WO2018000247A1 - 一种数据传输方法及装置 - Google Patents

一种数据传输方法及装置 Download PDF

Info

Publication number
WO2018000247A1
WO2018000247A1 PCT/CN2016/087687 CN2016087687W WO2018000247A1 WO 2018000247 A1 WO2018000247 A1 WO 2018000247A1 CN 2016087687 W CN2016087687 W CN 2016087687W WO 2018000247 A1 WO2018000247 A1 WO 2018000247A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
ran device
transmission
data
transmission parameter
Prior art date
Application number
PCT/CN2016/087687
Other languages
English (en)
French (fr)
Inventor
方猛
李臻
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/087687 priority Critical patent/WO2018000247A1/zh
Priority to CN201680086718.4A priority patent/CN109314976A/zh
Publication of WO2018000247A1 publication Critical patent/WO2018000247A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria

Definitions

  • the present invention relates to the field of communications, and in particular, to a data transmission method and apparatus.
  • a data channel and a control channel are generally designed at the physical layer to implement data transmission.
  • the base station transmits an uplink scheduling grant to the terminal through a physical downlink control channel (PDCCH), and the terminal transmits uplink data to the base station through a physical uplink shared channel (PUSCH).
  • the base station transmits a downlink scheduling grant to the terminal through the PDCCH, and the terminal receives the downlink data transmitted by the base station by using a Physical Downlink Shared Channel (PDSCH).
  • PDSCH Physical Downlink Shared Channel
  • the data channel and the control channel share system bandwidth.
  • a RB pair has 14 orthogonal frequency division multiplexing (OFDM) symbols in the time domain, and 12 in the frequency domain. Subcarriers.
  • the PDCCH usually occupies the first 3 OFDM symbols; in some cases, the first 4 OFDM symbols can be occupied. That is, the PDCCH can occupy the first 1-4 symbols out of 14 OFDM symbols, occupying approximately 7%-29% of the system bandwidth.
  • control channel needs to carry more and more control information, and the problem of control channel overhead is increasingly intensified.
  • Embodiments of the present invention provide a data transmission method and apparatus, in order to reduce the overhead of a control channel.
  • a data transmission method comprising:
  • the RAN (radio access network) device determines the transmission of the terminal
  • the transmission parameter is used to indicate the time or number of times that the scheduling authorization is used for data transmission, that is, the time that the RAN device can perform several transmissions after one scheduling, or the time that the RAN device can perform transmission after performing one scheduling.
  • the RAN device transmits the determined transmission parameters to the terminal.
  • the transmission parameter may be sent by using an RRC message, or may be sent to the terminal through the PDCCH.
  • the RAN device sends a scheduling grant to the terminal.
  • the scheduling grant is used to indicate the resources authorized for the scheduling, and the RAN device may receive uplink data transmitted by the terminal on the resources, and may also send downlink data to the terminal on the resources.
  • the terminal here refers to the terminal that is scheduled this time.
  • the RAN device sends downlink data to the terminal according to the foregoing transmission parameter, and the uplink data sent by the terminal is received on the resource authorized by the scheduling authorization according to the foregoing transmission parameter.
  • a data transmission method including:
  • the terminal receives the transmission parameter sent by the RAN device, and the transmission parameter is used to indicate the time or number of times the scheduling authorization is used for data transmission.
  • the terminal receives the scheduling authorization sent by the RAN device, and the terminal may determine, according to the scheduling authorization, the resource for the scheduling authorization, and further, may receive downlink data or send uplink data on the resources.
  • the terminal sends the uplink data to the RAN device according to the foregoing transmission parameter, and the downlink data sent by the RAN device is received on the resource authorized by the scheduling grant according to the foregoing transmission parameter.
  • a RAN device comprising: means for performing the steps of the above first aspect, for example, comprising:
  • a determining unit configured to determine a transmission parameter of the terminal, where the transmission parameter is used to indicate a time or a number of times that the scheduling authorization is used for data transmission;
  • a sending unit configured to send the transmission parameter to the terminal
  • the sending unit is further configured to send a scheduling authorization to the terminal;
  • the sending unit is further configured to be taught by the scheduling authorization according to the transmission parameter And receiving, by the receiving unit, the downlink data sent by the terminal, according to the transmission parameter, on the resource authorized by the scheduling authorization.
