WO2020221346A1 - 一种通信方法以及通信装置 - Google Patents

一种通信方法以及通信装置 Download PDF

Info

Publication number
WO2020221346A1
WO2020221346A1 PCT/CN2020/088247 CN2020088247W WO2020221346A1 WO 2020221346 A1 WO2020221346 A1 WO 2020221346A1 CN 2020088247 W CN2020088247 W CN 2020088247W WO 2020221346 A1 WO2020221346 A1 WO 2020221346A1
Authority
WO
WIPO (PCT)
Prior art keywords
drx cycle
terminal device
csi
period
time period
Prior art date
Application number
PCT/CN2020/088247
Other languages
English (en)
French (fr)
Inventor
张战战
铁晓磊
周涵
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2021564602A priority Critical patent/JP7427029B2/ja
Priority to KR1020217038587A priority patent/KR20220005532A/ko
Priority to CA3135744A priority patent/CA3135744A1/en
Priority to EP20798915.3A priority patent/EP3965477A4/en
Priority to BR112021021864A priority patent/BR112021021864A2/pt
Publication of WO2020221346A1 publication Critical patent/WO2020221346A1/zh
Priority to US17/513,869 priority patent/US11445568B2/en
Priority to US17/884,842 priority patent/US20230036393A1/en
Priority to JP2023195900A priority patent/JP2024020451A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0235Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a power saving command
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0248Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal dependent on the time of the day, e.g. according to expected transmission activity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • H04W52/0274Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of communication technology, and in particular to a communication method and communication device.
  • the terminal In the communication process between the terminal and the base station, in order to meet the requirements of the communication system for terminal mobility, the terminal needs to perform radio resource management (RRM) measurements on the serving cell and neighboring cells so that the terminal can enter a new cell It can perform cell selection/reselection/handover in time.
  • RRM radio resource management
  • the radio resource control connected (RRC_connected) terminal may be configured for discontinuous reception (discontinuous reception, DRX), the purpose is to make the terminal enter the on duration (on duration) to send and receive data every certain period, and can enter the sleep state at other times, not to monitor the physical downlink control channel (physical downlink control channel, PDCCH), thereby saving terminal energy consumption.
  • discontinuous reception discontinuous reception, DRX
  • PDCCH physical downlink control channel
  • the network device can configure an energy-saving signal for the terminal in the DRX state, which is used to indicate whether the terminal needs to wake up to monitor the PDCCH in the next one or more DRX cycles. Since the energy-saving signal may indicate that the entire DRX cycle enters the sleep state, it will reduce the active time of the terminal. If the existing RRM measurement mechanism is followed, the chance of RRM measurement will be reduced and the accuracy of RRM measurement will be reduced. degree.
  • the present application provides a communication method and a communication device, which can ensure that sufficient RRM measurement opportunities are provided to terminal equipment, ensure the accuracy of RRM measurement, and avoid the introduction of the concept of energy-saving signals that affects terminal mobility RRM measurement.
  • a communication method is provided, which may be executed by a terminal device, or may also be executed by a chip or a circuit configured in the terminal device, which is not limited in this application.
  • the method includes: determining not to detect the PDCCH in the first DRX cycle according to the receiving situation of the first energy-saving signal; performing RRM measurement on the CSI-RS sent by the network device in the first period of the first DRX cycle.
  • a communication method is provided.
  • the method can be executed by a network device, or can also be executed by a chip or circuit configured in the network device, which is not limited in this application.
  • the method includes: determining that the terminal device does not detect the PDCCH in the first DRX cycle; sending a CSI-RS to the terminal device in the first period of the first DRX cycle, and the CSI-RS is used for the terminal device to perform RRM measuring.
  • the first DRX cycle includes a first time period.
  • the network device sends at least one CSI-RS for RRM measurement to the terminal device, and the terminal device can perform the CSI-RS measurement in the first time period.
  • -RS takes measurements.
  • the first time period may be specified by the system or protocol, or may be agreed between the network device and the terminal device.
  • the network device can configure the terminal device through semi-static signaling or dynamic signaling.
  • protocol in the embodiment of the present application may refer to a standard protocol in the communication field, for example, may include the LTE protocol, the NR protocol, and related protocols applied to future communication systems, which are not limited in this application.
  • the terminal device can wake up and enter the active state to measure the CSI-RS.
  • the terminal device may enter an inactive state, thereby saving energy consumption of the terminal device.
  • This application sets the first time period in the first DRX cycle. Even if the first DRX cycle is instructed to enter the sleep state, the network device will send the CSI-RS in the first time period, and the terminal device will also assume that there is CSI-RS, and the terminal device can perform RRM measurement on the CSI-RS in the first time period, thereby ensuring that sufficient RRM measurement opportunities are provided to the terminal device, ensuring the accuracy of RRM measurement, and avoiding the introduction of energy-saving signals.
  • the concept has an impact on the RRM measurement of terminal mobility.
  • the first period includes part or all of the duration of the first DRX cycle.
  • the first period includes part or all of the non-duration time of the first DRX cycle.
  • the network device may send the CSI-RS according to the transmission period configured by the network device in the first time period.
  • the first DRX cycle may be any one of the one or more DRX cycles indicated by the first energy saving signal, for example, the first or the last one, which is not limited in this application.
  • the first period may be any period within the first DRX cycle, and the length of the first period may be less than or equal to the length of the first DRX cycle and greater than or equal to the period occupied by at least one CSI-RS. Any length.
  • the first time period may be the duration in the first DRX cycle.
  • the length of the first period may be equal to the length of the duration in the first DRX cycle.
  • the length of the first period may be equal to the length of the first DRX cycle.
  • the length of the first period may be equal to the length of the active time.
  • a communication method is provided, which may be executed by a terminal device, or may also be executed by a chip or a circuit configured in the terminal device, which is not limited in this application.
  • the method includes: determining the first time period according to the receiving timing of the first energy saving signal; and performing RRM measurement on the CSI-RS sent by the network device in the first time period.
  • a communication method is provided.
  • the method may be executed by a network device, or may also be executed by a chip or a circuit configured in the network device, which is not limited in this application.
  • the method includes: determining a first time period according to the sending timing of the first energy saving signal; and sending a CSI-RS to the terminal device in the first time period, where the CSI-RS is used for the terminal device to perform RRM measurement.
  • the network device can pre-configure the time period #A to transmit the first energy-saving signal (this time period #A can also be referred to as the time period occupied by the first energy-saving signal), and the terminal device can pair The reception of the first energy-saving signal determines whether the PDCCH is detected in at least one DRX cycle after the period #A.
  • the network device and the terminal device can respectively determine the first time period according to the sending timing of the first energy-saving signal, and the network device transmits the CSI-RS in the first time period, and the terminal device can respond to the CSI-RS in the first time period.
  • -RS performs RRM measurement.
  • the associated first time period is determined according to the sending timing of the first energy-saving signal.
  • the network device can send the CSI-RS in the first time period, and the terminal device can perform RRM on the CSI-RS in the first time period.
  • the measurement can ensure that sufficient RRM measurement opportunities are provided to the terminal device, ensure the accuracy of the RRM measurement, and avoid the impact of the introduction of the concept of energy-saving signals on the terminal mobility RRM measurement.
  • the offset value between the period occupied by the CSI-RS and the period occupied by the first energy saving signal is less than or equal to the first duration threshold, and the CSI-RS occupied The period of time is within the first period.
  • the terminal device may wake up from the sleep state at time period #A, and the time period occupied by the CSI-RS should be as close as possible to time period #A, so that the first energy-saving signal can be detected by the terminal device After that, the RRM measurement is performed without the need to wake up from the sleep state for RRM measurement alone.
  • setting the time period occupied by the CSI-RS as close as possible to the time period #A can also reduce the time for the terminal device to stay awake, thereby saving energy consumption of the terminal device.
  • the offset value between the period occupied by CSI-RS and period #A may be between the first character of the period occupied by CSI-RS and the first or last character of period #A Alternatively, it may be the offset value between the last character of the period occupied by the CSI-RS and the first or last character of period #A, which is not limited in this application.
  • the duration of the first period may be less than or equal to the second duration threshold.
  • the time for the terminal device to maintain the active state due to the execution of the RRM measurement can be limited, so that the power consumption of the terminal device can be saved.
  • the duration of the first period may be the duration of the DRX cycle.
  • a communication method includes: a terminal device receives instruction information sent by a network device, the instruction information includes first instruction information and/or second instruction information, and the first instruction information is used to instruct the network device to The possibility of sending CSI-RS in a DRX cycle, the second indication information is used to indicate the possibility of the network device to send CSI-RS in the second DRX cycle, and the second DRX cycle is the DRX after the first DRX cycle Period: The terminal device determines whether to perform RRM measurement in the first DRX period according to the indication information.
  • This embodiment can determine whether to perform RRM measurement in the first DRX cycle according to the instruction information, so that the terminal device can measure CSI-RS more flexibly.
  • the terminal device can decide whether to perform RRM measurement in the current first DRX according to the instruction information, for example, According to the indication information, it can be determined not to perform RRM measurement in the first DRX cycle, which is beneficial to saving energy consumption of the terminal device.
  • the first indication information is used to indicate that the network device may send CSI-RS or must send CSI-RS in the first DRX cycle.
  • the second indication information is used to indicate that the network device may or must send CSI-RS in the second DRX cycle.
  • the terminal device determines whether to perform RRM measurement in the first DRX cycle according to the indication information, including: if the first indication information indicates the network The device must send the CSI-RS in the first DRX cycle, and the terminal device performs RRM measurement in the first DRX cycle.
  • the first indication information indicates that the CSI-RS must be sent in the first DRX cycle. Since the terminal device is not sure whether the CSI-RS must exist in the next DRX cycle, the terminal device can perform RRM measurement in the first DRX cycle. If the first indication information indicates that the network device may send CSI-RS in the first DRX cycle, the terminal device may or may not perform RRM measurement in the first DRX cycle.
  • the terminal device determines according to the indication information whether to perform RRM measurement in the first DRX cycle, including: if the second indication information indicates that the network device is The CSI-RS must be sent in the second DRX cycle, the terminal device does not perform RRM measurement in the first DRX cycle; if the second indication information indicates that the network device may send CSI-RS in the second DRX cycle, the terminal device is in the first DRX cycle RRM measurement is performed inside.
  • the second indication information indicates that the network device must send the CSI-RS in the second DRX cycle
  • the RRM measurement must be performed in the second DRX cycle.
  • the terminal device may not perform RRM measurement in the first DRX cycle. Can save power consumption.
  • the terminal device is not sure whether it can perform RRM measurement in the second DRX cycle. To ensure that there are enough measurement samples, the terminal device is in the first DRX cycle RRM measurement is performed inside.
  • the method further includes: the terminal device determines whether to detect the PDCCH in the first DRX cycle according to the receiving situation of the energy-saving signal; and the terminal device determines whether the PDCCH is in the first DRX cycle according to the instruction information.
  • Performing the RRM measurement in the period includes: the terminal device determines whether to perform the RRM measurement in the first DRX period according to whether the PDCCH is detected in the first DRX period and the indication information.
  • the terminal device determines whether to perform RRM measurement in the first DRX cycle according to whether the PDCCH is detected in the first DRX cycle and the indication information, including: If the first indication information indicates that the network device may send CSI-RS in the first DRX cycle, and the terminal device detects the PDCCH in the first DRX cycle, the terminal device performs RRM measurement in the first DRX cycle;
  • the terminal device does not perform RRM measurement in the first DRX cycle.
  • the terminal device when the terminal device detects the PDCCH in the first DRX cycle, the terminal device must enter the active state. At this time, since the terminal device must enter the active state, the network device indicated by the previous first indication information is in the first DRX cycle It is possible that sending CSI-RS becomes determined to send CSI-RS. It can be understood that when the network device determines that the terminal device detects the PDCCH in the first DRX cycle, the network device determines to send the CSI-RS in the first DRX cycle. Regardless of the indication of the first indication message. Therefore, the terminal device can also perform RRM measurement in the first DRX cycle.
  • the terminal device When the terminal device does not detect the PDCCH in the first DRX cycle, the terminal device does not start the duration timer and may enter an inactive state. At this time, the network device may only send CSI-RS in the first DRX cycle. For example, at this time, when the first indication information is represented by 1 bit, and the bit is 0, it means that CSI-RS may be sent, and the network device may not send CSI-RS in the first DRX cycle, and the terminal device is not in the first DRX cycle. Perform RRM measurement during the DRX cycle. In addition, when the bit is 1, it means that the network device must send CSI-RS in the first DRX cycle. At this time, even if the terminal device does not detect the PDCCH in the first DRX cycle, the terminal device can perform RRM measurement in the first DRX cycle. Of course, the terminal device may not perform RRM measurement in the first DRX cycle.
  • the network device determines that the terminal device detects the PDCCH in the first DRX cycle, or the first indication information indicates that the network device must send the CSI-RS in the first DRX cycle, the network device determines to send the CSI in the first DRX cycle -RS. If the network device determines that the terminal device does not detect the PDCCH in the first DRX cycle, and the first indication information indicates that the network device may send the CSI-RS in the first DRX cycle, the network device may not send the CSI-RS in the first DRX cycle.
  • the terminal device determines whether to perform RRM measurement in the first DRX cycle according to whether the PDCCH is detected in the first DRX cycle and the indication information, including: If the second indication information indicates that the network device may send CSI-RS in the second DRX cycle, and the terminal device detects the PDCCH in the first DRX cycle, the terminal device performs RRM measurement in the first DRX cycle;
  • the terminal device does not perform RRM measurement in the first DRX cycle.
  • the terminal device determines whether to perform in the first DRX cycle according to whether the PDCCH is detected in the first DRX cycle and the indication information.
  • RRM measurements include:
  • the terminal device determines that the network device does not send CSI-RS in the first DRX cycle, the terminal device does not perform RRM measurement in the first DRX cycle;
  • the terminal device determines that the network device may send CSI-RS in the first DRX cycle, and the second indication information indicates that the network device determines to send CSI-RS in the second DRX cycle, and the terminal device does not detect PDCCH in the first DRX cycle, If the terminal device determines that the network device does not send CSI-RS in the first DRX cycle, the terminal device does not perform RRM measurement in the first DRX cycle;
  • the terminal device can also perform RRM measurement in the first DRX cycle;
  • the terminal device determines that the network device sends the CSI-RS in the first DRX cycle, and the terminal device can perform RRM measurement in the first DRX cycle.
  • the terminal device may not perform RRM measurement in the first DRX cycle;
  • the first indication information indicates that the network device may send CSI-RS in the first DRX cycle
  • the second indication information indicates that the network device determines to send the CSI-RS in the second DRX cycle
  • the power saving signal is received according to the situation
  • the terminal device detects the PDCCH in the first DRX cycle, and the terminal device determines that the network device transmits the CSI-RS in the first DRX cycle, and the terminal device may not perform RRM measurement in the first DRX cycle.
  • the terminal device If the first indication information indicates that the network device determines to send the CSI-RS in the first DRX cycle, and the second indication information indicates that the network device may send the CSI-RS in the second DRX cycle, and the power-saving signal is received If the terminal device detects the PDCCH in the first DRX cycle, the terminal device can perform RRM measurement in the first DRX cycle;
  • the terminal device may not perform RRM measurement in the first DRX cycle.
  • the first indication information and the second indication information may be sent to the terminal device together, or may be sent separately.
  • the first indication information, the second indication information and the energy saving signal are sent to the terminal device together.
  • the second indication information and the energy saving signal are sent to the terminal device together.
  • the terminal device determines whether to perform RRM measurement in the first DRX cycle according to whether the PDCCH is detected in the first DRX cycle and the indication information, Including: the terminal device determines the possibility of the network device sending CSI-RS in the second DRX cycle according to whether the PDCCH is detected in the first DRX cycle and the first indication information; the terminal device sends CSI-RS in the second DRX cycle according to the network device The possibility of RS determines whether to perform RRM measurement in the first DRX cycle.
  • the terminal device determines the possibility of the network device to send the CSI-RS in the second DRX cycle according to whether the PDCCH is detected in the first DRX cycle and the first indication information, including: An indication information indicates that the network device may send CSI-RS in the first DRX cycle, and the terminal device detects the PDCCH in the first DRX cycle, the terminal device determines that the network device may send CSI-RS in the second DRX cycle;
  • the terminal device determines that the network device must send CSI-RS in the second DRX cycle; if The first indication information indicates that the network device must send the CSI-RS in the first DRX cycle, and the terminal device determines that the network device may send the CSI-RS in the second DRX cycle.
  • the terminal device determines whether to perform RRM measurement in the first DRX cycle according to the possibility that the network device sends CSI-RS in the second DRX cycle, including: It is possible to send CSI-RS in the second DRX cycle, and it is determined that the terminal equipment detects the PDCCH in the first DRX cycle, the terminal equipment performs RRM measurement in the first DRX cycle; if the network device may send in the first DRX cycle CSI-RS, and it is determined that the terminal device does not detect the PDCCH in the first DRX cycle, the terminal device does not perform RRM measurement in the first DRX cycle.
  • a communication device may be a terminal device or a chip in the terminal device.
  • the device may include a processing unit and a transceiving unit.
  • the processing unit may be a processor, and the transceiving unit may be a transceiver;
  • the terminal device may also include a storage unit, and the storage unit may be a memory;
  • the processing unit executes the instructions stored by the storage unit, so that the terminal device executes the method in the first aspect or the third aspect or the fifth aspect.
  • the processing unit may be a processor, the transceiving unit may be an input/output interface, a pin or a circuit, etc.; the processing unit executes instructions stored in the storage unit,
  • the storage unit may be a storage unit (for example, a register, a cache, etc.) in the chip, or may be the terminal A storage unit (for example, read-only memory, random access memory, etc.) located outside the chip in the device.
  • a communication device may be a network device or a chip in the network device.
  • the device may include a processing unit and a transceiving unit.
  • the processing unit may be a processor, and the transceiving unit may be a transceiver;
  • the network device may also include a storage unit, and the storage unit may be a memory;
  • the processing unit executes the instructions stored by the storage unit, so that the network device executes the method in the second aspect or the fourth aspect.
  • the processing unit may be a processor, the transceiving unit may be an input/output interface, a pin or a circuit, etc.; the processing unit executes the instructions stored in the storage unit,
  • the storage unit may be a storage unit (for example, a register, a cache, etc.) in the chip, or a storage unit located in the network device.
  • a storage unit external to the chip for example, read-only memory, random access memory, etc.).
  • a computer program product comprising: computer program code, which when the computer program code runs on a computer, causes the computer to execute the methods in the above aspects.
  • the above-mentioned computer program code may be stored in whole or in part on a first storage medium, where the first storage medium may be packaged with the processor or separately packaged with the processor. This embodiment of the application does not deal with this. Specific restrictions.
  • a computer-readable medium stores a program code, and when the computer program code runs on a computer, the computer executes the methods in the above aspects.
  • Fig. 1 is a schematic diagram of a communication system suitable for an embodiment of the present application.
  • Figure 2 is a schematic diagram of the DRX cycle.
  • Fig. 3 is a schematic diagram of a wake-up signal indicating a terminal in a DRX state.
  • Fig. 4 is a schematic flowchart of an example of the communication method provided by the present application.
  • FIG. 5 shows a schematic diagram of an example of the setting manner of the first time period.
  • Fig. 6 shows a schematic diagram of another example of the setting of the first time period.
  • FIG. 7 shows a schematic diagram of another example of the setting manner of the first time period.
  • FIG. 8 is a schematic flowchart of another example of the communication method provided by the present application.
  • FIG. 9 shows a schematic diagram of another example of the setting manner of the first time period.
  • FIG. 10 shows a schematic diagram of another example of the setting manner of the first time period.
  • FIG. 11 is a schematic flowchart of another example of the communication method provided by the present application.
  • FIG. 12 is a schematic flowchart of another example of the communication method provided by the present application.
  • Fig. 13 is a schematic diagram of a communication device according to an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • Fig. 15 is a schematic diagram of a communication device according to another embodiment of the present application.
  • Fig. 16 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • WCDMA broadband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD LTE Time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • Fig. 1 shows a schematic diagram of a suitable communication system suitable for embodiments of the present application.
  • the communication system 100 may include at least one network device, such as the network device 110 shown in FIG. 1; the communication system 100 may also include at least one terminal device, such as the terminal device 120 shown in FIG. 1.
  • the network device 110 and the terminal device 120 may communicate through a wireless link.
  • Each communication device, such as the network device 110 or the terminal device 120 may be configured with multiple antennas, and the multiple antennas may include at least one transmitting antenna for transmitting signals and at least one receiving antenna for receiving signals.
  • each communication device additionally includes a transmitter chain and a receiver chain.
  • Those of ordinary skill in the art can understand that they can all include multiple components related to signal transmission and reception (such as processors, modulators, multiplexers). , Demodulator, demultiplexer or antenna, etc.). Therefore, the network device 110 and the terminal device 120 can communicate through multi-antenna technology.
  • the network device in the wireless communication system may be any device with a wireless transceiver function.
  • the equipment includes but is not limited to: evolved NodeB (eNB or eNodeB), radio network controller (RNC), node B (NodeB, NB), base station controller (BSC) ), base transceiver station (BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (BBU), wireless fidelity (WIFI) system
  • the access point (AP), wireless relay node, wireless backhaul node, transmission point (TP), or transmission and reception point (TRP), etc. can also be 5G, such as , NR, gNB in the system, or transmission point (TRP or TP), one or a group of antenna panels (including multiple antenna panels) of the base station in the 5G system, or it can also be a network that constitutes a gNB or transmission point Nodes, such as baseband unit (BBU), or distributed unit (DU), etc.
  • RNC
  • the gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include a radio unit (RU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB, for example, CU implements radio resource control (radio resource control, RRC), packet data convergence protocol (packet data convergence protocol, PDCP) layer functions
  • DU implements wireless link
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • DU implements wireless link
  • RLC radio link control
  • MAC media access control
  • PHY physical
  • the network device may be a CU node, or a DU node, or a device including a CU node and a DU node.
