WO2020221259A1 - 传输方式确定方法和装置 - Google Patents

传输方式确定方法和装置 Download PDF

Info

Publication number
WO2020221259A1
WO2020221259A1 PCT/CN2020/087581 CN2020087581W WO2020221259A1 WO 2020221259 A1 WO2020221259 A1 WO 2020221259A1 CN 2020087581 W CN2020087581 W CN 2020087581W WO 2020221259 A1 WO2020221259 A1 WO 2020221259A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
information
channel
transmission
measurement value
Prior art date
Application number
PCT/CN2020/087581
Other languages
English (en)
French (fr)
Inventor
黎超
刘哲
杨帆
王俊伟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2021564661A priority Critical patent/JP7411687B2/ja
Priority to EP20798598.7A priority patent/EP3962155A4/en
Priority to KR1020217039091A priority patent/KR20220003060A/ko
Publication of WO2020221259A1 publication Critical patent/WO2020221259A1/zh
Priority to US17/514,675 priority patent/US12081475B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/25Control channels or signalling for resource management between terminals via a wireless link, e.g. sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • H04L1/0017Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy where the mode-switching is based on Quality of Service requirement
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0675Space-time coding characterised by the signaling
    • H04L1/0693Partial feedback, e.g. partial channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • H04L67/104Peer-to-peer [P2P] networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0252Traffic management, e.g. flow control or congestion control per individual bearer or channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0284Traffic management, e.g. flow control or congestion control detecting congestion or overload during communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/241TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account channel quality metrics, e.g. SIR, SNR, CIR, Eb/lo
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes

Definitions

  • This application relates to the field of communications, and in particular to a method and device for determining a transmission mode.
  • V2V Device-to-device
  • V2P vehicle-to-pedestrian
  • V2I vehicle-to-infrastructure
  • V2I/N Vehicle to network communication is a technology for direct communication between terminal devices (terminal devices).
  • V2V, V2P, V2I and V2N are collectively referred to as vehicle to everything V2X (vehicle to everything, V2X) communication. Communicate with anything.
  • terminal devices are supported to communicate based on the independently selected transmission mode and transmission parameters.
  • different terminal devices can seize resources according to the independently selected transmission mode and transmission parameters, which may be in scenarios with more users or less spectrum resources. Next, conflicts between transmission resources are generated.
  • the embodiments of the present application provide a method and device for determining a transmission mode, which are used to achieve better independent selection of a data transmission mode and/or transmission parameters.
  • a method for determining a transmission mode includes: a first device measures a first resource set according to first information to obtain a first measurement value, wherein the first information includes at least one of the following information : The subcarrier interval of the first resource set, the quality of service parameters of the first data, and the feedback information between the first device and the second device; the first resource set is used for the transmission of the first data; the first device uses the first measurement The value determines the transmission mode of the first data, and/or the first device determines the transmission parameter of the first data according to the first measurement value.
  • a measurement value is obtained by measuring a resource set according to the first information, and the data transmission mode and/or transmission parameter is determined according to the measurement value. Since the first information takes into account the subcarrier spacing of the first resource set during the data transmission process, the quality of service parameters of the first data, the feedback information between the first device and the second device, etc., a better independent data selection is realized The transmission method and/or transmission parameters.
  • the method further includes: the first device sends the first data to the second device according to the transmission mode and/or the transmission parameter.
  • the first data includes at least one of the following data: side-link data, side-link control information, and side-link feedback information.
  • the first measurement value includes at least one of the following measurement values: received signal strength indication information, reference signal received power, channel busy ratio, and channel occupation ratio.
  • the quality of service parameter of the first data includes at least one of the following information: the service type of the first data, the priority information of the first data, the delay parameter of the first data, the first data The packet error rate of the data, the packet size of the first data, and the minimum communication distance of the first data; wherein the service type of the first data is periodic service or aperiodic service.
  • the subcarrier interval of the first resource set includes any one of the following subcarrier intervals: 15kHz, 30kHz, 60kHz, 120kHz, 240kHz.
  • the subcarrier spacing of the first resource set can be used to determine the start symbol and the end symbol of the measurement window.
  • the feedback information includes: channel state information CSI feedback information and/or hybrid automatic repeat request HARQ response information received by the first device from the second device; or, the first device sends to the second device CSI feedback information and/or HARQ response information of the device.
  • the first device measures the first resource set according to the first information to obtain the first measurement value, including: the first device determines the size of the measurement window according to the first information, and/or the first The device determines the start symbol and the end symbol of the measurement window according to the first information, where the size of the measurement window refers to the amount of time domain resources and/or frequency domain resources used by the first device to measure the first resource set in the measurement window Quantity; the first device measures the first resource set in the measurement window to obtain the first measurement value according to the size, start symbol, and end symbol of the measurement window.
  • the time domain resources include time slots and/or symbols in the first resource set
  • the frequency domain resources include resource blocks and/or subchannels.
  • the measurement window includes a first measurement window and a second measurement window
  • the first information includes a quality of service parameter
  • the quality of service parameter is the priority of the first data
  • the data with the higher priority corresponds to the first Measurement window
  • the data with low priority corresponds to the second measurement window
  • the service quality parameter is the delay parameter of the first data
  • the data with high delay corresponds to the first measurement window
  • the data with low delay corresponds to the second measurement window
  • the service quality parameter is the packet error rate of the first data, then the data with the high packet error rate corresponds to the first measurement window, and the data with the low packet error rate corresponds to the second measurement window
  • the service quality parameter is the first data Service type, the data of periodic service corresponds to the first measurement window, and the data of aperiodic service corresponds to the second measurement window.
  • Different types of values can be selected according to the quality of service parameters, and the first data corresponds to different measurement windows.
  • the first measurement window and the second measurement window occupy different resources in the time domain, or the first measurement window occupies more time domain resources than the second measurement window, or the first The measurement window and the second measurement window may partially or completely overlap in the time domain.
  • the first measurement window and the second measurement window are associated with corresponding measurement thresholds.
  • the first information includes the subcarrier spacing of the first resource set. If the subcarrier spacing of the first resource set is 15kHz or 30kHz, the start symbol is the second symbol in the time slot, and the end The symbol is the penultimate symbol in the slot; or, if the subcarrier spacing of the first resource set is 60kHz, the start symbol is the third symbol in the slot, and the end symbol is the second penultimate in the slot Symbol; or, the subcarrier spacing of the first resource set is 120kHz, the start symbol is the fifth symbol in the time slot, and the end symbol is the penultimate symbol in the time slot.
  • the time slot is each time slot in which the first data is transmitted, or is the first time slot in K consecutive time slots, where K is an integer greater than 1.
  • that the first device measures the first resource set according to the first information to obtain the first measurement value includes: the first device measures the first resource set according to the first information to obtain the second measurement value And a third measurement value; the first device obtains the first measurement value according to the second measurement value and the third measurement value.
  • the first measurement value is the channel occupancy ratio
  • the first resource set includes the second resource set and the third resource set
  • the second measurement value is the number of occupied subchannels
  • the third measurement value is The number of sub-channels sent
  • the first device measures the first resource set according to the first information to obtain the second measured value and the third measured value, including: the first device measures the second resource set according to the first information to obtain the occupied The number of subchannels.
  • the first device determines the number of subchannels to be sent in the third resource set according to the first information.
  • the first device obtaining the first measurement value according to the second measurement value and the third measurement value includes: the first device obtains the channel occupancy ratio according to the number of subchannels occupied and the number of subchannels to be transmitted.
  • the number of subchannels to be sent includes at least one of the following information: retransmission resources corresponding to the negative response detected by the first device; retransmission resources corresponding to the negative response generated by the first device ; The reserved resources indicated in the control information detected by the first device.
  • the first device determining the transmission parameter of the first data according to the first measurement value includes: the first device obtains the first configuration information; the first device determines the transmission parameter according to the first configuration information and the first measurement value The transmission parameter of the first data; wherein the first configuration information includes a value set of the first measurement value corresponding to the quality of service parameter, and at least one of the following transmission parameters associated with the quality of service parameter: modulation and coding mode, transmission The number of block transmissions, the number of feedback resources, the number of data channel resources, the maximum transmission power, time delay, transmission distance, data packet size, and packet error rate.
  • the first device determining the transmission mode of the first data according to the first measurement value includes: if the first measurement value meets a preset condition, the first device discards the first data; or The device switches the first data from HARQ response transmission to transmission of the preset number of transmissions; or, the first device discards the first data without HARQ response; or, the first device discards the first data of HARQ transmission with the lowest priority; Or, the first device discards the first data whose transmission distance exceeds the transmission distance threshold; or, the first device discards the first data whose transmission delay exceeds the transmission delay threshold.
  • This implementation mode can improve the communication quality of the network and better select the transmission mode.
  • that the first measurement value satisfies the preset condition includes: one or more of the first measurement values are greater than the preset threshold value.
  • the preset threshold is determined by at least one of the first information; or, the transmission of the first data with HARQ response and the transmission of the first data without HARQ response configure independent presets. Set the threshold.
  • the first resource set corresponds to at least one of the following channels: a data channel, a control channel, and a feedback channel.
  • independent measurement thresholds are configured for different channels.
  • the control channel is located within the time-frequency resource of the time slot where the data channel is located, and the method further includes: when the first device measures the resource corresponding to the data channel, it does not measure the resource corresponding to the control channel Or, when the first device measures the resource corresponding to the data channel, it simultaneously measures the resource corresponding to the control channel and the resource corresponding to the data channel.
  • the feedback channel is located within the time-frequency resource of the time slot where the data channel is located, and the method further includes: when the first device measures the resource corresponding to the data channel, it does not measure the resource corresponding to the feedback channel Or, when the first device measures the resource corresponding to the data channel, it simultaneously measures the resource corresponding to the feedback channel and the resource corresponding to the data channel.
  • the first device when the first device measures the resource corresponding to the feedback channel, it only measures the resource corresponding to the feedback channel, and the resource corresponding to the feedback channel is located at the end of every N time slots in the first resource set. M symbols, where M and N are positive integers.
  • the method further includes: when the first device measures the resource corresponding to the feedback channel, the measured time domain resource does not include the first K symbols of the M symbols, and the value of K is determined by the subcarrier spacing OK, where K is a positive integer.
  • the feedback channel that only feeds back negative responses and the feedback channel that feeds back positive responses or negative responses are configured with independent preset thresholds.
  • the method further includes: the first device sends the first measurement value to the network device.
  • the network device may adjust the time-frequency resource for data transmission according to the first measurement value.
  • a communication device including: a transceiver module, configured to measure a first resource set according to first information to obtain a first measurement value, wherein the first information includes at least one of the following information: The subcarrier interval of a resource set, the quality of service parameters of the first data, the feedback information between the first device and the second device; the first resource set is used for the transmission of the first data; the processing module is used for the first measurement The value determines the transmission mode of the first data, and/or the first device determines the transmission parameter of the first data according to the first measurement value.
  • the transceiver module is further configured to send the first data to the second device according to the transmission mode and/or transmission parameters.
  • the first data includes at least one of the following data: side-link data, side-link control information, and side-link feedback information.
  • the first measurement value includes at least one of the following measurement values: received signal strength indication information, reference signal received power, channel busy ratio, and channel occupation ratio.
  • the quality of service parameter of the first data includes at least one of the following information: the service type of the first data, the priority information of the first data, the delay parameter of the first data, the first data The packet error rate of the data, the packet size of the first data, and the minimum communication distance of the first data; wherein the service type of the first data is periodic service or aperiodic service.
  • the subcarrier interval of the first resource set includes any one of the following subcarrier intervals: 15kHz, 30kHz, 60kHz, 120kHz, 240kHz.
  • the feedback information includes: channel state information CSI feedback information and/or hybrid automatic repeat request HARQ response information received by the first device from the second device; or, the first device sends to the second device CSI feedback information and/or HARQ response information of the device.
  • the processing module is specifically configured to determine the size of the measurement window according to the first information, and/or determine the start symbol and the end symbol of the measurement window according to the first information, where the size of the measurement window Refers to the number of time-domain resources and/or frequency-domain resources used by the first device to measure the first resource set in the measurement window; the transceiver module is specifically used to set the measurement window according to the size, start symbol, and end symbol of the measurement window.
  • the first measurement value is obtained by measuring the first resource set in the measurement window.
  • the time domain resources include time slots and/or symbols in the first resource set
  • the frequency domain resources include resource blocks and/or subchannels.
  • the measurement window includes a first measurement window and a second measurement window
  • the first information includes a quality of service parameter
  • the quality of service parameter is the priority of the first data
  • the data with the higher priority corresponds to the first Measurement window
  • the data with low priority corresponds to the second measurement window
  • the service quality parameter is the delay parameter of the first data
  • the service quality parameter is the packet error rate of the first data
  • the data with the high packet error rate corresponds to the first measurement window
  • the data with the low packet error rate corresponds to the second measurement window
  • the service quality parameter is the first data Service type, the data of periodic service corresponds to the first measurement window, and the data of aperiodic service corresponds to the second measurement window.
  • the first measurement window and the second measurement window occupy different resources in the time domain, or the first measurement window occupies more time domain resources than the second measurement window, or the first The measurement window and the second measurement window may partially or completely overlap in the time domain.
  • the first measurement window and the second measurement window are associated with corresponding measurement thresholds.
  • the first information includes the subcarrier spacing of the first resource set. If the subcarrier spacing of the first resource set is 15kHz or 30kHz, the start symbol is the second symbol in the time slot, and the end The symbol is the penultimate symbol in the slot; or, if the subcarrier spacing of the first resource set is 60kHz, the start symbol is the third symbol in the slot, and the end symbol is the second penultimate in the slot Symbol; or, the subcarrier spacing of the first resource set is 120kHz, the start symbol is the fifth symbol in the time slot, and the end symbol is the penultimate symbol in the time slot.
  • the time slot is each time slot in which the first data is transmitted, or is the first time slot in K consecutive time slots, where K is an integer greater than 1.
  • the transceiver module is specifically configured to measure the first resource set according to the first information to obtain the second measured value and the third measured value; the processing module is specifically configured to obtain the second measured value and the third measured value according to the second measured value and the first measured value. Three measurement values obtain the first measurement value.
  • the first measurement value is the channel occupancy ratio
  • the first resource set includes the second resource set and the third resource set
  • the second measurement value is the number of occupied subchannels
  • the third measurement value is The number of sub-channels sent
  • the transceiver module is specifically configured to measure the second resource set according to the first information to obtain the number of occupied sub-channels.
  • the processing module is specifically configured to determine the number of subchannels to be sent in the third resource set according to the first information.
  • the processing module is specifically used to obtain the channel occupancy ratio according to the number of sub-channels occupied and the number of sub-channels to be transmitted.
  • the number of subchannels to be sent includes at least one of the following information: retransmission resources corresponding to the negative response detected by the first device; retransmission resources corresponding to the negative response generated by the first device ; The reserved resources indicated in the control information detected by the first device.
  • the transceiver module is specifically configured to obtain the first configuration information; the processing module is specifically configured to determine the transmission parameters of the first data according to the first configuration information and the first measurement value; wherein, the first configuration
  • the information includes the value set of the first measurement value corresponding to the quality of service parameter, and at least one of the following transmission parameters associated with the quality of service parameter: modulation and coding mode, transmission times of the transmission block, number of feedback resources, and data channel Number of resources, maximum transmission power, time delay, transmission distance, data packet size, and packet error rate.
  • the processing module is specifically configured to: if the first measurement value meets a preset condition, discard the first data; or switch the first data from HARQ response transmission to the preset number of transmissions Or, discard the first data without HARQ response; or, discard the first data of HARQ transmission with the lowest priority; or, discard the first data whose transmission distance exceeds the transmission distance threshold; or, discard the first data whose transmission delay exceeds the transmission The first data of the delay threshold.
  • that the first measurement value satisfies the preset condition includes: one or more of the first measurement values are greater than the preset threshold value.
  • the preset threshold is determined by at least one of the first information; or, the transmission of the first data with HARQ response and the transmission of the first data without HARQ response configure independent presets. Set the threshold.
  • the first resource set corresponds to at least one of the following channels: a data channel, a control channel, and a feedback channel.
  • independent measurement thresholds are configured for different channels.
  • the control channel is located within the time-frequency resource of the time slot where the data channel is located.
  • the resource corresponding to the data channel is measured, the resource corresponding to the control channel is not measured, or the resource corresponding to the data channel is not measured.
  • the resource corresponding to the control channel and the resource corresponding to the data channel are measured at the same time.
  • the feedback channel is located within the time-frequency resource of the time slot where the data channel is located.
  • the resource corresponding to the data channel is measured, the resource corresponding to the feedback channel is not measured, or the resource corresponding to the data channel is not measured.
  • the resource corresponding to the feedback channel and the resource corresponding to the data channel are measured at the same time.
  • the measured time domain resource does not include the first K symbols among the M symbols, and the value of K is determined by the subcarrier interval, where K is a positive integer.
  • the feedback channel that only feeds back negative responses and the feedback channel that feeds back positive responses or negative responses are configured with independent preset thresholds.
  • the transceiver module is further configured to send the first measurement value to the network device.
  • a communication device including: a processor and a memory, the memory is used to store a program, and the processor invokes the program stored in the memory to make the communication device execute the method as described in the first aspect and any of the embodiments thereof .
  • a computer-readable storage medium stores instructions. When the instructions run on a computer or a processor, the computer or the processor executes the first aspect and any of the instructions. The method described in one possible implementation.
  • a computer program product containing instructions is provided.
  • the instructions When the instructions are run on a computer or a processor, the computer or the processor executes the steps described in the first aspect and any of its possible implementations. method.
  • a communication system which includes at least two communication devices according to the second aspect, or at least two communication devices according to the third aspect.
  • FIG. 1 is a schematic diagram of the architecture of a communication system provided by an embodiment of the application
  • FIG. 2 is a schematic structural diagram 1 of a communication device provided by an embodiment of this application.
  • FIG. 3 is a first schematic flowchart of a method for determining a transmission mode provided by an embodiment of the application
  • FIG. 4 is a schematic diagram of different multiplexing modes of control channels and data channels according to an embodiment of the application
  • FIG. 5 is a schematic diagram of a control channel and a feedback channel in different multiplexing modes according to an embodiment of the application;
  • FIG. 6 is a second schematic flowchart of a method for determining a transmission mode according to an embodiment of the application
  • FIG. 7 is a schematic diagram of measuring CR of time slot n according to an embodiment of the application.
  • FIG. 8 is a third schematic flowchart of a method for determining a transmission mode according to an embodiment of this application.
  • FIG. 9 is a first schematic diagram of a start symbol and an end symbol provided by an embodiment of this application.
  • FIG. 10 is a second schematic diagram of a start symbol and an end symbol provided by an embodiment of this application.
  • FIG. 11 is a third schematic diagram of a start symbol and an end symbol provided by an embodiment of this application.
  • FIG. 12 is a fourth flowchart of a method for determining a transmission mode according to an embodiment of this application.
  • FIG. 13 is a schematic flowchart 5 of a method for determining a transmission mode according to an embodiment of this application.
  • FIG. 14 is a sixth flowchart of a method for determining a transmission mode according to an embodiment of this application.
  • FIG. 15 is a second structural diagram of a communication device provided by an embodiment of this application.
  • the embodiments of this application rely on the V2X scenario of the fifth generation (5G) communication network in the wireless communication network. It should be pointed out that the solutions in the embodiments of this application can also be applied to other wireless communication networks.
  • the name can also be replaced with the name of the corresponding function in other wireless communication networks.
  • LTE long term evolution
  • NB-IoT narrowband internet of things
  • LTE advanced, LTE advanced long term evolution
  • -A Advanced Long term evolution
  • GSM global system for mobile communication
  • UMTS mobile communication system
  • CDMA code division multiple access
  • the embodiment of the present application provides a method for determining a transmission mode, which is applied to the V2X communication system as shown in FIG. 1.
  • the V2X communication system provided by the embodiment of the present application includes a first device 100, a second device 200, and may also include a network device 300.
  • the first device 100 and the second device 200 communicate via sidelink (SL).
  • the side link refers to the auxiliary link in the V2X network.
  • the V2X network also has an uplink. (uplink) and downlink (downlink).
  • V2X communication includes V2V communication, V2I communication, V2P communication, and V2N communication.
  • FIG. 1 only uses V2V communication in which both the first device 100 and the second device 200 are vehicles as an example for illustration, and the embodiment of the present application does not limit the specific communication scenario of V2X.
  • the first device and the second device involved in this application may be an on-board module, on-board module, on-board component, on-board chip, or on-board unit built into the vehicle as one or more components or units.
  • Vehicle-mounted modules, vehicle-mounted components, vehicle-mounted chips, or vehicle-mounted units can implement the method of this application.
  • the first device 100 and the second device 200 can communicate with each other between a vehicle-mounted device and a vehicle-mounted device, or between a roadside unit (RSU) and a vehicle-mounted device and/or a network device (such as a base station device).
  • the communication may also be communication between the network equipment 300 and the vehicle-mounted equipment and/or RSU.
  • the network equipment 300 may be an LTE base station equipment or an NR base station equipment or a network base station that provides wireless access in a subsequent evolution system. It can be understood that the embodiments of the present application do not limit the specific forms of the first device 100, the second device 200, and the network device 300, and are merely exemplary descriptions herein.
  • the communication method provided in this application can be applied not only to the side link shown in FIG. 1 but also to the cellular link.
  • the embodiments of this application do not limit the application scenarios of the communication method. This is only an exemplary illustration.
  • the first device and the second device in the embodiments of the present application are communication devices, and the communication devices may be terminal devices or network devices.
  • the first device is a network device
  • the aforementioned side link may be a link between the base station and the base station.