  • a terminal including: a unit or means for performing the foregoing steps of the second aspect, including, for example:
  • a receiving unit configured to receive a transmission parameter sent by the radio access network RAN device, where the transmission parameter is used to indicate a time or number of times that the scheduling authorization is used for data transmission;
  • the receiving unit is further configured to receive a scheduling authorization sent by the RAN device;
  • a sending unit configured to send uplink data to the RAN device according to the transmission parameter, where the scheduling authorization is authorized; or the receiving unit is further configured to: according to the transmission parameter, in the scheduling authorization station The downlink data sent by the RAN device is received on the authorized resource.
  • a RAN device comprising: a processor, a memory, a transmitter, and a receiver.
  • a set of program code is stored in the memory, and the program code in the processor schedule memory implements the function of the determining unit of the third aspect.
  • the transmitting unit disclosed in the third aspect may be a transmitter, and the receiving unit disclosed in the third aspect may be a receiver, and the transmitter may also be integrated with the receiver to form a transceiver.
  • a terminal including: a processor, a memory, a transmitter, and a receiver.
  • the transmitting unit disclosed in the fourth aspect may be a transmitter; the receiving unit disclosed in the fourth aspect may be a receiver, and the transmitter may also be integrated with the receiver to form a transceiver.
  • the present application provides a data transmission apparatus including a processor and a memory, the memory is used to store a program, and the processor calls a program stored in the memory to perform the method provided by the first aspect or the second aspect of the present application.
  • the present application provides a data transmission apparatus comprising at least one processing element (or chip) for performing the method of the above first aspect.
  • the present application provides a program for performing the method of the above first aspect or second aspect when executed by a processor.
  • a program product such as a computer readable storage medium, package
  • the procedure of the ninth aspect is included.
  • the RAN device configures a transmission parameter for the terminal, and uses the transmission parameter to indicate the time or number of times the scheduling authorization is used for data transmission, and delivers the transmission parameter to the terminal.
  • the primary scheduling grant can be used for data transmission or multiple data transmissions at a certain time, reducing the number of scheduling grants, thereby reducing the overhead of the control channel.
  • the RAN device can determine the transmission parameters of the terminal in the following manner:
  • the RAN device first determines the delay requirement of the service of the terminal, and further determines the transmission parameter of the terminal according to the requirement of the delay of the service of the terminal.
  • the RAN device has a plurality of delay levels locally set in advance, and different delay levels correspond to different transmission parameters.
  • the RAN device can determine the transmission parameters of the terminal by:
  • the transmission parameter corresponding to the determined delay level is selected as the transmission parameter of the terminal.
  • different transmission parameters can be determined for the terminal according to the requirement of the delay of the service of the terminal. If the service of the terminal has a higher requirement for delay, the smaller the transmission parameter set for the terminal, that is, the less the number of times the data is transmitted in one scheduling period, or the shorter the time for transmitting data in one scheduling period. If the service of the terminal has a high delay requirement, the transmission parameter set for the terminal is larger, that is, the more times the data is transmitted in one scheduling period, or the longer the data is transmitted in one scheduling period. In this way, the number of control signaling can be reduced as a whole while the terminal service delay requirement is accurately met, and the overhead of the control channel is saved.
  • the RAN device may determine the service delay requirement of the terminal by:
  • the RAN device acquires a quality of service classification identifier (QCI) of the terminal, and determines, according to the QCI, a service delay requirement of the terminal; or
  • QCI quality of service classification identifier
  • the RAN device receives the capability information reported by the terminal, and parses the capability information to determine the service delay requirement of the terminal; or
  • the RAN device determines a service delay requirement of the terminal according to the data packet of the terminal within a preset duration.
  • the RAN device can determine the delay requirement of the service of the terminal, so as to determine the transmission parameter for the terminal according to the requirement of the terminal for the delay.
  • the transmission parameter is used to indicate a time when the scheduling authorization is used for data transmission, and the time is N TTIs (Transmission Time Interval);
  • the transmission parameter is used to indicate the number of times the scheduling grant is used for data transmission, and the number of times is N, where N is an integer greater than or equal to 1.
  • the transmission parameter is set to N TTI or N transmission for the terminal, and the N value of the device can meet the requirement of the service with different delay requirements, and in addition, as a whole, Reduce the number of control signaling and save the overhead of the control channel.
  • the RAN device when the scheduling grant is a downlink scheduling grant, the RAN device sends N downlink data to the terminal in consecutive N TTIs; or
  • the RAN device When the scheduling grant is an uplink scheduling grant, the RAN device receives N uplink data from the terminal in consecutive N TTIs.
  • the N downlink data is different downlink data, or the N uplink data is different uplink data.
