WO2020222614A1 - 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치 - Google Patents

무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치 Download PDF

Info

Publication number
WO2020222614A1
WO2020222614A1 PCT/KR2020/005891 KR2020005891W WO2020222614A1 WO 2020222614 A1 WO2020222614 A1 WO 2020222614A1 KR 2020005891 W KR2020005891 W KR 2020005891W WO 2020222614 A1 WO2020222614 A1 WO 2020222614A1
Authority
WO
WIPO (PCT)
Prior art keywords
prs
sequence
information
slot
present disclosure
Prior art date
Application number
PCT/KR2020/005891
Other languages
English (en)
French (fr)
Inventor
차현수
김기준
윤석현
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US17/608,369 priority Critical patent/US11856576B2/en
Publication of WO2020222614A1 publication Critical patent/WO2020222614A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/0022PN, e.g. Kronecker
    • H04J13/0025M-sequences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/0022PN, e.g. Kronecker
    • H04J13/0029Gold
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/10Code generation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • Various embodiments of the present disclosure are for a wireless communication system.
  • a wireless access system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • multiple access systems include a code division multiple access (CDMA) system, a frequency division multiple access (FDMA) system, a time division multiple access (TDMA) system, an orthogonal frequency division multiple access (OFDMA) system, and a single carrier frequency (SC-FDMA) system. division multiple access) system.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • Massive MTC Machine Type Communications
  • a communication system design considering a service/UE sensitive to reliability and latency is being considered.
  • next-generation RAT in consideration of such improved mobile broadband communication, massive MTC, and URLLC (Ultra-Reliable and Low Latency Communication) is being discussed.
  • Various embodiments of the present disclosure may provide a method of transmitting and receiving a signal in a wireless communication system and an apparatus supporting the same.
  • various embodiments of the present disclosure may provide a positioning method and an apparatus supporting the same in a wireless communication system.
  • various embodiments of the present disclosure may provide a method of generating/acquiring/transmitting/receiving a PRS in a wireless communication system and an apparatus supporting the same.
  • Various embodiments of the present disclosure may provide a method of transmitting and receiving a signal in a wireless communication system and an apparatus supporting the same.
  • a method of a terminal in a wireless communication system may be provided.
  • the method includes: receiving information related to a positioning reference signal (PRS) sequence identifier (ID); Receiving a PRS related to the PRS sequence ID; And decoding a physical downlink shared channel (PDSCH) in one or more REs excluding a resource element (RE) in which the PRS included in a predetermined resource region is received.
  • PRS positioning reference signal
  • ID positioning reference signal sequence identifier
  • PDSCH physical downlink shared channel
  • the PDCCH physical downlink control channel for the PDSCH may be monitored within the on duration related to the DRX.
  • a pseudo-random sequence generator related to sequence generation of the PRS Can be initialized according to.
  • Is a natural number Is the number of OFDM (orthogonal frequency division multiplexing) symbols per slot, Is the slot index, Is the OFDM symbol index in the slot, Is the PRS sequence ID, May be a modulo operation.
  • the sequence of the PRS may satisfy a value obtained from a gold sequence having a preset length of 31.
  • the process of receiving configuration information including information on PRS resources (ii) (iii) transmission and reception point (TRP) ID information including information on a PRS resource set including the PRS resource It may further include.
  • the PRS may be received based on the setting information.
  • an apparatus of a wireless communication system may be provided.
  • the device comprises: a memory; And one or more processors connected to the memory.
  • the one or more processors receive information related to a positioning reference signal (PRS) sequence identifier (ID), receive a PRS related to the PRS sequence ID, and the PRS included in a predetermined resource region is It is possible to decode a physical downlink shared channel (PDSCH) from one or more REs excluding the received resource element (RE).
  • PRS positioning reference signal
  • ID receive a PRS related to the PRS sequence ID
  • PDSCH physical downlink shared channel
  • the PDCCH physical downlink control channel for the PDSCH may be monitored within the on duration related to the DRX.
  • a pseudo-random sequence generator related to sequence generation of the PRS Can be initialized according to.
  • Is a natural number Is the number of OFDM (orthogonal frequency division multiplexing) symbols per slot, Is the slot index, Is the OFDM symbol index in the slot, Is the PRS sequence ID, May be a modulo operation.
  • the sequence of the PRS may satisfy a value obtained from a gold sequence having a preset length of 31.
  • the device may communicate with one or more of a mobile terminal, a network, and an autonomous vehicle other than a vehicle including the device.
  • a method of an apparatus in a wireless communication system may be provided.
  • the method includes: transmitting information related to a positioning reference signal (PRS) sequence identifier (ID); Transmitting a PRS related to the PRS sequence ID; And transmitting a physical downlink shared channel (PDSCH) in one or more REs excluding a resource element (RE) in which the PRS included in a predetermined resource region is transmitted.
  • PRS positioning reference signal
  • ID positioning reference signal sequence identifier
  • PDSCH physical downlink shared channel
  • RE resource element
  • the PDCCH (physical downlink control channel) for the PDSCH may be transmitted within an on duration related to the DRX.
  • a pseudo-random sequence generator related to sequence generation of the PRS Can be initialized according to.
  • Is a natural number Is the number of OFDM (orthogonal frequency division multiplexing) symbols per slot, Is the slot index, Is the OFDM symbol index in the slot, Is the PRS sequence ID, May be a modulo operation.
  • an apparatus of a wireless communication system may be provided.
  • the device comprises: a memory; And one or more processors connected to the memory.
  • the one or more processors transmit information related to a PRS (positioning reference signal) sequence ID (identifier), transmit a PRS related to the PRS sequence ID, and the PRS included in a predetermined resource region is It is possible to transmit a physical downlink shared channel (PDSCH) in one or more REs excluding the transmitted resource element (RE).
  • PRS positioning reference signal
  • the PDCCH (physical downlink control channel) for the PDSCH may be transmitted within an on duration related to the DRX.
  • a pseudo-random sequence generator related to sequence generation of the PRS Can be initialized according to.
  • Is a natural number Is the number of OFDM (orthogonal frequency division multiplexing) symbols per slot, Is the slot index, Is the OFDM symbol index in the slot, Is the PRS sequence ID, May be a modulo operation.
  • an apparatus of a wireless communication system may be provided.
  • the apparatus comprises: one or more processors; And one or more memories storing one or more instructions for causing the one or more processors to perform the method.
  • the method includes: receiving information related to a positioning reference signal (PRS) sequence identifier (ID); Receiving a PRS related to the PRS sequence ID; And decoding a physical downlink shared channel (PDSCH) in one or more REs excluding a resource element (RE) in which the PRS included in a predetermined resource region is received.
  • PRS positioning reference signal
  • ID positioning reference signal sequence identifier
  • PDSCH physical downlink shared channel
  • the PDCCH physical downlink control channel for the PDSCH may be monitored within the on duration related to the DRX.
  • a pseudo-random sequence generator related to sequence generation of the PRS Can be initialized according to.
  • Is a natural number Is the number of OFDM (orthogonal frequency division multiplexing) symbols per slot, Is the slot index, Is the OFDM symbol index in the slot, Is the PRS sequence ID, May be a modulo operation.
  • a processor-readable medium storing one or more instructions for causing one or more processors to perform a method may be provided.
  • the method includes: receiving information related to a positioning reference signal (PRS) sequence identifier (ID); Receiving a PRS related to the PRS sequence ID; And decoding a physical downlink shared channel (PDSCH) in one or more REs excluding a resource element (RE) in which the PRS included in a predetermined resource region is received.
  • PRS positioning reference signal
  • ID positioning reference signal sequence identifier
  • PDSCH physical downlink shared channel
  • the PDCCH physical downlink control channel for the PDSCH may be monitored within the on duration related to the DRX.
  • a pseudo-random sequence generator related to sequence generation of the PRS Can be initialized according to.
  • Is a natural number Is the number of OFDM (orthogonal frequency division multiplexing) symbols per slot, Is the slot index, Is the OFDM symbol index in the slot, Is the PRS sequence ID, May be a modulo operation.
  • a method of transmitting and receiving a signal in a wireless communication system and an apparatus supporting the same may be provided.
  • a positioning method and an apparatus supporting the same in a wireless communication system may be provided.
  • a method of generating/acquiring/transmitting/receiving a PRS in consideration of characteristics of an NR system supporting various numerology and an apparatus supporting the same may be provided.
  • a PRS generation/acquisition/transmission method capable of reducing the implementation complexity of the terminal and supporting the same An apparatus may be provided.
  • FIG. 1 is a diagram illustrating physical channels that can be used in various embodiments of the present disclosure and a signal transmission method using them.
  • FIG. 2 is a diagram illustrating a radio frame structure based on an NR system to which various embodiments of the present disclosure are applicable.
  • FIG. 3 is a diagram illustrating a slot structure based on an NR system to which various embodiments of the present disclosure are applicable.
  • FIG. 4 is a diagram illustrating a self-contained slot structure to which various embodiments of the present disclosure are applicable.
  • SSB Synchronization Signal Block
  • FIG. 6 is a diagram illustrating an example of a transmission method of an SSB to which various embodiments of the present disclosure are applicable.
  • FIG. 7 illustrates multi-beam transmission of SSB to which various embodiments of the present disclosure are applicable.
  • SSB_tx an actually transmitted SSB
  • FIG. 9 is a diagram illustrating an example of an uplink downlink timing relationship to which various embodiments of the present disclosure are applicable.
  • FIG. 10 is a diagram illustrating an example of a positioning protocol configuration for measuring a location of a terminal to which various embodiments of the present disclosure are applicable.
  • FIG. 11 is a diagram illustrating an example of PRS mapping in an LTE system to which various embodiments of the present disclosure are applicable.
  • FIG. 12 is a diagram illustrating an example of an architecture of a system for measuring a location of a terminal to which various embodiments of the present disclosure are applicable.
  • FIG. 13 is a diagram illustrating an example of a procedure for measuring a location of a terminal to which various embodiments of the present disclosure are applicable.
  • LTE positioning protocol LTE
  • NRPPa NR positioning protocol a
  • PDU protocol data unit
  • FIG. 16 is a diagram illustrating an example of an observed time difference of arrival (OTDOA) positioning method to which various embodiments of the present disclosure are applicable.
  • OTDA observed time difference of arrival
  • FIG. 17 is a diagram illustrating an example of a Multi RTT (round trip time) positioning method to which various embodiments of the present disclosure are applicable.
  • FIG. 18 is a diagram schematically illustrating a method of operating a terminal, a TRP, a location server, and/or an LMF according to various embodiments of the present disclosure.
  • 19 is a diagram schematically illustrating a method of operating a terminal, a TRP, a location server, and/or an LMF according to various embodiments of the present disclosure.
  • 20 is a diagram schematically illustrating a method of operating a terminal and/or a network node according to various embodiments of the present disclosure.
  • 21 is a diagram schematically illustrating a network initial connection and a subsequent communication process according to various embodiments of the present disclosure.
  • FIG. 22 is a diagram illustrating a DRX operation according to various embodiments of the present disclosure.
  • FIG. 23 is a diagram schematically illustrating a method of operating a terminal and a TP according to various embodiments of the present disclosure.
  • 24 is a flowchart illustrating a method of operating a terminal according to various embodiments of the present disclosure.
  • 25 is a flowchart illustrating a method of operating a TP according to various embodiments of the present disclosure.
  • 26 is a diagram illustrating an apparatus in which various embodiments of the present disclosure may be implemented.
  • FIG. 27 illustrates a communication system applied to various embodiments of the present disclosure.
  • 29 illustrates another example of a wireless device applied to various embodiments of the present disclosure.
  • FIG. 30 illustrates a portable device applied to various embodiments of the present disclosure.
  • 31 illustrates a vehicle or an autonomous driving vehicle applied to various embodiments of the present disclosure.
  • each component or feature may be considered optional unless otherwise explicitly stated.
  • Each component or feature may be implemented in a form that is not combined with other components or features.
  • various embodiments of the present disclosure may be configured by combining some components and/or features. The order of operations described in various embodiments of the present disclosure may be changed. Some configurations or features of one embodiment may be included in other embodiments, or may be replaced with corresponding configurations or features of other embodiments.
  • the base station has a meaning as a terminal node of a network that directly communicates with a terminal.
  • the specific operation described as being performed by the base station in this document may be performed by an upper node of the base station in some cases.
  • various operations performed for communication with a terminal may be performed by the base station or network nodes other than the base station.
  • 'base station' is to be replaced by terms such as fixed station, Node B, eNode B (eNB), gNode B (gNB), advanced base station (ABS), or access point. I can.
  • a terminal is a user equipment (UE), a mobile station (MS), a subscriber station (SS), and a mobile subscriber station (MSS). ), Mobile Terminal, or Advanced Mobile Station (AMS).
  • UE user equipment
  • MS mobile station
  • SS subscriber station
  • MSS mobile subscriber station
  • AMS Advanced Mobile Station
  • the transmitting end may refer to a fixed and/or mobile node that provides a data service or a voice service
  • the receiving end may refer to a fixed and/or mobile node that receives a data service or a voice service.
  • the mobile station in the uplink, the mobile station may be the transmitting end and the base station may be the receiving end.
  • the mobile station in the downlink, the mobile station may be the receiving end and the base station may be the transmitting end.
  • Various embodiments of the present disclosure may be supported by standard documents disclosed in at least one of the IEEE 802.xx system, 3rd Generation Partnership Project (3GPP) system, 3GPP LTE system, 3GPP 5G NR system, and 3GPP2 system as radio access systems.
  • 3GPP 3rd Generation Partnership Project
  • 3GPP LTE 3rd Generation Partnership Project
  • 3GPP 5G NR 3rd Generation NR
  • 3GPP2 3rd Generation Partnership Project 2
  • various embodiments of the present disclosure include 3GPP TS 36.211, 3GPP TS 36.212, 3GPP TS 36.213, 3GPP TS 36.300, 3GPP TS 36.321, 3GPP TS 36.331, 3GPP TS 36.355, 3GPP TS 36.455, 3GPP TS 37.355, 3GPP TS 38.211 , 3GPP TS 38.212, 3GPP TS 38.213, 3GPP TS 38.214, 3GPP TS 38.215, 3GPP TS 38.300, 3GPP TS 38.321 and 3GPP TS 38.331, 3GPP TS 38.455. That is, obvious steps or parts not described among the various embodiments of the present disclosure may be described with reference to the above documents. In addition, all terms disclosed in this document can be described by the standard document.
  • 3GPP LTE/LTE-A system as well as a 3GPP NR system will be described as an example of a wireless access system in which various embodiments of the present disclosure can be used.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with a wireless technology such as Global System for Mobile communications (GSM)/General Packet Radio Service (GPRS)/Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented with a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, and E-UTRA (Evolved UTRA).
  • UTRA is a part of Universal Mobile Telecommunications System (UMTS).
  • 3GPP Long Term Evolution (LTE) is part of E-UMTS (Evolved UMTS) that uses E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
  • LTE-A (Advanced) system is an improved 3GPP LTE system.
  • various embodiments of the present disclosure are mainly described not only in the 3GPP LTE/LTE-A system but also in the 3GPP NR system, but are also applied to the IEEE 802.16e/m system and the like I can.
  • a terminal receives information from a base station through a downlink (DL) and transmits information to the base station through an uplink (UL).
  • the information transmitted and received by the base station and the terminal includes general data information and various control information, and various physical channels exist according to the type/use of information transmitted and received by them.
  • FIG. 1 is a diagram illustrating physical channels that can be used in various embodiments of the present disclosure and a signal transmission method using them.
  • the UE newly entering the cell performs an initial cell search operation such as synchronizing with the base station (S11).
  • the UE receives a Primary Synchronization Channel (P-SCH) and a Secondary Synchronization Channel (S-SCH) from the base station to synchronize with the base station, and obtains information such as cell ID.
  • P-SCH Primary Synchronization Channel
  • S-SCH Secondary Synchronization Channel
  • the terminal may receive a physical broadcast channel (PBCH) signal from the base station to obtain intra-cell broadcast information.
  • PBCH physical broadcast channel
  • the UE may check the downlink channel state by receiving a downlink reference signal (DL RS) in the initial cell search step.
  • DL RS downlink reference signal
  • the UE After completing the initial cell search, the UE receives a physical downlink control channel (PDCCH) and a physical downlink control channel (PDSCH) according to the physical downlink control channel information to receive more detailed system information. Can be obtained (S12).
  • PDCH physical downlink control channel
  • PDSCH physical downlink control channel
  • the terminal may perform a random access procedure to complete the access to the base station (S13 to S16).
  • the UE transmits a preamble through a physical random access channel (PRACH) (S13), and a RAR for the preamble through a physical downlink control channel and a corresponding physical downlink shared channel ( Random Access Response) may be received (S14).
  • the UE transmits a PUSCH (Physical Uplink Shared Channel) using the scheduling information in the RAR (S15), and a contention resolution procedure such as receiving a physical downlink control channel signal and a corresponding physical downlink shared channel signal. ) Can be performed (S16).
  • S13/S15 may be performed as one operation in which the UE performs transmission
  • S14/S16 may be performed as one operation in which the base station performs transmission.
  • the UE After performing the above-described procedure, the UE receives a physical downlink control channel signal and/or a physical downlink shared channel signal (S17) and a physical uplink shared channel (PUSCH) as a general uplink/downlink signal transmission procedure.
  • a physical downlink control channel signal and/or a physical downlink shared channel signal S17
  • a physical uplink shared channel PUSCH
  • Uplink Shared Channel signal and/or a physical uplink control channel (PUCCH) signal may be transmitted (S18).
  • UCI uplink control information
  • UCI includes HARQ-ACK/NACK (Hybrid Automatic Repeat and reQuest Acknowledgement/Negative-ACK), SR (Scheduling Request), CQI (Channel Quality Indication), PMI (Precoding Matrix Indication), RI (Rank Indication) information, etc. .
  • UCI is generally transmitted periodically through PUCCH, but may be transmitted through PUSCH when control information and data are to be transmitted simultaneously.
  • the terminal may aperiodically transmit UCI through the PUSCH according to the request/instruction of the network.
  • FIG. 2 is a diagram illustrating a radio frame structure based on an NR system to which various embodiments of the present disclosure are applicable.
  • the NR system can support multiple Numerology.
  • the neurology may be defined by a subcarrier spacing (SCS) and a cyclic prefix (CP) overhead.
  • the spacing of the plurality of subcarriers can be derived by scaling the basic subcarrier spacing by an integer N (or ⁇ ).
  • N or ⁇
  • the neurology to be used can be selected independently of the frequency band of the cell.
  • various frame structures according to a number of neurology may be supported.
  • OFDM orthogonal frequency division multiplexing
  • NR supports a number of newer rollers (eg, subcarrier spacing) to support various 5G services. For example, if the subcarrier spacing is 15 kHz, a wide area in traditional cellular bands is supported, and if the subcarrier spacing is 30 kHz/60 kHz, a dense-urban, lower latency latency) and a wider carrier bandwidth, and when the subcarrier spacing is 60 kHz or higher, a bandwidth greater than 24.25 GHz is supported to overcome phase noise.
  • subcarrier spacing is 15 kHz
  • the subcarrier spacing is 30 kHz/60 kHz, a dense-urban, lower latency latency
  • a bandwidth greater than 24.25 GHz is supported to overcome phase noise.
  • the NR frequency band is defined as two types of frequency ranges, FR1 and FR2.
  • FR1 is in the sub 6GHz range
  • FR2 is in the above 6GHz range and may mean a millimiter wave (mmWave).
  • mmWave millimiter wave
  • Table 2 illustrates the definition of the NR frequency band.
  • T c 1/( ⁇ f max * N f ), which is the basic time unit for NR.
  • ⁇ f max 480 * 10 3 Hz
  • N f 4096, which is a value related to the size of a fast Fourier transform (FFT) or an inverse fast Fourier transform (IFFT).
  • FFT fast Fourier transform
  • IFFT inverse fast Fourier transform
  • slots are n ⁇ s ⁇ (0,...) in ascending order within a subframe. , N slot, ⁇ subframe -1 ⁇ , and within the radio frame in ascending order n ⁇ s,f ⁇ ⁇ 0,... , N slot, ⁇ frame -1 ⁇ .
  • One slot is composed of N ⁇ symb consecutive OFDM symbols, and N ⁇ symb depends on a cyclic prefix (CP).
  • the start of the slot n ⁇ s in the subframe is temporally aligned with the start of the OFDM symbol n ⁇ s * N ⁇ symb in the same subframe.
  • Table 3 shows the number of symbols per slot according to the SCS, the number of slots per frame, and the number of slots per subframe when a general CP is used
  • Table 4 shows the number of slots per SCS when extended CSP is used. It indicates the number of symbols, the number of slots per frame, and the number of slots per subframe.
  • slot N symb denotes the number of a symbol in the slot
  • N frame ⁇ denotes a slot number of a slot within a frame
  • subframe N ⁇ slot is the number of slots within a subframe.
  • OFDM(A) numerology eg, SCS, CP length, etc.
  • OFDM(A) numerology eg, SCS, CP length, etc.
  • the (absolute time) section of the time resource eg, SF, slot or TTI
  • TU Time Unit
  • one subframe may include 4 slots.
  • mini-slot may contain 2, 4 or 7 symbols or may contain more or fewer symbols.
  • FIG. 3 is a diagram illustrating a slot structure based on an NR system to which various embodiments of the present disclosure are applicable.
  • one slot may include a plurality of symbols in the time domain. For example, in the case of a normal CP (normal CP), one slot includes 7 symbols, but in the case of an extended CP (extended CP), one slot may include 6 symbols.
  • the carrier may include a plurality of subcarriers in the frequency domain.
  • RB Resource Block
  • RB Resource Block
  • the BWP (Bandwidth Part) is defined as a plurality of consecutive (P)RBs in the frequency domain, and may correspond to one numerology (eg, SCS, CP length, etc.).
  • numerology eg, SCS, CP length, etc.
  • the carrier may contain up to N (eg, 5) BWPs. Data communication is performed through the activated BWP, and only one BWP can be activated to one terminal.
  • N e.g. 5
  • each element is referred to as a resource element (RE), and one complex symbol may be mapped.
  • RE resource element
  • FIG. 4 is a diagram illustrating a self-contained slot structure to which various embodiments of the present disclosure are applicable.
  • the independent slot structure is a slot structure in which all of a downlink control channel, downlink/uplink data, and an uplink control channel can be included in one slot. I can.
  • the base station and the UE can sequentially perform DL transmission and UL transmission within one slot, and can transmit and receive DL data and also transmit and receive UL ACK/NACK thereto within the one slot.
  • this structure reduces the time required to retransmit data when a data transmission error occurs, thereby minimizing the delay in final data transmission.
  • a type gap of a certain length of time is required.
  • some OFDM symbols at a time point at which the DL to UL is switched in the independent slot structure may be set as a guard period (GP).
  • the self-supporting slot structure includes both a DL control area and a UL control area has been described, but the control areas may be selectively included in the self-supporting slot structure.
  • the self-supporting slot structure may include not only a case including both a DL control region and a UL control region, but also a case including only a DL control region or a UL control region as shown in FIG. 4. .
  • one slot may be configured in the order of a DL control area / DL data area / UL control area / UL data area, or may be configured in the order of UL control area / UL data area / DL control area / DL data area.
  • the PDCCH may be transmitted in the DL control region, and the PDSCH may be transmitted in the DL data region.
  • PUCCH may be transmitted in the UL control region, and PUSCH may be transmitted in the UL data region.
  • the base station transmits a related signal to the terminal through a downlink channel to be described later, and the terminal receives a related signal from the base station through a downlink channel to be described later.
  • PDSCH Physical Downlink Shared Channel
  • the PDSCH carries downlink data (e.g., DL-shared channel transport block, DL-SCH TB), and modulation methods such as Quadrature Phase Shift Keying (QPSK), Quadrature Amplitude Modulation (QAM), 64 QAM, and 256 QAM are used. Apply.
  • a codeword is generated by encoding TB.
  • the PDSCH can carry up to two codewords. Scrambling and modulation mapping are performed for each codeword, and modulation symbols generated from each codeword are mapped to one or more layers (Layer mapping). Each layer is mapped to a resource together with a demodulation reference signal (DMRS) to generate an OFDM symbol signal, and is transmitted through a corresponding antenna port.
  • DMRS demodulation reference signal
  • PDCCH Physical downlink control channel
  • downlink control information for example, DL data scheduling information, UL data scheduling information, and the like may be transmitted.
  • uplink control information for example, positive acknowledgment/negative acknowledgment (ACK/NACK) information for DL data, channel state information (CSI) information, scheduling request (SR), and the like may be transmitted.
  • ACK/NACK positive acknowledgment/negative acknowledgment
  • CSI channel state information
  • SR scheduling request
  • the PDCCH carries downlink control information (DCI) and a QPSK modulation method is applied.
  • DCI downlink control information
  • One PDCCH is composed of 1, 2, 4, 8, 16 Control Channel Elements (CCEs) according to the Aggregation Level (AL).
  • CCE consists of 6 REGs (Resource Element Group).
  • REG is defined by one OFDM symbol and one (P)RB.
  • CORESET is defined as a REG set with a given neurology (eg, SCS, CP length, etc.).
  • a plurality of CORESETs for one terminal may overlap in the time/frequency domain.
  • CORESET may be set through system information (eg, MIB) or UE-specific higher layer (eg, Radio Resource Control, RRC, layer) signaling.
  • RRC Radio Resource Control
  • the number of RBs constituting CORESET and the number of symbols (maximum 3) may be set by higher layer signaling.
  • Precoder granularity in the frequency domain for each CORESET may be set to one of the following by higher layer signaling:
  • REGs in CORESET are numbered based on a time-first mapping manner. That is, REGs are numbered sequentially from 0 starting from the first OFDM symbol in the lowest-numbered resource block inside the CORESET.
  • the mapping type from CCE to REG is set to one of a non-interleaved CCE-REG mapping type or an interleaved CCE-REG mapping type.
  • the UE acquires DCI transmitted through the PDCCH by performing decoding (aka, blind decoding) on the set of PDCCH candidates.
  • the set of PDCCH candidates decoded by the UE is defined as a PDCCH search space set.
  • the search space set may be a common search space or a UE-specific search space.
  • the UE may acquire DCI by monitoring PDCCH candidates in one or more search space sets configured by MIB or higher layer signaling.
  • Each CORESET setting is associated with one or more sets of search spaces, and each set of search spaces is associated with one COREST setting.
  • One set of search spaces is determined based on the following parameters.
  • controlResourceSetId Represents a set of control resources related to the search space set.
  • -monitoringSymbolsWithinSlot indicates the PDCCH monitoring pattern in the slot for PDCCH monitoring (eg, indicates the first symbol(s) of the control resource set)
  • Table 5 exemplifies the characteristics of each search space type.
  • Table 6 exemplifies DCI formats transmitted through the PDCCH.
  • DCI format 0_0 is used to schedule TB-based (or TB-level) PUSCH
  • DCI format 0_1 is TB-based (or TB-level) PUSCH or CBG (Code Block Group)-based (or CBG-level) PUSCH
  • DCI format 1_0 is used to schedule TB-based (or TB-level) PDSCH
  • DCI format 1_1 is used to schedule TB-based (or TB-level) PDSCH or CBG-based (or CBG-level) PDSCH I can.
  • DCI format 2_0 is used to deliver dynamic slot format information (eg, dynamic SFI) to the terminal
  • DCI format 2_1 is used to deliver downlink pre-Emption information to the terminal.
  • DCI format 2_0 and/or DCI format 2_1 may be delivered to UEs within a corresponding group through a group common PDCCH, which is a PDCCH delivered to UEs defined as one group.
  • the terminal transmits a related signal to the base station through an uplink channel to be described later, and the base station receives a related signal from the terminal through an uplink channel to be described later.
  • PUSCH Physical uplink shared channel
  • PUSCH carries uplink data (e.g., UL-shared channel transport block, UL-SCH TB) and/or uplink control information (UCI), and CP-OFDM (Cyclic Prefix-Orthogonal Frequency Division Multiplexing) waveform Alternatively, it is transmitted based on a DFT-s-OFDM (Discrete Fourier Transform-spread-Orthogonal Frequency Division Multiplexing) waveform.
  • DFT-s-OFDM Discrete Fourier Transform-spread-Orthogonal Frequency Division Multiplexing
  • PUSCH may be transmitted based on a waveform or a DFT-s-OFDM waveform.
  • PUSCH transmission is dynamically scheduled by the UL grant in the DCI or is semi-static based on higher layer (e.g., RRC) signaling (and/or Layer 1 (L1) signaling (e.g., PDCCH)). Can be scheduled (configured grant).
  • PUSCH transmission may be performed based on a codebook or a non-codebook.
  • PUCCH Physical uplink control channel
  • PUCCH carries uplink control information, HARQ-ACK and/or scheduling request (SR), and is divided into Short PUCCH and Long PUCCH according to the PUCCH transmission length.
  • Table 7 illustrates PUCCH formats.
  • PUCCH format 0 carries UCI of a maximum size of 2 bits, and is mapped and transmitted on a sequence basis. Specifically, the terminal transmits a specific UCI to the base station by transmitting one of the plurality of sequences through the PUCCH of PUCCH format 0. The UE transmits a PUCCH of PUCCH format 0 within a PUCCH resource for SR configuration corresponding to only when transmitting a positive SR.
  • PUCCH format 1 carries UCI of a maximum size of 2 bits, and the modulation symbol is spread by an orthogonal cover code (OCC) (set differently depending on whether or not frequency hopping) in the time domain.
  • OCC orthogonal cover code
  • the DMRS is transmitted in a symbol in which a modulation symbol is not transmitted (that is, it is transmitted after time division multiplexing (TDM)).
  • PUCCH format 2 carries UCI of a bit size larger than 2 bits, and a modulation symbol is transmitted after DMRS and FDM (Frequency Division Multiplexing).
  • the DM-RS is located at symbol indexes #1, #4, #7 and #10 in a given resource block with a density of 1/3.
  • a PN (Pseudo Noise) sequence is used for the DM_RS sequence. Frequency hopping may be activated for 2-symbol PUCCH format 2.
  • PUCCH format 3 does not perform multiplexing of terminals within the same physical resource blocks, and carries UCI with a bit size larger than 2 bits.
  • the PUCCH resource of PUCCH format 3 does not include an orthogonal cover code.
  • the modulation symbols are transmitted after DMRS and TDM (Time Division Multiplexing).
  • PUCCH format 4 supports multiplexing of up to 4 terminals in the same physical resource block, and carries UCI with a bit size larger than 2 bits.
  • the PUCCH resource of PUCCH format 3 includes an orthogonal cover code.
  • the modulation symbols are transmitted after DMRS and TDM (Time Division Multiplexing).
  • SSB Synchronization Signal Block
  • the UE may perform cell search, system information acquisition, beam alignment for initial access, and DL measurement based on the SSB.
  • SSB is used interchangeably with SS/PBCH (Synchronization Signal/Physical Broadcast Channel) block.
  • SS/PBCH Synchronization Signal/Physical Broadcast Channel
  • the SSB is composed of PSS, SSS and PBCH.
  • the SSB is composed of 4 consecutive OFDM symbols, and PSS, PBCH, SSS/PBCH and PBCH are transmitted for each OFDM symbol.
  • the PSS and SSS are each composed of 1 OFDM symbol and 127 subcarriers, and the PBCH is composed of 3 OFDM symbols and 576 subcarriers.
  • Polar coding and Quadrature Phase Shift Keying (QPSK) are applied to the PBCH.
  • the PBCH consists of a data RE and a demodulation reference signal (DMRS) RE for each OFDM symbol. There are 3 DMRS REs for each RB, and 3 data REs exist between the DMRS REs.
  • DMRS demodulation reference signal
  • Cell search refers to a process in which a UE acquires time/frequency synchronization of a cell and detects a cell identifier (eg, Physical layer Cell ID, PCID) of the cell.
  • PSS is used to detect a cell ID within a cell ID group
  • SSS is used to detect a cell ID group.
  • PBCH is used for SSB (time) index detection and half-frame detection.
  • the cell search process of the terminal may be summarized as shown in Table 8 below.
  • 336 cell ID groups There are 336 cell ID groups, and 3 cell IDs exist for each cell ID group. There are a total of 1008 cell IDs. Information on the cell ID group to which the cell ID of the cell belongs is provided/obtained through the SSS of the cell, and information on the cell ID among 336 cells in the cell ID is provided/obtained through the PSS.
  • FIG. 6 is a diagram illustrating an example of a transmission method of an SSB to which various embodiments of the present disclosure are applicable.
  • the SSB is transmitted periodically according to the SSB period.
  • the SSB basic period assumed by the UE during initial cell search is defined as 20 ms.
  • the SSB period may be set to one of ⁇ 5ms, 10ms, 20ms, 40ms, 80ms, 160ms ⁇ by the network (eg, base station).
  • a set of SSB bursts is constructed.
  • the SSB burst set consists of a 5 ms time window (ie, half-frame), and the SSB can be transmitted up to L times within the SS burst set.
  • the maximum number of transmissions L of the SSB may be given as follows according to the frequency band of the carrier. One slot contains at most two SSBs.
  • the temporal position of the SSB candidate within the SS burst set may be defined as follows according to the SCS.
  • the temporal position of the SSB candidate is indexed from 0 to L-1 in the temporal order within the SSB burst set (ie, half-frame) (SSB index).
  • -Case A 15 kHz
  • SCS The index of the start symbol of the candidate SSB is given as ⁇ 2, 8 ⁇ + 14*n.
  • n 0, 1.
  • n 0, 1, 2, 3.
  • -Case B 30 kHz
  • SCS The index of the start symbol of the candidate SSB is given as ⁇ 4, 8, 16, 20 ⁇ + 28*n.
  • n 0.
  • n 0, 1.
  • -Case C 30 kHz
  • SCS The index of the start symbol of the candidate SSB is given as ⁇ 2, 8 ⁇ + 14*n.
  • n 0, 1.
  • n 0, 1, 2, 3.
  • -Case D 120 kHz
  • SCS The index of the start symbol of the candidate SSB is given as ⁇ 4, 8, 16, 20 ⁇ + 28*n.
  • n 0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18.
  • -Case E 240 kHz
  • SCS The index of the start symbol of the candidate SSB is given as ⁇ 8, 12, 16, 20, 32, 36, 40, 44 ⁇ + 56*n.
  • n 0, 1, 2, 3, 5, 6, 7, 8.
  • FIG. 7 illustrates multi-beam transmission of SSB to which various embodiments of the present disclosure are applicable.
  • Beam sweeping means that a transmission reception point (TRP) (eg, a base station/cell) changes a beam (direction) of a radio signal according to time (hereinafter, a beam and a beam direction may be mixed).
  • TRP transmission reception point
  • SSB may be periodically transmitted using beam sweeping.
  • the SSB index is implicitly linked with the SSB beam.
  • the SSB beam may be changed in units of SSB (index) or in units of SSB (index) groups. In the latter case, the SSB beam remains the same within the SSB (index) group. That is, the transmission beam echo of the SSB is repeated in a plurality of consecutive SSBs.
  • the maximum number of transmissions L of the SSB in the SSB burst set has a value of 4, 8 or 64 depending on the frequency band to which the carrier belongs. Accordingly, the maximum number of SSB beams in the SSB burst set may also be given as follows according to the frequency band of the carrier.
  • the number of SSB beams is 1.
  • the terminal may align the base station and the beam based on the SSB. For example, after performing SSB detection, the terminal identifies the best SSB. Thereafter, the UE may transmit the RACH preamble to the base station by using the PRACH resource linked/corresponding to the index (ie, the beam) of the best SSB.
  • the SSB can be used to align the beam between the base station and the terminal even after initial access.
  • SSB_tx an actually transmitted SSB
  • a maximum of L SSBs may be transmitted, and the number/locations at which SSBs are actually transmitted may vary for each base station/cell.
  • the number/locations at which SSBs are actually transmitted is used for rate-matching and measurement, and information on the actually transmitted SSBs is indicated as follows.
  • -In case of rate-matching It may be indicated through UE-specific RRC signaling or RMSI.
  • Terminal-specific RRC signaling includes a full (eg, length L) bitmap in both the FR1 and FR2 frequency ranges.
  • RMSI includes a full bitmap in FR1, and includes a compressed bitmap as shown in FR2.
  • information on the actually transmitted SSB may be indicated using a group-bit map (8 bits) + an intra-group bit map (8 bits).
  • a resource (eg, RE) indicated through UE-specific RRC signaling or RMSI is reserved for SSB transmission, and PDSCH/PUSCH may be rate-matched in consideration of SSB resources.
  • the network eg, the base station
  • the network may indicate the SSB set to be measured within the measurement interval.
  • the SSB set may be indicated for each frequency layer. If there is no indication regarding the SSB set, the default SSB set is used.
  • the default SSB set includes all SSBs in the measurement interval.
  • the SSB set may be indicated using a full (eg, length L) bitmap of RRC signaling. When in RRC idle mode, the default SSB set is used.
  • the UE may receive a list containing up to M TCI-state settings in order to decode the PDSCH according to the detected PDCCH with the intended DCI for the UE and a given cell.
  • M depends on the UE capability.
  • Each TCI-State includes a parameter for setting a QCL relationship between one or two DL RSs and a DM-RS port of a PDSCH.
  • the QCL relationship is established with the RRC parameter qcl-Type1 for the first DL RS and qcl-Type2 (if set) for the second DL RS.
  • the QCL type corresponding to each DL RS is given by the parameter'qcl-Type' in QCL-Info, and can take one of the following values:
  • the corresponding NZP CSI-RS antenna ports are indicated/configured as a specific TRS and a specific SSB and QCL from a QCL-Type A perspective and a QCL-Type D perspective. have.
  • the UE Upon receiving this indication/configuration, the UE receives the corresponding NZP CSI-RS using the Doppler and delay values measured in the QCL-TypeA TRS, and applies the reception beam used for QCL-TypeD SSB reception to the corresponding NZP CSI-RS reception. can do.
  • 17 is a diagram illustrating an example of an uplink downlink timing relationship applicable to various embodiments of the present disclosure.
  • Positioning may mean determining a geographic location and/or speed of a UE by measuring a radio signal.
  • the location information may be requested by a client (eg, an application) related to the UE and reported to the client.
  • the location information may be included in a core network or may be requested by a client connected to the core network.
  • the location information may be reported in a standard format such as cell-based or geographic coordinates, and at this time, the estimation error value for the location and speed of the UE and/or the positioning method used for positioning We can report together.
  • FIG. 10 is a diagram illustrating an example of a positioning protocol configuration for measuring a location of a terminal to which various embodiments of the present disclosure are applicable.
  • the LPP uses a position-related measurements obtained from one or more reference sources to position a target device (UE and/or SET).
  • a target device UE and/or SET
  • -SMLC and/or SLP and/or LMF the target device can be used as a point-to-point.
  • the target device and the location server may exchange measurement and/or location information based on signal A and/or signal B.
  • NRPPa can be used for information exchange between a reference source (ACCESS NODE and/or BS and/or TP and/or NG-RAN node) and a location server.
  • a reference source ACCESS NODE and/or BS and/or TP and/or NG-RAN node
  • the functions provided by the NRPPa protocol may include:
  • PRS positioning reference signal
  • PRS is a reference signal used for location estimation of the UE.
  • the PRS may be transmitted only in a downlink subframe (hereinafter, referred to as'Positioning Subframe') configured for PRS transmission.
  • the MBSFN (Multimedia broadcast single frequency network) subframe and the non-MBSFN subframe are set as a positioning subframe
  • the Orthogonal Frequency Division Multiplexing (OFDM) symbols of the MBSFN subframe are the same as subframe #0 CP ( Cyclic Prefix).
  • OFDM symbols set for the PRS in the MBSFN subframe may have an extended CP.
  • n s denotes a slot number within a radio frame
  • l denotes an OFDM symbol number within the slot.
  • c(i) is a Pseudo-Random sequence and may be initialized according to [Equation 2] below.
  • N CP is 1 in the general CP (Cyclic Prefix) and 0 in the extended CP.
  • FIG. 11 is a diagram illustrating an example of PRS mapping in an LTE system to which various embodiments of the present disclosure are applicable.
  • PRS may be transmitted through antenna port 6.
  • FIG. 9(a) shows an example in which a PRS is mapped in a general CP
  • FIG. 9(b) shows an example in which a PRS is mapped in an extended CP.
  • the PRS may be transmitted in consecutive subframes grouped for position estimation.
  • the grouped subframes for position estimation are referred to as Positioning Occasion.
  • This positioning opportunity may consist of 1, 2, 4 or 6 subframes.
  • such a positioning opportunity may occur periodically in a period of 160, 320, 640, or 1280 subframes.
  • a cell-specific subframe offset value for indicating the start subframe of PRS transmission may be defined, and the offset value and the period of the positioning opportunity for PRS transmission are as shown in Table 10 below, and the PRS configuration index ( Configuration Index).
  • the PRS included in each positioning opportunity is transmitted with a constant power.
  • a PRS may be transmitted with zero power at a specific positioning opportunity, which is referred to as PRS muting. For example, by muting the PRS transmitted from the serving cell, the UE can easily detect the PRS of the adjacent cell.
  • the PRS muting configuration for the cell may be defined by a periodic muting sequence consisting of 2, 4, 8 or 16 positioning opportunities. That is, the periodic muting sequence may be composed of 2, 4, 8, or 16 bits according to positioning opportunities corresponding to the PRS muting setting, and each bit may have a value of '0' or '1'. For example, PRS muting may be performed at a positioning opportunity in which the bit value is '0'.
  • the positioning subframe is designed as a low interference subframe, data is not transmitted in the positioning subframe. Therefore, although the PRS may be interfered by the PRS of another cell, it is not interfered by data transmission.
  • FIG. 12 is a diagram illustrating an example of an architecture of a system for measuring a location of a terminal to which various embodiments of the present disclosure are applicable.
  • AMF Core Access and Mobility Management Function
  • the LMF may process the location service request and return a processing result including the estimated location of the UE to the AMF.
  • the AMF may transmit the processing result received from the LMF to another entity.
  • ng-eNB new generation evolved-NB
  • gNB are network elements of NG-RAN that can provide measurement results for location tracking, measure radio signals for target UEs, and deliver the results to LMF.
  • the ng-eNB may control several TPs (transmission points) such as remote radio heads or PRS-only TPs supporting a PRS-based beacon system for E-UTRA.
  • the LMF is connected to the E-SMLC (Enhanced Serving Mobile Location Center), and the E-SMLC may enable the LMF to access the E-UTRAN.
  • E-SMLC is OTDOA, one of the E-UTRAN positioning methods using downlink measurement obtained by the target UE through signals transmitted from the eNB and/or PRS-only TPs in the E-UTRAN by the LMF. (Observed Time Difference Of Arrival) can be supported.
  • the LMF may be connected to the SLP (SUPL Location Platform).
  • the LMF can support and manage different location services for target UEs.
  • the LMF may interact with a serving ng-eNB or a serving gNB for a target UE in order to obtain a location measurement of the UE.
  • the LMF uses a location service (LCS) client type, a required QoS (Quality of Service), a UE positioning capabilities, a gNB positioning capability, and a ng-eNB positioning capability. Determine and apply this positioning method to the serving gNB and/or serving ng-eNB.
  • the LMF may determine a location estimate for the target UE and additional information such as location estimation and speed accuracy.
  • SLP is a Secure User Plane Location (SUPL) entity that is responsible for positioning through a user plane.
  • SUPL Secure User Plane Location
  • the UE may measure the location of the UE by using a downlink reference signal transmitted by the NG-RAN and E-UTRAN.
  • the downlink reference signal transmitted from the NG-RAN and E-UTRAN to the UE may include an SS/PBCH block, CSI-RS and/or PRS, and the like, and the UE's position using any downlink reference signal Whether or not to measure the LMF/E-SMLC/ng-eNB/E-UTRAN may depend on the settings.
  • the RAT-independent method using different GNSS (Global Navigation Satellite System), TBS (Terrestrial Beacon System), WLAN access points, Bluetooth beacons, and sensors built into the UE (eg, barometric pressure sensor), etc. You can also measure your position.
  • the UE may include an LCS application, and may access the LCS application through communication with a network to which the UE is connected or other applications included in the UE.
  • the LCS application may include the measurement and calculation functions required to determine the location of the UE.
  • the UE may include an independent positioning function such as a Global Positioning System (GPS), and may report the location of the UE independently of NG-RAN transmission.
  • GPS Global Positioning System
  • Such independently obtained positioning information may be used as auxiliary information of positioning information obtained from a network.
  • FIG. 13 is a diagram illustrating an example of a procedure for measuring a location of a terminal to which various embodiments of the present disclosure are applicable.
  • CM-IDLE Connection Management-IDLE
  • the AMF When the UE is in CM-IDLE (Connection Management-IDLE) state, when the AMF receives a location service request, the AMF establishes a signaling connection with the UE and provides a network trigger service to allocate a specific serving gNB or ng-eNB. Can be requested.
  • This operation process is omitted in FIG. 13. That is, in FIG. 13, it may be assumed that the UE is in a connected mode. However, for reasons such as signaling and data inactivity, the signaling connection may be released by the NG-RAN while the positioning process is in progress.
  • a 5GC entity such as GMLC may request a location service for measuring the location of the target UE with a serving AMF.
  • the serving AMF may determine that the location service for measuring the location of the target UE is required. For example, in order to measure the location of the UE for an emergency call, the serving AMF may directly determine to perform location service.
  • the AMF transmits a location service request to the LMF according to step 2, and according to step 3a, the LMF serves location procedures for obtaining location measurement data or location measurement assistance data ng-eNB, You can start with serving gNB.
  • the LMF may request location-related information related to one or more UEs from the NG-RAN, and may indicate a type of required location information and related QoS.
  • the NG-RAN may transmit location-related information to the LMF to the LMF in response to the request.
  • the location determination method according to the request is E-CID
  • the NG-RAN may transmit additional location-related information to the LMF through one or more NRPPa messages.
  • location-related information may mean actual location estimation information and all values used for location calculation, such as wireless measurement or location measurement.
  • the protocol used in step 3a may be the NRPPa protocol, which will be described later.
  • the LMF may initiate location procedures for downlink positioning together with the UE.
  • the LMF may transmit location assistance data to the UE or obtain a location estimate or location measurement.
  • a capability transfer process may be performed.
  • the LMF may request capability information from the UE, and the UE may transmit capability information to the LMF.
  • the capability information refers to various aspects of a specific location measurement method, such as information on a location measurement method that can be supported by LFM or UE, and various types of assistance data for A-GNSS.
  • the UE may provide capability information to the LMF.
  • an Assistance data transfer process may be performed in step 3b.
  • the UE may request location assistance data from the LMF, and may instruct the LMF of specific location assistance data required. Then, the LMF may transmit the location assistance data corresponding thereto to the UE, and additionally, may transmit additional assistance data to the UE through one or more additional LPP messages.
  • the location assistance data transmitted from the LMF to the UE may be transmitted through a unicast method, and in some cases, without the UE requesting the assistance data from the LMF, the LMF provides the location assistance data and/or Alternatively, additional auxiliary data may be transmitted to the UE.
  • a location information exchange process may be performed in step 3b.
  • the LMF may request the UE for location-related information related to the UE, and may indicate a type of required location information and related QoS. Then, the UE may transmit location-related information to the LMF to the LMF in response to the request. In this case, the UE may additionally transmit additional location-related information to the LMF through one or more LPP messages.
  • 'location-related information' may mean all values used for location calculation, such as actual location estimation information and radio measurement or location measurement, and is typically a UE from a plurality of NG-RANs and/or E-UTRANs.
  • RSTD Reference Signal Time Difference
  • step 3b is performed in the order of a capability transfer process, a location assistance data transfer process, and a location information transfer process, but is not limited to this sequence.
  • step 3b is independent of any specific order to improve the flexibility of the position measurement.
  • the UE may request location assistance data at any time to perform a location measurement request already requested by the LMF.
  • the LMF may request location information such as a location measurement value or a location estimate at any time.
  • the UE does not perform measurement for location estimation, it can transmit capability information to the LMF at any time.
  • an error message may be transmitted and received, and an Abort message for stopping position measurement may be transmitted and received.
  • the protocol used in step 3b may be an LPP protocol, which will be described later.
  • step 3b may be additionally performed after step 3a is performed, but may be performed instead of step 3a.
  • the LMF may provide a location service response to the AMF.
  • the location service response may include information on whether or not location estimation of the UE is successful and an estimate of the location of the UE.
  • the AMF may transmit a location service response to a 5GC entity such as GMLC, and if the procedure of FIG. 13 is initiated by step 1b, the AMF is In order to provide a service, a location service response may be used.
  • LTE Positioning Protocol LTP
  • LPP LTE positioning protocol
  • LPP includes a target device (eg, a UE in a control plane or a SET (SUPL Enabled Terminal) in a user plane) and a location server (eg, an LMF in the control plane or an SLP in the user plane). ) Can be terminated.
  • the LPP message may be delivered in the form of a transparent PDU through an intermediate network interface using an appropriate protocol such as NGAP through the NG-C interface, LTE-Uu and NAS/RRC through the NR-Uu interface.
  • the LPP protocol enables positioning for NR and LTE using a variety of positioning methods.
  • the target device and the location server may exchange capability information, auxiliary data for positioning, and/or location information.
  • error information exchange and/or an instruction to stop the LPP procedure may be performed through the LPP message.
  • NRPPa NR Positioning Protocol A
  • NRPPa NR positioning protocol a
  • PDU protocol data unit
  • NRPPa can be used for information exchange between the NG-RAN node and the LMF. Specifically, NRPPa may exchange E-CID for measurement transmitted from ng-eNB to LMF, data to support OTDOA positioning method, Cell-ID and Cell location ID for NR Cell ID positioning method, and the like.
  • the AMF can route NRPPa PDUs based on the routing ID of the associated LMF through the NG-C interface, even if there is no information on the associated NRPPa transaction.
  • the procedures of the NRPPa protocol for location and data collection can be divided into two types.
  • the first type is a UE associated procedure for delivering information on a specific UE (eg, location measurement information, etc.)
  • the second type is information applicable to the NG-RAN node and related TPs ( For example, it is a non-UE associated procedure for delivering gNB/ng-eNG/TP timing information, etc.).
  • the above two types of procedures may be supported independently or may be supported simultaneously.
  • the positioning methods supported by NG-RAN include GNSS, OTDOA, E-CID (enhanced cell ID), barometric pressure sensor positioning, WLAN positioning, Bluetooth positioning, terrestrial beacon system (TBS), and UTDOA (Uplink Time Difference of Arrival). There may be.
  • the location of the UE may be measured using any one of the positioning methods, but the location of the UE may be measured using two or more positioning methods.
  • FIG. 16 is a diagram illustrating an example of an observed time difference of arrival (OTDOA) positioning method to which various embodiments of the present disclosure are applicable.
  • OTDA observed time difference of arrival
  • the OTDOA positioning method uses the timing of measurement of downlink signals received from a plurality of TPs including an eNB, an ng-eNB and a PRS dedicated TP by the UE.
  • the UE measures the timing of the received downlink signals by using the location assistance data received from the location server.
  • the location of the UE may be determined based on the measurement result and geographical coordinates of neighboring TPs.
  • the UE connected to the gNB may request a measurement gap for OTDOA measurement from the TP. If the UE does not recognize the SFN for at least one TP in the OTDOA assistance data, the UE requests an OTDOA reference cell before requesting a measurement gap for performing RSTD (Reference Signal Time Difference) measurement.
  • RSTD Reference Signal Time Difference
  • An autonomous gap can be used to obtain the SFN of.
  • the RSTD may be defined based on the smallest relative time difference between the boundaries of the two subframes each received from the reference cell and the measurement cell. That is, it may be calculated based on a relative time difference between the start times of the subframes of the reference cell closest to the start times of the subframes received from the measurement cell. Meanwhile, the reference cell may be selected by the UE.
  • TOA time of arrival
  • RSTD time of arrival
  • TP 1-TP 2 and TP 3 measure TOA for each of TP 1, TP 2 and TP 3
  • RSTD for TP 1-TP 2 measure TOA for each of TP 1, TP 2 and TP 3
  • RSTD for TP 1-TP 2 measure TOA for each of TP 1, TP 2 and TP 3
  • TP 3-TP 1 RSTD for RSTD may be calculated
  • a geometric hyperbola may be determined based on this
  • a point at which such hyperbola intersect may be estimated as the location of the UE.
  • the estimated UE location may be known as a specific range according to measurement uncertainty.
  • the RSTD for two TPs may be calculated based on [Equation 3] below.
  • ⁇ x t , y t ⁇ is the (unknown) coordinate of the target UE
  • ⁇ x i , y i ⁇ is the coordinate of the (known) TP
  • ⁇ x 1 , y 1 ⁇ may be the coordinate of the reference TP (or other TP)
  • (T i -T 1 ) is a transmission time offset between the two TPs, and may be referred to as “Real Time Differences” (RTDs)
  • n i and n 1 may represent values for UE TOA measurement errors.
  • the location of the UE can be measured through geographic information of the serving ng-eNB, serving gNB and/or serving cell of the UE.
  • geographic information of a serving ng-eNB, a serving gNB and/or a serving cell may be obtained through paging, registration, or the like.
  • the E-CID positioning method may use additional UE measurement and/or NG-RAN radio resources to improve the UE location estimate in addition to the CID positioning method.
  • some of the same measurement methods as the RRC protocol measurement control system may be used, but in general, additional measurements are not performed only for the location measurement of the UE.
  • a separate measurement configuration or measurement control message may not be provided, and the UE also does not expect to request an additional measurement operation for location measurement ,
  • the UE may report a measurement value obtained through generally measurable measurement methods.
  • the serving gNB may implement the E-CID positioning method using E-UTRA measurements provided from the UE.
  • measurement elements that can be used for E-CID positioning may be as follows.
  • E-UTRA RSRP Reference Signal Received Power
  • E-UTRA RSRQ Reference Signal Received Quality
  • UE E-UTRA Rx-Tx Time difference GERAN/WLAN RSSI (Reference Signal Strength) Indication
  • UTRAN CPICH Common Pilot Channel
  • RSCP Receiveived Signal Code Power
  • ng-eNB receive-transmit time difference (Rx-Tx Time difference), Timing Advance (T ADV ), Angle of Arrival (AoA)
  • T ADV can be divided into Type 1 and Type 2 as follows.
  • T ADV Type 1 (ng-eNB receive-transmit time difference)+(UE E-UTRA receive-transmit time difference)
  • T ADV Type 2 ng-eNB receive-transmit time difference
  • AoA can be used to measure the direction of the UE.
  • AoA may be defined as an estimated angle for the location of the UE in a counterclockwise direction from the base station/TP. In this case, the geographical reference direction may be north.
  • the base station/TP may use an uplink signal such as a sounding reference signal (SRS) and/or a demodulation reference signal (DMRS) for AoA measurement.
  • SRS sounding reference signal
  • DMRS demodulation reference signal
  • the larger the array of antenna arrays the higher the measurement accuracy of AoA.
  • signals received from adjacent antenna elements may have a constant phase-rotate phase.
  • UTDOA is a method of determining the location of the UE by estimating the arrival time of the SRS.
  • the serving cell may be used as a reference cell, and the location of the UE may be estimated through the difference in the arrival time from another cell (or base station/TP).
  • the E-SMLC may indicate a serving cell of the target UE in order to indicate SRS transmission to the target UE.
  • the E-SMLC may provide configurations such as periodic/aperiodic SRS, bandwidth and frequency/group/sequence hopping.
  • RTT is based on TOA measurements, like OTDOA, but coarse TRP (e.g. , Base station) Only timing synchronization is required.
  • FIG. 17 is a diagram illustrating an example of a Multi RTT (round trip time) positioning method to which various embodiments of the present disclosure are applicable.
  • an RTT process is illustrated in which TOA measurement is performed in an initiating device and a responding device, and the responding device provides TOA measurement to an initiating device for RTT measurement (calculation).
  • the initiating device may be a TRP and/or a terminal
  • the responding device may be a terminal and/or a TRP.
  • the initiating device transmits an RTT measurement request, and the responding device may receive it.
  • the initiating device may transmit the RTT measurement signal at t 0 , and the responding device may acquire the TOA measurement t 1 .
  • the responding device may transmit the RTT measurement signal at t 2 , and the initiating device may acquire the TOA measurement t 3 .
  • the responding device may transmit information on [t 2 -t 1 ], and the initiating device may receive the information and calculate the RTT based on Equation 4 below. .
  • the information may be transmitted/received based on a separate signal or included in the RTT measurement signal of 2505 and transmitted/received.
  • the RTT may correspond to a double-range measurement between two devices. Positioning estimation may be performed from the corresponding information, and a multilateration technique may be used. Based on the measured RTT, d 1 , d 2 , and d 3 can be determined, and each BS 1 , BS 2 , BS 3 (or TRP) is the center and each d 1 , d 2 , d 3 is the radius. The target device location can be determined by the intersection of.
  • a PRS block is a PRS resource and/or a set of PRS resources transmitted by a specific TP/base station and/or a plurality of TP/base stations in a specific TX beam, and PRS is transmitted over one or more symbols. It can mean a unit.
  • a PRS opportunity may be defined/configured as a group of one or more PRS blocks and/or a group of one or more slots through which PRS is transmitted.
  • TP transmission reception point
  • Floor function It can mean the largest integer less than or equal to the real number x.
  • next-generation 5G system which is an improved wireless broadband communication system, is required than the LTE system.
  • This next-generation 5G system is referred to as NR (new RAT) for convenience.
  • NR can support a number of numerology to support various services. For example, NR may support various subcarrier spacing (SCS). Considering the difference between LTE and NR, a new RS generation method for NR may be required.
  • SCS subcarrier spacing
  • Various embodiments of the present disclosure may relate to a method and an apparatus for (scrambling) sequence initialization of an RS for wireless communication.
  • various embodiments of the present disclosure may relate to a method and an apparatus for initializing a sequence so that a specific TP to which an RS is transmitted can be distinguished, unlike a scheme used in long term evolution (LTE).
  • LTE long term evolution
  • various embodiments of the present disclosure may relate to a method and apparatus for initializing a PRS sequence.
  • FIG. 18 is a diagram schematically illustrating a method of operating a terminal, a TRP, a location server, and/or an LMF according to various embodiments of the present disclosure.
  • the location server and/or the LMF may transmit configuration information to the terminal, and the terminal may receive it.
  • the location server and/or the LMF may transmit reference setting information to a transmission and reception point (TRP), and the TRP may receive it.
  • TRP transmission and reception point
  • the TRP may transmit reference setting information to the terminal, and the terminal may receive it.
  • operation 1801 according to the exemplary embodiment may be omitted.
  • operations 1803 and 1805 according to the exemplary embodiment may be omitted.
  • operation 1801 according to an exemplary embodiment may be performed.
  • operations 1801 according to the exemplary embodiment and operations 1803 and 1805 according to the exemplary embodiment may be optional.
  • the TRP may transmit a signal related to configuration information to the terminal, and the terminal may receive it.
  • a signal related to the setting information may be a signal for positioning of the terminal.
  • the terminal may transmit a signal related to positioning to the TRP, and the TRP may receive it.
  • the TRP may transmit a signal related to positioning to the location server and/or the LMF, and the location server and/or the LMF may receive it.
  • the terminal may transmit a signal related to positioning to the location server and/or the LMF, and the location server and/or the LMF may receive it.
  • operations 1809 and 1811 according to the exemplary embodiment may be omitted.
  • operation 1813 according to an exemplary embodiment may be omitted. In this case, operations 1811 and 1813 according to an exemplary embodiment may be performed.
  • operations 1809 and 1811 according to an exemplary embodiment and operations 1813 according to an exemplary embodiment may be optional.
  • the signal related to the positioning may be obtained based on the setting information and/or the signal related to the setting information.
  • 19 is a diagram schematically illustrating a method of operating a terminal, a TRP, a location server, and/or an LMF according to various embodiments of the present disclosure.
  • the terminal may receive configuration information.
  • the terminal may receive a signal related to configuration information.
  • the terminal may transmit information related to positioning.
  • the TRP may receive configuration information from a location server and/or an LMF, and transmit it to a terminal.
  • the TRP may transmit a signal related to the setting information.
  • the TRP may receive information related to positioning and may transmit it to the location server and/or the LMF.
  • the location server and/or the LMF may transmit setting information.
  • the location server and/or the LMF may receive information related to positioning.
  • the above-described setting information is reference configuration (information), reference setting (information), reference setting (information), location server and/or LMF, and/or in the following description of various embodiments of the present disclosure.
  • the TRP is related to one or more pieces of information transmitted/set to the terminal, and/or the corresponding reference configuration (information), reference setting (information), reference setting (information), location server and/or LMF and/or TRP is the terminal It may be understood that it is one or more pieces of information transmitted/set to.
  • the signal related to the above-described positioning is understood as a signal related to one or more of the information reported by the terminal in the description of various embodiments of the present disclosure below, and/or one of the information reported by the corresponding terminal. It can be understood as a signal that includes the above.
  • a base station, a gNB, a cell, etc. may be replaced with a TRP, a TP, or any device that plays the same role.
  • the location server may be replaced by an LMF or an arbitrary device that performs the same role.
  • RS may be a downlink reference signal (DRS).
  • RS may be a PRS.
  • the DL PRS resource set may be defined as a set of DL PRS resources.
  • each DL PRS resource may have a DL PRS resource ID (DL PRS resource ID (identifier)).
  • DL PRS resources included in the DL PRS resource set may be associated with the same TRP.
  • the TRP can transmit one or more beams.
  • the DL PRS resource ID included in the DL PRS resource set may be associated with one beam transmitted from one (single) TRP.
  • the above-described examples may be irrelevant to whether the TRP from which the signal is transmitted and the beam are known to the terminal.
  • the DL PRS sequence may be acquired/generated with a Gold sequence generator.
  • a general pseudo-random sequence may be defined as a length-31 gold sequence.
  • N c 1600
  • the initialization of the second m-sequence x 2 (n) has a value dependent on the application of the sequence. It can be expressed as
  • a sequence generator for DL PRS Values may be provided based on one or more of the various embodiments of the present disclosure below.
  • quadrature phase shift keying (QPSK) modulation may be used for a DL PRS signal transmitted using cyclic prefix-orthogonal frequency division multiplexing (CP-OFDM).
  • QPSK quadrature phase shift keying
  • CP-OFDM cyclic prefix-orthogonal frequency division multiplexing
  • a different method may be applied to a DL PRS sequence generated using a different mechanism.
  • a specific TP/base station uses one or two or more transmission TX beams for terminal positioning purposes (eg, PRS.
  • PRS transmission TX beams for terminal positioning purposes
  • an example of RS is PRS
  • RSs transmitted through each TX beam may be set/instructed as different RS resources to be distinguished by the UE.
  • different RS resources may be frequency division multiplexing (FDM) and/or code division multiplexing (CDM) and/or time division multiplexing (TDM) and/or spatial division multiplexing (SDM).
  • FDM frequency division multiplexing
  • CDM code division multiplexing
  • TDM time division multiplexing
  • SDM spatial division multiplexing
  • one or more RS resources may be included in one RS resource set.
  • multiple RS resources included in the same RS resource set may be transmitted from the same TP/base station.
  • the UE may assume/recognize that several RS resources included in the same RS resource set are transmitted from the same TP/base station.
  • a specific RS resource may not be included only in a specific RS resource set, but may be included in two or more RS resource sets. For example, if only dedicated RS resources can be allocated to all RS resource sets, this may be because radio resources such as time and/or frequency for RS transmission may be wasted.
  • RS resource #1 set for the purpose of terminal positioning is transmitted from a specific TP/base station to a target UE through a specific time-frequency RE.
