WO2020223847A1 - 图像传感器及相关芯片、图像传感器操作方法及手持装置 - Google Patents

图像传感器及相关芯片、图像传感器操作方法及手持装置 Download PDF

Info

Publication number
WO2020223847A1
WO2020223847A1 PCT/CN2019/085484 CN2019085484W WO2020223847A1 WO 2020223847 A1 WO2020223847 A1 WO 2020223847A1 CN 2019085484 W CN2019085484 W CN 2019085484W WO 2020223847 A1 WO2020223847 A1 WO 2020223847A1
Authority
WO
WIPO (PCT)
Prior art keywords
image sensor
photodiode
transmission gate
switch
integrator
Prior art date
Application number
PCT/CN2019/085484
Other languages
English (en)
French (fr)
Inventor
杨孟达
詹昶
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to PCT/CN2019/085484 priority Critical patent/WO2020223847A1/zh
Priority to CN201980002819.2A priority patent/CN110741628B/zh
Publication of WO2020223847A1 publication Critical patent/WO2020223847A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/63Noise processing, e.g. detecting, correcting, reducing or removing noise applied to dark current

Definitions

  • This application relates to a touch controller and related chips, a touch control system and a touch control method, and more particularly to a touch controller and related chips, a touch control system and a touch control method based on phase modulation.
  • the traditional capacitive transimpedance amplifier (CTIA) pixel structure is different from the active-pixel sensor (APS) structure.
  • the former uses the photocurrent generated by the photodiode to real-time target the integrator in the reading circuit.
  • the capacitance integration between the photodiode and the reading circuit does not require a transmission gate to determine when to send the photocurrent generated by the photodiode to the integrator of the reading circuit; on the contrary, the active pixel sensor needs to rely on photodiode accumulation
  • the charge once again pours the accumulated charge into the source follower at the back. Therefore, when the photodiode has not yet completed the exposure, a transmission gate is needed to disconnect the photodiode and the source follower.
  • the photodiode is not exposed until the exposure is completed.
  • the charge is poured into the source follower at the back by turning on the transmission gate.
  • the photodiode is directly connected to the reading circuit through a metal layer wire, and the metal layer wire inevitably needs to be connected to the photodiode through a via.
  • the imperfections in semiconductor technology and the via holes on the photodiode often cause a certain degree of dark current and form noise.
  • One of the objectives of the present application is to disclose a phase modulation-based touch controller and related chips, a touch control system, and a touch control method to solve the above problems.
  • An embodiment of the present application discloses an image sensor including: a photodiode transmission gate and a reading circuit, the reading circuit has an input end and an output end, and the reading circuit includes: an integrator for The input terminal of the reading circuit integrates and outputs to the output terminal of the reading circuit; and a switch is arranged in parallel with the integrator; wherein the transmission gate is coupled to the photodiode and the Between the input terminals of the reading circuit.
  • An embodiment of the present application discloses a chip including: the above-mentioned image sensor.
  • An embodiment of the present application discloses an image sensor operating method for operating the above-mentioned image sensor.
  • the image sensor operating method includes: controlling the transmission gate and the switch to be turned on during the reset phase to re-energize Setting the integrator; and in the exposure and sampling stages, exposing the photodiode, while controlling the transmission gate to conduct, and make the switch non-conducting, so that the photocurrent generated by the photodiode is directed to the The integrator performs integration.
  • An embodiment of the present application discloses an image sensor operating method for operating the above-mentioned image sensor.
  • the image sensor operating method includes: exposing the photodiode during the exposure and resetting stages, and controlling the switch at the same time Conduction and the transmission gate is non-conducting to reset the integrator; and in the reference value sampling phase, the photodiode is stopped from exposure, and the transmission gate and the switch are controlled to be non-conducting, so that all The output terminal of the reading circuit produces the reference value sampling result.
  • An embodiment of the present application discloses a handheld device for sensing the fingerprint of a specific object, including: a display panel; and the above-mentioned image sensor to obtain fingerprint information of the specific object.
  • an additional transmission gate is used to avoid forming via holes on the photodiode, so as to reduce the occurrence of dark current.
  • FIG. 1 is a schematic diagram of the first embodiment of the disclosed image sensor.
  • FIG. 2 is a schematic diagram of the layout of some circuits of the image sensor of FIG. 1.
  • FIG. 3 is a schematic diagram of the operation of the image sensor of FIG. 1.
  • FIG. 4 is a schematic diagram of the second embodiment of the disclosed image sensor.
  • FIG. 5 is a schematic diagram of the operation of the image sensor of FIG. 4.
  • FIG. 6 is a schematic diagram of an embodiment of a handheld device of this application.
  • first and second features are in direct contact with each other; and may also include additional components are formed between the first and second features, so that the first and second features may not be in direct contact.
  • present disclosure may reuse component symbols and/or labels in multiple embodiments. Such repeated use is based on the purpose of brevity and clarity, and does not in itself represent the relationship between the different embodiments and/or configurations discussed.
  • spatially relative terms here such as “below”, “below”, “below”, “above”, “above” and similar, may be used to facilitate the description of the drawing