  • Figure 1 is a block diagram of a communication system
  • 3 is a schematic diagram of an existing uplink scheduling mode
  • FIG. 4 is a schematic flowchart of a data transmission method according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a conventional downlink scheduling manner
  • FIG. 6 is a schematic diagram of a downlink scheduling manner according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of an uplink scheduling manner according to an embodiment of the present disclosure.
  • FIG. 8 is another schematic flowchart of a data transmission method according to an embodiment of the present disclosure.
  • FIG. 9 is a structural block diagram of a RAN device according to an embodiment of the present invention.
  • FIG. 10 is a structural block diagram of a terminal according to an embodiment of the present invention.
  • FIG. 11 is a block diagram showing another structure of a RAN device according to an embodiment of the present invention.
  • FIG. 12 is a block diagram of another structure of a terminal according to an embodiment of the present invention.
  • FIG. 1 is a block diagram of a communication system.
  • the communication system includes a core network (Core Network, CN) and a radio access network (RAN), and the CN and the RAN can communicate through a bearer network (also referred to as a transport network).
  • the bearer network includes, for example, an optical fiber, a router, and the like.
  • the terminal accesses the RAN through the RAN device, and implements communication with the external network through the CN device.
  • the data transmission between the terminal and the RAN device is implemented by scheduling.
  • the transmission from the RAN device to the terminal is referred to as downlink transmission, and the transmission from the terminal to the RAN device is referred to as uplink transmission.
  • the RAN device In the downlink transmission, the RAN device sends a downlink scheduling grant to the terminal through the PDCCH, and transmits downlink data to the terminal on the resource authorized by the downlink scheduling grant.
  • the RAN device In the uplink transmission, the RAN device sends an uplink scheduling grant to the terminal through the PDCCH, where the terminal is The uplink data is transmitted to the RAN device by the resources authorized by the uplink scheduling grant.
  • the terminal is also referred to as a user equipment (User Equipment, UE) is a device that provides voice and/or data connectivity to users, for example, a handheld device with wireless connectivity, an in-vehicle device, and the like.
  • UE User Equipment
  • Common terminals include, for example, mobile phones, tablets, notebook computers, PDAs, mobile internet devices (MIDs), wearable devices such as smart watches, smart bracelets, pedometers, and the like.
  • a RAN device is a device that accesses a terminal to a wireless network, and is also referred to as a base station, including but not limited to: an evolved Node B (eNB), a radio network controller (RNC), Node B (NB), Base Station Controller (BSC), Base Transceiver Station (BTS), Home Base Station (for example, Home evolved NodeB, or Home Node B, HNB), baseband unit (BaseBand Unit, BBU).
  • eNB evolved Node B
  • RNC radio network controller
  • NB Node B
  • BSC Base Station Controller
  • BTS Base Transceiver Station
  • HNB Home Base Station
  • BBU baseband unit
  • AP Wifi Access Point
  • FIG. 2 it is a subframe structure in an LTE communication system.
  • the current subframe length is 1 ms, including 14 OFDM symbols.
  • the data channel and the control channel share the system bandwidth.
  • the PDCCH usually occupies the first 3 OFDM symbols of one subframe, that is, OFDM symbols 0 to 2; in the specific case, the first 4 OFDM symbols can be occupied, which occupies about 7 of the system bandwidth. %-29%.
  • EDCCH enhanced physical downlink control channel
  • This method is at the expense of data channel resources, and as the information required to be carried by the control channel increases, the way in which the control channel opens up new resources is not an effective way to alleviate the control channel overhead.
  • the present application takes into account the above problems and proceeds from the information transmitted by the control channel itself to reduce the overhead of the control channel.
  • FIG. 3 A schematic diagram of an uplink scheduling mode in the prior art, where the sequence numbers 0-9 represent a transmission time interval (TTI).
  • TTI transmission time interval
  • the RAN device sends an uplink scheduling grant to the terminal through the PDCCH in the TTI 0, and the terminal sends the uplink data on the PUSCH resource authorized by the uplink scheduling grant in the TTI 4, and the RAN device performs the receiving of the uplink data of the terminal in the TTI8.
  • TTI transmission time interval
  • each uplink grant is used for one uplink transmission. Similar to the downlink transmission, the downlink scheduling grant needs to be sent through the PDCCH. For example, the RAN device sends a downlink scheduling grant to the terminal through the PDCCH at TTI 0, and simultaneously transmits downlink data through the PDSCH. And each downlink scheduling authorization is used for one downlink transmission. It can be seen that the overhead of scheduling authorization for the control channel is enormous.
