加热部件的目标温度,预热后基于PID控制对加热部件进行恒温控制。参考图4,为加热部21的温度变化,从预热时的爬坡到最后趋于平稳。
本实施例基于PID控制单元的稳定温控状态下,将实时的温度差积分值I及其第一限值H和第二限值L计算出来,并通过持续时间的限制,使得确实发生抽烟行为才会进行计数,有效地避免了误算以及将实时的温度状态动态化,更加符合实际的温度变化状况,以实现更加准确的检测。
图5为基于所述的积分值I、第一限值H和第二限值L建立加热部温度差的积分值在时间轴上的变化量曲线模型;该曲线模型包括沿时间轴变化的积分值I曲线、第一限值H曲线和第二限值L曲线,便于监测。
参考图6,本申请还公开了一种电子烟200,包括加热部21、一个或多个处理器22、存储器23和一个或者多个程序24,其中所述一个或多个程序24被存储在所述存储器23中,所述程序24被配置成由所述处理器22驱动并用于执行如上所述电子烟的抽烟口数检测方法100。
继续参考图6,所述电子烟200还包括提示模块25,所述处理器22还控制所述提示模块25提醒抽烟的口数。其中,所述提示模块25依据语音提示、显示屏提示或亮/灭灯提示抽烟的口数。语音提示可以为报播剩余口数、或已抽口数。显示屏提示可以为显示剩余口数或已抽口数。亮/灭灯提示可以为通过设置的一排LED灯的亮或灭来进行提醒,如未抽烟之前全亮,抽一口就灭一个LED灯。当然提示的方式可以是一种或者多种的混合,根据设计需求增减。
参考图7,所述处理器22包括输入模块31、MCU模块32、驱动模块33和测量模块34,所述测量模块34检测加热部21的温度并将检测到的温度数据输送至输入模块31,输入模块31与MCU模块32相连并将测量模块34检测到的温度数据输入至所述MCU模块32,所述MCU模块32对温度数据进行比例调节、积 分调节、微分调节等计算处理以生成对应的恒温控制信号并输送至驱动模块33,所述驱动模块33依据所述恒温控制信号控制所述加热部21动作以使所述加热部21实现恒温加热,具体可见图4。本实施例中,MCU模块32还驱动程序24以执行上述电子烟的抽烟口数检测方法100。其中,对加热部21进行恒温控制的具体过程为公知常识,在此不予详述。
以上所揭露的仅为本申请的优选实施例而已,当然不能以此来限定本申请之权利范围,因此依本申请申请专利范围所作的等同变化,仍属本申请所涵盖的范围。

Claims (19)