  • the CU can be divided into network equipment in an access network (radio access network, RAN), or the CU can be divided into network equipment in a core network (core network, CN), which is not limited in this application.
  • the terminal equipment in the wireless communication system may also be referred to as user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile equipment, User terminal, terminal, wireless communication device, user agent or user device.
  • the terminal device in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (pad), a computer with wireless transceiver function, a virtual reality (VR) terminal device, and an augmented reality (AR) terminal Equipment, wireless terminals in industrial control, wireless terminals in unmanned driving (self-driving), wireless terminals in remote medical, wireless terminals in smart grid, transportation safety ( Wireless terminals in transportation safety, wireless terminals in smart cities, and wireless terminals in smart homes.
  • the embodiment of this application does not limit the application scenario.
  • Radio resource management (RRM) measurement is a measurement of the communication quality of a periodic signal by the terminal.
  • the measurement content may include the received signal power (reference signal receiving power, RSRP), and the received signal quality (reference signal receiving) at least one of quality, RSRQ) or signal to interference plus noise (SINR).
  • RSRP reference signal receiving power
  • RSRQ received signal quality
  • SINR signal to interference plus noise
  • the purpose of RRM measurement is to make the terminal in the radio resource control idle state (radio resource control idle, RRC_idle) and the radio resource control inactive state (radio resource control inactive, RRC_inactive) do cell selection/reselection (cell selection/reselection) , And in order to make the terminal in the RRC connected state do cell handover. Since the RRM measurement is to meet the requirements of the communication system for terminal mobility, so that the terminal can perform cell selection/reselection/handover in time when entering a new cell, the RRM measurement is performed periodically.
  • synchronization signal/physical broadcast channel resource block synchronization signal/physical broadcast channel block
  • SSB synchronization signal/physical broadcast channel block
  • CSI-RS channel state information Reference signal
  • SSB is a cell-level signal, so the terminal can be used in the RRC idle state/inactive state/connected state.
  • the CSI-RS can only be used by the terminal in the RRC connected state.
  • the base station When the terminal is in the RRC connected state, the base station will configure a certain CSI-RS resource for mobility RRM measurement through RRC signaling.
  • RRC connected state which signal is used for RRM measurement (which can be based on two signals at the same time) is configured by RRC signaling.
  • the embodiments of this application mainly focus on the RRC connected state, and mainly focus on the RRM measurement based on CSI-RS.
  • the terminal device can be configured with discontinuous reception (DRX) processing flow.
  • DRX discontinuous reception
  • the terminal device can stop detecting PDCCH and stop receiving the corresponding data transmission to reduce power consumption, thereby increasing battery usage time.
  • the network device can configure the DRX cycle (DRX cycle) for the terminal device in the RRC connected state.
  • Figure 2 is a schematic diagram of the DRX cycle.
  • the DRX cycle contains a time zone of "On duration" ("On duration"). During this duration, the terminal device can detect the PDCCH. After this duration, it is "Opportunity for DRX". Time and non-duration together constitute a complete DRX cycle.
  • the terminal device starts a timer at the start position of each DRX cycle time (that is, the start position of the duration).
  • the length of the timer is the duration of the time.
  • the timer can be called a duration timer (drx-on duration timer)
  • the terminal device can detect the PDCCH within the time range of the timer. If the terminal device does not detect the PDCCH within the time range of the duration timer, the terminal device enters the sleep state after the timer expires, that is, the terminal device can stop detecting the PDCCH during the remaining time period of the DRX cycle, thereby turning off the reception Circuit, thereby reducing the power consumption of the terminal.
  • the terminal device If the terminal device detects that the PDCCH indicates new data transmission within the time range of the duration timer, the terminal device will start the inactivity timer (drx-inactivity timer) in the DRX mechanism. If the terminal device is in the inactivity timer If the PDCCH is continuously detected to indicate new data transmission, the terminal device will reset (restart) the inactive timer to restart counting. If the deactivation timer is running, even if the originally configured duration timer expires (that is, the on duration expires), the terminal device still needs to continue to detect the PDCCH until the deactivation timer expires.
  • DRX-retransmission timer DL the DRX downlink retransmission timer
  • drx-retransmission timer UL the DRX uplink retransmission timer
  • the state of the terminal can be divided into the DRX active state and the DRX non-active state.
  • the time the UE is in the DRX active state is called the active time. If any one of the above timers (including duration timer, inactive timer, downlink/uplink retransmission timer, etc.) is running, then the terminal device will be in the active time (that is, the terminal is in the active state). In the DRX mechanism, if the terminal device is in the active time, the terminal device needs to detect the PDCCH. It should be understood that there are other situations where the terminal device is in the activation time, but the embodiment of the present application does not involve much, so it will not be described here.
  • the network device can configure an energy-saving signal for the terminal in the DRX state. It is generally considered that the energy-saving signal is sent before the DRX cycle to indicate whether the terminal needs to wake up to monitor the PDCCH in the next one or more DRX cycles.
  • the energy-saving signal can be based on the PDCCH channel, and the energy-saving signal can be divided into a wake-up signal (WUS) and/or a sleep signal (go to sleep signal, GTS) according to different functions.
  • WUS wake-up signal
  • GTS sleep signal
  • the energy-saving signal is a wake-up signal, and the terminal can determine whether to wake up by detecting the wake-up signal and enter the duration of the DRX cycle to detect the PDCCH.
  • Fig. 3 is a schematic diagram of a wake-up signal indicating a terminal in a DRX state.
  • the terminal can start the duration timer and enter the duration to detect the PDCCH. Further, if the terminal detects that the PDCCH indicates new data transmission, the inactivity timer can be started. In the first DRX cycle and before the second DRX cycle, if the wake-up signal is not detected at the preset time domain position, the terminal does not need to detect the PDCCH in the second DRX cycle, so the terminal device can Do not start the duration timer to enter the sleep state to save the power consumption of the terminal.
  • the energy-saving signal is a sleep signal, and the terminal can determine whether to wake up based on whether the sleep signal is detected or not to perform the duration of the DRX cycle to detect the PDCCH. Specifically, if the terminal device detects the sleep signal, the terminal device does not turn on the duration timer and enters the sleep state. If the terminal device does not detect the sleep signal, it turns on the duration timer to enter the duration to detect the PDCCH.
  • the energy-saving signal is a wake-up signal and a sleep signal at the same time.
  • a bit in downlink control information can be used to instruct the terminal to wake up and enter the duration to detect the PDCCH or instruct the terminal not to wake up and enter the sleep state.
  • the terminal will only expect to receive the CSI-RS used for mobility RRM measurement at the activation time of the DRX cycle, which means The activation time of DRX, the base station must send CSI-RS for RRM measurement, and during the sleep time of the DRX cycle, the terminal does not expect the existence of CSI-RS (the terminal will not wake up to receive CSI-RS), so the base station can choose Transmit or not transmit CSI-RS used for RRM measurement.
  • the base station When the DRX cycle is less than or equal to 80ms, regardless of whether the terminal is in the DRX active time or the DRX sleep time, the base station must send the CSI-RS used for RRM measurement, and the terminal will think that the CSI-RS always exists, so the terminal can be based on CSI-RS performs RRM measurement.
  • the terminal will not start the duration timer, and the cycle will not enter the activation time, resulting in the activation time of the terminal Decrease (before the energy saving signal is introduced, the activation time includes at least the duration of each cycle).
  • the activation time includes at least the duration of each cycle.
  • the present application provides a communication method 200, which can ensure that sufficient RRM measurement opportunities are provided to the terminal, and avoid the impact on the mobility RRM measurement of the terminal due to the introduction of the concept of energy-saving signals.
  • the following describes in conjunction with Figure 4.
  • FIG. 4 is a schematic flowchart of a communication method 200 according to an embodiment of the present application.
  • the method 200 shown in FIG. 4 includes step 210 to step 240.
  • step 210 the network device determines whether the terminal device detects the PDCCH in the first DRX cycle.
  • step 220 the terminal device determines whether to detect the PDCCH in the first DRX cycle according to the receiving situation of the first energy saving signal.
  • the network device sends a CSI-RS to the terminal device in the first period of the first DRX cycle, and the CSI-RS is used for the terminal device to perform RRM measurement.
  • the terminal device performs RRM measurement on the CSI-RS sent by the network device in the first period of the first DRX cycle.
  • the network device may first determine whether the terminal device detects the PDCCH in the first DRX cycle, or in other words, the network device may first determine whether the terminal device enters the active state or the inactive state in the first DRX cycle, and may pass the first energy saving signal
  • the terminal device is instructed accordingly by the sending condition of the terminal device, and the terminal device can determine whether to detect the PDCCH in the first DRX cycle according to the receiving condition of the first energy-saving signal.
  • the period #A (for example, at least one symbol or at least one slot) before the first DRX cycle can be pre-configured to transmit the first energy-saving signal, and the terminal device can transmit the first energy-saving signal according to the period #A Determine whether to detect the PDCCH in the first DRX cycle based on the reception of the first energy-saving signal.
  • the terminal device determines whether to detect the PDCCH in the first DRX cycle according to the receiving situation of the first energy-saving signal, which may include the following three situations:
  • the first energy saving signal is the wake-up signal WUS
  • the wake-up signal WUS can be detected in the period #A
  • whether the terminal device detects the PDCCH in the first DRX cycle is determined by whether the wake-up signal WUS is detected. For example, if the terminal device detects the wake-up signal WUS in the period #A, the terminal device can start the duration timer to enter the duration in the first DRX cycle to detect the PDCCH. For another example, if the terminal device does not detect the wake-up signal WUS in the period #A, the terminal device may not start the duration timer and not detect the PDCCH, and the terminal device enters the inactive state in the first DRX cycle.
  • the first energy saving signal is the sleep signal GTS
  • the sleep signal GTS can be detected in the period #A
  • whether the terminal device detects the PDCCH in the first DRX cycle is determined by whether the sleep signal GTS is detected. For example, if the terminal device does not detect the sleep signal GTS in the period #A, the terminal device can start the duration timer to enter the duration in the first DRX cycle to detect the PDCCH. For another example, if the terminal device detects the sleep signal GTS in the period #A, the terminal device may not start the duration timer and not detect the PDCCH, and the terminal device enters the inactive state in the first DRX cycle.
  • the first energy-saving signal is both the wake-up signal WUS and the sleep signal GTS.
  • the terminal device may receive the first energy-saving signal in time period #A, read the content of the first energy-saving signal, and determine that the terminal device is Whether to detect PDCCH in the first DRX cycle.
  • the system or protocol can specify, or the network device can make an agreement with the terminal device.
  • a bit of "0" can be used to indicate that the terminal device does not detect PDCCH, and a bit of "1" can be used to indicate that the terminal device detects PDCCH.
  • the terminal device can determine not to detect the PDCCH in the first DRX cycle.
  • the terminal device can determine that it is in the first DRX cycle. PDCCH is detected in a DRX cycle.
  • the first DRX cycle includes a first period.
  • the network device can send at least one CSI-RS used for RRM measurement to the terminal device, and the terminal device is in the first period
  • the CSI-RS can be measured.
  • the first time period may be specified by the system or protocol, or may be agreed between the network device and the terminal device.
  • the network device can configure the terminal device through semi-static signaling or dynamic signaling.
  • the semi-static signaling may be RRC signaling, for example.
  • the dynamic signaling may be, for example, a MAC control element (MAC CE) or DCI.
  • MAC CE MAC control element
  • protocol in the embodiment of the present application may refer to a standard protocol in the communication field, for example, may include the LTE protocol, the NR protocol, and related protocols applied to future communication systems, which are not limited in this application.
  • the terminal device can wake up and enter the active state to measure the CSI-RS.
  • the terminal device may enter an inactive state, thereby saving energy consumption of the terminal device.
  • the network device may send the CSI-RS at a time outside the first period in the first DRX cycle.
  • the network device does not send the CSI-RS at a time outside the first period in the first DRX cycle, thereby saving energy consumption of the network device.
  • the network device may send the CSI-RS according to the transmission period configured by the network device in the first time period.
  • the first DRX cycle may be any one of the one or more DRX cycles indicated by the first energy saving signal, for example, the first or the last one, which is not limited in this application.
  • the first time period may be any time period in the first DRX cycle, and the length of the first time period may be less than or equal to the length of the first DRX cycle and greater than or equal to at least one CSI-RS occupied Any length of time period.
  • the first period includes part or all of the duration of the first DRX cycle.
  • the first period includes part or all of the non-duration time of the first DRX cycle.
  • the first time period may be the duration in the first DRX cycle.
  • the length of the first period may be equal to the length of the duration in the first DRX cycle.
  • the length of the first period may be equal to the length of the first DRX cycle.
  • the length of the first period may be equal to the length of the active time.
  • FIG. 5 shows a schematic diagram of an example of the setting manner of the first time period.
  • the network device can send the first energy-saving signal to the terminal device through the period #A.
  • the first energy-saving signal can be used to instruct the terminal device not to detect the PDCCH (left) or the PDCCH (right) in the first DRX cycle.
  • the first time period is the duration of the DRX cycle. That is to say, the start position and end position and duration of the first period are completely the same, or in other words, the first period and the duration are completely coincident.
  • Fig. 6 shows a schematic diagram of another example of the setting of the first time period.
  • the first time period is the duration of the DRX cycle.
  • the first period is the activation time in the DRX cycle. It is easy to understand that when the terminal device enters the active state in the first DRX cycle, the activation time in the first DRX cycle includes at least the duration. If the PDCCH is detected to indicate new data transmission within the duration, the activation time is also Should include the time the inactive timer is running.
  • FIG. 7 shows a schematic diagram of another example of the setting manner of the first time period.
  • the first period is the entire DRX cycle. That is, the start position and the end position of the first period are completely the same as a DRX cycle, or in other words, the first period and a DRX cycle are completely coincident.
  • the duration threshold may be specified by the system or protocol, or may be agreed between the network device and the terminal device.
  • the duration threshold is 80 milliseconds (ms).
  • step 240 the terminal device sends the RRM measurement result to the network device.
  • step 240 the network device receives the RRM measurement result sent by the terminal device.
  • the terminal device After the terminal device completes the CSI-RS measurement, it can report the RRM measurement result to the network device in time, so that the network device can perform cell selection/reselection/handover operations of the terminal device based on the measurement result.
  • the first time period is set in the first DRX cycle. Even if the first DRX cycle is instructed to enter the sleep state, the network device will send the CSI-RS in the first time period, and the terminal device will also assume that the There is a CSI-RS, and the terminal device can perform RRM measurement on the CSI-RS in the first period of time, thereby ensuring that sufficient RRM measurement opportunities are provided to the terminal device, ensuring the accuracy of RRM measurement, and avoiding the introduction of energy-saving signals This concept affects the RRM measurement of terminal mobility.
  • the present application also provides a communication method 300, which can also ensure that sufficient RRM measurement opportunities are provided to the terminal, and avoid the impact of the introduction of the concept of energy-saving signals on the mobility RRM measurement of the terminal.
  • a communication method 300 which can also ensure that sufficient RRM measurement opportunities are provided to the terminal, and avoid the impact of the introduction of the concept of energy-saving signals on the mobility RRM measurement of the terminal.
  • FIG. 8 is a schematic flowchart of a communication method 300 according to an embodiment of the present application.
  • the method 300 shown in FIG. 8 includes step 310 to step 340.
  • step 310 the network device determines the first time period according to the sending timing of the first energy saving signal.
  • step 320 the terminal device determines the first time period according to the receiving timing of the first energy saving signal.
  • step 330 the network device sends a CSI-RS to the terminal device in the first time period, and the CSI-RS is used for the terminal device to perform RRM measurement.
  • step 330 the terminal device performs RRM measurement on the CSI-RS sent by the network device in the first period.
  • the network device can pre-configure the period #A to transmit the first energy-saving signal (this period #A can also be referred to as the period occupied by the first energy-saving signal), and the terminal device can pair according to the period #A
  • the reception of the first energy-saving signal determines whether the PDCCH is detected in at least one DRX cycle after the period #A.
  • the network device and the terminal device can respectively determine the first time period by the sending timing of the first energy saving signal, and the network device sends the CSI-RS in the first time period, and the terminal device can Perform RRM measurement on the CSI-RS in the first period.
  • determining the first time period according to the sending timing of the first energy saving signal may include the following two methods:
  • the CSI-RS associated with the first energy saving signal may be configured.
  • the transmission time domain position of the CSI-RS (that is, the time period occupied by the CSI-RS) can be configured together, and according to the CSI -The period occupied by the RS determines the first period. It is easy to understand that the first period should include the period occupied by the CSI-RS.
  • the length of the first period may be greater than the period occupied by the CSI-RS.
  • the length of the first time period may also be equal to the time period occupied by the CSI-RS, and in this case, the first time period is the time period occupied by the CSI-RS.
  • the relative position of the period #A and the period occupied by the CSI-RS is fixed, and the terminal device and the network device can determine the first period according to the relevant configuration information and the time domain position of the period #A And send/measure the CSI-RS in the first time period.
  • the method for the network to determine the time period occupied by the CSI-RS is to configure the offset value from the time period #A.
  • the configured CSI-RS is also periodic.
  • the network device can periodically send the CSI-RS in the first period, and the terminal device can The RRM measurement is performed periodically in the first period.
  • FIG. 9 shows a schematic diagram of another example of the setting manner of the first time period.
  • the offset value between the period occupied by the CSI-RS and the period #A is offset1.
  • the protocol may specify that offset1 is less than or equal to the first duration threshold.
  • the terminal device may wake up from the sleep state at time period #A, and the time period occupied by the CSI-RS should be as close as possible to time period #A, so that the first energy-saving signal can be detected by the terminal device After that, the RRM measurement is performed without the need to wake up from the sleep state for RRM measurement alone.
  • setting the time period occupied by the CSI-RS as close as possible to the time period #A can also reduce the time for the terminal device to stay awake, thereby saving energy consumption of the terminal device.
  • the protocol may specify that offset1 is less than or equal to the first duration threshold.
  • the base station needs to ensure that the offset value offset1 between the period occupied by the CSI-RS configured in association with the period #A and the period #A is less than or equal to the first duration threshold. If the protocol does not specify that the offset1 is less than or equal to the first duration threshold, it depends on the base station to realize that the period occupied by the configured CSI-RS is as close as possible to the period #A.
  • the offset value offset1 between the period occupied by CSI-RS and period #A may be between the first character of the period occupied by CSI-RS and the first or last character of period #A.
  • the offset value between the interval, or the offset value between the last character of the period occupied by the CSI-RS and the first or last character of the period #A, is not limited in this application.
  • the first time period may be within the duration of the first DRX cycle, or may also be outside the first DRX cycle.
  • the first time period associated with the first energy saving signal may be directly configured.
  • the first time period is associated with the time period #A occupied by the first energy-saving signal.
  • the network device and the terminal device can respectively determine the first time period according to the sending timing of the first energy-saving signal, and the network device sends the CSI-RS in the first time period,
  • the terminal device can perform RRM measurement on the CSI-RS in the first period.
  • the first time period in this embodiment and the time period #A occupied by the first energy-saving signal can be correlated with each other, and the terminal equipment and the network equipment can be related to each other according to the time period of the time period #A.
  • the domain position can determine the time domain position of the first period, and then the CSI-RS is transmitted/measured in the first period.
  • the first time period may be configured by the network through signaling, or may be specified by a protocol or system.
  • the unit of the first time period may be any one of a symbol, a slot, a subframe, a frame, a microsecond, a millisecond (ms), and a second.
  • the first time period when configured by the network, it can be configured through RRC signaling or MAC CE signaling.
  • the duration of the first period may be less than or equal to the second duration threshold.
  • the time for the terminal device to maintain the active state due to the execution of the measurement can be limited, so that the power consumption of the terminal device can be saved.
  • the duration of the first period may be the duration of the DRX cycle.
  • FIG. 10 shows a schematic diagram of another example of the first time period setting method.
  • the length of the first period may be equal to the length of the duration of the first DRX cycle.
  • the first period in order to enable the terminal device to perform RRM measurement immediately after detecting the first energy-saving signal, and to reduce the wake-up time of the terminal device, the first period can be set close to period #A.
  • the first period may start from the first symbol or the last symbol of period #A.
  • the configuration mode of CSI-RS in mode B is different from the configuration mode of CSI-RS in mode A.
  • the base station may independently configure the periodic CSI-RS regardless of how the first energy-saving signal is configured, and only need to ensure that the CSI-RS just appears in the first period for the terminal device to perform RRM measurement.
  • step 340 the terminal device sends the RRM measurement result to the network device.
  • the network device receives the RRM measurement result sent by the terminal device.
  • the terminal device After the terminal device completes the CSI-RS measurement, it can report the RRM measurement result to the network device in time, so that the network device can perform cell selection/reselection/handover operations of the terminal device based on the measurement result.
  • the embodiment of the application determines the associated first time period according to the transmission timing of the first energy-saving signal, the network device transmits the CSI-RS in the first time period, and the terminal device can perform the CSI-RS in the first time period.
  • the RRM measurement can ensure that sufficient RRM measurement opportunities are provided to the terminal equipment, ensure the accuracy of the RRM measurement, and avoid the impact of the introduction of the concept of energy-saving signals on the terminal mobility RRM measurement.
  • the present application also provides a communication method 400, which can provide network equipment and terminal equipment with the possibility of not transmitting/measurement of CSI-RS in the DRX cycle, thereby helping to save power consumption of the terminal equipment and network equipment.
  • FIG. 11 is a schematic flowchart of a communication method 400 according to an embodiment of the present application.
  • the method 400 shown in FIG. 11 includes step 410 to step 420.
  • the terminal device receives instruction information sent by the network device, the instruction information includes first instruction information and/or second instruction information, and the first instruction information is used to instruct the network device to send the CSI-RS in the first DRX cycle
  • the second indication information is used to indicate the possibility of the network device sending the CSI-RS in the second DRX cycle, and the second DRX cycle is a DRX cycle located after the first DRX cycle.
  • step 420 the terminal device determines whether to perform RRM measurement in the first DRX cycle according to the instruction information.
  • the first indication information is used to indicate the possibility of the network device sending CSI-RS in the first DRX cycle, for example, it may include indicating that the network device must send CSI-RS or possibly send CSI-RS in the first DRX cycle .
  • one or more bits in the DCI domain, or a different demodulation reference signal (DMRS) scrambling code sequence can be used to instruct the network device to send CSI-RS in the first DRX cycle or possibly Send CSI-RS.