  • a transmission parameter is configured for the terminal, and the transmission parameter is used to indicate the time or number of times the scheduling authorization is used for data transmission, so that the primary scheduling authorization is used for data transmission of a certain time or multiple times, thereby reducing The number of authorized grants, which in turn reduces the overhead of the control channel.
  • the transmission parameter can be set for the terminal according to the delay requirement of the service of the terminal.
  • the services of the terminal can be classified into delay sensitive and non-delay sensitive services.
  • the file download of the Full buffer type is uploaded as a non-delay-sensitive service; the real-time control of the drone is a delay-sensitive service.
  • the transmission parameter may be set, so that one scheduling authorization is used for one TTI or one time data transmission; for the non-delay sensitive service, the transmission parameter may be set, so that one scheduling authorization is used for multiple TTI or multiple data transmissions. . In this way, the number of control signaling can be reduced and the overhead of the control channel can be saved while satisfying the terminal service delay requirement.
  • the delay sensitivity level (hereinafter referred to as the delay level) may be further refined according to the delay requirement of the service of the terminal, and different transmission parameters are set for different delay levels, and the higher the delay level is, the representative time is If the delay is sensitive, the set transmission parameters are smaller, that is, the shorter the time for one scheduling grant for data transmission, or the less the number of times for one time for data transmission; conversely, the lower the delay level, the longer the delay is. Not sensitive Sense, the larger the transmission parameter is set, that is, the longer the scheduling authorization is used for data transmission, or the more times for data transmission. In this way, the number of control signaling can be reduced as a whole while the terminal service delay requirement is accurately met, and the overhead of the control channel is saved.
  • An embodiment of the present invention provides a data transmission method. As shown in FIG. 4, the method includes the following steps:
  • the RAN device determines a transmission parameter of the terminal, where the transmission parameter is used to indicate a time or number of times that the scheduling authorization is used for data transmission.
  • the RAN device determines the time delay requirement of the service of the terminal, and determines the transmission parameter of the terminal according to the requirement of the delay of the service of the terminal.
  • the transmission parameter is used to indicate the number of times the scheduling grant is used for data transmission, and the number of times is N, where N is an integer greater than or equal to 1.
  • the RAN device sends the transmission parameter to the terminal.
  • the RAN device may send the transmission message to the terminal by using an RRC message, for example, by using an RRC connection reconfiguration message.
  • the RAN device may also send the transmission parameter to the terminal through the PDCCH.
  • control signaling eg, DCI
  • DCI control signaling
  • a new byte in the control signaling of the PDCCH indicates the transmission parameter.
  • new control signaling is used to send transmission parameters.
  • the manner in which the RAN device sends the transmission parameter to the terminal is not limited to the foregoing, and is not limited herein.
  • the RAN device sends a scheduling authorization to the terminal.
  • the RAN device sends downlink data to the terminal or receives uplink data sent by the terminal, according to the transmission parameter, on a resource authorized by the scheduling authorization.
  • the scheduling grant is sent on the PDCCH, and the downlink data is sent on the PDSCH, so step 103 and step 104 (at this time, the RAN device is in accordance with the transmission parameter
  • the downlink data sent to the terminal by the resource authorized by the scheduling grant can be performed simultaneously.
  • the radio access network device can determine the service type of the terminal in the following manners:
  • the RAN device acquires a QCI (QoS Class Identifier) of the terminal from the CN device, and determines a service delay requirement of the terminal according to the QCI of the terminal.
  • QCI QoS Class Identifier
  • the core network configures a special QCI in the conference information of the terminal when the terminal is opened for the terminal.
  • the QCI is a classification of the service type when the trusted network establishes a bearer for the terminal, and knows that the core network is
  • the QCI information carried by the terminal service can know the service type of the terminal.
  • the radio access network device can identify that the service of the terminal has a higher delay requirement and the delay is sensitive according to the QCI; or the service of the terminal has a lower delay requirement, that is, the delay-sensitive type.
  • the RAN device receives the capability information reported by the terminal, and determines a service delay requirement of the terminal according to the capability information.
  • the terminal reports its own service capability to the radio access network device through the capability information.
  • the service of the terminal needs low delay
  • the radio access network device can determine the terminal according to the capability information reported by the terminal and its own processing capability.
  • Service versus latency requirements feature. For example, the requirement for determining the delay of the service of the terminal is delay sensitive.
  • the RAN device determines a service delay requirement of the terminal according to the data packet of the terminal within a preset duration.