  • the relationship between one component or feature relative to another component or feature is shown.
  • these spatially relative terms also cover a variety of different orientations in which the device is in use or operation.
  • the device may be placed in other orientations (for example, rotated by 90 degrees or in other orientations), and these spatially-relative description words should be explained accordingly.
  • the traditional active-pixel sensor (APS) structure has a small reading circuit area, so it is mostly equipped with relatively small pixels; compared to the traditional capacitive transimpedance amplifier (CTIA) pixel structure
  • the circuit area is larger, for example, the area of the integrator is larger. Therefore, when a smaller pixel is used, the fill factor is significantly reduced, so it is generally used with a larger photodiode.
  • the photodiode of the image sensor in this application is designed to be larger than the image sensor for general photography. Increase the light sensitivity, so the pixel structure of capacitive transimpedance amplifier is suitable for fingerprint recognition applications.
  • the reading circuit of the pixel structure of the capacitive transimpedance amplifier uses an integrator to make its linearity better than that of the active pixel sensor structure. For fingerprint recognition applications, the linearity requirement is higher than that of general photography. Therefore, the pixel structure of the capacitive transimpedance amplifier just meets its linearity requirements.
  • the pixel structure of the capacitive transimpedance amplifier proposed in this disclosure is provided with a transmission gate between the photodiode and the reading circuit, and the source/drain of the transmission gate directly passes through the substrate.
  • the bottom is connected to the photodiode, and the other source/drain of the transmission gate is connected to the reading circuit, so the photodiode can be connected to the reading circuit through the transmission gate, instead of connecting to the reading circuit through the metal layer wire .
  • the capacitive transimpedance amplifier proposed in the present disclosure does not need to connect the photodiode and the metal layer wire through vias, so as to avoid dark current caused by vias on the photodiode, thereby reducing the overall dark current. Improve noise.
  • FIG. 1 is a schematic diagram of the first embodiment of the disclosed image sensor.
  • the image sensor 100 is implemented using a complementary metal oxide semiconductor process.
  • the image sensor 100 includes a photodiode 102, a transmission gate 104, a reading circuit 112, and a sampling circuit 116.
  • the transmission gate 104 may be a transistor.
  • the transmission gate 104 is an N-type complementary metal oxide semiconductor (CMOS) transistor, but the application is not limited thereto.
  • the reading circuit 112 has an input terminal Vin and an output terminal Vout, and the transmission gate 104 is coupled between the photodiode 102 and the input terminal Vin of the reading circuit 112.
  • CMOS complementary metal oxide semiconductor
  • the reading circuit 112 includes an integrator 114 and a switch 108.
  • the implementation of the switch 108 may be the same or similar to the transmission gate 104, such as an N-type complementary metal oxide semiconductor transistor, but the application is not limited thereto.
  • the integrator 114 is used to integrate the signal at the input terminal Vin of the reading circuit 112 and output to the output terminal Vout of the reading circuit 112.
  • the integrator 114 includes an amplifier 110 and a capacitor 106.
  • the amplifier 110 is coupled between the input terminal Vin and the output terminal Vout of the reading circuit 112, and the capacitor 106 is arranged in parallel with the amplifier 110.
  • the amplifier 110 may be a single-ended amplifier or a double-ended differential amplifier.
  • the sampling circuit 116 is used to convert the analog signal at the output terminal Vout into a digital signal Dout according to the sampling control signal Ss.
  • the sampling circuit 116 may be a correlated double sampling (CDS) circuit.
  • the sampling The circuit 116 may be used to perform digital double sampling (DDS).
  • the photodiode 102 implemented by a complementary metal oxide semiconductor process has a semiconductor substrate and a metal connection layer, the metal connection layer is stacked on the semiconductor substrate, and the metal connection layer includes The dielectric layer and the wires in it. At least a part of the image sensor 100 is provided in the semiconductor substrate.
  • FIG. 2 is a schematic diagram of the layout of some circuits of the image sensor 100 in FIG. 1. As shown in FIG. 2, the gate of the transmission gate 104 is connected to the first reference voltage VDD through the wire 122 in the metal connection layer, so that the transmission gate 104 is kept on. In this embodiment, the transmission gate 104 is N-type complementary metal oxide semiconductor transistor, therefore, the first reference voltage VDD should be a high potential, that is, the logic value is 1.
  • the cathode of the photodiode 102 is adjacent to one end of the source/drain of the transmission gate 104, so that the cathode of the photodiode 102 is coupled to one end of the source/drain of the transmission gate 104 through the semiconductor substrate.
  • the other source/drain of the transmission gate 104 is connected to the input terminal Vin of the reading circuit 112 through the wire 120 in the metal connection layer.
  • the anode of the photodiode 102 is coupled to the second reference voltage VSS.
  • the second reference voltage VSS is a low level, that is, the logic value is 0.
  • the photodiode 102 and the metal connection layer above it are not directly connected, that is to say, the photodiode 102 and the metal connection layer are completely separated by the dielectric layer within the overlapping range of each other, and there is no via hole.