  • DMRS demodulation reference signal
  • the second indication information is used to indicate the possibility of the network device sending CSI-RS in the second DRX cycle. For example, it may include indicating that the network device must send CSI-RS or may send CSI-RS in the second DRX cycle. . As an example, one or more bits in the DCI field may be used, or a different DMRS scrambling code sequence may be used to instruct the network device to send CSI-RS or possibly send CSI-RS in the second DRX cycle.
  • the terminal device can determine whether to perform RRM measurement in the first DRX cycle according to the indication information, that is, the terminal device can determine whether to perform RRM measurement in the first DRX cycle according to the transmission possibility of CSI-RS in the first DRX cycle and/or the CSI-RS in the second DRX cycle.
  • the transmission possibility determines whether to perform RRM measurement in the current first DRX cycle.
  • the RRM measurement may be performed in the first time period introduced in the foregoing embodiment, which will not be repeated in this application.
  • the embodiment of the present application can determine whether to perform RRM measurement in the first DRX cycle according to the instruction information, so that the terminal device can measure CSI-RS more flexibly.
  • the terminal device can decide whether to perform RRM measurement in the current first DRX according to the instruction information. For example, it may be determined according to the instruction information that RRM measurement is not to be performed in the first DRX cycle, thereby helping to save energy consumption of the terminal device.
  • the following describes how the terminal device in step 420 determines whether to perform RRM measurement in the first DRX cycle according to the instruction information according to the different content included in the instruction information.
  • the terminal device determines whether to perform RRM measurement in the first DRX cycle according to the indication information, including:
  • the terminal device performs RRM measurement in the first DRX cycle.
  • the first indication information indicates that the CSI-RS must be sent in the first DRX cycle. Since the terminal device is not sure whether the CSI-RS must exist in the next DRX cycle, the terminal device can perform RRM measurement in the first DRX cycle.
  • the terminal device may or may not perform RRM measurement in the first DRX cycle.
  • the terminal device determines whether to perform RRM measurement in the first DRX cycle according to the indication information, including:
  • the terminal device does not perform RRM measurement in the first DRX cycle
  • the terminal device performs RRM measurement in the first DRX cycle.
  • the second indication information indicates that the network device must send CSI-RS in the second DRX cycle, it must be able to perform RRM measurement in the second DRX cycle. In this case, the terminal device may not perform RRM measurement in the first DRX cycle. This can save power consumption.
  • the terminal device If the second indication information indicates that the network device may send CSI-RS in the second DRX cycle, the terminal device is not sure whether it can perform RRM measurement in the second DRX cycle. To ensure that there are enough measurement samples, the terminal device is in the first DRX cycle RRM measurement is performed inside.
  • the method 400 further includes:
  • the terminal device determines whether to detect the PDCCH in the first DRX cycle according to the receiving situation of the energy-saving signal;
  • step 420 the terminal device determines whether to perform RRM measurement in the first DRX cycle according to the indication information, including:
  • the terminal device determines whether to perform RRM measurement in the first DRX cycle according to whether the PDCCH is detected in the first DRX cycle and the indication information.
  • the terminal device determines whether to perform RRM measurement in the first DRX cycle according to whether the PDCCH is detected in the first DRX cycle and the indication information, specifically, according to the indication information
  • the content included can be divided into the following situations:
  • the terminal device determines whether to perform RRM measurement in the first DRX cycle according to whether the PDCCH is detected in the first DRX cycle and the indication information, including:
  • the terminal device If the first indication information indicates that the network device may send CSI-RS in the first DRX cycle, and the terminal device detects the PDCCH in the first DRX cycle, the terminal device performs RRM measurement in the first DRX cycle;
  • the terminal device does not perform RRM measurement in the first DRX cycle.
  • the terminal device when the terminal device detects the PDCCH in the first DRX cycle, the terminal device must enter the active state. At this time, since the terminal device must enter the active state, the network device indicated by the previous first indication information is in the first DRX cycle It is possible that sending CSI-RS becomes determined to send CSI-RS. It can be understood that when the network device determines that the terminal device detects the PDCCH in the first DRX cycle, the network device determines to send the CSI-RS in the first DRX cycle. Regardless of the indication of the first indication message. Therefore, the terminal device can also perform RRM measurement in the first DRX cycle.
  • the terminal device When the terminal device does not detect the PDCCH in the first DRX cycle, the terminal device does not start the duration timer and may enter an inactive state. At this time, the network device may only send CSI-RS in the first DRX cycle. For example, at this time, when the first indication information is represented by 1 bit, and the bit is 0, it means that CSI-RS may be sent, and the network device may not send CSI-RS in the first DRX cycle, and the terminal device is not in the first DRX cycle. The RRM measurement is performed in the DRX cycle. In addition, when the bit is 1, it means that the network device must send CSI-RS in the first DRX cycle.
  • the terminal device can still be in the first DRX cycle.
  • the RRM measurement is performed in the DRX cycle.
  • the terminal device may not perform the RRM measurement in the first DRX cycle.
  • the network device determines that the terminal device detects the PDCCH in the first DRX cycle, or the first indication information indicates that the network device must send the CSI-RS in the first DRX cycle, the network device determines to send the CSI in the first DRX cycle -RS. If the network device determines that the terminal device does not detect the PDCCH in the first DRX cycle, and the first indication information indicates that the network device may send the CSI-RS in the first DRX cycle, the network device may not send the CSI-RS in the first DRX cycle.
  • the terminal device determines whether to perform RRM measurement in the first DRX cycle according to whether the PDCCH is detected in the first DRX cycle and the indication information, including:
  • the terminal device If the second indication information indicates that the network device may send CSI-RS in the second DRX cycle, and the terminal device detects the PDCCH in the first DRX cycle, the terminal device performs RRM measurement in the first DRX cycle;
  • the terminal device does not perform RRM measurement in the first DRX cycle.
  • the network device may send CSI-RS in the second DRX cycle, it cannot determine whether to send CSI-RS in the second DRX cycle. If the terminal device detects the PDCCH in the first DRX cycle, it must enter the active state. The RRM measurement can be performed in the first DRX cycle.
  • the terminal device does not detect the PDCCH in the first DRX cycle, the terminal device does not start the duration timer, and the terminal device determines whether the network device sends the CSI-RS in the first DRX cycle according to the second indication information received last time, for example, When the second indication information is represented by 1 bit, and the bit of the second indication information received last time is 0, the network device may not send CSI-RS in the first DRX cycle, and the terminal device may not be in the first DRX cycle When the bit of the second indication information received last time is 1, the terminal device determines that the network device sends the CSI-RS in the first DRX cycle, and the terminal device can perform RRM measurement in the first DRX cycle.
  • the terminal device determines whether to perform RRM measurement in the first DRX cycle according to whether the PDCCH is detected in the first DRX cycle and the indication information, including:
  • the terminal device determines that the network device may not send CSI-RS in the first DRX cycle, the terminal device does not perform RRM measurement in the first DRX cycle;
  • the terminal device determines that the network device may not send CSI-RS in the first DRX cycle, the terminal device does not perform RRM measurement in the first DRX cycle;
  • the terminal device can also perform RRM measurement in the first DRX cycle;
  • the terminal device determines that the network device sends the CSI-RS in the first DRX cycle, and the terminal device can perform RRM measurement in the first DRX cycle.
  • the terminal device may not perform RRM measurement in the first DRX cycle;
  • the first indication information indicates that the network device may send CSI-RS in the first DRX cycle
  • the second indication information indicates that the network device determines to send the CSI-RS in the second DRX cycle
  • the power saving signal is received according to the situation
  • the terminal device detects the PDCCH in the first DRX cycle
  • the terminal device determines that the network device sends the CSI-RS in the first DRX cycle, but the terminal device may not perform RRM measurement in the first DRX cycle;
  • the terminal device If the first indication information indicates that the network device determines to send the CSI-RS in the first DRX cycle, and the second indication information indicates that the network device may send the CSI-RS in the second DRX cycle, and the power-saving signal is received If the terminal device detects the PDCCH in the first DRX cycle, the terminal device can perform RRM measurement in the first DRX cycle;
  • the terminal device may not perform RRM measurement in the first DRX cycle.
  • the first indication information and the second indication information may be sent to the terminal device together, or may be sent separately.
  • the first indication information, the second indication information and the energy saving signal are sent to the terminal device together.
  • the second indication information and the energy saving signal are sent to the terminal device together.
  • the terminal device determines whether to perform RRM measurement in the first DRX cycle according to whether the PDCCH is detected in the first DRX cycle and the indication information, including:
  • the terminal device determines the possibility of the network device sending the CSI-RS in the second DRX cycle according to whether the PDCCH is detected in the first DRX cycle and the first indication information;
  • the terminal device determines whether to perform RRM measurement in the first DRX cycle according to the possibility of the network device sending the CSI-RS in the second DRX cycle.
  • the possibility of the network device sending the CSI-RS in the second DRX cycle can be determined according to whether the PDCCH and the first indication information are detected in the first DRX cycle.
  • the possibility of the network device transmitting CSI-RS in the second DRX cycle may be determined according to the following protocol provisions:
  • the terminal device If the first indication information indicates that the network device may send CSI-RS in the first DRX cycle, and the terminal device detects the PDCCH in the first DRX cycle, at this time, the terminal device must enter activation because it needs to detect the PDCCH in the first DRX cycle Status, so that the network device indicated by the first indication information may send CSI-RS in the first DRX cycle becomes determined to send CSI-RS, then the terminal device determines that the network device may send CSI-RS in the second DRX cycle;
  • the terminal device does not need to detect the PDCCH in the first DRX cycle.
  • a network device indicated by the indication information may send CSI-RS in the first DRX cycle, indicating that the network device may not send CSI-RS, and the terminal device determines that the network device must send CSI-RS in the second DRX cycle;
  • the terminal device determines that the network device may send the CSI-RS in the second DRX cycle.
  • the terminal device determines whether to perform RRM measurement in the first DRX cycle according to the possibility of the network device sending CSI-RS in the second DRX cycle, which may include the following manners:
  • the network device may send CSI-RS in the second DRX cycle, and it is determined that the terminal device detects the PDCCH in the first DRX cycle, the terminal device performs RRM measurement in the first DRX cycle;
  • the network device may send a CSI-RS in the first DRX cycle, and it is determined that the terminal device does not detect the PDCCH in the first DRX cycle, the terminal device does not perform RRM measurement in the first DRX cycle.
  • the embodiment of the application can indicate whether the network device transmits CSI-RS in the first DRX cycle and/or the second DRX cycle through the indication information, and determine whether it is in the first DRX cycle according to the indication information (and the specific indication in combination with the energy-saving signal)
  • Performing RRM measurement makes the measurement of CSI-RS by the terminal device more flexible, and the terminal device can decide whether to perform RRM measurement in the current first DRX according to the instruction information, which is beneficial to saving energy consumption of the terminal device.
  • the present application also provides a communication method 500, which can provide network equipment and terminal equipment with the possibility of not transmitting/measurement of CSI-RS during the DRX cycle, thereby helping to save power consumption of the terminal equipment and network equipment.
  • FIG. 12 is a schematic flowchart of a communication method 500 according to an embodiment of the present application.
  • the method 500 shown in FIG. 12 includes step 510 to step 530.
  • Step 510 The terminal device determines whether to detect the PDCCH in N DRX cycles according to the receiving situation of the energy-saving signal, where N is an integer greater than 1.
  • Step 520 The terminal device receives indication information, where the indication information is used to indicate whether the network device transmits CSI-RS in the N DRX cycles.
  • step 530 the terminal device determines whether to perform RRM measurement according to the receiving situation of the energy saving signal and the instruction information.
  • the terminal device may determine, according to the receiving situation of the energy-saving signal, that no PDCCH is detected for N DRX cycles, or all PDCCH is detected, or part of PDCCH is detected, and part of PDCCH is not detected.
  • the indication information may be used to indicate whether the network device transmits CSI-RS in the N DRX cycles. For example, it may indicate whether to transmit CSI-RS in each DRX cycle of the N DRX cycles, or not to transmit CSI-RS at all. RS, or partly sent, partly not sent.
  • the bit “1" can be used to indicate that the CSI-RS is sent in the DRX cycle, and the bit “0" can be used to indicate that the CSI-RS is not to be sent in the DRX cycle.
  • a configuration consisting of N bits can be used The bit string indicates whether the network device transmits CSI-RS in N DRX cycles.
  • the value of N can be 5, and the bit string "10101" indicates that the indicated network device in the first, third, and fifth cycles sends CSI-RS, and the second and fourth cycle network devices do not send CSI-RS.
  • the terminal device may determine whether to perform RRM measurement in the N DRX cycles according to the receiving situation of the energy saving signal and the indication information. For example, it can be determined in which period to perform RRM measurement and which period to not perform RRM measurement, so that the power consumption of the terminal device can be saved on the premise of ensuring measurement accuracy.
  • the processing unit 1110 in the communication device 1100 shown in FIG. 13 may perform step 220 in FIG. 4, and the transceiving unit 1120 may perform steps 230 and 240 in FIG.
  • the processing unit 1310 in the communication device 1300 shown in FIG. 15 may perform step 210 in FIG. 4, and the transceiving unit 1320 may perform steps 230 and 240 in FIG. 4.
  • FIG. 13 is a schematic diagram of a communication device according to an embodiment of the present application.
  • the communication device 1100 shown in FIG. 13 includes a processing unit 1110 and a transceiver unit 1120.
  • the processing unit 1110 is configured to determine not to detect the PDCCH in the first DRX cycle according to the receiving situation of the first energy saving signal;
  • the transceiver unit 1120 is configured to perform RRM measurement on the CSI-RS sent by the network device in the first period of the first DRX cycle.
  • the transceiver unit 1120 may also be used to receive the first energy saving signal.
  • the first period includes part or all of the duration of the first DRX cycle.
  • the first period includes part or all of the non-duration time of the first DRX cycle.
  • the processing unit 1110 is configured to determine the first time period according to the receiving timing of the first energy saving signal
  • the transceiver unit 1120 is configured to perform RRM measurement on the CSI-RS sent by the network device in the first period.
  • the offset value between the period occupied by the CSI-RS and the period occupied by the first energy saving signal is less than or equal to a first duration threshold, and the period occupied by the CSI-RS is located in the first period. Within time.
  • the duration of the first period is less than or equal to the second duration threshold.
  • the above-mentioned communication device 1100 may be a terminal device 70, in which the function of the processing unit may be realized by the processor 702 in the terminal device, and the function of the transceiver unit may be controlled by the transceiver 701 of the terminal device.
  • the circuit is implemented together with the antenna. The following describes the structure of the terminal device of the embodiment of the present application in conjunction with FIG. 14.
  • FIG. 14 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • the terminal device can be applied to the system shown in FIG. 1 to perform the functions of the terminal device in the foregoing method embodiment.
  • FIG. 14 only shows the main components of the terminal device.
  • the terminal device 70 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the entire terminal device, execute the software program, and process the data of the software program, for example, to support the terminal device to perform the actions described in the above method embodiment.
  • the memory is mainly used to store software programs and data.
  • the control circuit is mainly used for the conversion of baseband signals and radio frequency signals and the processing of radio frequency signals.
  • the control circuit and the antenna together can also be called a transceiver, which is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and then sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 14 only shows one memory and one processor. In an actual terminal device, there may be multiple processors and multiple memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in the embodiment of the present application.
  • the processor may include a baseband processor and a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data.
  • the central processing unit is mainly used to control the entire terminal device and execute Software program, processing the data of the software program.
  • the processor in FIG. 14 can integrate the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit can also be independent processors and are interconnected by technologies such as buses.
  • the terminal device may include multiple baseband processors to adapt to different network standards, the terminal device may include multiple central processors to enhance its processing capabilities, and various components of the terminal device may be connected through various buses.
  • the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and communication data can be built in the processor, or can be stored in the storage unit in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • FIG. 15 is a schematic diagram of a communication device according to another embodiment of the present application.
  • the communication device 1300 shown in FIG. 15 includes a processing unit 1310 and a transceiver unit 1320.
  • the processing unit 1310 is configured to determine that the terminal device does not detect the PDCCH in the first DRX cycle
  • the transceiver unit 1320 is configured to send a CSI-RS to the terminal device in a first period of the first DRX cycle, where the CSI-RS is used for the terminal device to perform RRM measurement.
  • the first period includes part or all of the duration of the first DRX cycle.
  • the first period includes part or all of the non-duration time of the first DRX cycle.
  • the processing unit 1310 is configured to determine the first time period according to the sending timing of the first energy saving signal
  • the transceiver unit 1310 is configured to send a CSI-RS to the terminal device in the first time period, where the CSI-RS is used for the terminal device to perform RRM measurement.
  • the offset value between the period occupied by the CSI-RS and the period occupied by the first energy saving signal is less than or equal to a first duration threshold, and the period occupied by the CSI-RS is located in the first period. Within time.
  • the duration of the first period is less than or equal to the second duration threshold.
  • the aforementioned communication device 1300 may be a network device, such as the base station 80 below, where the function of the processing unit may be implemented by the processor 8022 in the base station, and the function of the transceiver unit may be implemented by the RRU of the base station 80. 801 implementation.
  • the following describes the structure of the network device of the embodiment of the present application in conjunction with FIG. 16.
  • FIG. 16 is a schematic structural diagram of a network device according to an embodiment of the present application, for example, it may be a schematic structural diagram of a base station.
  • the base station 80 may include one or more radio frequency units, such as a remote radio unit (RRU) 801 and one or more baseband units (BBU) (also referred to as digital units, digital units, DU) 802.
  • RRU 801 may be called a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., and it may include at least one antenna 8011 and a radio frequency unit 8012.
  • the RRU 801 part is mainly used for receiving and sending of radio frequency signals and conversion of radio frequency signals and baseband signals, for example, for sending the signaling messages described in the foregoing embodiments to terminal equipment.
  • the 802 part of the BBU is mainly used to perform baseband processing and control the base station.
  • the RRU 801 and the BBU 802 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the BBU 802 is the control center of the base station, and may also be called a processing unit, which is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, and spreading.
  • the BBU (processing unit) 802 may be used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment.
  • the BBU 802 may be composed of one or more single boards, and multiple single boards may jointly support a radio access network with a single access indication (such as an LTE network), and may also support different access standards. Wireless access network (such as LTE network, 5G network or other networks).
  • the BBU 802 further includes a memory 8021 and a processor 8022, and the memory 8021 is used to store necessary instructions and data.
  • the memory 8021 stores the corresponding relationship between the codebook index and the precoding matrix in the foregoing embodiment.
  • the processor 8022 is used to control the base station to perform necessary actions, for example, to control the base station to execute the operation procedure of the network device in the foregoing method embodiment.
  • the memory 8021 and the processor 8022 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • the present application also provides a communication system, which includes the aforementioned one or more network devices, and, one or more terminal devices.
  • the processor in the embodiment of the present application may be a central processing unit (Central Processing Unit, CPU), and the processor may also be other general-purpose processors, digital signal processors (digital signal processors, DSP), and dedicated integration Circuit (application specific integrated circuit, ASIC), ready-made programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electronic Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • Access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory Take memory (synchlink DRAM, SLDRAM) and direct memory bus random access memory (direct rambus RAM, DR RAM).
  • the present application also provides a computer program product, the computer program product includes: computer program code, when the computer program code runs on a computer, the computer executes Figures 4, 8, 11 , The method of any one of the embodiments shown in 12.
  • the present application also provides a computer-readable medium that stores program code, and when the program code runs on a computer, the computer executes Figures 4, 8, 11 , The method of any one of the embodiments shown in 12.
  • the present application also provides a system, which includes the aforementioned one or more terminal devices and one or more network devices.
  • the foregoing embodiments can be implemented in whole or in part by software, hardware, firmware or any other combination.
  • the above-mentioned embodiments may be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions or computer programs.
  • the computer instructions or computer programs are loaded or executed on a computer, the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center that includes one or more sets of available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium.
  • the semiconductor medium may be a solid state drive.
  • "indication” may include direct indication and indirect indication, and may also include explicit indication and implicit indication.
  • the information indicated by a certain piece of information (configuration information as described below) is called information to be instructed.
  • information to be instructed In the specific implementation process, there are many ways to indicate the information to be indicated. For example, but not limited to, you can directly indicate the information to be instructed.
  • Information such as the information to be indicated or the index of the information to be indicated.
  • the information to be indicated can also be indicated indirectly by indicating other information, where there is an association relationship between the other information and the information to be indicated. It is also possible to indicate only a part of the information to be indicated, and other parts of the information to be indicated are known or agreed in advance. For example, it is also possible to realize the indication of specific information by means of the pre-arranged order (for example, stipulated in the agreement) of various information, thereby reducing the indication overhead to a certain extent.
  • DRX discontinuous reception
  • DCI downlink control information
  • MAC CE medium access control control element
  • RRC radio resource control
  • PDCCH physical downlink control
  • CSI-RS channel state information reference signal
  • SSB synchronization signal block
  • the "communication protocol” involved in the embodiments of the present application may refer to a standard protocol in the communication field, for example, may include the LTE protocol, the NR protocol, and related protocols applied to future communication systems, which are not limited in this application.
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not correspond to the implementation process of the embodiments of the present application. Constitute any limitation.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法和通信装置,所述方法包括:根据第一节能信号的接收情况,确定在第一DRX周期内不检测PDCCH;在所述第一DRX周期内的第一时段对网络设备发送的CSI-RS进行RRM测量。本申请能够保证给终端设备提供足够的RRM测量机会,保证RRM测量的准确性,避免由于引入节能信号这一概念而对终端移动性RRM测量造成影响。