  • the radio access network device can count the amount of data buffered by the RLC (Radio Link Control) layer from the first non-empty to the empty time. The total amount of data is filtered to obtain the average downlink packet length of the terminal downlink. If the continuous packet length is higher than the threshold, the service that recognizes the terminal's service delay is non-delay-sensitive.
  • RLC Radio Link Control
  • the term "first non-empty time" as used herein refers to a period of time during which a radio access network device transmits downlink data to the terminal.
  • the BSR reported by the terminal counts the total amount of data from the first non-empty time to the data amount, and obtains the average continuous packet length of the terminal uplink. If the continuous packet length is higher than the threshold, it can be identified as an uplink non-delay sensitive service, and the service that can identify the terminal has a delay-sensitive requirement. On the other hand, if the terminal downlink continuous data packet length is lower than the threshold, the service that can identify the terminal has a delay-sensitive requirement.
  • the terminal requests the link resource to send data to the radio access network device by periodically reporting the BSR to the radio access network device. If the terminal does not need to send uplink data, the reported BSR is empty. When the terminal needs to send uplink data, the reported BSR is not empty. Therefore, the "time from the first non-empty to the empty time" can be considered as the time period during which the terminal transmits downlink data to the radio access network device.
  • the method for obtaining the continuous data packet is not limited to the foregoing, and the wireless access network device may obtain the continuous data packet in the preset time of the terminal by using other methods.
  • the RAN device is provided with multiple delay levels, and the multiple delay levels correspond to multiple transmission parameters.
  • the delay sensitivity level is A, B, C, D, E, and F from high to low
  • the corresponding transmission parameters are N 1 transmission (N 1 TTI), N 2 transmissions (N 2 TTIs).
  • the corresponding transmission parameter is larger, that is, the longer the scheduling authorization is used for data transmission, or the more times for data transmission. That is, the above transmission parameters are sequentially N 1 , N 2 , N 3 , N 4 , N 5 , N 6 in descending order of numerical values.
  • the transmission parameters of the terminal include:
  • the RAN device determines the delay level of the terminal according to the requirement of the delay of the service of the terminal.
  • the transmission parameter corresponding to the determined delay level is selected as the transmission parameter of the terminal.
  • the higher the delay level of the terminal the smaller the transmission parameter set for the terminal; the lower the delay level of the terminal, the larger the transmission parameter set for the terminal.
  • a scheduling mode in which one transmission is scheduled once may be used, so the transmission parameter set for the terminal is one transmission, or one TTI.
  • the uplink scheduling may be as shown in FIG. 3, the RAN device sends an uplink scheduling grant to the terminal through the PDCCH in the TTI 0, and the terminal sends the uplink data on the PUSCH resource authorized by the uplink scheduling grant in the TTI 4, and the RAN device is in the TTI8 pair. Feedback is received on the reception of the uplink data of the terminal. The terminal only performs uplink data transmission (or performs one TTI uplink transmission) here until the uplink scheduling grant sent by the radio access network device is received again.
  • FIG. 5 is a schematic diagram of a downlink scheduling mode, where the RAN device sends a downlink scheduling grant to the terminal through the PDCCH at TTI 0, and sends the symbol after the downlink scheduling grant in TTI 0,
  • the downlink data is transmitted to the terminal, and the radio access network device only performs downlink data transmission here, and then transmits the downlink scheduling grant to the terminal again, and then performs downlink data transmission again.
  • a scheduling method of scheduling multiple transmissions at a time may be used.
  • the delay level of the terminal is determined according to the requirement of the service of the terminal, and the transmission parameter corresponding to the determined delay level is selected as the transmission parameter of the terminal. For example, if the delay sensitivity level of the terminal is D, the persistent scheduling period corresponding to the terminal is N 4 transmissions. That is, the radio access network device sends the second type of control signaling once, and needs to perform N 4 data transmissions.
  • the RAN device sends downlink data to the terminal or receives the downlink on the resource authorized by the scheduling grant according to the transmission parameter.
  • the uplink data sent by the terminal including:
  • the RAN device When the scheduling grant is a downlink scheduling grant, the RAN device sends N downlink data to the terminal in consecutive N TTIs.
  • the RAN device receives N uplink data from the terminal in consecutive N TTIs.
  • the N downlink data is different downlink data, or the N uplink data is different uplink data.
  • the scheduling signaling corresponding to each downlink data in the N downlink data is the same. Therefore, the air interface resource and the decoding information corresponding to each downlink data in the N downlink data are the same. Similarly, the air interface resource and the decoding information corresponding to each uplink data in the N times of uplink data are the same.