  • UE#2 from a specific TP/base station geographically far from the specific TP/base station (e.g., more than a certain distance) to the target UE through RS resource #1
  • it may be appropriate to be able to transmit RS For example, if an independent RS (eg, PRS) resource is allocated for each TP/base station, a problem in that radio resources such as a considerable time-frequency may be wasted may occur.
  • PRS independent RS
  • 20 is a diagram schematically illustrating a method of operating a terminal and/or a network node according to various embodiments of the present disclosure.
  • the location server and/or the LMF may transmit RS resource information to the terminal, and the terminal may receive it.
  • the location server and/or the LMF may transmit RS resource information to the TP, and the TP may receive it.
  • the TP may transmit RS resource information to the terminal, and the terminal may receive it.
  • operation 2001 according to the exemplary embodiment may be omitted.
  • operations 2003 and 2005 according to the exemplary embodiment may be omitted.
  • operation 2001 according to an exemplary embodiment may be performed.
  • operations 2001 according to an exemplary embodiment and operations 2003 and 2005 according to an exemplary embodiment may be optional.
  • the RS resource may mean an RS resource/RS resource used for the purpose of measuring the location of the terminal.
  • the TP may transmit information for setting the ID to the terminal, and the terminal may receive it.
  • the ID may be an ID to be used for sequence initialization in each PRS resource and/or PRS resource set.
  • the ID may be a scrambling sequence ID.
  • the location server and/or the LMF may transmit information for setting the ID to the TP, and the TP may receive it.
  • operation 2007 according to the exemplary embodiment may be omitted.
  • the TP may transmit information for setting the ID to the terminal, and the terminal may receive it.
  • the ID may be an ID to be used for sequence initialization in each PRS resource and/or PRS resource set.
  • the ID may be a scrambling sequence ID.
  • operation 2007 according to the exemplary embodiment may be omitted.
  • operations 2009 and 2011 according to an exemplary embodiment may be omitted.
  • operation 2007 according to the exemplary embodiment may be performed.
  • operations 2007 according to an exemplary embodiment and operations 2009 and 2011 according to an exemplary embodiment may be optional.
  • the TP may generate/acquire a PRS.
  • the TP may generate/obtain a PRS based on initializing a sequence according to a slot index, an OFDM symbol index in the slot, a PRS resource through which a PRS is transmitted, and/or a scrambling sequence ID set in a PRS resource set.
  • the TP may transmit a PRS (and/or a PRS resource and/or a PRS resource set) to the terminal, and the terminal may receive it.
  • the terminal may acquire/receive a PRS (and/or a PRS resource and/or a PRS resource set). For example, the UE finds a sequence initialization value according to the slot index, the OFDM symbol index in the slot, the PRS resource in which the PRS is received, and/or the scrambling sequence ID set in the PRS resource set, and obtains the sequence used for the received PRS resource.
  • PRS (and/or PRS resource and/or PRS resource set) may be acquired/received based on (induction).
  • RS e.g., PRS
  • PRS RS resource set to measure the location of the terminal
  • the terminal is transmitted from different specific TP/base stations It is necessary to obtain a measurement by dividing the specified (same) RS (eg, PRS) resource.
  • RS e.g., PRS
  • resource set ID RS resource set ID
  • ID an ID set/instructed for each RS resource set other than the RS resource set ID
  • a method of initializing the RS sequence using a per scrambling ID may be considered.
  • the base station provides RS in addition to the RS resource set ID (eg, RS set index) for each RS (eg, PRS) resource set as well as each RS (eg, PRS) resource to the terminal.
  • An additional ID eg, scrambling sequence ID
  • the base station and/or the terminal may perform sequence initialization as shown in Equation (0).
  • Sequence initialization value to initialize the sequence For example, it may be a Gold sequence initialization value.
  • sequence initialization method according to various embodiments of the present disclosure may be applied not only to the initialization of the gold sequence, but also to the initialization of other sequences, in this case May mean another sequence initialization value.
  • It may be a specific RS (eg, PRS) sequence ID and/or a scrambling ID and/or a resource ID of a specific RS (eg, PRS) resource and/or an ID representing a resource set/instructed for each resource.
  • RS eg, PRS
  • a specific RS eg, PRS
  • M >0 bits.
  • RS eg, PRS
  • Slot index and/or slot number For example, it may be a slot index and/or a slot number in a frame.
  • the maximum value of may vary depending on the SCS numerology of NR.
  • Equation (1) A more specific example of may be the same as Equation (1). That is, for example, a sequence initialization method such as Equation (1) below may be considered.
  • N may mean the length of the gold sequence.
  • the sequence initialization method according to various embodiments of the present disclosure may be applied not only to the initialization of the Gold sequence, but also to the initialization of other sequences, and in this case, N may mean the length of the other sequence.
  • M can be defined as a fixed value.
  • M May be related to the bit size of.
  • PRS ( ) Of the bit size (e.g., 12 bits) is for CSI-RS ( ) Can be larger than the bit size (eg, 10 bits).
  • K can be defined as a fixed value.
  • Equation (1-1) A more specific example of may be the same as Equation (1-1) and/or Equation (1-2).
  • Equations (1-1) and (1-2) are similar methods, but compared to Equation (1-1), Equation (1-2) is According to the value Because the difference in values is large, the same The difference between the sequence initialization value and the value is large, so that the same PRS resource transmitted from different TPs can be better distinguished. Equations (1-1) and (1-2) are exemplary, and according to various embodiments of the present disclosure, May be defined in other forms, and similar modifications and/or applications may also be included in various embodiments of the present disclosure.
  • Modulo arithmetic Modulo operation
  • a form in which an ID (eg, a scrambling ID for RS resource) and/or an ID representing a resource set is multiplied may be considered.
  • a form such as Equation (2) may be considered.
  • Equation (2) for a specific RS resource, different RS resource sets The difference in values may be greater than that of Equation (1).
  • the above-described scheme may mean that the RS resource set ID can be used for sequence initialization. And/or, for example, a scrambling sequence ID is also set at the RS resource level, but an ID expressed/set by L bits such as an independent scrambling sequence is also set in the RS resource set, and the resource for initializing the gold sequence It can be done at the level and/or the resource aggregation level.
  • the scrambling ID of the RS resource set and/or the ID of the RS resource set may be set/instructed to the terminal in association with a specific TP/base station ID and/or another ID capable of representing a specific TP/base station.
  • Equation (1), (1-1), (1-2), (2) May be an additional ID (eg, scrambling sequence ID) set in a specific RS resource, not an ID defined at the RS resource aggregation level (eg, scrambling sequence ID).
  • additional ID eg, scrambling sequence ID
  • Equation (1), (1-1), (1-2), (2) May be a specific TP/base station ID (and/or an ID capable of indicating a corresponding TP/base station), not an ID defined as an RS resource set level (eg, scrambling sequence ID).
  • the reason why a specific RS resource is included in different RS resource sets and transmitted may be because the same RS resource may be considered to be transmitted in different TPs. That is, for example, in the equation (0), Can be changed as follows. : here May be the TP ID. That is, for example, the initial sequence value may be determined according to the PRS resource ID and/or the scrambling sequence ID and/or the TP ID and/or the slot index and/or the symbol index of the PRS resource.
  • the LMF and/or the location server is a reference cell set/instructed to the terminal (and /Or a reference TP) and/or a neighboring cell (and/or a neighboring TP) information may be transmitted/instructed to a wireless network base station.
  • TP/base station information e.g., TP/base station ID
  • the LMF and/or the location server is a reference cell set/instructed to the terminal (and /Or a reference TP) and/or a neighboring cell (and/or a neighboring TP) information may be transmitted/instructed to a wireless network base station.
  • Equation (2-1) Even if any one of the two values is changed, as a result, the overall value is changed to be large, and since different sequences are used, there may be an advantage of lowering the correlation. Against this background, the method of Equation (2-1) may be considered.
  • It may be a specific RS (eg, PRS) sequence ID and/or a scrambling ID and/or a resource ID of a specific RS (eg, PRS) resource and/or an ID representing a resource set/instructed for each resource.
  • RS eg, PRS
  • a specific RS eg, PRS
  • M >0 bits.
  • RS eg, PRS
  • Has a bit size of M bits Has a bit size of L bits
  • silver Is set/indicated by M bits and L bits, respectively, but not the combination of the (sequence) ID of all resource levels and the (sequence) ID of the resource set level is used, but only the total P bits of all combinations are set/indicated. It can mean.
  • K can be defined as a fixed value.
  • Slot index and/or slot number For example, it may be a slot index and/or a slot number in a frame.
  • the maximum value of may vary depending on the SCS numerology of NR.
  • the intention of the above-described sequence initialization method is to allow the UE to know from which PRS resource set a specific PRS resource is transmitted, considering that a specific PRS resource may be included in one or more PRS resource sets (other PRS resources For a set) it may be for different sequences to be used.
  • a value after a modular operation in the above-described equation according to a (gold) sequence length value may not be a unique value according to a symbol index and a slot index. That is, since the sequence initialization value may be the same depending on the symbol index and the slot index, for example, it may be necessary to determine an appropriate (gold) sequence length according to the size of the P value to prevent this. have.
  • Equation (3) may be provided as another example for initializing a PRS sequence.
  • Sequence initialization value to initialize the sequence For example, it may be a Gold sequence initialization value.
  • sequence initialization method according to various embodiments of the present disclosure may be applied not only to the initialization of the gold sequence, but also to the initialization of other sequences, in this case May mean another sequence initialization value.
  • N may mean the length of the gold sequence.
  • the sequence initialization method according to various embodiments of the present disclosure may be applied not only to the initialization of the Gold sequence, but also to the initialization of other sequences, and in this case, N may mean the length of the other sequence.
  • M can be defined as a fixed value.
  • M May be related to the bit size of.
  • PRS ( ) Of the bit size (e.g., 12 bits) is for CSI-RS ( ) Can be larger than the bit size (eg, 10 bits).
  • It may be a specific RS (eg, PRS) sequence ID and/or a scrambling ID and/or a resource ID of a specific RS (eg, PRS) resource and/or an ID representing a resource set/instructed for each resource.
  • RS eg, PRS
  • a specific RS eg, PRS
  • M >0 bits.
  • K can be defined as a fixed value.
  • Slot index and/or slot number For example, it may be a slot index and/or a slot number in a frame.
  • the maximum value of may vary depending on the SCS numerology of NR.
  • Modulo arithmetic Modulo operation
  • 2 ⁇ 10 may reflect 10 bits representing the number of cell IDs.
  • the first 10 bits and the last M-10 bits are Bits can be held to indicate and/or set.
  • a specific ID e.g., scrambling ID
  • the sequence initialization equation (3) can be modified.
  • Equation (3-1) may be considered.
  • a more specific example of the sequence initialization method of proposal #2 according to various embodiments of the present disclosure may be as follows.
  • the terminal is a PRS sequence Can be assumed to be defined as follows.
  • pseudo-random sequence May be the gold sequence described above.
  • the pseudo-random sequence generator can be initialized as follows.
  • downlink PRS sequence ID May be given from a higher layer parameter (eg, DL-PRS-SequenceId ).
  • Equation (3) is for PRS ( )
  • bit size eg, 12 bits
  • CSI-RS CSI-RS
  • Equation (3) for PRS ( ) For CSI-RS ( ), for PRS Value for CSI-RS It may be designed to be obtained equal to the value.
  • the terminal when the PRS and CSI-RS are used together as an RS for positioning, the terminal May only need to check the same resource location for both the PRS and the CSI-RS. That is, for example, the UE may expect to receive PRS and/or CSI-RS at the same resource location. That is, for example, the terminal may not need to additionally check other resource locations.
  • Sequence initialization method of proposal #2 according to various embodiments of the present disclosure for example, Equation (3) Can be applied irrespective of whether or not is set/provided to the terminal. That is, for example, the sequence initialization method of proposal #2 according to various embodiments of the present disclosure, for example, Equation (3) can be applied irrespective of whether the PRS resource set is configured/provided to the terminal. .
  • the terminal detects specific PRS resources by classifying the PRS blocks (PRS resource detection) It may be necessary to do.
  • PRS resource detection the terminal detects specific PRS resources by classifying the PRS blocks (PRS resource detection) It may be necessary to do.
  • -PRS block information For example, a PRS block index and/or a specific ID assigned/set per PRS block (eg, scrambling sequence ID per PRS block, etc.), etc.
  • a PRS block is a transmission unit in which a PRS is transmitted over one or more symbols consisting of a set of PRS resources and/or PRS resources transmitted from a specific TP/base station and/or a plurality of TP/base stations in a specific TX beam.
  • a PRS is transmitted over one or more symbols consisting of a set of PRS resources and/or PRS resources transmitted from a specific TP/base station and/or a plurality of TP/base stations in a specific TX beam.
  • -PRS occasion information For example, a PRS opportunity index and/or a specific ID given/set for each PRS opportunity (eg, scrambling sequence ID per PRS block, etc.), etc.
  • the PRS opportunity may be defined/set as a group of one or more PRS blocks and/or a group of one or more slots through which PRS is transmitted.
  • -PRS resource set information For example, a specific ID given/set per PRS resource set index and/or PRS set index (eg, scrambling sequence ID per PRS resource set), etc.
  • sequence initialization values may be differently set/allocated.
  • Equation (4) the following five factors can be considered. That is, for example, the sequence initialization operation according to Equation (4) may be performed for the following five elements.
  • Sequence initialization value to initialize the sequence For example, it may be a Gold sequence initialization value.
  • sequence initialization method according to various embodiments of the present disclosure may be applied not only to the initialization of the gold sequence, but also to the initialization of other sequences, in this case May mean another sequence initialization value.
  • It may be a specific RS (eg, PRS) sequence ID and/or a scrambling ID and/or a resource ID of a specific RS (eg, PRS) resource and/or an ID representing a resource set/instructed for each resource.
  • RS eg, PRS
  • a specific RS eg, PRS
  • M >0 bits.
  • RS eg, PRS
  • PRS block index (and/or PRS block group index and/or PRS opportunity index and/or PRS opportunity group index).
  • the gun can be defined/set in bits.
  • Slot index and/or slot number For example, it may be a slot index and/or a slot number in a frame.
  • the maximum value of may vary depending on the SCS numerology of NR.
  • Equation (4-1) A more specific example of may be as in Equation (4-1). That is, for example, a sequence initialization method such as Equation (4-1) below may be considered.
  • M can be defined as a fixed value.
  • M May be related to the bit size of.
  • PRS ( ) Of the bit size (e.g., 12 bits) is for CSI-RS ( ) Can be larger than the bit size (eg, 10 bits).
  • L can be defined as a fixed value.
  • K can be defined as a fixed value.
  • Slot index and/or slot number For example, it may be a slot index and/or a slot number in a frame.
  • the maximum value of may vary depending on the SCS numerology of NR.
  • Modulo arithmetic Modulo operation
  • Equation (4-2) The order of can be different.
  • an intuitive modification of Equation (4-2) is It may be understood as another example of various embodiments.
  • the terminal can obtain a measurement by classifying specific (same) RS (eg, PRS) resources transmitted from different TP/base stations.
  • RS eg, PRS
  • the following method may be considered.
  • a specific RS eg, PRS
  • the base station and/or the LMF setting/instructing a plurality of scrambling sequence IDs in one RS resource may be limitedly applied only when, for example, a specific RS resource is included in a plurality of RS resource sets (if it belongs). For example, when a specific RS resource is set to be included in two or more RS resource sets, the UE may automatically recognize that several scrambling sequence IDs have been set (eg, as many as the number of included RS resource sets).
  • sequence initialization information may be informed by the base station to the LMF/location server, and if necessary, the LMF/location server may request some or all of the sequence initialization information from the base station.
  • a specific PRS resource set may be linked/connected/associated to a specific TP.
  • DL PRS resources included in the DL PRS resource set may be associated with the same TRP. That is, for example, a specific PRS resource set may be transmitted only in a specific TP.
  • a specific PRS resource may be a member of one or more PRS resource sets. That is, for example, specific PRS resources included in different PRS resource sets may be transmitted in several TPs.
  • the UE can determine when a PRS resource is received in which PRS resource set a specific PRS resource is included, it can determine from which TP the PRS resource is transmitted.
  • a specific TP is not interlocked/connected/associated only with one PRS resource set, but can transmit two or more multiple PRS resource sets. For example, assuming that a specific TP has two transmit TX panels, an environment in which a specific TP transmits one PRS resource set per panel may be assumed. In other words, for example, if the UE can determine from which PRS resource set a specific PRS resource is transmitted, the UE may determine which PRS resource is transmitted through which of the transmission panels of the TP.
  • the terminal is more than distinguishing which TP transmitted the PRS resource. You can grasp more details.
  • the following default behavior of the terminal may be provided.
  • a specific ID set at the RS set level that is, for example, an RS set ID and/or a sequence ID set at the RS set level
  • a basic operation of the terminal may be suggested.
  • Equation (0) equation (1), equation (1-1), equation (1-2), equation (2), Equation (2-1), etc.
  • Equation (1), Equation (2), Equation (2-1), etc. may be examples of Equation (0), and (1-1), Equation (1-2) may be an example of the definition of the function g.
  • the terminal If the terminal is not instructed/set from this base station/location server, the terminal Can be interpreted/regarded/assumed as an ID set/indicated at the TP-level (for example, a TP ID and/or a specific ID set together when setting a TP, a sequence ID indicated/set per TP, etc.).
  • the UE calculates by substituting a specific TP ID to which the RS resource set is linked/connected/associated instead of the sequence ID set as the RS set level in one or more of the above sequence initialization equations, and
  • the sequence initialization value can be calculated with the value.
  • the operation of such a terminal may be set/instructed from the base station/location server.
  • each PRS set is linked/connected/associated with a specific TP
  • the above-described characteristics may be very useful.
  • the terminal receives a specific PRS resource, it may be because the identification of which PRS resource set includes a specific PRS resource is to distinguish which PRS resource, etc. is transmitted from which TP as a result.
  • the terminal If the terminal is not instructed/set from this base station/location server, the terminal Can be interpreted/regarded/assumed as PCID (physical cell ID, physical cell ID).
  • PCID physical cell ID, physical cell ID
  • the operation of such a terminal may be set/instructed from the base station/location server.
  • one cell corresponds to one TP, and in this case, it may be reasonable to regard it as a cell ID rather than a TP ID.
  • the sequence initialization equation can be calculated by substituting 0.
  • the PRS sequence initialization may be different for each OFDM symbol as described above, it may not be necessary to generate a new sequence for each symbol.
  • PRS is a PRS setting such as PRS opportunity/block/group. Accordingly, a significant number of (eg, a certain number or more) OFDM symbols can be transmitted over several slots (and/or subframes) in succession.
  • a specific/same PRS resource PRS may be managed by the location server/LMF, and it may not be necessary to transmit the PRS resource in an adjacent neighboring cell.
  • some or all of the time-frequency resources may be shared so that the PRS is rarely transmitted in different cells/TPs/base stations.
  • the location server/LMF can schedule/manage so that different PRS resources (eg, PRS resource ID) are not transmitted because frequency resources are used together.
  • a method in which a sequence initialization value is changed only for one or more of the following elements/variables may be provided without depending on the OFDM symbol.
  • sequence initialization equation in the form of removing the symbol index l from one or more of the above sequence initialization equations may be considered.
  • PRS unlike other RSs, it may be important that the UE knows which cell (base station) and TP (eg, remote radio head (RRH)) the PRS is transmitted from.
  • TP remote radio head
  • a method for extending/applying a CSI-RS sequence initialization method in consideration of backward compatibility with a sequence initialization method of another RS eg, CSI-RS, etc.
  • a function consisting of one or more elements among the total number of symbols per slot, slot index in frame, symbol index in slot, scrambling sequence ID of RS resource and/or RS resource ID Can be considered.
  • a sequence initialization value may be set/instructed as in Equation (5).
  • a sequence initialization scheme of CSI-RS resources such as Equation (5-1) may be considered.
  • # Of symbols per slot may vary according to the CP length. For example, it may be 14 for a normal CP and 12 for an extended CP. For example, it may be defined/set to other values in addition to 14 or 12.
  • one slot in the case of normal CP may consist of 14 symbols.
  • RS (eg, PRS) sequence ID and/or RS resource ID may be set/indicated.
  • B may be 1 or a natural number greater than 1.
  • B may be the number of bits used to set the RS scrambling sequence ID. For example, if the scrambling sequence ID is 12 bits, Can be
  • the terminal Can be recognized/recognized as TP ID rather than PCID.
  • the terminal Can be recognized/recognized as a scrambling ID set at the TP level, not the TP ID.
  • the operation of such a terminal may be set/instructed from the base station/location server.
  • the operation of the terminal is not only the sequence initialization method according to Equation (5) and Equation (5-1), but also in one or more of the above-described sequence initialization equations (for example, Equation (0 ), Equation (0-1), Equation (1), Equation (1-1), Equation (1-2), Equation (2), Equation (2-1), Equation (3 ), Equation (3-1), Equation (4), Equation (4-1), Equation (4-2), etc.) can all be applied.
  • Equation (0 ), Equation (0-1), Equation (1), Equation (1-1), Equation (1-2), Equation (2), Equation (2-1), Equation (3 ), Equation (3-1), Equation (4), Equation (4-1), Equation (4-2), etc. can all be applied.
  • a specific PRS resource may be set/instructed to be transmitted in multiple TPs.
  • the scrambling sequence ID among the configuration parameters of the PRS resource If is not configured, if the UE considers the PCID instead of the (scrambled) sequence ID, it may be difficult for the UE to determine from which TP of the PRS resources the PRS resource is transmitted.
  • the necessary information may be TP information to which the PRS resource is transmitted.
  • the TP transmits several PRS resources to the terminal through the same transmission TX beam in order to establish an appropriate transmission/reception beam between a specific TP and a terminal.
  • the terminal may transmit several PRS resources to the terminal through the same transmission TX beam in order to establish an appropriate transmission/reception beam between a specific TP and a terminal.
  • the purpose of the operation may be to change the reception beam of the terminal and find an appropriate reception beam of the terminal.
  • setting the sequence ID to the terminal for each PRS resource may unnecessarily increase the signaling overhead. For example, assuming that 12 bits of the PRS scrambling ID are used per resource, signaling of 120 bits is required even if only 10 PRS resources are considered, and signaling overhead may be unnecessarily large.
  • the terminal measures the timing of PRS resources such as time of arrival (ToA), time of flight (ToF), and propagation time. ) Should be measured for each TP.
  • ToA time of arrival
  • ToF time of flight
  • propagation time a time of flight
  • the UE distinguishes the PRS resources transmitted for each TP because the time-frequency resources used by the same PRS resources are the same. Therefore, it may be difficult to distinguish ToA/ToF/propagation time.
  • the timing measurement is to measure the first peak of the received signal
  • the UE measures the ToA/ToF/propagation time of the PRS resource, the closest to the UE among several TPs.
  • There may be a high probability of obtaining timing measurements such as ToA/ToF/propagation time corresponding to TP.
  • a method of indirectly distinguishing transmission of the same PRS resource in different TPs may be provided using a CSI-RS sequence initialization method.
  • the base station/location server may not intentionally set a scrambling sequence ID in the PRS resource.
  • the UE may substitute it with the TP ID for interpretation. That is, for example, the terminal may be interpreted by replacing it with the TP ID of the TP interlocked/connected/associated with the PRS resource and/or the PRS resource set including the PRS resource.
  • the base station/location server transmits a specific PRS resource in several TPs, the sequence is different, so that the terminal can distinguish the PRS resource.
  • a specific ID used for sequence initialization may be set/indicated for each RS resource, such as a CSI-RS.
  • the sequence initialization value has different values according to the symbol index and/or the slot index, etc., it may not be all different for each RS resource.
  • signaling overhead can be greatly reduced. There may be advantages that are there.
  • the base station/location server sets the (scrambling) sequence ID of the RS (eg, PRS) to the terminal by RS (eg, PRS) resource set (and/or by RS resource group) /Can be ordered.
  • RS eg, PRS
  • each TP may use a total of T sequences.
  • a set of PRS resources may be configured/instructed from the base station/location server to the terminal so that different TPs use different sequences.
  • a rule can be defined so that the base station informs the UE through a predefined signal (eg, a physical layer signal or a higher layer signal). have.
  • a terminal may perform a network access process to perform the procedures and/or methods described/suggested above. For example, while accessing a network (eg, a base station), the terminal may receive system information and configuration information necessary to perform the procedures and/or methods described/suggested above and store them in a memory. Configuration information required for various embodiments of the present disclosure may be received through higher layer (eg, RRC layer; Medium Access Control, MAC, layer, etc.) signaling.
  • RRC layer e.g, RRC layer; Medium Access Control, MAC, layer, etc.
  • FIG. 21 is a diagram briefly illustrating a network initial connection and a subsequent communication process according to various embodiments of the present disclosure.
  • a physical channel and a reference signal may be transmitted using beam-forming.
  • a beam-management process may be involved in order to align beams between the base station and the terminal.
  • signals proposed in various embodiments of the present disclosure may be transmitted/received using beam-forming.
  • RRC Radio Resource Control
  • beam alignment may be performed based on SSB (or SS/PBCH block).
  • beam alignment may be performed based on CSI-RS (in DL) and SRS (in UL). Meanwhile, when beam-forming-based signal transmission is not supported, an operation related to the beam may be omitted in the following description.
  • a base station may periodically transmit an SSB (2702).
  • SSB includes PSS/SSS/PBCH.
  • SSB can be transmitted using beam sweeping.
  • the base station may transmit Remaining Minimum System Information (RMSI) and Other System Information (OSI) (2704).
  • the RMSI may include information (eg, PRACH configuration information) necessary for the terminal to initially access the base station.
  • the UE identifies the best SSB.
  • the terminal may transmit the RACH preamble (Message 1, Msg1) to the base station using the PRACH resource linked/corresponding to the index (ie, the beam) of the best SSB (2706).
  • the beam direction of the RACH preamble is associated with the PRACH resource.
  • the association between the PRACH resource (and/or the RACH preamble) and the SSB (index) may be set through system information (eg, RMSI).
  • the base station transmits a RAR (Random Access Response) (Msg2) in response to the RACH preamble (2708), and the UE sends Msg3 (e.g., RRC Connection Request) using the UL grant in the RAR.
  • Msg4 may include RRC Connection Setup.
  • beam alignment thereafter may be performed based on SSB/CSI-RS (in DL) and SRS (in UL).
  • the terminal may receive an SSB/CSI-RS (2714).
  • SSB/CSI-RS may be used by the UE to generate a beam/CSI report.
  • the base station may request a beam/CSI report from the terminal through DCI (2716).
  • the UE may generate a beam/CSI report based on the SSB/CSI-RS, and transmit the generated beam/CSI report to the base station through PUSCH/PUCCH (2718).
  • the beam/CSI report may include a beam measurement result, information on a preferred beam, and the like.
  • the base station and the terminal may switch the beam based on the beam/CSI report (2720a, 2720b).
  • the terminal and the base station may perform the procedures and/or methods described/suggested above.
  • the terminal and the base station process information in the memory according to various embodiments of the present disclosure based on configuration information obtained in a network access process (e.g., a system information acquisition process, an RRC connection process through RACH, etc.)
  • the wireless signal may be transmitted, or the received wireless signal may be processed and stored in a memory.
  • the radio signal may include at least one of a PDCCH, a PDSCH, and a reference signal (RS) in case of a downlink, and may include at least one of a PUCCH, a PUSCH, and an SRS in case of an uplink.
  • RS reference signal
  • FIG. 22 is a diagram illustrating a DRX operation according to various embodiments of the present disclosure.
  • a terminal may perform a DRX operation while performing the procedures and/or methods described/suggested above.
  • a terminal in which DRX is configured can reduce power consumption by discontinuously receiving DL signals.
  • DRX may be performed in Radio Resource Control (RRC)_IDLE state, RRC_INACTIVE state, and RRC_CONNECTED state.
  • RRC_IDLE state and RRC_INACTIVE state the DRX is used to receive paging signals discontinuously.
  • DRX is used for discontinuous reception of PDCCH.
  • DRX performed in the RRC_CONNECTED state is referred to as RRC_CONNECTED DRX.
  • a DRX cycle consists of On Duration and Opportunity for DRX.
  • the DRX cycle defines a time interval in which On Duration is periodically repeated.
  • On Duration represents a time period during which the UE monitors to receive the PDCCH.
  • the UE performs PDCCH monitoring during On Duration. If there is a PDCCH successfully detected during PDCCH monitoring, the UE operates an inactivity timer and maintains an awake state. On the other hand, if there is no PDCCH successfully detected during PDCCH monitoring, the terminal enters a sleep state after the On Duration is over.
  • PDCCH monitoring/reception may be discontinuously performed in the time domain in performing the procedure and/or method described/proposed above.
  • a PDCCH reception opportunity eg, a slot having a PDCCH search space
  • PDCCH monitoring/reception may be continuously performed in the time domain in performing the procedures and/or methods described/proposed above.
  • a PDCCH reception opportunity eg, a slot having a PDCCH search space
  • PDCCH monitoring may be restricted in a time period set as a measurement gap.
  • Table 11 shows the process of the terminal related to the DRX (RRC_CONNECTED state).
  • DRX configuration information is received through higher layer (eg, RRC) signaling, and whether DRX ON/OFF is controlled by a DRX command of the MAC layer.
  • RRC Radio Resource Control
  • the UE may discontinuously perform PDCCH monitoring in performing the procedure and/or method described/suggested in various embodiments of the present disclosure.
  • the MAC-CellGroupConfig includes configuration information required to set a medium access control (MAC) parameter for a cell group.
  • MAC-CellGroupConfig may also include configuration information about DRX.
  • MAC-CellGroupConfig defines DRX, and may include information as follows.
  • -Value of drx-InactivityTimer Defines the length of the time interval in which the UE is awake after the PDCCH opportunity in which the PDCCH indicating initial UL or DL data is detected
  • -Value of drx-HARQ-RTT-TimerDL Defines the length of the maximum time interval from receiving the initial DL transmission until the DL retransmission is received.
  • the UE performs PDCCH monitoring at every PDCCH opportunity while maintaining the awake state.
  • the DRX is used to receive paging signals discontinuously.
  • DRX performed in the RRC_IDLE (or RRC_INACTIVE) state is referred to as RRC_IDLE DRX.
  • PDCCH monitoring/reception may be discontinuously performed in the time domain in performing the procedure and/or method described/proposed above.
  • a DRX may be configured for discontinuous reception of a paging signal.
  • the terminal may receive DRX configuration information from the base station through higher layer (eg, RRC) signaling.
  • DRX configuration information may include configuration information for a DRX cycle, a DRX offset, and a DRX timer.
  • the UE repeats On Duration and Sleep duration according to the DRX cycle.
  • the terminal may operate in a wakeup mode in an On duration and a sleep mode in a Sleep duration. In the wakeup mode, the terminal may monitor a Paging Occasion (PO) in order to receive a paging message.
  • PO Paging Occasion
  • PO means a time resource/section (eg, subframe, slot) in which the terminal expects to receive a paging message.
  • PO monitoring includes monitoring the PDCCH (or MPDCCH, NPDCCH) scrambled from PO to P-RNTI (hereinafter, paging PDCCH).
  • the paging message may be included in the paging PDCCH or may be included in the PDSCH scheduled by the paging PDCCH.
  • One or more PO(s) are included in a paging frame (PF), and the PF may be periodically set based on the UE ID.
  • the PF corresponds to one radio frame, and the UE ID may be determined based on the International Mobile Subscriber Identity (IMSI) of the terminal.
  • IMSI International Mobile Subscriber Identity
  • the terminal monitors only one PO per DRX cycle.
  • the terminal receives a paging message instructing to change its ID and/or system information from the PO, it performs a RACH process to initialize (or reset) connection with the base station, or receives new system information from the base station ( Or obtain). Therefore, in performing the above-described/suggested procedure and/or method, the PO monitoring may be performed discontinuously in the time domain to perform RACH for connection with the base station or to receive (or acquire) new system information from the base station. I can.
  • FIG. 23 is a diagram schematically illustrating a method of operating a terminal and a TP according to various embodiments of the present disclosure.
  • 24 is a flowchart illustrating a method of operating a terminal according to various embodiments of the present disclosure.
  • 25 is a flowchart illustrating a method of operating a TP according to various embodiments of the present disclosure.
  • the TP may transmit information related to a PRS sequence identifier (ID), and the terminal may receive it.
  • ID PRS sequence identifier
  • the TP may transmit a PRS related to the PRS sequence ID, and the terminal may receive it.
  • the TP may transmit a PDSCH in one or more REs except for a resource element (RE) in which a PRS included in a certain resource region is received, and the terminal receives/ Can be decoded.
  • RE resource element
  • the PDCCH physical downlink control channel for the PDSCH may be transmitted/received/monitored within an On duration related to DRX.
  • a pseudo-random sequence generator related to the sequence generation of PRS Can be initialized according to
  • Is a natural number Is the number of OFDM (orthogonal frequency division multiplexing) symbols per slot, Is the slot index, Is the OFDM symbol index in the slot, Is the PRS sequence ID, May be a modulo operation.
  • the sequence of the PRS may satisfy a value obtained from a gold sequence having a preset length of 31.
  • a rule can be defined so that the base station informs the UE through a predefined signal (eg, a physical layer signal or a higher layer signal). have.
  • 26 is a diagram illustrating an apparatus in which various embodiments of the present disclosure may be implemented.
  • the apparatus shown in FIG. 26 is a user equipment (UE) and/or a base station (eg, eNB or gNB, or TP) and/or a location server (or LMF) adapted to perform the above-described mechanism, or the same operation It can be any device that performs.
  • UE user equipment
  • base station eg, eNB or gNB, or TP
  • LMF location server
  • the apparatus may include a digital signal processor (DSP)/microprocessor 210 and a radio frequency (RF) module (transmitter/receiver) 235.
  • the DSP/microprocessor 210 is electrically connected to the transceiver 235 to control the transceiver 235.
  • the device depending on the designer's selection, the power management module 205, battery 255, display 215, keypad 220, SIM card 225, memory device 230, antenna 240, speaker ( 245 and an input device 250 may be further included.
  • FIG. 26 may represent a terminal including a receiver 235 configured to receive a request message from a network and a transmitter 235 configured to transmit timing transmission/reception timing information to the network. These receivers and transmitters may constitute a transceiver 235.
  • the terminal may further include a processor 210 connected to the transceiver 235.
  • FIG. 26 may show a network device including a transmitter 235 configured to transmit a request message to a terminal and a receiver 235 configured to receive transmission/reception timing information from the terminal.
  • the transmitter and receiver may constitute a transceiver 235.
  • the network further includes a processor 210 coupled to the transmitter and receiver. The processor 210 may calculate latency based on the transmission/reception timing information.
  • a terminal or a communication device included in the terminal and/or a base station (or a communication device included in the base station) and/or a location server (or a communication device included in the location server)
  • the processor included in the device controls the memory and can operate as follows.
  • a terminal or a base station or a location server may include at least one transceiver; One or more memories; And one or more processors connected to the transceiver and the memory.
  • the memory may store instructions that enable one or more processors to perform the following operations.
  • the communication device included in the terminal, the base station, or the location server may be configured to include the one or more processors and the one or more memories, and the communication device includes the one or more transceivers or the one or more transceivers. It may be configured to be connected to the at least one transceiver without including.
  • one or more processors included in the terminal may receive information related to a PRS (positioning reference signal) sequence ID (identifier). I can.
  • PRS positioning reference signal
  • identifier identifier
  • one or more processors included in the terminal may receive a PRS related to a PRS sequence ID.
  • one or more processors included in the terminal may receive/decode the PDSCH in one or more REs except for a resource element (RE) in which a PRS included in a predetermined resource region is received.
  • RE resource element
  • the PDCCH physical downlink control channel
  • the PDCCH for the PDSCH may be received/monitored within an on duration related to DRX.
  • a pseudo-random sequence generator related to the sequence generation of PRS Can be initialized according to
  • Is a natural number Is the number of OFDM (orthogonal frequency division multiplexing) symbols per slot, Is the slot index, Is the OFDM symbol index in the slot, Is the PRS sequence ID, May be a modulo operation.
  • the sequence of the PRS may satisfy a value obtained from a gold sequence having a preset length of 31.
  • one or more processors included in a base station may transmit information related to a PRS (positioning reference signal) sequence ID (identifier). I can.
  • PRS positioning reference signal
  • sequence ID identifier
  • one or more processors included in a base station may transmit a PRS related to a PRS sequence ID.
  • one or more processors included in the base station may transmit the PDSCH in one or more REs except for a resource element (RE) in which a PRS included in a predetermined resource region is received.
  • RE resource element
  • the PDCCH physical downlink control channel for the PDSCH may be transmitted within an on duration related to DRX.
  • a pseudo-random sequence generator related to the sequence generation of PRS Can be initialized according to
  • Is a natural number Is the number of OFDM (orthogonal frequency division multiplexing) symbols per slot, Is the slot index, Is the OFDM symbol index in the slot, Is the PRS sequence ID, May be a modulo operation.
  • the sequence of the PRS may satisfy a value obtained from a gold sequence having a preset length of 31.
  • the various embodiments of the present disclosure may be implemented in combination/combination with each other unless compatible with each other is impossible.
  • a terminal and/or a base station and/or a location server (such as a processor included in) according to various embodiments of the present disclosure may be Combined/combined operations can be performed.
  • FIG. 27 illustrates a communication system applied to various embodiments of the present disclosure.
  • a communication system 1 applied to various embodiments of the present disclosure includes a wireless device, a base station, and a network.
  • the wireless device refers to a device that performs communication using a wireless access technology (eg, 5G NR (New RAT), LTE (Long Term Evolution)), and may be referred to as a communication/wireless/5G device.
  • wireless devices include robots 100a, vehicles 100b-1 and 100b-2, eXtended Reality (XR) devices 100c, hand-held devices 100d, and home appliances 100e. ), an Internet of Thing (IoT) device 100f, and an AI device/server 400.
  • the vehicle may include a vehicle equipped with a wireless communication function, an autonomous vehicle, and a vehicle capable of performing inter-vehicle communication.
  • the vehicle may include an Unmanned Aerial Vehicle (UAV) (eg, a drone).
  • UAV Unmanned Aerial Vehicle
  • XR devices include AR (Augmented Reality) / VR (Virtual Reality) / MR (Mixed Reality) devices, including HMD (Head-Mounted Device), HUD (Head-Up Display), TV, smartphone, It can be implemented in the form of a computer, wearable device, home appliance, digital signage, vehicle, robot, and the like.
  • Portable devices may include smart phones, smart pads, wearable devices (eg, smart watches, smart glasses), computers (eg, notebook computers, etc.).
  • Home appliances may include TVs, refrigerators, and washing machines.
  • IoT devices may include sensors, smart meters, and the like.
  • the base station and the network may be implemented as a wireless device, and the specific wireless device 200a may operate as a base station/network node to another wireless device.
  • the wireless devices 100a to 100f may be connected to the network 300 through the base station 200.
  • AI Artificial Intelligence
  • the network 300 may be configured using a 3G network, a 4G (eg, LTE) network, or a 5G (eg, NR) network.
  • the wireless devices 100a to 100f may communicate with each other through the base station 200 / network 300, but may perform direct communication (e.g. sidelink communication) without going through the base station / network.
  • the vehicles 100b-1 and 100b-2 may perform direct communication (e.g.
  • V2V Vehicle to Vehicle
  • V2X Vehicle to Everything
  • the IoT device eg, sensor
  • the IoT device may directly communicate with other IoT devices (eg, sensors) or other wireless devices 100a to 100f.
  • Wireless communication/connections 150a, 150b, and 150c may be established between the wireless devices 100a to 100f / base station 200 and the base station 200 / base station 200.
  • the wireless communication/connection includes various wireless access such as uplink/downlink communication 150a, sidelink communication 150b (or D2D communication), base station communication 150c (eg relay, Integrated Access Backhaul). This can be achieved through technology (eg 5G NR)
  • the wireless communication/connection 150a, 150b, 150c may transmit/receive signals through various physical channels.
  • the first wireless device 100 and the second wireless device 200 may transmit and receive wireless signals through various wireless access technologies (eg, LTE and NR).
  • ⁇ the first wireless device 100, the second wireless device 200 ⁇ is the ⁇ wireless device 100x, the base station 200 ⁇ and/or ⁇ wireless device 100x, wireless device 100x) of FIG. 27 ⁇ Can be matched.
  • the first wireless device 100 includes one or more processors 102 and one or more memories 104, and may further include one or more transceivers 106 and/or one or more antennas 108.
  • the processor 102 controls the memory 104 and/or the transceiver 106 and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein.
  • the processor 102 may process information in the memory 104 to generate first information/signal, and then transmit a radio signal including the first information/signal through the transceiver 106.
  • the processor 102 may store information obtained from signal processing of the second information/signal in the memory 104 after receiving a radio signal including the second information/signal through the transceiver 106.
  • the memory 104 may be connected to the processor 102 and may store various information related to the operation of the processor 102.
  • the memory 104 may perform some or all of the processes controlled by the processor 102, or instructions for performing the descriptions, functions, procedures, suggestions, methods, and/or operational flow charts disclosed in this document. It can store software code including
  • the processor 102 and the memory 104 may be part of a communication modem/circuit/chip designed to implement wireless communication technology (eg, LTE, NR).
  • the transceiver 106 may be coupled with the processor 102 and may transmit and/or receive radio signals through one or more antennas 108.
  • the transceiver 106 may include a transmitter and/or a receiver.
  • the transceiver 106 may be mixed with an RF (Radio Frequency) unit.
  • a wireless device may mean a communication modem/circuit/chip.
  • the second wireless device 200 includes one or more processors 202 and one or more memories 204, and may further include one or more transceivers 206 and/or one or more antennas 208.
  • the processor 202 controls the memory 204 and/or the transceiver 206 and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein.
  • the processor 202 may process information in the memory 204 to generate third information/signal, and then transmit a wireless signal including the third information/signal through the transceiver 206.
  • the processor 202 may store information obtained from signal processing of the fourth information/signal in the memory 204 after receiving a radio signal including the fourth information/signal through the transceiver 206.
  • the memory 204 may be connected to the processor 202 and may store various information related to the operation of the processor 202.
  • the memory 204 may perform some or all of the processes controlled by the processor 202, or instructions for performing the descriptions, functions, procedures, suggestions, methods and/or operational flow charts disclosed in this document. It can store software code including
  • the processor 202 and the memory 204 may be part of a communication modem/circuit/chip designed to implement wireless communication technology (eg, LTE, NR).
  • the transceiver 206 may be connected to the processor 202 and may transmit and/or receive radio signals through one or more antennas 208.
  • the transceiver 206 may include a transmitter and/or a receiver.
  • the transceiver 206 may be used interchangeably with an RF unit.
  • a wireless device may mean a communication modem/circuit/chip.
  • one or more protocol layers may be implemented by one or more processors 102, 202.
  • one or more processors 102, 202 may implement one or more layers (eg, functional layers such as PHY, MAC, RLC, PDCP, RRC, SDAP).
  • One or more processors 102, 202 may be configured to generate one or more Protocol Data Units (PDUs) and/or one or more Service Data Units (SDUs) according to the description, functions, procedures, proposals, methods, and/or operational flow charts disclosed in this document. Can be generated.
  • PDUs Protocol Data Units
  • SDUs Service Data Units
  • One or more processors 102, 202 may generate messages, control information, data, or information according to the description, function, procedure, suggestion, method, and/or operational flow chart disclosed herein.
  • At least one processor (102, 202) generates a signal (e.g., a baseband signal) including PDU, SDU, message, control information, data or information according to the functions, procedures, proposals and/or methods disclosed herein. , It may be provided to one or more transceivers (106, 206).
  • One or more processors 102, 202 may receive signals (e.g., baseband signals) from one or more transceivers 106, 206, and the descriptions, functions, procedures, proposals, methods, and/or operational flowcharts disclosed herein PDUs, SDUs, messages, control information, data, or information may be obtained according to the parameters.
  • signals e.g., baseband signals
  • One or more of the processors 102 and 202 may be referred to as a controller, microcontroller, microprocessor, or microcomputer.
  • One or more of the processors 102 and 202 may be implemented by hardware, firmware, software, or a combination thereof.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs Field Programmable Gate Arrays
  • the description, functions, procedures, suggestions, methods, and/or operational flow charts disclosed in this document may be implemented using firmware or software, and firmware or software may be implemented to include modules, procedures, functions, and the like.
  • the description, functions, procedures, proposals, methods and/or operational flow charts disclosed in this document are included in one or more processors 102, 202, or stored in one or more memories 104, 204, and are It may be driven by the above processors 102 and 202.
  • the descriptions, functions, procedures, proposals, methods and/or operational flow charts disclosed in this document may be implemented using firmware or software in the form of codes, instructions, and/or sets of instructions.
  • One or more memories 104 and 204 may be connected to one or more processors 102 and 202 and may store various types of data, signals, messages, information, programs, codes, instructions and/or instructions.
  • One or more memories 104 and 204 may be composed of ROM, RAM, EPROM, flash memory, hard drive, register, cache memory, computer readable storage medium, and/or combinations thereof.
  • One or more memories 104 and 204 may be located inside and/or outside of one or more processors 102 and 202.
  • one or more memories 104, 204 may be connected to one or more processors 102, 202 through various technologies such as wired or wireless connection.
  • the one or more transceivers 106 and 206 may transmit user data, control information, radio signals/channels, and the like mentioned in the methods and/or operation flow charts of this document to one or more other devices.
  • One or more transceivers (106, 206) may receive user data, control information, radio signals/channels, etc. mentioned in the description, functions, procedures, suggestions, methods and/or operation flow charts disclosed in this document from one or more other devices.
  • one or more transceivers 106 and 206 may be connected to one or more processors 102 and 202, and may transmit and receive wireless signals.
  • one or more processors 102, 202 may control one or more transceivers 106, 206 to transmit user data, control information, or radio signals to one or more other devices.
  • one or more processors 102, 202 may control one or more transceivers 106, 206 to receive user data, control information, or radio signals from one or more other devices.
  • one or more transceivers (106, 206) may be connected with one or more antennas (108, 208), and one or more transceivers (106, 206) through one or more antennas (108, 208), the description and functionality disclosed in this document. It may be set to transmit and receive user data, control information, radio signals/channels, and the like mentioned in a procedure, a proposal, a method and/or an operation flowchart.
  • one or more antennas may be a plurality of physical antennas or a plurality of logical antennas (eg, antenna ports).
  • One or more transceivers (106, 206) in order to process the received user data, control information, radio signal / channel, etc. using one or more processors (102, 202), the received radio signal / channel, etc. in the RF band signal. It can be converted into a baseband signal.
  • One or more transceivers 106 and 206 may convert user data, control information, radio signals/channels, etc. processed using one or more processors 102 and 202 from a baseband signal to an RF band signal.
  • one or more of the transceivers 106 and 206 may include (analog) oscillators and/or filters.
  • one or more memories may store instructions or programs, and the instructions or programs, when executed, are operably stored in the one or more memories. It is possible to cause one or more connected processors to perform operations according to various embodiments or implementations of the present disclosure.
  • a computer-readable storage medium may store one or more instructions or computer programs, and the one or more instructions or computer programs may be executed by one or more processors.
  • the one or more processors may be caused to perform operations according to various embodiments or implementations of the present disclosure.
  • a processing device or apparatus may include one or more processors and one or more computer memories connectable to the one or more processors.
  • the one or more computer memories may store instructions or programs, and the instructions or programs, when executed, cause one or more processors operably connected to the one or more memories to cause various embodiments of the present disclosure. Or it can be made to perform actions according to implementations.
  • FIG. 29 illustrates another example of a wireless device applied to various embodiments of the present disclosure.
  • the wireless device may be implemented in various forms according to use-examples/services (see FIG. 27).
  • the wireless devices 100 and 200 correspond to the wireless devices 100 and 200 of FIG. 28, and various elements, components, units/units, and/or modules ).
  • the wireless devices 100 and 200 may include a communication unit 110, a control unit 120, a memory unit 130, and an additional element 140.
  • the communication unit may include a communication circuit 112 and a transceiver(s) 114.
  • the communication circuit 112 may include one or more processors 102 and 202 and/or one or more memories 104 and 204 of FIG. 28.
  • transceiver(s) 114 may include one or more transceivers 106,206 and/or one or more antennas 108,208 of FIG. 28.
  • the control unit 120 is electrically connected to the communication unit 110, the memory unit 130, and the additional element 140 and controls all operations of the wireless device.
  • the controller 120 may control the electrical/mechanical operation of the wireless device based on the program/code/command/information stored in the memory unit 130.
  • the control unit 120 transmits the information stored in the memory unit 130 to an external (eg, other communication device) through the communication unit 110 through a wireless/wired interface, or through the communication unit 110 to the outside (eg, Information received through a wireless/wired interface from another communication device) may be stored in the memory unit 130.
  • the additional element 140 may be variously configured according to the type of wireless device.
  • the additional element 140 may include at least one of a power unit/battery, an I/O unit, a driving unit, and a computing unit.
  • wireless devices include robots (FIGS. 27, 100a), vehicles (FIGS. 27, 100b-1, 100b-2), XR devices (FIGS. 27, 100c), portable devices (FIGS. 27, 100d), and home appliances.
  • Figs. 27, 100e), IoT devices Figs. 27, 100f
  • digital broadcasting terminals hologram devices, public safety devices, MTC devices, medical devices, fintech devices (or financial devices), security devices, climate/environment devices, It may be implemented in the form of an AI server/device (FIGS. 27 and 400), a base station (FIGS. 27 and 200), and a network node.
  • the wireless device can be used in a mobile or fixed location depending on the use-example/service.
  • various elements, components, units/units, and/or modules in the wireless devices 100 and 200 may be entirely interconnected through a wired interface, or at least some may be wirelessly connected through the communication unit 110.
  • the control unit 120 and the communication unit 110 are connected by wire, and the control unit 120 and the first unit (eg, 130, 140) are connected through the communication unit 110.
  • the control unit 120 and the first unit eg, 130, 140
  • each element, component, unit/unit, and/or module in the wireless device 100 and 200 may further include one or more elements.
  • the controller 120 may be configured with one or more processor sets.
  • control unit 120 may be composed of a set of a communication control processor, an application processor, an electronic control unit (ECU), a graphic processing processor, and a memory control processor.
  • memory unit 130 includes random access memory (RAM), dynamic RAM (DRAM), read only memory (ROM), flash memory, volatile memory, and non-volatile memory. volatile memory) and/or a combination thereof.
  • Portable devices may include smart phones, smart pads, wearable devices (eg, smart watches, smart glasses), and portable computers (eg, notebook computers).
  • the portable device may be referred to as a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS), an advanced mobile station (AMS), or a wireless terminal (WT).
  • MS mobile station
  • UT user terminal
  • MSS mobile subscriber station
  • SS subscriber station
  • AMS advanced mobile station
  • WT wireless terminal
  • the portable device 100 includes an antenna unit 108, a communication unit 110, a control unit 120, a memory unit 130, a power supply unit 140a, an interface unit 140b, and an input/output unit 140c. ) Can be included.
  • the antenna unit 108 may be configured as a part of the communication unit 110.
  • Blocks 110 to 130/140a to 140c correspond to blocks 110 to 130/140 of FIG. 29, respectively.
  • the communication unit 110 may transmit and receive signals (eg, data, control signals, etc.) with other wireless devices and base stations.
  • the controller 120 may perform various operations by controlling components of the portable device 100.
  • the controller 120 may include an application processor (AP).
  • the memory unit 130 may store data/parameters/programs/codes/commands required for driving the portable device 100. Also, the memory unit 130 may store input/output data/information, and the like.
  • the power supply unit 140a supplies power to the portable device 100 and may include a wired/wireless charging circuit, a battery, and the like.
  • the interface unit 140b may support connection between the portable device 100 and other external devices.
  • the interface unit 140b may include various ports (eg, audio input/output ports, video input/output ports) for connection with external devices.
  • the input/output unit 140c may receive or output image information/signal, audio information/signal, data, and/or information input from a user.
  • the input/output unit 140c may include a camera, a microphone, a user input unit, a display unit 140d, a speaker, and/or a haptic module.
  • the input/output unit 140c acquires information/signals (eg, touch, text, voice, image, video) input from the user, and the obtained information/signals are stored in the memory unit 130 Can be saved.
  • the communication unit 110 may convert information/signals stored in the memory into wireless signals, and may directly transmit the converted wireless signals to other wireless devices or to a base station.
  • the communication unit 110 may restore the received radio signal to the original information/signal. After the restored information/signal is stored in the memory unit 130, it may be output in various forms (eg, text, voice, image, video, heptic) through the input/output unit 140c.
  • the vehicle or autonomous vehicle may be implemented as a mobile robot, a vehicle, a train, an aerial vehicle (AV), or a ship.
  • AV aerial vehicle
  • the vehicle or autonomous vehicle 100 includes an antenna unit 108, a communication unit 110, a control unit 120, a driving unit 140a, a power supply unit 140b, a sensor unit 140c, and an autonomous driving unit. It may include a unit (140d).
  • the antenna unit 108 may be configured as a part of the communication unit 110.
  • Blocks 110/130/140a to 140d correspond to blocks 110/130/140 of FIG. 29, respectively.
  • the communication unit 110 may transmit and receive signals (eg, data, control signals, etc.) with external devices such as other vehicles, base stations (e.g. base stations, roadside base stations, etc.), and servers.
  • the controller 120 may perform various operations by controlling elements of the vehicle or the autonomous vehicle 100.
  • the control unit 120 may include an Electronic Control Unit (ECU).
  • the driving unit 140a may cause the vehicle or the autonomous vehicle 100 to travel on the ground.
  • the driving unit 140a may include an engine, a motor, a power train, a wheel, a brake, a steering device, and the like.
  • the power supply unit 140b supplies power to the vehicle or the autonomous vehicle 100, and may include a wired/wireless charging circuit, a battery, and the like.
  • the sensor unit 140c may obtain vehicle status, surrounding environment information, user information, and the like.
  • the sensor unit 140c is an IMU (inertial measurement unit) sensor, a collision sensor, a wheel sensor, a speed sensor, an inclination sensor, a weight detection sensor, a heading sensor, a position module, and a vehicle advancement. /Reverse sensor, battery sensor, fuel sensor, tire sensor, steering sensor, temperature sensor, humidity sensor, ultrasonic sensor, illumination sensor, pedal position sensor, etc. may be included.
  • the autonomous driving unit 140d is a technology for maintaining a driving lane, a technology for automatically adjusting the speed such as adaptive cruise control, a technology for automatically driving along a predetermined route, and for driving by automatically setting a route when a destination is set. Technology, etc. can be implemented.
  • the communication unit 110 may receive map data and traffic information data from an external server.
  • the autonomous driving unit 140d may generate an autonomous driving route and a driving plan based on the acquired data.
  • the controller 120 may control the driving unit 140a so that the vehicle or the autonomous driving vehicle 100 moves along the autonomous driving path according to the driving plan (eg, speed/direction adjustment).
  • the communication unit 110 asynchronously/periodically acquires the latest traffic information data from an external server, and may acquire surrounding traffic information data from surrounding vehicles.
  • the sensor unit 140c may acquire vehicle state and surrounding environment information.
  • the autonomous driving unit 140d may update the autonomous driving route and the driving plan based on the newly acquired data/information.
  • the communication unit 110 may transmit information about a vehicle location, an autonomous driving route, and a driving plan to an external server.
  • the external server may predict traffic information data in advance using AI technology or the like based on information collected from the vehicle or autonomously driving vehicles, and may provide the predicted traffic information data to the vehicle or autonomously driving vehicles.
  • Vehicles 32 illustrates a vehicle applied to various embodiments of the present disclosure. Vehicles may also be implemented as means of transport, trains, aircraft, and ships.
  • the vehicle 100 may include a communication unit 110, a control unit 120, a memory unit 130, an input/output unit 140a, and a position measurement unit 140b.
  • blocks 110 to 130/140a to 140b correspond to blocks 110 to 130/140 of FIG. 29, respectively.
  • the communication unit 110 may transmit and receive signals (eg, data, control signals, etc.) with other vehicles or external devices such as a base station.
  • the controller 120 may perform various operations by controlling components of the vehicle 100.
  • the memory unit 130 may store data/parameters/programs/codes/commands supporting various functions of the vehicle 100.
  • the input/output unit 140a may output an AR/VR object based on information in the memory unit 130.
  • the input/output unit 140a may include a HUD.
  • the location measurement unit 140b may obtain location information of the vehicle 100.
  • the location information may include absolute location information of the vehicle 100, location information within a driving line, acceleration information, location information with surrounding vehicles, and the like.
  • the location measurement unit 140b may include GPS and various sensors.
  • the communication unit 110 of the vehicle 100 may receive map information, traffic information, etc. from an external server and store it in the memory unit 130.
  • the location measurement unit 140b may acquire vehicle location information through GPS and various sensors and store it in the memory unit 130.
  • the controller 120 may generate a virtual object based on map information, traffic information, vehicle location information, and the like, and the input/output unit 140a may display the generated virtual object on a window in the vehicle (1410, 1420).
  • the controller 120 may determine whether the vehicle 100 is operating normally within the driving line based on the vehicle location information. When the vehicle 100 deviates from the driving line abnormally, the control unit 120 may display a warning on the window of the vehicle through the input/output unit 140a.
  • control unit 120 may broadcast a warning message regarding a driving abnormality to nearby vehicles through the communication unit 110.
  • controller 120 may transmit location information of the vehicle and information on driving/vehicle abnormalities to a related organization through the communication unit 110.
  • certain devices include a base station, a network node, a transmission terminal, a receiving terminal, a wireless device, a wireless communication device, a vehicle, a vehicle equipped with an autonomous driving function, a drone (Unmanned Aerial Vehicle, UAV), and AI (Artificial Intelligence). It may be a module, a robot, an AR (Augmented Reality) device, a VR (Virtual Reality) device, or other devices.
  • the terminal may be a personal digital assistant (PDA), a cellular phone, a personal communication service (PCS) phone, a Global System for Mobile (GSM) phone, a Wideband CDMA (WCDMA) phone, and an MBS ( Mobile Broadband System) phone, smart phone, or a multi-mode multi-band (MM-MB) terminal.
  • PDA personal digital assistant
  • PCS personal communication service
  • GSM Global System for Mobile
  • WCDMA Wideband CDMA
  • MBS Mobile Broadband System
  • smart phone or a multi-mode multi-band (MM-MB) terminal.
  • MM-MB multi-mode multi-band
  • the smart phone is a terminal that combines the advantages of a mobile communication terminal and a personal portable terminal, and may mean a terminal in which data communication functions such as schedule management, fax transmission and reception, and Internet access, which are functions of a personal portable terminal, are integrated with the mobile communication terminal.
  • a multi-mode multi-band terminal can operate in both portable Internet systems and other mobile communication systems (eg, Code Division Multiple Access (CDMA) 2000 systems, Wideband CDMA (WCDMA) systems, etc.) with built-in multi-modem chips. It refers to a terminal that has CDMA 2000 systems, Wideband CDMA (WCDMA) systems, etc.) with built-in multi-modem chips. It refers to a terminal that has CDMA 2000 systems, Wideband CDMA (WCDMA) systems, etc.) with built-in multi-modem chips. It refers to a terminal that has CDMA 2000 systems, Wideband CDMA (WCDMA) systems, etc.) with built-in multi-modem chips. It refers to a terminal that has
  • the terminal is a notebook PC, a handheld PC, a tablet PC, an ultrabook, a slate PC, a digital broadcasting terminal, a portable multimedia player (PMP), a navigation system, It may be a wearable device, for example, a smartwatch, a smart glass, a head mounted display (HMD), etc.
  • a wearable device for example, a smartwatch, a smart glass, a head mounted display (HMD), etc.
  • a drone does not ride on a human and is driven by a wireless control signal.
  • the HMD may be a display device worn on a head, for example, the HMD may be used to implement VR or AR.
  • Various embodiments of the present disclosure may be implemented through various means.
  • various embodiments of the present disclosure may be implemented by hardware, firmware, software, or a combination thereof.
  • a method includes one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs). ), field programmable gate arrays (FPGAs), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • the method according to various embodiments of the present disclosure may be implemented in the form of a module, procedure, or function that performs the functions or operations described above.
  • the software code may be stored in a memory and driven by a processor.
  • the memory may be located inside or outside the processor, and may exchange data with the processor through various known means.
  • Various embodiments of the present disclosure may be applied to various wireless access systems.
  • various wireless access systems there is a 3rd Generation Partnership Project (3GPP) or a 3GPP2 system.
  • 3GPP 3rd Generation Partnership Project
  • 3GPP2 3rd Generation Partnership Project2
  • Various embodiments of the present disclosure may be applied not only to the various wireless access systems, but also to all technical fields to which the various wireless access systems are applied.
  • the proposed method can be applied to a mmWave communication system using an ultra-high frequency band.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 개시의 일 양상에 따르면, 무선통신 시스템에서 단말의 방법에 있어서, PRS(positioning reference signal) 시퀀스 ID(identifier)와 관련된 정보를 수신하는 과정, PRS 시퀀스 ID와 관련된 PRS를 수신하는 과정, 및 일정 자원 영역에 포함된 PRS가 수신된 RE(resource element)를 제외한 하나 이상의 RE 에서 PDSCH(physical downlink shared channel)을 디코딩하는 과정을 포함하고, DRX(discontinuous reception)가 설정됨에 기초하여, PDSCH를 위한 PDCCH(physical downlink control channel)는 DRX와 관련된 온 구간(on duration) 내에서 모니터링되는 방법 및 이를 지원하는 장치를 개시한다.