  • the photodiode 102 and the metal connection layer are only outside the overlapping range, and the photodiode 102 and the metal connection layer are indirectly coupled through the transmission gate 104.
  • the photodiode 102 is coupled to the wire 122 through the gate of the transmission gate 104; and the photodiode 102 is coupled to the wire 120 through the other source/drain of the transmission gate 104.
  • the gate of the switch 108 is coupled to the control signal S1 through the metal connection layer.
  • FIG. 3 is a schematic diagram of the operation of the image sensor 100 of FIG. 1.
  • the operation of FIG. 3 includes a reset stage, an exposure and sensing value sampling stage, and a reference value sampling stage.
  • the transmission gate 104 is kept on, and the switch 108 is controlled to be on by the control signal S1 to reset the integrator 114.
  • the photodiode starts to expose 102
  • the transmission gate 104 remains conductive, and the switch 108 is controlled to be non-conductive through the control signal S1, so that the photocurrent generated by the photodiode 102 is applied to the integrator in real time.
  • 114 performs integration to raise the output terminal Vout of the reading circuit 112.
  • the sampling circuit 116 converts the analog signal of the output terminal Vout into a digital signal Dout according to the sampling control signal Ss as a sensing value. For example, when the sampling control signal Ss is at a high level, the sampling circuit 116 performs digital double sampling on the output terminal Vout.
  • the transmission gate 104 remains conductive during the above two stages.
  • the transmission gate 104 in the present disclosure avoids the use of vias to connect the photodiode 102 with the wires in the metal connection layer above, so it can effectively Reducing the operation of FIG. 3 produces dark current that affects the integration result of the integrator 114, thereby reducing noise.
  • the control signal S1 controls the switch 108 to be turned on to reset the integrator 114, and then the sampling circuit 116 reads out the Vout signal at the output terminal of the integrator 114 when the integrator 114 is reset according to the sampling control signal Ss as The reference value, and the corrected sensing result can be obtained according to the above-mentioned sensing value and the above-mentioned reference value.
  • FIG. 4 is a schematic diagram of the second embodiment of the disclosed image sensor.
  • the difference between the image sensor 200 and the image sensor 100 is that the transmission gate 104 of the image sensor 200 is selectively turned on. Specifically, the gate of the transmission gate 104 is controlled by the control signal S2 through the metal connection layer, instead of being fixedly connected to the first reference voltage VDD as in the image sensor 100.
  • FIG. 5 is a schematic diagram of the operation of the image sensor 200 of FIG. 4.
  • the operation of FIG. 5 includes a reset stage, an exposure and sensing value sampling stage, and a reference value sampling stage.
  • the switch 108 is controlled to be turned on by the control signal S1 to reset the integrator 114.
  • the exposure and sensing value sampling stage the photodiode is exposed to 102, the switch 108 is controlled to be non-conductive by the control signal S1, and the transmission gate 104 is controlled by the control signal S2 in the early stage of the exposure and sensing value sampling stage.
  • the sampling circuit 116 converts the analog signal at the output terminal Vout into a digital signal Dout according to the sampling control signal Ss. For the measured value, for example, when the sampling control signal Ss is at a high level, the sampling circuit 116 performs digital double sampling on the output terminal Vout. Therefore, compared with the image sensor 100, one of the more advantages of the image sensor 200 is that it can prevent the photodiode 102 from outputting current to the integrator 114 when the sampling circuit 116 is sampling.
  • the control signal S1 controls the switch 108 to turn on to reset the integrator 114
  • the control signal S2 controls the switch 104 to turn on.
  • the control signal S1 controls the switch 108 to not turn on.
  • the charge injection noise generated when the switch 108 is turned on to off is copied at the output terminal Vout of the integrator 114, and the post-sampling circuit 116 reads it out according to the sampling control signal Ss as a reference value , And the corrected sensing result can be obtained according to the aforementioned sensing value and the aforementioned reference value. Therefore, compared to the control method of the image sensor 100 of FIG. 3, one of the more advantages of the control method of the image sensor 200 of FIG. 5 is that the charge injection noise when the switch 108 is turned on to off Removed from the sensing result.
  • the present application also provides a chip, which includes the image sensor 100 or the image sensor 200.
  • the image sensor 100/200 can be applied to fingerprint recognition applications.
  • this application also provides a handheld device.
  • FIG. 6 is a schematic diagram of an embodiment of the handheld device of this application.
  • the handheld device 600 includes a display screen assembly 602 and an image sensor 100/200.
  • the handheld device 600 can be used for optical under-screen fingerprint sensing to sense the fingerprint of a specific object.
  • the handheld device 600 may be any handheld electronic device such as a smart phone, a personal digital assistant, a handheld computer system, or a tablet computer.
  • the display screen assembly 602 may include a display panel and a protective cover, the protective cover is arranged above the display panel, and the image sensor 100/200 is arranged below the display panel.
  • the display The panel may be an organic electroluminescent display panel (OLED), but the application is not limited to this.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Image Input (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Facsimile Heads (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