  • the RAN device receives the downlink data receiving feedback information sent by the terminal after the downlink data is sent to the terminal by the N consecutive TTIs, and the downlink data receiving feedback information indicates the The reception result of N downlink data transmission, such as correct reception or incorrect reception.
  • the second type of control signaling may be PDCCH control channel information, and the downlink data receiving feedback information may be ACK (Acknowledgement) information or NACK information.
  • the RAN device sends uplink data reception feedback information to the terminal after receiving N uplink data from the terminal for consecutive N TTIs; the uplink data reception feedback information indicates uplink of the N transmissions.
  • the result of receiving the data may be PDCCH control channel information, and the uplink data receiving feedback information may be HARQ (Hybrid Automatic Repeat reQuest) information.
  • the transmission parameter is 4 transmissions (4 TTIs) as an example, and the “one-time scheduling multiple transmission” in the data transmission method provided by the present implementation is described in detail (provided that the RAN device determines The service type of the terminal is non-delay-sensitive service, and the transmission parameter determined for it is 4 transmissions).
  • FIG. 6 is a schematic diagram of a downlink scheduling manner provided by an embodiment of the present invention.
  • the RAN device sends an RRC message to the terminal at one symbol of TTI0. (Transmission parameter of the carrying terminal), indicating to the terminal that the transmission parameter of the terminal is 4 TTIs.
  • the PDCCH control channel information (downlink scheduling grant) is transmitted to the terminal once, and the PDSCH data is transmitted to the terminal four times in four consecutive TTIs.
  • the terminal first decodes the PDCCH to determine the downlink scheduling grant resources, and receives the downlink data that the RAN device sends in four consecutive TTIs on the resources, that is, receives the PDSCH data in four consecutive subframes, such as TTI0 and TTI1 in FIG. , TTI2, TTI3.
  • the terminal may feed back downlink ACK information (downlink data reception feedback information) on the air interface of the subframe (TTI3+8), that is, the terminal feeds back the downlink ACK information on the 8th TTI-TTI1 after TTI3.
  • the ACK information includes the reception result of the 4th PDSCH data transmission.
  • the ACK information indicates that the receiving end correctly receives data
  • the NACK indicates that the receiving end receives data with an error.
  • the terminal only feeds back the ACK if the transmission is correct every time during the persistent scheduling period. As long as there is a PDSCH data reception error once, the terminal does not feed back the ACK and feeds back the NACK information.
  • the RAN device allocates the same air interface resource to the terminal once on TTI0, TTI1, TTI2, and TTI3, and sets the same PDSCH demodulation information, such as MCS.
  • the RAN device may also send the transmission parameter of the terminal in the PDCCH, that is, in steps 102, 103 and 104 of the embodiment of the present invention (in this case, the RAN device is in the scheduling authorization according to the transmission parameter.
  • the downlink data sent to the terminal on the authorized resource can be performed simultaneously.
  • FIG. 7 is a schematic diagram of an uplink scheduling manner provided by an embodiment of the present invention.
  • the radio access network device sends an RRC message (transmission parameter of the carrying terminal) to the terminal in one symbol of TTI0, and indicates to the terminal that the transmission parameter of the terminal is 4 TTIs.
  • the PDCCH control channel information (uplink scheduling grant) is sent to the terminal once.
  • the terminal After receiving the control PDCCH information, the terminal continuously performs uplink data transmission four times according to the PDCCH control information, that is, four.
  • the continuous TTI transmits different PUSCH data, such as TTI4, TTI5, TTI6, and TTI7 in FIG.
  • the radio access network device can feed back uplink HARQ information (uplink data reception feedback information) on the air interface TTI of TTI7+4, that is, the fourth sub-terminal of the terminal after TTI7.
  • uplink HARQ information is fed back on the frame-TTI1.
  • the HARQ information includes the reception result of the 4th PUSCH data.
  • the RAN device allocates the same air interface resource to the terminal once at TTI0, TTI1, TTI2, and TTI3, and sets the same PUSCH demodulation information, such as MCS.
  • the embodiment of the present invention further provides a data transmission method, where the execution subject is a terminal, as shown in FIG. 8, the method includes the following steps:
  • the terminal receives a transmission parameter sent by the RAN device of the radio access network, where the transmission parameter is used to indicate a time or number of times that the scheduling authorization is used for data transmission.