Description

무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
본 개시 (present disclosure) 의 다양한 실시예들은 무선 통신 시스템에 대한 것이다.
무선 접속 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선 접속 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템 등이 있다.
또한, 더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 기존의 RAT (radio access technology) 에 비해 향상된 모바일 브로드밴드 통신에 대한 필요성이 대두되고 있다. 또한 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 매시브 MTC (Machine Type Communications) 역시 차세대 통신에서 고려되고 있다. 뿐만 아니라 신뢰성 (reliability) 및 지연(latency) 에 민감한 서비스/UE 를 고려한 통신 시스템 디자인이 고려되고 있다.
이와 같이 향상된 모바일 브로드밴드 통신, 매시브 MTC, URLLC (Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 RAT의 도입이 논의되고 있다.
본 개시의 다양한 실시예들은 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치를 제공할 수 있다.
예를 들어, 본 개시의 다양한 실시예들은 무선 통신 시스템에서 측위 방법 및 이를 지원하는 장치를 제공할 수 있다.
예를 들어, 본 개시의 다양한 실시예들은 무선 통신 시스템에서 PRS 생성/획득/송수신 방법 및 이를 지원하는 장치를 제공할 수 있다.
본 개시의 다양한 실시예들에서 이루고자 하는 기술적 과제들은 이상에서 언급한 사항들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 이하 설명할 본 개시의 다양한 실시예들로부터 당해 기술분야에서 통상의 지식을 가진 자에 의해 고려될 수 있다.
본 개시의 다양한 실시예들은 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치를 제공할 수 있다.
본 개시의 다양한 실시예들에 따르면, 무선 통신 시스템에서 단말의 방법이 제공될 수 있다.
예시적 실시예에서, 상기 방법은: PRS (positioning reference signal) 시퀀스 ID (identifier) 와 관련된 정보를 수신하는 과정; 상기 PRS 시퀀스 ID 와 관련된 PRS 를 수신하는 과정; 및 일정 자원 영역에 포함된 상기 PRS 가 수신된 RE (resource element) 를 제외한 하나 이상의 RE 에서 PDSCH (physical downlink shared channel) 을 디코딩하는 과정을 포함할 수 있다.
예시적 실시예에서, DRX (discontinuous reception) 가 설정됨에 기초하여, 상기 PDSCH 를 위한 PDCCH (physical downlink control channel) 는, 상기 DRX 와 관련된 온 구간 (on duration) 내에서 모니터링 될 수 있다.
예시적 실시예에서, 상기 PRS 의 시퀀스 생성 (sequence generation) 과 관련된 의사-임의 시퀀스 생성기 (pseudo-random sequence generator) 는,
Figure PCTKR2020005891-appb-img-000001
에 따라 초기화 될 수 있다.
예시적 실시예에서,
Figure PCTKR2020005891-appb-img-000002
은 자연수이고,
Figure PCTKR2020005891-appb-img-000003
는 슬롯 당 OFDM (orthogonal frequency division multiplexing) 심볼 개수이고,
Figure PCTKR2020005891-appb-img-000004
는 슬롯 인덱스 (index) 이고,
Figure PCTKR2020005891-appb-img-000005
는 슬롯 내 OFDM 심볼 인덱스이고,
Figure PCTKR2020005891-appb-img-000006
는 상기 PRS 시퀀스 ID 이고,
Figure PCTKR2020005891-appb-img-000007
는 모듈러 (modulo) 연산일 수 있다.
예시적 실시예에서,
Figure PCTKR2020005891-appb-img-000008
는 상위 계층에 의해서 설정될 수 있다.
예시적 실시예에서,
Figure PCTKR2020005891-appb-img-000009
일 수 있다.
예시적 실시예에서,
Figure PCTKR2020005891-appb-img-000010
은 10 보다 크고 31 보다 작은 자연수일 수 있다.
예시적 실시예에서,
Figure PCTKR2020005891-appb-img-000011
은 19 일 수 있다.
예시적 실시예에서, 상기 PRS 의 시퀀스는, 미리 설정된 길이 31 의 골드 시퀀스 (gold sequence) 로부터 획득되는 값을 만족할 수 있다.
예시적 실시예에서, PRS 자원에 대한 정보 (ii) 상기 PRS 자원을 포함하는 PRS 자원 집합에 대한 정보를 포함하는 (iii) TRP (transmission and reception point) ID 정보를 포함하는 설정 정보를 수신하는 과정을 더 포함할 수 있다.
예시적 실시예에서, 상기 PRS 는, 상기 설정 정보에 기초하여 수신될 수 있다.
본 개시의 다양한 실시예들에 따르면, 무선 통신 시스템의 장치가 제공될 수 있다.
예시적 실시예에서, 상기 장치는: 메모리 (memory); 및 상기 메모리와 연결된 하나 이상의 프로세서 (processor) 를 포함할 수 있다.
예시적 실시예에서, 상기 하나 이상의 프로세서는: PRS (positioning reference signal) 시퀀스 ID (identifier) 와 관련된 정보를 수신하고, 상기 PRS 시퀀스 ID 와 관련된 PRS 를 수신하고, 일정 자원 영역에 포함된 상기 PRS 가 수신된 RE (resource element) 를 제외한 하나 이상의 RE 에서 PDSCH (physical downlink shared channel) 을 디코딩할 수 있다.
예시적 실시예에서, DRX (discontinuous reception) 가 설정됨에 기초하여, 상기 PDSCH 를 위한 PDCCH (physical downlink control channel) 는, 상기 DRX 와 관련된 온 구간 (on duration) 내에서 모니터링 될 수 있다.
예시적 실시예에서, 상기 PRS 의 시퀀스 생성 (sequence generation) 과 관련된 의사-임의 시퀀스 생성기 (pseudo-random sequence generator) 는,
Figure PCTKR2020005891-appb-img-000012
에 따라 초기화 될 수 있다.
예시적 실시예에서,
Figure PCTKR2020005891-appb-img-000013
은 자연수이고,
Figure PCTKR2020005891-appb-img-000014
는 슬롯 당 OFDM (orthogonal frequency division multiplexing) 심볼 개수이고,
Figure PCTKR2020005891-appb-img-000015
는 슬롯 인덱스 (index) 이고,
Figure PCTKR2020005891-appb-img-000016
는 슬롯 내 OFDM 심볼 인덱스이고,
Figure PCTKR2020005891-appb-img-000017
는 상기 PRS 시퀀스 ID 이고,
Figure PCTKR2020005891-appb-img-000018
는 모듈러 (modulo) 연산일 수 있다.
예시적 실시예에서,
Figure PCTKR2020005891-appb-img-000019
는 상위 계층에 의해서 설정될 수 있다.
예시적 실시예에서,
Figure PCTKR2020005891-appb-img-000020
일 수 있다.
예시적 실시예에서,
Figure PCTKR2020005891-appb-img-000021
은 19 일 수 있다.
예시적 실시예에서, 상기 PRS 의 시퀀스는, 미리 설정된 길이 31 의 골드 시퀀스 (gold sequence) 로부터 획득되는 값을 만족할 수 있다.
예시적 실시예에서, 상기 장치는, 이동 단말기, 네트워크 및 상기 장치가 포함된 차량 이외의 자율 주행 차량 중 하나 이상과 통신할 수 있다.
본 개시의 다양한 실시예들에 따르면, 무선 통신 시스템에서 장치의 방법이 제공될 수 있다.
예시적 실시예에서, 상기 방법은: PRS (positioning reference signal) 시퀀스 ID (identifier) 와 관련된 정보를 송신하는 과정; 상기 PRS 시퀀스 ID 와 관련된 PRS 를 송신하는 과정; 및 일정 자원 영역에 포함된 상기 PRS 가 송신된 RE (resource element) 를 제외한 하나 이상의 RE 에서 PDSCH (physical downlink shared channel) 을 송신하는 과정을 포함할 수 있다.
예시적 실시예에서, DRX (discontinuous reception) 가 설정됨에 기초하여, 상기 PDSCH 를 위한 PDCCH (physical downlink control channel) 는, 상기 DRX 와 관련된 온 구간 (on duration) 내에서 송신될 수 있다.
예시적 실시예에서, 상기 PRS 의 시퀀스 생성 (sequence generation) 과 관련된 의사-임의 시퀀스 생성기 (pseudo-random sequence generator) 는,
Figure PCTKR2020005891-appb-img-000022
에 따라 초기화 될 수 있다.
예시적 실시예에서,
Figure PCTKR2020005891-appb-img-000023
은 자연수이고,
Figure PCTKR2020005891-appb-img-000024
는 슬롯 당 OFDM (orthogonal frequency division multiplexing) 심볼 개수이고,
Figure PCTKR2020005891-appb-img-000025
는 슬롯 인덱스 (index) 이고,
Figure PCTKR2020005891-appb-img-000026
는 슬롯 내 OFDM 심볼 인덱스이고,
Figure PCTKR2020005891-appb-img-000027
는 상기 PRS 시퀀스 ID 이고,
Figure PCTKR2020005891-appb-img-000028
는 모듈러 (modulo) 연산일 수 있다.
본 개시의 다양한 실시예들에 따르면, 무선 통신 시스템의 장치가 제공될 수 있다.
예시적 실시예에서, 상기 장치는: 메모리 (memory); 및 상기 메모리와 연결된 하나 이상의 프로세서 (processor) 를 포함할 수 있다.
예시적 실시예에서, 상기 하나 이상의 프로세서는: PRS (positioning reference signal) 시퀀스 ID (identifier) 와 관련된 정보를 송신하고, 상기 PRS 시퀀스 ID 와 관련된 PRS 를 송신하고, 일정 자원 영역에 포함된 상기 PRS 가 송신된 RE (resource element) 를 제외한 하나 이상의 RE 에서 PDSCH (physical downlink shared channel) 을 송신할 수 있다.
예시적 실시예에서, DRX (discontinuous reception) 가 설정됨에 기초하여, 상기 PDSCH 를 위한 PDCCH (physical downlink control channel) 는, 상기 DRX 와 관련된 온 구간 (on duration) 내에서 송신될 수 있다.
예시적 실시예에서, 상기 PRS 의 시퀀스 생성 (sequence generation) 과 관련된 의사-임의 시퀀스 생성기 (pseudo-random sequence generator) 는,
Figure PCTKR2020005891-appb-img-000029
에 따라 초기화 될 수 있다.
예시적 실시예에서,
Figure PCTKR2020005891-appb-img-000030
은 자연수이고,
Figure PCTKR2020005891-appb-img-000031
는 슬롯 당 OFDM (orthogonal frequency division multiplexing) 심볼 개수이고,
Figure PCTKR2020005891-appb-img-000032
는 슬롯 인덱스 (index) 이고,
Figure PCTKR2020005891-appb-img-000033
는 슬롯 내 OFDM 심볼 인덱스이고,
Figure PCTKR2020005891-appb-img-000034
는 상기 PRS 시퀀스 ID 이고,
Figure PCTKR2020005891-appb-img-000035
는 모듈러 (modulo) 연산일 수 있다.
본 개시의 다양한 실시예들에 따르면, 무선 통신 시스템의 장치가 제공될 수 있다.
예시적 실시예에서, 상기 장치는: 하나 이상의 프로세서 (processor); 및 상기 하나 이상의 프로세서가 방법을 수행하도록 하는 하나 이상의 명령어 (instruction) 를 저장하는 하나 이상의 메모리 (memory) 를 포함할 수 있다.
예시적 실시예에서, 상기 방법은: PRS (positioning reference signal) 시퀀스 ID (identifier) 와 관련된 정보를 수신하는 과정; 상기 PRS 시퀀스 ID 와 관련된 PRS 를 수신하는 과정; 및 일정 자원 영역에 포함된 상기 PRS 가 수신된 RE (resource element) 를 제외한 하나 이상의 RE 에서 PDSCH (physical downlink shared channel) 을 디코딩하는 과정을 포함할 수 있다.
예시적 실시예에서, DRX (discontinuous reception) 가 설정됨에 기초하여, 상기 PDSCH 를 위한 PDCCH (physical downlink control channel) 는, 상기 DRX 와 관련된 온 구간 (on duration) 내에서 모니터링 될 수 있다.
예시적 실시예에서, 상기 PRS 의 시퀀스 생성 (sequence generation) 과 관련된 의사-임의 시퀀스 생성기 (pseudo-random sequence generator) 는,
Figure PCTKR2020005891-appb-img-000036
에 따라 초기화 될 수 있다.
예시적 실시예에서,
Figure PCTKR2020005891-appb-img-000037
은 자연수이고,
Figure PCTKR2020005891-appb-img-000038
는 슬롯 당 OFDM (orthogonal frequency division multiplexing) 심볼 개수이고,
Figure PCTKR2020005891-appb-img-000039
는 슬롯 인덱스 (index) 이고,
Figure PCTKR2020005891-appb-img-000040
는 슬롯 내 OFDM 심볼 인덱스이고,
Figure PCTKR2020005891-appb-img-000041
는 상기 PRS 시퀀스 ID 이고,
Figure PCTKR2020005891-appb-img-000042
는 모듈러 (modulo) 연산일 수 있다.
본 개시의 다양한 실시예들에 따르면, 하나 이상의 프로세서 (processor) 가 방법을 수행하도록 하는 하나 이상의 명령어 (instruction) 를 저장하는 프로세서-판독 가능 매체 (processor-readable medium) 가 제공될 수 있다.
예시적 실시예에서, 상기 방법은: PRS (positioning reference signal) 시퀀스 ID (identifier) 와 관련된 정보를 수신하는 과정; 상기 PRS 시퀀스 ID 와 관련된 PRS 를 수신하는 과정; 및 일정 자원 영역에 포함된 상기 PRS 가 수신된 RE (resource element) 를 제외한 하나 이상의 RE 에서 PDSCH (physical downlink shared channel) 을 디코딩하는 과정을 포함할 수 있다.
예시적 실시예에서, DRX (discontinuous reception) 가 설정됨에 기초하여, 상기 PDSCH 를 위한 PDCCH (physical downlink control channel) 는, 상기 DRX 와 관련된 온 구간 (on duration) 내에서 모니터링 될 수 있다.
예시적 실시예에서, 상기 PRS 의 시퀀스 생성 (sequence generation) 과 관련된 의사-임의 시퀀스 생성기 (pseudo-random sequence generator) 는,
Figure PCTKR2020005891-appb-img-000043
에 따라 초기화 될 수 있다.
예시적 실시예에서,
Figure PCTKR2020005891-appb-img-000044
은 자연수이고,
Figure PCTKR2020005891-appb-img-000045
는 슬롯 당 OFDM (orthogonal frequency division multiplexing) 심볼 개수이고,
Figure PCTKR2020005891-appb-img-000046
는 슬롯 인덱스 (index) 이고,
Figure PCTKR2020005891-appb-img-000047
는 슬롯 내 OFDM 심볼 인덱스이고,
Figure PCTKR2020005891-appb-img-000048
는 상기 PRS 시퀀스 ID 이고,
Figure PCTKR2020005891-appb-img-000049
는 모듈러 (modulo) 연산일 수 있다.
상술한 본 개시의 다양한 실시예들은 본 개시의 바람직한 실시예들 중 일부에 불과하며, 본 개시의 다양한 실시예들의 기술적 특징들이 반영된 여러 가지 실시예들이 당해 기술분야의 통상적인 지식을 가진 자에 의해 이하 상술할 상세한 설명을 기반으로 도출되고 이해될 수 있다.
본 개시의 다양한 실시예들에 따르면 다음과 같은 효과가 있다.
본 개시의 다양한 실시예들에 따르면, 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치가 제공될 수 있다.
예를 들어, 본 개시의 다양한 실시예들에 따르면, 무선 통신 시스템에서 측위 방법 및 이를 지원하는 장치가 제공될 수 있다.
예를 들어, 본 개시의 다양한 실시예들에 따르면, 다양한 수비학 (numerology) 을 지원하는 NR 시스템의 특성이 고려된 PRS 생성/획득/송수신 방법 및 이를 지원하는 장치가 제공될 수 있다.
예를 들어, 본 개시의 다양한 실시예들에 따르면, CSI-RS 와 PRS 가 측위를 위한 RS 로 함께 이용되는 경우, 단말의 구현 복잡도를 감소시킬 수 있는 PRS 생성/획득/송수신 방법 및 이를 지원하는 장치가 제공될 수 있다.
본 개시의 다양한 실시예들로부터 얻을 수 있는 효과들은 이상에서 언급된 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 이하의 상세한 설명을 기반으로 당해 기술분야에서 통상의 지식을 가진 자에게 명확하게 도출되고 이해될 수 있다.
이하에 첨부되는 도면들은 본 개시의 다양한 실시예들에 관한 이해를 돕기 위한 것으로, 상세한 설명과 함께 본 개시의 다양한 실시예들을 제공한다. 다만, 본 개시의 다양한 실시예들의 기술적 특징이 특정 도면에 한정되는 것은 아니며, 각 도면에서 개시하는 특징들은 서로 조합되어 새로운 실시예로 구성될 수 있다. 각 도면에서의 참조 번호 (reference numerals) 들은 구조적 구성요소 (structural elements) 를 의미한다.
도 1은 본 개시의 다양한 실시예들에서 사용될 수 있는 물리 채널들 및 이들을 이용한 신호 전송 방법을 설명하기 위한 도면이다.
도 2는 본 개시의 다양한 실시예들이 적용 가능한 NR 시스템에 기초한 무선 프레임 구조를 나타낸 도면이다.
도 3은 본 개시의 다양한 실시예들이 적용 가능한 NR 시스템에 기초한 슬롯 구조를 나타낸 도면이다.
도 4는 본 개시의 다양한 실시예들이 적용 가능한 자립적 슬롯 구조 (Self-contained slot structure)를 나타낸 도면이다.
도 5 는 본 개시의 다양한 실시예들이 적용 가능한 SSB (Synchronization Signal Block)의 구조를 나타낸 도면이다.
도 6 은 본 개시의 다양한 실시예들이 적용 가능한 SSB 의 전송 방법의 일 예를 나타낸 도면이다.
도 7은 본 개시의 다양한 실시예들이 적용 가능한 SSB의 멀티-빔 전송을 예시한다.
도 8은 본 개시의 다양한 실시예들이 적용 가능한 실제로 전송되는 SSB(SSB_tx)를 알려주는 방법을 예시한다.
도 9 는 본 개시의 다양한 실시예들이 적용 가능한 상향링크 하향링크 타이밍 관계의 일 예를 나타낸 도면이다.
도 10 은 본 개시의 다양한 실시예들이 적용 가능한 단말의 위치를 측정하기 위한 포지셔닝 프로토콜 설정(positioning protocol configuration)의 일 예를 나타낸 도면이다.
도 11 는 본 개시의 다양한 실시예들이 적용 가능한 LTE 시스템에서 PRS 매핑의 일 예를 나타낸 도면이다.
도 12 은 본 개시의 다양한 실시예들이 적용 가능한 단말의 위치를 측정하기 위한 시스템의 아키텍쳐의 일 예를 나타낸 도면이다.
도 13 은 본 개시의 다양한 실시예들이 적용 가능한 단말의 위치를 측정하는 절차의 일 예를 나타낸 도면이다.
도 14 은 본 개시의 다양한 실시예들이 적용 가능한 LPP (LTE positioning protocol) 메시지 전송을 지원하기 위한 프로토콜 레이어의 일 예를 나타낸 도면이다.
도 15 은 본 개시의 다양한 실시예들이 적용 가능한 NRPPa (NR positioning protocol a) PDU (protocol data unit) 전송을 지원하기 위한 프로토콜 레이어의 일 예를 나타낸 도면이다.
도 16 은 본 개시의 다양한 실시예들이 적용 가능한 OTDOA (observed time difference of arrival) 측위(Positioning) 방법의 일 예를 나타낸 도면이다.
도 17 은 본 개시의 다양한 실시예들이 적용 가능한 Multi RTT (round trip time) 측위 방법의 일 예를 나타낸 도면이다.
도 18 은 본 개시의 다양한 실시예들에 따른 단말, TRP, 위치 서버 및/또는 LMF의 동작 방법을 간단히 나타낸 도면이다.
도 19 은 본 개시의 다양한 실시예들에 따른 단말, TRP, 위치 서버 및/또는 LMF의 동작 방법을 간단히 나타낸 도면이다.
도 20 는 본 개시의 다양한 실시예들에 따른 단말 및/또는 네트워크 노드의 동작 방법을 간단히 나타낸 도면이다.
도 21 은 본 개시의 다양한 실시예들에 따른 네트워크 초기 접속 및 이후의 통신 과정을 간단히 나타낸 도면이다.
도 22 은 본 개시의 다양한 실시예들에 따른 DRX 동작을 예시한 도면이다.
도 23 은 본 개시의 다양한 실시예들에 따른 단말과 TP 의 동작 방법을 간단히 나타낸 도면이다.
도 24 는 본 개시의 다양한 실시예들에 따른 단말의 동작 방법을 나타낸 흐름도이다.
도 25 은 본 개시의 다양한 실시예들에 따른 TP 의 동작 방법을 나타낸 흐름도이다.
도 26는 본 개시의 다양한 실시예들이 구현될 수 있는 장치를 나타낸 도면이다.
도 27은 본 개시의 다양한 실시예들에 적용되는 통신 시스템을 예시한다.
도 28은 본 개시의 다양한 실시예들에 적용되는 무선 기기를 예시한다.
도 29은 본 개시의 다양한 실시예들에 적용되는 무선 기기의 다른 예를 나타낸다.
도 30는 본 개시의 다양한 실시예들에 적용되는 휴대 기기를 예시한다.
도 31는 본 개시의 다양한 실시예들에 적용되는 차량 또는 자율 주행 차량을 예시한다.
도 32은 본 개시의 다양한 실시예들에 적용되는 차량을 예시한다.
이하의 실시예들은 본 개시의 다양한 실시예들의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 개시의 다양한 실시예들을 구성할 수도 있다. 본 개시의 다양한 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다.
도면에 대한 설명에서, 본 개시의 다양한 실시예들의 요지를 흐릴 수 있는 절차 또는 단계 등은 기술하지 않았으며, 당해 기술분야에서 통상의 지식을 가진 자의 수준에서 이해할 수 있을 정도의 절차 또는 단계는 또한 기술하지 아니하였다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함(comprising 또는 including)"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 "...부", "...기", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다. 또한, "일(a 또는 an)", "하나(one)", "그(the)" 및 유사 관련어는 본 개시의 다양한 실시예들을 기술하는 문맥에 있어서(특히, 이하의 청구항의 문맥에서) 본 명세서에 달리 지시되거나 문맥에 의해 분명하게 반박되지 않는 한, 단수 및 복수 모두를 포함하는 의미로 사용될 수 있다.
본 명세서에서 본 개시의 다양한 실시예들은 기지국(Base Station)과 단말(Terminal) 간의 데이터 송수신 관계를 중심으로 설명되었다. 여기서, 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미가 있다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다.
즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있다. 이때, '기지국'은 고정국(fixed station), Node B, eNode B(eNB), gNode B(gNB), 발전된 기지국(ABS: Advanced Base Station) 또는 억세스 포인트(access point) 등의 용어에 의해 대체될 수 있다.
또한, 본 개시의 다양한 실시예들에서 단말(Terminal)은 사용자 기기(UE: User Equipment), 이동국(MS: Mobile Station), 가입자 단말(SS: Subscriber Station), 이동 가입자 단말(MSS: Mobile Subscriber Station), 이동 단말(Mobile Terminal) 또는 발전된 이동단말(AMS: Advanced Mobile Station) 등의 용어로 대체될 수 있다.
또한, 송신단은 데이터 서비스 또는 음성 서비스를 제공하는 고정 및/또는 이동 노드를 말하고, 수신단은 데이터 서비스 또는 음성 서비스를 수신하는 고정 및/또는 이동 노드를 의미할 수 있다. 따라서, 상향링크에서는 이동국이 송신단이 되고, 기지국이 수신단이 될 수 있다. 마찬가지로, 하향링크에서는 이동국이 수신단이 되고, 기지국이 송신단이 될 수 있다.
본 개시의 다양한 실시예들은 무선 접속 시스템들인 IEEE 802.xx 시스템, 3GPP(3rd Generation Partnership Project) 시스템, 3GPP LTE 시스템, 3GPP 5G NR 시스템 및 3GPP2 시스템 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있으며, 특히, 본 개시의 다양한 실시예들은 3GPP TS 36.211, 3GPP TS 36.212, 3GPP TS 36.213, 3GPP TS 36.300, 3GPP TS 36.321, 3GPP TS 36.331, 3GPP TS 36.355, 3GPP TS 36.455, 3GPP TS 37.355, 3GPP TS 38.211, 3GPP TS 38.212, 3GPP TS 38.213, 3GPP TS 38.214, 3GPP TS 38.215, 3GPP TS 38.300, 3GPP TS 38.321 및 3GPP TS 38.331, 3GPP TS 38.455 등의 문서들에 의해 뒷받침 될 수 있다. 즉, 본 개시의 다양한 실시예들 중 설명하지 않은 자명한 단계들 또는 부분들은 상기 문서들을 참조하여 설명될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
이하, 본 개시의 다양한 실시예들에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 개시의 다양한 실시예들의 예시적인 실시형태를 설명하고자 하는 것이며, 유일한 실시형태를 나타내고자 하는 것이 아니다.
또한, 본 개시의 다양한 실시예들에서 사용되는 특정(特定) 용어들은 본 개시의 다양한 실시예들의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 개시의 다양한 실시예들의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
이하에서는 본 개시의 다양한 실시예들이 사용될 수 있는 무선 접속 시스템의 일례로 3GPP LTE/LTE-A 시스템 뿐만 아니라 3GPP NR 시스템에 대해서 설명한다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 적용될 수 있다.
CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다.
UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP LTE(Long Term Evolution)은 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(Advanced) 시스템은 3GPP LTE 시스템이 개량된 시스템이다.
본 개시의 다양한 실시예들의 기술적 특징에 대한 설명을 명확하게 하기 위해, 본 개시의 다양한 실시예들을 3GPP LTE/LTE-A 시스템 뿐만 아니라 3GPP NR 시스템을 위주로 기술하지만 IEEE 802.16e/m 시스템 등에도 적용될 수 있다.
1. 3GPP 시스템 일반
1.1. 물리 채널들 및 일반적인 신호 전송
무선 접속 시스템에서 단말은 하향링크(DL: Downlink)를 통해 기지국으로부터 정보를 수신하고, 상향링크(UL: Uplink)를 통해 기지국으로 정보를 전송한다. 기지국과 단말이 송수신하는 정보는 일반 데이터 정보 및 다양한 제어 정보를 포함하고, 이들이 송수신 하는 정보의 종류/용도에 따라 다양한 물리 채널이 존재한다.
도 1은 본 개시의 다양한 실시예들에서 사용될 수 있는 물리 채널들 및 이들을 이용한 신호 전송 방법을 설명하기 위한 도면이다.
전원이 꺼진 상태에서 다시 전원이 켜지거나, 새로이 셀에 진입한 단말은 기지국과 동기를 맞추는 등의 초기 셀 탐색 (Initial cell search) 작업을 수행한다 (S11). 이를 위해 단말은 기지국으로부터 주동기 채널 (P-SCH: Primary Synchronization Channel) 및 부동기 채널 (S-SCH: Secondary Synchronization Channel)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득한다.
그 후, 단말은 기지국으로부터 물리방송채널 (PBCH: Physical Broadcast Channel) 신호를 수신하여 셀 내 방송 정보를 획득할 수 있다.
한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호 (DL RS: Downlink Reference Signal)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 물리하향링크제어채널 (PDCCH: Physical Downlink Control Channel) 및 물리하향링크제어채널 정보에 따른 물리하향링크공유 채널 (PDSCH: Physical Downlink Control Channel)을 수신하여 조금 더 구체적인 시스템 정보를 획득할 수 있다 (S12).
이후, 단말은 기지국에 접속을 완료하기 위해 임의 접속 과정 (Random Access Procedure)을 수행할 수 있다 (S13 ~ S16). 이를 위해 단말은 물리임의접속채널 (PRACH: Physical Random Access Channel)을 통해 프리앰블 (preamble)을 전송하고(S13), 물리하향링크제어채널 및 이에 대응하는 물리하향링크공유 채널을 통해 프리앰블에 대한 RAR (Random Access Response)를 수신할 수 있다(S14). 단말은 RAR 내의 스케줄링 정보를 이용하여 PUSCH (Physical Uplink Shared Channel)을 전송하고 (S15), 물리하향링크제어채널 신호 및 이에 대응하는 물리하향링크공유 채널 신호의 수신과 같은 충돌해결절차 (Contention Resolution Procedure)를 수행할 수 있다(S16).
한편, 임의 접속 과정이 2 단계로 수행되는 경우, S13/S15 는 단말이 송신을 수행하는 하나의 동작으로 수행되고, S14/S16 이 기지국이 송신을 수행하는 하나의 동작으로 수행될 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향링크 신호 전송 절차로서 물리하향링크제어채널 신호 및/또는 물리하향링크공유채널 신호의 수신(S17) 및 물리상향링크공유채널 (PUSCH: Physical Uplink Shared Channel) 신호 및/또는 물리상향링크제어채널 (PUCCH: Physical Uplink Control Channel) 신호의 전송(S18)을 수행할 수 있다.
단말이 기지국으로 전송하는 제어정보를 통칭하여 상향링크 제어정보(UCI: Uplink Control Information)라고 지칭한다. UCI는 HARQ-ACK/NACK (Hybrid Automatic Repeat and reQuest Acknowledgement/Negative-ACK), SR (Scheduling Request), CQI (Channel Quality Indication), PMI (Precoding Matrix Indication), RI (Rank Indication) 정보 등을 포함한다.
UCI는 일반적으로 PUCCH를 통해 주기적으로 전송되지만, 제어 정보와 데이터가 동시에 전송되어야 할 경우 PUSCH를 통해 전송될 수 있다. 또한, 네트워크의 요청/지시에 따라 단말은 PUSCH를 통해 UCI를 비주기적으로 전송할 수 있다.
1.2. 무선 프레임 (Radio Frame) 구조
도 2는 본 개시의 다양한 실시예들이 적용 가능한 NR 시스템에 기초한 무선 프레임 구조를 나타낸 도면이다.
NR 시스템은 다수의 뉴머롤로지(Numerology)들을 지원할 수 있다. 여기에서, 뉴머롤로지는 부반송파 간격(subcarrier spacing, SCS)과 순환 프리픽스(cyclic prefix, CP) 오버헤드에 의해 정의될 수 있다. 이 때, 다수의 부반송파 간격은 기본 부반송파 간격을 정수 N(또는, μ)으로 스케일링(scaling) 함으로써 유도될 수 있다. 또한, 매우 높은 반송파 주파수에서 매우 낮은 부반송파 간격을 이용하지 않는다고 가정할지라도, 이용되는 뉴머롤로지는 셀의 주파수 대역과 독립적으로 선택될 수 있다. 또한, NR 시스템에서는 다수의 뉴머롤로지에 따른 다양한 프레임 구조들이 지원될 수 있다.
이하, NR 시스템에서 고려될 수 있는 직교 주파수 분할 다중화(orthogonal frequency division multiplexing, OFDM) 뉴머롤로지 및 프레임 구조를 살펴본다. NR 시스템에서 지원되는 다수의 OFDM 뉴머롤로지들은 표 1와 같이 정의될 수 있다. 대역폭 파트에 대한 μ 및 순환 프리픽스는 BS에 의해 제공되는 RRC 파라미터들로부터 얻어진다.
Figure PCTKR2020005891-appb-img-000050
NR은 다양한 5G 서비스들을 지원하기 위한 다수의 뉴머롤러지(예, 부반송파 간격(subcarrier spacing))를 지원한다. 예를 들어, 부반송파 간격이 15kHz인 경우, 전통적인 셀룰러 밴드들에서의 넓은 영역(wide area)를 지원하며, 부반송파 간격이 30kHz/60kHz인 경우, 밀집한-도시(dense-urban), 더 낮은 레이턴시(lower latency) 및 더 넓은 반송파 대역폭(wider carrier bandwidth)를 지원하며, 부반송파 간격이 60kHz 또는 그보다 높은 경우, 위상 잡음(phase noise)를 극복하기 위해 24.25GHz보다 큰 대역폭을 지원한다.
NR 주파수 대역(frequency band)은 FR1과 FR2라는 2가지 타입의 주파수 범위(frequency range)로 정의된다. FR1은 sub 6GHz 범위이며, FR2는 above 6GHz 범위로 밀리미터 웨이브(millimiter wave, mmWave)를 의미할 수 있다.
아래 표 2는 NR 주파수 대역의 정의를 예시한다.
Figure PCTKR2020005891-appb-img-000051
NR 시스템에서의 프레임 구조(frame structure)와 관련하여, 시간 도메인의 다양한 필드들의 크기는 NR용 기본 시간 유닛(basic time unit)인 T c = 1/(△ f max* N f)의 배수로 표현된다. 여기서, △ f max = 480*10 3 Hz이고, 고속 푸리에 변환(fast Fourier transform, FFT) 혹은 역 고속 푸리에 변환(inverse fast Fourier transform, IFFT) 크기와 관련이 있는 값인 N f = 4096이다. T c는 LTE용 기반 시간 유닛이자 샘플링 시간인 T s = 1/((15kHz)*2048)와 다음의 관계를 갖는다: T s/ T c = 64. 하향링크 및 상향링크(uplink) 전송들은 T f = (△ f max* N f/100)* T c = 10ms 지속기간(duration)의 (무선) 프레임들로 조직화(organize)된다. 여기서, 각 무선 프레임은 각각이 T sf = (△ f max* N f/1000)* T c = 1ms 지속기간을 가지는 10 개의 서브프레임(subframe)들로 구성된다. 상향링크에 대한 한 세트의 프레임들 및 하향링크에 대한 한 세트의 프레임들이 존재할 수 있다. 뉴머롤로지 μ에 대하여, 슬롯(slot)들은 서브프레임 내에서는 오름차순(increasing order)으로 n μ s ∈ {0,…, N slot,μ subframe-1}로 번호가 매겨지고, 무선 프레임 내에서는 오름차순으로 n μ s,f ∈ {0,…, N slot,μ frame-1}으로 번호가 매겨진다. 하나의 슬롯은 N μ symb개의 연속하는(consecutive) OFDM 심볼들로 구성되고, N μ symb는 순환 프리픽스(cyclic prefix, CP)에 의존한다. 서브프레임에서 슬롯 n μ s의 시작은 동일 서브프레임 내에서 OFDM 심볼 n μ s* N μ symb의 시작과 시간적으로 정렬된다.
표 3은 일반 CP가 사용되는 경우, SCS에 따른 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수 및 서브프레임 별 슬롯의 개수를 나타내고, 표 4은 확장된 CSP가 사용되는 경우, SCS에 따른 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수 및 서브프레임 별 슬롯의 개수를 나타낸다.
Figure PCTKR2020005891-appb-img-000052
Figure PCTKR2020005891-appb-img-000053
상기 표에서, N slot symb 는 슬롯 내 심볼의 개수를 나타내고, N frame,μ slot는 프레임 내 슬롯의 개수를 나타내고, N subframe,μ slot는 서브프레임 내 슬롯의 개수를 나타낸다.
본 개시의 다양한 실시예들이 적용 가능한 NR 시스템에서는 하나의 단말에게 병합되는 복수의 셀들간에 OFDM(A) 뉴머롤로지(numerology)(예, SCS, CP 길이 등)가 상이하게 설정될 수 있다. 이에 따라, 동일한 개수의 심볼로 구성된 시간 자원(예, SF, 슬롯 또는 TTI)(편의상, TU(Time Unit)로 통칭)의 (절대 시간) 구간이 병합된 셀들간에 상이하게 설정될 수 있다.
도 2은, μ=2인 경우(즉, 부반송파 간격이 60kHz)의 일례로서, 표 3을 참고하면 1개 서브프레임은 4개의 슬롯(slot)들을 포함할 수 있다. 도 2에 도시된 1개 서브프레임 = {1,2,4}개 슬롯들은 예시이며, 1개 서브프레임에 포함될 수 있는 슬롯(들)의 개수는 표 6 또는 표 7과 같이 정의된다.
또한, 미니-슬롯은 2, 4 또는 7개 심볼들을 포함할 수 있거나 그 보다 더 많은 또는 더 적은 심볼들을 포함할 수 있다.
도 3은 본 개시의 다양한 실시예들이 적용 가능한 NR 시스템에 기초한 슬롯 구조를 나타낸 도면이다.
도 3을 참조하면, 하나의 슬롯은 시간 도메인에서 복수의 심볼들을 포함할 수 있다. 예를 들어, 보통 CP(normal CP)의 경우 하나의 슬롯이 7개의 심볼을 포함하나, 확장 CP(extended CP)의 경우 하나의 슬롯이 6개의 심볼을 포함할 수 있다.
반송파(carrier)는 주파수 도메인에서 복수의 부반송파(subcarrier)를 포함할 수 있다. RB(Resource Block)는 주파수 도메인에서 복수(예, 12)의 연속한 부반송파로 정의된다.
BWP(Bandwidth Part)는 주파수 도메인에서 복수의 연속한 (P)RB로 정의되며, 하나의 뉴머롤로지(예, SCS, CP 길이 등)에 대응될 수 있다.
반송파는 최대 N개(예, 5개)의 BWP를 포함할 수 있다. 데이터 통신은 활성화된 BWP를 통해서 수행되며, 하나의 단말한테는 하나의 BWP만 활성화 될 수 있다. 자원 그리드에서 각각의 요소는 자원요소(Resource Element, RE)로 지칭되며, 하나의 복소 심볼이 매핑될 수 있다.
도 4는 본 개시의 다양한 실시예들이 적용 가능한 자립적 슬롯 구조 (Self-contained slot structure)를 나타낸 도면이다.
자립적 슬롯 구조란, 하나의 슬롯 내에 하향링크 제어 채널(downlink control channel), 하향링크/상향링크 데이터(downlink/uplink data), 그리고 상향링크 제어 채널(uplink control channel)이 모두 포함될 수 있는 슬롯 구조일 수 있다.
도 4를 참조하면, 빗금 친 영역 (예: symbol index =0)은 하향링크 제어 (downlink control) 영역을 나타내고, 검정색 영역 (예: symbol index =13)은 상향링크 제어 (uplink control) 영역을 나타낸다. 이외 영역 (예: symbol index = 1 ~ 12)은 하향링크 데이터 전송을 위해 사용될 수도 있고, 상향링크 데이터 전송을 위해 사용될 수도 있다.
이러한 구조에 따라 기지국 및 UE는 한 개의 슬롯 내에서 DL 전송과 UL 전송을 순차적으로 진행할 수 있으며, 상기 하나의 슬롯 내에서 DL 데이터를 송수신하고 이에 대한 UL ACK/NACK도 송수신할 수 있다. 결과적으로 이러한 구조는 데이터 전송 에러 발생시에 데이터 재전송까지 걸리는 시간을 줄이게 되며, 이로 인해 최종 데이터 전달의 지연을 최소화할 수 있다.
이와 같은 자립적 슬롯 구조에서 기지국과 UE가 송신 모드에서 수신 모드로 전환 또는 수신모드에서 송신 모드로 전환을 위해서는 일정 시간 길이의 타입 갭(time gap)이 필요하다. 이를 위하여 자립적 슬롯 구조에서 DL에서 UL로 전환되는 시점의 일부 OFDM 심볼은 가드 구간(guard period, GP)로 설정될 수 있다.
앞서 상세한 설명에서는 자립적 슬롯 구조가 DL 제어 영역 및 UL 제어 영역을 모두 포함하는 경우를 설명하였으나, 상기 제어 영역들은 상기 자립적 슬롯 구조에 선택적으로 포함될 수 있다. 다시 말해, 본 개시의 다양한 실시예들에 따른 자립적 슬롯 구조는 도 4와 같이 DL 제어 영역 및 UL 제어 영역을 모두 포함하는 경우 뿐만 아니라 DL 제어 영역 또는 UL 제어 영역만을 포함하는 경우도 포함할 수 있다.
또한, 하나의 슬롯을 구성하는 상기 영역들의 순서는 실시예에 따라 달라질 수 있다. 일 예로, 하나의 슬롯은 DL 제어 영역 / DL 데이터 영역 / UL 제어 영역 / UL 데이터 영역 순서로 구성되거나, UL 제어 영역 / UL 데이터 영역 / DL 제어 영역 / DL 데이터 영역 순서 등으로 구성될 수 있다.
DL 제어 영역에서는 PDCCH가 전송될 수 있고, DL 데이터 영역에서는 PDSCH가 전송될 수 있다. UL 제어 영역에서는 PUCCH가 전송될 수 있고, UL 데이터 영역에서는 PUSCH가 전송될 수 있다.
1.3. 채널 구조
1.3.1. 하향링크 채널 구조
기지국은 후술하는 하향링크 채널을 통해 관련 신호를 단말에게 전송하고, 단말은 후술하는 하향링크 채널을 통해 관련 신호를 기지국으로부터 수신한다.
1.3.1.1. 물리 하향링크 공유 채널 (PDSCH)
PDSCH는 하향링크 데이터(예, DL-shared channel transport block, DL-SCH TB)를 운반하고, QPSK(Quadrature Phase Shift Keying), 16 QAM(Quadrature Amplitude Modulation), 64 QAM, 256 QAM 등의 변조 방법이 적용된다. TB를 인코딩하여 코드워드(codeword)가 생성된다. PDSCH는 최대 2개의 코드워드를 나를 수 있다. 코드워드(codeword) 별로 스크램블링(scrambling) 및 변조 매핑(modulation mapping)이 수행되고, 각 코드워드로부터 생성된 변조 심볼들은 하나 이상의 레이어로 매핑된다(Layer mapping). 각 레이어는 DMRS(Demodulation Reference Signal)과 함께 자원에 매핑되어 OFDM 심볼 신호로 생성되고, 해당 안테나 포트를 통해 전송된다.
1.3.1.2. 물리 하향링크 제어 채널 (PDCCH)
PDCCH에서는 DCI(Downlink Control Information), 예를 들어 DL 데이터 스케줄링 정보, UL 데이터 스케줄링 정보 등이 전송될 수 있다. PUCCH에서는 UCI(Uplink Control Information), 예를 들어 DL 데이터에 대한 ACK/NACK(Positive Acknowledgement/Negative Acknowledgement) 정보, CSI(Channel State Information) 정보, SR(Scheduling Request) 등이 전송될 수 있다.
PDCCH는 하향링크 제어 정보(DCI)를 운반하고 QPSK 변조 방법이 적용된다. 하나의 PDCCH는 AL(Aggregation Level)에 따라 1, 2, 4, 8, 16 개의 CCE(Control Channel Element)로 구성된다. 하나의 CCE는 6개의 REG(Resource Element Group)로 구성된다. 하나의 REG는 하나의 OFDM 심볼과 하나의 (P)RB로 정의된다.
PDCCH는 제어 자원 세트(Control Resource Set, CORESET)를 통해 전송된다. CORESET는 주어진 뉴머롤로지(예, SCS, CP 길이 등)를 갖는 REG 세트로 정의된다. 하나의 단말을 위한 복수의 CORESET는 시간/주파수 도메인에서 중첩될 수 있다. CORESET는 시스템 정보(예, MIB) 또는 단말-특정(UE-specific) 상위 계층(예, Radio Resource Control, RRC, layer) 시그널링을 통해 설정될 수 있다. 구체적으로, CORESET을 구성하는 RB의 개수 및 심볼의 개수(최대 3개)가 상위 계층 시그널링에 의해 설정될 수 있다.