Description

一种通信方法以及通信装置
本申请要求于2019年04月30日提交中国专利局、申请号为201910365288.5、申请名称为“一种通信方法以及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法以及通信装置。
背景技术
在终端和基站的通信过程中,为了满足通信系统对终端移动性的要求,终端需要对服务小区以及邻小区进行无线资源管理(radio resource management,RRM)测量,以使终端在进入新的小区时能够及时的进行小区选择/重选/切换。
在第五代(5th generation,5G)通信系统的新无线接入技术(new radio access technology,NR)中,无线资源控制连接态(radio resource control connected,RRC_connected)的终端可能会被配置非连续接收(discontinuous reception,DRX),目的是为了使终端每隔一定的周期进入持续时间(on duration)去收发数据,而在其他时间可以进入睡眠状态,不去监听物理下行控制信道(physical downlink control channel,PDCCH),从而节省终端能耗。
在NR中,出于进一步节省终端能耗的考虑,有望引入节能信号(power saving signal)这一新的概念。网络设备可以为处于DRX状态的终端配置节能信号,用于指示终端在接下来的一个或者多个DRX周期是否需要唤醒去监听PDCCH。由于节能信号可能指示整个DRX周期都进入睡眠状态,由此会造成终端的激活时间(active time)减少,如果按照现有的RRM测量机制,会造成RRM测量的机会减少,降低了RRM测量的准确度。
基于上述分析,在引入了节能信号这一概念的前提下,亟需提供一种新的RRM测量机制。
发明内容
本申请提供一种通信方法以及通信装置,能够保证给终端设备提供足够的RRM测量机会,保证RRM测量的准确性,避免由于引入节能信号这一概念而对终端移动性RRM测量造成影响。
第一方面,提供了一种通信方法,该方法可以由终端设备执行,或者,也可以由配置于终端设备中的芯片或电路执行,本申请对此不作限定。
具体地,该方法包括:根据第一节能信号的接收情况,确定在第一DRX周期内不检测PDCCH;在第一DRX周期内的第一时段对网络设备发送的CSI-RS进行RRM测量。
第二方面,提供了一种通信方法,该方法可以由网络设备执行,或者,也可以由配置 于网络设备中的芯片或电路执行,本申请对此不作限定。
具体地,该方法包括:确定终端设备在第一DRX周期内不检测PDCCH;在第一DRX周期内的第一时段向终端设备发送CSI-RS,该CSI-RS用于所述终端设备进行RRM测量。
具体地,第一DRX周期内包括第一时段,在该第一时段内,网络设备向终端设备发送用作RRM测量的至少一个CSI-RS,而终端设备在该第一时段内可以对该CSI-RS进行测量。该第一时段可以为系统或者协议规定,也可以由网络设备和终端设备之间进行约定。例如,网络设备可以通过半静态信令或者动态信令对终端设备进行配置。
应理解,本申请实施例中的“协议”可以是指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
可以理解的,若终端设备在该第一时段之前为非激活状态,则终端设备可以唤醒进入激活状态对该CSI-RS进行测量。
可选地,终端设备在该第一时段对该CSI-RS进行RRM测量完成以后,终端设备可以进入非激活状态,从而节省终端设备的能耗。
本申请在第一DRX周期内设置第一时段,即使第一DRX周期被指示进入睡眠状态,网络设备也会在该第一时段内发送CSI-RS,终端设备也会假设在第一时段内存在CSI-RS,并且终端设备可以在该第一时段内对该CSI-RS进行RRM测量,从而能够保证给终端设备提供足够的RRM测量机会,保证RRM测量的准确性,避免由于引入节能信号这一概念而对终端移动性RRM测量造成影响。
结合第一方面或第二方面,在某些实现方式中,第一时段包括所述第一DRX周期的持续时间的部分或者全部。
结合第一方面或第二方面,在某些实现方式中,第一时段包括所述第一DRX周期的非持续时间的部分或者全部。
可选地,网络设备可以在该第一时段内按照网络设备配置好的发送周期发送CSI-RS。
可选地,该第一DRX周期可以是第一节能信号所指示的一个或者多个DRX周期中的任意一个,例如,第一个或者最后一个,本申请对此并不限定。
可选地,该第一时段可以为第一DRX周期内的任意时段,该第一时段的长度可以为小于或者等于第一DRX周期的长度并且大于或者等于至少一个CSI-RS所占用的时段的任意长度。
例如,该第一时段可以为第一DRX周期内的持续时间。
再例如,该第一时段的长度可以等于第一DRX周期内的持续时间的长度。
再例如,该第一时段的长度可以等于第一DRX周期的长度。
再例如,当第一DRX周期进入激活状态时,该第一时段的长度可以等于激活时间的长度。
第三方面,提供一种通信方法,该方法可以由终端设备执行,或者,也可以由配置于终端设备中的芯片或电路执行,本申请对此不作限定。
具体地,该方法包括:根据第一节能信号的接收时机确定第一时段;在第一时段对网络设备发送的CSI-RS进行RRM测量。
第四方面,提供一种通信方法,该方法可以由网络设备执行,或者,也可以由配置于网络设备中的芯片或电路执行,本申请对此不作限定。
具体地,该方法包括:根据第一节能信号的发送时机确定第一时段;在第一时段向所述终端设备发送CSI-RS,所述CSI-RS用于所述终端设备进行RRM测量。
在本实施例中,网络设备可以预先配置时段#A来传输第一节能信号(该时段#A也可以被称为被第一节能信号占用的时段),终端设备可以根据在该时段#A对第一节能信号的接收情况来确定在时段#A之后的至少一个DRX周期内是否检测PDCCH。
在本实施例中,网络设备和终端设备可以分别通过第一节能信号的发送时机确定第一时段,并且网络设备在该第一时段发送CSI-RS,而终端设备可以在该第一时段对CSI-RS进行RRM测量。
本实施例根据第一节能信号的发送时机确定相关联的第一时段,网络设备可以在该第一时段内发送CSI-RS,并且终端设备可以在该第一时段内对该CSI-RS进行RRM测量,从而能够保证给终端设备提供足够的RRM测量机会,保证RRM测量的准确性,避免由于引入节能信号这一概念而对终端移动性RRM测量造成影响。
结合第三方面或第四方面,在某些实现方式中,该CSI-RS占用的时段与第一节能信号占用的时段之间的偏移值小于或者等于第一时长阈值,该CSI-RS占用的时段位于所述第一时段内。
具体地,终端设备为了检测第一节能信号,可能要在时段#A处从睡眠状态唤醒,该CSI-RS所占用的时段应当尽量靠近时段#A,这样可以在终端设备检测完第一节能信号之后接着进行RRM测量,而不需要单独为了进行RRM测量而从睡眠状态唤醒。此外,设置CSI-RS所占用的时段尽量靠近时段#A,也可以减少终端设备维持唤醒的时间,从而可以节省终端设备的能耗。
可选地,CSI-RS所占用的时段与时段#A之间的偏移值可以是CSI-RS所占用的时段的第一个字符与时段#A的第一个字符或最后一个字符之间的偏移值,或者也可以是CSI-RS所占用的时段的最后一个字符与时段#A的第一个字符或最后一个字符之间的偏移值,本申请对此并不限定。
结合第三方面或第四方面,在某些实现方式中,第一时段的时长可以小于或者等于第二时长阈值。终端设备因为执行RRM测量而维持激活状态的时间可以被限制,从而能够节约终端设备的功耗。
可选地,第一时段的时长可以为DRX周期持续时间的长度。
第五方面,提供一种通信方法,该方法包括:终端设备接收网络设备发送的指示信息,指示信息包括第一指示信息和/或第二指示信息,第一指示信息用于指示网络设备在第一DRX周期内发送CSI-RS的可能性,第二指示信息用于指示网络设备在第二DRX周期内发送CSI-RS的可能性,第二DRX周期是位于所述第一DRX周期之后的DRX周期;终端设备根据指示信息确定是否在所述第一DRX周期内进行RRM测量。
本实施例能够根据指示信息确定是否在第一DRX周期内进行RRM测量,使得终端设备对CSI-RS的测量更加灵活,终端设备可以根据指示信息决策在当前的第一DRX是否进行RRM测量,例如,可以根据指示信息确定在第一DRX周期内不进行RRM测量,从而有利于节约终端设备的能耗。
可选地,第一指示信息用于指示网络设备在第一DRX周期内可能发送CSI-RS或者一定发送CSI-RS。
可选地,第二指示信息用于指示网络设备在第二DRX周期内可能发送CSI-RS或者一定发送CSI-RS。
结合第五方面,在某些实现方式中,当指示信息包括第一指示信息时,终端设备根据指示信息确定是否在第一DRX周期内进行RRM测量,包括:若第一指示信息指示所述网络设备在所述第一DRX周期一定发送CSI-RS,则终端设备在第一DRX周期内进行RRM测量。
具体地,第一指示信息指示在第一DRX周期一定发送CSI-RS,由于终端设备不确定在下一个DRX周期是否会一定存在CSI-RS,则终端设备可以在第一DRX周期内进行RRM测量。若第一指示信息指示网络设备在第一DRX周期可能发送CSI-RS,则终端设备在第一DRX周期内可以进行RRM测量,也可以不进行RRM测量。
结合第五方面,在某些实现方式中,当指示信息包括第二指示信息时,终端设备根据指示信息确定是否在第一DRX周期内进行RRM测量,包括:若第二指示信息指示网络设备在第二DRX周期一定发送CSI-RS,则终端设备不在第一DRX周期内进行RRM测量;若第二指示信息指示网络设备在第二DRX周期可能发送CSI-RS,则终端设备在第一DRX周期内进行RRM测量。
具体地,若第二指示信息指示网络设备在第二DRX周期一定发送CSI-RS,则必然可以在第二DRX周期进行RRM测量,此时终端设备可以不在第一DRX周期内进行RRM测量,从而能够节约功耗。若第二指示信息指示网络设备在第二DRX周期可能发送CSI-RS,终端设备不确定是否可以在第二DRX周期进行RRM测量,为了保证具有足够的测量样本,则终端设备在第一DRX周期内进行RRM测量。
结合第五方面,在某些实现方式中,该方法还包括:终端设备根据节能信号的接收情况,确定在第一DRX周期是否检测PDCCH;以及终端设备根据指示信息确定是否在所述第一DRX周期内进行RRM测量,包括:所述终端设备根据在第一DRX周期是否检测PDCCH和所述指示信息确定是否在所述第一DRX周期内进行RRM测量。
结合第五方面,在某些实现方式中,当指示信息包括第一指示信息时,终端设备根据在第一DRX周期是否检测PDCCH和指示信息确定是否在第一DRX周期内进行RRM测量,包括:若第一指示信息指示网络设备在第一DRX周期可能发送CSI-RS,且终端设备在第一DRX周期检测PDCCH,则终端设备在第一DRX周期内进行RRM测量;
若第一指示信息指示网络设备在第一DRX周期可能发送CSI-RS,且终端设备在所述第一DRX周期不检测PDCCH,则终端设备不在第一DRX周期内进行RRM测量。
具体地,当终端设备在第一DRX周期检测PDCCH,则终端设备必然要进入激活状态,此时,由于终端设备必然要进入激活状态,所以之前第一指示信息指示的网络设备在第一DRX周期可能发送CSI-RS变成确定发送CSI-RS,可以理解的是,当网络设备确定终端设备在第一DRX周期检测PDCCH时,则网络设备在第一DRX周期确定发送CSI-RS,此时可以不管第一指示信息的指示。所以,终端设备也可以在第一DRX周期内进行RRM测量。
而当终端设备在第一DRX周期不检测PDCCH,则终端设备不开启持续时间定时器,可能要进入非激活状态,此时网络设备在第一DRX周期仅仅是可能发送CSI-RS。例如,此时,当第一指示信息用1个比特表示,且该比特为0时表示可能发送CSI-RS,则网络 设备在第一DRX周期可以不发送CSI-RS,则终端设备不在第一DRX周期内进行RRM测量。另外,当该比特为1时表示网络设备在第一DRX周期一定发送CSI-RS,此时即使终端设备在第一DRX周期不检测PDCCH,终端设备也可以在第一DRX周期内进行RRM测量,当然,终端设备也可以不在第一DRX周期内进行RRM测量。
可以理解的是,若网络设备确定终端设备在第一DRX周期检测PDCCH,或者第一指示信息指示网络设备在第一DRX周期一定发送CSI-RS时,则网络设备在第一DRX周期确定发送CSI-RS。若网络设备确定终端设备在第一DRX周期不检测PDCCH,且第一指示信息指示网络设备在第一DRX周期可能发送CSI-RS时,则网络设备在第一DRX周期可以不发送CSI-RS。
结合第五方面,在某些实现方式中,当指示信息包括第二指示信息时,终端设备根据在第一DRX周期是否检测PDCCH和指示信息确定是否在第一DRX周期内进行RRM测量,包括:若第二指示信息指示网络设备在第二DRX周期可能发送CSI-RS,且终端设备在第一DRX检测PDCCH,则终端设备在第一DRX周期内进行RRM测量;
若第二指示信息指示网络设备在第二DRX周期可能发送CSI-RS,且终端设备在第一DRX不检测PDCCH,则终端设备不在第一DRX周期内进行RRM测量。
结合第五方面,在某些实现方式中,当指示信息包括第一指示信息和第二指示信息时,终端设备根据在第一DRX周期是否检测PDCCH和指示信息确定是否在第一DRX周期内进行RRM测量,包括:
若第一指示信息指示网络设备在第一DRX周期可能发送CSI-RS,且第二指示信息指示网络设备在第二DRX周期可能发送CSI-RS,且终端设备在第一DRX周期不检测PDCCH,则终端设备确定网络设备在第一DRX周期内不发送CSI-RS,则终端设备不在第一DRX周期内进行RRM测量;
若第一指示信息指示网络设备在第一DRX周期可能发送CSI-RS,且第二指示信息指示网络设备在第二DRX周期确定发送CSI-RS,且终端设备在第一DRX周期不检测PDCCH,则终端设备确定网络设备在第一DRX周期内不发送CSI-RS,则终端设备不在第一DRX周期内进行RRM测量;
若第一指示信息指示网络设备在第一DRX周期确定发送CSI-RS,且第二指示信息指示网络设备在第二DRX周期可能发送CSI-RS,且终端设备在第一DRX周期不检测PDCCH,则终端设备也可以在第一DRX周期内进行RRM测量;
若第一指示信息指示网络设备在第一DRX周期可能发送CSI-RS,且第二指示信息指示网络设备在所述第二DRX周期可能发送CSI-RS,且根据节能信号的接收情况确定所述终端设备在第一DRX周期唤醒,则终端设备确定网络设备在第一DRX周期内发送CSI-RS,则终端设备可以在第一DRX周期内进行RRM测量。
若第一指示信息指示网络设备在第一DRX周期确定发送CSI-RS,且第二指示信息指示网络设备在所述第二DRX周期确定发送CSI-RS,且根据节能信号的接收情况确定所述终端设备在第一DRX周期不检测PDCCH,则终端设备可以不在第一DRX周期内进行RRM测量;
若第一指示信息指示网络设备在第一DRX周期可能发送CSI-RS,且第二指示信息指示网络设备在所述第二DRX周期确定发送CSI-RS,且根据节能信号的接收情况确定所述 终端设备在第一DRX周期检测PDCCH,则终端设备确定网络设备在第一DRX周期内发送CSI-RS,则终端设备也可以不在第一DRX周期内进行RRM测量,
若第一指示信息指示网络设备在第一DRX周期确定发送CSI-RS,且第二指示信息指示网络设备在所述第二DRX周期可能发送CSI-RS,且根据节能信号的接收情况确定所述终端设备在第一DRX周期检测PDCCH,则终端设备可以在第一DRX周期内进行RRM测量;
若第一指示信息指示网络设备在第一DRX周期确定发送CSI-RS,且第二指示信息指示网络设备在所述第二DRX周期确定发送CSI-RS,且根据节能信号的接收情况确定所述终端设备在第一DRX周期检测PDCCH,则终端设备可以不在第一DRX周期内进行RRM测量。
可选地,该第一指示信息和第二指示信息可以一起发送给终端设备,也可以分开单独发送。
例如,该第一指示信息、第二指示信息和节能信号一同发送给终端设备。
再例如,第二指示信息和节能信号一同发送给终端设备。
结合第五方面,在某些实现方式中,当指示信息包括第一指示信息时,终端设备根据在第一DRX周期是否检测PDCCH和指示信息确定是否在所述第一DRX周期内进行RRM测量,包括:终端设备根据在第一DRX周期是否检测PDCCH和第一指示信息,确定网络设备在第二DRX周期内发送CSI-RS的可能性;终端设备根据网络设备在第二DRX周期内发送CSI-RS的可能性,确定是否在第一DRX周期内进行RRM测量。
结合第五方面,在某些实现方式中,终端设备根据在第一DRX周期是否检测PDCCH和第一指示信息,确定网络设备在第二DRX周期内发送CSI-RS的可能性,包括:若第一指示信息指示网络设备在第一DRX周期可能发送CSI-RS,且终端设备在第一DRX周期检测PDCCH,则终端设备确定网络设备在第二DRX周期内可能发送CSI-RS;
若第一指示信息指示网络设备在第一DRX周期可能发送CSI-RS,且终端设备在第一DRX周期不检测PDCCH,则终端设备确定网络设备在第二DRX周期内一定发送CSI-RS;若第一指示信息指示网络设备在第一DRX周期一定发送CSI-RS,则终端设备确定网络设备在第二DRX周期内可能发送CSI-RS。
结合第五方面,在某些实现方式中,终端设备根据所述网络设备在第二DRX周期内发送CSI-RS的可能性,确定是否在第一DRX周期内进行RRM测量,包括:若网络设备在第二DRX周期可能发送CSI-RS,且确定终端设备在所述第一DRX周期检测PDCCH,则终端设备在所述第一DRX周期内进行RRM测量;若网络设备在第一DRX周期可能发送CSI-RS,且确定所述终端设备在第一DRX周期不检测PDCCH,则终端设备不在第一DRX周期内进行RRM测量。
第六方面,提供一种通信装置,该装置可以是终端设备,也可以是终端设备内的芯片。该装置可以包括处理单元和收发单元。当所述装置是终端设备时,所述处理单元可以是处理器,所述收发单元可以是收发器;所述终端设备还可以包括存储单元,所述存储单元可以是存储器;所述存储单元用于存储指令,所述处理单元执行所述存储单元所存储的指令,以使所述终端设备执行第一方面或第三方面或第五方面中的方法。当所述装置是终端设备内的芯片时,所述处理单元可以是处理器,所述收发单元可以是输入/输出接口、管脚或 电路等;所述处理单元执行存储单元所存储的指令,以使所述终端设备执行第一方面或第三方面或第五方面中的方法,所述存储单元可以是所述芯片内的存储单元(例如,寄存器、缓存等),也可以是所述终端设备内的位于所述芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
第七方面,提供一种通信装置,所述装置可以是网络设备,也可以是网络设备内的芯片。所述装置可以包括处理单元和收发单元。当所述装置是网络设备时,所述处理单元可以是处理器,所述收发单元可以是收发器;所述网络设备还可以包括存储单元,所述存储单元可以是存储器;所述存储单元用于存储指令,所述处理单元执行所述存储单元所存储的指令,以使所述网络设备执行第二方面或第四方面中的方法。当所述装置是网络设备内的芯片时,所述处理单元可以是处理器,所述收发单元可以是输入/输出接口、管脚或电路等;所述处理单元执行存储单元所存储的指令,以使所述网络设备执行第二方面或第四方面中的方法,所述存储单元可以是所述芯片内的存储单元(例如,寄存器、缓存等),也可以是所述网络设备内的位于所述芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
第八方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述各方面中的方法。
需要说明的是,上述计算机程序代码可以全部或者部分存储在第一存储介质上,其中第一存储介质可以与处理器封装在一起的,也可以与处理器单独封装,本申请实施例对此不作具体限定。
第九方面,提供了一种计算机可读介质,所述计算机可读介质存储有程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述各方面中的方法。
附图说明
图1是适用于本申请实施例的通信系统的示意性。
图2是DRX周期的示意图。
图3是唤醒信号对处于DRX状态的终端进行指示的示意图。
图4是本申请提供的通信方法的一例的示意性流程图。
图5示出了第一时段的设置方式的一例的示意图。
图6示出了第一时段的设置方式的另一例的示意图。
图7示出了第一时段的设置方式的再一例的示意图。
图8是本申请提供的通信方法的另一例的示意性流程图。
图9示出了第一时段的设置方式的再一例的示意图。
图10示出了第一时段的设置方式的再一例的示意图。
图11是本申请提供的通信方法的再一例的示意性流程图。
图12是本申请提供的通信方法的再一例的示意性流程图。
图13是本申请实施例的通信设备的示意图。
图14是本申请实施例的一种终端设备的结构示意图。
图15是本申请另一实施例的通信设备的示意图。
图16是本申请实施例的一种网络设备的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(global system for mobile communications,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)通信系统或未来的新无线接入技术。
为便于理解本申请实施例,首先结合图1详细说明适用于本申请实施例的通信系统。图1示出了适用于本申请实施例的适用的通信系统的示意图。如图1所示,该通信系统100可以包括至少一个网络设备,例如图1所示的网络设备110;该通信系统100还可以包括至少一个终端设备,例如图1所示的终端设备120。网络设备110与终端设备120可通过无线链路通信。各通信设备,如网络设备110或终端设备120,可以配置多个天线,该多个天线可以包括至少一个用于发送信号的发射天线和至少一个用于接收信号的接收天线。另外,各通信设备还附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。因此,网络设备110与终端设备120可通过多天线技术通信。
应理解,该无线通信系统中的网络设备可以是任意一种具有无线收发功能的设备。该设备包括但不限于:演进型节点B(evolved NodeB,eNB或eNodeB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+CU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网(radio access network,RAN) 中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
还应理解,该无线通信系统中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。
为便于理解本申请实施例,首先对本申请中涉及到的相关技术内容作简单说明。
一、无线资源管理测量