  • the link between the macro base station and the macro base station or the link between the macro base station and the small base station, or the link between the main base station and the secondary base station, or the link between the main base station and the main base station
  • the link between the secondary base station and the secondary base station is not limited by the embodiment of the present application, for example, the link between the secondary base station and the secondary base station, etc.
  • FIG. 2 is a communication device provided by an embodiment of this application.
  • the communication device may be the first device, the second device or the network device in this application.
  • the communication device may be a vehicle; it may also be an in-vehicle communication device or an in-vehicle terminal, or a chip in an in-vehicle communication device or an in-vehicle terminal installed on the vehicle for assisting the driving of the vehicle.
  • the vehicle-mounted terminal may be a device used to implement wireless communication functions, such as a terminal or a chip that can be used in the terminal.
  • the terminal may be a user equipment (UE), an access terminal, a terminal unit, a terminal station, a mobile station, a mobile station, a user equipment (UE), an access terminal, a terminal unit, a terminal station, a mobile station, and a mobile station in a 5G network or a public land mobile network (PLMN) that will be evolved in the future.
  • UE user equipment
  • PLMN public land mobile network
  • the access terminal can be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices or wearable devices, virtual reality (VR) terminal devices, augmented reality (AR) terminal devices, industrial control (industrial) Wireless terminal in control), wireless terminal in self-driving, wireless terminal in remote medical, wireless terminal in smart grid, wireless terminal in transportation safety (transportation safety) Terminal, wireless terminal in smart city, wireless terminal in smart home, etc.
  • the vehicle-mounted terminal can be mobile or fixed.
  • the communication device 200 includes at least one processor 201, a memory 202, a transceiver 203, and a communication bus 204.
  • the processor 201 is the control center of the communication device, and may be a processor or a collective name for multiple processing elements.
  • the processor 201 is a central processing unit (CPU), or an application specific integrated circuit (ASIC), or one or more integrated circuits configured to implement the embodiments of the present invention
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • microprocessors digital signal processors, DSP
  • FPGA field programmable gate arrays
  • the processor 201 can execute various functions of the communication device by running or executing a software program stored in the memory 202 and calling data stored in the memory 202.
  • the processor 201 may include one or more CPUs, such as CPU0 and CPU1 shown in FIG. 2.
  • the communication device may include multiple processors, such as the processor 201 and the processor 205 shown in FIG. 2.
  • processors can be a single-core processor (single-CPU) or a multi-core processor (multi-CPU).
  • the processor here may refer to one or more communication devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • the memory 202 can be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types that can store information and instructions
  • the dynamic storage device can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM) or other optical disk storage, optical disc storage (Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program codes in the form of instructions or data structures and can be used by a computer Any other media accessed, but not limited to this.
  • the memory 202 may exist independently and is connected to the processor 201 through a communication bus 204.
  • the memory 202 may also be integrated with the processor 201.
  • the memory 202 is used to store a software program for executing the solution of the present invention, and the processor 201 controls the execution.
  • the transceiver 203 is used to communicate with other communication devices.
  • the transceiver 203 can also be used to communicate with communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), and so on.
  • the transceiver 203 may include a receiving unit to implement a receiving function, and a sending unit to implement a sending function.
  • the communication bus 204 may be an industry standard architecture (ISA) bus, an external communication device interconnection (peripheral component, PCI) bus, or an extended industry standard architecture (extended industry standard architecture, EISA) bus.
  • ISA industry standard architecture
  • PCI peripheral component
  • EISA extended industry standard architecture
  • the bus can be divided into address bus, data bus, control bus, etc. For ease of representation, only one thick line is used in FIG. 2, but it does not mean that there is only one bus or one type of bus.
  • the structure of the communication device shown in FIG. 2 does not constitute a limitation on the communication device, and may include more or fewer components than shown in the figure, or a combination of certain components, or a different component arrangement.
  • the method for determining the transmission mode obtains a measurement value by measuring a resource set in a measurement window, and determines the data transmission mode and/or transmission parameter according to the measurement value .
  • the measured values include received signal strength indication information (RSSI), reference signal received power (reference signal received power, RSRP), channel busy ratio (CBR), channel occupancy ratio (channel occupancy ratio) , CR) etc.
  • the RSSI at this time may be referred to as the side link RSSI (sidelink RSSI, S-RSSI).
  • S-RSSI is defined as the linear average of all received powers on the configured sub-channels received on each symbol. For example, there are 10 symbols available for measurement in a time slot. Assuming that the bandwidth occupied by the sub-channels configured on each symbol is 20 physical resource blocks (PRBs), then the 10 symbols are calculated separately. The total power of each symbol on the 20 PRBs, and then linearly average the measurement results on the 10 available symbols to obtain the S-RSSI.
  • PRBs physical resource blocks
  • CBR refers to the ratio or part of the S-RSSI measured on the sub-channels in the resource pool in the time slot where the defined measurement window is located in time slot n, which exceeds the configured threshold.
  • the CBR may be measured for different channels to obtain the CBR of the corresponding channel. For example, measuring the physical sidelink shared channel (PSSCH) to obtain the CBR of the PSSCH; measuring the physical sidelink control channel (PSCCH) to obtain the CBR of the PSCCH; The sidelink feedback channel (physical sidelink feedback channel, PSFCH) is measured to obtain the CBR of the PSFCH.
  • PSSCH physical sidelink shared channel
  • PSCCH physical sidelink control channel
  • PSFCH physical sidelink feedback channel
  • PSCCH For PSCCH, only the non-adjacent positions of the PSCCH and PSSCH resource pools in the frequency domain are measured. During measurement, the bandwidth of PSCCH is fixed at 2 PRBs.
  • CR refers to the value obtained by dividing the number of channels used for transmission by the total configured sub-channels in time slot n.
  • the number of channels used for transmission may be the sum of the number of subchannels used for transmission before time slot n, and/or the number of subchannels scheduled for transmission after time slot n.
  • the total number of configured sub-channels may be in the measurement window before time slot n, or may be the number of sub-channels in the measurement window after time slot n.
  • the measurement window before time slot n can be [na,n-1]
  • the measurement window after time slot n can be [n,n+b]
  • the total number of configured subchannels is [na,n+ b] The total number of sub-channels configured on.
  • time slot n For time slot n, suppose that the total number of subchannels S1 used for transmission on time slot [na, n-1], and the subchannels scheduled for transmission on time slot [n, n+b] The total number S2, the total number S of subchannels configured on the time slot [na, n+b], the CR measured at the time of the time slot n is (S1+S2)/S.
  • the total number of sub-channels scheduled for transmission on [n+1, n+b] is actually sub-channels occupied by future transmissions, which can be determined based on the number of sub-channels detected on time slot n
  • the retransmission indicated by the indication information of scheduling assignment (scheduling assignment, SA) is counted.
  • this application provides a method for determining a transmission mode, and the method includes S301-S302:
  • the first device measures the first resource set according to the first information to obtain a first measurement value.
  • the first information includes at least one of the following information: subcarrier spacing (SCS) of the first resource set, quality of service (QoS) parameters of the first data, the first device and the second Feedback information between devices.
  • SCS subcarrier spacing
  • QoS quality of service
  • the size of the time slot and/or the size of the subchannel in the measurement window and/or the positions of the start symbol and the end symbol of the measurement in the time slot may be determined according to the subcarrier spacing of the first resource set.
  • the position of the measurement window and/or the size of the measurement window may be determined according to the quality of service parameter of the first data.
  • the first measurement value may be obtained according to the type of feedback information between the first device and the second device.
  • the number of sub-channels occupied during transmission or scheduling can be determined according to the feedback information.
  • the type of feedback information includes any one of the following: only feedback positive acknowledgement (acknowledge, ACK) and not feedback negative acknowledgement (non-acknowledge, NACK), or only feedback negative acknowledgement NACK without feedback ACK, or feedback positive acknowledgement ACK or Negative response NACK.
  • the feedback information here may be feedback information of the first device for data sent by the second device, or feedback information received by the first device and sent from the second device.
  • the receiver of the first device when the receiver of the first device successfully decodes the corresponding data, it sends an ACK to the second device.
  • the receiver of the first device fails to decode the corresponding data, it does not send an ACK to the second device, nor Send NACK to the second device; or, when the receiver of the first device successfully decodes the corresponding data, it does not send ACK to the second device, and when the receiver of the first device fails to decode the corresponding data, it sends the second device Send NACK; or, when the receiver of the first device successfully decodes the corresponding data, send an ACK to the second device, and when the receiver of the first device fails to decode the corresponding data, send a NACK to the second device.
  • the first device may simultaneously determine the first device based on two or three of the subcarrier spacing of the first resource set, the quality of service parameter of the first data, and the feedback information between the first device and the second device.
  • One measurement value According to multiple measurements, the corresponding aspects are determined separately based on different information, and then the first measurement value finally obtained is jointly determined.
  • the positions of the start symbol and the end symbol of the measurement window are determined according to the subcarrier spacing
  • the number of subchannels occupied during transmission or scheduling is determined according to the feedback information
  • the position and size of the measurement window are determined according to the quality of service parameters.
  • the first measurement value may be determined according to the measurement window, the symbol position during the measurement, the slot position during the measurement, and the position and number of the subchannels.
  • the first device is the sender of the first data
  • the second device is the receiver of the first data. That is, the first device sends the first data to the second device on the first resource set.
  • the first data includes at least one of the following data: sidelink data, sidelink control information, and sidelink feedback information.
  • the sidelink data can be the data carried in the physical sidelink shared channel (PSSCH), the information carried in the physical sidelink control channel (PSCCH), or the physical Information carried by the sidelink feedback channel (physical sidelink feedback channel, PSFCH).
  • PSSCH physical sidelink shared channel
  • PSCCH physical sidelink control channel
  • PSFCH physical sidelink feedback channel
  • the quality of service parameter of the first data includes at least one of the following information: the service type of the first data, the priority information of the first data, the delay parameter of the first data, the packet error rate of the first data, and the first data.
  • the reliability information of the first data the packet size of the first data, and the minimum communication distance of the first data.
  • the business type is periodic business or non-periodic business.
  • the priority information is used to indicate or determine the priority level of the data packet. The higher the priority, the more important or urgent the data packet corresponding to it.
  • the delay parameter refers to the maximum delay required for data packet transmission. Exemplarily, some data packets are required to reach the receiver within 3ms, some data packets are required to reach the receiver within 10ms, and some data packets are required to reach the receiver within 50ms. The smaller the maximum end-to-end delay indicated by the delay parameter, the more urgent the data packet to be sent, or the faster it needs to be sent, received and processed.
  • the packet error rate refers to the rate at which data packets receive errors.
  • the reliability information indicates the reliability requirement of the data packet.
  • the higher the reliability requirement such as 99.99%, more mechanisms are needed to ensure the correct reception of data packets during transmission, such as physical layer feedback or more retransmission times; reliability
  • the packet size can also be the required transmission rate.
  • the larger the value the larger the amount of packets or information to be transmitted, and vice versa, the smaller the amount of packets or information to be transmitted.
  • the minimum communication distance may also be the required minimum communication distance or the minimum required communication distance, which refers to the minimum distance required to achieve a certain transmission delay, reliability, and rate.
  • the distance between the transceivers is less than or equal to the required minimum distance, the communication between the transceivers needs to meet the requirements of transmission delay, reliability, and speed; when the distance between the transceivers is greater than or equal to When the minimum distance is required, the communication between the transceivers does not necessarily meet the requirements of transmission delay, reliability, and speed.
  • the feedback information between the first device and the second device includes: channel state information (CSI) feedback information received by the first device from the second device and/or hybrid automatic repeat request, HARQ) response information; or, CSI feedback information and/or HARQ response information sent by the first device to the second device.
  • the CSI includes one or more of a precoding matrix indicator (PMI), a rank indicator (rank indicator, RI), and a channel quality indicator (channel quality indicator, CQI).
  • PMI precoding matrix indicator
  • rank indicator rank indicator
  • CQI channel quality indicator
  • the first resource set is one or more resource pools that are predefined or configured by signaling for sidelink transmission, and the transmission resource of the first data is determined from the first resource set.
  • the resource pool here refers to a collection of time domain and frequency domain resources.
  • a resource pool includes time slots used for sideline transmission and frequency domain resources of a certain position and size on the time slots.
  • the subcarrier interval of the first resource set includes any one of the following subcarrier intervals: 15kHz, 30kHz, 60kHz, 120kHz, 240kHz. It should be noted that the foregoing subcarrier interval is only illustratively described, and this application is not limited to only being applied to the foregoing subcarrier interval. In the embodiment of the present application, the subcarrier interval of the first resource set may be used to determine the start symbol and the end symbol of the measurement window for the first resource set to perform measurement, and the details are described later.
  • the first resource set may correspond to at least one of the following channels: a data channel, a control channel, and a feedback channel. That is, the first resource set can transmit at least one of the foregoing channels.
  • the data channel may be the PSSCH
  • the control channel may be the PSCCH
  • the feedback channel may be a physical sidelink feedback channel (PSFCH).
  • the first device measures the first resource set corresponding to the data channel according to the first information to obtain the first measurement value of the data channel. And/or, the first device measures the first resource set corresponding to the control channel according to the first information to obtain the first measurement value of the control channel. And/or, the first device measures the first resource set corresponding to the feedback channel according to the first information to obtain the first measurement value of the feedback channel.
  • the first device measures the first resource set according to the first information
  • independent measurement thresholds can be configured for different channels. The reason is that the amount of data transmitted by different channels is different, which makes the corresponding measurement window or the service load on the measurement resource different, resulting in different results or reference points of the measurement values.
  • the data channel and the feedback channel are configured with independent S-RSSI measurement thresholds.
  • the data channel is configured with the first measurement threshold of S-RSSI and the feedback channel is configured with the second measurement threshold of S-RSSI
  • the CBR of the data channel Compare the RSSI of the sub-channel of the data channel with the first measurement threshold; when calculating the CBR of the feedback channel, compare the RSSI of the sub-channel of the feedback channel with the second measurement threshold.
  • the feedback channel that only feeds back the negative acknowledgement NACK and the feedback channel that feeds back the positive acknowledgement ACK or the negative acknowledgement NACK are configured with independent preset thresholds, for example, a preset threshold for measuring CBR. See step S301 for the related description of only feeding back negative acknowledgement NACK and feeding back positive acknowledgement ACK or negative acknowledgement NACK, which will not be repeated here.
  • the data channel can be multiplexed with the control channel or the feedback channel in different multiplexing modes, and the corresponding multiplexing modes are described below.
  • the control channel and the data channel are multiplexed in different ways.
  • A is the multiplexing method of Option 1A (Option 1A)
  • B is the multiplexing method of Option 1B (Option 1B)
  • C is the multiplexing method of Option 2 (Option 2)
  • D is Option 3 (Option 3).
  • the multiplexing method is the multiplexing method of Option 1A (Option 1A)
  • B is the multiplexing method of Option 1B (Option 1B)
  • C is the multiplexing method of Option 2 (Option 2)
  • D is Option 3 (Option 3).
  • the multiplexing method is the multiplexing method of Option 1A
  • B is the multiplexing method of Option 1B (Option 1B)
  • C is the multiplexing method of Option 2 (Option 2)
  • D is Option 3 (Option 3).
  • multiplexing modes 1A and 1B can be considered as the multiplexing mode of control channel and data channel time division multiplexing; multiplexing mode C can be considered as the multiplexing mode of control channel and data channel frequency division multiplexing; multiplexing mode D can be considered as a multiplexing method in which the control channel is embedded into the resource where the data channel is located.
  • the control channel is located within the time-frequency resource of the time slot where the data channel is located.
  • the first device can measure the resource corresponding to the data channel, it does not measure the resource corresponding to the control channel.
  • the first device measures the resource corresponding to the data channel, it simultaneously measures the resource corresponding to the control channel and the resource corresponding to the data channel.
  • the feedback channel and the data channel are multiplexed in different ways.
  • the resources corresponding to the feedback channel are located in the last M symbols in every N time slots in the first resource set, occupying part of the subchannels or PRBs of the data channel.
  • the resources corresponding to the feedback channel are located in the last M symbols in every N time slots in the first resource set, occupying all sub-channels or PRBs of the data channel, and the feedback channel of the resource pool configuration
  • the bandwidth may be the same or different from the bandwidth of the data channel, and the bandwidth of the feedback channel used by the terminal device when sending data may be the same or different from the bandwidth of the data channel.
  • the difference from B in FIG. 5 is that there is no data channel and control channel in the time slot where the feedback channel is located.
  • both N and M are configured by the network device or pre-configured according to the protocol.
  • the first device when the feedback channel is located within the time-frequency resource of the time slot where the data channel is located, when the first device measures the resource corresponding to the data channel, it does not measure the resource corresponding to the feedback channel. Or, when the first device measures the resource corresponding to the data channel, it simultaneously measures the resource corresponding to the feedback channel and the resource corresponding to the data channel.
  • the first device when the first device measures the resource corresponding to the feedback channel, it only measures the resource corresponding to the feedback channel, and the resource corresponding to the feedback channel is located in the last M symbols in every N time slots in the first resource set, where , M and N are positive integers. Further, when the feedback channel is located within the time-frequency resource of the time slot where the data channel is located, when the first device measures the resource corresponding to the feedback channel, it does not measure the resource corresponding to the data channel.
  • both N and M are configured by the network device or pre-configured according to the protocol.
  • the measured time domain resource does not include the first K symbols among the M symbols, and the value of K is determined by the subcarrier interval, where K is a positive integer.
  • K is a positive integer.
  • K is a positive integer.
  • the first measurement value may include received signal strength indication information (RSSI), reference signal received power (RSRP), channel busy ratio (channel busy ratio, CBR), channel occupancy ratio (channel occupancy) ratio, CR).
  • RSSI received signal strength indication information
  • RSRP reference signal received power
  • CBR channel busy ratio
  • CR channel occupancy ratio
  • the embodiment of the present application improves the calculation method of the above-mentioned first measurement value, which is specifically as follows:
  • step S301 may include:
  • the first device measures the first resource set according to the first information to obtain a second measurement value and a third measurement value.
  • the first resource set includes a second resource set and a third resource set, the second resource set is used to obtain the second measurement value, and the third resource set is used to obtain the third measurement value.
  • the first measurement value is CR
  • the second measurement value is the number of sub-channels occupied
  • the third measurement value is the number of sub-channels to be transmitted.
  • the number of sub-channels to be sent includes at least one of the following information: the retransmission resource corresponding to the negative acknowledgement NACK detected by the first device, the retransmission resource corresponding to the negative acknowledgement NACK generated by the first device, and the first device detecting The reserved resources indicated in the received control information.
  • the retransmission resource corresponding to the negative acknowledgement NACK detected by the first device refers to the first device sending data to the second device. If the second device does not receive the data, the second device sends a negative acknowledgement to the first device NACK to instruct the first device to retransmit the data on the corresponding retransmission resource. The first device can determine that the first device will retransmit data on the corresponding retransmission resource according to the negative acknowledgement NACK, thereby occupying the corresponding subchannel.
  • the retransmission resource corresponding to the negative acknowledgement NACK generated by the first device refers to the second device sending data to the first device. If the first device does not receive the data, the first device needs to send a negative acknowledgement to the second device NACK to instruct the second device to retransmit the data on the corresponding retransmission resource.
  • the first device may determine according to the negative acknowledgement NACK that the second device will retransmit the data on the corresponding retransmission resource, thereby occupying the corresponding subchannel.
  • the reserved resource indicated in the control information detected by the first device refers to that when a periodic service is performed, the control information indicates that the first device periodically occupies the reserved resource.
  • the first device may measure the number of subchannels occupied by the second resource set according to the first information, and the first device determines the number of subchannels to be transmitted in the third resource set according to the first information.
  • the second resource set includes time-frequency resources of time slot [n-a1, n-1], and the third resource set includes time slot [n, n+ The time-frequency resource of b1]; the second measurement value is the number of subchannels occupied by the time slot [n-a1,n-1], and the third measurement value is the number of subchannels to be transmitted in the time slot [n,n+b1].
  • a1+b1+1 1000.
  • the first measurement value, the second measurement value, and the third measurement value are all CR
  • the first device may measure the second resource set according to the first information to obtain the second measurement value, and according to the first The information measures the third resource set to obtain the third measurement value.
  • the second resource set is different from the third measurement set.
  • the second resource set includes time-frequency resources of time slots [n-a1, n-1] and [n, n+b1], and the third resource set includes time slots [n-a2, n-1] and [n,n+b2] time-frequency resources; the second measurement value is based on the number of subchannels occupied by time slot [n-a1,n-1] and time slot [n,n+b1] according to the method shown in Figure 7.
  • the first channel occupancy ratio CR1 of time slot n is obtained from the number of sub-channels sent; the third measurement value is the number of sub-channels occupied by time slot [n-a2, n-1] and Slot [n, n+b2] will be the second channel occupancy ratio CR2 of slot n obtained from the number of subchannels sent. Among them, a2+b2+1 ⁇ 1000.
  • the first device obtains a first measurement value according to the second measurement value and the third measurement value.
  • the first device may according to the number of occupied sub-channels and the number of sub-channels to be transmitted
  • the number of subchannels is CR. See the description about CR in step S601 for the specific manner, which will not be repeated here.
  • the same ⁇ and the same ⁇ may be used to calculate CR.
  • different ⁇ and ⁇ may be used to calculate CR, for example, periodic services use ⁇ 1 and ⁇ 1, and aperiodic services use ⁇ 2 and ⁇ 2.
  • each measurement window can be uniquely determined by the size, the start symbol and the end symbol. details as follows:
  • step S301 may include S801-S802:
  • the first device determines the size of the measurement window according to the first information, and/or the first device determines the start symbol and the end symbol of the measurement window according to the first information.
  • the size of the measurement window refers to the number of time domain resources and/or frequency domain resources used by the first device to measure the first resource set in the measurement window.
  • the time domain resources include time slots and/or symbols in the first resource set, and the frequency domain resources include resource blocks and/or subchannels.