  • the transmission parameter is used to indicate a time when the scheduling authorization is used for data transmission, and the time is N transmission time intervals TTI, or the transmission parameter is used to indicate the number of times that the scheduling authorization is used for data transmission, and the The number of times is N, where N is an integer greater than or equal to 1.
  • the terminal receives a scheduling authorization sent by the RAN device.
  • the terminal sends uplink data to the RAN device or receives downlink data sent by the RAN device, according to the transmission parameter, on a resource authorized by the scheduling authorization.
  • the terminal receives N uplink data from the RAN device in consecutive N TTIs;
  • the terminal When the scheduling grant is an uplink scheduling grant, the terminal sends N downlink data to the RAN device in consecutive N TTIs.
  • the RAN device can identify the delay sensitive characteristic of the service of the terminal, and determine the transmission parameter for the terminal according to the delay sensitive characteristic of the service.
  • the delay-sensitive service adopts one control data once data transmission mode, and adopts one control information and multiple data transmission modes for non-delay-sensitive services.
  • the scheduling mode of one-time scheduling and one-time transmission requires a large amount of control signaling, which greatly increases the overhead of the control channel.
  • the present invention can reduce the number of control signaling and save the overhead of the control channel while satisfying the low latency requirement of the delay sensitive service.
  • An embodiment of the present invention provides a RAN device.
  • the RAN device includes: a determining unit 301, a sending unit 302, and a receiving unit 303.
  • the determining unit 301 is configured to determine a transmission parameter of the terminal, where the transmission parameter is used to indicate a time or a number of times that the scheduling authorization is used for data transmission.
  • the sending unit 301 is configured to send the transmission parameter to the terminal.
  • the sending unit 302 is further configured to send a scheduling authorization to the terminal.
  • the sending unit 302 is further configured to send downlink data to the terminal according to the transmission parameter, and the receiving unit 303 is configured to perform the scheduling authorization according to the transmission parameter.
  • the uplink data sent by the terminal is received on the authorized resource.
  • the determining unit 301 is specifically configured to determine a service delay requirement of the terminal, and determine a transmission parameter of the terminal according to a requirement of a delay of the service of the terminal.
  • the determining unit 301 is specifically configured to acquire a quality of service classification identifier (QCI) of the terminal, and determine a service delay requirement of the terminal according to the QCI of the terminal;
  • QCI quality of service classification identifier
  • the RAN device is provided with multiple delay levels, and the multiple delay levels correspond to multiple transmission parameters.
  • the determining unit 301 is specifically configured to: determine a delay level of the terminal according to a requirement of a delay of the service of the terminal, and select a transmission parameter corresponding to the determined delay level as a transmission parameter of the terminal.
  • the transmission parameter is used to indicate a time when the scheduling authorization is used for data transmission, and the time is N transmission time intervals TTI, or the transmission parameter is used to indicate the number of times that the scheduling authorization is used for data transmission. And the number of times is N, where N is an integer greater than or equal to 1.
  • the sending unit 302 is specifically configured to: when the scheduling grant is a downlink scheduling grant, send downlink data N times to the terminal in consecutive N TTIs; or
  • the receiving unit is specifically configured to: when the scheduling grant is an uplink scheduling grant, receive N uplink data from the terminal in consecutive N TTIs.
  • the N downlink data is different downlink data, or the N uplink data is different uplink data.
  • the transmitting unit 302 can be a transmitter of the RAN device; the receiving unit 303 can be a receiver of the RAN device, and the transmitter can also be integrated with the receiver to form a transceiver.
  • the determining unit 301 can be a separately set processor, or can be implemented in one processor of the RAN device, or can be stored in the memory of the RAN device in the form of program code, and is called by a processor of the RAN device. And the function of the above determining unit 301 is performed.
  • the RAN device provided by the embodiment of the present invention can identify the delay sensitive characteristic of the service of the terminal, and determine the transmission parameter for the terminal according to the delay sensitive characteristic of the service.
  • the delay-sensitive service adopts one control data once data transmission mode, and adopts one control information and multiple data transmission modes for non-delay-sensitive services.
  • the scheduling mode of one-time scheduling and one-time transmission requires a large amount of control signaling, which greatly increases the overhead of the control channel.
  • the present invention can reduce the number of control signaling and save the overhead of the control channel while satisfying the low latency requirement of the delay sensitive service.
  • the embodiment of the present invention further provides a terminal.
  • the terminal includes: a receiving unit 401 and a sending unit 402.
  • the receiving unit 401 is configured to receive a transmission parameter sent by the radio access network RAN device, where the transmission parameter is used to indicate a time or number of times that the scheduling authorization is used for data transmission.