각 CORESET 을 위한 주파수 도메인 내 프리코더 입도 (precoder granularity)는 상위 계층 시그널링에 의해 다음 중 하나로 설정될 수 있다:
- sameAsREG-bundle : 주파수 도메인 내 REG 번들 크기와 동일함
- allContiguousRBs : CORESET 내부의 주파수 도메인 내 연속하는 RB들의 개수와 동일함
CORESET 내 REG들은 시간-우선 매핑 방식 (time-first mapping manner)에 기초하여 넘버링된다. 즉, REG들은 CORESET 내부의 가장-낮게 넘버링된 자원 블록 내 첫 번째 OFDM 심볼부터 시작하여 0부터 순차적으로 넘버링된다.
CCE에서 REG로의 매핑 타입은 비-인터리빙된 CCE-REG 매핑 타입 또는 인터리빙된 CCE-REG 매핑 타입 중 하나의 타입으로 설정된다.
단말은 PDCCH 후보들의 세트에 대한 디코딩 (일명, 블라인드 디코딩)을 수행하여 PDCCH를 통해 전송되는 DCI를 획득한다. 단말이 디코딩하는 PDCCH 후보들의 세트는 PDCCH 검색 공간 (Search Space) 세트라 정의한다. 검색 공간 세트는 공통 검색 공간 (common search space) 또는 단말-특정 검색 공간 (UE-specific search space)일 수 있다. 단말은 MIB 또는 상위 계층 시그널링에 의해 설정된 하나 이상의 검색 공간 세트 내 PDCCH 후보를 모니터링하여 DCI를 획득할 수 있다. 각 CORESET 설정은 하나 이상의 검색 공간 세트와 연관되고(associated with), 각 검색 공간 세트는 하나의 COREST 설정과 연관된다. 하나의 검색 공간 세트는 다음의 파라미터들에 기초하여 결정된다.
- controlResourceSetId : 검색 공간 세트와 관련된 제어 자원 세트를 나타냄
- monitoringSlotPeriodicityAndOffset : PDCCH 모니터링 주기 구간 (슬롯 단위) 및 PDCCH 모니터링 구간 오프셋 (슬롯 단위)을 나타냄
- monitoringSymbolsWithinSlot : PDCCH 모니터링을 위한 슬롯 내 PDCCH 모니터링 패턴을 나타냄 (예, 제어 자원 세트의 첫 번째 심볼(들)을 나타냄)
- nrofCandidates : AL={1, 2, 4, 8, 16} 별 PDCCH 후보의 수 (0, 1, 2, 3, 4, 5, 6, 8 중 하나의 값)을 나타냄
표 5 은 검색 공간 타입별 특징을 예시한다.
Figure PCTKR2020005891-appb-img-000054
표 6는 PDCCH를 통해 전송되는 DCI 포맷들을 예시한다.
Figure PCTKR2020005891-appb-img-000055
DCI format 0_0은 TB-기반 (또는 TB-level) PUSCH를 스케줄링 하기 위해 사용되고, DCI format 0_1은 TB-기반 (또는 TB-level) PUSCH 또는 CBG(Code Block Group)-기반 (또는 CBG-level) PUSCH를 스케줄링 하기 위해 사용될 수 있다. DCI format 1_0은 TB-기반 (또는 TB-level) PDSCH를 스케줄링 하기 위해 사용되고, DCI format 1_1은 TB-기반 (또는 TB-level) PDSCH 또는 CBG-기반 (또는 CBG-level) PDSCH를 스케줄링 하기 위해 사용될 수 있다. DCI format 2_0은 동적 슬롯 포맷 정보 (예, dynamic SFI)를 단말에게 전달하기 위해 사용되고, DCI format 2_1은 하향링크 선취 (pre-Emption) 정보를 단말에게 전달하기 위해 사용된다. DCI format 2_0 및/또는 DCI format 2_1은 하나의 그룹으로 정의된 단말들에게 전달되는 PDCCH인 그룹 공통 PDCCH (Group common PDCCH)를 통해 해당 그룹 내 단말들에게 전달될 수 있다.
1.3.2. 상향링크 채널 구조
단말은 후술하는 상향링크 채널을 통해 관련 신호를 기지국으로 전송하고, 기지국은 후술하는 상향링크 채널을 통해 관련 신호를 단말로부터 수신한다.
1.3.2.1. 물리 상향링크 공유 채널 (PUSCH)
PUSCH는 상향링크 데이터(예, UL-shared channel transport block, UL-SCH TB) 및/또는 상향링크 제어 정보(UCI)를 운반하고, CP-OFDM (Cyclic Prefix - Orthogonal Frequency Division Multiplexing) 파형(waveform) 또는 DFT-s-OFDM (Discrete Fourier Transform - spread - Orthogonal Frequency Division Multiplexing) 파형에 기초하여 전송된다. PUSCH가 DFT-s-OFDM 파형에 기초하여 전송되는 경우, 단말은 변환 프리코딩(transform precoding)을 적용하여 PUSCH를 전송한다. 일 예로, 변환 프리코딩이 불가능한 경우(예, transform precoding is disabled) 단말은 CP-OFDM 파형에 기초하여 PUSCH를 전송하고, 변환 프리코딩이 가능한 경우(예, transform precoding is enabled) 단말은 CP-OFDM 파형 또는 DFT-s-OFDM 파형에 기초하여 PUSCH를 전송할 수 있다. PUSCH 전송은 DCI 내 UL 그랜트에 의해 동적으로 스케줄링 되거나, 상위 계층(예, RRC) 시그널링 (및/또는 Layer 1(L1) 시그널링(예, PDCCH))에 기초하여 반-정적(semi-static)으로 스케줄링 될 수 있다(configured grant). PUSCH 전송은 코드북 기반 또는 비-코드북 기반으로 수행될 수 있다.
1.3.2.2. 물리 상향링크 제어 채널 (PUCCH)
PUCCH는 상향링크 제어 정보, HARQ-ACK 및/또는 스케줄링 요청(SR)을 운반하고, PUCCH 전송 길이에 따라 Short PUCCH 및 Long PUCCH로 구분된다. 표 7은 PUCCH 포맷들을 예시한다.
Figure PCTKR2020005891-appb-img-000056
PUCCH format 0는 최대 2 비트 크기의 UCI를 운반하고, 시퀀스 기반으로 매핑되어 전송된다. 구체적으로, 단말은 복수 개의 시퀀스들 중 하나의 시퀀스를 PUCCH format 0인 PUCCH을 통해 전송하여 특정 UCI를 기지국으로 전송한다. 단말은 긍정 (positive) SR을 전송하는 경우에만 대응하는 SR 설정을 위한 PUCCH 자원 내에서 PUCCH format 0인 PUCCH를 전송한다.
PUCCH format 1은 최대 2 비트 크기의 UCI를 운반하고, 변조 심볼은 시간 영역에서 (주파수 호핑 여부에 따라 달리 설정되는) 직교 커버 코드(OCC)에 의해 확산된다. DMRS는 변조 심볼이 전송되지 않는 심볼에서 전송된다(즉, TDM(Time Division Multiplexing)되어 전송된다).
PUCCH format 2는 2 비트보다 큰 비트 크기의 UCI를 운반하고, 변조 심볼은 DMRS와 FDM(Frequency Division Multiplexing)되어 전송된다. DM-RS는 1/3의 밀도로 주어진 자원 블록 내 심볼 인덱스 #1, #4, #7 및 #10에 위치한다. PN (Pseudo Noise) 시퀀스가 DM_RS 시퀀스를 위해 사용된다. 2 심볼 PUCCH format 2를 위해 주파수 호핑은 활성화될 수 있다.
PUCCH format 3은 동일 물리 자원 블록들 내 단말 다중화가 되지 않으며, 2 비트보다 큰 비트 크기의 UCI를 운반한다. 다시 말해, PUCCH format 3의 PUCCH 자원은 직교 커버 코드를 포함하지 않는다. 변조 심볼은 DMRS와 TDM(Time Division Multiplexing)되어 전송된다.
PUCCH format 4는 동일 물리 자원 블록들 내에 최대 4개 단말까지 다중화가 지원되며, 2 비트보다 큰 비트 크기의 UCI를 운반한다. 다시 말해, PUCCH format 3의 PUCCH 자원은 직교 커버 코드를 포함한다. 변조 심볼은 DMRS와 TDM(Time Division Multiplexing)되어 전송된다.
1.4. 셀 탐색 (Cell search)
도 5 는 본 개시의 다양한 실시예들이 적용 가능한 SSB (Synchronization Signal Block)의 구조를 나타낸 도면이다.
단말은 SSB에 기반하여 셀 탐색(search), 시스템 정보 획득, 초기 접속을 위한 빔 정렬, DL 측정 등을 수행할 수 있다. SSB는 SS/PBCH(Synchronization Signal/Physical Broadcast channel) 블록과 혼용된다.
도 5을 참조하면, SSB는 PSS, SSS와 PBCH로 구성된다. SSB는 4개의 연속된 OFDM 심볼에 구성되며, OFDM 심볼 별로 PSS, PBCH, SSS/PBCH 및 PBCH가 전송된다. PSS와 SSS는 각각 1개의 OFDM 심볼과 127개의 부반송파로 구성되고, PBCH는 3개의 OFDM 심볼과 576개의 부반송파로 구성된다. PBCH에는 폴라 코딩 및 QPSK(Quadrature Phase Shift Keying)이 적용된다. PBCH는 OFDM 심볼마다 데이터 RE와 DMRS(Demodulation Reference Signal) RE로 구성된다. RB 별로 3개의 DMRS RE가 존재하며, DMRS RE 사이에는 3개의 데이터 RE가 존재한다.
셀 탐색은 단말이 셀의 시간/주파수 동기를 획득하고, 상기 셀의 셀 ID(Identifier)(예, Physical layer Cell ID, PCID)를 검출하는 과정을 의미한다. PSS는 셀 ID 그룹 내에서 셀 ID를 검출하는데 사용되고, SSS는 셀 ID 그룹을 검출하는데 사용된다. PBCH는 SSB (시간) 인덱스 검출 및 하프-프레임 검출에 사용된다.
단말의 셀 탐색 과정은 하기 표 8과 같이 정리될 수 있다.
Figure PCTKR2020005891-appb-img-000057
336개의 셀 ID 그룹이 존재하고, 셀 ID 그룹 별로 3개의 셀 ID가 존재한다. 총 1008개의 셀 ID가 존재한다. 셀의 셀 ID가 속한 셀 ID 그룹에 관한 정보는 상기 셀의 SSS를 통해 제공/획득되며, 상기 셀 ID 내 336개 셀들 중 상기 셀 ID에 관한 정보는 PSS를 통해 제공/획득된다.
도 6 은 본 개시의 다양한 실시예들이 적용 가능한 SSB 의 전송 방법의 일 예를 나타낸 도면이다.
도 6을 참조하면, SSB는 SSB 주기(periodicity)에 맞춰 주기적으로 전송된다. 초기 셀 탐색 시에 단말이 가정하는 SSB 기본 주기는 20ms로 정의된다. 셀 접속 후, SSB 주기는 네트워크(예, 기지국)에 의해 {5ms, 10ms, 20ms, 40ms, 80ms, 160ms} 중 하나로 설정될 수 있다. SSB 주기의 시작 부분에 SSB 버스트(burst) 세트가 구성된다. SSB 버스트 세트는 5ms 시간 윈도우(즉, 하프-프레임)로 구성되며, SSB는 SS 버스트 세트 내에서 최대 L번 전송될 수 있다. SSB의 최대 전송 횟수 L은 반송파의 주파수 대역에 따라 다음과 같이 주어질 수 있다. 하나의 슬롯은 최대 2개의 SSB를 포함한다.
- For frequency range up to 3 GHz, L = 4
- For frequency range from 3GHz to 6 GHz, L = 8
- For frequency range from 6 GHz to 52.6 GHz, L = 64
SS 버스트 세트 내에서 SSB 후보의 시간 위치는 SCS에 따라 다음과 같이 정의될 수 있다. SSB 후보의 시간 위치는 SSB 버스트 세트(즉, 하프-프레임) 내에서 시간 순서에 따라 0 ~ L-1로 인덱싱 된다(SSB 인덱스).
- Case A : 15 kHz SCS: 후보 SSB의 시작 심볼의 인덱스는 {2, 8} + 14*n으로 주어진다. 반송파 주파수가 3 GHz 이하인 경우 n=0, 1이다. 반송파 주파수가 3 GHz ~ 6 GHz인 경우 n=0, 1, 2, 3이다.
- Case B : 30 kHz SCS: 후보 SSB의 시작 심볼의 인덱스는 {4, 8, 16, 20} + 28*n으로 주어진다. 반송파 주파수가 3 GHz 이하인 경우 n=0이다. 반송파 주파수가 3 GHz ~ 6 GHz인 경우 n=0, 1이다.
- Case C : 30 kHz SCS: 후보 SSB의 시작 심볼의 인덱스는 {2, 8} + 14*n으로 주어진다. 반송파 주파수가 3 GHz 이하인 경우 n=0, 1이다. 반송파 주파수가 3 GHz ~ 6 GHz인 경우 n=0, 1, 2, 3이다.
- Case D : 120 kHz SCS: 후보 SSB의 시작 심볼의 인덱스는 {4, 8, 16, 20} + 28*n으로 주어진다. 반송파 주파수가 6 GHz보다 큰 경우 n=0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18이다.
- Case E : 240 kHz SCS: 후보 SSB의 시작 심볼의 인덱스는 {8, 12, 16, 20, 32, 36, 40, 44} + 56*n으로 주어진다. 반송파 주파수가 6 GHz보다 큰 경우 n=0, 1, 2, 3, 5, 6, 7, 8이다.
1.5. 빔 정렬(beam alignment)
도 7은 본 개시의 다양한 실시예들이 적용 가능한 SSB의 멀티-빔 전송을 예시한다.
빔 스위핑은 TRP(Transmission Reception Point)(예, 기지국/셀)가 무선 신호의 빔 (방향)을 시간에 따라 다르게 하는 것을 의미한다 (이하에서, 빔과 빔 방향은 혼용될 수 있다). SSB는 빔 스위핑을 이용하여 주기적으로 전송될 수 있다. 이 경우, SSB 인덱스는 SSB 빔과 묵시적(implicitly)으로 링크된다. SSB 빔은 SSB (인덱스) 단위로 변경되거나, SSB (인덱스) 그룹 단위로 변경될 수 있다. 후자의 경우, SSB 빔은 SSB (인덱스) 그룹 내에서 동일하게 유지된다. 즉, SSB의 전송 빔 반향이 복수의 연속된 SSB에서 반복된다. SSB 버스트 세트 내에서 SSB의 최대 전송 횟수 L은 캐리어가 속하는 주파수 대역에 따라 4, 8 또는 64의 값을 가진다. 따라서, SSB 버스트 세트 내에서 SSB 빔의 최대 개수도 캐리어의 주파수 대역에 따라 다음과 같이 주어질 수 있다.
- For frequency range up to 3 GHz, Max number of beams = 4
- For frequency range from 3GHz to 6 GHz, Max number of beams = 8
- For frequency range from 6 GHz to 52.6 GHz, Max number of beams = 64
* 멀티-빔 전송이 적용되지 않는 경우, SSB 빔의 개수는 1개이다.
단말이 기지국에 초기 접속을 시도하는 경우, 단말은 SSB에 기반하여 기지국과 빔을 정렬할 수 있다. 예를 들어, 단말은 SSB 검출을 수행한 뒤, 베스트 SSB를 식별한다. 이후, 단말은 베스트 SSB의 인덱스(즉, 빔)에 링크된/대응되는 PRACH 자원을 이용하여 RACH 프리앰블을 기지국에게 전송할 수 있다. SSB는 초기 접속 이후에도 기지국과 단말 간에 빔을 정렬하는데 사용될 수 있다.
1.6. 채널 측정 및 레이트-매칭
도 8은 본 개시의 다양한 실시예들이 적용 가능한 실제로 전송되는 SSB(SSB_tx)를 알려주는 방법을 예시한다.
SSB 버스트 세트 내에서 SSB는 최대 L개가 전송될 수 있으며, SSB가 실제로 전송되는 개수/위치는 기지국/셀 별로 달라질 수 있다. SSB가 실제로 전송되는 개수/위치는 레이트-매칭과 측정을 위해 사용되며, 실제로 전송된 SSB에 관한 정보는 다음과 같이 지시된다.
- 레이트-매칭과 관련된 경우: 단말-특정(specific) RRC 시그널링이나 RMSI를 통해 지시될 수 있다. 단말-특정 RRC 시그널링은 FR1 및 FR2주파수 범위에서 모두 풀(full)(예, 길이 L) 비트맵을 포함한다. 반편, RMSI는 FR1 에서 풀 비트맵을 포함하고, FR2 에서는 도시된 바와 같이 압축 형태의 비트맵을 포함한다. 구체적으로, 그룹-비트 맵(8비트) + 그룹-내 비트맵(8비트)을 이용하여 실제로 전송된 SSB에 관한 정보가 지시될 수 있다. 여기서, 단말-특정 RRC 시그널링이나 RMSI를 통해 지시된 자원(예, RE)은 SSB 전송을 위해 예약되고, PDSCH/PUSCH 등은 SSB 자원을 고려하여 레이트-매칭될 수 있다.
- 측정과 관련된 경우: RRC 연결(connected) 모드에 있는 경우, 네트워크(예, 기지국)는 측정 구간 내에서 측정될 SSB 세트를 지시할 수 있다. SSB 세트는 주파수 레이어(frequency layer) 별로 지시될 수 있다. SSB 세트에 관한 지시가 없는 경우, 디폴트 SSB 세트가 사용된다. 디폴트 SSB 세트는 측정 구간 내의 모든 SSB를 포함한다. SSB 세트는 RRC 시그널링의 풀(full)(예, 길이 L) 비트맵을 이용하여 지시될 수 있다. RRC 아이들(idle) 모드에 있는 경우, 디폴트 SSB 세트가 사용된다.
1.7. QCL (Quasi co-located 또는 Quasi co-location)
UE는 상기 UE 및 주어진 셀에 대해 의도된(intended) DCI를 가지는 검출된 PDCCH에 따라 PDSCH를 디코딩하기 위해, 최대 M개의 TCI-상태 설정들을 포함하는 리스트를 수신할 있다. 여기서, M은 UE 능력(capability)에 의존한다.
각각의 TCI-State는 하나 또는 두 개의 DL RS와 PDSCH의 DM-RS 포트 간에 QCL 관계를 설정하기 위한 파라미터를 포함한다. QCL 관계는 첫 번째 DL RS에 대한 RRC 파라미터 qcl-Type1과 두 번째 DL RS에 대한 qcl-Type2 (설정된 경우)를 가지고 설정된다.
각 DL RS에 대응하는 QCL 타입은 QCL-Info 내 파라미터 'qcl-Type'에 의해 주어지며, 다음 값 중 하나를 취할 수 있다:
- 'QCL-TypeA': {Doppler shift, Doppler spread, average delay, delay spread}
- 'QCL-TypeB': {Doppler shift, Doppler spread}
- 'QCL-TypeC': {Doppler shift, average delay}
- 'QCL-TypeD': {Spatial Rx parameter}
예를 들어, 타겟 안테나 포트가 특정 NZP CSI-RS 인 경우, 해당 NZP CSI-RS 안테나 포트들은 QCL-Type A관점에서는 특정 TRS와, QCL-Type D관점에서는 특정 SSB과 QCL되었다고 지시/설정될 수 있다. 이러한 지시/설정을 받은 UE는 QCL-TypeA TRS에서 측정된 도플러, 딜레이 값을 이용해서 해당 NZP CSI-RS를 수신하고, QCL-TypeD SSB 수신에 사용된 수신 빔을 해당 NZP CSI-RS 수신에 적용할 수 있다.
1.8. 상향링크-하향링크 타이밍 관계
도 17 는 본 개시의 다양한 실시예들에 적용 가능한 상향링크 하향링크 타이밍 관계의 일 예를 나타낸 도면이다.
도 17을 참조하면, 단말은 상향링크 무선 프레임 (Uplink frame) i 에 상응하는 하향링크 무선 프레임 (Downlink frame)을 전송하기 전
Figure PCTKR2020005891-appb-img-000058
초 부터 전송하기 시작한다. 다만, 예외로, PUSCH 에서의 메시지A 송신 (msgA transmission on PUSCH) 에 대해서는
Figure PCTKR2020005891-appb-img-000059
이 사용된다.
각 파라미터는 아래 표 9 와 같이 정의될 수 있다.
Figure PCTKR2020005891-appb-img-000060
2. 측위 (positioning)
측위(Positioning)는 무선 신호를 측정하여 UE의 지리적 위치 및/또는 속도를 결정하는 것을 의미할 수 있다. 위치 정보는 UE와 관련된 클라이언트(예를 들어, 어플리케이션)에 의해 요청되어, 상기 클라이언트에 보고될 수 있다. 또한, 상기 위치 정보는 코어 네트워크(Core Network) 내에 포함되거나, 상기 코어 네트워크와 접속된 클라이언트에 의해 요청될 수도 있다. 상기 위치 정보는 셀 기반 또는 지리적 좌표와 같은 표준 형식(standard format)으로 보고될 수 있으며, 이 때, 상기 UE의 위치 및 속도에 대한 추정 오류치 및/또는 측위(Positioning)에 사용된 측위 방법을 함께 보고 할 수 있다.
2.1. Positioning Protocol configuration
도 10 은 본 개시의 다양한 실시예들이 적용 가능한 단말의 위치를 측정하기 위한 포지셔닝 프로토콜 설정(positioning protocol configuration)의 일 예를 나타낸 도면이다.
도 10 을 참조하면, LPP 는 하나 이상의 기준 소스 (reference source) 로부터 획득된 측위-관련 측정 (position-related measurements) 를 사용하여 대상 장치 (UE 및/또는 SET) 를 측위할 수 있도록 위치 서버 (E-SMLC 및/또는 SLP 및/또는 LMF) 와 대상 장치 사이의 point-to-point 로 사용될 수 있다. LPP 를 통하여 타겟 장치 및 위치 서버는 신호 A 및/또는 신호 B 에 기초한 측정 및/또는 위치 정보를 교환할 수 있다.
NRPPa는 기준 소스 (ACCESS NODE 및/또는BS 및/또는 TP 및/또는 NG-RAN 노드) 와 위치 서버 간의 정보 교환에 사용될 수 있다.
NRPPa 프로토콜이 제공하는 기능 (function) 들은 하기 사항들을 포함할 수 있다:
- E-CID Location Information Transfer. 이 기능을 통하여 E-CID 포지셔닝 목적으로 기준 소스와 LMF 간에 위치 정보가 교환될 수 있다.
- OTDOA Information Transfer. 이 기능을 통하여 OTDOA 포지셔닝 목적으로 기준 소스와 LMF 간에 정보가 교환될 수 있다.
- Reporting of General Error Situations. 이 기능을 통하여 기능 별 오류 메시지가 정의되지 않은 일반적인 오류 상황이 보고될 수 있다.
2.2. LTE 시스템에서의 PRS
이러한 측위를 위하여, PRS (positioning reference signal)가 사용될 수 있다. PRS는 UE의 위치 추정을 위해 사용되는 참조신호이다.
예를 들어, LTE 시스템에서는, PRS는 PRS 전송을 위해 설정(Configuring)된 하향링크 서브프레임(이하, '포지셔닝 서브프레임 (Positioning Subframe)')에서만 전송될 수 있다. 또한, 만약, MBSFN (Multimedia broadcast single frequency network) 서브프레임과 non-MBSFN 서브프레임이 모두 포지셔닝 서브프레임으로 설정되면, MBSFN 서브프레임의 OFDM (Orthogonal Frequency Division Multiplexing) 심볼들은 서브프레임 #0과 동일한 CP (Cyclic Prefix)를 가져야 한다. 만약, 셀 내에서 포지셔닝 서브프레임이 MBSFM 서브프레임들만으로 설정된 경우, 상기 MBSFN 서브프레임 내에서 PRS를 위해 설정된 OFDM 심볼들은 확장 CP를 가질 수 있다.
이러한 PRS의 시퀀스는 아래의 [수학식 1]에 의해 정의될 수 있다.
[수학식 1]
Figure PCTKR2020005891-appb-img-000061
여기서, n s는 무선 프레임 내에서의 슬롯 넘버를 의미하고, l은 상기 슬롯 내에서의 OFDM 심볼 넘버를 의미한다.
Figure PCTKR2020005891-appb-img-000062
은 하향링크 대역폭 설정 중 가장 큰 값으로서,
Figure PCTKR2020005891-appb-img-000063
의 정수배로 표현된다.
Figure PCTKR2020005891-appb-img-000064
는 주파수 도메인에서 RB (Resource Block)의 크기이며, 예를 들어, 12개의 부반송파로 구성될 수 있다.
c(i)는 Pseudo-Random 시퀀스로서, 아래의 [수학식 2]에 따라 초기화될 수 있다.
[수학식 2]
Figure PCTKR2020005891-appb-img-000065
상위 계층에서 별도의 설정이 없는 한,
Figure PCTKR2020005891-appb-img-000066
Figure PCTKR2020005891-appb-img-000067
과 동일하며, N CP는 일반 CP(Cyclic Prefix)에서 1, 확장 CP에서 0이다.
도 11 은 본 개시의 다양한 실시예들이 적용 가능한 LTE 시스템에서 PRS 매핑의 일 예를 나타낸 도면이다.
도 11 을 참조하면, PRS는 안테나 포트 6을 통해서 전송될 수 있다. 도 9(a)는 일반 CP에서 PRS가 맵핑되는 예시를 나타내고, 도 9(b)는 확장 CP에서 PRS가 맵핑되는 예시를 나타낸다.
한편, LTE 시스템에서, PRS는 위치 추정을 위해 그룹핑된 연속된 서브프레임들에서 전송될 수 있는데, 이 때, 위치 추정을 위해 그룹핑된 서브프레임들을 포지셔닝 기회(Positioning Occasion)이라고 한다. 이러한 포지셔닝 기회는 1, 2, 4 또는 6 서브프레임들로 구성될 수 있다. 또한, 이러한 포지셔닝 기회는 160, 320, 640 또는 1280 서브프레임 주기로 주기적으로 발생할 수 있다. 또한, PRS 전송의 시작 서브프레임을 지시하기 위한 셀 특정 서브프레임 오프셋 값이 정의될 수 있으며, 상기 오프셋 값과 PRS 전송을 위한 포지셔닝 기회의 주기는 아래의 표 10에서 보는 바와 같이, PRS 설정 인덱스(Configuration Index)에 의해 유도될 수 있다.
Figure PCTKR2020005891-appb-img-000068
한편, 각각의 포지셔닝 기회(Occasion)에 포함된 PRS는 일정한 전력으로 전송된다. 이 때, 특정 포지셔닝 기회(Occasion)에서는 제로 파워로 PRS가 전송될 수 있는데, 이를 PRS 뮤팅(muting)이라고 한다. 예를 들어, 서빙 셀에서 전송되는 PRS를 뮤팅(muting)함으로써, 단말이 인접 셀의 PRS를 용이하게 검출할 수 있다.
셀에 대한 PRS 뮤팅 설정(Configuration)은 2, 4, 8 또는 16 개의 포지셔닝 기회(Occasion)로 구성되는 주기적 뮤팅 시퀀스에 의해 정의될 수 있다. 즉, 주기적 뮤팅 시퀀스는 PRS 뮤팅 설정에 대응하는 포지셔닝 기회들에 따라 2, 4, 8 또는 16비트로 구성될 수 있으며, 각각의 비트는 '0' 또는 '1'의 값을 가질 수 있다. 예를 들어, 비트 값이 '0'인 포지셔닝 기회(Occasion)에서 PRS 뮤팅이 수행될 수 있다.
한편, 포지셔닝 서브프레임은 저 간섭 서브프레임(low interference subframe)으로 설계되어, 상기 포지셔닝 서브프레임에서는 데이터가 전송되지 않는다. 그러므로, PRS는 다른 셀의 PRS에 의해서 간섭 받을 수는 있지만, 데이터 전송에 의해서는 간섭 받지 않는다.
2.3. NR 시스템에서의 UE 포지셔닝 아키텍처 (UE Positioning Architecture)
도 12 은 본 개시의 다양한 실시예들이 적용 가능한 단말의 위치를 측정하기 위한 시스템의 아키텍쳐의 일 예를 나타낸 도면이다.
도 12을 참조하면, AMF (Core Access and Mobility Management Function)은 특정 타겟 UE와 관련된 위치 서비스에 대한 요청을 GMLC (Gateway Mobile Location Center)와 같은 다른 엔티티(entity)로부터 수신하거나, AMF 자체에서 특정 타겟 UE를 대신하여 위치 서비스를 시작하기로 결정할 수 있다. 그러면, AMF는 LMF (Location Management Function) 에게 위치 서비스 요청을 전송한다. 상기 위치 서비스 요청을 수신한 LMF는 상기 위치 서비스 요청을 처리하여 UE의 추정된 위치 등을 포함하는 처리 결과를 AMF에 반환할 수 있다. 한편, 위치 서비스 요청이 AMF 이외에 GMLC와 같은 다른 엔티티로부터 수신된 경우에 AMF는 LMF로부터 수신한 처리 결과를 다른 엔티티로 전달할 수 있다.
ng-eNB (new generation evolved-NB) 및 gNB는 위치 추적을 위한 측정 결과를 제공할 수 있는 NG-RAN의 네트워크 요소이며, 타겟 UE에 대한 무선 신호를 측정하고 그 결과값을 LMF에 전달할 수 있다. 또한, ng-eNB는 원격 무선 헤드 (remote radio heads)와 같은 몇몇 TP (Transmission Point)들 또는 E-UTRA를 위한 PRS 기반 비콘 시스템을 지원하는 PRS 전용 TP들을 제어할 수 있다.
LMF는 E-SMLC (Enhanced Serving Mobile Location Centre)와 연결되고, E-SMLC는 LMF가 E-UTRAN에 접속 가능하게 할 수 있다. 예를 들어, E-SMLC는 LMF가 eNB 및/또는 E-UTRAN 내의 PRS 전용 TP들로부터 전송된 신호를 통해 타겟 UE가 획득한 하향링크 측정을 이용하여 E-UTRAN의 측위 방법들 중 하나인 OTDOA (Observed Time Difference Of Arrival)을 지원하도록 할 수 있다.
한편, LMF는 SLP (SUPL Location Platform)에 연결될 수 있다. LMF는 타겟 UE들에 대한 서로 상이한 위치 결정 서비스들을 지원하고 관리할 수 있다. LMF는 UE의 위치 측정을 획득하기 위하여, 타겟 UE를 위한 서빙 ng-eNB 또는 서빙 gNB와 상호 작용할 수 있다. 타겟 UE의 측위를 위하여, LMF는 LCS(Location Service) 클라이언트 유형, 요구되는 QoS (Quality of Service), UE 측위 능력(UE positioning capabilities), gNB 측위 능력 및 ng-eNB 측위 능력 등에 기반하여 측위 방법을 결정하고, 이러한 측위 방법을 서빙 gNB 및/또는 서빙 ng-eNB에게 적용할 수 있다. 그리고, LMF는 타겟 UE에 대한 위치 추정치와 위치 추정 및 속도의 정확도와 같은 추가 정보를 결정할 수 있다. SLP는 사용자 평면(user plane)을 통해 측위를 담당하는 SUPL (Secure User Plane Location) 엔티티이다.
UE는 NG-RAN 및 E-UTRAN에서 전송하는 하향링크 참조 신호(Downlink Reference Signal)을 활용하여 UE의 위치를 측정할 수 있다. 이 때, NG-RAN 및 E-UTRAN로부터 UE에게 전송되는 상기 하향링크 참조 신호에는 SS/PBCH 블록, CSI-RS 및/또는 PRS 등이 포함될 수 있으며, 어떠한 하향링크 참조 신호를 사용하여 UE의 위치를 측정할지 여부는 LMF/E-SMLC/ng-eNB/E-UTRAN 등의 설정에 따를 수 있다. 또한, 서로 상이한 GNSS (Global Navigation Satellite System), TBS (Terrestrial Beacon System), WLAN 접속 포인트, 블루투스 비콘 및 UE에 내장된 센서(예를 들어, 기압 센서)등을 활용하는 RAT-independent 방식으로 UE의 위치를 측정할 수도 있다. UE는 LCS 어플리케이션을 포함할 수도 있고, UE가 접속된 네트워크와의 통신 또는 UE에 포함된 다른 어플리케이션을 통해 LCS 어플리케이션에 접속할 수 있다. LCS 어플리케이션은 UE의 위치를 결정하는 데 필요한 측정 및 계산 기능을 포함할 수 있다. 예를 들어, UE는 GPS (Global Positioning System) 과 같은 독립적인 측위 기능을 포함할 수 있고, NG-RAN 전송과는 독립적으로 UE의 위치를 보고할 수 있다. 이러한 독립적으로 획득한 측위 정보는 네트워크로부터 획득한 측위 정보의 보조 정보로서 활용될 수도 있다.
2.4. UE의 위치 측정을 위한 동작
도 13 은 본 개시의 다양한 실시예들이 적용 가능한 단말의 위치를 측정하는 절차의 일 예를 나타낸 도면이다.
UE가 CM-IDLE (Connection Management - IDLE)상태에 있을 때, AMF가 위치 서비스 요청을 수신하면, AMF는 UE와의 시그널링 연결을 수립하고, 특정 서빙 gNB 또는 ng-eNB를 할당하기 위해 네트워크 트리거 서비스를 요청할 수 있다. 이러한 동작 과정은 도 13에서는 생략되어 있다. 즉, 도 13에서는 UE가 연결 모드(connected mode)에 있는 것으로 가정할 수 있다. 하지만, 시그널링 및 데이터 비활성 등의 이유로 NG-RAN에 의해 시그널링 연결이 측위 과정이 진행되는 도중에 해제될 수도 있다.
도 13을 참조하여 구체적으로 UE의 위치를 측정하기 위한 네트워크의 동작 과정을 살펴보면, 단계 1a에서, GMLC와 같은 5GC 엔티티는 서빙 AMF로 타겟 UE의 위치를 측정하기 위한 위치 서비스를 요청할 수 있다. 다만, GMLC가 위치 서비스를 요청하지 않더라도, 단계 1b에 따라, 서빙 AMF가 타겟 UE의 위치를 측정하기 위한 위치 서비스가 필요하다고 결정할 수도 있다. 예를 들어, 긴급 호출(emergency call)을 위한 UE의 위치를 측정하기 위하여, 서빙 AMF가 직접 위치 서비스를 수행할 것을 결정할 수도 있다.
그 후, AMF는 단계 2에 따라, LMF로 위치 서비스 요청을 전송하고, 단계 3a에 따라, LMF는 위치 측정 데이터 또는 위치 측정 보조 데이터를 획득하기 위한 위치 절차(location procedures)를 서빙 ng-eNB, 서빙 gNB와 함께 시작할 수 있다. 예를 들어, LMF가 NG-RAN에 하나 이상의 UE와 관련된 위치 관련 정보를 요청하고, 필요한 위치 정보의 유형 및 관련 QoS를 지시할 수 있다. 그러면, NG-RAN은 요청에 응답하여, LMF에 위치 관련 정보를 LMF에 전송할 수 있다. 이 때, 상기 요청에 의한 위치 결정 방법이 E-CID인 경우, NG-RAN은 추가적인 위치 관련 정보를 LMF에 하나 이상의 NRPPa 메시지를 통해 전송할 수 있다. 여기서, '위치 관련 정보'란, 실제 위치 추정 정보 및 무선 측정 또는 위치 측정 등과 같이 위치 계산에 사용되는 모든 값들을 의미할 수 있다. 또한, 단계 3a에서 사용되는 프로토콜(Protocol)은 NRPPa 프로토콜일 수 있으며, 이에 대해서는 후술하도록 한다.
추가적으로, 단계 3b에 따라, LMF는 UE와 함께 하향링크 측위를 위한 위치 절차(location procedures) 시작할 수 있다. 예를 들어, LMF는 UE에게 위치 보조 데이터를 전송하거나, 위치 추정치 또는 위치 측정치를 획득할 수 있다. 예를 들어, 단계 3b에서 성능 정보 교환(Capability Transfer) 과정을 수행할 수 있다. 구체적으로 LMF는 UE에게 성능(Capability) 정보를 요청하고, UE는 LMF에게 성능(Capability) 정보를 전송할 수 있다. 이 때, 성능(Capability) 정보란, LFM 또는 UE가 지원할 수 있는 위치 측정 방법에 대한 정보, A-GNSS를 위한 보조 데이터(Assistance data)의 다양한 타입과 같이 특정 위치 측정 방법에 대한 다양한 측면(aspects)들에 대한 정보 및 다중 LPP 트랜젝션들을 핸들링(handle)할 수 있는 능력 등과 같이 어느 하나의 위치 측정 방법에 국한되지 않는 공통 특징에 대한 정보 등을 포함할 수 있다. 한편, 경우에 따라서 LMF가 UE에게 성능(Capability) 정보를 요청하지 않더라도, UE가 LMF에게 성능(Capability) 정보를 제공할 수 있다.
또 다른 예로, 단계 3b에서 위치 보조 데이터 교환(Assistance data transfer) 과정을 수행할 수 있다. 구체적으로, UE는 LMF에게 위치 보조 데이터(assistance data)를 요청할 수 있고, 필요로 하는 특정 위치 보조 데이터(assistance data)를 LMF에 지시할 수 있다. 그러면, LMF는 이에 대응하는 위치 보조 데이터(assistance data)를 UE에게 전달할 수 있고, 추가적으로, 하나 이상의 추가 LPP 메시지들을 통해 추가 보조 데이터(Additional assistance data)를 UE에게 전송할 수 있다. 한편, LMF에서 UE로 전송되는 위치 보조 데이터는 유니캐스트(unicast) 방식을 통해 전송될 수 있고, 경우에 따라, UE가 LMF에 보조 데이터를 요청하는 과정 없이, LMF가 UE에게 위치 보조 데이터 및/또는 추가 보조 데이터를 UE에게 전송할 수 있다.
또 다른 예로, 단계 3b에서 위치 정보 교환(Location Information Transfer) 과정을 수행할 수 있다. 구체적으로, LMF가 UE에게 해당 UE와 관련된 위치 관련 정보를 요청하고, 필요한 위치 정보의 유형 및 관련 QoS를 지시할 수 있다. 그러면, UE는 요청에 응답하여, LMF에 위치 관련 정보를 LMF에 전송할 수 있다. 이 때, 추가적으로 UE는 추가 위치 관련 정보를 LMF에 하나 이상의 LPP 메시지들을 통해 전송할 수 있다. 여기서, '위치 관련 정보'란, 실제 위치 추정 정보 및 무선 측정 또는 위치 측정 등과 같이 위치 계산에 사용되는 모든 값들을 의미할 수 있으며, 대표적으로는 복수의 NG-RAN 및/또는 E-UTRAN로부터 UE로 전송되는 하향링크 참조 신호(Downlink Reference Signal)들을 기반으로 UE가 측정하는RSTD(Reference Signal Time Difference) 값이 있을 수 있다. 상술한 바와 유사하게 UE 는 LMF로부터 요청이 없더라도 상기 위치 관련 정보를 LMF에 전송할 수 있다.
한편, 상술한 단계 3b에서 이루어지는 과정들은 단독으로 수행될 수도 있지만, 연속적으로 수행될 수 있다. 일반적으로, 성능 정보 교환(Capability Transfer) 과정, 위치 보조 데이터 교환(Assistance data transfer) 과정, 위치 정보 교환(Location Information Transfer) 과정 순서로 단계 3b가 수행되지만, 이러한 순서에 국한되지 않는다. 다시 말해, 단계 3b는 위치 측정의 유연성을 향상시키기 위해 특정 순서에 구애 받지 않는다. 예를 들어, UE는 LMF가 이미 요청한 위치 측정 요청을 수행하기 위해 언제든지 위치 보조 데이터를 요청할 수 있다. 또한, LMF도 UE가 전달해준 위치 정보가 요구하는 QoS를 만족하지 못하는 경우, 언제든지 위치 측정치 또는 위치 추정치 등의 위치 정보를 요청할 수 있다. 이와 유사하게 UE가 위치 추정을 위한 측정을 수행하지 않은 경우에는 언제든지 LMF로 성능(Capability) 정보를 전송할 수 있다.
또한, 단계 3b에서 LMF와 UE 간에 교환하는 정보 또는 요청에 Error가 발생한 경우, Error 메시지가 송수신될 수 있으며, 위치 측정을 중단하기 위한 중단(Abort)메시지가 송수신될 수도 있다.
한편, 단계 3b 에서 사용되는 프로토콜(Protocol)은 LPP 프로토콜일 수 있으며, 이에 대해서는 후술하도록 한다.
한편, 단계 3b는 단계 3a가 수행된 이후 추가적으로 수행될 수도 있으나, 단계 3a에 대신하여 수행될 수도 있다.
단계 4에서 LMF는 AMF에 위치 서비스 응답을 제공할 수 있다. 또한, 위치 서비스 응답에는 UE의 위치추정이 성공했는지 여부에 대한 정보 및 UE의 위치 추정치가 포함될 수 있다. 그 후, 단계 1a에 의해 도 9의 절차가 개시되었다면, AMF는 GMLC와 같은 5GC 엔티티에 위치 서비스 응답을 전달할 수 있으며, 단계 1b에 의해 도 13의 절차가 개시되었다면, AMF는 긴급 호출 등에 관련된 위치 서비스 제공을 위하여, 위치 서비스 응답을 이용할 수 있다.
2.5. 위치 측정을 위한 프로토콜
2.5.1. LTE Positioning Protocol (LPP)
도 14 은 본 개시의 다양한 실시예들이 적용 가능한 LPP (LTE positioning protocol) 메시지 전송을 지원하기 위한 프로토콜 레이어의 일 예를 나타낸 도면이다. LPP PDU는 MAF와 UE 간의 NAS PDU를 통해 전송될 수 있다.
도 14를 참조하면, LPP는 타겟 장치(예들 들어, 제어 평면에서의 UE 또는 사용자 평면에서의 SET(SUPL Enabled Terminal))와 위치 서버(예를 들어, 제어 평면에서의 LMF 또는 사용자 평면에서의 SLP) 사이를 연결(terminated)할 수 있다. LPP 메시지는 NG-C 인터페이스를 통한 NGAP, LTE-Uu 및 NR-Uu 인터페이스를 통한 NAS/RRC 등의 적절한 프로토콜을 사용하여 중간 네트워크 인터페이스를 통해 트랜스패런트 (Transparent) PDU 형태로 전달될 수 있다. LPP 프로토콜은 다양항 측위 방법을 사용하여 NR 및 LTE를 위한 측위가 가능하도록 한다.
예를 들어, LPP 프로토콜을 통하여 타겟 장치 및 위치 서버는 상호 간의 성능(capability) 정보 교환, 측위를 위한 보조 데이터 교환 및/또는 위치 정보를 교환할 수 있다. 또한, LPP 메시지를 통해 에러 정보 교환 및/또는 LPP 절차의 중단 지시 등을 수행할 수도 있다.
2.5.2. NR Positioning Protocol A (NRPPa)
도 15 은 본 개시의 다양한 실시예들이 적용 가능한 NRPPa (NR positioning protocol a) PDU (protocol data unit) 전송을 지원하기 위한 프로토콜 레이어의 일 예를 나타낸 도면이다.
NRPPa는 NG-RAN 노드와 LMF 간의 정보 교환에 사용될 수 있다. 구체적으로 NRPPa는 ng-eNB에서 LMF로 전송되는 측정을 위한 E-CID, OTDOA 측위 방법을 지원하기 위한 데이터, NR Cell ID 측위 방법을 위한 Cell-ID 및 Cell 위치 ID 등을 교환할 수 있다. AMF는 연관된 NRPPa 트랜잭션(transaction)에 대한 정보가 없더라도, NG-C 인터페이스를 통해 연관된 LMF의 라우팅 ID를 기반으로 NRPPa PDU들을 라우팅할 수 있다.
위치 및 데이터 수집을 위한 NRPPa 프로토콜의 절차는 2가지 유형으로 구분될 수 있다. 첫번째 유형은, 특정 UE에 대한 정보 (예를 들어, 위치 측정 정보 등)를 전달하기 위한 UE 관련 절차(UE associated procedure)이고, 두번째 유형은, NG-RAN 노드 및 관련된 TP들에 적용 가능한 정보 (예를 들어, gNB/ng-eNG/TP 타이밍 정보 등)을 전달하기 위한 비 UE 관련 절차 (non UE associated procedure)이다. 상기 2가지 유형의 절차는 독립적으로 지원될 수도 있고, 동시에 지원될 수도 있다.
2.6. 측위 방법 (Positioning Measurement Method)
NG-RAN에서 지원하는 측위 방법들에는 GNSS, OTDOA, E-CID (enhanced cell ID), 기압 센서 측위, WLAN 측위, 블루투스 측위 및 TBS (terrestrial beacon system), UTDOA (Uplink Time Difference of Arrival) 등이 있을 수 있다. 상기 측위 방법들 중, 어느 하나의 측위 방법을 이용하여 UE의 위치를 측정할 수도 있지만, 둘 이상의 측위 방법을 이용하여 UE의 위치를 측정할 수도 있다.
2.6.1. OTDOA (Observed Time Difference Of Arrival)
도 16 은 본 개시의 다양한 실시예들이 적용 가능한 OTDOA (observed time difference of arrival) 측위(Positioning) 방법의 일 예를 나타낸 도면이다.
OTDOA 측위 방법은 UE가 eNB, ng-eNB 및 PRS 전용 TP를 포함하는 다수의 TP들로부터 수신된 하향링크 신호들의 측정 타이밍을 이용한다. UE는 위치 서버로부터 수신된 위치 보조 데이터를 이용하여 수신된 하향링크 신호들의 타이밍을 측정한다. 그리고 이러한 측정 결과 및 이웃 TP들의 지리적 좌표들을 기반으로 UE의 위치를 결정할 수 있다.
gNB에 연결된 UE는 TP로부터 OTDOA 측정을 위한 측정 갭(gap)을 요청할 수 있다. 만약, UE가 OTDOA 보조 데이터 내의 적어도 하나의 TP를 위한 SFN을 인지하지 못하면, UE는 RSTD (Reference Signal Time Difference) 측정(Measurement)을 수행하기 위한 측정 갭을 요청하기 전에 OTDOA 참조 셀(reference cell)의 SFN을 획득하기 위해 자율적인 갭(autonomous gap)을 사용할 수 있다.
여기서, RSTD는 참조 셀과 측정 셀로부터 각각 수신된 2개의 서브프레임들의 경계 간의 가장 작은 상대적인 시간 차를 기반으로 정의될 수 있다. 즉, 측정 셀로부터 수신된 서브 프레임의 시작 시간에 가장 가까운 참조 셀의 서브프레임의 시작 시간 간의 상대적인 시간 차이를 기반으로 계산될 수 있다. 한편, 참조 셀은 UE에 의해 선택될 수 있다.
정확한 OTDOA 측정을 위해서는 지리적으로 분산된 3개 이상의 TP들 또는 기지국들로부터 수신된 신호의 TOA(time of arrival)을 측정하는 것이 필요하다. 예를 들어, TP 1, TP 2 및 TP 3 각각에 대한 TOA를 측정하고, 3개의 TOA를 기반으로 TP 1-TP 2에 대한 RSTD, TP 2-TP 3에 대한 RSTD 및 TP 3-TP 1에 대한 RSTD를 계산하여, 이를 기반으로 기하학적 쌍곡선을 결정하고, 이러한 쌍곡선이 교차하는 지점을 UE의 위치로 추청할 수 있다. 이 때, 각 TOA 측정에 대한 정확도 및/또는 불확실성이 생길 수 있는 바, 추정된 UE의 위치는 측정 불확실성에 따른 특정 범위로 알려질 수도 있다.
예를 들어, 두 TP에 대한 RSTD는 아래의 [수학식 3]을 기반으로 산출될 수 있다.
[수학식 3]
Figure PCTKR2020005891-appb-img-000069
여기서, c는 빛의 속도이고, {x t, y t}는 타겟 UE의 (알려지지 않은) 좌표이고, {x i, y i}는 (알려진) TP의 좌표이며, {x 1, y 1}은 참조 TP (또는 다른 TP)의 좌표일 수 있다. 여기서, (T i-T 1)은 두 TP 간의 전송 시간 오프셋으로서, "Real Time Differences" (RTDs)로 명칭될 수 있으며, n i, n 1은 UE TOA 측정 에러에 관한 값을 나타낼 수 있다.
2.6.2. E-CID (Enhanced Cell ID)
셀 ID (CID) 측위 방법에서, UE의 위치는 UE의 서빙 ng-eNB, 서빙 gNB 및/또는 서빙 셀의 지리적 정보를 통해 측정될 수 있다. 예를 들어, 서빙 ng-eNB, 서빙 gNB 및/또는 서빙 셀의 지리적 정보는 페이징(paging), 등록(registration) 등을 통해 획득될 수 있다.
한편, E-CID 측위 방법은 CID 측위 방법에 더하여 UE 위치 추정치를 향상 시키기 위한 추가적인 UE 측정 및/또는 NG-RAN 무선 자원 등을 이용할 수 있다. E-CID 측위 방법에서, RRC 프로토콜의 측정 제어 시스템과 동일한 측정 방법들 중 일부를 사용할 수 있지만, 일반적으로 UE의 위치 측정만을 위하여 추가적인 측정을 하지 않는다. 다시 말해, UE의 위치를 측정하기 위하여 별도의 측정 설정 (measurement configuration) 또는 측정 제어 메시지(measurement control message)는 제공되지 않을 수 있으며, UE 또한 위치 측정만을 위한 추가적인 측정 동작이 요청될 것을 기대하지 않고, UE가 일반적으로 측정 가능한 측정 방법들을 통해 획득된 측정 값을 보고할 수 있다.