  • the measurement window may include a first measurement window and a second measurement window.
  • the resources occupied by the first measurement window and the second measurement window in the time domain may be different, or the first measurement window occupies more time domain resources than the second measurement window, or the first measurement window and the second measurement window
  • the two measurement windows can partially or completely overlap in the time domain.
  • the first information includes service quality parameters
  • different measurement windows can be corresponding to different types of values of the service quality parameters:
  • the service quality parameter is the priority of the first data, then the data with the higher priority corresponds to the first measurement window, and the data with the lower priority corresponds to the second measurement window.
  • the measurement accuracy can be improved by corresponding to a measurement window that occupies more time-domain resources for data with a higher priority.
  • the quality of service parameter is the delay parameter of the first data, then the data with high delay corresponds to the first measurement window, and the data with low delay corresponds to the second measurement window.
  • data with high latency corresponds to a measurement window that occupies more time domain resources, so that the measurement can be more accurate, and it will not compete with low latency services for measurement capabilities and resources.
  • the quality of service parameter is the packet error rate of the first data, then data with a high packet error rate corresponds to the first measurement window, and data with a low packet error rate corresponds to the second measurement window.
  • data with a high packet error rate corresponds to a measurement window that occupies more time domain resources, measurement accuracy can be improved, and it is convenient to adjust time-frequency resources to reduce the packet error rate.
  • the service quality parameter is the service type of the first data
  • the data of the periodic service corresponds to the first measurement window
  • the data of the aperiodic service corresponds to the second measurement window.
  • the measurement window that occupies less time domain resources can reduce measurement power consumption.
  • long-term measurement of non-periodic services cannot improve measurement accuracy.
  • the first measurement window corresponding to the periodic service data is longer than the second measurement window corresponding to the aperiodic service data.
  • the measurement window of the aperiodic service is a subset of the measurement window of the periodic service.
  • the first measurement window and the second measurement window are associated with corresponding measurement thresholds.
  • the start symbol is the second symbol in the time slot, and the end symbol is the second to last symbol in the time slot.
  • the subcarrier interval of the first resource set is 60kHz, then the start symbol is the third symbol in the slot, and the end symbol is the penultimate symbol in the slot; or, the subcarrier of the first resource set
  • the interval is 120 kHz, the start symbol is the fifth symbol in the time slot, and the end symbol is the penultimate symbol in the time slot.
  • the above method can be used in a scenario where the duration of automatic gain control is fixed.
  • the duration of the signal required for AGC is fixed at about 35us.
  • this duration corresponds to the 15kHz subcarrier interval, it corresponds to half a symbol.
  • one symbol can be used as AGC; for example, 35us AGC duration corresponds to 30kHz, 60kHz , 120kHz, 240kHz sub-carrier spacing, corresponding to 1, 2, 4 or 8 symbols respectively.
  • the last symbol in the time slot is usually used for switching between receiving and sending operations in the side link, so the last symbol is usually not used for measurement.
  • the subcarrier spacing of the first resource set is 15kHz or 30kHz, then the start symbol is the first symbol in the time slot, and the end symbol is the second last symbol in the time slot ;
  • the subcarrier interval of the first resource set is 60kHz, the start symbol is the second symbol in the slot, and the end symbol is the penultimate symbol in the slot; or, the subcarrier of the first resource set
  • the interval is 120kHz, the start symbol is the fourth symbol in the time slot, and the end symbol is the penultimate symbol in the time slot.
  • the time slot is each time slot in which the first data is transmitted, or is the first time slot in K consecutive time slots, where K is an integer greater than 1.
  • K is an integer greater than 1.
  • only the first several symbols on the first time slot are used for AGC, and the symbols on subsequent time slots are not used for AGC.
  • AGC automatic gain control
  • the end symbol of the measurement window is located at the penultimate symbol 12 (the extended CP is 10).
  • the end symbol of the measurement window is The end symbol is the last symbol where the data is located, such as symbol 8 in FIG. 9 or symbol 7 in FIG. 10.
  • the start symbol and the end symbol of the measurement window on each time slot are also different.
  • the start symbol of the measurement window is the same as that in single time slot transmission, and the end symbol of the measurement window can be on time slot 2.
  • the first device measures the first resource set in the measurement window to obtain the first measurement value according to the size, start symbol, and end symbol of the measurement window.
  • the measurement window can be uniquely determined according to the size of the measurement window, the start symbol and the end symbol.
  • the first measurement window is determined according to the size of the first measurement window, the start symbol and the end symbol, and the size of the second measurement window, the start symbol and the end symbol are determined The second measurement window.
  • the first device determines a transmission mode of the first data according to the first measurement value, and/or the first device determines a transmission parameter of the first data according to the first measurement value.
  • the first device determines the transmission mode of the first data according to the first measurement value, including:
  • any one of the following transmission methods is executed.
  • that the first measurement value satisfies the preset condition includes: one or more of the first measurement values are greater than the preset threshold value.
  • the preset threshold is determined by at least one of the first information; or, the transmission of the first data with HARQ response and the transmission of the first data without HARQ response configure independent preset thresholds.
  • the first device discards the first data.
  • the first data can be directly discarded.
  • the first device switches the first data from HARQ response transmission to transmission with a preset number of transmissions.
  • the negative response NACK or the positive response ACK will occupy more time-frequency resources. If the CR is high, the HARQ response transmission can be switched to the transmission with the preset number of transmissions to reduce the negative response NACK Or acknowledge the time-frequency resources occupied by ACK.
  • the first device discards the first data without a HARQ response.
  • the first device preferentially discards the transmission block or data packet of the first data without HARQ response.
  • the first device discards the first data of HARQ transmission with the lowest priority.
  • the first data of HARQ transmission with the lowest priority can be directly discarded, leaving the time-frequency resources for more data. High priority data communication.
  • the first device discards the first data whose transmission distance exceeds the transmission distance threshold.
  • the first device discards the data packet to be transmitted.
  • the first device discards the first data whose transmission delay exceeds the transmission delay threshold.
  • the first device preferentially discards the data packet.
  • a joint function of priority, transmission delay, and transmission distance can be defined.
  • the preset threshold value can be defined as substituting the preset priority, preset transmission delay, and preset according to the joint function. The threshold value obtained by the transmission distance, if the first measurement value meets the preset condition, the first device discards the first data that meets the following formula:
  • R is the joint function
  • k1 is the preset priority
  • k2 is the preset transmission delay
  • k3 is the preset transmission distance
  • i1 is the priority of the first data
  • i2 is the transmission delay of the first data
  • i3 is The transmission distance of the first data.
  • the preset threshold value within the required minimum distance and outside the minimum distance may be different.
  • the preset thresholds within the time delay requirement and outside the time delay requirement may be different.
  • the preset threshold values for different priorities may be different.
  • the corresponding preset threshold values may also be different.
  • a measurement value is obtained by measuring a resource set according to the first information, and the data transmission mode and/or transmission parameter is determined according to the measurement value. Since the first information takes into account the subcarrier spacing of the first resource set during the data transmission process, the quality of service parameters of the first data, the feedback information between the first device and the second device, etc., a better independent data selection is realized The transmission method and/or transmission parameters.
  • the first device to determine the transmission parameter of the first data according to the first measurement value includes S1201-S1202:
  • the first device obtains first configuration information.
  • the first device may receive the first configuration information from the network device.
  • the first configuration information includes a value set of the first measurement value corresponding to the quality of service parameter, and at least one of the following transmission parameters associated with the quality of service parameter: modulation and coding mode, transmission times of the transmission block, feedback resource Number, number of data channel resources, maximum transmission power, time delay, transmission distance, data packet size, packet error rate.
  • the first configuration information may be configured by the network device, or pre-configured according to a protocol.
  • one or more service quality parameter values can be configured, such as priority, minimum communication distance, delay requirement, etc., and these service quality values correspond to at least one of the above transmission parameters.
  • the first configuration information may also correspond to a value set of the first measurement value. That is, the first configuration information will simultaneously configure the following information in an interrelated manner: the quality of service parameter, the value set of the first measurement value, and the transmission parameter.
  • the first device determines a transmission parameter of the first data according to the first configuration information and the first measurement value.
  • the first device determines the first measurement value and the value of the quality of service parameter of the first data sent by the first device, and then the first device determines the transmission parameter based on the two values and the first configuration information obtained The value or range of values in. Then the first device sends the first data of the first device according to the determined transmission parameter.
  • the method may further include:
  • the first device sends the first data to the second device according to the transmission mode and/or the transmission parameter.
  • the first device determines the transmission parameter according to the foregoing manner, and determines whether the first data to be sent according to the transmission parameter needs to be discarded before sending the first data. If it is, it is directly discarded; otherwise, the first data is sent according to the determined transmission parameter.
  • the method may further include:
  • the first device sends a first measurement value to a network device.
  • the network device receives the first measurement value from the first device.
  • the network device may adjust the configuration of the corresponding channel resource according to the first measurement value.
  • the first device may send the CBR of the feedback channel to the network device, and the network device may adjust the channel resource configuration of the feedback channel according to the CBR.
  • the methods and/or steps implemented by the first device can also be implemented by components (such as chips or circuits) that can be used in the first device, and the methods and/or steps implemented by the network device Steps can also be implemented by components that can be used in network devices.
  • an embodiment of the present application also provides a communication device, which is used to implement the foregoing various methods.
  • the communication device may be the first device in the foregoing method embodiment, or a device including the foregoing first device, or a component applicable to the foregoing first device.
  • the communication device includes hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiments of the present application may divide the communication device into functional modules according to the foregoing method embodiments.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 15 shows a schematic structural diagram of a communication device 150.
  • the communication device 150 includes a processing module 1501 and a transceiver module 1502.
  • the transceiver module 1502 may also be referred to as a transceiver unit to implement sending and/or receiving functions, for example, it may be a transceiver circuit, transceiver, transceiver or communication interface.
  • the transceiver module 1502 is configured to measure the first resource set according to the first information to obtain a first measurement value, where the first information includes at least one of the following information: the subcarrier interval of the first resource set, and the first data Service quality parameters, feedback information between the first device and the second device; the first resource set is used for the transmission of the first data; the processing module 1501 is used for determining the transmission mode of the first data according to the first measurement value, and/ Or, the first device determines the transmission parameter of the first data according to the first measurement value.
  • the transceiver module 1502 is further configured to send the first data to the second device according to the transmission mode and/or transmission parameters.
  • the first data includes at least one of the following data: side link data, side link control information, and side link feedback information.
  • the first measurement value includes at least one of the following measurement values: received signal strength indication information, reference signal received power, channel busy ratio, and channel occupation ratio.
  • the quality of service parameter of the first data includes at least one of the following information: a service type of the first data, priority information of the first data, a delay parameter of the first data, and a packet error rate of the first data , The packet size of the first data, and the minimum communication distance of the first data; wherein the service type of the first data is periodic service or aperiodic service.
  • the subcarrier interval of the first resource set includes any one of the following subcarrier intervals: 15kHz, 30kHz, 60kHz, 120kHz, 240kHz.
  • the feedback information includes: channel state information CSI feedback information and/or hybrid automatic repeat request HARQ response information received by the first device from the second device; or CSI feedback information sent by the first device to the second device And/or HARQ response information.
  • the processing module 1501 is specifically configured to determine the size of the measurement window according to the first information, and/or determine the start symbol and the end symbol of the measurement window according to the first information, where the size of the measurement window refers to the first device
  • the number of time-domain resources and/or frequency-domain resources used in the measurement of the first resource set in the measurement window; the transceiver module 1502 is specifically configured to perform the measurement in the measurement window according to the size, start symbol, and end symbol of the measurement window
  • the first measurement value is obtained by measuring the first resource set.
  • the time domain resources include time slots and/or symbols in the first resource set
  • the frequency domain resources include resource blocks and/or subchannels.
  • the measurement window includes a first measurement window and a second measurement window
  • the first information includes a service quality parameter
  • the service quality parameter is a priority of the first data, and the data with a higher priority corresponds to the first measurement window, and the priority Low data corresponds to the second measurement window
  • the service quality parameter is the delay parameter of the first data, then the data with high delay corresponds to the first measurement window, and the data with low delay corresponds to the second measurement window
  • the quality of service The parameter is the packet error rate of the first data, then data with a high packet error rate corresponds to the first measurement window, and data with a small packet error rate corresponds to the second measurement window
  • the service quality parameter is the service type of the first data, the period The service data corresponds to the first measurement window, and the non-periodic service data corresponds to the second measurement window.
  • the first measurement window and the second measurement window occupy different resources in the time domain, or the first measurement window occupies more time domain resources than the second measurement window, or the first measurement window and the second measurement window occupy more time domain resources.
  • the measurement windows can partially or completely overlap in the time domain.
  • the first measurement window and the second measurement window are associated with corresponding measurement thresholds.
  • the first information includes the subcarrier interval of the first resource set. If the subcarrier interval of the first resource set is 15kHz or 30kHz, the start symbol is the second symbol in the time slot, and the end symbol is the second symbol in the time slot. Or, if the subcarrier spacing of the first resource set is 60kHz, the start symbol is the third symbol in the time slot, and the end symbol is the second last symbol in the time slot; or, The sub-carrier spacing of a resource set is 120 kHz, the start symbol is the fifth symbol in the slot, and the end symbol is the penultimate symbol in the slot.
  • the time slot is each time slot in which the first data is transmitted, or is the first time slot in consecutive K time slots, where K is an integer greater than 1.
  • the transceiver module 1502 is specifically configured to measure the first resource set according to the first information to obtain the second measurement value and the third measurement value; the processing module 1501 is specifically configured to obtain the second measurement value and the third measurement value according to the second measurement value and the third measurement value. To the first measured value.
  • the first measurement value is the channel occupancy ratio
  • the first resource set includes the second resource set and the third resource set
  • the second measurement value is the number of subchannels occupied
  • the third measurement value is the number of subchannels to be transmitted.
  • the transceiver module 1502 is specifically configured to measure the second resource set according to the first information to obtain the number of occupied subchannels.
  • the processing module 1501 is specifically configured to determine the number of subchannels to be transmitted in the third resource set according to the first information.
  • the processing module 1501 is specifically configured to obtain the channel occupancy ratio according to the number of sub-channels occupied and the number of sub-channels to be transmitted.
  • the number of subchannels to be sent includes at least one of the following information: the retransmission resource corresponding to the negative answer detected by the first device; the retransmission resource corresponding to the negative answer generated by the first device; the first device detects The reserved resources indicated in the received control information.
  • the transceiver module 1502 is specifically configured to obtain the first configuration information; the processing module 1501 is specifically configured to determine the transmission parameters of the first data according to the first configuration information and the first measurement value; wherein the first configuration information includes the service The value set of the first measurement value corresponding to the quality parameter, and at least one of the following transmission parameters associated with the quality of service parameter: modulation and coding mode, transmission times of transmission blocks, number of feedback resources, number of resources of data channels, Maximum transmission power, time delay, transmission distance, data packet size, and packet error rate.
  • the processing module 1501 is specifically configured to: if the first measured value meets a preset condition, discard the first data; or, switch the first data from HARQ response transmission to transmission with a preset number of transmissions; or , Discard the first data without HARQ response; or discard the first data transmitted by HARQ with the lowest priority; or discard the first data whose transmission distance exceeds the transmission distance threshold; or discard the first data whose transmission delay exceeds the transmission delay threshold First data.
  • that the first measurement value satisfies a preset condition includes: one or more of the first measurement values are greater than a preset threshold value.
  • the preset threshold is determined by at least one of the first information; or, the transmission of the first data with HARQ response and the transmission of the first data without HARQ response configure independent preset thresholds.
  • the first resource set corresponds to at least one of the following channels: a data channel, a control channel, and a feedback channel.
  • independent measurement thresholds can be configured for different channels.
  • control channel is located within the time-frequency resource of the time slot where the data channel is located.
  • the resource corresponding to the control channel is not measured, or when the resource corresponding to the data channel is measured, At the same time, the resource corresponding to the control channel and the resource corresponding to the data channel are measured.
  • the feedback channel is located within the time-frequency resource of the time slot where the data channel is located.
  • the resource corresponding to the data channel is measured, the resource corresponding to the feedback channel is not measured, or when the resource corresponding to the data channel is measured, At the same time, the resources corresponding to the feedback channel and the data channel are measured.
  • the resource corresponding to the feedback channel when the resource corresponding to the feedback channel is measured, only the resource corresponding to the feedback channel is measured, and the resource corresponding to the feedback channel is located in the last M symbols of every N time slots in the first resource set, where M and N is a positive integer.
  • the measured time domain resource does not include the first K symbols among the M symbols, and the value of K is determined by the subcarrier interval, where K is a positive integer.
  • the feedback channel that only feeds back the negative response and the feedback channel that feeds back the positive response or the negative response are configured with independent preset thresholds.
  • the transceiver module 1502 is further configured to send the first measurement value to the network device.
  • the communication device 150 may be presented in the form of dividing various functional modules in an integrated manner.
  • the "module” here can refer to a specific ASIC, circuit, processor and memory that executes one or more software or firmware programs, integrated logic circuit, and/or other devices that can provide the above-mentioned functions.
  • the communication device 150 may take the form of the communication device 200 shown in FIG. 2.
  • the processor 201 or the processor 205 in the communication device 200 shown in FIG. 2 may invoke the computer execution instructions stored in the memory 202 to make the communication device 200 execute the method for determining the transmission mode in the foregoing method embodiment.
  • the function/implementation process of the processing module 1501 and the transceiver module 1502 in FIG. 15 may be implemented by the processor 201 or the processor 205 in the communication device 200 shown in FIG. 2 calling a computer execution instruction stored in the memory 202.
  • the function/implementation process of the processing module 1501 in FIG. 15 can be implemented by the processor 201 or the processor 205 in the communication device 200 shown in FIG. 2 calling the computer execution instructions stored in the memory 202, and the transceiver in FIG.
  • the function/implementation process of the module 1502 can be implemented by the transceiver 203 in the communication device 200 shown in FIG. 2.
  • the communication device provided in this embodiment can perform the above-mentioned transmission mode determination method, the technical effects that can be obtained can refer to the above-mentioned method embodiment, which will not be repeated here.
  • An embodiment of the present application also provides a communication device, including: a processor and a memory, the memory is used to store a program, and the processor calls the program stored in the memory to make the communication device execute FIG. 3, FIG. 6, FIG. The method for determining the transmission mode corresponding to the first device in Fig. 12-14.
  • the embodiment of the present application also provides a computer-readable storage medium that stores instructions in the computer-readable storage medium.
  • the instructions run on a computer or a processor
  • the computer or the processor executes Figure 3, Figure 6,
  • Figure 6 The method for determining the transmission mode corresponding to the first device in Fig. 8 and Fig. 12-14.
  • the embodiment of the present application also provides a computer program product containing instructions.
  • the instructions run on a computer or a processor, the computer or the processor executes the first steps in Figure 3, Figure 6, Figure 8, and Figure 12-14.
  • An embodiment of the present application provides a chip system that includes a processor for a communication device to execute the method for determining the transmission mode corresponding to the first device in FIG. 3, FIG. 6, FIG. 8, and FIG. 12-14.
  • the first device measures the first resource set according to the first information to obtain the first measurement value, where the first information includes at least one of the following information: the subcarrier interval of the first resource set, and the service of the first data Quality parameters, feedback information between the first device and the second device; the first resource set is used for the transmission of the first data; the first device determines the transmission mode of the first data according to the first measurement value, and/or, the first The device determines the transmission parameter of the first data according to the first measurement value.
  • the chip system may be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), a system on chip (SoC), or It is a central processor unit (CPU), it can also be a network processor (NP), it can also be a digital signal processing circuit (digital signal processor, DSP), or it can be a microcontroller (microcontroller unit). , MCU), it can also be a programmable logic device (PLD) or other integrated chips.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • CPU central processor unit
  • NP network processor
  • DSP digital signal processing circuit
  • microcontroller unit microcontroller unit
  • MCU programmable logic device
  • PLD programmable logic device
  • the chip system further includes a memory for storing necessary program instructions and data for the first device.
  • the chip system may include a chip, an integrated circuit, or a chip and other discrete devices, which is not specifically limited in the embodiment of the present application.
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, rather than corresponding to the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the computer may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • a software program it may be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or may include one or more data storage devices such as servers and data centers that can be integrated with the medium.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种传输方式确定方法和装置,涉及通信领域,用于实现更好地自主选择数据的传输方式和/或传输参数。传输方式确定方法包括:第一设备根据第一信息对第一资源集进行测量得到第一测量值,其中,第一信息包括以下信息中的至少一种:第一资源集的子载波间隔、第一数据的服务质量参数、第一设备与第二设备之间的反馈信息;第一资源集用于第一数据的传输;第一设备根据第一测量值确定第一数据的传输方式,和/或,第一设备根据第一测量值确定第一数据的传输参数。