本申请公开了一种图像传感器(100/200),包括:光电二极管、传输门(102)以及读取电路(112),所述读取电路具有输入端(Vin)及输出端(Vout),所述读取电路包括:积分器(114),用来针对所述读取电路的输入端进行积分,并输出至所述读取电路的所述输出端;以及开关(108),和所述积分器并联设置;其中所述传输门耦接于所述光电二极管和所述读取电路的所述输入端之间。

Description

图像传感器及相关芯片、图像传感器操作方法及手持装置 技术领域
本申请涉及一种触摸控制器及相关芯片、触摸控制系统及触摸控制方法,尤其涉及一种基于相位调制的触摸控制器及相关芯片、触摸控制系统及触摸控制方法。
背景技术
传统的电容跨阻抗放大器(capacitive transimpedance amplifier,CTIA)像素结构和主动式像素传感器(active-pixel sensor,APS)结构不同,前者是利用光电二极管产生的光电流实时地对读取电路中的积分器的电容积分,在光电二极管和读取电路之间并不需要传输门来决定何时将光电二极管产生的光电流送到读取电路的积分器;相反的,主动式像素传感器需要靠光电二极管积累电荷再一次将积累的电荷倒入后方的源极随耦器,因此在光电二极管尚未完成曝光时,需要一个传输门来将光电二极管和源极随耦器断开,待光电二极管完成曝光后才通过将传输门导通来将电荷倒入后方的源极随耦器。
然而,电容跨阻抗放大器像素结构中,由于没有传输门的存在,故光电二极管会通过金属层导线来直接连接至读取电路,金属层导线势必需要通过导孔(via)来连接光电二极管,由于半导体工艺上的不完美,光电二极管上的导孔往往造成一定程度的暗电流,形成噪声。
发明内容
本申请的目的之一在于公开一种基于相位调制的触摸控制器及相关芯片、触摸控制系统及触摸控制方法,来解决上述问题。
本申请的一实施例公开了一种图像传感器,包括:光电二极管传输门以及读取电路,所述读取电路具有输入端及输出端,所述读取电路包括:积分器,用来针对所述读取电路的输入端进行积分,并输出至所述读取电路的所述输出端;以及开关,和所述积分器并联设置;其中所述传输门耦接于所述光电二极管和所述读取电路的所述输入端之间。
本申请的一实施例公开了一种芯片,包括:上述的图像传感器。
本申请的一实施例公开了一种图像传感器操作方法,用来操作上述的图像传感器,所述图像传感器操作方法包括:在重置阶段,控制所述传输门以及所述开关导通,以重置所述积分器;以及在曝光及采样阶段,使所述光电二极管曝光,同时控制所述传输门导通,以及使所述开关不导通,使所述光电二极管产生的光电流对所述积分器进行积分。
本申请的一实施例公开了一种图像传感器操作方法,用来操作上述的图像传感器,所述图像传感器操作方法包括:在曝光及重置阶段,使所述光电二极管曝光,同时控制所述开关导通以及所述传输门不导通,以重置所述积分器;以及在基准值采样阶段,使所述光电二极管停止曝光,同时控制所述传输门以及所述开关不导通,使所述读取电路的输出端产生基准值采样结果。
本申请的一实施例公开了一种手持装置,用以感测一特定对象的指纹,包括:显示面板;以及上述的图像传感器,用以获得所述特定对象的指纹信息。
本申请实施例利用额外的传输门来避免在光电二极管上形成导孔,以降低暗电流的发生。
附图说明
图1为本揭露的图像传感器的第一实施例的示意图。
图2为图1的图像传感器的部分电路的布局示意图。
图3为图1的图像传感器的操作的示意图。
图4为本揭露的图像传感器的第二实施例的示意图。
图5为图4的图像传感器的操作的示意图。
图6为本申请手持装置的实施例的示意图。
其中,附图标记说明如下:
100、200                 图像传感器
102                      光电二极管
104                      传输门
106                      电容
108                      开关
110                      放大器
112                      读取电路
114                      积分器
116                      采样电路
120、122                 导线
600                      手持装置
602                      显示屏组件
具体实施方式
以下揭示内容提供了多种实施方式或例示,其能用以实现本揭示内容的不同特征。下文所述之组件与配置的具体例子系用以简化本揭示内容。当可想见,这些叙述仅为例示,其本意并非用于限制本揭示内容。举例来说,在下文的描述中,将一第一特征形成于一第二特征上或之上,可能包括某些实施例其中所述的第一与第二特征彼此直接接触;且也可能包括某些实施例其中还有额外的组件形 成于上述第一与第二特征之间,而使得第一与第二特征可能没有直接接触。此外,本揭示内容可能会在多个实施例中重复使用组件符号和/或标号。此种重复使用乃是基于简洁与清楚的目的,且其本身不代表所讨论的不同实施例和/或组态之间的关系。