예를 들어, 서빙 gNB는 UE로부터 제공되는 E-UTRA 측정치를 사용하여 E-CID 측위 방법을 구현할 수 있다.
E-CID 측위를 위해 사용할 수 있는 측정 요소의 예를 들면 다음과 같을 수 있다.
- UE 측정: E-UTRA RSRP (Reference Signal Received Power), E-UTRA RSRQ (Reference Signal Received Quality), UE E-UTRA 수신-송신 시간차 (Rx-Tx Time difference), GERAN/WLAN RSSI (Reference Signal Strength Indication), UTRAN CPICH (Common Pilot Channel) RSCP (Received Signal Code Power), UTRAN CPICH Ec/Io
- E-UTRAN 측정: ng-eNB 수신-송신 시간차 (Rx-Tx Time difference), 타이밍 어드밴스 (Timing Advance; T ADV), Angle of Arrival (AoA)
여기서, T ADV는 아래와 같이 Type 1과 Type 2로 구분될 수 있다.
T ADV Type 1 = (ng-eNB 수신-송신 시간차)+(UE E-UTRA 수신-송시 시간차)
T ADV Type 2 = ng-eNB 수신-송신 시간차
한편, AoA는 UE의 방향을 측정하는데 사용될 수 있다. AoA는 기지국/TP로부터 반 시계 방향으로 UE의 위치에 대한 추정 각도로 정의될 수 있다. 이 때, 지리적 기준 방향은 북쪽일 수 있다. 기지국/TP는 AoA 측정을 위해 SRS (Sounding Reference Signal) 및/또는 DMRS (Demodulation Reference Signal)과 같은 상향링크 신호를 이용할 수 있다. 또한, 안테나 어레이의 배열이 클수록 AoA의 측정 정확도가 높아지며, 동일한 간격으로 안테나 어레이들이 배열된 경우, 인접한 안테나 소자들에서 수신된 신호들은 일정한 위상 변화(Phase-Rotate)를 가질 수 있다.
2.6.3. UTDOA (Uplink Time Difference of Arrival)
UTDOA는 SRS의 도달 시간을 추정하여 UE의 위치를 결정하는 방법이다. 추정된 SRS 도달 시간을 산출할 때, 서빙 셀을 참조 셀로 사용하여, 다른 셀 (혹은 기지국/TP)와의 도달 시간 차이를 통해 UE의 위치를 추정할 수 있다. UTDOA를 구현하기 위해 E-SMLC는 타겟 UE에게 SRS 전송을 지시하기 위해, 타겟 UE의 서빙 셀을 지시할 수 있다. 또한, E-SMLC는 SRS의 주기적/비주기적 여부, 대역폭 및 주파수/그룹/시퀀스 호핑 등과 같은 설정(Configuration)을 제공할 수 있다.
2.6.4. Multi RTT (Multi-cell RTT)
네트워크 내 TP 들 간의 좋은 (fine) 동기화(예를 들어, nano-second level)를 요구하는 OTDOA 등과는 달리, RTT 는 OTDOA 등과 마찬가지로 TOA 측정을 기반으로 하나, 대략적인 (coarse) TRP (예를 들어, 기지국) 타이밍 동기화 (timing synchronization) 만을 필요로 한다.
도 17 은 본 개시의 다양한 실시예들이 적용 가능한 Multi RTT (round trip time) 측위 방법의 일 예를 나타낸 도면이다.
도 17 (a) 을 참조하면, initiating device 와 responding device 에서 TOA 측정이 수행되고, responding device 가 RTT 측정 (계산) 을 위하여 initiating device) 에 TOA 측정을 제공하는 RTT 과정을 예시한다. 예를 들어, initiating device 는 TRP 및/또는 단말일 수 있고, responding device 는 단말 및/또는 TRP 일 수 있다.
예시적 실시예에 따른 동작 2501 에서 initiating device 는 RTT 측정 요청을 송신하고, responding device 는 이를 수신할 수 있다.
예시적 실시예에 따른 동작 2503 에서, initiating device 는 RTT 측정 신호를 t 0 에서 송신할 수 있고, responding device 는 TOA 측정 t 1 을 획득할 수 있다.
예시적 실시예에 따른 동작 2505 에서, responding device 는 RTT 측정 신호를 t 2 에서 송신할 수 있고, initiating device 는 TOA 측정 t 3 을 획득할 수 있다.
예시적 실시예에 따른 동작 2507 에서, responding device 는 [t 2-t 1] 에 대한 정보를 송신할 수 있고, initiating device 는 해당 정보를 수신하여, 아래 수학식 4 에 기초하여 RTT 를 계산할 수 있다. 해당 정보는 별개 신호에 기초하여 송수신될 수도 있고, 2505 의 RTT 측정 신호에 포함되어 송수신될 수도 있다.
[수학식 4]
Figure PCTKR2020005891-appb-img-000070
도 17 (b) 을 참조하면, 해당 RTT 는 두 디바이스 간의 double-range 측정과 대응할 수 있다. 해당 정보로부터 측위 추정 (positioning estimation) 이 수행될 수 있으며, multilateration 기법이 사용될 수 있다. 측정된 RTT 에 기반하여 d 1, d 2, d 3 가 결정될 수 있으며, 각 BS 1, BS 2, BS 3 (또는 TRP) 를 중심으로 하고 각 d 1, d 2, d 3 를 반지름으로 하는 원주의 교차점으로 target device location 이 결정될 수 있다.
3. 본 개시의 다양한 실시예들
이하에서는, 상기와 같은 기술적 사상에 기반하여 본 개시의 다양한 실시예들에 대해 보다 상세히 설명한다. 이하에서 설명되는 본 개시의 다양한 실시예들에 대해서는 앞서 설명한 제 1 절 내지 제 2 절의 내용들이 적용될 수 있다. 예를 들어, 이하에서 설명되는 본 개시의 다양한 실시예들에서 정의되지 않은 동작, 기능, 용어 등은 제 1 절 내지 제 2 절의 내용들에 기반하여 수행되고 설명될 수 있다.
이하, 본 개시의 다양한 실시예들에 대한 설명에서 사용되는 기호/약어/용어는 다음과 같을 수 있다.
- CSI-RS : channel state information reference signal
- CP : cyclic prefix
- LMF : location management function
- PRS : positioning reference signal
- PRS block : PRS 블록 (block) 은 특정 TP/기지국 및/또는 복수의 TP/기지국에서 특정 TX 빔으로 전송되는 PRS 자원 및/또는 PRS 자원 집합으로 구성되어 하나 이상의 심볼에 걸쳐서 PRS 가 전송되는 전송 단위를 의미할 수 있다.
- PRS occasion : PRS 기회 (occasion) 는 하나 이상의 PRS 블록의 그룹 및/또는 PRS 가 전송되는 하나 이상의 슬롯의 그룹으로 정의/설정될 수 있다.
- RE : resource element
- RS : reference signal
- TRP : transmission reception point (TP : transmission point)
-
Figure PCTKR2020005891-appb-img-000071
: floor (x). floor 연산. 바닥함수. 실수 x 이하의 최대 정수를 의미할 수 있다.
달리 언급되지 않는 한, 이하의 본 개시의 다양한 실시예들에 대한 설명에서 동일한 문자로 표시된 사용되는 인자/변수/파라미터는, 동일한 정의를 갖는 인자/변수/파라미터로 이해될 수 있다.
시대의 흐름에 따라 더욱 많은 통신 기기들이 더욱 큰 통신 트래픽을 요구하게 되면서, LTE 시스템보다 향상된 무선 광대역 통신인 차세대 5G 시스템이 요구되고 있다. 이러한 차세대 5G 시스템을 편의상 NR (new RAT) 이라 명명한다.
LTE (long term evolution) 와는 달리, NR 은 다양한 서비스들을 지원하기 위한 다수의 수비학 (numerology) 을 지원할 수 있다. 예를 들어, NR 은 다양한 SCS (subcarrier spacing) 를 지원할 수 있다. 이러한 LTE 와 NR 간의 차이점을 고려하면, NR 을 위한 새로운 RS 생성 (generation) 방법이 필요할 수 있다.
본 개시의 다양한 실시예들은 무선 통신을 위한 RS 의 (스크램블링) 시퀀스 초기화 ((scrambling) sequence initialization) 를 위한 방법 및 장치와 관련될 수 있다.
예를 들어, 본 개시의 다양한 실시예들은 LTE (long term evolution) 에서 사용된 방식과는 달리, RS 가 전송된 특정 TP 가 구분될 수 있도록, 시퀀스를 초기화 하는 방법 및 장치와 관련될 수 있다.
예를 들어, 본 개시의 다양한 실시예들은 PRS 시퀀스 초기화를 위한 방법 및 장치와 관련될 수 있다.
도 18 은 본 개시의 다양한 실시예들에 따른 단말, TRP, 위치 서버 및/또는 LMF의 동작 방법을 간단히 나타낸 도면이다.
도 18을 참조하면, 예시적 실시예에 따른 동작 1801에서, 위치 서버 및/또는 LMF 는, 단말에게 설정 정보(configuration)를 송신할 수 있으며, 단말은 이를 수신할 수 있다.
한편, 예시적 실시예에 따른 동작 1803 에서, 위치 서버 및/또는 LMF 는, TRP (transmission and reception point) 에게 기준 설정 정보를 송신할 수 있으며, TRP 는 이를 수신할 수 있다. 예시적 실시예에 따른 동작 1805 에서, TRP 는 기준 설정 정보를 단말에게 송신할 수 있으며, 단말은 이를 수신할 수 있다. 이 경우, 예시적 실시예에 따른 동작 1801 은 생략될 수 있다.
반대로, 예시적 실시예에 따른 동작 1803 및 1805은 생략될 수 있다. 이 경우, 예시적 실시예에 따른 동작 1801 은 수행될 수 있다.
즉, 예시적 실시예에 따른 동작 1801 과, 예시적 실시예에 따른 동작 1803 및 1805 은 선택적일 수 있다.
예시적 실시예에 따른 동작 1807 에서, TRP 은 단말에게 설정 정보와 관련된 신호를 전송할 수 있으며, 단말은 이를 수신할 수 있다. 예를 들어, 설정 정보와 관련된 신호는 단말의 측위를 위한 신호일 수 있다.
예시적 실시예에 따른 동작 1809 에서, 단말은 측위와 관련된 신호를 TRP 로 송신할 수 있으며, TRP 는 이를 수신할 수 있다. 예시적 실시예에 따른 동작 2011 에서, TRP 는 측위와 관련된 신호를 위치 서버 및/또는 LMF 로 송신할 수 있으며, 위치 서버 및/또는 LMF 는 이를 수신할 수 있다.
한편, 예시적 실시예에 따른 동작 1813 에서, 단말은 측위와 관련된 신호를 위치 서버 및/또는 LMF 로 송신할 수 있으며, 위치 서버 및/또는 LMF 는 이를 수신할 수 있다. 이 경우, 예시적 실시예에 따른 동작 1809 및 1811 은 생략될 수 있다.
반대로, 예시적 실시예에 따른 동작 1813은 생략될 수 있다. 이 경우, 예시적 실시예에 따른 동작 1811 및 1813 은 수행될 수 있다.
즉, 예시적 실시예에 따른 동작 1809 및 1811 과, 예시적 실시예에 따른 동작 1813 은 선택적일 수 있다.
예시적 실시예에서, 측위와 관련된 신호는 설정 정보 및/또는 설정 정보와 관련된 신호에 기초하여 획득된 것일 수 있다.
도 19 은 본 개시의 다양한 실시예들에 따른 단말, TRP, 위치 서버 및/또는 LMF의 동작 방법을 간단히 나타낸 도면이다.
도 19(a) 을 참조하면, 예시적 실시예에 따른 동작 1901(a) 에서, 단말은 설정 정보를 수신할 수 있다.
예시적 실시예에 따른 동작 1903(a) 에서, 단말은 설정 정보와 관련된 신호를 수신할 수 있다.
예시적 실시예에 따른 동작 1905(a) 에서, 단말은 측위와 관련된 정보를 송신할 수 있다.
도 19(b) 를 참조하면, 예시적 실시예에 따른 동작 1901(b) 에서 TRP 는 위치 서버 및/또는 LMF 로부터 설정 정보를 수신할 수 있으며, 이를 단말에게 송신할 수 있다.
예시적 실시예에 따른 동작 1903(b) 에서, TRP 는 설정 정보와 관련된 신호를 송신할 수 있다.
예시적 실시예에 따른 동작 1905(b) 에서, TRP 는 측위와 관련된 정보를 수신할 수 있으며, 이를 위치 서버 및/또는 LMF 로 송신할 수 있다.
도 19(c) 를 참조하면, 예시적 실시예에 따른 동작 1901(c) 에서, 위치 서버 및/또는 LMF 는 설정 정보를 송신할 수 있다.
예시적 실시예에 따른 동작 1905(c) 에서, 위치 서버 및/또는 LMF 는 측위와 관련된 정보를 수신할 수 있다.
예를 들어, 상술한 설정 정보는, 이하의 본 개시의 다양한 실시예들에 대한 설명에서 reference configuration (information), 기준 설정 (정보), 참조 설정 (정보), 위치 서버 및/또는 LMF 및/또는 TRP 가 단말로 전송/설정하는 하나 이상의 정보 등과 관련된 것으로 이해되거나 및/또는 해당 reference configuration (information), 기준 설정 (정보), 참조 설정 (정보), 위치 서버 및/또는 LMF 및/또는 TRP 가 단말로 전송/설정하는 하나 이상의 정보 등인 것으로 이해될 수 있다.
예를 들어, 상술한 측위와 관련된 신호는, 이하의 본 개시의 다양한 실시예들에 대한 설명에서 단말이 보고하는 정보 중 하나 이상과 관련된 신호로 이해되거나 및/또는 해당 단말이 보고하는 정보 중 하나 이상을 포함하는 신호로 이해될 수 있다.
예를 들어, 이하의 본 개시의 다양한 실시예들에 대한 설명에서 기지국, gNB, 셀 등은 TRP, TP 나 이와 동일한 역할을 하는 임의의 장치 등으로 대체될 수 있다.
예를 들어, 이하의 본 개시의 다양한 실시예들에 대한 설명에서 위치 서버는 LMF 나 이와 동일한 역할을 하는 임의의 장치 등으로 대체될 수 있다.
각 예시적 실시예에 따른 동작에서의 보다 구체적인 동작, 기능, 용어 등은 후술되는 본 개시의 다양한 실시예들에 기반하여 수행되고 설명될 수 있다. 한편, 각 예시적 실시예에 따른 동작들은 예시적인 것으로, 각 실시예의 구체적인 내용에 따라 상술한 동작들 중 하나 이상의 동작은 생략될 수 있다.
이하에서는 본 개시의 다양한 실시예들에 대해 상세히 설명한다. 이하에서 설명되는 본 개시의 다양한 실시예들은 상호 배척되지 않는 한 전부 또는 일부가 결합되어 본 개시의 또 다른 다양한 실시예들을 구성할 수도 있으며, 이는 당해 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있다.
3.1. Sequence configuration for RS
본 개시의 다양한 실시예들에 따르면, RS 를 위한 시퀀스 설정이 제공될 수 있다. 예를 들어, RS 는 DRS (downlink reference signal) 일 수 있다. 예를 들어, RS 는 PRS 일 수 있다.
예를 들어, DL PRS 자원 집합 (DL PRS resource set) 은 DL PRS 자원들의 집합 (a set of DL PRS resources) 으로 정의될 수 있다. 예를 들어, 각 DL PRS 자원은 DL PRS 자원 ID (DL PRS resource ID (identifier)) 를 가질 수 있다.
- 예를 들어, DL PRS 자원 집합에 포함된 DL PRS 자원들은 동일한 TRP 와 연관 (associated with) 될 수 있다.
예를 들어, TRP 는 하나 이상의 빔 (beam) 을 송신할 수 있다. 예를 들어, DL PRS 자원 집합에 포함된 DL PRS 자원 ID 는 하나의 (single) TRP 로부터 전송된 하나의 빔과 연관될 수 있다.
예를 들어, 상술한 예시들은 신호가 송신된 TRP 및 빔이 단말에게 알려졌는지 여부와 무관할 수 있다.
예를 들어, DL PRS 시퀀스는 골드 시퀀스 생성기 (Gold sequence generator) 로 획득/생성될 수 있다.
예를 들어, 일반적인 의사-임의 시퀀스 (pseudo-random sequence) 는 길이-31 (length-31) 골드 시퀀스로 정의될 수 있다. 예를 들어, 길이 M PN 의 출력 시퀀스 (output sequence) c(n) (n=0,1,…, M PN -1) 는 수학식 5와 같이 정의될 수 있다.
[수학식 5]
Figure PCTKR2020005891-appb-img-000072
예를 들어, N c=1600 일 수 있으며, 첫번째 m-시퀀스 26(n) 은 26(0)=1, 26(n)=0 (n=1,2,…,30) 으로 초기화 될 수 있다. 예를 들어, 두번째 m-시퀀스 x 2(n) 의 초기화는 시퀀스의 적용에 의존하는 값을 갖는
Figure PCTKR2020005891-appb-img-000073
로 표현될 수 있다.
예를 들어, DL PRS 를 위한 시퀀스 생성기의 초기화를 위한
Figure PCTKR2020005891-appb-img-000074
값은 이하의 본 개시의 다양한 실시예들 중 하나 이상에 기초하여 제공될 수 있다.
예를 들어, CP-OFDM (cyclic prefix-orthogonal frequency division multiplexing) 를 이용하여 전송된 DL PRS 신호를 위하여 QPSK (quadrature phase shift keying) 변조가 이용될 수 있다. 예를 들어, 다른 메커니즘을 사용하여 생성된 DL PRS 시퀀스에는 다른 방법이 적용될 수도 있다.
예를 들어, 특정 TP/기지국은 단말 측위를 목적으로 하나 또는 두 개 이상의 송신 TX 빔으로 RS (예를 들어, PRS. 본 개시의 다양한 실시예들에 대한 설명에서, RS 의 일 예시는 PRS 로 이해될 수 있으나, 이에 한정되지 않음) 를 전송할 수 있다.
예를 들어, 각각의 TX 빔으로 전송되는 RS 는 서로 다른 RS 자원으로 설정/지시되어 단말에서 구분될 수 있다.
예를 들어, 서로 다른 RS 자원은 FDM (frequency division multiplexing) 및/또는 CDM (code division multiplexing) 및/또는 TDM (time division multiplexing) 및/또는 SDM (spatial division multiplexing) 될 수 있다.
예를 들어, 하나 이상의 RS 자원이 하나의 RS 자원 집합에 포함될 수 있다. 예를 들어, 동일 RS 자원 집합에 포함된 여러 개의 RS 자원들은 동일한 TP/기지국에서 전송될 수 있다. 예를 들어, 단말은 동일 RS 자원 집합에 포함된 여러 개의 RS 자원들은 동일한 TP/기지국에서 전송된다고 가정/인지할 수 있다.
또한, 예를 들어, 특정 RS 자원은 특정 RS 자원 집합에만 포함되는 것이 아니라, 두 개 이상의 RS 자원 집합에 포함될 수 있다. 예를 들어, 모든 RS 자원 집합 마다 dedicated RS 자원만 할당 가능하다면, RS 전송을 위한 시간 및/또는 주파수 등의 무선 자원이 낭비될 수 있는 문제가 발생될 수 있기 때문일 수 있다.
예를 들어, 단말 측위를 목적으로 설정된 RS 자원#1 (RS resource#1) 이 특정 TP/기지국에서 특정 시간-주파수 RE 를 통하여 UE#1 을 타겟 UE 로 전송됨을 가정한다. 해당 가정에서, 예를 들어, 해당 특정 TP/기지국과 지리적으로 상당히 멀리 떨어진 (예를 들어, 일정 거리 이상 떨어진) 특정 TP/기지국에서 UE#2 를 타겟 UE 로 RS 자원#1 을 통하여 단말 측위를 위하여 RS 를 전송할 수 있는 것이 적합할 수 있다. 예를 들어, TP/기지국 마다 독립적인 RS (예를 들어, PRS) 자원을 할당한다면, 상당한 시간-주파수 등의 무선 자원이 낭비될 수 있는 문제가 발생될 수 있기 때문일 수 있다.
도 20 는 본 개시의 다양한 실시예들에 따른 단말 및/또는 네트워크 노드의 동작 방법을 간단히 나타낸 도면이다.
도 20 를 참조하면, 예시적 실시예에 따른 동작 2001에서, 위치 서버 및/또는 LMF 는, 단말에게 RS 자원 정보를 송신할 수 있으며, 단말은 이를 수신할 수 있다.
한편, 예시적 실시예에 따른 동작 2003 에서, 위치 서버 및/또는 LMF 는, TP 에게 RS 자원 정보를 송신할 수 있으며, TP 는 이를 수신할 수 있다.
예시적 실시예에 따른 동작 2005 에서, TP 는 단말에게 RS 자원 정보를 송신할 수 있으며, 단말은 이를 수신할 수 있다. 이 경우, 예시적 실시예에 따른 동작 2001 은 생략될 수 있다.
반대로, 예시적 실시예에 따른 동작 2003, 2005 은 생략될 수 있다. 이 경우, 예시적 실시예에 따른 동작 2001 은 수행될 수 있다.
즉, 예시적 실시예에 따른 동작 2001 과, 예시적 실시예에 따른 동작 2003, 2005 은 선택적일 수 있다.
예를 들어, RS 자원은, 단말의 위치 측정을 목적으로 사용되는 RS 의 자원/RS 자원을 의미할 수 있다.
예시적 실시예에 따른 동작 2007 에서, TP 는 단말에게 ID 를 설정하는 정보를 송신할 수 있으며, 단말은 이를 수신할 수 있다. 예를 들어, ID 는 각 PRS 자원 및/또는 PRS 자원 집합에 시퀀스 초기화에 사용될 ID 일 수 있다. 예를 들어, ID 는 스크램블링 시퀀스 ID 일 수 있다.
한편, 예시적 실시예에 따른 동작 2009 에서, 위치 서버 및/또는 LMF 는 TP 에게 ID 를 설정하는 정보를 송신할 수 있으며, TP 는 이를 수신할 수 있다. 이 경우, 예시적 실시예에 따른 동작 2007 은 생략될 수 있다.
예시적 실시예에 따른 동작 2011 에서, TP 는 단말에게 ID 를 설정하는 정보를 송신할 수 있으며, 단말은 이를 수신할 수 있다. 예를 들어, ID 는 각 PRS 자원 및/또는 PRS 자원 집합에 시퀀스 초기화에 사용될 ID 일 수 있다. 예를 들어, ID 는 스크램블링 시퀀스 ID 일 수 있다. 이 경우, 예시적 실시예에 따른 동작 2007 은 생략될 수 있다.
반대로, 예시적 실시예에 따른 동작 2009, 2011 은 생략될 수 있다. 이 경우, 예시적 실시예에 따른 동작 2007 은 수행될 수 있다.
즉, 예시적 실시예에 따른 동작 2007 과, 예시적 실시예에 따른 동작 2009, 2011 은 선택적일 수 있다.
예시적 실시예에 따른 동작 2013 에서, TP 는 PRS 를 생성/획득할 수 있다. 예를 들어, TP 는 슬롯 인덱스, 슬롯 내의 OFDM 심볼 인덱스, PRS 가 전송되는 PRS 자원 및/또는 PRS 자원 집합에 설정된 스크램블링 시퀀스 ID 에 따라 시퀀스를 초기화함에 기초하여 PRS 를 생성/획득할 수 있다.
예시적 실시예에 따른 동작 2015 에서, TP 는 단말에게 PRS (및/또는 PRS 자원 및/또는 PRS 자원 집합) 를 송신할 수 있으며, 단말은 이를 수신할 수 있다.
예시적 실시예에 따른 동작 2017 에서, 단말은 PRS (및/또는 PRS 자원 및/또는 PRS 자원 집합) 을 획득/수신할 수 있다. 예를 들어, 단말은 슬롯 인덱스, 슬롯 내의 OFDM 심볼 인덱스, PRS 가 수신되는 PRS 자원 및/또는 PRS 자원 집합에 설정된 스크램블링 시퀀스 ID 에 따라 시퀀스 초기화 값을 찾고, 수신된 PRS 자원에 사용된 시퀀스를 획득(유도)함에 기초하여 PRS (및/또는 PRS 자원 및/또는 PRS 자원 집합) 을 획득/수신할 수 있다.
각 예시적 실시예에 따른 동작에서의 보다 구체적인 동작, 기능, 용어 등은 후술되는 본 개시의 다양한 실시예들에 기반하여 수행되고 설명될 수 있다. 한편, 각 예시적 실시예에 따른 동작들은 예시적인 것으로, 각 실시예의 구체적인 내용에 따라 상술한 동작들 중 하나 이상의 동작은 생략될 수 있다.
3.1.1. [제안#1] 시퀀스 초기화 방법 예 1
예를 들어, 단말의 위치를 측정하기 위하여 설정된 특정 RS (예를 들어, PRS) 자원이 서로 다른 RS (예를 들어, PRS) 자원 집합에 포함되는 경우, 단말은 서로 다른 특정 TP/기지국에서 전송된 특정 (동일한) RS (예를 들어, PRS) 자원을 구분하여 측정 (measurement) 을 획득할 필요가 있다. 이를 위해서, 예를 들어, RS (예를 들어, PRS) 자원 집합 ID (RS resource set ID) 및/또는 RS 자원 집합 ID 가 아닌 RS 자원 집합마다 설정/지시되는 ID (예를 들어, RS 자원 집합 당 스크램블링 ID) 를 사용하여 RS 시퀀스를 초기화하는 방법이 고려될 수 있다. 즉, 예를 들어, 기지국은 단말에 각각의 RS (예를 들어, PRS) 자원 뿐만 아니라 각 RS (예를 들어, PRS) 자원 집합 마다 RS 자원 집합 ID (예를 들어, RS 집합 인덱스) 이외에 RS 자원 집합에 별도로 추가적인 ID (예를 들어, 스크램블링 시퀀스 ID) 를 설정/지시할 수 있다.
상술한 사항들을 고려하여, 예를 들어, 기지국 및/또는 단말은 수학식 (0) 과 같이 시퀀스 초기화를 수행할 수 있다.
[수학식 (0)]
Figure PCTKR2020005891-appb-img-000075
예를 들어,
Figure PCTKR2020005891-appb-img-000076
는, a, b, c 등을 인자 및/또는 변수로 갖는 함수를 의미할 수 있다.
-
Figure PCTKR2020005891-appb-img-000077
: 시퀀스를 초기화 하기 위한 시퀀스 초기화 값 (sequence initialization value). 예를 들어, 골드 시퀀스 초기화 값 (Gold sequence initialization value) 이 될 수 있다. 다만, 본 개시의 다양한 실시예들에 따른 시퀀스 초기화 방법은 골드 시퀀스의 초기화에만 적용되는 것이 아니라 다른 시퀀스의 초기화에도 적용될 수 있으며, 이 경우
Figure PCTKR2020005891-appb-img-000078
은 다른 시퀀스 초기화 값을 의미할 수 있다.
-
Figure PCTKR2020005891-appb-img-000079
및/또는
Figure PCTKR2020005891-appb-img-000080
: 특정 RS (예를 들어, PRS) 시퀀스 ID 및/또는 특정 RS (예를 들어, PRS) 자원의 스크램블링 ID 및/또는 자원 ID 및/또는 자원마다 설정/지시되는 자원을 대표하는 ID 일 수 있다. 예를 들어,
Figure PCTKR2020005891-appb-img-000081
는 X (>0) 비트 및/또는 M (>0) 비트로 표현/설정/지시될 수 있다.
-
Figure PCTKR2020005891-appb-img-000082
및/또는
Figure PCTKR2020005891-appb-img-000083
: 특정 RS (예를 들어, PRS) 자원 집합 마다 설정되는 스크램블링 ID 및/또는 자원 집합 ID 및/또는 자원 집합을 대표하도록 설정되는 ID 일 수 있다. 예를 들어,
Figure PCTKR2020005891-appb-img-000084
는 Y (>0) 비트 및/또는 L (>0) 비트로 표현/설정/지시될 수 있다.
-
Figure PCTKR2020005891-appb-img-000085
: 슬롯 인덱스 및/또는 슬롯 넘버. 예를 들어, 프레임 내 슬롯 인덱스 및/또는 슬롯 넘버일 수 있다. 예를 들어, NR 에서 프레임에 포함되는 슬롯/심볼 개수는 SCS 에 따라 바뀔 수 있는 점을 고려하면,
Figure PCTKR2020005891-appb-img-000086
의 최대값은 NR 의 SCS 수비학에 따라 달라질 수 있다.
-
Figure PCTKR2020005891-appb-img-000087
: (슬롯 내) OFDM 심볼 인덱스
예를 들어, 시퀀스 초기화 수식 수학식 (0) 의
Figure PCTKR2020005891-appb-img-000088
의 보다 구체적인 일 예는 수학식 (1) 과 같을 수 있다. 즉, 예를 들어, 아래 수학식 (1) 과 같은 시퀀스 초기화 방법이 고려될 수 있다.
[수학식 (1)]
Figure PCTKR2020005891-appb-img-000089
- N : 1 또는 1보다 큰 자연수. 예를 들어, N 은 골드 시퀀스의 길이를 의미할 수 있다. 예를 들어, 길이-31 골드 시퀀스인 경우 N=31 일 수 있다. 다만, 본 개시의 다양한 실시예들에 따른 시퀀스 초기화 방법은 골드 시퀀스의 초기화에만 적용되는 것이 아니라 다른 시퀀스의 초기화에도 적용될 수 있으며, 이 경우 N 은 다른 시퀀스의 길이를 의미할 수 있다.
- M : 1 또는 1보다 큰 자연수. 예를 들어, M 은 고정된 값으로 정의될 수 있다. 예를 들어, M 은
Figure PCTKR2020005891-appb-img-000090
의 비트 크기와 관련될 수 있다. 예를 들어, PRS 를 위한
Figure PCTKR2020005891-appb-img-000091
(
Figure PCTKR2020005891-appb-img-000092
) 의 비트 크기 (예를 들어, 12 비트) 는 CSI-RS 를 위한
Figure PCTKR2020005891-appb-img-000093
(
Figure PCTKR2020005891-appb-img-000094
) 의 비트 크기 (예를 들어, 10비트) 보다 클 수 있다. 예를 들어, M 은
Figure PCTKR2020005891-appb-img-000095
의 비트 크기와
Figure PCTKR2020005891-appb-img-000096
의 비트 크기 간의 차이가 고려되어 결정될 수 있다. 예를 들어, M=19 일 수 있으나, 이에 제한되지 않는다.
- K : 1 또는 1보다 큰 자연수. 예를 들어, K 는 고정된 값으로 정의될 수 있다. 예를 들어, K 는 슬롯 당 심볼 개수와 관련될 수 있다. 예를 들어, (Normal CP 의 경우) 하나의 슬롯이 14 개의 심볼로 구성되는 것을 고려하면, K=14 로 정의될 수 있다. 또는, 예를 들어, (Extended CP 의 경우) 하나의 슬롯이 12 개의 심볼로 구성되는 것을 고려하면, K=12 로 정의될 수 있다. 또는, 예를 들어 하나의 PRS 블록 및/또는 PRS 기회 (occasion) 를 단위로 시퀀스를 초기화 한다면, 하나의 PRS 블록 및/또는 PRS 기회를 구성하는 심볼의 개수로 K 값이 정의/설정될 수 있다.
-
Figure PCTKR2020005891-appb-img-000097
:
Figure PCTKR2020005891-appb-img-000098
,
Figure PCTKR2020005891-appb-img-000099
의 함수를 의미할 수 있다. 예를 들어,
Figure PCTKR2020005891-appb-img-000100
,
Figure PCTKR2020005891-appb-img-000101
등을 인자 및/또는 변수로 갖는 함수를 의미할 수 있다.
- -
Figure PCTKR2020005891-appb-img-000102
의 보다 구체적인 일 예는 수학식 (1-1) 및/또는 수학식 (1-2) 와 같을 수 있다.
[수학식 (1-1)]
Figure PCTKR2020005891-appb-img-000103
[수학식 (1-2)]
Figure PCTKR2020005891-appb-img-000104
- - 예를 들어,
Figure PCTKR2020005891-appb-img-000105
및/또는
Figure PCTKR2020005891-appb-img-000106
는 0 보다 크거나 같은 실수가 될 수 있다.
- - 수학식 (1-1), 수학식 (1-2) 는 유사한 방식이지만, 수학식 (1-1) 에 비하여 수학식 (1-2) 방식은
Figure PCTKR2020005891-appb-img-000107
값에 따라
Figure PCTKR2020005891-appb-img-000108
값의 차이가 크기 때문에, 동일한
Figure PCTKR2020005891-appb-img-000109
값에 대하여 시퀀스 초기화 값 차이가 커서, 서로 다른 TP 에서 전송되는 동일한 PRS 자원이 더욱 잘 구별될 수 있는 장점이 있다. 수학식 (1-1) 및 수학식 (1-2) 는 예시적인 것으로, 본 개시의 다양한 실시예들에 따른
Figure PCTKR2020005891-appb-img-000110
는 다른 형태로도 정의될 수 있으며, 유사한 변형 및/또는 응용 또한 본 개시의 다양한 실시예들에 포함될 수 있다.
- mod : 모듈러 연산 (modulo arithmetic, modulo operation). 예를 들어, 모듈러 연산은 피제수 (dividend) q 를 제수 (divisor) d 로 나눈 나머지 (remainder) r 을 구하는 연산일 수 있다. (r = q mod (d))
다른 방식으로, 예를 들어,
Figure PCTKR2020005891-appb-img-000111
에 자원 집합 별로 별도로 설정되는 ID (예를 들어, RS 자원을 위한 스크램블링 ID) 및/또는 자원 집합을 대표하는 ID 가 곱해지는 형태가 고려될 수 있다. 예를 들어, 수학식 (2) 와 같은 형태가 고려될 수 있다.
[수학식 (2)]
Figure PCTKR2020005891-appb-img-000112
예를 들어, 수학식 (2) 의 방식에 의하면, 특정 RS 자원에 대하여 서로 다른 RS 자원 집합에 대한
Figure PCTKR2020005891-appb-img-000113
값의 차이가 수학식 (1) 의 방식보다 커질 수 있다.
즉, 상술한 방식은 RS 자원 집합 ID 가 시퀀스 초기화에 사용될 수 있음을 의미할 수 있다. 및/또는, 예를 들어 RS 자원 레벨 (RS resource level) 에도 스크램블링 시퀀스 ID 가 설정되지만, RS 자원 집합에도 독립적인 스크램블링 시퀀스 등의 L 비트로 표현/설정되는 ID 가 설정되어, 골드 시퀀스 초기화를 위해서 자원 레벨 및/또는 자원 집합 레벨에서 이루어질 수 있다.
예를 들어, RS 자원 집합의 스크램블링 ID 및/또는 RS 자원 집합의 ID 는 특정 TP/기지국 ID 및/또는 특정 TP/기지국을 표현할 수 있는 다른 ID 와 연동되어 단말에 설정/지시될 수 있다.
- 또한, 추가적으로, 예를 들어, 수학식 (1), (1-1), (1-2), (2) 에서
Figure PCTKR2020005891-appb-img-000114
은 RS 자원 집합 레벨로 정의되는 ID (예를 들어, 스크램블링 시퀀스 ID) 가 아니라, 특정 RS 자원에 설정되는 추가적인 ID (예를 들어, 스크램블링 시퀀스 ID) 가 될 수 있다.
- 또한, 예를 들어, 수학식 (1), (1-1), (1-2), (2) 에서
Figure PCTKR2020005891-appb-img-000115
은 RS 자원 집합 레벌로 정의되는 ID (예를 들어, 스크램블링 시퀀스 ID) 가 아니라, 특정 TP/기지국 ID (및/또는 이에 상응하는 TP/기지국을 나타낼 수 있는 ID) 가 될 수 있다. 예를 들어, 특정 RS 자원이 서로 다른 RS 자원 집합에 포함되어 전송되는 것은, 동일 RS 자원이 서로 다른 TP 에서 전송되는 것으로 고려될 수 있기 때문일 수 있다. 즉, 예를 들어, 수학식 (0) 에서,
Figure PCTKR2020005891-appb-img-000116
는 다음과 같이 변경될 수 있다.
Figure PCTKR2020005891-appb-img-000117
: 여기서
Figure PCTKR2020005891-appb-img-000118
는 TP ID 일 수 있다. 즉, 예를 들어, PRS 자원 ID 및/또는 PRS 자원의 스크램블링 시퀀스 ID 및/또는 TP ID 및/또는 슬롯 인덱스 및/또는 심볼 인덱스에 따라서 시퀀스 초기값이 결정될 수 있다.
- 예를 들어, 시퀀스 초기화를 위해서 TP/기지국 정보 (예를 들어, TP/기지국 ID) 가 사용되는 경우, LMF 및/또는 위치 서버는, 단말에 설정/지시한 기준 셀 (reference cell) (및/또는 기준 TP) 및/또는 이웃 셀 (neighboring cell) (및/또는 이웃 TP) 정보를 무선 망 기지국에 전송/지시할 수 있다.
예를 들어, 수학식 (1) 의 방식에 의하면,
Figure PCTKR2020005891-appb-img-000119
값의 증가로 인하여 전체 값이 변화하는 변화량 보다,
Figure PCTKR2020005891-appb-img-000120
값의 증가로 인하여 전체 값이 변화하는 변화량이 더 크다고 할 수 있다.
반면, 예를 들어, 수학식 (2) 의 방식에 의하면,
Figure PCTKR2020005891-appb-img-000121
값의 증가로 인하여 전체 값이 변화하는 변화량 보다,
Figure PCTKR2020005891-appb-img-000122
값의 증가로 인하여 전체 값이 변화하는 변화량이 더 크다고 할 수 있다.
예를 들어,
Figure PCTKR2020005891-appb-img-000123
,
Figure PCTKR2020005891-appb-img-000124
둘 중 어떠한 값이 변하더라도 결과적으로 전체 값이 변화가 커지도록 하는 것이, 서로 다른 시퀀스를 사용하게 되기 때문에 상관성을 낮출 수 있는 장점이 있을 수 있다. 이를 배경으로, 수학식 (2-1) 방식이 고려될 수 있다.
[수학식 (2-1)]
Figure PCTKR2020005891-appb-img-000125
-
Figure PCTKR2020005891-appb-img-000126
및/또는
Figure PCTKR2020005891-appb-img-000127
: 특정 RS (예를 들어, PRS) 시퀀스 ID 및/또는 특정 RS (예를 들어, PRS) 자원의 스크램블링 ID 및/또는 자원 ID 및/또는 자원마다 설정/지시되는 자원을 대표하는 ID 일 수 있다. 예를 들어,
Figure PCTKR2020005891-appb-img-000128
는 X (>0) 비트 및/또는 M (>0) 비트로 표현/설정/지시될 수 있다.
-
Figure PCTKR2020005891-appb-img-000129
및/또는
Figure PCTKR2020005891-appb-img-000130
: 특정 RS (예를 들어, PRS) 자원 집합 마다 설정되는 스크램블링 ID 및/또는 자원 집합 ID 및/또는 자원 집합을 대표하도록 설정되는 ID 일 수 있다. 예를 들어,
Figure PCTKR2020005891-appb-img-000131
는 Y (>0) 비트 및/또는 L (>0) 비트로 표현/설정/지시될 수 있다.
- P : 1 또는 1보다 큰 자연수. 예를 들어,
Figure PCTKR2020005891-appb-img-000132
가 M 비트의 비트 크기를 갖고,
Figure PCTKR2020005891-appb-img-000133
가 L 비트의 비트 크기를 갖는 경우,
Figure PCTKR2020005891-appb-img-000134
일 수 있다. 예를 들어,
Figure PCTKR2020005891-appb-img-000135
Figure PCTKR2020005891-appb-img-000136
,
Figure PCTKR2020005891-appb-img-000137
은 각각 M 비트, L 비트로 설정/지시되지만, 모든 자원 레벨의 (시퀀스) ID 와 자원 집합 레벨의 (시퀀스) ID 의 조합이 사용되는 것이 아니라, 모든 조합 가운데 총 P 비트만 사용되어 설정/지시됨을 의미할 수 있다.
- K : 1 또는 1보다 큰 자연수. 예를 들어, K 는 고정된 값으로 정의될 수 있다. 예를 들어, K 는 슬롯 당 심볼 개수와 관련될 수 있다. 예를 들어, (Normal CP 의 경우) 하나의 슬롯이 14 개의 심볼로 구성되는 것을 고려하면, K=14 로 정의될 수 있다. 또는, 예를 들어, (Extended CP 의 경우) 하나의 슬롯이 12 개의 심볼로 구성되는 것을 고려하면, K=12 로 정의될 수 있다. 또는, 예를 들어 하나의 PRS 블록 및/또는 PRS 기회 (occasion) 를 단위로 시퀀스를 초기화 한다면, 하나의 PRS 블록 및/또는 PRS 기회를 구성하는 심볼의 개수로 K 값이 정의/설정될 수 있다.
-
Figure PCTKR2020005891-appb-img-000138
: 슬롯 인덱스 및/또는 슬롯 넘버. 예를 들어, 프레임 내 슬롯 인덱스 및/또는 슬롯 넘버일 수 있다. 예를 들어, NR 에서 프레임에 포함되는 슬롯/심볼 개수는 SCS 에 따라 바뀔 수 있는 점을 고려하면,
Figure PCTKR2020005891-appb-img-000139
의 최대값은 NR 의 SCS 수비학에 따라 달라질 수 있다.
-
Figure PCTKR2020005891-appb-img-000140
: (슬롯 내) OFDM 심볼 인덱스
-
Figure PCTKR2020005891-appb-img-000141
:
Figure PCTKR2020005891-appb-img-000142
,
Figure PCTKR2020005891-appb-img-000143
의 함수를 의미할 수 있다. 예를 들어,
Figure PCTKR2020005891-appb-img-000144
,
Figure PCTKR2020005891-appb-img-000145
등을 인자 및/또는 변수로 갖는 함수를 의미할 수 있다.
예를 들어, 상술한 시퀀스 초기화 방법의 의도는, 특정 PRS 자원이 하나 이상의 PRS 자원 집합에 포함될 수 있음을 고려하여, 특정 PRS 자원이 어떠한 PRS 자원 집합에서 전송되었는지 단말이 알 수 있도록 (다른 PRS 자원 집합에 대하여) 다른 시퀀스가 사용되도록 하기 위한 것일 수 있다.
예를 들어, 모든 PRS 자원이 여러 개의 PRS 자원 집합에 포함되어 설정되지는 않기 때문에, 모든 PRS 자원이 서로 다른 PRS 자원 집합에 포함되어 있지 않다면, 굳이 M+L 비트가 필요하지 않을 수 있다. 또한, 예를 들어, (골드) 시퀀스 길이 값에 따라 상술한 수학식에서 모듈러 연산 이후의 값이 심볼 인덱스와 슬롯 인덱스에 따라 유일한 (unique) 값이 나오지 않을 수 있다. 즉, 예를 들어, 심볼 인덱스와 슬롯 인덱스에 따라서 시퀀스 초기화 값이 동일한 값이 발생될 수 있기 때문에, 이를 방지하기 위해서는 P 값의 크기에 따라서 적절하기 (골드) 시퀀스의 길이를 결정하는 것이 필요할 수 있다.
3.1.2. [제안#2] 시퀀스 초기화 방법 예 2
본 개시의 다양한 실시예들에 따르면, PRS 시퀀스 초기화를 위한 다른 예시로 수학식 (3) 과 같은 방식이 제공될 수 있다.
[수학식 (3)]
Figure PCTKR2020005891-appb-img-000146
-
Figure PCTKR2020005891-appb-img-000147
: 시퀀스를 초기화 하기 위한 시퀀스 초기화 값 (sequence initialization value). 예를 들어, 골드 시퀀스 초기화 값 (Gold sequence initialization value) 이 될 수 있다. 다만, 본 개시의 다양한 실시예들에 따른 시퀀스 초기화 방법은 골드 시퀀스의 초기화에만 적용되는 것이 아니라 다른 시퀀스의 초기화에도 적용될 수 있으며, 이 경우
Figure PCTKR2020005891-appb-img-000148
은 다른 시퀀스 초기화 값을 의미할 수 있다.
- N : 1 또는 1 보다 큰 자연수. 예를 들어, N 은 골드 시퀀스의 길이를 의미할 수 있다. 예를 들어, 길이-31 골드 시퀀스인 경우 N=31 일 수 있다. 다만, 본 개시의 다양한 실시예들에 따른 시퀀스 초기화 방법은 골드 시퀀스의 초기화에만 적용되는 것이 아니라 다른 시퀀스의 초기화에도 적용될 수 있으며, 이 경우 N 은 다른 시퀀스의 길이를 의미할 수 있다.
- M : 1 또는 1보다 큰 자연수. 예를 들어, M 은 고정된 값으로 정의될 수 있다. 예를 들어, M 은
Figure PCTKR2020005891-appb-img-000149
의 비트 크기와 관련될 수 있다. 예를 들어, PRS 를 위한
Figure PCTKR2020005891-appb-img-000150
(
Figure PCTKR2020005891-appb-img-000151
) 의 비트 크기 (예를 들어, 12 비트) 는 CSI-RS 를 위한
Figure PCTKR2020005891-appb-img-000152
(
Figure PCTKR2020005891-appb-img-000153
) 의 비트 크기 (예를 들어, 10비트) 보다 클 수 있다. 예를 들어, M 은
Figure PCTKR2020005891-appb-img-000154
의 비트 크기와
Figure PCTKR2020005891-appb-img-000155
의 비트 크기 간의 차이가 고려되어 결정될 수 있다. 예를 들어, M=19 일 수 있으나, 이에 제한되지 않는다.
-
Figure PCTKR2020005891-appb-img-000156
및/또는
Figure PCTKR2020005891-appb-img-000157
: 특정 RS (예를 들어, PRS) 시퀀스 ID 및/또는 특정 RS (예를 들어, PRS) 자원의 스크램블링 ID 및/또는 자원 ID 및/또는 자원마다 설정/지시되는 자원을 대표하는 ID 일 수 있다. 예를 들어,
Figure PCTKR2020005891-appb-img-000158
는 X (>0) 비트 및/또는 M (>0) 비트로 표현/설정/지시될 수 있다.
- K : 1 또는 1보다 큰 자연수. 예를 들어, K 는 고정된 값으로 정의될 수 있다. 예를 들어, K 는 슬롯 당 심볼 개수와 관련될 수 있다. 예를 들어, (Normal CP 의 경우) 하나의 슬롯이 14 개의 심볼로 구성되는 것을 고려하면, K=14 로 정의될 수 있다. 또는, 예를 들어, (Extended CP 의 경우) 하나의 슬롯이 12 개의 심볼로 구성되는 것을 고려하면, K=12 로 정의될 수 있다. 또는, 예를 들어 하나의 PRS 블록 및/또는 PRS 기회 (occasion) 를 단위로 시퀀스를 초기화 한다면, 하나의 PRS 블록 및/또는 PRS 기회를 구성하는 심볼의 개수로 K 값이 정의/설정될 수 있다.
-
Figure PCTKR2020005891-appb-img-000159
: 슬롯 인덱스 및/또는 슬롯 넘버. 예를 들어, 프레임 내 슬롯 인덱스 및/또는 슬롯 넘버일 수 있다. 예를 들어, NR 에서 프레임에 포함되는 슬롯/심볼 개수는 SCS 에 따라 바뀔 수 있는 점을 고려하면,
Figure PCTKR2020005891-appb-img-000160
의 최대값은 NR 의 SCS 수비학에 따라 달라질 수 있다.
-
Figure PCTKR2020005891-appb-img-000161
: (슬롯 내) OFDM 심볼 인덱스
- mod : 모듈러 연산 (modulo arithmetic, modulo operation). 예를 들어, 모듈러 연산은 피제수 (dividend) q 를 제수 (divisor) d 로 나눈 나머지 (remainder) r 을 구하는 연산일 수 있다. (r = q mod (d))
예를 들어, 수학식 (3) 에서 2^10 은 셀 ID 의 개수를 표현하는 10 비트가 반영된 것일 수 있다.
예를 들어, 수학식 (3) 에 의하면 길이-31 골드 시퀀스 31 비트에서, 처음 10 비트와 마지막 M-10 비트를
Figure PCTKR2020005891-appb-img-000162
를 나타내거나 및/또는 설정하기 위하여 비트를 잡아둘 수 있다.
예를 들어, 시퀀스 초기화 수학식 (3) 에 L 비트로 표현/설정되는 PRS 자원 집합 레벨에서의 특정 ID (예를 들어, 스크램블링 ID)
Figure PCTKR2020005891-appb-img-000163