无线资源管理(radio resource management,RRM)测量是终端对周期性的信号进行通信质量的测量,例如,测量的内容可以包括接收信号功率(reference signal receiving power,RSRP),接收信号质量(reference signal receiving quality,RSRQ)或信干噪比(signal to interference plus noise,SINR)中的至少一项。
RRM测量的目的是为了使处于无线资源控制空闲态(radio resource control idle,RRC_idle)和无线资源控制非激活态(radio resource control inactive,RRC_inactive)的终端做小区选择/重选(cell selection/reselection),以及为了使处于RRC连接态的终端做小区切换。由于RRM测量是为了满足通信系统对终端移动性的要求,以使终端在进入新的小区时能够及时的进行小区选择/重选/切换,所以RRM测量都是周期进行的。
目前用作RRM测量的参考信号主要有两种:同步信号/物理广播信道资源块(synchronization signal/physical broadcast channel block,SSB,具体为SSB中的辅同步信号(secondary synchronization signal))和信道状态信息参考信号(channel state information reference signal,CSI-RS)。SSB是小区级的信号,因此终端在RRC空闲态/非激活态/连接态都可以使用。而当前,CSI-RS只能由处于RRC连接态的终端使用,当终端处于RRC连接态时,基站会通过RRC信令配置一定的CSI-RS资源用作移动性RRM测量。在RRC连接态时,具体采用哪种信号做RRM测量(可以同时基于两种信号),是由RRC信令进行配置的。本申请实施例主要针对RRC连接态,并且主要针对基于CSI-RS的RRM测量。
二、非连续接收
一般而言,基于包的数据流通常是突发性的,在一段时间内有数据传输,但在接下来的一段较长时间内没有数据传输。因此NR中可以为终端设备配置非连续接收(discontinuous reception,DRX)处理流程,在没有数据传输的时候,可以通过使终端设备停止检测PDCCH并停止接收相应数据传输来降低功耗,从而提升电池使用时间。
网络设备可以为处于RRC连接态的终端设备配置DRX周期(DRX cycle),图2为DRX周期的示意图。DRX周期中包含一个“持续时间”(“On duration”)的时间区域,在该持续时间内,终端设备可以检测PDCCH,在该持续时间之后,为“非持续时间”(Opportunity for DRX),持续时间和非持续时间共同构成了一个完整的DRX周期。
终端设备在每一个DRX周期时间起始位置(即持续时间的起始位置)开启一个定时器,该定时器的时间长度即为持续时间的时间长度,该定时器可以称之为持续时间定时器(drx-on duration timer),终端设备在可以在该定时器的时间范围内检测PDCCH。如果终端设备在该持续时间定时器的时间范围内没有检测到PDCCH,那么定时器到期后终端设备进入睡眠状态,即终端设备在DRX周期的其余时间段内可以停止检测PDCCH,从而可以关闭接收电路,从而降低终端的功耗。如果终端设备在持续时间定时器的时间范围内检测到了PDCCH指示新的数据传输,那么终端设备就会开启DRX机制中的非激活定时器(drx-inactivity timer),若终端设备在非激活定时器的运行时间内,继续检测到了PDCCH指示新的数据传输,则终端设备会重置(restart)该非激活定时器重新开始计数。如果非激活定时器正在运行,即使本来配置的持续时间定时器超时(即on duration时间结束),终端设备依然需要继续检测PDCCH,直到非激活定时器超时。
在DRX机制中,还有其它一些定时器,例如DRX下行重传定时器(drx-retransmission timer DL)、DRX上行重传定时器(drx-retransmission timer UL)等,本申请的技术方案对该两种定时器不再进行具体描述。
当配置DRX时,终端的状态可以分为DRX激活(DRX active)态和DRX非激活(DRX non-active)态,UE处于DRX激活态的时间称为激活时间(active time)。如果上述定时器中(包括持续时间定时器、非激活定时器以及下行/上行重传定时器等)的任意一个正在运行,那么终端设备就会处于激活时间(即终端处于激活态)。在DRX机制中,如果终端设备处于激活时间,那么终端设备就需要检测PDCCH。应理解,还有其它一些情况会让终端设备处于激活时间,但本申请实施例并未过多涉及,故这里不再描述。
三、节能信号
NR中,出于进一步节省终端能耗的考虑,有望引入节能信号(power saving signal)这一新的概念。网络设备可以为处于DRX状态的终端配置节能信号,一般认为该节能信号发送在DRX周期之前,用于指示终端在接下来的一个或者多个DRX周期是否需要唤醒去监听PDCCH。该节能信号可以基于PDCCH信道,根据不同的功能可以将节能信号分为唤醒信号(wake-up signal,WUS)和/或睡眠信号(go to sleep signal,GTS)。以下是节能信号的三种配置方式:
(1)节能信号为唤醒信号,终端可以通过是否检测到该唤醒信号决定是否唤醒从而进入DRX周期的持续时间去检测PDCCH。图3是唤醒信号对处于DRX状态的终端进行指示的示意图。
如图3所示,终端在第一个DRX周期之前检测到唤醒信号,则终端可以开启持续时间定时器进入持续时间去检测PDCCH。进一步的,若终端检测到PDCCH指示新的数据传输,则可以开启非激活定时器。而在第一个DRX周期内,并且在第二个DRX周期之前,在预设的时域位置上并未检测到唤醒信号,则终端不需要在第二个DRX周期检测PDCCH,从而终端设备可以不开启持续时间定时器进入睡眠状态节省终端的功耗。
(2)节能信号为睡眠信号,终端可以通过是否检测到该睡眠信号决定是否唤醒从而进行DRX周期的持续时间去检测PDCCH。具体地,若终端设备检测到该睡眠信号,终端设备则不开启持续时间定时器从而进入睡眠状态,若终端设备未检测到该睡眠信号,则开启持续时间定时器进入持续时间去检测PDCCH。
(3)节能信号同时为唤醒信号和睡眠信号。例如,可以通过下行控制信息(downlink control information,DCI)中的一个比特指示终端唤醒进入持续时间去检测PDCCH或者指示终端不唤醒进入睡眠状态。
应理解,上述对无线资源管理测量、非连续接收、节能信号等的介绍是为了便于理解本申请的实施例,而不对本申请构成任何限定。在前述介绍的基础上,下面介绍现有技术中终端被配置非连续接收的情况下终端和基站之间进行RRM测量的机制。
现有技术中,如果一个终端被配置了DRX,并且使用的DRX周期大于80ms,那么终端只会期待在DRX周期的激活时间才会收到用作移动性RRM测量的CSI-RS,意味着在DRX的激活时间,基站必须要发送用作RRM测量的CSI-RS,而在DRX周期的睡眠时间,终端不期待CSI-RS的存在(终端不会唤醒去接收CSI-RS),所以基站可以选择发送或者不发送用作RRM测量的CSI-RS。
而当DRX周期小于或等于80ms时,不管终端处于DRX激活时间还是DRX睡眠时间,基站都要发送用作RRM测量的CSI-RS,而终端也会认为该CSI-RS一直存在,因此终端可以基于CSI-RS进行RRM测量。
随着节能信号概念的引入,如果节能信号指示DRX周期进入睡眠状态(或不检测PDCCH),终端将不会开启持续时间定时器,该周期就没有进入到激活时间,由此造成终端的激活时间减少(在引入节能信号之前,激活时间至少包括每个周期的持续时间)。如果按照现有的RRM测量机制,由于终端的激活时间减少,会造成RRM测量的机会减少,甚至整个RRM测量周期终端都得不到测量,进而造成终端做RRM测量的层1滤波(Layer1filtering)样本数减少,降低了RRM测量的准确度,对移动性影响较大。
基于上述分析,在引入了节能信号这一概念的前提下,亟需提供一种新的RRM测量机制。
本申请提供一种通信方法200,能够保证给终端提供足够的RRM测量机会,避免由于引入节能信号这一概念而对终端移动性RRM测量造成影响。下面结合图4进行介绍。
图4是本申请实施例的通信方法200的示意性流程图。图4所示的方法200包括步骤210至步骤240。
在步骤210中,网络设备确定终端设备在第一DRX周期内是否检测PDCCH。
在步骤220中,终端设备根据第一节能信号的接收情况,确定在第一DRX周期内是否检测PDCCH。
在步骤230中,网络设备在第一DRX周期内的第一时段向终端设备发送CSI-RS,该CSI-RS用于终端设备进行RRM测量。
相应地,在步骤230中,终端设备在第一DRX周期内的第一时段对网络设备发送的CSI-RS进行RRM测量。
具体地,网络设备可以先确定终端设备在第一DRX周期内是否检测PDCCH,或者说,网络设备可以先确定在第一DRX周期终端设备进入激活状态还是非激活状态,并且可以通过第一节能信号的发送情况对终端设备进行相应的指示,终端设备可以根据第一节能信号的接收情况,确定在第一DRX周期内是否检测PDCCH。
例如,可以预先配置在第一DRX周期之前的时段#A(例如,至少一个符号(symbol)或至少一个时隙(slot))来传输该第一节能信号,终端设备可以根据在该时段#A对第一 节能信号的接收情况来确定在第一DRX周期内是否检测PDCCH。
参见前文对节能信号的描述,终端设备根据第一节能信号的接收情况,确定在第一DRX周期内是否检测PDCCH,可以包括如下三种情况:
情况a:该第一节能信号为唤醒信号WUS,可以在时段#A检测该唤醒信号WUS,并且通过是否检测到该唤醒信号WUS来确定终端设备在第一DRX周期是否检测PDCCH。例如,若终端设备在时段#A检测到该唤醒信号WUS,则终端设备可以在第一DRX周期开启持续时间定时器进入持续时间去检测PDCCH。再例如,若终端设备在时段#A未检测到该唤醒信号WUS,则终端设备可以不开启持续时间定时器,不去检测PDCCH,终端设备在第一DRX周期进入非激活状态。
情况b:该第一节能信号为睡眠信号GTS,可以在时段#A检测该睡眠信号GTS,并且通过是否检测到该睡眠信号GTS来确定终端设备在第一DRX周期是否检测PDCCH。例如,若终端设备在时段#A未检测到睡眠信号GTS,则终端设备可以在第一DRX周期开启持续时间定时器进入持续时间去检测PDCCH。再例如,若终端设备在时段#A检测到该睡眠信号GTS,则终端设备可以不开启持续时间定时器,不去检测PDCCH,终端设备在第一DRX周期进入非激活状态。
情况c:该第一节能信号同时为唤醒信号WUS和睡眠信号GTS,终端设备可以在时段#A接收该第一节能信号,并且读取该第一节能信号的内容,根据该内容确定终端设备在第一DRX周期是否检测PDCCH。
例如,系统或者协议可以规定,或者网络设备可以和终端设备进行约定,可以用一个比特的“0”指示终端设备不检测PDCCH,可以用一个比特的“1”指示终端设备检测PDCCH,当第一节能信号的内容为一个比特的“0”时,则终端设备可以确定在第一DRX周期不检测PDCCH,当第一节能信号的内容为一个比特的“1”时,则终端设备可以确定在第一DRX周期检测PDCCH。
在本实施例中,第一DRX周期内包括第一时段,在该第一时段内,网络设备可以向终端设备发送用作RRM测量的至少一个CSI-RS,而终端设备在该第一时段内可以对该CSI-RS进行测量。
该第一时段可以为系统或者协议规定,也可以由网络设备和终端设备之间进行约定。例如,网络设备可以通过半静态信令或者动态信令对终端设备进行配置。其中,半静态信令例如可以是RRC信令。动态信令例如可以是MAC控制元素(MAC control element,MAC CE)或者DCI。
应理解,本申请实施例中的“协议”可以是指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
可以理解的,若终端设备在该第一时段之前为非激活状态,则终端设备可以唤醒进入激活状态对该CSI-RS进行测量。
可选地,终端设备在该第一时段对该CSI-RS进行RRM测量完成以后,终端设备可以进入非激活状态,从而节省终端设备的能耗。
可选地,网络设备可以在第一DRX周期内第一时段之外的时间发送CSI-RS。
可选地,网络设备在第一DRX周期内第一时段之外的时间不发送CSI-RS,从而节省网络设备的能耗。
可选地,网络设备可以在该第一时段内按照网络设备配置好的发送周期发送CSI-RS。
可选地,该第一DRX周期可以是第一节能信号所指示的一个或者多个DRX周期中的任意一个,例如,第一个或者最后一个,本申请对此并不限定。
在本实施例中,该第一时段可以为第一DRX周期内的任意时段,该第一时段的长度可以为小于或者等于第一DRX周期的长度并且大于或者等于至少一个CSI-RS所占用的时段的任意长度。
例如,该第一时段包括所述第一DRX周期的持续时间的部分或者全部。
再例如,该第一时段包括所述第一DRX周期的非持续时间的部分或者全部。
再例如,该第一时段可以为第一DRX周期内的持续时间。
再例如,该第一时段的长度可以等于第一DRX周期内的持续时间的长度。
再例如,该第一时段的长度可以等于第一DRX周期的长度。
再例如,当第一DRX周期进入激活状态时,该第一时段的长度可以等于激活时间的长度。
下面将结合附图,对本申请实施例第一时段的可能设置方式进行介绍。
方式1
图5示出了第一时段的设置方式的一例的示意图。在图5中,网络设备可以通过时段#A将第一节能信号发送给终端设备,该第一节能信号可以用于指示终端设备在第一DRX周期不检测PDCCH(左图)还是检测PDCCH(右图)。在方式1中,无论根据第一节能信号的收发情况确定终端设备在第一DRX周期不检测PDCCH还是检测PDCCH,该第一时段均为DRX周期内的持续时间。也就是说,该第一时段的起始位置和结束位置和持续时间完全相同,或者说,该第一时段和持续时间完全重合。
方式2
图6示出了第一时段的设置方式的另一例的示意图。在图6中,如果根据第一节能信号的收发情况确定终端设备在第一DRX周期不检测PDCCH(左图),该第一时段为DRX周期内的持续时间。
如果根据第一节能信号的收发情况确定终端设备在第一DRX周期检测PDCCH(右图),该第一时段为DRX周期内的激活时间。容易理解的,当终端设备在第一DRX周期进入激活状态时,在第一DRX周期内的激活时间至少包括持续时间,如果在该持续时间内检测到PDCCH指示新的数据传输,该激活时间还应当包括非激活定时器运行的时间。
方式3
图7示出了第一时段的设置方式的再一例的示意图。在图7中,当第一DRX周期的长度小于某一时长阈值时,无论根据第一节能信号的接收情况确定终端设备在第一DRX周期不检测PDCCH(左图)还是检测PDCCH(右图),该第一时段均为整个DRX周期。也就是说,该第一时段的起始位置和结束位置和一个DRX周期完全相同,或者说,该第一时段和一个DRX周期完全重合。
该时长阈值可以由系统或者协议规定,也可以由网络设备和终端设备之间进行约定。例如,该时长阈值为80毫秒(ms)。
在步骤240中,终端设备向网络设备发送RRM测量结果。
相应地,在步骤240中,网络设备接收终端设备发送的RRM测量结果。
具体地,终端设备在对CSI-RS测量完成以后,可以将RRM测量结果及时上报给网络设备,从而,网络设备可以根据该测量结果进行终端设备的小区选择/重选/切换等操作。
本申请实施例在第一DRX周期内设置第一时段,即使第一DRX周期被指示进入睡眠状态,网络设备也会在该第一时段内发送CSI-RS,终端设备也会假设在第一时段内存在CSI-RS,并且终端设备可以在该第一时段内对该CSI-RS进行RRM测量,从而能够保证给终端设备提供足够的RRM测量机会,保证RRM测量的准确性,避免由于引入节能信号这一概念而对终端移动性RRM测量造成影响。
本申请还提供一种通信方法300,也能够保证给终端提供足够的RRM测量机会,避免由于引入节能信号这一概念而对终端移动性RRM测量造成影响。下面结合图8进行介绍。
图8是本申请实施例的通信方法300的示意性流程图。图8所示的方法300包括步骤310至步骤340。
在步骤310中,网络设备根据第一节能信号的发送时机确定第一时段。
在步骤320中,终端设备根据第一节能信号的接收时机确定该第一时段。
在步骤330中,网络设备在第一时段向终端设备发送CSI-RS,该CSI-RS用于终端设备进行RRM测量。
相应地,在步骤330中,终端设备在第一时段对网络设备发送的CSI-RS进行RRM测量。
参见前文的相关描述,网络设备可以预先配置时段#A来传输第一节能信号(该时段#A也可以被称为被第一节能信号占用的时段),终端设备可以根据在该时段#A对第一节能信号的接收情况来确定在时段#A之后的至少一个DRX周期内是否检测PDCCH。
区别于前述实施例,在本实施例中,网络设备和终端设备可以分别通过第一节能信号的发送时机确定第一时段,并且网络设备在该第一时段发送CSI-RS,而终端设备可以在该第一时段对CSI-RS进行RRM测量。
在本实施例中,根据第一节能信号的发送时机确定第一时段,可以包括如下两种方式:
方式A
在配置第一节能信号时,可以配置与第一节能信号相关联的CSI-RS。
具体地,在配置第一节能信号的传输时域位置(即时段#A)时,可以一起配置该CSI-RS的传输时域位置(即该CSI-RS所占用的时段),并且根据该CSI-RS所占用的时段确定第一时段,容易理解的,该第一时段应当包括该CSI-RS所占用的时段。
可选地,该第一时段的长度可以大于CSI-RS所占用的时段。
可选地,该第一时段的长度也可以等于CSI-RS所占用的时段,此时该第一时段即为CSI-RS所占用的时段。
在每个周期,该时段#A和该CSI-RS所占用的时段的相对位置是固定的,终端设备和网络设备根据相关配置信息以及该时段#A的时域位置,能够确定该第一时段的具体位置,并且在该第一时段上发送/测量该CSI-RS。例如,网络确定CSI-RS所占用的时段的方法为配置与时段#A之间的偏移值。
由于第一节能信号所占用的时段#A通常都是周期性配置的,因此配置的CSI-RS也是周期性的,网络设备可以周期性在该第一时段发送CSI-RS,而终端设备可以在该第一时 段周期性的进行RRM测量。
图9示出了第一时段的设置方式的再一例的示意图。如图9所示,CSI-RS所占用的时段与时段#A之间的偏移值为offset1。可选地,协议可以规定offset1小于或者等于第一时长阈值。
具体地,终端设备为了检测第一节能信号,可能要在时段#A处从睡眠状态唤醒,该CSI-RS所占用的时段应当尽量靠近时段#A,这样可以在终端设备检测完第一节能信号之后接着进行RRM测量,而不需要单独为了进行RRM测量而从睡眠状态唤醒。此外,设置CSI-RS所占用的时段尽量靠近时段#A,也可以减少终端设备维持唤醒的时间,从而可以节省终端设备的能耗。
可选的,协议可以规定offset1小于或者等于第一时长阈值。当协议规定了第一时长阈值时,则基站需要确保与时段#A关联配置的CSI-RS所占用的时段与时段#A之间的偏移值offset1小于或等于第一时长阈值。如果协议没有规定offset1小于或者等于第一时长阈值,则依赖于基站实现将配置的CSI-RS所占用的时段尽量靠近时段#A。
可选地,CSI-RS所占用的时段与时段#A之间的偏移值offset1可以是CSI-RS所占用的时段的第一个字符与时段#A的第一个字符或最后一个字符之间的偏移值,或者也可以是CSI-RS所占用的时段的最后一个字符与时段#A的第一个字符或最后一个字符之间的偏移值,本申请对此并不限定。
可选地,在图9中,与前述实施例不同的是,该第一时段可以位于第一DRX周期的持续时间内,或者也可以位于第一DRX周期之外。
方式B
在配置第一节能信号时,可以直接配置与第一节能信号相关联的第一时段。
第一时段与第一节能信号所占用的时段#A相关联,网络设备和终端设备可以分别通过第一节能信号的发送时机确定该第一时段,网络设备在该第一时段发送CSI-RS,而终端设备可以在该第一时段对CSI-RS进行RRM测量。
具体地,可以由协议或者系统规定,或者通过网络设备的配置,本实施例的第一时段和第一节能信号所占用的时段#A相互关联,终端设备和网络设备根据该时段#A的时域位置能够确定第一时段的时域位置,之后在该第一时段发送/测量该CSI-RS。
该第一时段可以由网络通过信令配置,也可以由协议或者系统规定。该第一时段的单位可以是:符号(symbol)、时隙(slot)、子帧(subframe)、帧(frame)、微秒、毫秒(ms)、秒中任意一种。
例如,当第一时段由网络配置时,可以通过RRC信令或MAC CE信令进行配置,作为示例,网络设备在配置第一节能信号时配置该第一时段的长度t=10ms。
再例如,第一时段可以由系统默认规定,作为示例,对于DRX周期大于80ms,第一时段的长度t=10ms,对于DRX周期小于或者等于80ms,第一时段的长度t=15ms。
可选地,第一时段的时长可以小于或者等于第二时长阈值。终端设备因为执行测量而维持激活状态的时间可以被限制,从而能够节约终端设备的功耗。
可选地,第一时段的时长可以为DRX周期持续时间的长度。
图10示出了第一时段设置方式的再一例的示意图。
在图10中,第一时段的长度可以等于第一DRX周期的持续时间的长度。
基于类似的理解,为了使终端设备在检测完第一节能信号之后紧接着进行RRM测量,以及为了减少终端设备的唤醒时间,该第一时段可以靠近时段#A设置。
例如,在图10中,第一时段可以从时段#A的第一个符号或者最后一个符号开始。
在方式B中CSI-RS的配置方式和方式A中CSI-RS的配置方式不同。具体地,基站可以不考虑第一节能信号是如何配置的,而单独配置周期性的CSI-RS,只需要保证在第一时段内刚好会出现CSI-RS供终端设备做RRM测量即可。
在步骤340中,终端设备向网络设备发送RRM测量结果。
相应地,在步骤340中,网络设备接收终端设备发送的RRM测量结果。
具体地,终端设备在对CSI-RS测量完成以后,可以将RRM测量结果及时上报给网络设备,从而,网络设备可以根据该测量结果进行终端设备的小区选择/重选/切换等操作。
本申请实施例通过根据第一节能信号的发送时机确定相关联的第一时段,网络设备在该第一时段内发送CSI-RS,并且终端设备可以在该第一时段内对该CSI-RS进行RRM测量,从而能够保证给终端设备提供足够的RRM测量机会,保证RRM测量的准确性,避免由于引入节能信号这一概念而对终端移动性RRM测量造成影响。
本申请还提供一种通信方法400,能够提供给网络设备和终端设备在DRX周期内不发送/测量CSI-RS的可能性,从而有助于节省终端设备和网络设备的功耗。
图11是本申请实施例的通信方法400的示意性流程图。图11所示的方法400包括步骤410至步骤420。
在步骤410中,终端设备接收网络设备发送的指示信息,该指示信息包括第一指示信息和/或第二指示信息,第一指示信息用于指示网络设备在第一DRX周期内发送CSI-RS的可能性,第二指示信息用于指示网络设备在第二DRX周期内发送CSI-RS的可能性,第二DRX周期是位于第一DRX周期之后的DRX周期。
在步骤420中,终端设备根据指示信息确定是否在第一DRX周期内进行RRM测量。