再者,在此处使用空间上相对的词汇,譬如「之下」、「下方」、「低于」、「之上」、「上方」及与其相似者,可能是为了方便说明图中所绘示的一组件或特征相对于另一或多个组件或特征之间的关系。这些空间上相对的词汇其本意除了图中所绘示的方位之外,还涵盖了装置在使用或操作中所处的多种不同方位。可能将所述设备放置于其他方位(如,旋转90度或处于其他方位),而这些空间上相对的描述词汇就应该做相应的解释。
虽然用以界定本申请较广范围的数值范围与参数皆是约略的数值,此处已尽可能精确地呈现具体实施例中的相关数值。然而,任何数值本质上不可避免地含有因个别测试方法所致的标准偏差。在此处,「约」通常系指实际数值在一特定数值或范围的正负10%、5%、1%或0.5%之内。或者是,「约」一词代表实际数值落在平均值的可接受标准误差之内,视本申请所属技术领域中具有通常知识者的考虑而定。当可理解,除了实验例之外,或除非另有明确的说明,此处所用的所有范围、数量、数值与百分比(例如用以描述材料用量、时间长短、温度、操作条件、数量比例及其他相似者)均经过「约」的修饰。因此,除非另有相反的说明,本说明书与附随申请专利范围所揭示的数值参数皆为约略的数值,且可视需求而更动。至少应将这些数值参数理解为所指出的有效位数与套用一般进位法所得到的数值。在此处,将数值范围表示成由一端点至另一端点或介于二端点之间;除非另有说明,此处所述的数值范围皆包括端点。
传统的主动式像素传感器(active-pixel sensor,APS)结构的读取电路面积较小,因此多半搭配比较小的像素;相对的传统的电容跨阻抗放大器(capacitive transimpedance amplifier,CTIA)像素结构的读取电路面积较大,例如其中的积分器的面积较大,因此在搭 配比较小的像素时,会使填充系数(fill factor)明显地减少,故一般搭配较大的光电二极管来使用。
在使用图像传感器进行指纹辨识的应用中,由于指纹按压时,反射进图像传感器的光线往往较暗,故此应用中图像传感器的光电二极管和一般拍照用的图像传感器相比,会设计的比较大以增加感光能力,故指纹辨识应用中适合使用电容跨阻抗放大器像素结构。此外,电容跨阻抗放大器像素结构的读取电路使用积分器,使其线性度较主动式像素传感器结构来的好,对于指纹辨识的应用来说,对于线性度的需求比一般拍照来的高,所以电容跨阻抗放大器像素结构刚好满足其对线性度的需求。
为了解决背景技术中电容跨阻抗放大器像素结构的暗电流问题,本揭露提出的电容跨阻抗放大器像素结构在光电二极管和读取电路之间设置传输门,传输门的源极/漏极直接通过衬底连接至光电二极管,传输门的另一源极/漏极则连接至读取电路,因此光电二极管可通过传输门来连接至读取电路,而不需通过金属层导线来连接至读取电路。因此,本揭露所提出的电容跨阻抗放大器不需要通过导孔(via)来连接光电二极管和金属层导线,因而可避免如光电二极管上的导孔造成的暗电流,进而减少整体的暗电流,改善噪声。
图1为本揭露的图像传感器的第一实施例的示意图。在本实施例中,图像传感器100系采用互补金属氧化物半导体工艺实现。图像传感器100包括光电二极管102、传输门104、读取电路112以及采样电路116。其中传输门104可以是晶体管,在本实施例中,传输门104是N型互补金属氧化物半导体(CMOS)晶体管,但本申请不以此为限。读取电路112具有输入端Vin及输出端Vout,传输门104系耦接于光电二极管102和读取电路112的输入端Vin之间。
在本实施例中,读取电路112包括积分器114以及开关108。开关108的实施方式可以相同或相似于传输门104,例如以N型互补金属氧化物半导体晶体管,但本申请不以此为限。积分器114系用来用来针对读取电路112的输入端Vin的信号进行积分,并输出 至读取电路112的输出端Vout。在本实施例中,积分器114包括放大器110以及电容106,放大器110系耦接于读取电路112的输入端Vin及输出端Vout之间,电容106则和放大器110并联设置。放大器110可以是单端放大器或双端的差动放大器。
采样电路116是用来依据采样控制信号Ss而将输出端Vout的模拟信号转换为数字信号Dout,采样电路116可以是相关双采样(correlated double sampling,CDS)电路,在某些实施例中,采样电路116可以用来执行数字双采样(digital double sampling,DDS)。
在本实施例中,以互补金属氧化物半导体工艺实现的光电二极管102具有半导体衬底与金属连接层,所述金属连接层堆叠设置于所述半导体衬底之上,且所述金属连接层包括介电层以及其中的导线。图像传感器100的至少一部分系设置于所述半导体衬底中。图2为图1的图像传感器100的部分电路的布局示意图。如图2所示,传输门104的闸极通过所述金属连接层中的导线122连接至第一参考电压VDD,使传输门104保持导通状态,在本实施例中,由于传输门104为N型互补金属氧化物半导体晶体管,因此第一参考电压VDD应为高电位,即逻辑值为1。光电二极管102的负极和传输门104的一端源极/漏极相邻,使光电二极管102的负极通过所述半导体衬底耦接至传输门104的一端源极/漏极。传输门104的另一源极/漏极则通过所述金属连接层中的导线120连接至读取电路112的输入端Vin。光电二极管102的正极则耦接至第二参考电压VSS,在本实施例中,第二参考电压VSS为低电位,即逻辑值为0。