  1. 一种电子烟的抽烟口数检测方法,其特征在于:包括以下步骤:
    步骤1,采样获取加热部件的实时温度,根据目标温度与实时温度确定温度差;
    步骤2,对该温度差在时间上进行积分并得出实时的积分值I;
    步骤3,依据所述积分值I计算实时的第一限值H;
    步骤4,判断实时的积分值I是否超出实时的第一限值H,若是则确定一次抽烟口数。
  2. 根据权利要求1所述的电子烟的抽烟口数检测方法,其特征在于:所述步骤3中具体包括:对所述积分值I进行在时间上的积分以获得实时的第一限值H。
  3. 根据权利要求2所述的电子烟的抽烟口数检测方法,其特征在于:所述步骤3中具体包括:对所述积分值I进行在当前时间段内的积分以获得实时的第一限值H。
  4. 根据权利要求3所述的电子烟的抽烟口数检测方法,其特征在于:所述步骤3中,第一限值H采用公式
    Figure PCTCN2019086103-appb-100001
    计算得出;其中,t1表示当前时间,t2表示t1-△t,△t为预设时域,C表示△t秒内的采样次数,C=△t/△t′,△t′表示△t秒内的采样间隔,K h为预设常数。
  5. 根据权利要求4所述的电子烟的抽烟口数检测方法,其特征在于:K h的取值条件限制于:在不抽烟的时候第一限值H大于积分值I,在抽烟的时候第一限值H小于积分值I。
  6. 根据权利要求1所述的电子烟的抽烟口数检测方法,其特征在于:所述步骤(4)具体包括:判断实时的积分值I是否超出第一限值H,且是否持续预设时间T3,并在所述积分值I超出第一限值H且持续预设时间T3时确定一次抽烟口数。
  7. 根据权利要求1所述的电子烟的抽烟口数检测方法,其特征在于:所述步骤(4)中:在确定一次抽烟口数时进行一次抽烟口数记录。
  8. 根据权利要求1所述的电子烟的抽烟口数检测方法,其特征在于:还包括步骤5,判断所述实时温度是否处于稳定状态,在所述实时温度处于稳定状态下时进行下一次抽烟口数检测。
  9. 根据权利要求8所述的电子烟的抽烟口数检测方法,其特征在于:所述步骤(5)具体包括:判断所述积分值I是否超出第一限值H,若否则判断所述实时温度处于稳定状态。
  10. 根据权利要求9所述的电子烟的抽烟口数检测方法,其特征在于:所述步骤(5)具体包括:判断所述积分值I位于第一限值H和第二限值L之间,若是则判断所述实时温度处于稳定状态。
  11. 根据权利要求10所述的电子烟的抽烟口数检测方法,其特征在于:所述第二限值L为预设值或者依据所述积分值I计算的实时值。
  12. 根据权利要求11所述的电子烟的抽烟口数检测方法,其特征在于:对所述积分值I进行在当前时间段内的积分以获得实时的第二限值L。
  13. 根据权利要求12所述的电子烟的抽烟口数检测方法,其特征在于:依据公式
    Figure PCTCN2019086103-appb-100002
    计算得出;其中,t1表示当前时间,t2表示t1-△t,△t为预设时域,C表示△t秒内的采样次数,C=△t/△t′,△t′表示△t秒内的采样间隔,K 1为预设常数。
  14. 根据权利要求9所述的电子烟的抽烟口数检测方法,其特征在于:基于所述的积分值I、第一限值H和第二限值L建立加热部温度差的积分值在时间轴上的变化量曲线模型;该曲线模型包括沿时间轴变化的积分值I曲线、第一限值H曲线和第二限值L曲线。
  15. 根据权利要求1所述的电子烟的抽烟口数检测方法,其特征在于:所述步骤2具体为,对该温度差在时间上进行实时积分并得出实时的积分值I。
  16. 根据权利要求15所述的电子烟的抽烟口数检测方法,其特征在于:所述步骤1之前还包括进行恒温控制的步骤:设置加热部件的目标温度,预热后基于PID控制对加热部件进行恒温控制。
  17. 一种电子烟,包括加热部、一个或多个处理器、存储器和一个或者多个程序,其中所述一个或多个程序被存储在所述存储器中,其特征在于:所述程序被配置成由所述处理器驱动并用于执行如权利要求1-16中任一项所述的电子烟的抽烟口数检测方法。
  18. 如权利要求17所述的电子烟,其特征在于:还包括提示模块,所述处理器还控制所述提示模块提醒抽烟的口数。
  19. 如权利要求18所述的电子烟,其特征在于:所述提示模块依据语音提示、显示屏提示或亮/灭灯提示抽烟的口数。
PCT/CN2019/086103 2019-05-09 2019-05-09 电子烟的抽烟口数检测方法及其电子烟 WO2020223941A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19926740.2A EP3777586B1 (en) 2019-05-09 2019-05-09 Method for detecting number of puffs of electronic cigarette and electronic cigarette therefor
PCT/CN2019/086103 WO2020223941A1 (zh) 2019-05-09 2019-05-09 电子烟的抽烟口数检测方法及其电子烟
US17/060,224 US11849770B2 (en) 2019-05-09 2020-10-01 Method for detecting the number of puffs of an electronic cigarette, and electronic cigarette

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/086103 WO2020223941A1 (zh) 2019-05-09 2019-05-09 电子烟的抽烟口数检测方法及其电子烟

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/060,224 Continuation-In-Part US11849770B2 (en) 2019-05-09 2020-10-01 Method for detecting the number of puffs of an electronic cigarette, and electronic cigarette

Publications (1)

Publication Number Publication Date
WO2020223941A1 true WO2020223941A1 (zh) 2020-11-12