具体地,第一指示信息用于指示网络设备在第一DRX周期内发送CSI-RS的可能性,例如,可以包括指示网络设备在第一DRX周期内一定发送CSI-RS或者可能发送CSI-RS。作为示例,可以通过DCI域中的一个或者多个比特,或者通过不同的解调参考信号(demodulation reference signal,DMRS)扰码序列来指示网络设备在第一DRX周期内一定发送CSI-RS或者可能发送CSI-RS。
类似的,第二指示信息用于指示网络设备在第二DRX周期内发送CSI-RS的可能性,例如,可以包括指示网络设备在第二DRX周期内一定发送CSI-RS或者可能发送CSI-RS。作为示例,可以通过DCI域中的一个或者多个比特,或者通过不同的DMRS扰码序列来指示网络设备在第二DRX周期内一定发送CSI-RS或者可能发送CSI-RS。
终端设备可以根据指示信息确定是否在第一DRX周期内进行RRM测量,也就是说,终端设备可以根据第一DRX周期内CSI-RS的发送可能性和/或第二DRX周期内CSI-RS的发送可能性确定是否在当前的第一DRX周期进行RRM测量。
可选地,当确定要在第一DRX周期内进行RRM测量时,参见前述实施例的表述,可以在前述实施例中介绍的第一时段内进行RRM测量,本申请在此不再赘述。
本申请实施例能够根据指示信息确定是否在第一DRX周期内进行RRM测量,使得终端设备对CSI-RS的测量更加灵活,终端设备可以根据指示信息决策在当前的第一DRX 是否进行RRM测量,例如,可以根据指示信息确定在第一DRX周期内不进行RRM测量,从而有利于节约终端设备的能耗。
下面根据指示信息所包括的内容的不同,分情况进行阐述步骤420中终端设备如何根据指示信息确定是否在第一DRX周期内进行RRM测量。
情况1
当指示信息包括第一指示信息时,在步骤420中,终端设备根据指示信息确定是否在所述第一DRX周期内进行RRM测量,包括:
若第一指示信息指示网络设备在第一DRX周期一定发送CSI-RS,则终端设备在第一DRX周期内进行RRM测量。
具体地,第一指示信息指示在第一DRX周期一定发送CSI-RS,由于终端设备不确定在下一个DRX周期是否会一定存在CSI-RS,则终端设备可以在第一DRX周期内进行RRM测量。
若第一指示信息指示网络设备在第一DRX周期可能发送CSI-RS,则终端设备在第一DRX周期内可以进行RRM测量,也可以不进行RRM测量。
情况2
当指示信息包括第二指示信息时,在步骤420中,终端设备根据指示信息确定是否在所述第一DRX周期内进行RRM测量,包括:
若第二指示信息指示网络设备在第二DRX周期一定发送CSI-RS,则终端设备不在第一DRX周期内进行RRM测量;
若第二指示信息指示网络设备在第二DRX周期可能发送CSI-RS,则终端设备在第一DRX周期内进行RRM测量。
容易理解的,若第二指示信息指示网络设备在第二DRX周期一定发送CSI-RS,则必然可以在第二DRX周期进行RRM测量,此时终端设备可以不在第一DRX周期内进行RRM测量,从而能够节约功耗。
若第二指示信息指示网络设备在第二DRX周期可能发送CSI-RS,终端设备不确定是否可以在第二DRX周期进行RRM测量,为了保证具有足够的测量样本,则终端设备在第一DRX周期内进行RRM测量。
可选地,方法400还包括:
终端设备根据节能信号的接收情况,确定在第一DRX周期是否检测PDCCH;
在步骤420中,终端设备根据指示信息确定是否在第一DRX周期内进行RRM测量,包括:
终端设备根据在第一DRX周期是否检测PDCCH和指示信息确定是否在第一DRX周期内进行RRM测量。
可以根据节能信号的接收情况,确定在第一DRX周期是否检测PDCCH,终端设备根据在第一DRX周期是否检测PDCCH和指示信息确定是否在第一DRX周期内进行RRM测量,具体地,根据指示信息所包括的内容的不同,可以分成以下几种情况:
情况3
当指示信息包括第一指示信息时,终端设备根据在第一DRX周期是否检测PDCCH和指示信息确定是否在所述第一DRX周期内进行RRM测量,包括:
若第一指示信息指示网络设备在所述第一DRX周期可能发送CSI-RS,且终端设备在第一DRX周期检测PDCCH,则终端设备在所述第一DRX周期内进行RRM测量;
若第一指示信息指示网络设备在第一DRX周期可能发送CSI-RS,且终端设备在第一DRX周期不检测PDCCH,则终端设备不在第一DRX周期内进行RRM测量。
具体地,当终端设备在第一DRX周期检测PDCCH,则终端设备必然要进入激活状态,此时,由于终端设备必然要进入激活状态,所以之前第一指示信息指示的网络设备在第一DRX周期可能发送CSI-RS变成确定发送CSI-RS,可以理解的是,当网络设备确定终端设备在第一DRX周期检测PDCCH时,则网络设备在第一DRX周期确定发送CSI-RS,此时可以不管第一指示信息的指示。所以,终端设备也可以在第一DRX周期内进行RRM测量。
而当终端设备在第一DRX周期不检测PDCCH,则终端设备不开启持续时间定时器,可能要进入非激活状态,此时网络设备在第一DRX周期仅仅是可能发送CSI-RS。例如,此时,当第一指示信息用1个比特表示,且该比特为0时表示可能发送CSI-RS,则网络设备在第一DRX周期可以不发送CSI-RS,则终端设备不在第一DRX周期内进行RRM测量,另外,当该比特为1时表示网络设备在第一DRX周期一定发送CSI-RS,此时即使终端设备在第一DRX周期不检测PDCCH,终端设备也可以在第一DRX周期内进行RRM测量,当然,终端设备也可以不在第一DRX周期内进行RRM测量。
可以理解的是,若网络设备确定终端设备在第一DRX周期检测PDCCH,或者第一指示信息指示网络设备在第一DRX周期一定发送CSI-RS时,则网络设备在第一DRX周期确定发送CSI-RS。若网络设备确定终端设备在第一DRX周期不检测PDCCH,且第一指示信息指示网络设备在第一DRX周期可能发送CSI-RS时,则网络设备在第一DRX周期可以不发送CSI-RS。
情况4
当指示信息包括第二指示信息时,终端设备根据在第一DRX周期是否检测PDCCH和指示信息确定是否在第一DRX周期内进行RRM测量,包括:
若第二指示信息指示网络设备在第二DRX周期可能发送CSI-RS,且终端设备在所述第一DRX检测PDCCH,则终端设备在所述第一DRX周期内进行RRM测量;
若第二指示信息指示网络设备在第二DRX周期可能发送CSI-RS,且终端设备在第一DRX周期不检测PDCCH,则终端设备不在第一DRX周期内进行RRM测量。
具体地,网络设备在第二DRX周期可能发送CSI-RS,则不能够确定在第二DRX周期是否发送CSI-RS,若终端设备在第一DRX周期检测PDCCH,则要进入激活状态,终端设备可以在第一DRX周期内进行RRM测量。若终端设备在第一DRX周期不检测PDCCH,则终端设备不开启持续时间定时器,终端设备根据上一次接收的第二指示信息确定网络设备是否在第一DRX周期内发送CSI-RS,例如,当第二指示信息用1个比特表示,且上一次接收的第二指示信息该比特为0时,则网络设备在第一DRX周期可以不发送CSI-RS,则终端设备可以不在第一DRX周期内进行RRM测量,当上一次接收的第二指示信息该比特为1时,则终端设备确定网络设备在第一DRX周期发送CSI-RS,则终端设备可以在第一DRX周期内进行RRM测量。
情况5
当指示信息包括第一指示信息和第二指示信息时,终端设备根据在第一DRX周期是否检测PDCCH和指示信息确定是否在第一DRX周期内进行RRM测量,包括:
若第一指示信息指示网络设备在第一DRX周期可能发送CSI-RS,且第二指示信息指示网络设备在第二DRX周期可能发送CSI-RS,且终端设备在第一DRX周期不检测PDCCH,则终端设备确定网络设备在第一DRX周期内可以不发送CSI-RS,则终端设备不在第一DRX周期内进行RRM测量;
若第一指示信息指示网络设备在第一DRX周期可能发送CSI-RS,且第二指示信息指示网络设备在第二DRX周期确定发送CSI-RS,且终端设备在第一DRX周期不检测PDCCH,则终端设备确定网络设备在第一DRX周期内可以不发送CSI-RS,则终端设备不在第一DRX周期内进行RRM测量;
若第一指示信息指示网络设备在第一DRX周期确定发送CSI-RS,且第二指示信息指示网络设备在第二DRX周期可能发送CSI-RS,且终端设备在第一DRX周期不检测PDCCH,则终端设备也可以在第一DRX周期内进行RRM测量;
若第一指示信息指示网络设备在第一DRX周期可能发送CSI-RS,且第二指示信息指示网络设备在所述第二DRX周期可能发送CSI-RS,且根据节能信号的接收情况确定所述终端设备在第一DRX周期唤醒,则终端设备确定网络设备在第一DRX周期内发送CSI-RS,则终端设备可以在第一DRX周期内进行RRM测量。
若第一指示信息指示网络设备在第一DRX周期确定发送CSI-RS,且第二指示信息指示网络设备在所述第二DRX周期确定发送CSI-RS,且根据节能信号的接收情况确定所述终端设备在第一DRX周期不检测PDCCH,则终端设备也可以不在第一DRX周期内进行RRM测量;
若第一指示信息指示网络设备在第一DRX周期可能发送CSI-RS,且第二指示信息指示网络设备在所述第二DRX周期确定发送CSI-RS,且根据节能信号的接收情况确定所述终端设备在第一DRX周期检测PDCCH,则终端设备确定网络设备在第一DRX周期内发送CSI-RS,但终端设备也可以不在第一DRX周期内进行RRM测量;
若第一指示信息指示网络设备在第一DRX周期确定发送CSI-RS,且第二指示信息指示网络设备在所述第二DRX周期可能发送CSI-RS,且根据节能信号的接收情况确定所述终端设备在第一DRX周期检测PDCCH,则终端设备可以在第一DRX周期内进行RRM测量;
若第一指示信息指示网络设备在第一DRX周期确定发送CSI-RS,且第二指示信息指示网络设备在所述第二DRX周期确定发送CSI-RS,且根据节能信号的接收情况确定所述终端设备在第一DRX周期检测PDCCH,则终端设备也可以不在第一DRX周期内进行RRM测量。
可选地,该第一指示信息和第二指示信息可以一起发送给终端设备,也可以分开单独发送。
例如,该第一指示信息、第二指示信息和节能信号一同发送给终端设备。
再例如,第二指示信息和节能信号一同发送给终端设备。
情况6
当指示信息包括第一指示信息时,终端设备根据在第一DRX周期是否检测PDCCH 和指示信息确定是否在第一DRX周期内进行RRM测量,包括:
终端设备根据在第一DRX周期是否检测PDCCH和第一指示信息,确定网络设备在第二DRX周期内发送CSI-RS的可能性;
终端设备根据网络设备在第二DRX周期内发送CSI-RS的可能性,确定是否在第一DRX周期内进行RRM测量。
具体地,可以根据在第一DRX周期是否检测PDCCH和第一指示信息,确定网络设备在第二DRX周期内发送CSI-RS的可能性。
例如,可以按照以下协议规定,确定网络设备在第二DRX周期内发送CSI-RS的可能性:
若第一指示信息指示所述网络设备在第一DRX周期可能发送CSI-RS,且终端设备在第一DRX周期检测PDCCH,此时,终端设备由于要在第一DRX周期检测PDCCH必然要进入激活状态,所以之前第一指示信息指示的网络设备在第一DRX周期可能发送CSI-RS变成确定发送CSI-RS,则终端设备确定网络设备在第二DRX周期内可能发送CSI-RS;
若第一指示信息指示网络设备在第一DRX周期可能发送CSI-RS,且终端设备在第一DRX周期不检测PDCCH,此时,终端设备由于不需要在第一DRX周期检测PDCCH,所以之前第一指示信息指示的网络设备在第一DRX周期可能发送CSI-RS表示网络设备可以不发送CSI-RS,则终端设备确定网络设备在第二DRX周期内一定发送CSI-RS;
若第一指示信息指示网络设备在第一DRX周期一定发送CSI-RS,则终端设备确定网络设备在第二DRX周期内可能发送CSI-RS。
进一步地,终端设备根据网络设备在第二DRX周期内发送CSI-RS的可能性,确定是否在第一DRX周期内进行RRM测量,可以包括以下方式:
若网络设备在第二DRX周期可能发送CSI-RS,且确定终端设备在第一DRX周期检测PDCCH,则终端设备在第一DRX周期内进行RRM测量;
若网络设备在第一DRX周期可能发送CSI-RS,且确定终端设备在第一DRX周期不检测PDCCH,则终端设备不在第一DRX周期内进行RRM测量。
本申请实施例能够通过指示信息指示网络设备在第一DRX周期和/或第二DRX周期是否发送CSI-RS,并且根据指示信息(以及结合节能信号的具体指示)确定是否在第一DRX周期内进行RRM测量,使得终端设备对CSI-RS的测量更加灵活,终端设备可以根据指示信息决策在当前的第一DRX是否进行RRM测量,从而有利于节约终端设备的能耗。
本申请还提供一种通信方法500,能够提供给网络设备和终端设备在DRX周期内不发送/测量CSI-RS的可能性,从而有助于节省终端设备和网络设备的功耗。
图12是本申请实施例的通信方法500的示意性流程图。图12所示的方法500包括步骤510至步骤530。
步骤510,终端设备根据节能信号的接收情况,确定N个DRX周期是否检测PDCCH,N为大于1的整数。
步骤520,终端设备接收指示信息,该指示信息用于指示在该N个DRX周期内网络设备是否发送CSI-RS。
在步骤530中,终端设备根据节能信号的接收情况和指示信息确定是否进行RRM测量。
具体地,终端设备可以根据节能信号的接收情况确定N个DRX周期均不检测PDCCH,或者均检测PDCCH,或者部分检测PDCCH,部分不检测PDCCH。
该指示信息可以用于指示在该N个DRX周期内网络设备是否发送CSI-RS,例如,可以指示该N个DRX周期中的每个DRX周期内均发送CSI-RS,或者均不发送CSI-RS,或者部分发送,部分不发送。
可选地,可以用比特“1”指示在DRX周期内发送CSI-RS,可以用比特“0”指示在DRX周期内不发送CSI-RS,在该基础上,可以用由N个比特构成的比特串指示N个DRX周期内网络设备是否发送CSI-RS。
例如,N的值可以为5,则比特串“10101”则表示所指示的第1、3、5周期网络设备发送CSI-RS,第2、4周期网络设备不发送CSI-RS。
终端设备可以根据节能信号的接收情况和指示信息确定在该N个DRX周期内是否进行RRM测量。例如,可以确定具体哪个周期执行RRM测量,哪个周期不执行RRM测量,从而在保障测量准确性的前提下,能够节省终端设备的功耗。
上文结合图1至图12详细描述了本申请实施例的通信方法,下面结合图13至图16,详细描述本申请实施例的装置。应理解,图13至图16所示的装置能够实现图4、8、11、12所示的方法流程中的一个或者多个的步骤。为避免重复,在此不再详细赘述。
例如,图13所示的通信设备1100中的处理单元1110可以执行图4中的步骤220,收发单元1120可以执行图4中的步骤230、240。图15所示的通信装置1300中的处理单元1310可以执行图4中的步骤210,收发单元1320可以执行图4中的步骤230、240。
图13是本申请实施例的通信设备的示意图,图13所示的通信设备1100包括:处理单元1110和收发单元1120。
处理单元1110,用于根据第一节能信号的接收情况,确定在第一DRX周期内不检测PDCCH;
收发单元1120,用于在所述第一DRX周期内的第一时段对网络设备发送的CSI-RS进行RRM测量。
可选地,收发单元1120还可以用于接收第一节能信号。
可选地,作为一个实施例,第一时段包括第一DRX周期的持续时间的部分或者全部。
可选地,作为一个实施例,第一时段包括第一DRX周期的非持续时间的部分或者全部。
在其他实施例中,处理单元1110,用于根据第一节能信号的接收时机确定第一时段;
收发单元1120,用于在第一时段对网络设备发送的CSI-RS进行RRM测量。
可选地,作为一个实施例,该CSI-RS占用的时段与第一节能信号占用的时段之间的偏移值小于或者等于第一时长阈值,该CSI-RS占用的时段位于所述第一时段内。
可选地,作为一个实施例,第一时段的时长小于或者等于第二时长阈值。
在一种可能的实现方式中,上述通信装置1100可以为终端设备70,其中处理单元的功能可以由终端设备中的处理器702实现,收发单元的功能可以通过终端设备的收发器701(即控制电路与天线一起)实现。下文结合图14介绍本申请实施例的终端设备的结构。
图14是本申请实施例的一种终端设备的结构示意图。该终端设备可适用于图1所示出的系统中,执行上述方法实施例中终端设备的功能。为了便于说明,图14仅示出了终端设备的主要部件。如图14所示,终端设备70包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持终端设备执行上述方法实施例中所描述的动作。存储器主要用于存储软件程序和数据。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图14仅示出了一个存储器和一个处理器。在实际的终端设备中,可以存在多个处理器和多个存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限定。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图14中的处理器可以集成基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
图15是本申请另一实施例的通信设备的示意图,图15所示的通信装置1300包括:处理单元1310和收发单元1320。
处理单元1310,用于确定终端设备在第一DRX周期内不检测PDCCH;
收发单元1320,用于在所述第一DRX周期内的第一时段向所述终端设备发送CSI-RS,所述CSI-RS用于所述终端设备进行RRM测量。
可选地,作为一个实施例,第一时段包括第一DRX周期的持续时间的部分或者全部。
可选地,作为一个实施例,第一时段包括第一DRX周期的非持续时间的部分或者全部。
在其他实施例中,处理单元1310,用于根据第一节能信号的发送时机确定第一时段;
收发单元1310,用于在第一时段向终端设备发送CSI-RS,所述CSI-RS用于所述终端设备进行RRM测量。
可选地,作为一个实施例,该CSI-RS占用的时段与第一节能信号占用的时段之间的偏移值小于或者等于第一时长阈值,该CSI-RS占用的时段位于所述第一时段内。
可选地,作为一个实施例,第一时段的时长小于或者等于第二时长阈值。
在一种可能的实现方式中,上述通信装置1300可以为网络设备,例如下文中的基站80,其中处理单元的功能可以由基站中的处理器8022实现,收发单元的功能可以通过基站80的RRU 801实现。下文结合图16介绍本申请实施例的网络设备的结构。
图16是本申请实施例的一种网络设备的结构示意图,如可以为基站的结构示意图。如图16所示,该基站可应用于如图1所示的系统中,执行上述方法实施例中网络设备的功能。基站80可包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)801和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)802。所述RRU 801可以称为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天线8011和射频单元8012。所述RRU 801部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送上述实施例中所述的信令消息。所述BBU 802部分主要用于进行基带处理,对基站进行控制等。所述RRU 801与BBU 802可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 802为基站的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理单元)802可以用于控制基站执行上述方法实施例中关于网络设备的操作流程。
在一个实例中,所述BBU 802可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU 802还包括存储器8021和处理器8022,所述存储器8021用于存储必要的指令和数据。例如存储器8021存储上述实施例中的码本索引与预编码矩阵的对应关系。所述处理器8022用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器8021和处理器8022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
本申请还提供一种通信系统,其包括前述的一个或多个网络设备,和,一个或多个终端设备。
应理解,在本申请实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM), 其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图4、8、11、12所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图4、8、11、12所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的一个或多个终端设备以及一个或多个网络设备。
上述实施例,可以全部或部分地通过软件、硬件、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
为了便于理解,下文中对本申请介绍方案的过程中涉及的名词进行说明。
在本申请实施例中,“指示”可以包括直接指示和间接指示,也可以包括显式指示和隐式指示。将某一信息(如下文所述的配置信息)所指示的信息称为待指示信息,则具体实现过程中,对待指示信息进行指示的方式有很多种,例如但不限于,可以直接指示待指示信息,如待指示信息本身或者该待指示信息的索引等。也可以通过指示其他信息来间接指示待指示信息,其中该其他信息与待指示信息之间存在关联关系。还可以仅仅指示待指示信息的一部分,而待指示信息的其他部分则是已知的或者提前约定的。例如,还可以借助预先约定(例如协议规定)的各个信息的排列顺序来实现对特定信息的指示,从而在一定程度上降低指示开销。
在本申请实施例中,各术语及英文缩略语,如非连续接收(DRX)、下行控制信息(DCI)、媒体接入控制控制元素(MAC CE)、无线资源控制(RRC)、物理下行控制信道(PDCCH)、信道状态信息参考信号(CSI-RS)、同步信号块(SSB)等,均为方便 描述而给出的示例性举例,不应对本申请构成任何限定。本申请并不排除在已有或未来的协议中定义其它能够实现相同或相似功能的术语的可能。
在本申请实施例中,“第一”、“第二”以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。例如,区分不同的指示信息、不同的DRX周期等。
本申请实施例中涉及的“通信协议”可以是指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟 悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (54)