光电二极管102和其上方的所述金属连接层并不会直接连接,也就是说,光电二极管102和所述金属连接层在彼此重叠的范围内,完全被介电层隔开,不具有导孔连接光电二极管102和上方的所述金属连接层中的导线。光电二极管102和所述金属连接层仅会在彼此重叠的范围外,间接地通过传输门104来使光电二极管102和所述金属连接层耦接。例如光电二极管102通过传输门104的闸极耦接至导线122;以及光电二极管102通过传输门104的另一源极/漏 极耦接至导线120。此外,开关108的闸极则通过所述金属连接层耦接至控制信号S1。
图3为图1的图像传感器100的操作的示意图。图3的操作包括:重置阶段、曝光及感测值采样阶段以及基准值采样阶段。在所述重置阶段,传输门104保持导通,并通过控制信号S1控制开关108导通,以重置积分器114。在所述曝光及感测值采样阶段,使光电二极管开始曝光102,传输门104保持导通,同时通过控制信号S1控制开关108不导通,使光电二极管102产生的光电流实时地对积分器114进行积分,使读取电路112的输出端Vout升高。采样电路116依据采样控制信号Ss将输出端Vout的模拟信号转换为数字信号Dout以作为感测值,例如当采样控制信号Ss为高电位时,采样电路116针对输出端Vout进行数字双采样。
如前所述,传输门104在上述两个阶段皆保持导通,本揭露通过传输门104得以避免了使用导孔连接光电二极管102和上方的所述金属连接层中的导线,因此可以有效地减少图3的操作产生暗电流影响积分器114进行积分的结果,进而降低噪声。
在上述基准值采样阶段中,控制信号S1控制开关108导通以重置积分器114,之后采样电路116再依据采样控制信号Ss将积分器114重置时的输出端Vout信号读取出来以作为基准值,并可依据上述感测值和上述基准值得到校正后感测结果。
图4为本揭露的图像传感器的第二实施例的示意图。图像传感器200和图像传感器100的差异在于图像传感器200的传输门104系选择性地进入导通状态。具体来说,传输门104的闸极通过所述金属连接层受到控制信号S2的控制,而非如图像传感器100固定地连接至第一参考电压VDD。
图5为图4的图像传感器200的操作的示意图。图5的操作包括:重置阶段、曝光及感测值采样阶段以及基准值采样阶段。在所述重置阶段,通过控制信号S1控制开关108导通以重置积分器114。在所述曝光及感测值采样阶段,使光电二极管开始曝光102,通过 控制信号S1控制开关108不导通,并在所述曝光及感测值采样阶段的前期通过控制信号S2控制传输门104保持导通,使光电二极管102产生的光电流实时地对积分器114进行积分,使读取电路112的输出端Vout升高,并且在所述曝光及感测值采样阶段的后期通过控制信号S2控制传输门104保持不导通,使光电二极管102产生的光电流停止对积分器114进行积分,之后,采样电路116依据采样控制信号Ss将输出端Vout的模拟信号转换为数字信号Dout以作为感测值,例如当采样控制信号Ss为高电位时,采样电路116针对输出端Vout进行数字双采样。因此,相较于图像传感器100,图像传感器200具有更多的好处的其中之一就在于可以避免采样电路116在采样时,光电二极管102还在输出电流到积分器114。
在上述基准值采样阶段中,控制信号S1控制开关108导通以重置积分器114,以及控制信号S2控制开关104导通,当积分器114重置完成后,控制信号S1控制开关108不导通,以在积分器114的输出端Vout复制出开关108由导通到关闭时的电荷注入(charge injection)噪声,并由后采样电路116依据采样控制信号Ss将其读取出来以作为基准值,并可依据上述感测值和上述基准值得到校正后感测结果。因此,相较于图3的图像传感器100的控制方法,图5的图像传感器200的控制方法具有更多的好处的其中之一就在于可以将开关108由导通到关闭时的电荷注入噪声从感测结果中消除。
本申请还提供了一种芯片,其包括图像传感器100或图像传感器200。在某些实施例中,图像传感器100/200可应用于指纹辨识的应用,举例来说,本申请还提供了一种手持装置,图6为本申请手持装置的实施例的示意图。手持装置600包括显示屏组件602以及图像传感器100/200。手持装置600可用来进行光学式屏下指纹感测以感测特定对象的指纹。其中,手持装置600可为例如智能型手机、个人数字助理、手持式计算机系统或平板计算机等任何手持式电子装置。显示屏组件602可包括显示面板以及保护盖板,所述保护盖板设置在所述显示面板的上方,图像传感器100/200设置在所述显示面板的下方,在本实施例中,所述显示面板可以是一种有机 电激发光显示面板(OLED),但本申请不以此为限。
上文的叙述简要地提出了本申请某些实施例之特征,而使得本申请所属技术领域具有通常知识者能够更全面地理解本揭示内容的多种态样。本申请所属技术领域具有通常知识者当可明了,其可轻易地利用本揭示内容作为基础,来设计或更动其他工艺与结构,以实现与此处所述之实施方式相同的目的和/或达到相同的优点。本申请所属技术领域具有通常知识者应当明白,这些均等的实施方式仍属于本揭示内容之精神与范围,且其可进行各种变更、替代与更动,而不会悖离本揭示内容之精神与范围。