가 추가적으로 고려되어, 시퀀스 초기화 수학식 (3) 이 변형될 수 있다. 예를 들어, 수학식 (3-1) 이 고려될 수 있다.
[수학식 (3-1)]
Figure PCTKR2020005891-appb-img-000164
본 개시의 다양한 실시예들에 따른 제안#2 의 시퀀스 초기화 방법의 보다 구체적인 일 예는 아래와 같을 수 있다.
예를 들어, 단말은 PRS 시퀀스
Figure PCTKR2020005891-appb-img-000165
는 아래와 같이 정의됨을 가정할 수 있다.
Figure PCTKR2020005891-appb-img-000166
예를 들어, 의사-임의 시퀀스
Figure PCTKR2020005891-appb-img-000167
는 상술한 골드 시퀀스 일 수 있다. 의사-임의 시퀀스 생성기는 아래와 같이 초기화될 수 있다.
Figure PCTKR2020005891-appb-img-000168
예를 들어,
Figure PCTKR2020005891-appb-img-000169
는 슬롯 넘버일 수 있다. 예를 들어,
Figure PCTKR2020005891-appb-img-000170
는 프레임 내 슬롯 넘버일 수 있다.
예를 들어, 하향링크 PRS 시퀀스 ID
Figure PCTKR2020005891-appb-img-000171
는 상위 계층 파라미터 (예를 들어, DL-PRS-SequenceId) 로부터 주어질 수 있다.
예를 들어,
Figure PCTKR2020005891-appb-img-000172
은 시퀀스가 매핑된 슬롯 내의 OFDM 심볼 (인덱스) 일 수 있다.
본 개시의 다양한 실시예들에 따른 제안#2 의 시퀀스 초기화 방법, 예를 들어, 수학식 (3) 은 PRS 를 위한
Figure PCTKR2020005891-appb-img-000173
(
Figure PCTKR2020005891-appb-img-000174
) 의 비트 크기 (예를 들어, 12 비트) 와 CSI-RS 를 위한
Figure PCTKR2020005891-appb-img-000175
(
Figure PCTKR2020005891-appb-img-000176
) 의 비트 크기 (예를 들어, 10비트) 간의 차이가 고려되어 설계된 것일 수 있다.
예를 들어, 본 개시의 다양한 실시예들에 따른 제안#2 의 시퀀스 초기화 방법, 예를 들어, 수학식 (3) 에 의하면, PRS 를 위한
Figure PCTKR2020005891-appb-img-000177
(
Figure PCTKR2020005891-appb-img-000178
) 의 값이 CSI-RS 를 위한
Figure PCTKR2020005891-appb-img-000179
(
Figure PCTKR2020005891-appb-img-000180
) 의 값과 동일하면, PRS 를 위한
Figure PCTKR2020005891-appb-img-000181
값이 CSI-RS 를 위한
Figure PCTKR2020005891-appb-img-000182
값과 동일하게 획득되도록 설계된 것일 수 있다.
예를 들어, 본 개시의 다양한 실시예들에 따른 제안#2 의 시퀀스 초기화 방법, 예를 들어, 수학식 (3) 에 의하면, PRS 와 CSI-RS 가 측위를 위한 RS 로 함께 이용될 때, 단말은 PRS 와 CSI-RS 모두에 대하여 동일한 자원 위치만을 확인하면 될 수 있다. 즉, 예를 들어, 단말은 동일한 자원 위치에서 PRS 및/또는 CSI-RS 의 수신을 기대할 수 있다. 즉, 예를 들어, 단말은 다른 자원 위치를 추가적으로 확인할 필요가 없을 수 있다.
따라서, 본 개시의 다양한 실시예들에 따른 제안#2 의 시퀀스 초기화 방법, 예를 들어, 수학식 (3) 에 의하면, PRS 와 CSI-RS 가 측위를 위한 RS 로 함께 이용될 때, 단말의 구현 복잡도가 감소될 수 있다.
본 개시의 다양한 실시예들에 따른 제안#2 의 시퀀스 초기화 방법, 예를 들어, 수학식 (3) 은
Figure PCTKR2020005891-appb-img-000183
가 단말에 설정/제공되었는지 여부와 무관하게 적용될 수 있다. 즉, 예를 들어, 본 개시의 다양한 실시예들에 따른 제안#2 의 시퀀스 초기화 방법, 예를 들어, 수학식 (3) 은 PRS 자원 집합이 단말에게 설정/제공되었는지 여부와 무관하게 적용될 수 있다.
3.1.3. [제안#3] PRS 블록/기회를 고려한 시퀀스 사용
추가적으로, 예를 들어, 특정 PRS 자원 집합에 포함된 특정 PRS 자원이 서로 다른 PRS 블록 및/또는 PRS 기회를 구성하는데 사용된 경우, 단말이 PRS 블록을 구분하여 특정 PRS 자원을 검출 (PRS resource detection) 하는 것이 필요할 수 있다. 이러한 점 고려하여, 본 개시의 다양한 실시예들에 따르면 다음의 요소들 모두 또는 하나 이상의 일부가 고려될 수 있다.
- PRS 블록 정보 (PRS block information) : 예를 들어, PRS 블록 인덱스 및/또는 PRS 블록 마다 부여/설정되는 특정 ID (예를 들어, PRS 블록 당 스크램블링 시퀀스 ID 등) 등
- - 예를 들어, PRS 블록은 특정 TP/기지국 및/또는 복수의 TP/기지국에서 특정 TX 빔으로 전송되는 PRS 자원 및/또는 PRS 자원 집합으로 구성되어 하나 이상의 심볼에 걸쳐서 PRS 가 전송되는 전송 단위를 의미할 수 있다.
- PRS 기회 정보 (PRS occasion information) : 예를 들어, PRS 기회 인덱스 및/또는 PRS 기회 마다 부여/설정되는 특정 ID (예를 들어, PRS 블록 당 스크램블링 시퀀스 ID 등) 등
- - 예를 들어, PRS 기회는 하나 이상의 PRS 블록의 그룹 및/또는 PRS 가 전송되는 하나 이상의 슬롯의 그룹으로 정의/설정될 수 있다.
- PRS 자원 집합 정보 (PRS resource set information) : 예를 들어, PRS 자원 집합 인덱스 및/또는 PRS 집합 인덱스마다 부여/설정되는 특정 ID (예를 들어, PRS 자원 집합 당 스크램블링 시퀀스 ID 등) 등
예를 들어, 시간-주파수 무선 자원이 효율적으로 활용될 수 있도록, 서로 다른 TP/기지국에서 동일한 시간 및/또는 주파수 자원을 사용하여 특정 PRS 자원 블록을 전송하는 것을 고려할 수 있다. 이러한 경우, 단말이 시간 및/또는 주파수 자원에서 전송되는 PRS 블록을 보다 효과적으로 구분할 수 있도록 (서로 다른 TP/기지국에서) 서로 다른 시퀀스가 사용될 필요가 있을 수 있다. 이를 위해서, 예를 들어, (서로 다른 TP/기지국에서) 시퀀스 초기화 값이 다르게 설정/할당될 수 있다.
상술한 바와 같이, 예를 들어, 특정 PRS 자원 집합에 포함된 특정 PRS 자원이 서로 다른 PRS 블록 및/또는 PRS 기회를 구성하는데 사용된 경우, 단말이 PRS 블록을 구분하여 특정 PRS 자원을 검출하는 것이 필요할 수 있다. 이러한 점 감안하여, 수학식 (4) 에 따른 시퀀스 초기화 동작이 고려될 수 있다.
[수학식 (4)]
Figure PCTKR2020005891-appb-img-000184
예를 들어, 수학식 (4) 에서는 다음의 다섯 가지 요소들이 고려될 수 있다. 즉, 예를 들어, 수학식 (4) 에 의한 시퀀스 초기화 동작은 다음의 다섯 가지 요소들에 대해서 수행될 수 있다.
-
Figure PCTKR2020005891-appb-img-000185
: 시퀀스를 초기화 하기 위한 시퀀스 초기화 값 (sequence initialization value). 예를 들어, 골드 시퀀스 초기화 값 (Gold sequence initialization value) 이 될 수 있다. 다만, 본 개시의 다양한 실시예들에 따른 시퀀스 초기화 방법은 골드 시퀀스의 초기화에만 적용되는 것이 아니라 다른 시퀀스의 초기화에도 적용될 수 있으며, 이 경우
Figure PCTKR2020005891-appb-img-000186
은 다른 시퀀스 초기화 값을 의미할 수 있다.
-
Figure PCTKR2020005891-appb-img-000187
및/또는
Figure PCTKR2020005891-appb-img-000188
: 특정 RS (예를 들어, PRS) 시퀀스 ID 및/또는 특정 RS (예를 들어, PRS) 자원의 스크램블링 ID 및/또는 자원 ID 및/또는 자원마다 설정/지시되는 자원을 대표하는 ID 일 수 있다. 예를 들어,
Figure PCTKR2020005891-appb-img-000189
는 X (>0) 비트 및/또는 M (>0) 비트로 표현/설정/지시될 수 있다.
-
Figure PCTKR2020005891-appb-img-000190
및/또는
Figure PCTKR2020005891-appb-img-000191
: 특정 RS (예를 들어, PRS) 자원 집합 마다 설정되는 스크램블링 ID 및/또는 자원 집합 ID 및/또는 자원 집합을 대표하도록 설정되는 ID 일 수 있다. 예를 들어,
Figure PCTKR2020005891-appb-img-000192
는 Y (>0) 비트 및/또는 L (>0) 비트로 표현/설정/지시될 수 있다.
-
Figure PCTKR2020005891-appb-img-000193
: PRS 블록 인덱스 (및/또는 PRS 블록 그룹 인덱스 및/또는 PRS 기회 인덱스 및/또는 PRS 기회 그룹 인덱스). 예를 들어, 총
Figure PCTKR2020005891-appb-img-000194
비트로 정의/설정될 수 있다.
-
Figure PCTKR2020005891-appb-img-000195
: 슬롯 인덱스 및/또는 슬롯 넘버. 예를 들어, 프레임 내 슬롯 인덱스 및/또는 슬롯 넘버일 수 있다. 예를 들어, NR 에서 프레임에 포함되는 슬롯/심볼 개수는 SCS 에 따라 바뀔 수 있는 점을 고려하면,
Figure PCTKR2020005891-appb-img-000196
의 최대값은 NR 의 SCS 수비학에 따라 달라질 수 있다.
-
Figure PCTKR2020005891-appb-img-000197
: (슬롯 내) OFDM 심볼 인덱스
예를 들어, 시퀀스 초기화 수식 수학식 (4) 의
Figure PCTKR2020005891-appb-img-000198
의 보다 구체적인 일 예는 수학식 (4-1) 과 같을 수 있다. 즉, 예를 들어, 아래 수학식 (4-1) 과 같은 시퀀스 초기화 방법이 고려될 수 있다.
[수학식 (4-1)]
Figure PCTKR2020005891-appb-img-000199
- M : 1 또는 1보다 큰 자연수. 예를 들어, M 은 고정된 값으로 정의될 수 있다. 예를 들어, M 은
Figure PCTKR2020005891-appb-img-000200
의 비트 크기와 관련될 수 있다. 예를 들어, PRS 를 위한
Figure PCTKR2020005891-appb-img-000201
(
Figure PCTKR2020005891-appb-img-000202
) 의 비트 크기 (예를 들어, 12 비트) 는 CSI-RS 를 위한
Figure PCTKR2020005891-appb-img-000203
(
Figure PCTKR2020005891-appb-img-000204
) 의 비트 크기 (예를 들어, 10비트) 보다 클 수 있다. 예를 들어, M 은
Figure PCTKR2020005891-appb-img-000205
의 비트 크기와
Figure PCTKR2020005891-appb-img-000206
의 비트 크기 간의 차이가 고려되어 결정될 수 있다. 예를 들어, M=19 일 수 있으나, 이에 제한되지 않는다.
- L : 1 또는 1 보다 큰 자연수. 예를 들어, L 은 고정된 값으로 정의될 수 있다. 예를 들어, L 은
Figure PCTKR2020005891-appb-img-000207
의 비트 크기와 관련될 수 있다. 예를 들어,
Figure PCTKR2020005891-appb-img-000208
가 Y (>0) 비트로 표현/설정/지시된 경우, L=Y 일 수 있다.
- K : 1 또는 1보다 큰 자연수. 예를 들어, K 는 고정된 값으로 정의될 수 있다. 예를 들어, K 는 슬롯 당 심볼 개수와 관련될 수 있다. 예를 들어, (Normal CP 의 경우) 하나의 슬롯이 14 개의 심볼로 구성되는 것을 고려하면, K=14 로 정의될 수 있다. 또는, 예를 들어, (Extended CP 의 경우) 하나의 슬롯이 12 개의 심볼로 구성되는 것을 고려하면, K=12 로 정의될 수 있다. 또는, 예를 들어 하나의 PRS 블록 및/또는 PRS 기회 (occasion) 를 단위로 시퀀스를 초기화 한다면, 하나의 PRS 블록 및/또는 PRS 기회를 구성하는 심볼의 개수로 K 값이 정의/설정될 수 있다.
-
Figure PCTKR2020005891-appb-img-000209
: 슬롯 인덱스 및/또는 슬롯 넘버. 예를 들어, 프레임 내 슬롯 인덱스 및/또는 슬롯 넘버일 수 있다. 예를 들어, NR 에서 프레임에 포함되는 슬롯/심볼 개수는 SCS 에 따라 바뀔 수 있는 점을 고려하면,
Figure PCTKR2020005891-appb-img-000210
의 최대값은 NR 의 SCS 수비학에 따라 달라질 수 있다.
-
Figure PCTKR2020005891-appb-img-000211
: (슬롯 내) OFDM 심볼 인덱스
- mod : 모듈러 연산 (modulo arithmetic, modulo operation). 예를 들어, 모듈러 연산은 피제수 (dividend) q 를 제수 (divisor) d 로 나눈 나머지 (remainder) r 을 구하는 연산일 수 있다. (r = q mod (d))
예를 들어, 시퀀스 초기화 수식 수학식 (4) 의
Figure PCTKR2020005891-appb-img-000212
의 보다 구체적인 일 예는 수학식 (4-2) 와 같을 수 있다.
[수학식 (4-2)]
Figure PCTKR2020005891-appb-img-000213
예를 들어, 수학식 (4-2) 에서,
Figure PCTKR2020005891-appb-img-000214
,
Figure PCTKR2020005891-appb-img-000215
,
Figure PCTKR2020005891-appb-img-000216
의 순서는 달라질 수 있다. 이와 함께, 예를 들어, 각 요소 (factor) 앞에 붙는 2 의 지수승이 달라지고, 이는 각 요소에 할당된 비트 수에 따라서 결정되는 것이므로, 수학식 (4-2) 의 직관적인 변형은 본 개시의 다양한 실시예들의 또 다른 일 예로 이해될 수 있다.
3.1.4. [제안#4] 특정 RS 자원에 복수 개의 스크램블링 시퀀스 ID 설정
상술한 본 개시의 다양한 실시예들 외, 예를 들어, 단말이 서로 다른 TP/기지국에서 전송된 특정 (동일한) RS (예를 들어, PRS) 자원을 구분하여 측정 (measurement) 을 획득할 수 있도록, 본 개시의 다양한 실시예들에 따르면 아래와 같은 방법이 고려될 수 있다.
예를 들어, 기지국 및/또는 LMF 가 특정 RS (예를 들어, PRS) 자원에 복수 개의 스크램블링 시퀀스 ID 를 설정/지시하는 방법이 있을 수 있다. 즉, 예를 들어, 기지국 및/또는 LMF 가 하나의 PRS 자원에 서로 다른 스크램블링 시퀀스 ID 를 설정하도록 하고, 이를 특정 TP 및/또는 특정 RS (예를 들어, PRS) 자원 집합과 연동하여 설정할 수 있다.
기지국 및/또는 LMF 가 하나의 RS 자원에 복수 개의 스크램블링 시퀀스 ID 를 설정/지시하는 것은, 예를 들어 특정 RS 자원이 여러 개의 RS 자원 집합에 포함되는 경우 (속하는 경우) 에만 제한적으로 적용될 수 있다. 예를 들어, 특정 RS 자원이 두 개 이상의 RS 자원 집합에 포함되도록 설정되면, 단말은 자동적으로 여러 개의 (예를 들어, 포함된 RS 자원 집합 개수만큼) 스크램블링 시퀀스 ID 가 설정되었음을 인지할 수 있다.
예를 들어, 시퀀스 초기화 정보 가운데 일부 또는 전부는 기지국이 LMF/위치 서버로 알려줄 수 있고, 필요에 따라 LMF/위치 서버가 기지국에게 시퀀스 초기화 정보 가운데 일부 또는 전부를 요청할 수도 있다.
3.1.5. [제안#5] default behavior
3.1.5.1. PRS 자원이 어떠한 PRS 자원 집합에 속하는지 구분하는 것의 의미
예를 들어, 다른 RS 와 달리, PRS 는 특정 PRS 자원 집합이 특정 TP 에 연동/연결/연관(association)되어 있을 수 있다. 예를 들어, DL PRS 자원 집합에 포함된 DL PRS 자원들은 동일한 TRP 와 연관 (associated with) 될 수 있다. 즉, 예를 들어, 특정 PRS 자원 집합은 특정 TP 에서만 전송될 수 있다.
그러나, 예를 들어, 특정 PRS 자원은 하나 이상의 PRS 자원 집합의 멤버가 될 수 있다. 즉, 예를 들어, 서로 다른 PRS 자원 집합에 포함된 특정 PRS 자원은 여러 TP 에서 전송될 수 있다.
따라서, 예를 들어, 단말이 특정 PRS 자원이 어떠한 PRS 자원 집합에 포함되어 있는지 PRS 자원을 수신할 때 파악할 수 있으면, PRS 자원이 어떠한 TP 에서 전송되었는지 파악할 수 있다.
예를 들어, TP 관점에서 보았을 때, 특정 TP 는 하나의 PRS 자원 집합에만 연동/연결/연관되어 있는 것이 아니라, 두 개 이상의 여러 PRS 자원 집합을 전송할 수 있다. 예를 들어, 특정 TP 가 송신TX 패널을 2 개 갖고 있다고 가정하면, 특정 TP 가 패널 당 하나의 PRS 자원 집합을 전송하는 환경을 가정할 수 있다. 다시 말하면, 예를 들어, 단말이 특정 PRS 자원이 어떠한 PRS 자원 집합에서 전송되었는지 파악할 수 있다면, 단말은 TP 의 송신 패널들 가운데 어떤 패널을 통하여 PRS 자원이 전송되었는지를 파악할 수도 있다. 즉, 예를 들어, 기지국/위치 서버가 특정 PRS 자원 집합을 특정 TP 의 특정 패널에 연결/연동/연관하여 단말에 지시/설정하면, 단말은 PRS 자원을 어떠한 TP 가 전송했는지 구분하는 것 이상으로 보다 세부적인 것을 파악할 수 있다. 이를 고려하여, 본 개시의 다양한 실시예들에 따르면 아래와 같은 단말의 기본 동작 (default behavior) 이 제공될 수 있다.
3.1.5.2. (기본 동작 제안)
Figure PCTKR2020005891-appb-img-000217
이 설정되지 않은 경우의 기본 동작
본 개시의 다양한 실시예들에 따르면
Figure PCTKR2020005891-appb-img-000218
(RS 집합 레벨로 설정되는 특정 ID. 즉, 예를 들어, RS 집합 ID 및/또는 RS 집합 레벨에서 설정되는 시퀀스 ID 등) 이 설정되지 않은 경우, 단말의 기본 동작이 제안될 수 있다.
예를 들어, 상술한 시퀀스 초기화 수학식들 중 하나 이상에서 (예를 들어, 수학식 (0), 수학식 (1), 수학식 (1-1), 수학식 (1-2), 수학식 (2), 수학식 (2-1) 등 (참고로, 수학식 (1), 수학식 (2), 수학식 (2-1) 등은 수학식 (0) 의 예시일 수 있으며, 수학식 (1-1), 수학식 (1-2) 는 함수 g 에 대한 정의의 일 예일 수 있다.)
Figure PCTKR2020005891-appb-img-000219
이 기지국/위치 서버로부터 단말에 지시/설정되지 않으면, 단말은
Figure PCTKR2020005891-appb-img-000220
를 TP-레벨에서 설정/지시되는 ID (예를 들어, TP ID 및/또는 TP 설정 시 함께 설정되는 특정 ID, TP 당 지시/설정되는 시퀀스 ID 등) 으로 해석/간주/가정할 수 있다.
즉, 예를 들어, 단말은 상술한 시퀀스 초기화 수학식들 중 하나 이상에서 RS 집합 레벨로 설정되는 시퀀스 ID 대신, RS 자원 집합이 연동/연결/연관되어 있는 특정 TP ID 를 대입하여 계산하고, 해당되는 값으로 시퀀스 초기화 값을 계산할 수 있다.
예를 들어, 이러한 단말의 동작은 기지국/위치 서버로부터 설정/지시될 수 있다.
예를 들어, 각각의 PRS 집합이 특정 TP 에 연동/연결/연관되어 있는 경우, 상술한 특성은 매우 유용할 수 있다. 예를 들어, 단말이 특정 PRS 자원을 수신할 때, 특정 PRS 자원이 어떠한 PRS 자원 집합에 포함되어 있는지 구분하는 것은 결과적으로 어떠한 TP 에서 PRS 자원 등이 전송되었는지를 구분하기 위한 것이기 때문일 수 있다.
또는, 예를 들어,
Figure PCTKR2020005891-appb-img-000221
이 기지국/위치 서버로부터 단말에 지시/설정되지 않으면, 단말은
Figure PCTKR2020005891-appb-img-000222
은 PCID (physical cell ID, 물리 셀 ID) 로 해석/간주/가정할 수 있다.
즉, 예를 들어, 시퀀스 초기화 수학식에서
Figure PCTKR2020005891-appb-img-000223
값 대신에 PCID 값이 대입될 수 있다.
예를 들어, 이러한 단말의 동작은 기지국/위치 서버로부터 설정/지시될 수 있다.
예를 들어, 하나의 셀이 하나의 TP 로 대응되는 경우가 있을 수 있으며, 이 경우, 굳이 TP ID 가 아니라 셀 ID 로 간주하는 것도 타당할 수 있다.
또는, 예를 들어,
Figure PCTKR2020005891-appb-img-000224
이 기지국/위치 서버로부터 단말에 지시/설정되지 않으면, 단말은
Figure PCTKR2020005891-appb-img-000225
대신 0 을 대입하여 시퀀스 초기화 수학식을 계산할 수도 있다.
Figure PCTKR2020005891-appb-img-000226
가 설정/지시되지 않은 경우에 대한 본 개시의 다양한 실시예들에 따른 단말의 기본 동작은 후술된다.
3.1.5.3. fixed sequence within a slot
예를 들어, PRS 시퀀스 초기화가 상술한 바와 같이 OFDM 심볼 별로 다르게 될 수도 있지만, 심볼 별로 새로운 시퀀스를 생성하는 것이 불필요할 수도 있다.
예를 들어, CSI-RS (channel state information reference signal), DM-RS (demodulation reference signal), SSB (synchronization signal block) 등의 다른 RS 와는 달리, PRS 는 PRS 기회/블록/그룹 등의 PRS 설정에 따라서 연속적으로 여러 슬롯 (및/또는 서브프레임) 에 걸쳐서 상당히 많은 (예를 들어, 일정 개수 이상) OFDM 심볼에서 전송될 수 있다.
예를 들어, 이러한 경우, 단말은 각 OFDM 심볼 마다 (다른 시퀀스 초기화 값을 사용하여) 다른 시퀀스를 사용해서 교차-상관 (cross-correlation) 연산을 수행하는 것이 단말의 복잡도 측면에서 부담이 될 수 있다.
또한, 예를 들어, 특정/동일 PRS 자원 PRS 가 서빙 셀 및 인접한 이웃 셀에서 공유되지 않도록, 위치 서버/LMF 에서 관리할 수 있고, 굳이 PRS 자원을 인접한 이웃 셀에서 전송할 필요가 없을 수 있다.
또는, 예를 들어, 일부 또는 모든 시간-주파수 자원을 공유하여 서로 다른 셀/TP/기지국에서 PRS 가 전송되는 경우가 거의 없도록 자원이 관리될 수도 있다.
즉, 예를 들어, 단말 측위를 위하여 전송되는 PRS 는 여러 셀/TP/기지국이 전송하는 RS 를 여러 셀/TP/기지국에 있는 타겟 단말들로부터 수신되기 때문에, 인접한 여러 셀/TP/기지국 간에 시간-주파수 자원이 함께 사용되어 서로 다른 PRS 자원 (예를 들어, PRS 자원 ID) 를 전송하지 않도록 위치 서버/LMF 에서 스케쥴링/관리할 수 있다.
이러한 점 고려하여, 본 개시의 다양한 실시예들에 따르면 OFDM 심볼에 의존 (dependent) 하지 않고, 다음의 요소/변수들 가운데 하나 이상의 요소에 대해서만 시퀀스 초기화 값이 변경되는 방법이 제공될 수 있다.
- 슬롯 인덱스 및/또는 PRS 자원 및/또는 PRS 자원 집합 및/또는 TP 및/또는 셀/기지국 정보 (예를 들어, 셀 ID)
예를 들어, 수학식으로 표현하면 수학식 (0-1) 과 같을 수 있다.
[수학식 (0-1)]
Figure PCTKR2020005891-appb-img-000227
즉, 예를 들어, 상술한 시퀀스 초기화 수학식들 중 하나 이상에서 심볼 인덱스 l 을 제거한 형태의 시퀀스 초기화 수학식이 고려될 수 있다.
3.1.5.4. 추가제안#1 : 기본 동작 제안
예를 들어, PRS 의 경우 다른 RS 와 달리, 단말이 PRS 가 어떠한 셀 (기지국) 및 어떠한 TP (예를 들어, RRH (remote radio head)) 에서 전송되었는지 알 수 있는 것이 중요할 수 있다.
이러한 이유로, 예를 들어, 상술한 PRS 시퀀스 초기화 수학식들 중 하나 이상에서 PRS 자원이 설정되는 스크램블링 시퀀스 ID 뿐만 아니라, PRS 자원 집합 ID 및/또는 TP ID 를 함께 사용하여 시퀀스를 초기화할 수 있다.
본 개시의 다양한 실시예들에 따르면 다른 RS (예를 들어, CSI-RS 등) 의 시퀀스 초기화 방법과의 하위 호환성 (backward compatibility) 을 고려하여, CSI-RS 시퀀스 초기화 방법을 확장/적용하는 방법이 제공될 수 있다.
예를 들어, RS 의 시퀀스 초기화 방법으로, 하나의 슬롯 당 총 심볼 개수, 프레임 내 슬롯 인덱스, 슬롯 내 심볼 인덱스, RS 자원의 스크램블링 시퀀스 ID 및/또는 RS 자원 ID 가운데 하나 이상의 요소로 구성되는 함수가 고려될 수 있다.
예를 들어, 수학식 (5) 와 같이 시퀀스 초기화 값이 설정/지시될 수 있다.
[수학식 (5)]
Figure PCTKR2020005891-appb-img-000228
예를 들어, 수학식 (5-1) 과 같은 CSI-RS 자원의 시퀀스 초기화 방식이 고려될 수 있다.
[수학식 (5-1)]
Figure PCTKR2020005891-appb-img-000229
-
Figure PCTKR2020005891-appb-img-000230
: 슬롯 당 심볼 개수 (# of symbols per slot). 예를 들어, 슬롯 당 심볼 개수는 CP 길이에 따라 달라질 수 있다. 예를 들어, normal CP 의 경우, 14, extended CP 의 경우 12 일 수 있다. 예를 들어, 14 또는 12 외에도 다른 값으로 정의/설정될 수 있다.
-
Figure PCTKR2020005891-appb-img-000231
: 프레임 내 슬롯 인덱스 (slot index within a frame). 예를 들어, NR 에서 프레임에 포함되는 슬롯/심볼 개수는 수비학에 따라 달라질 수 있다. 예를 들어, SCS=15 kHz 인 경우, 하나의 프레임이 10 개의 슬롯들로 구성되기 때문에 K=19 일 수 있다. 즉, 예를 들어, SCS=15 kHz 인 경우,
Figure PCTKR2020005891-appb-img-000232
일 수 있다.
-
Figure PCTKR2020005891-appb-img-000233
: 슬롯 내 OFDM 심볼 인덱스. 예를 들어, NR 에서 하나의 슬롯은 (normal CP 의 경우) 14 개의 심볼로 구성될 수 있다.
-
Figure PCTKR2020005891-appb-img-000234
: RS (예를 들어, PRS) 시퀀스 ID 및/또는 RS 자원 ID 로 설정/지시될 수 있다. 예를 들어, B 는 1 또는 1보다 큰 자연수일 수 있다. 예를 들어, B 는 RS 스크램블링 시퀀스 ID 를 설정하기 위하여 사용되는 비트 수 일 수 있다. 예를 들어, 스크램블링 시퀀스 ID 가 12 비트인 경우,
Figure PCTKR2020005891-appb-img-000235
일 수 있다.
이때, 예를 들어,
Figure PCTKR2020005891-appb-img-000236
가 설정/지시되지 않으면, 단말은
Figure PCTKR2020005891-appb-img-000237
를 PCID 가 아니라 TP ID 로 인지/간주할 수 있다.
또는, 예를 들어,
Figure PCTKR2020005891-appb-img-000238
가 설정/지시되지 않으면, 단말은
Figure PCTKR2020005891-appb-img-000239
를 TP ID 가 아니라 TP 레벨에서 설정되는 스크램블링 ID 등으로 인지/간주할 수 있다.
예를 들어, 이러한 단말의 동작은 기지국/위치 서버로부터 설정/지시될 수 있다.
예를 들어, 이러한 단말의 동작은 수학식 (5), 수학식 (5-1) 에 따른 시퀀스 초기화 방법 뿐만 아니라, 상술한 시퀀스 초기화 수학식들 중 하나 이상에서 (예를 들어, 수학식 (0), 수학식 (0-1), 수학식 (1), 수학식 (1-1), 수학식 (1-2), 수학식 (2), 수학식 (2-1), 수학식 (3), 수학식 (3-1), 수학식 (4), 수학식 (4-1), 수학식 (4-2) 등) 모두 적용될 수 있다.
(효과) 예를 들어, 특정 PRS 자원이 다수의 (multiple) TP 에서 전송되도록 설정/지시될 수 있다. 그런데, 예를 들어, PRS 자원의 설정 파라미터 가운데 스크램블링 시퀀스 ID
Figure PCTKR2020005891-appb-img-000240
가 설정되지 않은 경우, 단말은 (스크램블링) 시퀀스 ID 대신 PCID 로 간주하면, PRS 자원 중 어떠한 TP 에서 PRS 자원이 전송되었는지 단말이 파악하기 힘든 문제가 발생할 수 있다.
또한, 예를 들어, 전송되는 PRS 자원 마다 스크램블링 시퀀스 ID 가 설정될 필요가 없는 경우도 있는데, 이 때 필요한 정보는 PRS 자원이 전송된 TP 정보일 수 있다.
예를 들어, 특정 TP 와 단말 간 적절한 송수신 빔을 설정하기 위하여 TP 가 동일한 송신 TX 빔으로 여러 개의 PRS 자원을 단말에 전송하는 것을 가정한다. 해당 가정에서, 예를 들어, 여러 개의 PRS 자원을 동일한 송신 TX 빔으로 전송함을 단말에게 인지시키는 방법은 다양할 수 있다. 이때, 예를 들어, 동일한 송신 TX 빔으로 여러 PRS 자원을 전송하면서, 단말의 수신 빔을 변경하고 단말의 적절한 수신 빔을 찾는 것이 해당 동작의 목적일 수 있다.
예를 들어, 여러 송신 TX 빔에서 해당 동작이 반복된다고 가정하면, PRS 자원 마다 시퀀스 ID 를 단말에게 설정하는 것은 시그널링 오버헤드가 불필요하게 클 수 있다. 예를 들어, PRS 스크램블링 ID 가 자원 마다 12 비트가 사용됨을 가정하면, 10 개의 PRS 자원만 고려해도 120 비트의 시그널링이 필요하여, 시그널링 오버헤드가 불필요하게 클 수 있다.
예를 들어, 특정 PRS 자원이 서로 다른 TP 에서 전송되는 경우, 단말은, PRS 자원에 대하여 ToA (time of arrival), ToF (time of flight), 전파 시간 (propagation time) 등의 타이밍 측정 (timing measurement) 을 획득할 때, 각각의 TP 에 대하여 측정해야 한다. 그러나, 예를 들어, PRS 자원이 여러 TP 에서 전송되지만 동일한 시퀀스를 사용하여 전송되면, 동일한 PRS 자원이 사용하는 시간-주파수 자원의 동일하기 때문에, 단말은 각각의 TP 에 대해서 전송된 PRS 자원을 구분하여 ToA/ToF/전파 시간을 구분하기 힘들 수 있다.
이 경우, 타이밍 측정은 수신된 신호의 첫번째 피크 (first peak) 를 측정하는 것임을 고려하면, 예를 들어, 단말은 PRS 자원의 ToA/ToF/전파 시간 등을 측정하면, 여러 TP 가운데 단말과 가장 가까운 TP 에 해당되는 ToA/ToF/전파 시간 등의 타이밍 측정을 획득하게 될 가능성이 높을 수 있다.
그러나, 본 개시의 다양한 실시예들에 따르면, CSI-RS 시퀀스 초기화 방식을 사용하여, 동일한 PRS 자원이 서로 다른 TP 에서 전송되는 것을 우회적으로 구분할 수 있는 방법이 제공될 수 있다.
예를 들어, 기지국/위치 서버가 특정 PRS 자원을 하나 이상의 여러 TP 에서 전송할 때, 기지국/위치 서버가 의도적으로, PRS 자원에 스크램블링 시퀀스 ID 를 설정하지 않을 수 있다.
그리고, 예를 들어, 단말은 PRS 자원에 스크램블링 시퀀스 ID 가 설정되어 있지 않은 경우, 이를 TP ID 로 대체하여 해석할 수 있다. 즉, 예를 들어, 단말은 PRS 자원 및/또는 PRS 자원이 포함된 PRS 자원 집합에 연동/연결/연관되어 있는 TP 의 TP ID 로 대체하여 해석할 수 있다.
결과적으로, 예를 들어, 기지국/위치 서버는 특정 PRS 자원을 여러 TP 에서 전송되도록 하더라도, 시퀀스가 다르기 때문에, 단말은 PRS 자원을 구분할 수 있게 된다.
3.1.5.5. 추가제안#2 : 기본 동작 제안
예를 들어, (스크램블링) 시퀀스 ID 및/또는 이와 유사한 ID 로써 시퀀스 초기화에 사용되는 특정 ID 가 CSI-RS 와 같이 RS 자원 별로 설정/지시될 수 있다.
그러나, 예를 들어, 시퀀스 초기화 값이 심볼 인덱스 및/또는 슬롯 인덱스 등에 따라서 다른 값을 갖기 때문에, RS 자원 별로 모두 다르지 않아도 될 수 있다.
예를 들어, 시그널링 오버헤드 측면에서 고려해보았을 때도, RS 자원의 집합/그룹 (set/group of RS resources) 에게 하나의 시퀀스 ID 를 부여하고, 동일한 값을 사용하는 경우, 시그널링 오버헤드를 크게 낮출 수 있는 장점이 있을 수 있다.
즉, 예를 들어, RS (예를 들어, PRS) 의 (스크램블링) 시퀀스 ID 를 기지국/위치 서버가 RS (예를 들어, PRS) 자원 집합 별 (및/또는 RS 자원 그룹 별) 로 단말에 설정/지시할 수 있다.
결과적으로, 예를 들어, 하나의 TP 에 T (0 이상의 정수 또는 자연수) 개의 PRS 자원 집합이 연결/연동/연관되어 설정되어 있다고 가정하면, 각 TP 는 총 T 개의 시퀀스를 사용하게 될 수 있다. 이때, 예를 들어, 서로 다른 TP 는 서로 다른 시퀀스를 사용하도록 PRS 자원 집합이 기지국/위치 서버로부터 단말에게 설정/지시될 수 있다.
상기 설명한 제안 방식에 대한 일례들 또한 본 개시의 다양한 실시예들 중 하나로 포함될 수 있으므로, 일종의 제안 방식들로 간주될 수 있음은 명백한 사실이다. 또한, 상기 설명한 제안 방식들은 독립적으로 구현될 수 도 있지만, 일부 제안 방식들의 조합 (또는 병합) 형태로 구현될 수 도 있다. 상기 제안 방법들의 적용 여부 정보 (또는 상기 제안 방법들의 규칙들에 대한 정보)는 기지국이 단말에게 사전에 정의된 시그널 (예: 물리 계층 시그널 또는 상위 계층 시그널)을 통해서 알려주도록 규칙이 정의될 수 가 있다.
3.2. 네트워크 초기 접속 및 통신 과정
본 개시의 다양한 실시예들에 따른 단말은 앞에서 설명/제안한 절차 및/또는 방법들을 수행하기 위해 네트워크 접속 과정을 수행할 수 있다. 예를 들어, 단말은 네트워크(예, 기지국)에 접속을 수행하면서, 앞에서 설명/제안한 절차 및/또는 방법들을 수행하는데 필요한 시스템 정보와 구성 정보들을 수신하여 메모리에 저장할 수 있다. 본 개시의 다양한 실시예들에 필요한 구성 정보들은 상위 계층(예, RRC layer; Medium Access Control, MAC, layer 등) 시그널링을 통해 수신될 수 있다.
도 21은 본 개시의 다양한 실시예들에 따른 네트워크 초기 접속 및 이후의 통신 과정을 간단히 나타낸 도면이다. 본 개시의 다양한 실시예들이 적용 가능한 NR 시스템에서 물리 채널, 참조 신호는 빔-포밍을 이용하여 전송될 수 있다. 빔-포밍 기반의 신호 전송이 지원되는 경우, 기지국과 단말 간에 빔을 정렬하기 위해 빔-관리(beam management) 과정이 수반될 수 있다. 또한, 본 개시의 다양한 실시예들에서 제안하는 신호는 빔-포밍을 이용하여 전송/수신될 수 있다. RRC(Radio Resource Control) IDLE 모드에서 빔 정렬은 SSB(또는 SS/PBCH 블록)를 기반하여 수행될 수 있다. 반면, RRC CONNECTED 모드에서 빔 정렬은 CSI-RS (in DL) 및 SRS (in UL)에 기반하여 수행될 수 있다. 한편, 빔-포밍 기반의 신호 전송이 지원되지 않는 경우, 이하의 설명에서 빔과 관련된 동작은 생략될 수 있다.
도 21 에 도시된 바와 같이, 기지국(예, BS)는 SSB를 주기적으로 전송할 수 있다(2702). 여기서, SSB는 PSS/SSS/PBCH를 포함한다. SSB는 빔 스위핑을 이용하여 전송될 수 있다. 이후, 기지국은 RMSI(Remaining Minimum System Information)와 OSI(Other System Information)를 전송할 수 있다(2704). RMSI는 단말이 기지국에 초기 접속하는데 필요한 정보(예, PRACH 구성 정보)를 포함할 수 있다. 한편, 단말은 SSB 검출을 수행한 뒤, 베스트 SSB를 식별한다. 이후, 단말은 베스트 SSB의 인덱스(즉, 빔)에 링크된/대응되는 PRACH 자원을 이용하여 RACH 프리앰블(Message 1, Msg1)을 기지국에게 전송할 수 있다(2706). RACH 프리앰블의 빔 방향은 PRACH 자원과 연관된다. PRACH 자원 (및/또는 RACH 프리앰블)과 SSB (인덱스)간 연관성(association)은 시스템 정보(예, RMSI)를 통해 설정될 수 있다. 이후, RACH 과정의 일환으로, 기지국은 RACH 프리앰블에 대한 응답으로 RAR(Random Access Response)(Msg2)를 전송하고(2708), 단말은 RAR 내 UL 그랜트를 이용하여 Msg3(예, RRC Connection Request)을 전송하고(2710), 기지국은 충돌 해결(contention resolution) 메세지(Msg4)를 전송할 수 있다(2712). Msg4는 RRC Connection Setup을 포함할 수 있다.
RACH 과정을 통해 기지국과 단말 간에 RRC 연결이 설정되면, 그 이후의 빔 정렬은 SSB/CSI-RS (in DL) 및 SRS (in UL)에 기반하여 수행될 수 있다. 예를 들어, 단말은 SSB/CSI-RS를 수신할 수 있다(2714). SSB/CSI-RS는 단말이 빔/CSI 보고를 생성하는데 사용될 수 있다. 한편, 기지국은 DCI를 통해 빔/CSI 보고를 단말에게 요청할 수 있다(2716). 이 경우, 단말은 SSB/CSI-RS에 기반하여 빔/CSI 보고를 생성하고, 생성된 빔/CSI 보고를 PUSCH/PUCCH를 통해 기지국에게 전송할 수 있다(2718). 빔/CSI 보고는 빔 측정 결과, 선호하는 빔에 관한 정보 등을 포함할 수 있다. 기지국과 단말은 빔/CSI 보고에 기반하여 빔을 스위칭 할 수 있다(2720a, 2720b).
이후, 단말과 기지국은 앞에서 설명/제안한 절차 및/또는 방법들을 수행할 수 있다. 예를 들어, 단말과 기지국은 네트워크 접속 과정(예, 시스템 정보 획득 과정, RACH를 통한 RRC 연결 과정 등)에서 얻은 구성 정보에 기반하여, 본 개시의 다양한 실시예들에 따라 메모리에 있는 정보를 처리하여 무선 신호를 전송하거나, 수신된 무선 신호를 처리하여 메모리에 저장할 수 있다. 여기서, 무선 신호는 하향링크의 경우 PDCCH, PDSCH, RS(Reference Signal) 중 적어도 하나를 포함하고, 상향링크의 경우 PUCCH, PUSCH, SRS 중 적어도 하나를 포함할 수 있다.
3.3. DRX (Discontinuous Reception) 동작
도 22 은 본 개시의 다양한 실시예들에 따른 DRX 동작을 예시한 도면이다.
본 개시의 다양한 실시예들에 따른 단말은 앞에서 설명/제안한 절차 및/또는 방법들을 수행하면서 DRX 동작을 수행할 수 있다. DRX가 설정된 단말은 DL 신호를 불연속적으로 수신함으로써 전력 소비를 낮출 수 있다. DRX는 RRC(Radio Resource Control)_IDLE 상태, RRC_INACTIVE 상태, RRC_CONNECTED 상태에서 수행될 수 있다. RRC_IDLE 상태와 RRC_INACTIVE 상태에서 DRX는 페이징 신호를 불연속 수신하는데 사용된다.
3.3.1. RRC_CONNECTED DRX
RRC_CONNECTED 상태에서 DRX는 PDCCH의 불연속 수신에 사용된다. 편의상, RRC_CONNECTED 상태에서 수행되는 DRX를 RRC_CONNECTED DRX라고 지칭한다.
도 22(a)를 참조하면, DRX 사이클은 On Duration과 Opportunity for DRX로 구성된다. DRX 사이클은 On Duration이 주기적으로 반복되는 시간 간격을 정의한다. On Duration은 단말이 PDCCH를 수신하기 위해 모니터링 하는 시간 구간을 나타낸다. DRX가 설정되면, 단말은 On Duration 동안 PDCCH 모니터링을 수행한다. PDCCH 모니터링 동안에 성공적으로 검출된 PDCCH가 있는 경우, 단말은 inactivity 타이머를 동작시키고 깬(awake) 상태를 유지한다. 반면, PDCCH 모니터링 동안에 성공적으로 검출된 PDCCH가 없는 경우, 단말은 On Duration이 끝난 뒤 슬립(sleep) 상태로 들어간다. 따라서, DRX가 설정된 경우, 앞에서 설명/제안한 절차 및/또는 방법을 수행함에 있어서 PDCCH 모니터링/수신이 시간 도메인에서 불연속적으로 수행될 수 있다. 예를 들어, DRX가 설정된 경우, 본 개시의 다양한 실시예들에서 PDCCH 수신 기회(occasion)(예, PDCCH 탐색 공간을 갖는 슬롯)는 DRX 설정에 따라 불연속적으로 설정될 수 있다. 반면, DRX가 설정되지 않은 경우, 앞에서 설명/제안한 절차 및/또는 방법을 수행함에 있어서 PDCCH 모니터링/수신이 시간 도메인에서 연속적으로 수행될 수 있다. 예를 들어, DRX가 설정되지 않은 경우, 본 개시의 다양한 실시예들에서 PDCCH 수신 기회(예, PDCCH 탐색 공간을 갖는 슬롯)는 연속적으로 설정될 수 있다. 한편, DRX 설정 여부와 관계 없이, 측정 갭으로 설정된 시간 구간에서는 PDCCH 모니터링이 제한될 수 있다.
표 11은 DRX와 관련된 단말의 과정을 나타낸다(RRC_CONNECTED 상태). 표 12을 참조하면, DRX 구성 정보는 상위 계층(예, RRC) 시그널링을 통해 수신되고, DRX ON/OFF 여부는 MAC 계층의 DRX 커맨드에 의해 제어된다. DRX가 설정되면, 단말은 본 개시의 다양한 실시예들에서 설명/제안한 절차 및/또는 방법을 수행함에 있어서 PDCCH 모니터링을 불연속적으로 수행할 수 있다.
Figure PCTKR2020005891-appb-img-000241
여기서, MAC-CellGroupConfig는 셀 그룹을 위한 MAC(Medium Access Control) 파라미터를 설정하는데 필요한 구성 정보를 포함한다. MAC-CellGroupConfig는 DRX에 관한 구성 정보도 포함할 수 있다. 예를 들어, MAC-CellGroupConfig는 DRX를 정의하는데 정보를 다음과 같이 포함할 수 있다.
- Value of drx-OnDurationTimer: DRX 사이클의 시작 구간의 길이를 정의
- Value of drx-InactivityTimer: 초기 UL 또는 DL 데이터를 지시하는 PDCCH가 검출된 PDCCH 기회 이후에 단말이 깬 상태로 있는 시간 구간의 길이를 정의
- Value of drx-HARQ-RTT-TimerDL: DL 초기 전송이 수신된 후, DL 재전송이 수신될 때까지의 최대 시간 구간의 길이를 정의.
- Value of drx-HARQ-RTT-TimerDL: UL 초기 전송에 대한 그랜트가 수신된 후, UL 재전송에 대한 그랜트가 수신될 때까지의 최대 시간 구간의 길이를 정의.
- drx-LongCycleStartOffset: DRX 사이클의 시간 길이와 시작 시점을 정의
- drx-ShortCycle (optional): short DRX 사이클의 시간 길이를 정의
여기서, drx-OnDurationTimer, drx-InactivityTimer, drx-HARQ-RTT-TimerDL, drx-HARQ-RTT-TimerDL 중 어느 하나라도 동작 중이면 단말은 깬 상태를 유지하면서 매 PDCCH 기회마다 PDCCH 모니터링을 수행한다.
3.3.2. RRC_IDLE DRX
RRC_IDLE 상태와 RRC_INACTIVE 상태에서 DRX는 페이징 신호를 불연속 수신하는데 사용된다. 편의상, RRC_IDLE (또는 RRC_INACTIVE) 상태에서 수행되는 DRX를 RRC_IDLE DRX라고 지칭한다.
따라서, DRX가 설정된 경우, 앞에서 설명/제안한 절차 및/또는 방법을 수행함에 있어서 PDCCH 모니터링/수신이 시간 도메인에서 불연속적으로 수행될 수 있다.
도 22(b)를 참조하면, 페이징 신호의 불연속 수신을 위해 DRX가 구성될 수 있다. 단말은 상위 계층(예, RRC) 시그널링을 통해 기지국으로부터 DRX 구성 정보(DRX configuration information)를 수신할 수 있다. DRX 구성 정보는 DRX 사이클, DRX 오프셋, DRX 타이머에 대한 구성 정보 등을 포함할 수 있다. 단말은 DRX 사이클에 따라 On Duration과 Sleep duration을 반복한다. 단말은 On duration에서 웨이크업(wakeup) 모드로 동작하고, Sleep duration에서 슬립 모드로 동작할 수 있다. 웨이크업 모드에서 단말은 페이징 메시지를 수신하기 위해 PO(Paging Occasion)를 모니터링 할 수 있다. PO는 단말이 페이징 메시지의 수신을 기대하는 시간 자원/구간(예, 서브프레임, 슬롯)을 의미한다. PO 모니터링은 PO에서 P-RNTI로 스크램블링된 PDCCH (또는, MPDCCH, NPDCCH)(이하, 페이징 PDCCH)를 모니터링 하는 것을 포함한다. 페이징 메시지는 페이징 PDCCH에 포함되거나, 페이징 PDCCH에 의해 스케줄링 되는 PDSCH에 포함될 수 있다. PF(Paging Frame) 내에 하나 혹은 복수의 PO(들)이 포함되며, PF는 UE ID에 기반하여 주기적으로 설정될 수 있다. 여기서, PF는 하나의 무선 프레임에 해당하고, UE ID는 단말의 IMSI(International Mobile Subscriber Identity)에 기반하여 결정될 수 있다. DRX가 설정된 경우, 단말은 DRX 사이클 당 하나의 PO만을 모니터링 한다. 단말은 PO에서 자신의 ID 및/또는 시스템 정보의 변경을 지시하는 페이징 메시지를 수신한 경우, 기지국과의 연결을 초기화(또는 재설정) 하기 위해 RACH 과정을 수행하거나, 새로운 시스템 정보를 기지국으로부터 수신(또는 획득)할 수 있다. 따라서, 앞에서 설명/제안한 절차 및/또는 방법을 수행함에 있어서 기지국과의 연결을 위해 RACH를 수행하거나, 새로운 시스템 정보를 기지국으로부터 수신(또는 획득)하기 위해 PO 모니터링이 시간 도메인에서 불연속적으로 수행될 수 있다.
상술한 초기 접속 과정 및/또는 DRX 동작은 상술한 제 1 절 내지 제 3 절의 내용과 결합되어 본 개시의 또 다른 다양한 실시예들을 구성할 수도 있으며, 이는 당해 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있다.
도 23 은 본 개시의 다양한 실시예들에 따른 단말과 TP 의 동작 방법을 간단히 나타낸 도면이다.
도 24 는 본 개시의 다양한 실시예들에 따른 단말의 동작 방법을 나타낸 흐름도이다.
도 25 은 본 개시의 다양한 실시예들에 따른 TP 의 동작 방법을 나타낸 흐름도이다.
도 23 내지 도 25 을 참조하면, 예시적 실시예에 따른 동작 2301, 2401, 2501 에서, TP 는 PRS 시퀀스 ID (identifier) 와 관련된 정보를 전송할 수 있으며, 단말은 이를 수신할 수 있다.
예시적 실시예에 따른 동작 2303, 2403, 2503 에서, TP 는 PRS 시퀀스 ID 와 관련된 PRS 를 전송할 수 있으며, 단말은 이를 수신할 수 있다.