  1. 一种通信方法,其特征在于,包括:
    接收第一节能信号;
    根据所述第一节能信号中的第一指示信息,确定在第一DRX周期内不检测PDCCH;
    在所述第一DRX周期内的第一时段对网络设备发送的CSI-RS进行RRM测量。
  2. 根据权利要求1所述的方法,其特征在于,所述第一时段为所述第一DRX周期的持续时间。
  3. 根据权利要求1所述的方法,其特征在于,当所述第一DRX周期的时长小于80毫秒时,所述第一时段为所述第一DRX周期。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述接收第一节能信号,包括:
    在所述第一DRX周期之前的预先配置的第二时段接收所述第一节能信号。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述根据所述第一节能信号中的第一指示信息,确定在第一DRX周期内不检测PDCCH,包括:
    当所述第一指示信息为比特0时,确定在所述第一DRX周期内不检测PDCCH。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,还包括:
    接收第二节能信号;
    根据所述第二节能信号中的第二指示信息,确定在第二DRX周期内检测PDCCH;
    在所述第二DRX周期内的第三时段对所述网络设备发送的CSI-RS进行RRM测量。
  7. 根据权利要求6所述的方法,其特征在于,所述第三时段为所述第二DRX周期的激活时间。
  8. 根据权利要求7所述的方法,其特征在于,当所述第二DRX周期的时长小于80毫秒时,所述第三时段为所述第二DRX周期。
  9. 根据权利要求6至8中任一项所述的方法,其特征在于,所述接收第二节能信号,包括:
    在所述第二DRX周期之前的预先配置的第四时段接收所述第二节能信号。
  10. 根据权利要求6至9中任一项所述的方法,其特征在于,所述根据所述第二节能信号中的第二指示信息,确定在第二DRX周期内检测PDCCH,包括:
    当所述第二指示信息为比特1时,确定在所述第二DRX周期内检测PDCCH。
  11. 一种通信方法,其特征在于,包括:
    确定终端设备在第一DRX周期内不检测PDCCH;
    在所述第一DRX周期内的第一时段向所述终端设备发送CSI-RS,所述CSI-RS用于所述终端设备进行RRM测量。
  12. 根据权利要求11所述的方法,其特征在于,所述第一时段为所述第一DRX周期的持续时间。
  13. 根据权利要求11所述的方法,其特征在于,当所述第一DRX周期的时长小于80毫秒时,所述第一时段为所述第一DRX周期。
  14. 根据权利要求11至13中任一项所述的方法,其特征在于,还包括:
    在所述第一DRX周期之前的预先配置的第二时段向所述终端设备发送第一节能信号,所述第一节能信号中用于指示是否在DRX周期内检测PDCCH的信息为比特0。
  15. 根据权利要求11至14中任一项所述的方法,其特征在于,还包括:
    确定终端设备在第二DRX周期内检测PDCCH;
    在所述第二DRX周期内的第三时段向所述终端设备发送CSI-RS,所述CSI-RS用于所述终端设备进行RRM测量。
  16. 根据权利要求15所述的方法,其特征在于,所述第三时段为所述第二DRX周期的激活时间。
  17. 根据权利要求15所述的方法,其特征在于,当所述第二DRX周期的时长小于80毫秒时,所述第三时段为所述第二DRX周期。
  18. 根据权利要求15至17中任一项所述的方法,其特征在于,还包括:
    在所述第二DRX周期之前的预先配置的第四时段向所述终端设备发送第二节能信号,所述第二节能信号中用于指示是否在DRX周期内检测PDCCH的信息为比特1。
  19. 一种通信方法,其特征在于,包括:
    根据第一节能信号的接收情况,确定在第一DRX周期内不检测PDCCH;
    在所述第一DRX周期内的第一时段对网络设备发送的CSI-RS进行RRM测量。
  20. 一种通信方法,其特征在于,包括:
    确定终端设备在第一DRX周期内不检测PDCCH;
    在所述第一DRX周期内的第一时段向所述终端设备发送CSI-RS,所述CSI-RS用于所述终端设备进行RRM测量。
  21. 根据权利要求19或20所述的方法,其特征在于,所述第一时段包括所述第一DRX周期的持续时间的部分或者全部。
  22. 根据权利要求19或20所述的方法,其特征在于,所述第一时段包括所述第一DRX周期的非持续时间的部分或者全部。
  23. 一种通信方法,其特征在于,包括:
    根据第一节能信号的接收时机确定第一时段;
    在所述第一时段对网络设备发送的CSI-RS进行RRM测量。
  24. 一种通信方法,其特征在于,包括:
    根据第一节能信号的发送时机确定第一时段;
    在所述第一时段向所述终端设备发送CSI-RS,所述CSI-RS用于所述终端设备进行RRM测量。
  25. 根据权利要求23或24所述的方法,其特征在于,所述CSI-RS占用的时段与所述第一节能信号占用的时段之间的偏移值小于或者等于第一时长阈值,所述CSI-RS占用的时段位于所述第一时段内。
  26. 根据权利要求23-25中任一项所述的方法,其特征在于,所述第一时段的时长小于或者等于第二时长阈值。
  27. 一种通信装置,其特征在于,包括:
    收发单元,用于接收第一节能信号;
    处理单元,用于根据所述第一节能信号中的第一指示信息,确定在第一DRX周期内不检测PDCCH;
    所述收发单元还用于,在所述第一DRX周期内的第一时段对网络设备发送的CSI-RS进行RRM测量。
  28. 根据权利要求27所述的装置,其特征在于,所述第一时段为所述第一DRX周期的持续时间。
  29. 根据权利要求27所述的装置,其特征在于,当所述第一DRX周期的时长小于80毫秒时,所述第一时段为所述第一DRX周期。
  30. 根据权利要求27至29中任一项所述的装置,其特征在于,所述收发单元具体用于:
    在所述第一DRX周期之前的预先配置的第二时段接收所述第一节能信号。
  31. 根据权利要求27至30中任一项所述的装置,其特征在于,所述处理单元具体用于:
    当所述第一指示信息为比特0时,确定在所述第一DRX周期内不检测PDCCH。
  32. 根据权利要求27至31中任一项所述的装置,其特征在于,所述收发单元还用于接收第二节能信号;
    所述处理单元还用于根据所述第二节能信号中的第二指示信息,确定在第二DRX周期内检测PDCCH;
    所述收发单元还用于在所述第二DRX周期内的第三时段对所述网络设备发送的CSI-RS进行RRM测量。
  33. 根据权利要求32所述的装置,其特征在于,所述第三时段为所述第二DRX周期的激活时间。
  34. 根据权利要求32所述的装置,其特征在于,当所述第二DRX周期的时长小于80毫秒时,所述第三时段为所述第二DRX周期。
  35. 根据权利要求32至34中任一项所述的装置,其特征在于,所述收发单元具体用于:
    在所述第二DRX周期之前的预先配置的第四时段接收所述第二节能信号。
  36. 根据权利要求32至35中任一项所述的装置,其特征在于,所述处理单元具体用于:
    当所述第二指示信息为比特1时,确定在所述第二DRX周期内检测PDCCH。
  37. 一种通信装置,其特征在于,包括:
    处理单元,用于确定终端设备在第一DRX周期内不检测PDCCH;
    收发单元,用于在所述第一DRX周期内的第一时段向所述终端设备发送CSI-RS,所述CSI-RS用于所述终端设备进行RRM测量。
  38. 根据权利要求37所述的装置,其特征在于,所述第一时段为所述第一DRX周期的持续时间。
  39. 根据权利要求37所述的装置,其特征在于,当所述第一DRX周期的时长小于80毫秒时,所述第一时段为所述第一DRX周期。
  40. 根据权利要求37至39中任一项所述的装置,其特征在于,所述收发单元还用于:
    在所述第一DRX周期之前的预先配置的第二时段向所述终端设备发送第一节能信号,所述第一节能信号中用于指示是否在DRX周期内检测PDCCH的信息为比特0。
  41. 根据权利要求37至40中任一项所述的装置,其特征在于,所述处理单元还用于确定终端设备在第二DRX周期内检测PDCCH;
    所述收发单元还用于在所述第二DRX周期内的第三时段向所述终端设备发送CSI-RS,所述CSI-RS用于所述终端设备进行RRM测量。
  42. 根据权利要求41所述的装置,其特征在于,所述第三时段为所述第二DRX周期的激活时间。
  43. 根据权利要求41所述的装置,其特征在于,当所述第二DRX周期的时长小于80毫秒时,所述第三时段为所述第二DRX周期。
  44. 根据权利要求41至43中任一项所述的装置,其特征在于,所述收发单元还用于:
    在所述第二DRX周期之前的预先配置的第四时段向所述终端设备发送第二节能信号,所述第二节能信号中用于指示是否在DRX周期内检测PDCCH的信息为比特1。
  45. 一种通信装置,其特征在于,包括:
    处理单元,用于根据第一节能信号的接收情况,确定在第一DRX周期内不检测PDCCH;
    收发单元,用于在所述第一DRX周期内的第一时段对网络设备发送的CSI-RS进行RRM测量。
  46. 一种通信装置,其特征在于,包括:
    处理单元,用于确定终端设备在第一DRX周期内不检测PDCCH;
    收发单元,用于在所述第一DRX周期内的第一时段向所述终端设备发送CSI-RS,所述CSI-RS用于所述终端设备进行RRM测量。
  47. 根据权利要求45或46所述的装置,其特征在于,所述第一时段包括所述第一DRX周期的持续时间的部分或者全部。
  48. 根据权利要求45或46所述的装置,其特征在于,所述第一时段包括所述第一DRX周期的非持续时间的部分或者全部。
  49. 一种通信装置,其特征在于,包括:
    处理单元,用于根据第一节能信号的接收时机确定第一时段;
    收发单元,用于在所述第一时段对网络设备发送的CSI-RS进行RRM测量。
  50. 一种通信装置,其特征在于,包括:
    处理单元,用于根据第一节能信号的发送时机确定第一时段;
    收发单元,用于在所述第一时段向所述终端设备发送CSI-RS,所述CSI-RS用于所述终端设备进行RRM测量。
  51. 根据权利要求49或50所述的装置,其特征在于,所述CSI-RS占用的时段与所述第一节能信号占用的时段之间的偏移值小于或者等于第一时长阈值,所述CSI-RS占用的时段位于所述第一时段内。
  52. 根据权利要求49-51中任一项所述的装置,其特征在于,所述第一时段的时长小于或者等于第二时长阈值。
  53. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机 指令,所述计算机指令使得通信设备执行如权利要求1至26中任一项所述的方法。
  54. 一种通信装置,其特征在于,所述装置包括处理器和存储介质,所述存储介质存储有指令,所述指令被所述处理器运行时,使得所述处理器执行如权利要求1至26中任一项所述的方法。
PCT/CN2020/088247 2019-04-30 2020-04-30 一种通信方法以及通信装置 WO2020221346A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2021564602A JP7427029B2 (ja) 2019-04-30 2020-04-30 通信方法および通信装置
KR1020217038587A KR20220005532A (ko) 2019-04-30 2020-04-30 통신 방법 및 통신 장치
CA3135744A CA3135744A1 (en) 2019-04-30 2020-04-30 Communication method and communications apparatus
EP20798915.3A EP3965477A4 (en) 2019-04-30 2020-04-30 COMMUNICATION METHOD AND COMMUNICATION DEVICE
BR112021021864A BR112021021864A2 (pt) 2019-04-30 2020-04-30 Método de comunicação e aparelho de comunicações
US17/513,869 US11445568B2 (en) 2019-04-30 2021-10-28 Communication method and communications apparatus
US17/884,842 US20230036393A1 (en) 2019-04-30 2022-08-10 Communication method and communications apparatus
JP2023195900A JP2024020451A (ja) 2019-04-30 2023-11-17 通信方法および通信装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910365288.5A CN111867016B (zh) 2019-04-30 2019-04-30 一种通信方法以及通信装置
CN201910365288.5 2019-04-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/513,869 Continuation US11445568B2 (en) 2019-04-30 2021-10-28 Communication method and communications apparatus