Claims (16)

  1. 一种图像传感器,其特征在于,所述图像传感器包括:
    光电二极管;
    传输门;以及
    读取电路,具有输入端及输出端,所述读取电路包括:
    积分器,用来针对所述读取电路的输入端进行积分,并输出至所述读取电路的所述输出端;以及
    开关,和所述积分器并联设置;
    其中所述传输门耦接于所述光电二极管和所述读取电路的所述输入端之间。
  2. 如权利要求1所述的图像传感器,其中所述光电二极管的上方具有金属连接层,且所述光电二极管和所述金属连接层在重叠的范围内,不具有导孔连接所述光电二极管和所述金属连接层。
  3. 如权利要求2所述的图像传感器,其中所述光电二极管和所述金属连接层在彼此重叠的范围内完全被介电层隔开。
  4. 如权利要求3所述的图像传感器,其中所述光电二极管和所述金属连接层在彼此重叠的范围外,通过所述传输门彼此耦接。
  5. 如权利要求1所述的图像传感器,其中所述传输门具有闸极,所述闸极耦接至参考电压,所述参考电压使所述传输门固定在导通状态。
  6. 如权利要求1所述的图像传感器,其中所述积分器包括:
    放大器,耦接于所述读取电路的所述输入端及所述输出端之间;以及
    电容,和所述放大器并联设置。
  7. 如权利要求4所述的图像传感器,其中所述放大器为差动放大器。
  8. 如权利要求1所述的图像传感器,其中所述光电二极体具有正极 与负极,所述负极耦接至所述传输门。
  9. 一种芯片,其特征在于,所述芯片包括:
    如权利要求1-8任一项中所述的图像传感器。
  10. 一种图像传感器操作方法,用来操作如权利要求1所述的图像传感器,其特征在于,所述图像传感器操作方法包括:
    在重置阶段,控制所述传输门以及所述开关导通,以重置所述积分器;以及
    在曝光及感测值采样阶段,使所述光电二极管曝光,同时控制所述传输门导通,以及使所述开关不导通,使所述光电二极管产生的光电流对所述积分器进行积分。
  11. 如权利要求10所述的图像传感器操作方法,另包括:
    在基准值采样阶段,使所述光电二极管停止曝光,同时控制所述传输门以及所述开关导通,使所述读取电路的输出端产生基准值采样结果。
  12. 如权利要求11所述的图像传感器操作方法,另包括:
    依据所述感测值采样结果以及所述基准值采样结果产生校正后感测结果。
  13. 一种图像传感器操作方法,用来操作如权利要求1所述的图像传感器,其特征在于,所述图像传感器操作方法包括:
    在重置阶段,控制所述传输门以及所述开关导通,以重置所述积分器;以及
    在曝光及感测值采样阶段,使所述光电二极管曝光,并且先控制所述开关不导通以及所述传输门导通,使所述光电二极管产生的光电流对所述积分器进行积分,之后再控制所述开关以及所述传输门皆不导通。
  14. 如权利要求13所述的图像传感器操作方法,另包括:
    在基准值采样阶段,使所述光电二极管停止曝光,并且先控制所述传输门以及所述开关导通,之后再控制所述传输门导通以及控制所述开关不导通,使所述读取电路的输出端产生基准值采样结果。
  15. 如权利要求14所述的图像传感器操作方法,另包括:
    依据所述感测值采样结果以及所述基准值采样结果产生校正后感测结果。
  16. 一种手持装置,用以感测一特定对象的指纹,其特征在于,包括:
    显示面板;以及
    如权利要求1-8所述的图像传感器,用以获得所述特定对象的指纹信息。
PCT/CN2019/085484 2019-05-05 2019-05-05 图像传感器及相关芯片、图像传感器操作方法及手持装置 WO2020223847A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/085484 WO2020223847A1 (zh) 2019-05-05 2019-05-05 图像传感器及相关芯片、图像传感器操作方法及手持装置
CN201980002819.2A CN110741628B (zh) 2019-05-05 2019-05-05 图像传感器及相关芯片、图像传感器操作方法及手持装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/085484 WO2020223847A1 (zh) 2019-05-05 2019-05-05 图像传感器及相关芯片、图像传感器操作方法及手持装置