Description

传输方式确定方法和装置
本申请要求于2019年4月30日提交国家知识产权局、申请号为201910364617.4、申请名称为“传输方式确定方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种传输方式确定方法和装置。
背景技术
设备到设备(device to device,D2D)通信、车与车(vehicle to vehicle,V2V)通信、车与行人(vehicle to pedestrian,V2P)通信、车与基础设施(vehicle to infrastructure,V2I)通信、车与网络(vehicle to network,V2I/N)通信是终端设备(terminal device)之间直接进行通信的技术,V2V、V2P、V2I和V2N统称为车联网V2X(vehicle to everything,V2X)通信,即车与任何事物相通信。
V2X通信时,支持终端设备基于自主选择的传输方式和传输参数进行通信,但是不同的终端设备按自主选择的传输方式和传输参数去抢占资源,可能在用户数较多或频谱资源较少的场景下,产生传输资源之间的冲突。
发明内容
本申请实施例提供一种传输方式确定方法和装置,用于实现更好地自主选择数据的传输方式和/或传输参数。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供了一种传输方式确定方法,该方法包括:第一设备根据第一信息对第一资源集进行测量得到第一测量值,其中,第一信息包括以下信息中的至少一种:第一资源集的子载波间隔、第一数据的服务质量参数、第一设备与第二设备之间的反馈信息;第一资源集用于第一数据的传输;第一设备根据第一测量值确定第一数据的传输方式,和/或,第一设备根据第一测量值确定第一数据的传输参数。本申请实施例提供的传输方式确定方法,通过根据第一信息对资源集进行测量得到测量值,并根据该测量值来确定数据的传输方式和/或传输参数。由于第一信息考虑到了数据传输过程中第一资源集的子载波间隔、第一数据的服务质量参数、第一设备与第二设备之间的反馈信息等信息,实现了更好地自主选择数据的传输方式和/或传输参数。
在一种可能的实施方式中,该方法还包括:第一设备根据传输方式,和/或,传输参数向第二设备发送第一数据。
在一种可能的实施方式中,第一数据包括以下数据中的至少一种:侧行链路数据、侧行链路控制信息、侧行链路反馈信息。
在一种可能的实施方式中,第一测量值包括以下测量值中的至少一种:接收信号强度指示信息、参考信号接收功率、信道忙碌比、信道占用比。
在一种可能的实施方式中,第一数据的服务质量参数包括以下信息中的至少一种:第一数据的业务类型、第一数据的优先级信息、第一数据的时延参数、第一数据的误 包率、第一数据的包大小、第一数据的最小通信距离;其中,第一数据的业务类型为周期业务或非周期业务。
在一种可能的实施方式中,第一资源集的子载波间隔包括以下子载波间隔中的任意一种:15kHz、30kHz、60kHz、120kHz、240kHz。第一资源集的子载波间隔可以用于确定测量窗的起始符号和结束符号。
在一种可能的实施方式中,反馈信息包括:第一设备从第二设备接收到的信道状态信息CSI反馈信息和/或混合自动重传请求HARQ应答信息;或者,第一设备发送给第二设备的CSI反馈信息和/或HARQ应答信息。
在一种可能的实施方式中,第一设备根据第一信息对第一资源集进行测量得到第一测量值,包括:第一设备根据第一信息确定测量窗的大小,和/或,第一设备根据第一信息确定测量窗的起始符号和结束符号,其中,测量窗的大小指第一设备在测量窗内对第一资源集进行测量时使用的时域资源和/或频域资源的数量;第一设备根据测量窗的大小、起始符号和结束符号,在测量窗内对第一资源集进行测量得到第一测量值。
在一种可能的实施方式中,时域资源包括第一资源集中的时隙和/或符号,频域资源包括资源块和/或子信道。
在一种可能的实施方式中,测量窗包括第一测量窗和第二测量窗,第一信息包括服务质量参数,服务质量参数为第一数据的优先级,则优先级高的数据对应第一测量窗,优先级低的数据对应第二测量窗;或者,服务质量参数为第一数据的时延参数,则时延高的数据对应第一测量窗,时延低的数据对应第二测量窗;或者,服务质量参数为第一数据的误包率,则误包率高的数据对应第一测量窗,误包率小的数据对应第二测量窗;或者,服务质量参数为第一数据的业务类型,则周期业务的数据对应第一测量窗,非周期业务的数据对应第二测量窗。可以根据服务质量参数为不同类型的取值,为第一数据对应不同的测量窗。
在一种可能的实施方式中,第一测量窗和第二测量窗在时域上占用的资源不同,或者,第一测量窗比第二测量窗占用更多的时域资源,或者,第一测量窗与第二测量窗在时域上可以部分或全部重叠。
在一种可能的实施方式中,第一测量窗和第二测量窗关联相应的测量门限。
在一种可能的实施方式中,第一信息包括第一资源集的子载波间隔,第一资源集的子载波间隔为15kHz或30kHz,则起始符号为时隙中的第二个符号,结束符号为时隙中的倒数第二个符号;或者,第一资源集的子载波间隔为60kHz,则起始符号为时隙中的第三个符号,结束符号为时隙中的倒数第二个符号;或者,第一资源集的子载波间隔为120kHz,起始符号为时隙中的第五个符号,结束符号为时隙中的倒数第二个符号。
在一种可能的实施方式中,时隙为传输第一数据的每个时隙,或者为连续K个时隙中的第一个时隙,其中K为大于1的整数。
在一种可能的实施方式中,第一设备根据第一信息对第一资源集进行测量得到第一测量值,包括:第一设备根据第一信息对第一资源集进行测量得到第二测量值和第三测量值;第一设备根据第二测量值和第三测量值得到第一测量值。
在一种可能的实施方式中,第一测量值为信道占用比,第一资源集包括第二资源 集和第三资源集,第二测量值为占用的子信道数,第三测量值为将发送的子信道数,第一设备根据第一信息对第一资源集进行测量得到第二测量值和第三测量值,包括:第一设备根据第一信息对第二资源集进行测量得到占用的子信道数,第一设备根据第一信息确定第三资源集中将发送的子信道数。第一设备根据第二测量值和第三测量值得到第一测量值,包括:第一设备根据占用的子信道数和将发送的子信道数得到信道占用比。
在一种可能的实施方式中,将发送的子信道数包括以下信息中的至少一种:第一设备检测到的否定应答对应的重传资源;第一设备生成的否定应答对应的重传资源;第一设备检测到的控制信息中指示的预留资源。
在一种可能的实施方式中,第一设备根据第一测量值确定第一数据的传输参数,包括:第一设备获取第一配置信息;第一设备根据第一配置信息和第一测量值确定第一数据的传输参数;其中,第一配置信息包括服务质量参数对应的第一测量值的取值集合,以及,与服务质量参数关联的以下传输参数中的至少一种:调制编码方式、传输块的传输次数、反馈资源数、数据信道的资源数、最大的发射功率、时延、传输距离、数据包大小、误包率。
在一种可能的实施方式中,第一设备根据第一测量值确定第一数据的传输方式,包括:如果第一测量值满足预设条件,则第一设备丢弃第一数据;或者,第一设备将第一数据从HARQ应答传输的切换成预设传输次数的传输;或者,第一设备丢弃无HARQ应答的第一数据;或者,第一设备丢弃最低优先级的HARQ传输的第一数据;或者,第一设备丢弃传输距离超过传输距离门限的第一数据;或者,第一设备丢弃传输时延超过传输时延门限的第一数据。该实施方式可以提高网络的通信质量,更好地选择传输方式。
在一种可能的实施方式中,第一测量值满足预设条件包括:第一测量值中的一种或多种大于预设门限值。
在一种可能的实施方式中,预设门限值由第一信息中的至少一种确定;或者,有HARQ应答的第一数据的传输与无HARQ应答的第一数据的传输配置独立的预设门限值。
在一种可能的实施方式中,第一资源集对应以下信道中的至少一种:数据信道、控制信道、反馈信道。
在一种可能的实施方式中,不同的信道配置独立的测量门限。
在一种可能的实施方式中,控制信道位于数据信道所在时隙的时频资源之内,该方法还包括:第一设备对数据信道对应的资源进行测量时,不对控制信道对应的资源进行测量,或者,第一设备对数据信道对应的资源进行测量时,同时对控制信道对应的资源和数据信道对应的资源进行测量。
在一种可能的实施方式中,反馈信道位于数据信道所在时隙的时频资源之内,该方法还包括:第一设备对数据信道对应的资源进行测量时,不对反馈信道对应的资源进行测量,或者,第一设备对数据信道对应的资源进行测量时,同时对反馈信道对应的资源和数据信道对应的资源进行测量。
在一种可能的实施方式中,第一设备对反馈信道对应的资源进行测量时,仅对反 馈信道对应的资源进行测量,反馈信道对应的资源位于第一资源集中每N个时隙中的最后M个符号,其中,M和N为正整数。
在一种可能的实施方式中,该方法还包括:第一设备对反馈信道对应的资源进行测量时,测量的时域资源不包括M个符号中的前K个符号,K的值由子载波间隔确定,其中K为正整数。
在一种可能的实施方式中,仅反馈否定应答的反馈信道与反馈肯定应答或否定应答的反馈信道配置独立的预设门限。
在一种可能的实施方式中,该方法还包括:第一设备向网络设备发送第一测量值。网络设备可以根据第一测量值调整数据传输的时频资源。
第二方面,提供了一种通信装置,包括:收发模块,用于根据第一信息对第一资源集进行测量得到第一测量值,其中,第一信息包括以下信息中的至少一种:第一资源集的子载波间隔、第一数据的服务质量参数、第一设备与第二设备之间的反馈信息;第一资源集用于第一数据的传输;处理模块,用于根据第一测量值确定第一数据的传输方式,和/或,第一设备根据第一测量值确定第一数据的传输参数。
在一种可能的实施方式中,收发模块,还用于根据传输方式,和/或,传输参数向第二设备发送第一数据。
在一种可能的实施方式中,第一数据包括以下数据中的至少一种:侧行链路数据、侧行链路控制信息、侧行链路反馈信息。
在一种可能的实施方式中,第一测量值包括以下测量值中的至少一种:接收信号强度指示信息、参考信号接收功率、信道忙碌比、信道占用比。
在一种可能的实施方式中,第一数据的服务质量参数包括以下信息中的至少一种:第一数据的业务类型、第一数据的优先级信息、第一数据的时延参数、第一数据的误包率、第一数据的包大小、第一数据的最小通信距离;其中,第一数据的业务类型为周期业务或非周期业务。
在一种可能的实施方式中,第一资源集的子载波间隔包括以下子载波间隔中的任意一种:15kHz、30kHz、60kHz、120kHz、240kHz。
在一种可能的实施方式中,反馈信息包括:第一设备从第二设备接收到的信道状态信息CSI反馈信息和/或混合自动重传请求HARQ应答信息;或者,第一设备发送给第二设备的CSI反馈信息和/或HARQ应答信息。
在一种可能的实施方式中,处理模块,具体用于根据第一信息确定测量窗的大小,和/或,根据第一信息确定测量窗的起始符号和结束符号,其中,测量窗的大小指第一设备在测量窗内对第一资源集进行测量时使用的时域资源和/或频域资源的数量;收发模块,具体用于根据测量窗的大小、起始符号和结束符号,在测量窗内对第一资源集进行测量得到第一测量值。
在一种可能的实施方式中,时域资源包括第一资源集中的时隙和/或符号,频域资源包括资源块和/或子信道。
在一种可能的实施方式中,测量窗包括第一测量窗和第二测量窗,第一信息包括服务质量参数,服务质量参数为第一数据的优先级,则优先级高的数据对应第一测量窗,优先级低的数据对应第二测量窗;或者,服务质量参数为第一数据的时延参数, 则时延高的数据对应第一测量窗,时延低的数据对应第二测量窗;或者,服务质量参数为第一数据的误包率,则误包率高的数据对应第一测量窗,误包率小的数据对应第二测量窗;或者,服务质量参数为第一数据的业务类型,则周期业务的数据对应第一测量窗,非周期业务的数据对应第二测量窗。
在一种可能的实施方式中,第一测量窗和第二测量窗在时域上占用的资源不同,或者,第一测量窗比第二测量窗占用更多的时域资源,或者,第一测量窗与第二测量窗在时域上可以部分或全部重叠。
在一种可能的实施方式中,第一测量窗和第二测量窗关联相应的测量门限。
在一种可能的实施方式中,第一信息包括第一资源集的子载波间隔,第一资源集的子载波间隔为15kHz或30kHz,则起始符号为时隙中的第二个符号,结束符号为时隙中的倒数第二个符号;或者,第一资源集的子载波间隔为60kHz,则起始符号为时隙中的第三个符号,结束符号为时隙中的倒数第二个符号;或者,第一资源集的子载波间隔为120kHz,起始符号为时隙中的第五个符号,结束符号为时隙中的倒数第二个符号。
在一种可能的实施方式中,时隙为传输第一数据的每个时隙,或者为连续K个时隙中的第一个时隙,其中K为大于1的整数。
在一种可能的实施方式中,收发模块,具体用于根据第一信息对第一资源集进行测量得到第二测量值和第三测量值;处理模块,具体用于根据第二测量值和第三测量值得到第一测量值。
在一种可能的实施方式中,第一测量值为信道占用比,第一资源集包括第二资源集和第三资源集,第二测量值为占用的子信道数,第三测量值为将发送的子信道数,收发模块,具体用于根据第一信息对第二资源集进行测量得到占用的子信道数。处理模块,具体用于根据第一信息确定第三资源集中将发送的子信道数。处理模块,具体用于根据占用的子信道数和将发送的子信道数得到信道占用比。
在一种可能的实施方式中,将发送的子信道数包括以下信息中的至少一种:第一设备检测到的否定应答对应的重传资源;第一设备生成的否定应答对应的重传资源;第一设备检测到的控制信息中指示的预留资源。
在一种可能的实施方式中,收发模块,具体用于获取第一配置信息;处理模块,具体用于根据第一配置信息和第一测量值确定第一数据的传输参数;其中,第一配置信息包括服务质量参数对应的第一测量值的取值集合,以及,与服务质量参数关联的以下传输参数中的至少一种:调制编码方式、传输块的传输次数、反馈资源数、数据信道的资源数、最大的发射功率、时延、传输距离、数据包大小、误包率。
在一种可能的实施方式中,处理模块,具体用于:如果第一测量值满足预设条件,则:丢弃第一数据;或者,将第一数据从HARQ应答传输的切换成预设传输次数的传输;或者,丢弃无HARQ应答的第一数据;或者,丢弃最低优先级的HARQ传输的第一数据;或者,丢弃传输距离超过传输距离门限的第一数据;或者,丢弃传输时延超过传输时延门限的第一数据。
在一种可能的实施方式中,第一测量值满足预设条件包括:第一测量值中的一种或多种大于预设门限值。
在一种可能的实施方式中,预设门限值由第一信息中的至少一种确定;或者,有HARQ应答的第一数据的传输与无HARQ应答的第一数据的传输配置独立的预设门限值。
在一种可能的实施方式中,第一资源集对应以下信道中的至少一种:数据信道、控制信道、反馈信道。
在一种可能的实施方式中,不同的信道配置独立的测量门限。
在一种可能的实施方式中,控制信道位于数据信道所在时隙的时频资源之内,对数据信道对应的资源进行测量时,不对控制信道对应的资源进行测量,或者,对数据信道对应的资源进行测量时,同时对控制信道对应的资源和数据信道对应的资源进行测量。
在一种可能的实施方式中,反馈信道位于数据信道所在时隙的时频资源之内,对数据信道对应的资源进行测量时,不对反馈信道对应的资源进行测量,或者,对数据信道对应的资源进行测量时,同时对反馈信道对应的资源和数据信道对应的资源进行测量。
在一种可能的实施方式中,对反馈信道对应的资源进行测量时,仅对反馈信道对应的资源进行测量,反馈信道对应的资源位于第一资源集中每N个时隙中的最后M个符号,其中,M和N为正整数。
在一种可能的实施方式中,对反馈信道对应的资源进行测量时,测量的时域资源不包括M个符号中的前K个符号,K的值由子载波间隔确定,其中K为正整数。
在一种可能的实施方式中,仅反馈否定应答的反馈信道与反馈肯定应答或否定应答的反馈信道配置独立的预设门限。
在一种可能的实施方式中,收发模块还用于向网络设备发送第一测量值。
第三方面,提供一种通信装置,包括:处理器和存储器,存储器用于存储程序,处理器调用存储器存储的程序,以使通信装置执行如第一方面及其任一实施方式所述的方法。
第四方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在计算机或处理器上运行时,使得计算机或处理器执行如第一方面及其任一种可能的实施方式中所述的方法。
第五方面,提供了一种包含指令的计算机程序产品,当该指令在计算机或处理器上运行时,使得计算机或处理器执行如第一方面及其任一种可能的实施方式中所述的方法。
第六方面,提供了一种通信系统,包括至少两个如第二方面所述的通信装置,或者,包括至少两个如第三方面所述的通信装置。
第二方面至第六方面的技术效果可以参照第一方面的各种可能实施方式所述内容。
附图说明
图1为本申请实施例提供的一种通信系统的架构示意图;
图2为本申请实施例提供的一种通信装置的结构示意图一;
图3为本申请实施例提供的一种传输方式确定方法的流程示意图一;
图4为本申请实施例提供的一种控制信道与数据信道不同复用方式的示意图;
图5为本申请实施例提供的一种控制信道与反馈信道不同复用方式的示意图;
图6为本申请实施例提供的一种传输方式确定方法的流程示意图二;
图7为本申请实施例提供的一种测量时隙n的CR的示意图;
图8为本申请实施例提供的一种传输方式确定方法的流程示意图三;
图9为本申请实施例提供的一种起始符号和结束符号的示意图一;
图10为本申请实施例提供的一种起始符号和结束符号的示意图二;
图11为本申请实施例提供的一种起始符号和结束符号的示意图三;
图12为本申请实施例提供的一种传输方式确定方法的流程示意图四;
图13为本申请实施例提供的一种传输方式确定方法的流程示意图五;
图14为本申请实施例提供的一种传输方式确定方法的流程示意图六;
图15为本申请实施例提供的一种通信装置的结构示意图二。
具体实施方式
本申请实施例依托无线通信网络中第五代(5th generation,5G)通信网络的V2X场景进行说明,应当指出的是,本申请实施例中的方案还可以应用于其他无线通信网络中,相应的名称也可以用其他无线通信网络中的对应功能的名称进行替代。
本申请实施例可以适用于长期演进(long term evolution,LTE)系统,例如窄带物联网(narrowband internet of things,NB-IoT)系统中,或者,也可以适用于高级的长期演进(LTE advanced,LTE-A)系统。也可以适用于其他无线通信系统,例如全球移动通信系统(global system for mobile communication,GSM),移动通信系统(universal mobile telecommunications system,UMTS),码分多址接入(code division multiple access,CDMA)系统,以及新的网络设备系统等。
本申请实施例提供了一种传输方式确定方法,应用于如图1所示的V2X通信系统中。如图1所示,本申请实施例提供的V2X通信系统,包括第一设备100、第二设备200,还可以包括网络设备300。第一设备100和第二设备200之间通过侧链路(sidelink,SL)通信,侧链路指的是V2X网络中的辅链路,V2X网络中除了辅链路外,还有上行链路(uplink)以及下行链路(downlink)。
示例性的,V2X通信包括V2V通信、V2I通信、V2P通信以及V2N通信等。图1中仅以第一设备100和第二设备200均为车的V2V通信为例进行示意,本申请实施例对于V2X的具体通信场景并不进行限定。例如,本申请涉及的第一设备、第二设备可以是作为一个或多个部件或者单元而内置于车辆的车载模块、车载模组、车载部件、车载芯片或者车载单元,车辆通过内置的车载模块、车载模组、车载部件、车载芯片或者车载单元可以实施本申请的方法。第一设备100和第二设备200可以是车载设备与车载设备之间相互通信,也可以是路侧单元(road side unit,RSU)与车载设备和/或网络设备(如基站设备)之间进行通信,还可以是网络设备300与车载设备和/或RSU之间进行通信等,该网络设备300可以为LTE基站设备或NR基站设备或后续演进系统中的提供无线接入的网络基站。可以理解的,本申请实施例对于第一设备100、第二设备200、网络设备300的具体形式并不进行限定,在此仅是示例性说明。
可以理解的,本申请提供的通信方法不仅可以适用于图1所示的侧行链路,也可以用于蜂窝链路中,本申请实施例对于该通信方法适用的场景并不进行限定,在此仅 是示例性说明。本申请实施例中的第一设备和第二设备为通信装置,该通信装置可以是终端设备,也可以是网络设备。当第一设备是网络设备时,上述侧行链路可以是基站和基站之间的链路。例如,宏基站和宏基站之间的链路,或者,宏基站和小基站之间的链路,或者,主基站和辅基站之间的链路,或者,主基站和主基站之间的链路,或者,辅基站和辅基站之间的链路等,本申请实施例对此并不进行限定。
图2为本申请实施例提供的一种通信装置,该通信装置可以为本申请中的第一设备、第二设备或网络设备。该通信装置可以是车辆;也可以是安装在车辆上用于辅助车辆行驶的车载通信装置或者车载终端,或者车载通信装置或车载终端内的芯片。其中,该车载终端可以是用于实现无线通信功能的设备,例如终端或者可用于终端中的芯片等。其中,终端可以是5G网络或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的用户设备(user equipment,UE)、接入终端、终端单元、终端站、移动站、移动台、远方站、远程终端、移动设备、无线通信装置、终端代理或终端装置等。接入终端可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备或可穿戴设备,虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。该车载终端可以是移动的,也可以是固定的。
如图2所示,该通信装置200包括至少一个处理器201,存储器202、收发器203以及通信总线204。
下面结合图2对该通信装置的各个构成部件进行具体的介绍:
处理器201是通信装置的控制中心,可以是一个处理器,也可以是多个处理元件的统称。例如,处理器201是一个中央处理器(central processing unit,CPU),也可以是特定集成电路(application specific integrated circuit,ASIC),或者是被配置成实施本发明实施例的一个或多个集成电路,例如:一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)。
其中,处理器201可以通过运行或执行存储在存储器202内的软件程序,以及调用存储在存储器202内的数据,执行通信装置的各种功能。
在具体的实现中,作为一种实施例,处理器201可以包括一个或多个CPU,例如图2中所示的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置可以包括多个处理器,例如图2中所示的处理器201和处理器205。这些处理器中的每一个可以是一个单核处理器(single-CPU),也可以是一个多核处理器(multi-CPU)。这里的处理器可以指一个或多个通信装置、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
存储器202可以是只读存储器(read-only memory,ROM)或可存储静态信息和 指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器202可以是独立存在,通过通信总线204与处理器201相连接。存储器202也可以和处理器201集成在一起。
其中,所述存储器202用于存储执行本发明方案的软件程序,并由处理器201来控制执行。
收发器203,用于与其他通信装置之间进行通信。当然,收发器203还可以用于与通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN)等。收发器203可以包括接收单元实现接收功能,以及发送单元实现发送功能。
通信总线204,可以是工业标准体系结构(industry standard architecture,ISA)总线、外部通信设备互连(peripheral component,PCI)总线或扩展工业标准体系结构(extended industry standard architecture,EISA)总线等。该总线可以分为地址总线、数据总线、控制总线等。为便于表示,图2中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
图2中示出的通信装置结构并不构成对通信装置的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
在上述V2X通信系统的基础上,本申请实施例提供的传输方式确定方法,通过在测量窗内对资源集进行测量得到测量值,并根据该测量值来确定数据的传输方式和/或传输参数。其中,测量值包括接收信号强度指示信息(received signal strength indication,RSSI)、参考信号接收功率(reference signal received power,RSRP)、信道忙碌比(channel busy ratio,CBR)、信道占用比(channel occupancy ratio,CR)等。
首先对本申请实施例涉及的一些基本概念进行描述:
RSSI
具体的,当针对侧行链路进行RSSI测量时,此时的RSSI可以称为侧行链路RSSI(sidelink RSSI,S-RSSI)。可选地,S-RSSI定义为每个符号上接收到的配置的子信道上所有接收功率的线性平均。例如,在一个时隙上共有10个可供测量的符号,假设每个符号上配置的子信道占用的带宽为20个物理资源块(physical resource block,PRB),则分别计算这10个符号上每个符号在这20个PRB上的总功率,然后将这10个可供测量的符号上的测量结果做线性平均,得到S-RSSI。
又如,在一个时隙上共有12个可供测量的可符号,假设每个符号上配置了10个子信道,则分别计算这12个可供测量的可符号上每个符号在这10个子信道上的总功率,然后将这10个符号上的测量结果做线性平均,得到S-RSSI。
CBR
CBR是指:在时隙n时,在定义的测量窗所在的时隙上的资源池中的子信道上测 量得到的S-RSSI超过配置的门限值的比例或部分。可选的,测量窗的大小可以为[n-a,n-b],a和b的为非负整数。例如,a=100,b=1。
可选地,CBR可以是针对不同的信道进行测量,得到相应信道的CBR。例如,对物理侧行共享信道(physical sidelink shared channel,PSSCH)进行测量,则得到PSSCH的CBR;对物理侧行控制信道(physical sidelink control channel,PSCCH)进行测量,则得到PSCCH的CBR;对物理侧行控制信道(physical sidelink feedback channel,PSFCH)进行测量,则得到PSFCH的CBR。
对于PSSCH,假设在一个资源池中每个时隙上有20个子信道,则时隙n之前的100个时隙(时隙[n-100,n-1])的测量窗上共有100*20=2000个子信道。如果测量到时隙n之前的前100个时隙上有1200个子信道的RSSI超过网络设备配置的门限值,则在时隙n时刻测量的CBR为1200/(100*20)=0.6。
对于PSCCH,则只测量PSCCH与PSSCH的资源池在频域不相邻的位置。测量时,PSCCH的带宽固定为2个PRB。
CR
CR是指:在时隙n时,用于传输的信道数量除以总的配置的子信道得到的值。可选的,用于传输的信道数量可以是在时隙n之前用于传输的子信道,和/或,在时隙n之后被调度用于传输的子信道数量之和。对应的,总配置的子信道的数量可以是在时隙n之前的测量窗中的,也可以是时隙n之后的测量窗中的子信道的数量。例如,时隙n之前的测量窗可以是[n-a,n-1],时隙n之后的测量窗可以是[n,n+b],总的配置的子信道数量即为[n-a,n+b]上配置的子信道总数量。
示例性地,对于时隙n,假设在时隙[n-a,n-1]上用于传输的子信道总数量S1,在时隙[n,n+b]上被调度用于传输的子信道总数量S2,在时隙[n-a,n+b]上配置的子信道总数量S,则在时隙n时刻测量的CR为(S1+S2)/S。
需要说明的是,在[n+1,n+b]上的被调度的用于传输的子信道总数量,实际为未来的传输占用的子信道,其可以根据在时隙n上检测到的调度分配(scheduling assignment,SA)的指示信息指示的重传来统计。
例如:对于时隙n,在时隙[n-500,n-1]上用于传输的子信道总数量S1=2000,在时隙[n,n+499]上被调度用于传输的子信道总数量S2=1000,在时隙[n-500,n+499]上配置的子信道总数量S=1000*20,则在时隙n时刻测量的CR为(2000+1000)/20000=0.15。
具体的,如图3所示,本申请提供了一种传输方式确定方法,该方法包括S301-S302:
S301、第一设备根据第一信息对第一资源集进行测量得到第一测量值。
其中,第一信息包括以下信息中的至少一种:第一资源集的子载波间隔(subcarrier spacing,SCS)、第一数据的服务质量(quality of service,QoS)参数、第一设备与第二设备之间的反馈信息。
可选地,可以根据第一资源集的子载波间隔确定测量窗中的时隙的大小和/或子信道的大小和/或时隙中的测量的开始符号和结束符号的位置。
可选地,可以根据第一数据的服务质量参数确定测量窗的位置和/或测量窗的大小。
可选的,可以根据第一设备与第二设备之间的反馈信息的类型来得到第一测量值。例如:可以根据反馈信息确定传输或调度时占用的子信道的数量。反馈信息的类型包 括以下中的任意一种:仅反馈肯定应答(acknowledge,ACK)不反馈否定应答(non acknowledge,NACK),或者,仅反馈否定应答NACK不反馈ACK,或者,反馈肯定应答ACK或否定应答NACK。这里的反馈信息可以是第一设备针对第二设备发送的数据的反馈信息,或者是第一设备接收到的来自第二设备发送的反馈信息。
示例性的,当第一设备的接收机成功解出相应数据时,向第二设备发送ACK,当第一设备的接收机没有成功解出相应数据时,不向第二设备发送ACK,也不向第二设备发送NACK;或者,当第一设备的接收机成功解出相应数据时,不向第二设备发送ACK,当第一设备的接收机没有成功解出相应数据时,向第二设备发送NACK;或者,当第一设备的接收机成功解出相应数据时,向第二设备发送ACK,当第一设备的接收机没有成功解出相应数据时,向第二设备发送NACK。
可选的,第一设备可以同时根据第一资源集的子载波间隔、第一数据的服务质量参数、第一设备与第二设备之间的反馈信息中的两种或三种同时来确定第一测量值。根据多种测量时,是根据不同信息来分别确定相应的方面,然后来联合确定最终得到的第一测量值。例如:根据子载波间隔确定测量窗的开始符号和结束符号的位置,根据反馈信息确定传输或调度时占用的子信道的数量,根据服务质量参数确定测量窗的位置和大小。可选的,可以根据测量窗、测量时的符号位置、测量时的时隙位置以及子信道位置和数量来确定第一测量值。
第一设备为第一数据的发送端,第二设备为第一数据的接收端。即第一设备在第一资源集上向第二设备发送第一数据。
第一数据包括以下数据中的至少一种:侧行链路(sidelink)数据、侧行链路控制信息、侧行链路反馈信息。例如,侧行链路数据可以是物理侧行共享信道(physical sidelink shared channel,PSSCH)中承载的数据,可以是物理侧行控制信道(physical sidelink control channel,PSCCH)中承载的信息,或者是物理侧行控制信道(physical sidelink feedback channel,PSFCH)承载的信息。
第一数据的服务质量参数包括以下信息中的至少一种:第一数据的业务类型、第一数据的优先级信息、第一数据的时延参数、第一数据的误包率、第一数据的可靠性信息、第一数据的包大小、第一数据的最小通信距离。
可选的,业务类型为周期业务或非周期业务。
可选地,优先级信息,用来指示或确定数据包的优先等级,优先级越高意味着它对应的数据包更重要或更紧急。