Publications (1)

Publication Number Publication Date
WO2020221346A1 true WO2020221346A1 (zh) 2020-11-05

Family

ID=72965886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/088247 WO2020221346A1 (zh) 2019-04-30 2020-04-30 一种通信方法以及通信装置

Country Status (8)

Country Link
US (2) US11445568B2 (zh)
EP (1) EP3965477A4 (zh)
JP (2) JP7427029B2 (zh)
KR (1) KR20220005532A (zh)
CN (1) CN111867016B (zh)
BR (1) BR112021021864A2 (zh)
CA (1) CA3135744A1 (zh)
WO (1) WO2020221346A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111867016B (zh) * 2019-04-30 2024-04-12 华为技术有限公司 一种通信方法以及通信装置
CN113115484B (zh) * 2020-01-13 2023-08-01 大唐移动通信设备有限公司 一种信道或/和信号的收发方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102638840A (zh) * 2012-03-21 2012-08-15 新邮通信设备有限公司 长期演进中针对协作多点的无线资源管理测量方法和系统
CN108632960A (zh) * 2017-03-24 2018-10-09 中兴通讯股份有限公司 一种物理下行控制信道的传输方法及装置
WO2018210135A1 (zh) * 2017-05-17 2018-11-22 维沃移动通信有限公司 一种数据传输方法、基站及终端
CN109219113A (zh) * 2017-07-05 2019-01-15 维沃移动通信有限公司 一种盲检测方法、信号发送方法、相关设备和系统
CN109495925A (zh) * 2017-09-11 2019-03-19 维沃移动通信有限公司 信息传输方法、网络设备、终端及计算机可读存储介质

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10959197B2 (en) * 2014-09-08 2021-03-23 Samsung Electronics Co., Ltd. Cell detection, synchronization and measurement on unlicensed spectrum
US10531384B2 (en) 2016-04-05 2020-01-07 Qualcomm Incorporated Scheduling request collection after a discontinuous reception period
MX2019008311A (es) 2017-01-10 2019-10-04 Guangdong Oppo Mobile Telecommunications Corp Ltd Metodo para determinar un estado de recepcion discontinua, dispositivo terminal y dispositivo de red.
JP7150747B2 (ja) * 2017-05-04 2022-10-11 アイピーエルエー ホールディングス インコーポレイテッド ウェイクアップ信号動作
CN109429310B (zh) * 2017-07-20 2021-04-06 维沃移动通信有限公司 一种drx参数的指示方法、相关设备及系统
CN116546548A (zh) * 2017-09-11 2023-08-04 维沃移动通信有限公司 一种测量、测量配置方法、终端及基站
US11330575B2 (en) * 2018-07-17 2022-05-10 Samsung Electronics Co., Ltd. Adaptation of communication parameters for a user equipment
US10924250B2 (en) * 2018-09-13 2021-02-16 Samsung Electronics Co., Ltd. UE operation with reduced power consumption
CN111867016B (zh) * 2019-04-30 2024-04-12 华为技术有限公司 一种通信方法以及通信装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102638840A (zh) * 2012-03-21 2012-08-15 新邮通信设备有限公司 长期演进中针对协作多点的无线资源管理测量方法和系统
CN108632960A (zh) * 2017-03-24 2018-10-09 中兴通讯股份有限公司 一种物理下行控制信道的传输方法及装置
WO2018210135A1 (zh) * 2017-05-17 2018-11-22 维沃移动通信有限公司 一种数据传输方法、基站及终端
CN109219113A (zh) * 2017-07-05 2019-01-15 维沃移动通信有限公司 一种盲检测方法、信号发送方法、相关设备和系统
CN109495925A (zh) * 2017-09-11 2019-03-19 维沃移动通信有限公司 信息传输方法、网络设备、终端及计算机可读存储介质

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CATT: ""Summary of UE Power Saving Schemes"", "3GPP TSG RAN WG1 #96 R1-1903483", 27 February 2019 (2019-02-27), XP051601148, DOI: 20200628090200X *
CATT: "Summary of UE Power Saving Schemes", 3GPP TSG RAN WG1 #96 R1-1903483, 27 February 2019 (2019-02-27), XP051601148, DOI: 20200627102006A *
HUAWEI ET AL.: "Reducing RRM measurements for UE power saving", 3GPP TSG RAN WG1 MEETING #97 R1-1907520, 3 May 2019 (2019-05-03), XP051709535, DOI: 20200627102958PX *
See also references of EP3965477A4

Also Published As

Publication number Publication date
JP2022531265A (ja) 2022-07-06
BR112021021864A2 (pt) 2022-01-18
JP2024020451A (ja) 2024-02-14
US20220053597A1 (en) 2022-02-17
US11445568B2 (en) 2022-09-13
US20230036393A1 (en) 2023-02-02
JP7427029B2 (ja) 2024-02-02
CA3135744A1 (en) 2020-11-05
CN111867016B (zh) 2024-04-12
EP3965477A1 (en) 2022-03-09
KR20220005532A (ko) 2022-01-13
CN111867016A (zh) 2020-10-30
EP3965477A4 (en) 2022-06-15

Similar Documents

Publication Publication Date Title
WO2020200075A1 (zh) 通信方法和装置
CN112470415B (zh) 在不连续传输操作中节能的系统和方法
WO2021104521A1 (zh) 用于非授权频段的drx的方法和终端装置
US20210392582A1 (en) Reference Signal Receiving Method, Reference Signal Sending Method, and Apparatus
US20210014786A1 (en) Signal transmission method and device
WO2020029890A1 (zh) 接收参考信号的方法和通信设备
US20230083399A1 (en) Signal communication method and device
EP3665983A1 (en) Methods and apparatus relating to paging in a wireless communications network
WO2021023215A1 (zh) 无线通信的方法和装置
WO2020000269A1 (zh) 传输信号的方法、网络设备和终端设备
US20230036393A1 (en) Communication method and communications apparatus
WO2019191984A1 (zh) 一种信号发送方法、网络设备及终端设备
JP2024503648A (ja) リソース選択方法、装置及びシステム
CN111436095B (zh) 一种通信方法及通信装置
US11895729B2 (en) Discontinuous reception method, terminal device and network device
WO2021097648A1 (zh) 检测物理下行控制信道pdcch的方法以及装置
WO2021081918A1 (zh) 无线通信方法、终端设备和网络设备
WO2021087987A1 (zh) 无线通信方法、终端设备和网络设备
WO2022028558A1 (zh) 通信的方法、通信装置及系统
WO2020088455A1 (zh) 通信方法和通信装置
WO2020164487A1 (zh) 一种无线通信的方法和装置
WO2020119790A1 (zh) 波束管理的方法和装置
CN118301721A (zh) 一种通信方法以及通信装置
CN118301719A (zh) 一种通信方法以及通信装置
WO2024093531A1 (zh) 通信方法及相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20798915

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021564602

Country of ref document: JP

Kind code of ref document: A

Ref document number: 3135744

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021021864

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20217038587

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020798915

Country of ref document: EP

Effective date: 20211130

ENP Entry into the national phase

Ref document number: 112021021864

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20211029