Family

ID=73050519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086103 WO2020223941A1 (zh) 2019-05-09 2019-05-09 电子烟的抽烟口数检测方法及其电子烟

Country Status (3)

Country Link
US (1) US11849770B2 (zh)
EP (1) EP3777586B1 (zh)
WO (1) WO2020223941A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112471612A (zh) * 2020-12-18 2021-03-12 惠州市沛格斯科技有限公司 电子烟吸烟口数的判断方法、装置、电子烟以及存储介质

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110200327A (zh) * 2019-06-26 2019-09-06 惠州市新泓威科技有限公司 电子烟的预热控制方法
US11789476B2 (en) 2021-01-18 2023-10-17 Altria Client Services Llc Heat-not-burn (HNB) aerosol-generating devices including intra-draw heater control, and methods of controlling a heater
CN113519917B (zh) * 2021-08-12 2023-09-26 安徽中烟工业有限责任公司 一种自适应调节的加热烟具温度控制方法
CN113662257A (zh) * 2021-08-23 2021-11-19 深圳市真味生物科技有限公司 一种具有检测系统的烟具
CN114027566B (zh) * 2021-11-19 2023-12-22 深圳湃科锐锋科技有限公司 用于电子烟校准的作业设备
CN116919013A (zh) * 2022-04-07 2023-10-24 深圳市合元科技有限公司 气溶胶产生装置及统计用户的抽吸口数的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107951078A (zh) * 2017-12-07 2018-04-24 深圳市舜宝科技有限公司 一种监测抽吸电子烟的方法及抽吸电子烟监测系统
CN108459536A (zh) * 2018-01-31 2018-08-28 深圳瀚星翔科技有限公司 一种电子烟抽吸次数的控制方法和控制装置
CN108572202A (zh) * 2018-03-30 2018-09-25 深圳麦克韦尔股份有限公司 一种电子烟状态检测装置、方法及电子烟
CN108873981A (zh) * 2018-06-25 2018-11-23 深圳市丽福科技有限责任公司 电子烟加热温度的控制方法及装置
CN108991605A (zh) 2018-06-25 2018-12-14 深圳市丽福科技有限责任公司 一种电子烟吸烟口数判断方法以及电子烟
KR20190010432A (ko) * 2017-07-20 2019-01-30 주식회사 케이티앤지 에어로졸 생성 장치 및 방법

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8499766B1 (en) * 2010-09-15 2013-08-06 Kyle D. Newton Electronic cigarette with function illuminator
AU2012360820B2 (en) * 2011-12-30 2017-07-13 Philip Morris Products S.A. Aerosol generating system with consumption monitoring and feedback
ES2644316T3 (es) * 2012-02-22 2017-11-28 Altria Client Services Llc Artículo electrónico para fumar
PL2999365T3 (pl) * 2013-05-21 2021-04-19 Philip Morris Products S.A. Układ dostarczania aerozolu z grzaniem elektrycznym
US20170332702A1 (en) * 2016-05-20 2017-11-23 Lunatech, Llc Electronic vaporizing device with messaging functionality
US10206433B2 (en) * 2016-12-28 2019-02-19 Ya-Ling Ding Controlling method for electronic cigarette with multiple output modes and electronic cigarette
US11589621B2 (en) * 2017-05-23 2023-02-28 Rai Strategic Holdings, Inc. Heart rate monitor for an aerosol delivery device
US11698717B2 (en) * 2018-06-15 2023-07-11 Juul Labs, Inc. Session control for a vaporizer device
JP6681963B1 (ja) * 2018-10-31 2020-04-15 日本たばこ産業株式会社 エアロゾル吸引器用の電源ユニット、その制御方法及び制御プログラム
DE102019103990B4 (de) * 2019-02-18 2021-09-02 Hauni Maschinenbau Gmbh Verdampfereinsatz für einen Inhalator, insbesondere ein elektronisches Zigarettenprodukt, Verdampfer-Tank-Einheit und ein elektronisches Zigarettenprodukt
US11744285B2 (en) * 2020-07-15 2023-09-05 Altria Client Services Llc Steady state resistance estimation for overheating protection of a nicotine e-vaping device
US11696602B2 (en) * 2020-08-04 2023-07-11 Altria Client Services Llc Heat-not-burn (HNB) aerosol-generating devices with compression assembly
JP6856811B1 (ja) * 2020-09-07 2021-04-14 日本たばこ産業株式会社 エアロゾル生成装置の電源ユニット
US11641885B2 (en) * 2021-05-06 2023-05-09 Rai Strategic Holdings, Inc. Device and system for validation and modification of device state transitions for an aerosol generation device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190010432A (ko) * 2017-07-20 2019-01-30 주식회사 케이티앤지 에어로졸 생성 장치 및 방법
CN107951078A (zh) * 2017-12-07 2018-04-24 深圳市舜宝科技有限公司 一种监测抽吸电子烟的方法及抽吸电子烟监测系统
CN108459536A (zh) * 2018-01-31 2018-08-28 深圳瀚星翔科技有限公司 一种电子烟抽吸次数的控制方法和控制装置
CN108572202A (zh) * 2018-03-30 2018-09-25 深圳麦克韦尔股份有限公司 一种电子烟状态检测装置、方法及电子烟
CN108873981A (zh) * 2018-06-25 2018-11-23 深圳市丽福科技有限责任公司 电子烟加热温度的控制方法及装置
CN108991605A (zh) 2018-06-25 2018-12-14 深圳市丽福科技有限责任公司 一种电子烟吸烟口数判断方法以及电子烟