可选地,时延参数,指的是数据包传输时要求的最大的时延。示例性的,有的数据包要求3ms之内到达接收机,有的数据包要求10ms之内达到接收机,有的数据包要求50ms之内达到接收机。时延参数指示的最大端到端时延越小,则说明待发送的数据包越紧急,或需要更快地被发送、接收和处理。
可选的,误包率,指数据包发生接收错误的比率。误包率越高,则传输时需要更多的机制来保证数据包的正确接收,例如多次重传等。
可选地,可靠性信息指示数据包的可靠性要求。可选地,可靠性要求越高,如99.99%,则在传输时需要有更多的机制来保证数据包的正确接收,如需要有物理层的反馈或更多的重传次数等;可靠性要求越低,如90%,则在传输时可能不一定要求要 做反馈,重传的次数也不一定要特别多。
可选地,包大小,也可以是要求的传输速率。可选地,这个值越大,说明要传输的包或信息量越大,反之则说明要传输的包或信息量越小。
可选地,最小通信距离,也可以是要求的最小通信距离或最小要求的通信距离,是指为了达到一定的传输时延、可靠性、速率时要求的最小距离。可选地,当收发机间的距离小于或等于这个要求的最小距离时,收发机之间的通信需要满足传输时延、可靠性、速率等方面的要求;当收发机间的距离大于或等于这个要求的最小距离时,收发机之间的通信不需要一定满足传输时延、可靠性、速率等方面的要求。
第一设备与第二设备之间的反馈信息包括:第一设备从第二设备接收到的信道状态信息(channel state information,CSI)反馈信息和/或混合自动重传请求(hybrid automatic repeat request,HARQ)应答信息;或者,第一设备发送给第二设备的CSI反馈信息和/或HARQ应答信息。可选的,CSI包括预编码矩阵指示(precoding matrix indicator,PMI),秩指示(rank indication,RI),信道质量指示(channel quality indicator,CQI)等中的一种或多种。
第一资源集为预定义的或信令配置的用于侧行链路传输的一个或多个资源池,第一数据的传输资源从第一资源集中确定。这里的资源池是指时域和频域资源的一个集合,例如:一个资源池会包括用于侧行传输的时隙以及时隙上的一定位置和大小的频域资源。
第一资源集的子载波间隔包括以下子载波间隔中的任意一种:15kHz、30kHz、60kHz、120kHz、240kHz。需要说明的是,上述子载波间隔仅示例性地说明,本申请不限定只能应用于上述子载波间隔中。在本申请实施例中,第一资源集的子载波间隔可以用于确定第一资源集进行测量的测量窗的起始符号和结束符号,具体见后面描述。
第一资源集可以对应以下信道中的至少一种:数据信道、控制信道、反馈信道。即第一资源集可以传输上述信道中的至少一种。示例性的,数据信道可以为PSSCH,控制信道可以为PSCCH,反馈信道可以为物理侧行链路反馈信道(physical sidelink feedback channel,PSFCH)。
可选的,第一设备根据第一信息对数据信道对应的第一资源集进行测量得到数据信道的第一测量值。和/或,第一设备根据第一信息对控制信道对应的第一资源集进行测量得到控制信道的第一测量值。和/或,第一设备根据第一信息对反馈信道对应的第一资源集进行测量得到反馈信道的第一测量值。
需要说明的是,第一设备根据第一信息对第一资源集进行测量,不同的信道可以配置独立的测量门限。原因在于不同信道传输的数据量不同,使得相应测量窗或测量资源上的业务负载不同,导致测量值的结果或参考点不同。例如,数据信道和反馈信道配置独立的S-RSSI的测量门限,假设数据信道配置S-RSSI的第一测量门限,反馈信道配置S-RSSI的第二测量门限,则在计算数据信道的CBR时,将数据信道的子信道的RSSI与第一测量门限进行比较;在计算反馈信道的CBR时,将反馈信道的子信道的RSSI与第二测量门限进行比较。
特别地,仅反馈否定应答NACK的反馈信道与反馈肯定应答ACK或否定应答NACK的反馈信道配置独立的预设门限,例如,用于测量CBR的预设门限。关于仅反 馈否定应答NACK以及反馈肯定应答ACK或否定应答NACK的相关描述见步骤S301,在此不再重复。
另外,数据信道可以与控制信道或反馈信道采用不同复用方式复用,相应的复用方式描述如下。如图4所示,示出了控制信道与数据信道不同复用方式。图4中A为选项1A(Option 1A)的复用方式,B为选项1B(Option 1B)的复用方式,C为选项2(Option 2)的复用方式,D为选项3(Option 3)的复用方式。可选的,复用方式1A、1B可以认为是控制信道与数据信道时分复用的复用方式;复用方式C可以认为是控制信道与数据信道频分复用的复用方式;复用方式D可以认为是控制信道嵌入到数据信道所在资源的一种复用方式。
对于图4中D所示的复用方式,控制信道位于数据信道所在时隙的时频资源之内,第一设备可以对数据信道对应的资源进行测量时,不对控制信道对应的资源进行测量。或者,第一设备对数据信道对应的资源进行测量时,同时对控制信道对应的资源和数据信道对应的资源进行测量。
如图5所示,示出了反馈信道与数据信道不同复用方式。如图5中A所示的,反馈信道对应的资源位于第一资源集中每N个时隙中的最后M个符号,占用了数据信道的部分子信道或PRB。如图5中B所示的,反馈信道对应的资源位于第一资源集中每N个时隙中的最后M个符号,占用了数据信道的全部子信道或PRB,并且资源池配置的反馈信道的带宽可以与数据信道的带宽相同或不同,终端设备发送数据时使用的反馈信道的带宽可以与数据信道的带宽相同或不同。如图5中C所示的,其与图5中B所示的区别在于反馈信道所在的时隙上无数据信道和控制信道。可选的,这里的N和M都是网络设备配置的或根据协议预配置的。
对于图5中B所示的复用方式,反馈信道位于数据信道所在时隙的时频资源之内时,第一设备对数据信道对应的资源进行测量时,不对反馈信道对应的资源进行测量。或者,第一设备对数据信道对应的资源进行测量时,同时对反馈信道对应的资源和数据信道对应的资源进行测量。
可选的,第一设备对反馈信道对应的资源进行测量时,仅对反馈信道对应的资源进行测量,反馈信道对应的资源位于第一资源集中每N个时隙中的最后M个符号,其中,M和N为正整数。进一步地,反馈信道位于数据信道所在时隙的时频资源之内时,第一设备对反馈信道对应的资源进行测量时,不对数据信道对应的资源进行测量。可选的,这里的N和M都是网络设备配置的或根据协议预配置的。
可选的,第一设备对反馈信道对应的资源进行测量时,测量的时域资源不包括M个符号中的前K个符号,K的值由子载波间隔确定,其中K为正整数。示例性的,如对于15kHz和30kHz的子载波间隔,K=1,即不对M个符号中的第一个符号做测量。又如对于60kHz的子载波间隔,K=2,即不对M个符号中的前两个符号做测量。又如对于120kHz的子载波间隔,K=4,即不对M个符号中的前四个符号做测量。可选的,对M个符号中的最后一个符号都不做测量。可选的,M的值要比不做测量符号的数量要大。其原因是,前面不做测量的K个符号用于做自动增益控制(auto gain control,AGC),不同子载波间隔占用的符号数量不同。
第一测量值可以包括接收信号强度指示信息(received signal strength indication, RSSI)、参考信号接收功率(reference signal received power,RSRP)、信道忙碌比(channel busy ratio,CBR)、信道占用比(channel occupancy ratio,CR)。上述第一测量值的基本含义见前面描述说明。
本申请实施例对上述第一测量值的计算方式进行了改进,具体如下:
可选的,如图6所示,步骤S301可以包括:
S601、第一设备根据第一信息对第一资源集进行测量得到第二测量值和第三测量值。
第一资源集包括第二资源集和第三资源集,第二资源集用于得到第二测量值,第三资源集用于得到第三测量值。
在一种实施方式中,第一测量值为CR,第二测量值为占用的子信道数,第三测量值为将发送的子信道数。
其中,将发送的子信道数包括以下信息中的至少一种:第一设备检测到的否定应答NACK对应的重传资源、第一设备生成的否定应答NACK对应的重传资源、第一设备检测到的控制信息中指示的预留资源。
可选的,第一设备检测到的否定应答NACK对应的重传资源,指第一设备向第二设备发送数据,如果第二设备未接收到数据,则第二设备向第一设备发送否定应答NACK,以指示第一设备在对应的重传资源上重传该数据。第一设备根据否定应答NACK可以确定第一设备会在对应的重传资源上重传数据,从而占用对应的子信道。
可选的,第一设备生成的否定应答NACK对应的重传资源,指第二设备向第一设备发送数据,如果第一设备未接收到数据,则第一设备需要向第二设备发送否定应答NACK,以指示第二设备在对应的重传资源上重传该数据。第一设备可以根据该否定应答NACK确定第二设备会在对应的重传资源上重传数据,从而占用对应的子信道。
可选的,第一设备检测到的控制信息中指示的预留资源,指进行周期性业务时,控制信息指示第一设备周期性地占用预留资源。
第一设备可以根据第一信息对第二资源集进行测量得到占用的子信道数,第一设备根据第一信息确定第三资源集中将发送的子信道数。
示例性的,如图7所示,对于时隙n的CR,第二资源集包括时隙[n-a1,n-1]的时频资源,第三资源集包括时隙[n,n+b1]的时频资源;第二测量值为时隙[n-a1,n-1]占用的子信道数,第三测量值为时隙[n,n+b1]将发送的子信道数。其中,a1+b1+1=1000。
在另一种实施方式中,第一测量值、第二测量值和第三测量值均为CR,第一设备可以根据第一信息对第二资源集进行测量得到第二测量值,根据第一信息对第三资源集进行测量得到第三测量值。其中,第二资源集和第三测量集不同。
示例性的,第二资源集包括时隙[n-a1,n-1]以及[n,n+b1]的时频资源,第三资源集包括时隙[n-a2,n-1]以及[n,n+b2]的时频资源;第二测量值为通过图7所示方式,根据时隙[n-a1,n-1]占用的子信道数和时隙[n,n+b1]将发送的子信道数得到的时隙n的第一信道占用比CR1;第三测量值为通过图7所示方式,根据时隙[n-a2,n-1]占用的子信道数和时隙[n,n+b2]将发送的子信道数得到的时隙n的第二信道占用比CR2。其中,a2+b2+1<1000。
S602、第一设备根据第二测量值和第三测量值得到第一测量值。
示例性的,对于第一测量值为CR、第二测量值为占用的子信道数,第三测量值为将发送的子信道数来说,第一设备可以根据占用的子信道数和将发送的子信道数得到CR。具体方式见步骤S601中关于CR的描述,在此不再重复。
示例性的,对于第一测量值为信道占用比CR、第二测量值为第一信道占用比CR1、第三测量值为第二信道占用比CR2来说,CR=α*CR1+β*CR2,其中,α+β=1。
可选地,对于周期性业务和非周期性业务,可以使用相同的α和相同β来计算CR。或者,可选地,对于周期性业务和非周期性业务,可以使用不同的α和不同β来计算CR,例如,周期性业务使用α1和β1,非周期性业务使用α2和β2。
可以理解,上述示例虽然以CR为例进行说明,但不限于此,同样可以应用于CBR的测量,在此不再赘述。
另外,本申请实施例对测量过程中的测量窗进行了改进,其中,每个测量窗可以由大小以及起始符号和结束符号来唯一确定。具体如下:
可选的,如图8所示,步骤S301可以包括S801-S802:
S801、第一设备根据第一信息确定测量窗的大小,和/或,第一设备根据第一信息确定测量窗的起始符号和结束符号。
其中,测量窗的大小指第一设备在测量窗内对第一资源集进行测量时使用的时域资源和/或频域资源的数量。
时域资源包括第一资源集中的时隙和/或符号,频域资源包括资源块和/或子信道。
可选的,所述测量窗可以包括第一测量窗和第二测量窗。
可选的,第一测量窗和第二测量窗在时域上占用的资源可以不同,或者,第一测量窗比第二测量窗占用更多的时域资源,或者,第一测量窗与第二测量窗在时域上可以部分或全部重叠。
当第一信息包括服务质量参数时,可以根据服务质量参数的不同类型的取值来对应不同的测量窗:
可选的,服务质量参数为第一数据的优先级,则优先级高的数据对应第一测量窗,优先级低的数据对应第二测量窗。示例性的,通过优先级高的数据对应占用更多时域资源的测量窗,可以提高测量准确性。
或者,可选的,服务质量参数为第一数据的时延参数,则时延高的数据对应第一测量窗,时延低的数据对应第二测量窗。示例性的,通过时延高的数据对应占用更多时域资源的测量窗,可以测量得更加准确,且不会与低时延的业务竞争测量能力和资源。
或者,可选的,服务质量参数为第一数据的误包率,则误包率高的数据对应第一测量窗,误包率小的数据对应第二测量窗。示例性的,通过误包率高的数据对应占用更多时域资源的测量窗,可以提高测量的准确性,便于调整时频资源以降低误包率。
或者,可选的,服务质量参数为第一数据的业务类型,则周期业务的数据对应第一测量窗,非周期业务的数据对应第二测量窗。示例性的,由于周期业务一般周期性分占用时频资源,由于非周期业务一般为突发业务,对应占用更少时域资源的测量窗可以降低测量功耗。并且,对非周期性的业务做长期测量并不能提高测量的准确性。可选的,周期业务的数据对应第一测量窗要比非周期业务的数据对应第二测量窗要长。 可选的,非周期性业务的测量窗为周期性业务测量窗的子集。
可选的,第一测量窗和第二测量窗关联相应的测量门限。
如果第一信息包括第一资源集的子载波间隔:
如图9所示,对于正常时隙,第一资源集的子载波间隔为15kHz或30kHz,则起始符号为时隙中的第二个符号,结束符号为时隙中的倒数第二个符号;或者,第一资源集的子载波间隔为60kHz,则起始符号为时隙中的第三个符号,结束符号为时隙中的倒数第二个符号;或者,第一资源集的子载波间隔为120kHz,起始符号为时隙中的第五个符号,结束符号为时隙中的倒数第二个符号。
示例性的,上述方法中可用于做自动增益控制的时长固定的场景。例如,做AGC需要的信号的时长固定约为35us,则这个时长对应15kHz子载波间隔时,对应半个符号,实际使用时,可以用一个符号做AGC;又如,35us AGC时长对应30kHz、60kHz、120kHz、240kHz的子载波间隔时,分别对应1个、2个、4个或8个符号。进一步可选的,时隙中的最后一个符号在侧行链路中通常用于做收发操作之间的转换,因此最后一个符号通常也不用来做测量。
如图10所示,对于扩展时隙,第一资源集的子载波间隔为15kHz或30kHz,则起始符号为时隙中的第一个符号,结束符号为时隙中的倒数第二个符号;或者,第一资源集的子载波间隔为60kHz,则起始符号为时隙中的第二个符号,结束符号为时隙中的倒数第二个符号;或者,第一资源集的子载波间隔为120kHz,起始符号为时隙中的第四个符号,结束符号为时隙中的倒数第二个符号。
可选的,所述时隙为传输第一数据的每个时隙,或者为连续K个时隙中的第一个时隙,其中,K为大于1的整数。可选地,当为K个连续的时隙时,仅第一个时隙上的前若干个符号用来于做AGC,后续时隙上的符号不用来做AGC。
不同的子载波间隔对应的起始符号不同,原因在于,自动增益控制(automatic gain control,AGC)的符号对于不同子载波间隔占用的时间相同,但对应的符号数不同。例如,对于15、30、60、120kHz,固定约35us的AGC时长时,分别占用了1个符号、1个符号、2个符号、4个符号。
可选地,当数据信道的时隙中无反馈信道时,测量窗的结束符号位于倒数第2个符号12(扩展CP为10),当数据信道的时隙中有反馈信道时,测量窗的结束符号为数据所在的最后一个符号,例如图9中的符号8或图10中的符号7。
进一步可选地,当有多个时隙做汇聚传输时,在每个时隙上测量窗的起始符号和结束符号也不同。例如,如图11所示,当有两个时隙做汇聚传输时,在时隙1上,测量窗的起始符号与单时隙传输时相同,测量窗的结束符号可以为时隙2上最后的无反馈信道的数据符号或时隙2的倒数第2个符号。即时隙1从开始符号到时隙1的最后一个符号都需要测量,时隙2从开始符号到结束符号,都需要测量。
S802、第一设备根据测量窗的大小、起始符号和结束符号,在测量窗内对第一资源集进行测量得到第一测量值。
具体的,根据测量窗的大小、起始符号和结束符号可以唯一确定测量窗。
对于测量窗包括第一测量窗和第二测量窗时,根据第一测量窗的大小、起始符号和结束符号确定第一测量窗,根据第二测量窗的大小、起始符号和结束符号确定第二 测量窗。
S302、第一设备根据第一测量值确定第一数据的传输方式,和/或,第一设备根据第一测量值确定第一数据的传输参数。
第一设备根据第一测量值确定第一数据的传输方式,包括:
如果第一测量值满足预设条件,则执行以下任一种传输方式。其中,第一测量值满足预设条件包括:第一测量值中的一种或多种大于预设门限值。预设门限值由第一信息中的至少一种确定;或者,有HARQ应答的第一数据的传输与无HARQ应答的第一数据的传输配置独立的预设门限值。
可选的,第一设备丢弃第一数据。示例性的,如果CR很高,不能承载更多数据,或即使承载更多数据但会严重影响通信质量,则可以直接丢弃第一数据。
或者,可选的,第一设备将第一数据从HARQ应答传输的切换成预设传输次数的传输。示例性的,HARQ应答传输过程中由于否定应答NACK或肯定应答ACK会占用更多时频资源,如果CR很高,可以将HARQ应答传输的切换成预设传输次数的传输,以降低否定应答NACK或肯定应答ACK占用的时频资源。
或者,可选的,第一设备丢弃无HARQ应答的第一数据。示例性的,当第一测量值满足预设条件,第一设备优先将做无HARQ应答的第一数据的传输块或数据包丢弃。
或者,可选的,第一设备丢弃最低优先级的HARQ传输的第一数据。示例性的,如果CR很高,不能承载更多数据,或即使承载更多数据但会严重影响通信质量,则可以直接丢弃最低优先级的HARQ传输的第一数据,将时频资源留给更高优先级的数据通信。
或者,可选的,第一设备丢弃传输距离超过传输距离门限的第一数据。示例性的,当第一设备的接收机到第二设备之间的距离超过第一设备当前待传输的数据包要求的最小距离时,第一设备丢弃待传输的数据包。
或者,可选的,第一设备丢弃传输时延超过传输时延门限的第一数据。示例性的,第一设备待传输的传输块或数据包要求的最小传输时延要求满足不了时,第一设备优先丢弃这个数据包。
进一步可选的,可以定义优先级、传输时延、传输距离的联合函数,相应地,预设门限值可以定义为根据该联合函数,代入预设优先级、预设传输时延、预设传输距离得到的门限值,如果第一测量值满足预设条件,则第一设备丢弃满足如下公式的第一数据:
Figure PCTCN2020087581-appb-000001
其中,R为联合函数,k1为预设优先级,k2为预设传输时延,k3为预设传输距离,i1为第一数据的优先级,i2为第一数据的传输时延,i3为第一数据的传输距离。
需要说明的是,网络设备在配置预设门限值时,对于要求的最小距离之内和最小距离之外的预设门限值可以不同。或者,对于处于时延要求的之内和时延要求之外的预设门限值可以不同。或者,对于不同优先级下的预设门限值可以不同。
特别地,对于盲传(例如:无HARQ反馈的传输)和HARQ传输,其对应的预设门限值也可以不同。
本申请实施例提供的传输方式确定方法,通过根据第一信息对资源集进行测量得 到测量值,并根据该测量值来确定数据的传输方式和/或传输参数。由于第一信息考虑到了数据传输过程中第一资源集的子载波间隔、第一数据的服务质量参数、第一设备与第二设备之间的反馈信息等信息,实现了更好地自主选择数据的传输方式和/或传输参数。
可选的,如图12所示,第一设备根据第一测量值确定第一数据的传输参数包括S1201-S1202:
S1201、第一设备获取第一配置信息。
具体的,第一设备可以从网络设备接收第一配置信息。
其中,第一配置信息包括服务质量参数对应的第一测量值的取值集合,以及,与服务质量参数关联的以下传输参数中的至少一种:调制编码方式、传输块的传输次数、反馈资源数、数据信道的资源数、最大的发射功率、时延、传输距离、数据包大小、误包率。
可选地,第一配置信息可以是网络设备配置的,也可以是根据协议预配置的。可选的,在第一配置信息中,可以配置一种或多种服务质量参数的值,例如优先级、最小通信距离、时延要求等,这些服务质量的值再对应上述传输参数中的至少一种的取值或取值范围。可选地,同时第一配置信息还可以对应第一测量值的取值集合。即第一配置信息将同时将以下信息以相互关联的方式配置在一起:服务质量参数、第一测量值的取值集合和传输参数。
S1202、第一设备根据第一配置信息和第一测量值确定第一数据的传输参数。
可选地,第一设备确定第一测量值以及第一设备发送的第一数据的服务质量参数的值,然后第一设备根据这两个值以及获取到第一配置信息,来确定出传输参数中的取值或取值范围。然后第一设备根据确定出的传输参数来发送第一设备的第一数据。
如图13所示,在图3的基础上,该方法还可以包括:
S1301、第一设备根据传输方式,和/或,传输参数向第二设备发送第一数据。
可选地,第一设备根据上述的方式确定传输参数,并且在发送第一数据之前再确定按传输参数待发送的第一数据是否需要被丢弃。如果是则直接丢弃,否则按确定的传输参数发送第一数据。
如图14所示,在图3的基础上,该方法还可以包括:
S1401、第一设备向网络设备发送第一测量值。
相应地,网络设备从第一设备接收第一测量值。
网络设备可以根据第一测量值调整对应的信道资源的配置。
示例性的,第一设备可以向网络设备发送反馈信道的CBR,网络设备可以根据该CBR调整反馈信道的信道资源的配置。
可以理解的是,以上各个实施例中,由第一设备实现的方法和/或步骤,也可以由可用于第一设备的部件(例如芯片或者电路)实现,由网络设备实现的方法和/或步骤,也可以由可用于网络设备的部件实现。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。相应的,本申请实施例还提供了通信装置,该通信装置用于实现上述各种方法。该通信装置可以为上述方法实施例中的第一设备,或者包含上述第一设备的装置,或者为可 用于上述第一设备的部件。可以理解的是,该通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法实施例中对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
以上结合图3、图6、图8、图12-图14详细说明了本申请实施例提供的方法。以下,结合图15详细说明本申请实施例提供的通信装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
本申请实施例提供了一种通信装置,可以为上述第一设备,或上述第一设备的芯片或功能模块。比如,以通信装置为上述方法实施例中的第一设备为例,该通信装置可实现对应于上文方法实施例中的第一设备执行的步骤或者流程。图15示出了一种通信装置150的结构示意图。该通信装置150包括处理模块1501和收发模块1502。收发模块1502,也可以称为收发单元用以实现发送和/或接收功能,例如可以是收发电路,收发机,收发器或者通信接口。
收发模块1502,用于根据第一信息对第一资源集进行测量得到第一测量值,其中,第一信息包括以下信息中的至少一种:第一资源集的子载波间隔、第一数据的服务质量参数、第一设备与第二设备之间的反馈信息;第一资源集用于第一数据的传输;处理模块1501,用于根据第一测量值确定第一数据的传输方式,和/或,第一设备根据第一测量值确定第一数据的传输参数。
可选的,收发模块1502,还用于根据传输方式,和/或,传输参数向第二设备发送第一数据。
可选的,第一数据包括以下数据中的至少一种:侧行链路数据、侧行链路控制信息、侧行链路反馈信息。
可选的,第一测量值包括以下测量值中的至少一种:接收信号强度指示信息、参考信号接收功率、信道忙碌比、信道占用比。
可选的,第一数据的服务质量参数包括以下信息中的至少一种:第一数据的业务类型、第一数据的优先级信息、第一数据的时延参数、第一数据的误包率、第一数据的包大小、第一数据的最小通信距离;其中,第一数据的业务类型为周期业务或非周期业务。
可选的,第一资源集的子载波间隔包括以下子载波间隔中的任意一种:15kHz、30kHz、60kHz、120kHz、240kHz。
可选的,反馈信息包括:第一设备从第二设备接收到的信道状态信息CSI反馈信息和/或混合自动重传请求HARQ应答信息;或者,第一设备发送给第二设备的CSI反馈信息和/或HARQ应答信息。
可选的,处理模块1501,具体用于根据第一信息确定测量窗的大小,和/或,根据第一信息确定测量窗的起始符号和结束符号,其中,测量窗的大小指第一设备在测量窗内对第一资源集进行测量时使用的时域资源和/或频域资源的数量;收发模块1502,具体用于根据测量窗的大小、起始符号和结束符号,在测量窗内对第一资源集进行测量得到第一测量值。
可选的,时域资源包括第一资源集中的时隙和/或符号,频域资源包括资源块和/或子信道。
可选的,测量窗包括第一测量窗和第二测量窗,第一信息包括服务质量参数,服务质量参数为第一数据的优先级,则优先级高的数据对应第一测量窗,优先级低的数据对应第二测量窗;或者,服务质量参数为第一数据的时延参数,则时延高的数据对应第一测量窗,时延低的数据对应第二测量窗;或者,服务质量参数为第一数据的误包率,则误包率高的数据对应第一测量窗,误包率小的数据对应第二测量窗;或者,服务质量参数为第一数据的业务类型,则周期业务的数据对应第一测量窗,非周期业务的数据对应第二测量窗。
可选的,第一测量窗和第二测量窗在时域上占用的资源不同,或者,第一测量窗比第二测量窗占用更多的时域资源,或者,第一测量窗与第二测量窗在时域上可以部分或全部重叠。
可选的,第一测量窗和第二测量窗关联相应的测量门限。
可选的,第一信息包括第一资源集的子载波间隔,第一资源集的子载波间隔为15kHz或30kHz,则起始符号为时隙中的第二个符号,结束符号为时隙中的倒数第二个符号;或者,第一资源集的子载波间隔为60kHz,则起始符号为时隙中的第三个符号,结束符号为时隙中的倒数第二个符号;或者,第一资源集的子载波间隔为120kHz,起始符号为时隙中的第五个符号,结束符号为时隙中的倒数第二个符号。
可选的,时隙为传输第一数据的每个时隙,或者为连续K个时隙中的第一个时隙,其中K为大于1的整数。
可选的,收发模块1502,具体用于根据第一信息对第一资源集进行测量得到第二测量值和第三测量值;处理模块1501,具体用于根据第二测量值和第三测量值得到第一测量值。
可选的,第一测量值为信道占用比,第一资源集包括第二资源集和第三资源集,第二测量值为占用的子信道数,第三测量值为将发送的子信道数,收发模块1502,具体用于根据第一信息对第二资源集进行测量得到占用的子信道数。处理模块1501,具体用于根据第一信息确定第三资源集中将发送的子信道数。处理模块1501,具体用于根据占用的子信道数和将发送的子信道数得到信道占用比。
可选的,将发送的子信道数包括以下信息中的至少一种:第一设备检测到的否定应答对应的重传资源;第一设备生成的否定应答对应的重传资源;第一设备检测到的控制信息中指示的预留资源。
可选的,收发模块1502,具体用于获取第一配置信息;处理模块1501,具体用于根据第一配置信息和第一测量值确定第一数据的传输参数;其中,第一配置信息包括服务质量参数对应的第一测量值的取值集合,以及,与服务质量参数关联的以下传输参数中的至少一种:调制编码方式、传输块的传输次数、反馈资源数、数据信道的资源数、最大的发射功率、时延、传输距离、数据包大小、误包率。
可选的,处理模块1501,具体用于:如果第一测量值满足预设条件,则:丢弃第一数据;或者,将第一数据从HARQ应答传输的切换成预设传输次数的传输;或者,丢弃无HARQ应答的第一数据;或者,丢弃最低优先级的HARQ传输的第一数据;或者,丢弃传输距离超过传输距离门限的第一数据;或者,丢弃传输时延超过传输时延门限的第一数据。
可选的,第一测量值满足预设条件包括:第一测量值中的一种或多种大于预设门限值。
可选的,预设门限值由第一信息中的至少一种确定;或者,有HARQ应答的第一数据的传输与无HARQ应答的第一数据的传输配置独立的预设门限值。
可选的,第一资源集对应以下信道中的至少一种:数据信道、控制信道、反馈信道。
可选的,不同的信道配置独立的测量门限。
可选的,控制信道位于数据信道所在时隙的时频资源之内,对数据信道对应的资源进行测量时,不对控制信道对应的资源进行测量,或者,对数据信道对应的资源进行测量时,同时对控制信道对应的资源和数据信道对应的资源进行测量。
可选的,反馈信道位于数据信道所在时隙的时频资源之内,对数据信道对应的资源进行测量时,不对反馈信道对应的资源进行测量,或者,对数据信道对应的资源进行测量时,同时对反馈信道对应的资源和数据信道对应的资源进行测量。
可选的,对反馈信道对应的资源进行测量时,仅对反馈信道对应的资源进行测量,反馈信道对应的资源位于第一资源集中每N个时隙中的最后M个符号,其中,M和N为正整数。
可选的,对反馈信道对应的资源进行测量时,测量的时域资源不包括M个符号中的前K个符号,K的值由子载波间隔确定,其中K为正整数。
可选的,仅反馈否定应答的反馈信道与反馈肯定应答或否定应答的反馈信道配置独立的预设门限。
可选的,收发模块1502还用于向网络设备发送第一测量值。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述或前述方法侧描述,在此不再赘述。
在本实施例中,该通信装置150可以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该通信装置150可以采用图2所示的通信装置200的形式。
比如,图2所示的通信装置200中的处理器201或处理器205可以通过调用存储 器202中存储的计算机执行指令,使得通信装置200执行上述方法实施例中的传输方式确定方法。
具体的,图15中的处理模块1501和收发模块1502的功能/实现过程可以通过图2所示的通信装置200中的处理器201或处理器205调用存储器202中存储的计算机执行指令来实现。或者,图15中的处理模块1501的功能/实现过程可以通过图2所示的通信装置200中的处理器201或处理器205调用存储器202中存储的计算机执行指令来实现,图15中的收发模块1502的功能/实现过程可以通过图2中所示的通信装置200中的收发器203来实现。
由于本实施例提供的通信装置可执行上述传输方式确定方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
本申请实施例还提供一种通信装置,包括:处理器和存储器,所述存储器用于存储程序,所述处理器调用存储器存储的程序,以使通信装置执行图3、图6、图8、图12-图14的第一设备对应的传输方式确定方法。
本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在计算机或处理器上运行时,使得计算机或处理器执行图3、图6、图8、图12-图14中的第一设备对应的传输方式确定方法。
本申请实施例还提供了一种包含指令的计算机程序产品,当指令在计算机或处理器上运行时,使得计算机或处理器执行图3、图6、图8、图12-图14中的第一设备对应的传输方式确定方法。
本申请实施例提供了一种芯片系统,该芯片系统包括处理器,用于通信装置执行图3、图6、图8、图12-图14中的第一设备对应的传输方式确定方法。例如,第一设备根据第一信息对第一资源集进行测量得到第一测量值,其中,第一信息包括以下信息中的至少一种:第一资源集的子载波间隔、第一数据的服务质量参数、第一设备与第二设备之间的反馈信息;第一资源集用于第一数据的传输;第一设备根据第一测量值确定第一数据的传输方式,和/或,第一设备根据第一测量值确定第一数据的传输参数。
例如,该芯片系统可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是片上系统(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
在一种可能的设计中,该芯片系统还包括存储器,该存储器,用于保存第一设备必要的程序指令和数据。该芯片系统,可以包括芯片,集成电路,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单 元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (30)