Publications (1)

Publication Number Publication Date
WO2020223847A1 true WO2020223847A1 (zh) 2020-11-12

Family

ID=69274589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/085484 WO2020223847A1 (zh) 2019-05-05 2019-05-05 图像传感器及相关芯片、图像传感器操作方法及手持装置

Country Status (2)

Country Link
CN (1) CN110741628B (zh)
WO (1) WO2020223847A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113508577A (zh) * 2021-06-03 2021-10-15 曜芯科技有限公司 像素阵列及相关图像传感器、指纹检测芯片及电子装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI751849B (zh) * 2020-04-01 2022-01-01 神盾股份有限公司 影像感測裝置
CN113055617B (zh) * 2021-05-08 2023-05-12 长春长光辰芯微电子股份有限公司 图像传感器
CN113491109A (zh) * 2021-06-03 2021-10-08 曜芯科技有限公司 像素单元及相关图像传感器、指纹检测芯片及电子装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105009291A (zh) * 2013-01-31 2015-10-28 苹果公司 垂直堆叠的图像传感器
CN105208300A (zh) * 2014-06-23 2015-12-30 上海箩箕技术有限公司 图像传感器、非晶硅tft像素单元的读取电路及方法
CN108680587A (zh) * 2018-05-09 2018-10-19 京东方科技集团股份有限公司 一种检测电路、信号处理方法和平板探测器
CN109711391A (zh) * 2019-01-18 2019-05-03 上海思立微电子科技有限公司 一种图像采集电路、采集方法及终端设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001215550A (ja) * 2000-02-01 2001-08-10 Canon Inc 光電変換装置、調光回路およびcmosセンサ
US7791663B2 (en) * 2004-10-15 2010-09-07 Omnivision Technologies, Inc. Image sensor and pixel that has positive transfer gate voltage during integration period

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105009291A (zh) * 2013-01-31 2015-10-28 苹果公司 垂直堆叠的图像传感器
CN105208300A (zh) * 2014-06-23 2015-12-30 上海箩箕技术有限公司 图像传感器、非晶硅tft像素单元的读取电路及方法
CN108680587A (zh) * 2018-05-09 2018-10-19 京东方科技集团股份有限公司 一种检测电路、信号处理方法和平板探测器
CN109711391A (zh) * 2019-01-18 2019-05-03 上海思立微电子科技有限公司 一种图像采集电路、采集方法及终端设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113508577A (zh) * 2021-06-03 2021-10-15 曜芯科技有限公司 像素阵列及相关图像传感器、指纹检测芯片及电子装置
CN113508577B (zh) * 2021-06-03 2024-03-05 汇顶科技私人有限公司 像素阵列及相关图像传感器、指纹检测芯片及电子装置

Also Published As

Publication number Publication date
CN110741628B (zh) 2021-04-27
CN110741628A (zh) 2020-01-31

Similar Documents

Publication Publication Date Title
WO2020223847A1 (zh) 图像传感器及相关芯片、图像传感器操作方法及手持装置
US10868989B2 (en) Imaging device and electronic apparatus with upper and lower substrates
CN110225273B (zh) 转换装置、成像装置、电子装置和转换方法
US8902342B2 (en) Solid-state image sensor with feedback circuits
US9723241B2 (en) Image sensor circuit with power noise filtering function and control method thereof
TWI793750B (zh) 電容式指紋感測裝置
US20220303488A1 (en) Image sensor and image capturing device
TW202125325A (zh) 指紋感測裝置
CN215072655U (zh) 图像传感器
CN210327778U (zh) 图像传感器及相关芯片及手持装置
WO2021068157A1 (zh) 薄膜半导体结构、图像传感器及手持装置
US7428015B2 (en) Image sensor and offset-able reference voltage generator thereof
WO2021012071A1 (zh) 图像传感器以及相关芯片及电子装置
KR100873280B1 (ko) 향상된 리셋 트랜지스터를 구비한 시모스 이미지센서의단위화소
TW202331587A (zh) 指紋感測裝置
CN212572732U (zh) 图像传感器和放大电路
CN110661990B (zh) 像素输出信号隔直电容的设计方法
TWI770601B (zh) 光感測器電路
WO2022032462A1 (en) Sensor circuit, pixel circuit, and method for controlling pixel circuit
US10797716B1 (en) Imaging systems having successive approximation register (SAR) analog-to-digital converters with reduced non-linearity
KR101456135B1 (ko) 이미지 센싱 장치, 이미지 센싱 방법, 이미지 센서 및 이미지 센서의 제조 방법
KR20020034316A (ko) 이중 드라이브 트랜지스터 게이트 절연막을 구비하는이미지 센서 및 그 제조 방법
KR101678147B1 (ko) 비교기 및 그를 구비한 이미지 센싱장치
KR20040095987A (ko) 빌트-인 셀프테스트 회로를 구비한 시모스 이미지센서
KR20120015876A (ko) 이미지 센서

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19928126

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19928126

Country of ref document: EP

Kind code of ref document: A1