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3777586A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112471612A (zh) * 2020-12-18 2021-03-12 惠州市沛格斯科技有限公司 电子烟吸烟口数的判断方法、装置、电子烟以及存储介质

Also Published As

Publication number Publication date
EP3777586A4 (en) 2021-12-15
US11849770B2 (en) 2023-12-26
EP3777586B1 (en) 2022-12-07
EP3777586A1 (en) 2021-02-17
US20210015165A1 (en) 2021-01-21

Similar Documents

Publication Publication Date Title
WO2020223941A1 (zh) 电子烟的抽烟口数检测方法及其电子烟
US10779574B2 (en) Anemometric-assisted control of a vaporizer
WO2019174479A1 (zh) 电子烟的控制方法和装置
CN109998178B (zh) 电子烟的抽烟口数检测方法及其电子烟
WO2016082136A1 (zh) 一种电子烟及其烟雾量控制方法
CN108991605B (zh) 一种电子烟吸烟口数判断方法以及电子烟
US11291251B2 (en) Electronic cigarette and control method therefor
US20160316821A1 (en) Electronic cigarette with limited service life and method for limiting service life of electronic cigarette
US9603386B2 (en) Method and device for heating control of an electronic cigarette
CN109892699B (zh) 电子烟抽吸次数统计方法、电子烟、存储介质及设备
US20220232899A1 (en) Electronic atomization device and method for detecting intake amount of aerosol-forming matrix thereof
WO2019052082A1 (zh) 获取目标物质的摄入量的方法及电子设备
JP2021509259A (ja) エアロゾル生成装置及びそれを制御する方法
US20200085102A1 (en) Electronic cigarette and control method therefor
WO2019113836A1 (zh) 气溶胶发生装置及其控制方法、应用于气溶胶发生装置的微处理器
WO2019052081A1 (zh) 获取目标物质的摄入量的方法及电子设备
CN111227320A (zh) 通过触控压力传感器控制预热的电子烟及其预热方法
WO2019170032A1 (zh) 电子烟、电子烟的控制方法和装置
CN112006338A (zh) 电子烟的功率调节方法、装置、存储介质及电子烟
WO2019072087A1 (zh) 烟雾分析仪及烟雾分析方法
WO2020216198A1 (zh) 电子烟及其控制方法
CN110893018B (zh) 发热件管理方法和装置
WO2019141110A1 (zh) 温度控制方法和电子烟
WO2020143565A1 (zh) 获取目标物质的摄入量的方法和装置
CN115088881B (zh) 基于电子烟烟雾量的加热效率调节控制方法及系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 19926740.2

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019926740

Country of ref document: EP

Effective date: 20201109

NENP Non-entry into the national phase

Ref country code: DE