  1. 一种传输方式确定方法,其特征在于,包括:
    第一设备根据第一信息对第一资源集进行测量得到第一测量值,其中,所述第一信息包括以下信息中的至少一种:所述第一资源集的子载波间隔、第一数据的服务质量参数、所述第一设备与第二设备之间的反馈信息;所述第一资源集用于第一数据的传输;
    所述第一设备根据所述第一测量值确定所述第一数据的传输方式,和/或,所述第一设备根据所述第一测量值确定所述第一数据的传输参数。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一设备根据所述传输方式,和/或,所述传输参数向所述第二设备发送所述第一数据。
  3. 根据权利要求1-2中任一项所述的方法,其特征在于,所述第一设备根据第一信息对第一资源集进行测量得到第一测量值,包括:
    所述第一设备根据所述第一信息确定测量窗的大小,和/或,所述第一设备根据所述第一信息确定所述测量窗的起始符号和结束符号,其中,所述测量窗的大小指所述第一设备在所述测量窗内对所述第一资源集进行测量时使用的时域资源和/或频域资源的数量;
    所述第一设备根据所述测量窗的大小、起始符号和结束符号,在所述测量窗内对所述第一资源集进行测量得到所述第一测量值。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述第一设备根据第一信息对第一资源集进行测量得到第一测量值,包括:
    所述第一设备根据所述第一信息对所述第一资源集进行测量得到第二测量值和第三测量值;
    所述第一设备根据所述第二测量值和所述第三测量值得到所述第一测量值。
  5. 根据权利要求4所述的方法,其特征在于,所述第一测量值为信道占用比,所述第一资源集包括第二资源集和第三资源集,所述第二测量值为占用的子信道数,所述第三测量值为将发送的子信道数,
    所述第一设备根据所述第一信息对所述第一资源集进行测量得到第二测量值和第三测量值,包括:
    所述第一设备根据所述第一信息对所述第二资源集进行测量得到所述占用的子信道数,所述第一设备根据所述第一信息确定所述第三资源集中将发送的子信道数;
    所述第一设备根据所述第二测量值和所述第三测量值得到所述第一测量值,包括:
    所述第一设备根据所述占用的子信道数和所述将发送的子信道数得到所述信道占用比。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述第一设备根据所述第一测量值确定所述第一数据的传输参数,包括:
    所述第一设备获取第一配置信息;
    所述第一设备根据所述第一配置信息和所述第一测量值确定所述第一数据的传输参数;
    其中,所述第一配置信息包括服务质量参数对应的第一测量值的取值集合,以及,与所述服务质量参数关联的以下传输参数中的至少一种:调制编码方式、传输块的传输次数、反馈资源数、数据信道的资源数、最大的发射功率、时延、传输距离、数据包大小、误包率。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述第一设备根据所述第一测量值确定第一数据的传输方式,包括:
    如果所述第一测量值满足预设条件,则:
    所述第一设备丢弃所述第一数据;或者,
    所述第一设备将所述第一数据从HARQ应答传输的切换成预设传输次数的传输;或者,
    所述第一设备丢弃无HARQ应答的所述第一数据;或者,
    所述第一设备丢弃最低优先级的HARQ传输的所述第一数据;或者,
    所述第一设备丢弃传输距离超过传输距离门限的所述第一数据;或者,
    所述第一设备丢弃传输时延超过传输时延门限的所述第一数据。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述第一资源集对应以下信道中的至少一种:数据信道、控制信道、反馈信道。
  9. 根据权利要求8所述的方法,其特征在于,所述控制信道位于所述数据信道所在时隙的时频资源之内,所述方法还包括:
    所述第一设备对所述数据信道对应的资源进行测量时,不对所述控制信道对应的资源进行测量,或者,
    所述第一设备对所述数据信道对应的资源进行测量时,同时对所述控制信道对应的资源和所述数据信道对应的资源进行测量。
  10. 根据权利要求8-9任一项所述的方法,其特征在于,所述反馈信道位于所述数据信道所在时隙的时频资源之内,所述方法还包括:
    所述第一设备对所述数据信道对应的资源进行测量时,不对所述反馈信道对应的资源进行测量,或者,
    所述第一设备对所述数据信道对应的资源进行测量时,同时对所述反馈信道对应的资源和所述数据信道对应的资源进行测量。
  11. 一种通信装置,其特征在于,包括:
    收发模块,用于根据第一信息对第一资源集进行测量得到第一测量值,其中,所述第一信息包括以下信息中的至少一种:所述第一资源集的子载波间隔、第一数据的服务质量参数、第一设备与第二设备之间的反馈信息;所述第一资源集用于第一数据的传输;
    处理模块,还用于根据所述第一测量值确定所述第一数据的传输方式,和/或,所述第一设备根据所述第一测量值确定所述第一数据的传输参数。
  12. 根据权利要求11所述的通信装置,其特征在于,所述收发模块,还用于:
    根据所述传输方式,和/或,所述传输参数向所述第二设备发送所述第一数据。
  13. 根据权利要求11-12中任一项所述的通信装置,其特征在于,
    所述处理模块,具体用于根据所述第一信息确定测量窗的大小,和/或,根据所述 第一信息确定所述测量窗的起始符号和结束符号,其中,所述测量窗的大小指所述第一设备在所述测量窗内对所述第一资源集进行测量时使用的时域资源和/或频域资源的数量;
    所述收发模块,具体用于根据所述测量窗的大小、起始符号和结束符号,在所述测量窗内对所述第一资源集进行测量得到所述第一测量值。
  14. 根据权利要求11-13任一项所述的通信装置,其特征在于,
    所述收发模块,具体用于根据所述第一信息对所述第一资源集进行测量得到第二测量值和第三测量值;
    所述处理模块,具体用于根据所述第二测量值和所述第三测量值得到所述第一测量值。
  15. 根据权利要求14所述的通信装置,其特征在于,所述第一测量值为信道占用比,所述第一资源集包括第二资源集和第三资源集,所述第二测量值为占用的子信道数,所述第三测量值为将发送的子信道数,
    所述收发模块,具体用于根据所述第一信息对所述第二资源集进行测量得到所述占用的子信道数,所述处理模块,具体用于根据所述第一信息确定所述第三资源集中将发送的子信道数;
    所述处理模块,具体用于根据所述占用的子信道数和所述将发送的子信道数得到所述信道占用比。
  16. 根据权利要求11-15任一项所述的通信装置,其特征在于,
    所述收发模块,具体用于获取第一配置信息;
    所述处理模块,具体用于根据所述第一配置信息和所述第一测量值确定所述第一数据的传输参数;
    其中,所述第一配置信息包括服务质量参数对应的第一测量值的取值集合,以及,与所述服务质量参数关联的以下传输参数中的至少一种:调制编码方式、传输块的传输次数、反馈资源数、数据信道的资源数、最大的发射功率、时延、传输距离、数据包大小、误包率。
  17. 根据权利要求11-16任一项所述的通信装置,其特征在于,所述处理模块,具体用于:
    如果所述第一测量值满足预设条件,则
    丢弃所述第一数据;或者,
    将所述第一数据从HARQ应答传输的切换成预设传输次数的传输;或者,
    丢弃无HARQ应答的所述第一数据;或者,
    丢弃最低优先级的HARQ传输的所述第一数据;或者,
    丢弃传输距离超过传输距离门限的所述第一数据;或者,
    丢弃传输时延超过传输时延门限的所述第一数据。
  18. 根据权利要求11-17任一项所述的通信装置,其特征在于,所述第一资源集对应以下信道中的至少一种:数据信道、控制信道、反馈信道。
  19. 根据权利要求18所述的通信装置,其特征在于,所述控制信道位于所述数据信道所在时隙的时频资源之内,
    所述收发模块,还用于对所述数据信道对应的资源进行测量时,不对所述控制信道对应的资源进行测量,或者,
    所述收发模块,还用于对所述数据信道对应的资源进行测量时,同时对所述控制信道对应的资源和所述数据信道对应的资源进行测量。
  20. 根据权利要求18-19任一项所述的通信装置,其特征在于,所述反馈信道位于所述数据信道所在时隙的时频资源之内,
    所述收发模块,还用于对所述数据信道对应的资源进行测量时,不对所述反馈信道对应的资源进行测量,或者,
    所述收发模块,还用于对所述数据信道对应的资源进行测量时,同时对所述反馈信道对应的资源和所述数据信道对应的资源进行测量。
  21. 根据权利要求3、13任一项所述的方法或通信装置,其特征在于,所述测量窗包括第一测量窗和第二测量窗,所述第一信息包括所述服务质量参数,
    所述服务质量参数为第一数据的优先级,则优先级高的数据对应第一测量窗,优先级低的数据对应第二测量窗;或者,
    所述服务质量参数为第一数据的时延参数,则时延高的数据对应第一测量窗,时延低的数据对应第二测量窗;或者,
    所述服务质量参数为第一数据的误包率,则误包率高的数据对应第一测量窗,误包率小的数据对应第二测量窗;或者,
    所述服务质量参数为第一数据的业务类型,则周期业务的数据对应第一测量窗,非周期业务的数据对应第二测量窗。
  22. 根据权利要求21所述的方法或通信装置,其特征在于,所述第一测量窗和所述第二测量窗在时域上占用的资源不同,或者,所述第一测量窗比所述第二测量窗占用更多的时域资源,或者,所述第一测量窗与所述第二测量窗在时域上部分或全部重叠。
  23. 根据权利要求21、22任一项所述的方法或通信装置,其特征在于,所述第一测量窗和所述第二测量窗关联相应的测量门限。
  24. 根据权利要求3、13、21-23任一项所述的方法或通信装置,其特征于,所述第一信息包括所述第一资源集的子载波间隔,
    所述第一资源集的子载波间隔为15kHz或30kHz,则所述起始符号为时隙中的第二个符号,所述结束符号为时隙中的倒数第二个符号;或者,
    所述第一资源集的子载波间隔为60kHz,则所述起始符号为时隙中的第三个符号,所述结束符号为时隙中的倒数第二个符号;或者,
    所述第一资源集的子载波间隔为120kHz,所述起始符号为时隙中的第五个符号,所述结束符号为时隙中的倒数第二个符号。
  25. 根据权利要求24所述的方法或通信装置,其特征于,所述时隙为传输所述第一数据的每个时隙,或者为连续K个时隙中的第一个时隙,其中K为大于1的整数。
  26. 根据权利要求5、15任一项所述的方法或通信装置,其特征在于,所述将发送的子信道数包括以下信息中的至少一种:
    所述第一设备检测到的否定应答对应的重传资源;
    所述第一设备生成的否定应答对应的重传资源;
    所述第一设备检测到的控制信息中指示的预留资源。
  27. 根据权利要求8-9、18-19任一项所述的方法或通信装置,其特征在于,对所述反馈信道对应的资源进行测量时,仅对所述反馈信道对应的资源进行测量,所述反馈信道对应的资源位于所述第一资源集中每N个时隙中的最后M个符号,其中,M和N为正整数。
  28. 根据权利要求1-27任一项所述的方法或通信装置,其特征在于,所述第一测量值包括以下测量值中的至少一种:接收信号强度指示信息、参考信号接收功率、信道忙碌比、信道占用比。
  29. 根据权利要求1-28任一项所述的方法或通信装置,其特征在于,所述第一数据的服务质量参数包括以下信息中的至少一种:所述第一数据的业务类型、所述第一数据的优先级信息、所述第一数据的时延参数、所述第一数据的误包率、所述第一数据的包大小、所述第一数据的最小通信距离;其中,所述第一数据的业务类型为周期业务或非周期业务。
  30. 根据权利要求1-29任一项所述的方法或通信装置,其特征在于,所述反馈信息包括:第一设备从第二设备接收到的信道状态信息CSI反馈信息和/或混合自动重传请求HARQ应答信息;或者,第一设备发送给第二设备的CSI反馈信息和/或HARQ应答信息。
PCT/CN2020/087581 2019-04-30 2020-04-28 传输方式确定方法和装置 WO2020221259A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021564661A JP7411687B2 (ja) 2019-04-30 2020-04-28 伝送モード決定方法及び装置
EP20798598.7A EP3962155A4 (en) 2019-04-30 2020-04-28 METHOD AND APPARATUS FOR DETERMINING MODE OF TRANSMISSION
KR1020217039091A KR20220003060A (ko) 2019-04-30 2020-04-28 전송 모드 결정 방법 및 장치
US17/514,675 US12081475B2 (en) 2019-04-30 2021-10-29 Transmission mode determining method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910364617.4 2019-04-30
CN201910364617.4A CN111867106B (zh) 2019-04-30 2019-04-30 传输方式确定方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/514,675 Continuation US12081475B2 (en) 2019-04-30 2021-10-29 Transmission mode determining method and apparatus