예시적 실시예에 따른 동작 2305, 2405, 2505 에서, TP 는 일정 자원 영역에 포함된 PRS 가 수신된 RE (resource element) 를 제외한 하나 이상의 RE 에서 PDSCH 를 송신할 수 있으며, 단말은 PDSCH 를 수신/디코딩 할 수 있다.
예를 들어, DRX (discontinuous reception) 가 설정됨에 기초하여, PDSCH 를 위한 PDCCH (physical downlink control channel) 는, DRX 와 관련된 온 구간 (On duration) 내에서 송신/수신/모니터링 될 수 있다.
예를 들어, PRS 의 시퀀스 생성 (sequence generation) 과 관련된 의사-임의 시퀀스 생성기 (pseudo-random sequence generator) 는,
Figure PCTKR2020005891-appb-img-000242
에 따라 초기화될 수 있다.
예를 들어,
Figure PCTKR2020005891-appb-img-000243
은 자연수이고,
Figure PCTKR2020005891-appb-img-000244
는 슬롯 당 OFDM (orthogonal frequency division multiplexing) 심볼 개수이고,
Figure PCTKR2020005891-appb-img-000245
는 슬롯 인덱스 (index) 이고,
Figure PCTKR2020005891-appb-img-000246
는 슬롯 내 OFDM 심볼 인덱스이고,
Figure PCTKR2020005891-appb-img-000247
는 PRS 시퀀스 ID 이고,
Figure PCTKR2020005891-appb-img-000248
는 모듈러 (modulo) 연산일 수 있다.
예를 들어,
Figure PCTKR2020005891-appb-img-000249
는 상위 계층에 의해서 설정되고,
Figure PCTKR2020005891-appb-img-000250
또는
Figure PCTKR2020005891-appb-img-000251
일 수 있다.
예를 들어,
Figure PCTKR2020005891-appb-img-000252
은 10 보다 크고 31 보다 작은 자연수일 수 있으며, 예를 들어, 19 일 수 있다.
예를 들어, PRS 의 시퀀스는, 미리 설정된 길이 31 의 골드 시퀀스 (gold sequence) 로부터 획득되는 값을 만족할 수 있다.
상술한 본 개시의 다양한 실시예들에 따른 단말 및/또는 TP 의 보다 구체적인 동작은 앞서 설명한 제1 절 내지 제3 절의 내용에 기반하여 설명되고 수행될 수 있다.
상기 설명한 제안 방식에 대한 일례들 또한 본 개시의 다양한 실시예들 중 하나로 포함될 수 있으므로, 일종의 제안 방식들로 간주될 수 있음은 명백한 사실이다. 또한, 상기 설명한 제안 방식들은 독립적으로 구현될 수 도 있지만, 일부 제안 방식들의 조합 (또는 병합) 형태로 구현될 수 도 있다. 상기 제안 방법들의 적용 여부 정보 (또는 상기 제안 방법들의 규칙들에 대한 정보)는 기지국이 단말에게 사전에 정의된 시그널 (예: 물리 계층 시그널 또는 상위 계층 시그널)을 통해서 알려주도록 규칙이 정의될 수 가 있다.
4. 본 개시의 다양한 실시예들이 구현되는 장치 구성 예
4.1. 본 개시의 다양한 실시예들이 적용되는 장치 구성 예
도 26는 본 개시의 다양한 실시예들이 구현될 수 있는 장치를 나타낸 도면이다.
도 26에 도시된 장치는 상술한 매커니즘을 수행하도록 적응된 사용자 장치(User Equipment, UE) 및/또는 기지국 (예: eNB 또는 gNB, 또는 TP) 및/또는 위치 서버 (또는 LMF) 이거나, 동일한 작업을 수행하는 임의의 장치일 수 있다.
도 26를 참조하면, 장치는 DSP(Digital Signal Processor)/마이크로프로세서(210) 및 RF(Radio Frequency) 모듈(송수신기, Transceiver)(235)을 포함할 수도 있다. DSP/마이크로프로세서(210)는 송수신기(235)에 전기적으로 연결되어 송수신기(235)를 제어한다. 장치는, 설계자의 선택에 따라서, 전력 관리 모듈(205), 베터리(255), 디스플레이(215), 키패드(220), SIM 카드(225), 메모리 디바이스(230), 안테나(240), 스피커(245) 및 입력 디바이스(250)을 더 포함할 수도 있다.
특히, 도 26는 네트워크로부터 요청 메시지를 수신하도록 구성된 수신기(235) 및 네트워크로 타이밍 송/수신 타이밍 정보를 송신하도록 구성된 송신기(235)를 포함하는 단말을 나타낼 수도 있다. 이러한 수신기와 송신기는 송수신기(235)를 구성할 수 있다. 단말은 송수신기(235)에 연결된 프로세서(210)를 더 포함할 수도 있다.
또한, 도 26는 단말로 요청 메시지를 송신하도록 구성된 송신기(235) 및 단말로부터 송수신 타이밍 정보를 수신하도록 구성된 수신기(235)를 포함하는 네트워크 장치를 나타낼 수도 있다. 송신기 및 수신기는 송수신기(235)를 구성할 수도 있다. 네트워크는 송신기 및 수신기에 연결된 프로세서(210)를 더 포함한다. 이 프로세서(210)는 송수신 타이밍 정보에 기초하여 지연(latency)을 계산할 수도 있다.
이에, 본 개시의 다양한 실시예들에 따른 단말 (또는 상기 단말에 포함된 통신 장치) 및/또는 기지국 (또는 상기 기지국에 포함된 통신 장치) 및/또는 위치 서버 (또는 상기 위치 서버 에 포함된 통신 장치)에 포함된 프로세서는 메모리를 제어하며 다음과 같이 동작할 수 있다.
본 개시의 다양한 실시예들에 있어, 단말 또는 기지국 또는 위치 서버는, 하나 이상(at least one)의 송수신기(Transceiver); 하나 이상의 메모리(Memory); 및 송수신기 및 메모리와 연결된 하나 이상의 프로세서(Processor)를 포함할 수 있다. 메모리는 하나 이상의 프로세서가 하기 동작을 수행할 수 있도록 하는 명령들(instructions)을 저장할 수 있다.
이때, 상기 단말 또는 기지국 또는 위치 서버에 포함된 통신 장치라 함은, 상기 하나 이상의 프로세서 및 상기 하나 이상의 메모리를 포함하도록 구성될 수 있고, 상기 통신 장치는 상기 하나 이상의 송수신기를 포함하거나 상기 하나 이상의 송수신기를 포함하지 않고 상기 하나 이상의 송수신기와 연결되도록 구성될 수 있다.
본 개시의 다양한 실시예들에 따르면, 단말에 포함된 하나 이상의 프로세서 (또는 상기 단말에 포함된 통신 장치의 하나 이상의 프로세서)는, PRS (positioning reference signal) 시퀀스 ID (identifier) 와 관련된 정보를 수신할 수 있다.
본 개시의 다양한 실시예들에 따르면, 단말에 포함된 하나 이상의 프로세서는, PRS 시퀀스 ID 와 관련된 PRS 를 수신할 수 있다.
본 개시의 다양한 실시예들에 따르면, 단말에 포함된 하나 이상의 프로세서는, 일정 자원 영역에 포함된 PRS 가 수신된 RE (resource element) 를 제외한 하나 이상의 RE 에서 PDSCH 를 수신/디코딩 할 수 있다.
예를 들어, DRX (discontinuous reception) 가 설정됨에 기초하여, PDSCH 를 위한 PDCCH (physical downlink control channel) 는, DRX 와 관련된 온 구간 (on duration) 내에서 수신/모니터링 될 수 있다.
예를 들어, PRS 의 시퀀스 생성 (sequence generation) 과 관련된 의사-임의 시퀀스 생성기 (pseudo-random sequence generator) 는,
Figure PCTKR2020005891-appb-img-000253
에 따라 초기화될 수 있다.
예를 들어,
Figure PCTKR2020005891-appb-img-000254
은 자연수이고,
Figure PCTKR2020005891-appb-img-000255
는 슬롯 당 OFDM (orthogonal frequency division multiplexing) 심볼 개수이고,
Figure PCTKR2020005891-appb-img-000256
는 슬롯 인덱스 (index) 이고,
Figure PCTKR2020005891-appb-img-000257
는 슬롯 내 OFDM 심볼 인덱스이고,
Figure PCTKR2020005891-appb-img-000258
는 PRS 시퀀스 ID 이고,
Figure PCTKR2020005891-appb-img-000259
는 모듈러 (modulo) 연산일 수 있다.
예를 들어,
Figure PCTKR2020005891-appb-img-000260
는 상위 계층에 의해서 설정되고,
Figure PCTKR2020005891-appb-img-000261
또는
Figure PCTKR2020005891-appb-img-000262
일 수 있다.
예를 들어,
Figure PCTKR2020005891-appb-img-000263
은 10 보다 크고 31 보다 작은 자연수일 수 있으며, 예를 들어, 19 일 수 있다.
예를 들어, PRS 의 시퀀스는, 미리 설정된 길이 31 의 골드 시퀀스 (gold sequence) 로부터 획득되는 값을 만족할 수 있다.
본 개시의 다양한 실시예들에 따르면, 기지국에 포함된 하나 이상의 프로세서 (또는 상기 기지국에 포함된 통신 장치의 하나 이상의 프로세서)는, PRS (positioning reference signal) 시퀀스 ID (identifier) 와 관련된 정보를 송신할 수 있다.
본 개시의 다양한 실시예들에 따르면, 기지국에 포함된 하나 이상의 프로세서는 PRS 시퀀스 ID 와 관련된 PRS 를 송신할 수 있다.
본 개시의 다양한 실시예들에 따르면, 기지국에 포함된 하나 이상의 프로세서는 일정 자원 영역에 포함된 PRS 가 수신된 RE (resource element) 를 제외한 하나 이상의 RE 에서 PDSCH 를 송신할 수 있다.
예를 들어, DRX (discontinuous reception) 가 설정됨에 기초하여, PDSCH 를 위한 PDCCH (physical downlink control channel) 는, DRX 와 관련된 온 구간 (on duration) 내에서 송신될 수 있다.
예를 들어, PRS 의 시퀀스 생성 (sequence generation) 과 관련된 의사-임의 시퀀스 생성기 (pseudo-random sequence generator) 는,
Figure PCTKR2020005891-appb-img-000264
에 따라 초기화될 수 있다.
예를 들어,
Figure PCTKR2020005891-appb-img-000265
은 자연수이고,
Figure PCTKR2020005891-appb-img-000266
는 슬롯 당 OFDM (orthogonal frequency division multiplexing) 심볼 개수이고,
Figure PCTKR2020005891-appb-img-000267
는 슬롯 인덱스 (index) 이고,
Figure PCTKR2020005891-appb-img-000268
는 슬롯 내 OFDM 심볼 인덱스이고,
Figure PCTKR2020005891-appb-img-000269
는 PRS 시퀀스 ID 이고,
Figure PCTKR2020005891-appb-img-000270
는 모듈러 (modulo) 연산일 수 있다.
예를 들어,
Figure PCTKR2020005891-appb-img-000271
는 상위 계층에 의해서 설정되고,
Figure PCTKR2020005891-appb-img-000272
또는
Figure PCTKR2020005891-appb-img-000273
일 수 있다.
예를 들어,
Figure PCTKR2020005891-appb-img-000274
은 10 보다 크고 31 보다 작은 자연수일 수 있으며, 예를 들어, 19 일 수 있다.
예를 들어, PRS 의 시퀀스는, 미리 설정된 길이 31 의 골드 시퀀스 (gold sequence) 로부터 획득되는 값을 만족할 수 있다.
상술한 본 개시의 다양한 실시예들에 따른 단말 및/또는 기지국에 포함된 프로세서 등의 보다 구체적인 동작은 앞서 설명한 제1 절 내지 제3 절의 내용에 기반하여 설명되고 수행될 수 있다.
한편, 본 개시의 다양한 실시예들은 서로 양립이 불가능하지 않는 한 서로 조합/결합되어 실시될 수 있다. 예를 들어, 본 개시의 다양한 실시예들에 따른 단말 및/또는 기지국 및/또는 위치 서버(에 포함된 프로세서 등)은 앞서 설명한 제 1 절 내지 제 3 절의 실시예들이 양립 불가능하지 않는 한 이들의 조합/결합된 동작을 수행할 수 있다.
4.2. 본 개시의 다양한 실시예들이 적용되는 통신 시스템 예
본 명세서에서 본 개시의 다양한 실시예들은 무선 통신 시스템에서 기지국과 단말 간의 데이터 송수신 관계를 중심으로 설명되었다. 다만 본 개시의 다양한 실시예들이 이에 한정되는 것은 아니다. 예를 들어, 본 개시의 다양한 실시예들은 다음의 기술 구성들과도 관련될 수 있다.
이로 제한되는 것은 아니지만, 본 문서에 개시된 본 개시의 다양한 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 기기들간에 무선 통신/연결(예, 5G)을 필요로 하는 다양한 분야에 적용될 수 있다.
이하, 도면을 참조하여 보다 구체적으로 예시한다. 이하의 도면/설명에서 동일한 도면 부호는 다르게 기술하지 않는 한, 동일하거나 대응되는 하드웨어 블록, 소프트웨어 블록 또는 기능 블록을 예시할 수 있다.
도 27은 본 개시의 다양한 실시예들에 적용되는 통신 시스템을 예시한다.
도 27을 참조하면, 본 개시의 다양한 실시예들에 적용되는 통신 시스템(1)은 무선 기기, 기지국 및 네트워크를 포함한다. 여기서, 무선 기기는 무선 접속 기술(예, 5G NR(New RAT), LTE(Long Term Evolution))을 이용하여 통신을 수행하는 기기를 의미하며, 통신/무선/5G 기기로 지칭될 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(100a), 차량(100b-1, 100b-2), XR(eXtended Reality) 기기(100c), 휴대 기기(Hand-held device)(100d), 가전(100e), IoT(Internet of Thing) 기기(100f), AI기기/서버(400)를 포함할 수 있다. 예를 들어, 차량은 무선 통신 기능이 구비된 차량, 자율 주행 차량, 차량간 통신을 수행할 수 있는 차량 등을 포함할 수 있다. 여기서, 차량은 UAV(Unmanned Aerial Vehicle)(예, 드론)를 포함할 수 있다. XR 기기는 AR(Augmented Reality)/VR(Virtual Reality)/MR(Mixed Reality) 기기를 포함하며, HMD(Head-Mounted Device), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 스마트폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지(signage), 차량, 로봇 등의 형태로 구현될 수 있다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 컴퓨터(예, 노트북 등) 등을 포함할 수 있다. 가전은 TV, 냉장고, 세탁기 등을 포함할 수 있다. IoT 기기는 센서, 스마트미터 등을 포함할 수 있다. 예를 들어, 기지국, 네트워크는 무선 기기로도 구현될 수 있으며, 특정 무선 기기(200a)는 다른 무선 기기에게 기지국/네트워크 노드로 동작할 수도 있다.
무선 기기(100a~100f)는 기지국(200)을 통해 네트워크(300)와 연결될 수 있다. 무선 기기(100a~100f)에는 AI(Artificial Intelligence) 기술이 적용될 수 있으며, 무선 기기(100a~100f)는 네트워크(300)를 통해 AI 서버(400)와 연결될 수 있다. 네트워크(300)는 3G 네트워크, 4G(예, LTE) 네트워크 또는 5G(예, NR) 네트워크 등을 이용하여 구성될 수 있다. 무선 기기(100a~100f)는 기지국(200)/네트워크(300)를 통해 서로 통신할 수도 있지만, 기지국/네트워크를 통하지 않고 직접 통신(e.g. 사이드링크 통신(sidelink communication))할 수도 있다. 예를 들어, 차량들(100b-1, 100b-2)은 직접 통신(e.g. V2V(Vehicle to Vehicle)/V2X(Vehicle to everything) communication)을 할 수 있다. 또한, IoT 기기(예, 센서)는 다른 IoT 기기(예, 센서) 또는 다른 무선 기기(100a~100f)와 직접 통신을 할 수 있다.
무선 기기(100a~100f)/기지국(200), 기지국(200)/기지국(200) 간에는 무선 통신/연결(150a, 150b, 150c)이 이뤄질 수 있다. 여기서, 무선 통신/연결은 상향/하향링크 통신(150a)과 사이드링크 통신(150b)(또는, D2D 통신), 기지국간 통신(150c)(e.g. relay, IAB(Integrated Access Backhaul)과 같은 다양한 무선 접속 기술(예, 5G NR)을 통해 이뤄질 수 있다. 무선 통신/연결(150a, 150b, 150c)을 통해 무선 기기와 기지국/무선 기기, 기지국과 기지국은 서로 무선 신호를 송신/수신할 수 있다. 예를 들어, 무선 통신/연결(150a, 150b, 150c)은 다양한 물리 채널을 통해 신호를 송신/수신할 수 있다. 이를 위해, 본 개시의 다양한 제안들에 기반하여, 무선 신호의 송신/수신을 위한 다양한 구성정보 설정 과정, 다양한 신호 처리 과정(예, 채널 인코딩/디코딩, 변조/복조, 자원 매핑/디매핑 등), 자원 할당 과정 등 중 적어도 일부가 수행될 수 있다.
4.2.1 본 개시의 다양한 실시예들이 적용되는 무선 기기 예
도 28은 본 개시의 다양한 실시예들에 적용되는 무선 기기를 예시한다.
도 28을 참조하면, 제1 무선 기기(100)와 제2 무선 기기(200)는 다양한 무선 접속 기술(예, LTE, NR)을 통해 무선 신호를 송수신할 수 있다. 여기서, {제1 무선 기기(100), 제2 무선 기기(200)}은 도 27의 {무선 기기(100x), 기지국(200)} 및/또는 {무선 기기(100x), 무선 기기(100x)}에 대응할 수 있다.
제1 무선 기기(100)는 하나 이상의 프로세서(102) 및 하나 이상의 메모리(104)를 포함하며, 추가적으로 하나 이상의 송수신기(106) 및/또는 하나 이상의 안테나(108)을 더 포함할 수 있다. 프로세서(102)는 메모리(104) 및/또는 송수신기(106)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(102)는 메모리(104) 내의 정보를 처리하여 제1 정보/신호를 생성한 뒤, 송수신기(106)을 통해 제1 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(102)는 송수신기(106)를 통해 제2 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제2 정보/신호의 신호 처리로부터 얻은 정보를 메모리(104)에 저장할 수 있다. 메모리(104)는 프로세서(102)와 연결될 수 있고, 프로세서(102)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(104)는 프로세서(102)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(102)와 메모리(104)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(106)는 프로세서(102)와 연결될 수 있고, 하나 이상의 안테나(108)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(106)는 송신기 및/또는 수신기를 포함할 수 있다. 송수신기(106)는 RF(Radio Frequency) 유닛과 혼용될 수 있다. 본 개시의 다양한 실시예들에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
제2 무선 기기(200)는 하나 이상의 프로세서(202), 하나 이상의 메모리(204)를 포함하며, 추가적으로 하나 이상의 송수신기(206) 및/또는 하나 이상의 안테나(208)를 더 포함할 수 있다. 프로세서(202)는 메모리(204) 및/또는 송수신기(206)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(202)는 메모리(204) 내의 정보를 처리하여 제3 정보/신호를 생성한 뒤, 송수신기(206)를 통해 제3 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(202)는 송수신기(206)를 통해 제4 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제4 정보/신호의 신호 처리로부터 얻은 정보를 메모리(204)에 저장할 수 있다. 메모리(204)는 프로세서(202)와 연결될 수 있고, 프로세서(202)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(204)는 프로세서(202)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(202)와 메모리(204)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(206)는 프로세서(202)와 연결될 수 있고, 하나 이상의 안테나(208)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(206)는 송신기 및/또는 수신기를 포함할 수 있다 송수신기(206)는 RF 유닛과 혼용될 수 있다. 본 개시의 다양한 실시예들에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
이하, 무선 기기(100, 200)의 하드웨어 요소에 대해 보다 구체적으로 설명한다. 이로 제한되는 것은 아니지만, 하나 이상의 프로토콜 계층이 하나 이상의 프로세서(102, 202)에 의해 구현될 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 계층(예, PHY, MAC, RLC, PDCP, RRC, SDAP와 같은 기능적 계층)을 구현할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 하나 이상의 PDU(Protocol Data Unit) 및/또는 하나 이상의 SDU(Service Data Unit)를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 메시지, 제어정보, 데이터 또는 정보를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 기능, 절차, 제안 및/또는 방법에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 포함하는 신호(예, 베이스밴드 신호)를 생성하여, 하나 이상의 송수신기(106, 206)에게 제공할 수 있다. 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)로부터 신호(예, 베이스밴드 신호)를 수신할 수 있고, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 획득할 수 있다.
하나 이상의 프로세서(102, 202)는 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 또는 마이크로 컴퓨터로 지칭될 수 있다. 하나 이상의 프로세서(102, 202)는 하드웨어, 펌웨어, 소프트웨어, 또는 이들의 조합에 의해 구현될 수 있다. 일 예로, 하나 이상의 ASIC(Application Specific Integrated Circuit), 하나 이상의 DSP(Digital Signal Processor), 하나 이상의 DSPD(Digital Signal Processing Device), 하나 이상의 PLD(Programmable Logic Device) 또는 하나 이상의 FPGA(Field Programmable Gate Arrays)가 하나 이상의 프로세서(102, 202)에 포함될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있고, 펌웨어 또는 소프트웨어는 모듈, 절차, 기능 등을 포함하도록 구현될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 수행하도록 설정된 펌웨어 또는 소프트웨어는 하나 이상의 프로세서(102, 202)에 포함되거나, 하나 이상의 메모리(104, 204)에 저장되어 하나 이상의 프로세서(102, 202)에 의해 구동될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 코드, 명령어(instruction, 인스트럭션) 및/또는 명령어의 집합 형태로 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있다.
하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 다양한 형태의 데이터, 신호, 메시지, 정보, 프로그램, 코드, 지시 및/또는 명령을 저장할 수 있다. 하나 이상의 메모리(104, 204)는 ROM, RAM, EPROM, 플래시 메모리, 하드 드라이브, 레지스터, 캐쉬 메모리, 컴퓨터 판독 저장 매체 및/또는 이들의 조합으로 구성될 수 있다. 하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)의 내부 및/또는 외부에 위치할 수 있다. 또한, 하나 이상의 메모리(104, 204)는 유선 또는 무선 연결과 같은 다양한 기술을 통해 하나 이상의 프로세서(102, 202)와 연결될 수 있다.
하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치에게 본 문서의 방법들 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 전송할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치로부터 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 수신할 수 있다. 예를 들어, 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 무선 신호를 송수신할 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치에게 사용자 데이터, 제어 정보 또는 무선 신호를 전송하도록 제어할 수 있다. 또한, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치로부터 사용자 데이터, 제어 정보 또는 무선 신호를 수신하도록 제어할 수 있다. 또한, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)와 연결될 수 있고, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)를 통해 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 송수신하도록 설정될 수 있다. 본 문서에서, 하나 이상의 안테나는 복수의 물리 안테나이거나, 복수의 논리 안테나(예, 안테나 포트)일 수 있다. 하나 이상의 송수신기(106, 206)는 수신된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 하나 이상의 프로세서(102, 202)를 이용하여 처리하기 위해, 수신된 무선 신호/채널 등을 RF 밴드 신호에서 베이스밴드 신호로 변환(Convert)할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)를 이용하여 처리된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 베이스밴드 신호에서 RF 밴드 신호로 변환할 수 있다. 이를 위하여, 하나 이상의 송수신기(106, 206)는 (아날로그) 오실레이터 및/또는 필터를 포함할 수 있다.
본 개시의 다양한 실시예들에 따르면, 하나 이상의 메모리(예, 104 또는 204)는 지시들 또는 프로그램들을 저장할 수 있으며, 상기 지시들 또는 프로그램들은, 실행될 때, 상기 하나 이상의 메모리에 작동가능하게(operably) 연결되는 하나 이상의 하나의 프로세서로 하여금 본 개시의 다양한 실시예들 또는 구현들에 따른 동작들을 수행하도록 할 수 있다.
본 개시의 다양한 실시예들에 따르면, 컴퓨터 판독가능한(readable) 저장(storage) 매체(medium)은 하나 이상의 지시 또는 컴퓨터 프로그램을 저장할 수 있으며, 상기 하나 이상의 지시 또는 컴퓨터 프로그램은 하나 이상의 프로세서에 의해 실행될 때 상기 하나 이상의 프로세서로 하여금 본 개시의 다양한 실시예들 또는 구현들에 따른 동작들을 수행하도록 할 수 있다.
본 개시의 다양한 실시예들에 따르면, 프로세싱 기기(device) 또는 장치(apparatus)는 하나 이상의 프로세서와 상기 하나 이상의 프로세서와 연결 가능한 하나 이상의 컴퓨터 메모리를 포함할 수 있다. 상기 하나 이상의 컴퓨터 메모리는 지시들 또는 프로그램들을 저장할 수 있으며, 상기 지시들 또는 프로그램들은, 실행될 때, 상기 하나 이상의 메모리에 작동가능하게(operably) 연결되는 하나 이상의 프로세서로 하여금 본 개시의 다양한 실시예들 또는 구현들에 따른 동작들을 수행하도록 할 수 있다.
4.2.2. 본 개시의 다양한 실시예들이 적용되는 무선 기기 활용 예
도 29은 본 개시의 다양한 실시예들에 적용되는 무선 기기의 다른 예를 나타낸다. 무선 기기는 사용-예/서비스에 따라 다양한 형태로 구현될 수 있다(도 27 참조).
도 29을 참조하면, 무선 기기(100, 200)는 도 28의 무선 기기(100,200)에 대응하며, 다양한 요소(element), 성분(component), 유닛/부(unit), 및/또는 모듈(module)로 구성될 수 있다. 예를 들어, 무선 기기(100, 200)는 통신부(110), 제어부(120), 메모리부(130) 및 추가 요소(140)를 포함할 수 있다. 통신부는 통신 회로(112) 및 송수신기(들)(114)을 포함할 수 있다. 예를 들어, 통신 회로(112)는 도 28의 하나 이상의 프로세서(102,202) 및/또는 하나 이상의 메모리(104,204) 를 포함할 수 있다. 예를 들어, 송수신기(들)(114)는 도 28의 하나 이상의 송수신기(106,206) 및/또는 하나 이상의 안테나(108,208)을 포함할 수 있다. 제어부(120)는 통신부(110), 메모리부(130) 및 추가 요소(140)와 전기적으로 연결되며 무선 기기의 제반 동작을 제어한다. 예를 들어, 제어부(120)는 메모리부(130)에 저장된 프로그램/코드/명령/정보에 기반하여 무선 기기의 전기적/기계적 동작을 제어할 수 있다. 또한, 제어부(120)는 메모리부(130)에 저장된 정보를 통신부(110)을 통해 외부(예, 다른 통신 기기)로 무선/유선 인터페이스를 통해 전송하거나, 통신부(110)를 통해 외부(예, 다른 통신 기기)로부터 무선/유선 인터페이스를 통해 수신된 정보를 메모리부(130)에 저장할 수 있다.
추가 요소(140)는 무선 기기의 종류에 따라 다양하게 구성될 수 있다. 예를 들어, 추가 요소(140)는 파워 유닛/배터리, 입출력부(I/O unit), 구동부 및 컴퓨팅부 중 적어도 하나를 포함할 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(도 27, 100a), 차량(도 27, 100b-1, 100b-2), XR 기기(도 27, 100c), 휴대 기기(도 27, 100d), 가전(도 27, 100e), IoT 기기(도 27, 100f), 디지털 방송용 단말, 홀로그램 장치, 공공 안전 장치, MTC 장치, 의료 장치, 핀테크 장치(또는 금융 장치), 보안 장치, 기후/환경 장치, AI 서버/기기(도 27, 400), 기지국(도 27, 200), 네트워크 노드 등의 형태로 구현될 수 있다. 무선 기기는 사용-예/서비스에 따라 이동 가능하거나 고정된 장소에서 사용될 수 있다.
도 29에서 무선 기기(100, 200) 내의 다양한 요소, 성분, 유닛/부, 및/또는 모듈은 전체가 유선 인터페이스를 통해 상호 연결되거나, 적어도 일부가 통신부(110)를 통해 무선으로 연결될 수 있다. 예를 들어, 무선 기기(100, 200) 내에서 제어부(120)와 통신부(110)는 유선으로 연결되며, 제어부(120)와 제1 유닛(예, 130, 140)은 통신부(110)를 통해 무선으로 연결될 수 있다. 또한, 무선 기기(100, 200) 내의 각 요소, 성분, 유닛/부, 및/또는 모듈은 하나 이상의 요소를 더 포함할 수 있다. 예를 들어, 제어부(120)는 하나 이상의 프로세서 집합으로 구성될 수 있다. 예를 들어, 제어부(120)는 통신 제어 프로세서, 어플리케이션 프로세서(Application processor), ECU(Electronic Control Unit), 그래픽 처리 프로세서, 메모리 제어 프로세서 등의 집합으로 구성될 수 있다. 다른 예로, 메모리부(130)는 RAM(Random Access Memory), DRAM(Dynamic RAM), ROM(Read Only Memory), 플래시 메모리(flash memory), 휘발성 메모리(volatile memory), 비-휘발성 메모리(non-volatile memory) 및/또는 이들의 조합으로 구성될 수 있다.
이하, 도 29의 구현 예에 대해 도면을 참조하여 보다 자세히 설명한다.
4.2.3. 본 개시의 다양한 실시예들이 적용되는 휴대기기 예
도 30는 본 개시의 다양한 실시예들에 적용되는 휴대 기기를 예시한다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 휴대용 컴퓨터(예, 노트북 등)을 포함할 수 있다. 휴대 기기는 MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station) 또는 WT(Wireless terminal)로 지칭될 수 있다.
도 30를 참조하면, 휴대 기기(100)는 안테나부(108), 통신부(110), 제어부(120), 메모리부(130), 전원공급부(140a), 인터페이스부(140b) 및 입출력부(140c)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다. 블록 110~130/140a~140c는 각각 도 29의 블록 110~130/140에 대응한다.
통신부(110)는 다른 무선 기기, 기지국들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 휴대 기기(100)의 구성 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 AP(Application Processor)를 포함할 수 있다. 메모리부(130)는 휴대 기기(100)의 구동에 필요한 데이터/파라미터/프로그램/코드/명령을 저장할 수 있다. 또한, 메모리부(130)는 입/출력되는 데이터/정보 등을 저장할 수 있다. 전원공급부(140a)는 휴대 기기(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 인터페이스부(140b)는 휴대 기기(100)와 다른 외부 기기의 연결을 지원할 수 있다. 인터페이스부(140b)는 외부 기기와의 연결을 위한 다양한 포트(예, 오디오 입/출력 포트, 비디오 입/출력 포트)를 포함할 수 있다. 입출력부(140c)는 영상 정보/신호, 오디오 정보/신호, 데이터, 및/또는 사용자로부터 입력되는 정보를 입력 받거나 출력할 수 있다. 입출력부(140c)는 카메라, 마이크로폰, 사용자 입력부, 디스플레이부(140d), 스피커 및/또는 햅틱 모듈 등을 포함할 수 있다.
일 예로, 데이터 통신의 경우, 입출력부(140c)는 사용자로부터 입력된 정보/신호(예, 터치, 문자, 음성, 이미지, 비디오)를 획득하며, 획득된 정보/신호는 메모리부(130)에 저장될 수 있다. 통신부(110)는 메모리에 저장된 정보/신호를 무선 신호로 변환하고, 변환된 무선 신호를 다른 무선 기기에게 직접 전송하거나 기지국에게 전송할 수 있다. 또한, 통신부(110)는 다른 무선 기기 또는 기지국으로부터 무선 신호를 수신한 뒤, 수신된 무선 신호를 원래의 정보/신호로 복원할 수 있다. 복원된 정보/신호는 메모리부(130)에 저장된 뒤, 입출력부(140c)를 통해 다양한 형태(예, 문자, 음성, 이미지, 비디오, 헵틱)로 출력될 수 있다.
4.2.4. 본 개시의 다양한 실시예들이 적용되는 차량 또는 자율 주행 차량 예
도 31는 본 개시의 다양한 실시예들에 적용되는 차량 또는 자율 주행 차량을 예시한다. 차량 또는 자율 주행 차량은 이동형 로봇, 차량, 기차, 유/무인 비행체(Aerial Vehicle, AV), 선박 등으로 구현될 수 있다.
도 31를 참조하면, 차량 또는 자율 주행 차량(100)은 안테나부(108), 통신부(110), 제어부(120), 구동부(140a), 전원공급부(140b), 센서부(140c) 및 자율 주행부(140d)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다. 블록 110/130/140a~140d는 각각 도 29의 블록 110/130/140에 대응한다.
통신부(110)는 다른 차량, 기지국(e.g. 기지국, 노변 기지국(Road Side unit) 등), 서버 등의 외부 기기들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 차량 또는 자율 주행 차량(100)의 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 ECU(Electronic Control Unit)를 포함할 수 있다. 구동부(140a)는 차량 또는 자율 주행 차량(100)을 지상에서 주행하게 할 수 있다. 구동부(140a)는 엔진, 모터, 파워 트레인, 바퀴, 브레이크, 조향 장치 등을 포함할 수 있다. 전원공급부(140b)는 차량 또는 자율 주행 차량(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 센서부(140c)는 차량 상태, 주변 환경 정보, 사용자 정보 등을 얻을 수 있다. 센서부(140c)는 IMU(inertial measurement unit) 센서, 충돌 센서, 휠 센서(wheel sensor), 속도 센서, 경사 센서, 중량 감지 센서, 헤딩 센서(heading sensor), 포지션 모듈(position module), 차량 전진/후진 센서, 배터리 센서, 연료 센서, 타이어 센서, 스티어링 센서, 온도 센서, 습도 센서, 초음파 센서, 조도 센서, 페달 포지션 센서 등을 포함할 수 있다. 자율 주행부(140d)는 주행중인 차선을 유지하는 기술, 어댑티브 크루즈 컨트롤과 같이 속도를 자동으로 조절하는 기술, 정해진 경로를 따라 자동으로 주행하는 기술, 목적지가 설정되면 자동으로 경로를 설정하여 주행하는 기술 등을 구현할 수 있다.
일 예로, 통신부(110)는 외부 서버로부터 지도 데이터, 교통 정보 데이터 등을 수신할 수 있다. 자율 주행부(140d)는 획득된 데이터를 기반으로 자율 주행 경로와 드라이빙 플랜을 생성할 수 있다. 제어부(120)는 드라이빙 플랜에 따라 차량 또는 자율 주행 차량(100)이 자율 주행 경로를 따라 이동하도록 구동부(140a)를 제어할 수 있다(예, 속도/방향 조절). 자율 주행 도중에 통신부(110)는 외부 서버로부터 최신 교통 정보 데이터를 비/주기적으로 획득하며, 주변 차량으로부터 주변 교통 정보 데이터를 획득할 수 있다. 또한, 자율 주행 도중에 센서부(140c)는 차량 상태, 주변 환경 정보를 획득할 수 있다. 자율 주행부(140d)는 새로 획득된 데이터/정보에 기반하여 자율 주행 경로와 드라이빙 플랜을 갱신할 수 있다. 통신부(110)는 차량 위치, 자율 주행 경로, 드라이빙 플랜 등에 관한 정보를 외부 서버로 전달할 수 있다. 외부 서버는 차량 또는 자율 주행 차량들로부터 수집된 정보에 기반하여, AI 기술 등을 이용하여 교통 정보 데이터를 미리 예측할 수 있고, 예측된 교통 정보 데이터를 차량 또는 자율 주행 차량들에게 제공할 수 있다.
4.2.5. 본 개시의 다양한 실시예들이 적용되는 AR/VR 및 차량 예
도 32은 본 개시의 다양한 실시예들에 적용되는 차량을 예시한다. 차량은 운송수단, 기차, 비행체, 선박 등으로도 구현될 수 있다.
도 32을 참조하면, 차량(100)은 통신부(110), 제어부(120), 메모리부(130), 입출력부(140a) 및 위치 측정부(140b)를 포함할 수 있다. 여기서, 블록 110~130/140a~140b는 각각 도 29의 블록 110~130/140에 대응한다.
통신부(110)는 다른 차량, 또는 기지국 등의 외부 기기들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 차량(100)의 구성 요소들을 제어하여 다양한 동작을 수행할 수 있다. 메모리부(130)는 차량(100)의 다양한 기능을 지원하는 데이터/파라미터/프로그램/코드/명령을 저장할 수 있다. 입출력부(140a)는 메모리부(130) 내의 정보에 기반하여 AR/VR 오브젝트를 출력할 수 있다. 입출력부(140a)는 HUD를 포함할 수 있다. 위치 측정부(140b)는 차량(100)의 위치 정보를 획득할 수 있다. 위치 정보는 차량(100)의 절대 위치 정보, 주행선 내에서의 위치 정보, 가속도 정보, 주변 차량과의 위치 정보 등을 포함할 수 있다. 위치 측정부(140b)는 GPS 및 다양한 센서들을 포함할 수 있다.
일 예로, 차량(100)의 통신부(110)는 외부 서버로부터 지도 정보, 교통 정보 등을 수신하여 메모리부(130)에 저장할 수 있다. 위치 측정부(140b)는 GPS 및 다양한 센서를 통하여 차량 위치 정보를 획득하여 메모리부(130)에 저장할 수 있다. 제어부(120)는 지도 정보, 교통 정보 및 차량 위치 정보 등에 기반하여 가상 오브젝트를 생성하고, 입출력부(140a)는 생성된 가상 오브젝트를 차량 내 유리창에 표시할 수 있다(1410, 1420). 또한, 제어부(120)는 차량 위치 정보에 기반하여 차량(100)이 주행선 내에서 정상적으로 운행되고 있는지 판단할 수 있다. 차량(100)이 주행선을 비정상적으로 벗어나는 경우, 제어부(120)는 입출력부(140a)를 통해 차량 내 유리창에 경고를 표시할 수 있다. 또한, 제어부(120)는 통신부(110)를 통해 주변 차량들에게 주행 이상에 관한 경고 메세지를 방송할 수 있다. 상황에 따라, 제어부(120)는 통신부(110)를 통해 관계 기관에게 차량의 위치 정보와, 주행/차량 이상에 관한 정보를 전송할 수 있다.
요약하면, 본 개시의 다양한 실시예들은 일정 장치 및/또는 단말을 통해 구현될 수 있다.
예를 들어, 일정 장치는, 기지국, 네트워크 노드, 전송 단말, 수신 단말, 무선 장치, 무선 통신 장치, 차량, 자율주행 기능을 탑재한 차량, 드론 (Unmanned Aerial Vehicle, UAV), AI (Artificial Intelligence) 모듈, 로봇, AR (Augmented Reality) 장치, VR (Virtual Reality) 장치 또는 그 이외의 장치일 수 있다.
예를 들어, 단말은 개인 휴대 단말기 (PDA: Personal Digital Assistant), 셀룰러 폰, 개인 통신 서비스 (PCS: Personal Communication Service) 폰, GSM(Global System for Mobile) 폰, WCDMA (Wideband CDMA) 폰, MBS (Mobile Broadband System) 폰, 스마트 (Smart) 폰 또는 멀티모드 멀티밴드 (MM-MB: Multi Mode-Multi Band) 단말기 등일 수 있다.
여기서, 스마트 폰이란 이동통신 단말기와 개인 휴대 단말기의 장점을 혼합한 단말기로서, 이동통신 단말기에 개인 휴대 단말기의 기능인 일정 관리, 팩스 송수신 및 인터넷 접속 등의 데이터 통신 기능을 통합한 단말기를 의미할 수 있다. 또한, 멀티모드 멀티밴드 단말기란 멀티 모뎀칩을 내장하여 휴대 인터넷시스템 및 다른 이동통신 시스템(예를 들어, CDMA(Code Division Multiple Access) 2000 시스템, WCDMA(Wideband CDMA) 시스템 등)에서 모두 작동할 수 있는 단말기를 말한다.
또는, 단말은 노트북 PC, 핸드헬드 PC (Hand-Held PC), 태블릿 PC (tablet PC), 울트라북 (ultrabook), 슬레이트 PC (slate PC), 디지털 방송용 단말기, PMP (portable multimedia player), 네비게이션, 웨어러블 디바이스 (wearable device, 예를 들어, 워치형 단말기 (smartwatch), 글래스형 단말기 (smart glass), HMD (head mounted display) 등일 수 있다. 예를 들어, 드론은 사람이 타지 않고 무선 컨트롤 신호에 의해 비행하는 비행체일 수 있다. 예를 들어, HMD는 머리에 착용하는 형태의 디스플레이 장치일 수 있다. 예를 들어, HMD는 VR 또는 AR을 구현하기 위해 사용될 수 있다.
본 개시의 다양한 실시예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 개시의 다양한 실시예들은 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다.
하드웨어에 의한 구현의 경우, 본 개시의 다양한 실시예들에 따른 방법은 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 개시의 다양한 실시예들에 따른 방법은 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등의 형태로 구현될 수 있다. 예를 들어, 소프트웨어 코드는 메모리에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리는 상기 프로세서 내부 또는 외부에 위치할 수 있으며, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 개시의 다양한 실시예들은 그 기술적 아이디어 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 개시의 다양한 실시예들의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 개시의 다양한 실시예들의 등가적 범위 내에서의 모든 변경은 본 개시의 다양한 실시예들의 범위에 포함된다. 또한, 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함할 수 있다.
본 개시의 다양한 실시예들은 다양한 무선접속 시스템에 적용될 수 있다. 다양한 무선접속 시스템들의 일례로서, 3GPP(3rd Generation Partnership Project) 또는 3GPP2 시스템 등이 있다. 본 개시의 다양한 실시예들은 상기 다양한 무선접속 시스템 뿐 아니라, 상기 다양한 무선접속 시스템을 응용한 모든 기술 분야에 적용될 수 있다. 나아가, 제안한 방법은 초고주파 대역을 이용하는 mmWave 통신 시스템에도 적용될 수 있다.