Publications (1)

Publication Number Publication Date
WO2020221259A1 true WO2020221259A1 (zh) 2020-11-05

Family

ID=72965120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/087581 WO2020221259A1 (zh) 2019-04-30 2020-04-28 传输方式确定方法和装置

Country Status (6)

Country Link
US (1) US12081475B2 (zh)
EP (1) EP3962155A4 (zh)
JP (1) JP7411687B2 (zh)
KR (1) KR20220003060A (zh)
CN (1) CN111867106B (zh)
WO (1) WO2020221259A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117158028A (zh) * 2021-05-08 2023-12-01 Oppo广东移动通信有限公司 信道繁忙率的测量方法、终端设备和网络设备
CN115734186A (zh) * 2021-08-31 2023-03-03 华为技术有限公司 一种资源配置方法及通信装置
CN117353867A (zh) * 2022-06-28 2024-01-05 华为技术有限公司 通信方法及通信装置
CN117425207A (zh) * 2022-07-07 2024-01-19 维沃移动通信有限公司 信息处理方法、装置及终端

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017135803A1 (en) * 2016-02-04 2017-08-10 Samsung Electronics Co., Ltd. Method and apparatus for ue signal transmission in 5g cellular communications
CN108024287A (zh) * 2016-11-01 2018-05-11 北京三星通信技术研究有限公司 拥塞控制的方法及设备
WO2018182262A1 (ko) * 2017-03-25 2018-10-04 엘지전자 주식회사 무선 통신 시스템에서 v2x 단말에 의해 수행되는 v2x 통신 수행 방법 및 상기 방법을 이용하는 단말
CN108882314A (zh) * 2017-05-12 2018-11-23 北京三星通信技术研究有限公司 多端口数据传输的方法及设备
CN108923890A (zh) * 2018-07-17 2018-11-30 北京北方烽火科技有限公司 一种数据传输方法、用户设备、基站及系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103166734B (zh) * 2011-12-14 2017-08-25 华为技术有限公司 信道状态信息的获取方法及装置
EP3833141B1 (en) * 2014-01-29 2023-08-16 InterDigital Patent Holdings, Inc. Resource selection for device to device discovery or communication
CN106559877B (zh) * 2015-09-24 2019-02-26 中兴通讯股份有限公司 车联网业务的发送方法及装置、资源配置方法及装置
US10383147B2 (en) * 2015-12-28 2019-08-13 Samsung Electronics Co., Ltd. Methods and apparatus for resource collision avoidance in vehicle to vehicle communication
WO2017164698A1 (ko) * 2016-03-25 2017-09-28 엘지전자(주) 무선 통신 시스템에서 무선 자원을 할당 받는 방법 및 이를 위한 장치
US10506402B2 (en) * 2016-03-31 2019-12-10 Samsung Electronics Co., Ltd. Method and apparatus for transmission of control and data in vehicle to vehicle communication
KR20180137010A (ko) * 2016-05-12 2018-12-26 후아웨이 테크놀러지 컴퍼니 리미티드 피드백 메시지 송신 방법, 피드백 메시지 처리 방법 및 장치
US10880897B2 (en) * 2016-05-13 2020-12-29 Apple Inc. Apparatus of a user equipment (UE) to select resources in a vehicle to vehicle (V2V) communication system
US10367677B2 (en) * 2016-05-13 2019-07-30 Telefonaktiebolaget Lm Ericsson (Publ) Network architecture, methods, and devices for a wireless communications network
US10448295B2 (en) * 2016-08-12 2019-10-15 Lg Electronics Inc. Method and apparatus for performing user equipment autonomous resource reselection based on counter in wireless communication system
KR102209706B1 (ko) * 2016-09-10 2021-01-29 엘지전자 주식회사 무선 통신 시스템에서 특정 서브프레임을 제외한 나머지 서브프레임에 대해 v2x 자원 풀을 할당하는 방법 및 상기 방법을 이용하는 단말
CN117651335A (zh) * 2017-09-30 2024-03-05 华为技术有限公司 信息传输方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017135803A1 (en) * 2016-02-04 2017-08-10 Samsung Electronics Co., Ltd. Method and apparatus for ue signal transmission in 5g cellular communications
CN108024287A (zh) * 2016-11-01 2018-05-11 北京三星通信技术研究有限公司 拥塞控制的方法及设备
WO2018182262A1 (ko) * 2017-03-25 2018-10-04 엘지전자 주식회사 무선 통신 시스템에서 v2x 단말에 의해 수행되는 v2x 통신 수행 방법 및 상기 방법을 이용하는 단말
CN108882314A (zh) * 2017-05-12 2018-11-23 北京三星通信技术研究有限公司 多端口数据传输的方法及设备
CN108923890A (zh) * 2018-07-17 2018-11-30 北京北方烽火科技有限公司 一种数据传输方法、用户设备、基站及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3962155A4

Also Published As

Publication number Publication date
CN111867106B (zh) 2024-04-26
EP3962155A4 (en) 2022-06-15
CN111867106A (zh) 2020-10-30
JP7411687B2 (ja) 2024-01-11
KR20220003060A (ko) 2022-01-07
US12081475B2 (en) 2024-09-03
JP2022531277A (ja) 2022-07-06
US20220052815A1 (en) 2022-02-17
EP3962155A1 (en) 2022-03-02

Similar Documents

Publication Publication Date Title
US11444729B2 (en) Transmitting feedback for data transmission through a sidelink
WO2020221259A1 (zh) 传输方式确定方法和装置
CN108605339B (zh) 一种上行控制信息传输的方法及装置
CN109428680B (zh) 发送或接收上行数据的方法和装置
WO2020199957A1 (zh) 一种重传资源的调度方法及设备
WO2021062804A1 (zh) 反馈信息传输的方法和装置
WO2014000288A1 (zh) 一种调度下行数据传输的方法和装置
US11357032B2 (en) Control information transmission method, transmit end, and receive end
JP2024073619A (ja) 端末、通信方法及び集積回路
WO2021056209A1 (zh) 无线通信的方法和设备
JP7227390B2 (ja) アップリンク伝送方法および通信装置
CN107431901B (zh) 在蜂窝网络的无线电接口上分配资源的设备和方法
JP2023546879A (ja) 資源決定方法および装置
WO2023011218A1 (zh) 一种资源共享方法及通信装置
WO2022237465A1 (zh) 一种车联网设备间资源协调方法、装置和用户设备
WO2021164603A1 (zh) 辅链路控制信息的资源指示方法与装置、终端设备
WO2020221070A1 (zh) 拥塞控制方法及设备
WO2021134448A1 (zh) 一种侧行数据传输的方法、装置和系统
WO2023131010A1 (zh) 一种数据传输方法及装置
WO2018000247A1 (zh) 一种数据传输方法及装置
WO2024067025A1 (zh) 侧行链路通信方法和装置
WO2024032444A1 (zh) 侧行链路通信方法和通信装置
WO2023143092A1 (zh) 一种控制信息的发送方法和通信装置
WO2024032580A1 (zh) 测量方法、装置和系统
WO2023206042A1 (en) Coexistence of different sidelink protocols

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20798598

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021564661

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020798598

Country of ref document: EP

Effective date: 20211122

ENP Entry into the national phase

Ref document number: 20217039091

Country of ref document: KR

Kind code of ref document: A