Claims (15)

  1. 무선 통신 시스템에서 단말의 방법에 있어서,
    PRS (positioning reference signal) 시퀀스 ID (identifier) 와 관련된 정보를 수신하는 과정;
    상기 PRS 시퀀스 ID 와 관련된 PRS 를 수신하는 과정; 및
    일정 자원 영역에 포함된 상기 PRS 가 수신된 RE (resource element) 를 제외한 하나 이상의 RE 에서 PDSCH (physical downlink shared channel) 을 디코딩하는 과정을 포함하고,
    DRX (discontinuous reception) 가 설정됨에 기초하여, 상기 PDSCH 를 위한 PDCCH (physical downlink control channel) 는, 상기 DRX 와 관련된 온 구간 (on duration) 내에서 모니터링 되고,
    상기 PRS 의 시퀀스 생성 (sequence generation) 과 관련된 의사-임의 시퀀스 생성기 (pseudo-random sequence generator) 는,
    Figure PCTKR2020005891-appb-img-000275
    에 따라 초기화 되고,
    Figure PCTKR2020005891-appb-img-000276
    은 자연수이고,
    Figure PCTKR2020005891-appb-img-000277
    는 슬롯 당 OFDM (orthogonal frequency division multiplexing) 심볼 개수이고,
    Figure PCTKR2020005891-appb-img-000278
    는 슬롯 인덱스 (index) 이고,
    Figure PCTKR2020005891-appb-img-000279
    는 슬롯 내 OFDM 심볼 인덱스이고,
    Figure PCTKR2020005891-appb-img-000280
    는 상기 PRS 시퀀스 ID 이고,
    Figure PCTKR2020005891-appb-img-000281
    는 모듈러 (modulo) 연산인, 방법.
  2. 제 1 항에 있어서,
    Figure PCTKR2020005891-appb-img-000282
    는 상위 계층에 의해서 설정되고,
    Figure PCTKR2020005891-appb-img-000283
    인, 방법.
  3. 제 1 항에 있어서,
    Figure PCTKR2020005891-appb-img-000284
    은 10 보다 크고 31 보다 작은 자연수인, 방법.
  4. 제 1 항에 있어서,
    Figure PCTKR2020005891-appb-img-000285
    은 19 인, 방법.
  5. 제 1 항에 있어서,
    상기 PRS 의 시퀀스는, 미리 설정된 길이 31 의 골드 시퀀스 (gold sequence) 로부터 획득되는 값을 만족하는, 방법.
  6. 제 1 항에 있어서,
    PRS 자원에 대한 정보 (ii) 상기 PRS 자원을 포함하는 PRS 자원 집합에 대한 정보를 포함하는 (iii) TRP (transmission and reception point) ID 정보를 포함하는 설정 정보를 수신하는 과정을 더 포함하고,
    상기 PRS 는, 상기 설정 정보에 기초하여 수신되는, 방법.
  7. 무선 통신 시스템의 장치에 있어서,
    메모리 (memory); 및
    상기 메모리와 연결된 하나 이상의 프로세서 (processor) 를 포함하고,
    상기 하나 이상의 프로세서는:
    PRS (positioning reference signal) 시퀀스 ID (identifier) 와 관련된 정보를 수신하고,
    상기 PRS 시퀀스 ID 와 관련된 PRS 를 수신하고,
    일정 자원 영역에 포함된 상기 PRS 가 수신된 RE (resource element) 를 제외한 하나 이상의 RE 에서 PDSCH (physical downlink shared channel) 을 디코딩하고,
    DRX (discontinuous reception) 가 설정됨에 기초하여, 상기 PDSCH 를 위한 PDCCH (physical downlink control channel) 는, 상기 DRX 와 관련된 온 구간 (on duration) 내에서 모니터링 되고,
    상기 PRS 의 시퀀스 생성 (sequence generation) 과 관련된 의사-임의 시퀀스 생성기 (pseudo-random sequence generator) 는,
    Figure PCTKR2020005891-appb-img-000286
    에 따라 초기화 되고,
    Figure PCTKR2020005891-appb-img-000287
    은 자연수이고,
    Figure PCTKR2020005891-appb-img-000288
    는 슬롯 당 OFDM (orthogonal frequency division multiplexing) 심볼 개수이고,
    Figure PCTKR2020005891-appb-img-000289
    는 슬롯 인덱스 (index) 이고,
    Figure PCTKR2020005891-appb-img-000290
    는 슬롯 내 OFDM 심볼 인덱스이고,
    Figure PCTKR2020005891-appb-img-000291
    는 상기 PRS 시퀀스 ID 이고,
    Figure PCTKR2020005891-appb-img-000292
    는 모듈러 (modulo) 연산인, 장치.
  8. 제 7 항에 있어서,
    Figure PCTKR2020005891-appb-img-000293
    는 상위 계층에 의해서 설정되고,
    Figure PCTKR2020005891-appb-img-000294
    인, 장치.
  9. 제 7 항에 있어서,
    Figure PCTKR2020005891-appb-img-000295
    은 19 인, 장치.
  10. 제 7 항에 있어서,
    상기 PRS 의 시퀀스는, 미리 설정된 길이 31 의 골드 시퀀스 (gold sequence) 로부터 획득되는 값을 만족하는, 장치.
  11. 제 7 항에 있어서,
    상기 장치는, 이동 단말기, 네트워크 및 상기 장치가 포함된 차량 이외의 자율 주행 차량 중 하나 이상과 통신하는, 장치.
  12. 무선 통신 시스템에서 장치의 방법에 있어서,
    PRS (positioning reference signal) 시퀀스 ID (identifier) 와 관련된 정보를 송신하는 과정;
    상기 PRS 시퀀스 ID 와 관련된 PRS 를 송신하는 과정; 및
    일정 자원 영역에 포함된 상기 PRS 가 송신된 RE (resource element) 를 제외한 하나 이상의 RE 에서 PDSCH (physical downlink shared channel) 을 송신하는 과정을 포함하고,
    DRX (discontinuous reception) 가 설정됨에 기초하여, 상기 PDSCH 를 위한 PDCCH (physical downlink control channel) 는, 상기 DRX 와 관련된 온 구간 (on duration) 내에서 송신되고,
    상기 PRS 의 시퀀스 생성 (sequence generation) 과 관련된 의사-임의 시퀀스 생성기 (pseudo-random sequence generator) 는,
    Figure PCTKR2020005891-appb-img-000296
    에 따라 초기화 되고,
    Figure PCTKR2020005891-appb-img-000297
    은 자연수이고,
    Figure PCTKR2020005891-appb-img-000298
    는 슬롯 당 OFDM (orthogonal frequency division multiplexing) 심볼 개수이고,
    Figure PCTKR2020005891-appb-img-000299
    는 슬롯 인덱스 (index) 이고,
    Figure PCTKR2020005891-appb-img-000300
    는 슬롯 내 OFDM 심볼 인덱스이고,
    Figure PCTKR2020005891-appb-img-000301
    는 상기 PRS 시퀀스 ID 이고,
    Figure PCTKR2020005891-appb-img-000302
    는 모듈러 (modulo) 연산인, 방법.
  13. 무선 통신 시스템의 장치에 있어서,
    메모리 (memory); 및
    상기 메모리와 연결된 하나 이상의 프로세서 (processor) 를 포함하고,
    상기 하나 이상의 프로세서는:
    PRS (positioning reference signal) 시퀀스 ID (identifier) 와 관련된 정보를 송신하고,
    상기 PRS 시퀀스 ID 와 관련된 PRS 를 송신하고,
    일정 자원 영역에 포함된 상기 PRS 가 송신된 RE (resource element) 를 제외한 하나 이상의 RE 에서 PDSCH (physical downlink shared channel) 을 송신하고,
    DRX (discontinuous reception) 가 설정됨에 기초하여, 상기 PDSCH 를 위한 PDCCH (physical downlink control channel) 는, 상기 DRX 와 관련된 온 구간 (on duration) 내에서 송신되고,
    상기 PRS 의 시퀀스 생성 (sequence generation) 과 관련된 의사-임의 시퀀스 생성기 (pseudo-random sequence generator) 는,
    Figure PCTKR2020005891-appb-img-000303
    에 따라 초기화 되고,
    Figure PCTKR2020005891-appb-img-000304
    은 자연수이고,
    Figure PCTKR2020005891-appb-img-000305
    는 슬롯 당 OFDM (orthogonal frequency division multiplexing) 심볼 개수이고,
    Figure PCTKR2020005891-appb-img-000306
    는 슬롯 인덱스 (index) 이고,
    Figure PCTKR2020005891-appb-img-000307
    는 슬롯 내 OFDM 심볼 인덱스이고,
    Figure PCTKR2020005891-appb-img-000308
    는 상기 PRS 시퀀스 ID 이고,
    Figure PCTKR2020005891-appb-img-000309
    는 모듈러 (modulo) 연산인, 장치.
  14. 무선 통신 시스템의 장치에 있어서,
    하나 이상의 프로세서 (processor); 및
    상기 하나 이상의 프로세서가 방법을 수행하도록 하는 하나 이상의 명령어 (instruction) 를 저장하는 하나 이상의 메모리 (memory) 를 포함하고, 상기 방법은:
    PRS (positioning reference signal) 시퀀스 ID (identifier) 와 관련된 정보를 수신하는 과정;
    상기 PRS 시퀀스 ID 와 관련된 PRS 를 수신하는 과정; 및
    일정 자원 영역에 포함된 상기 PRS 가 수신된 RE (resource element) 를 제외한 하나 이상의 RE 에서 PDSCH (physical downlink shared channel) 을 디코딩하는 과정을 포함하고,
    DRX (discontinuous reception) 가 설정됨에 기초하여, 상기 PDSCH 를 위한 PDCCH (physical downlink control channel) 는, 상기 DRX 와 관련된 온 구간 (on duration) 내에서 모니터링 되고,
    상기 PRS 의 시퀀스 생성 (sequence generation) 과 관련된 의사-임의 시퀀스 생성기 (pseudo-random sequence generator) 는,
    Figure PCTKR2020005891-appb-img-000310
    에 따라 초기화 되고,
    Figure PCTKR2020005891-appb-img-000311
    은 자연수이고,
    Figure PCTKR2020005891-appb-img-000312
    는 슬롯 당 OFDM (orthogonal frequency division multiplexing) 심볼 개수이고,
    Figure PCTKR2020005891-appb-img-000313
    는 슬롯 인덱스 (index) 이고,
    Figure PCTKR2020005891-appb-img-000314
    는 슬롯 내 OFDM 심볼 인덱스이고,
    Figure PCTKR2020005891-appb-img-000315
    는 상기 PRS 시퀀스 ID 이고,
    Figure PCTKR2020005891-appb-img-000316
    는 모듈러 (modulo) 연산인, 장치.
  15. 하나 이상의 프로세서 (processor) 가 방법을 수행하도록 하는 하나 이상의 명령어 (instruction) 를 저장하는 프로세서-판독 가능 매체 (processor-readable medium) 에 있어서, 상기 방법은:
    PRS (positioning reference signal) 시퀀스 ID (identifier) 와 관련된 정보를 수신하는 과정;
    상기 PRS 시퀀스 ID 와 관련된 PRS 를 수신하는 과정; 및
    일정 자원 영역에 포함된 상기 PRS 가 수신된 RE (resource element) 를 제외한 하나 이상의 RE 에서 PDSCH (physical downlink shared channel) 을 디코딩하는 과정을 포함하고,
    DRX (discontinuous reception) 가 설정됨에 기초하여, 상기 PDSCH 를 위한 PDCCH (physical downlink control channel) 는, 상기 DRX 와 관련된 온 구간 (on duration) 내에서 모니터링 되고,
    상기 PRS 의 시퀀스 생성 (sequence generation) 과 관련된 의사-임의 시퀀스 생성기 (pseudo-random sequence generator) 는,
    Figure PCTKR2020005891-appb-img-000317
    에 따라 초기화 되고,
    Figure PCTKR2020005891-appb-img-000318
    은 자연수이고,
    Figure PCTKR2020005891-appb-img-000319
    는 슬롯 당 OFDM (orthogonal frequency division multiplexing) 심볼 개수이고,
    Figure PCTKR2020005891-appb-img-000320
    는 슬롯 인덱스 (index) 이고,
    Figure PCTKR2020005891-appb-img-000321
    는 슬롯 내 OFDM 심볼 인덱스이고,
    Figure PCTKR2020005891-appb-img-000322
    는 상기 PRS 시퀀스 ID 이고,
    Figure PCTKR2020005891-appb-img-000323
    는 모듈러 (modulo) 연산인, 프로세서-판독 가능 매체.
PCT/KR2020/005891 2019-05-02 2020-05-04 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치 WO2020222614A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/608,369 US11856576B2 (en) 2019-05-02 2020-05-04 Method for transmitting and receiving signals, and apparatus for supporting same in wireless communication system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20190051804 2019-05-02
KR10-2019-0051804 2019-05-02
US201962909760P 2019-10-02 2019-10-02
US62/909,760 2019-10-02

Publications (1)

Publication Number Publication Date
WO2020222614A1 true WO2020222614A1 (ko) 2020-11-05

Family

ID=73028996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/005891 WO2020222614A1 (ko) 2019-05-02 2020-05-04 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치

Country Status (2)

Country Link
US (1) US11856576B2 (ko)
WO (1) WO2020222614A1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7482859B2 (ja) * 2019-05-02 2024-05-14 株式会社Nttドコモ 端末、システム、及び通信方法
US11844030B2 (en) * 2020-04-02 2023-12-12 Parallel Wireless, Inc. Uplink link adaptation in 5G base stations
US11653225B2 (en) * 2020-07-01 2023-05-16 Qualcomm Incorporated Positioning techniques using positioning reference signaling
US11877262B2 (en) * 2020-08-13 2024-01-16 Qualcomm Incorporated Interaction of uplink and downlink positioning reference signals (PRS) with respect to discontinuous reception (DRX)
US20220078838A1 (en) * 2020-09-09 2022-03-10 Qualcomm Incorporated Remaining minimum system information transmission, synchronization signal block forwarding, and demodulation reference signal management by wireless forwarding node
US20230180247A1 (en) * 2021-12-08 2023-06-08 Qualcomm Incorporated Signaling for multicast broadcast service single frequency network communications
CN117998279A (zh) * 2022-11-04 2024-05-07 华为技术有限公司 一种通信方法及通信装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170164143A1 (en) * 2014-06-25 2017-06-08 Intel Corporation User equipment positioning in long-term evolution coordinated multipoint communication systems
US20190097874A1 (en) * 2017-09-28 2019-03-28 Comcast Cable Communications, Llc Beam Management with DRX Configuration

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015020378A1 (ko) * 2013-08-03 2015-02-12 엘지전자 주식회사 Mtc를 위한 무선 링크 측정 전송 방법 및 이를 위한 장치
US10117217B2 (en) * 2014-12-12 2018-10-30 Lg Electronics Inc. Method and apparatus for transmitting positioning reference signal in wireless access system supporting machine type communication
US11477754B2 (en) * 2019-04-25 2022-10-18 Qualcomm Incorporated Systems and methods for positioning reference signal staggering configuration
CN111865855B (zh) * 2019-04-28 2021-06-15 华为技术有限公司 生成参考信号的方法、检测参考信号的方法和通信装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170164143A1 (en) * 2014-06-25 2017-06-08 Intel Corporation User equipment positioning in long-term evolution coordinated multipoint communication systems
US20190097874A1 (en) * 2017-09-28 2019-03-28 Comcast Cable Communications, Llc Beam Management with DRX Configuration

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Downlink and Uplink Reference Signals for NR Positioning", R1-1904320. 3GPP TSG RAN WG1 MEETING #96BIS, 3 April 2019 (2019-04-03), XP051707190 *
"TSG RAN; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation (Release 15", 3GPP TS 36.211 V15.5.0, 28 March 2019 (2019-03-28) *
CATT: "DL and UL Reference Signals for NR Positioning. R1-1905346", 3GPP TSG RAN WG1 #96BIS, 3 April 2019 (2019-04-03), XP051707421 *

Also Published As

Publication number Publication date
US11856576B2 (en) 2023-12-26
US20220272731A1 (en) 2022-08-25

Similar Documents

Publication Publication Date Title
WO2020222614A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2020159339A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2020167057A1 (ko) 무선 통신 시스템에서 측위 방법 및 이를 지원하는 장치
WO2020222603A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2020145727A1 (ko) 무선 통신 시스템에서 측위 방법 및 이를 지원하는 장치
WO2020222611A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2020222621A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2020222619A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2021187962A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2021029727A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2020204646A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2021215791A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2022080992A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2021029759A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2021015510A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2021194274A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2021206521A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2020222616A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2021075884A1 (ko) 무선통신시스템에서 측위 방법 및 이를 위한 장치
WO2020167023A1 (ko) 무선 통신 시스템에서 측위 방법 및 이를 지원하는 장치
WO2020222620A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2021172963A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2021029683A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2021206468A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2022030953A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20798287

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20798287

Country of ref document: EP

Kind code of ref document: A1