  • the receiving unit 401 is further configured to receive a scheduling authorization sent by the RAN device.
  • the sending unit 402 is further configured to send uplink data to the RAN device according to the transmission parameter, where the scheduling authorization is authorized; or the receiving unit 401 is further configured to: according to the transmission parameter Receiving downlink data sent by the RAN device on the resource authorized by the scheduling grant.
  • the transmission parameter is used to indicate a time for scheduling scheduling for data transmission, and the time is N transmission time intervals TTI, or the transmission parameter is used for The number of times the scheduling grant is used for data transmission is indicated, and the number of times is N, where N is an integer greater than or equal to 1.
  • the receiving unit 401 is configured to: when the scheduling grant is a downlink scheduling grant, receive N uplink data from the RAN device in consecutive N TTIs; or
  • the sending unit 402 is configured to send N downlink data to the RAN device in consecutive N TTIs when the scheduling grant is an uplink scheduling grant.
  • the embodiment of the present invention provides a RAN device.
  • the RAN device includes: a processor 501, a transmitter 502, a receiver 503, and a memory 504.
  • the processor 501 can be a central processing unit (English: central processing unit, abbreviation: CPU).
  • the memory 504 is configured to store the program code and transmit the program code to the processor 501 to execute the following instructions according to the program code.
  • the memory 504 may include a volatile memory (English: volatile memory), such as a random access memory (English: random-access memory, abbreviation: RAM); the memory 504 may also include a non-volatile memory (English: non-volatile memory) ), such as read-only memory (English: read-only memory, abbreviation: ROM), flash memory (English: flash memory), hard disk (English: hard disk drive, abbreviation: HDD) or solid state drive (English: solid-state Drive, abbreviation: SSD).
  • Memory 504 can also include a combination of the above types of memory.
  • Transmitter 502 can be implemented by a light emitter, an electrical transmitter, a wireless transmitter, or any combination thereof.
  • the light emitter can be a small form-factor pluggable transceiver (SFP) transmitter (English: transceiver), and the enhanced small form-factor pluggable (English: enhanced small form-factor pluggable, Abbreviation: SFP+) Transmitter or 10 Gigabit small form-factor pluggable (XFP) transmitter.
  • the electric transmitter can be an Ethernet (Ethernet) network interface controller (English: network interface controller, abbreviation: NIC).
  • the wireless transmitter can be a wireless network interface controller (English: wireless network interface controller, abbreviation: WNIC).
  • Receiver 503 can be implemented by an optical receiver, an electrical receiver, a wireless receiver, or any combination thereof.
  • the optical receiver can be a small package pluggable receiver, an enhanced small package pluggable receiver or a 10 gigabit small package pluggable receiver.
  • the electrical receiver can be an Ethernet network interface controller.
  • the wireless receiver can be a wireless network interface controller.
  • the processor 501 is configured to determine a transmission parameter of the terminal, where the transmission parameter is used to indicate a time or a number of times that the scheduling authorization is used for data transmission.
  • the transmitter 502 is configured to send the transmission parameter to the terminal.
  • the transmitter 502 is further configured to send a scheduling authorization to the terminal.
  • the transmitter 502 is further configured to: send, according to the transmission parameter, downlink data to the terminal on a resource authorized by the scheduling grant; or, the receiver 503, configured to authorize the scheduling according to the transmission parameter.
  • the uplink data sent by the terminal is received on the authorized resource.
  • the processor 501 is specifically configured to determine a service delay requirement of the terminal, and determine a transmission parameter of the terminal according to a requirement of a delay of the service of the terminal.
  • the processor 501 is specifically configured to acquire a quality of service classification identifier (QCI) of the terminal, and determine a service delay requirement of the terminal according to the QCI of the terminal;
  • QCI quality of service classification identifier
  • the RAN device is provided with multiple delay levels, and the multiple delay levels correspond to multiple transmission parameters.
  • the processor 501 is specifically configured to: determine a delay level of the terminal according to a requirement of a delay of the service of the terminal, and select a transmission parameter corresponding to the determined delay level as a transmission parameter of the terminal.
  • the transmission parameter is used to indicate a time when the scheduling authorization is used for data transmission, and the time is N transmission time intervals TTI, or the transmission parameter is used to indicate the number of times that the scheduling authorization is used for data transmission. And the number of times is N, where N is an integer greater than or equal to 1.
  • the transmitter 502 is specifically configured to: when the scheduling grant is a downlink scheduling grant, send N downlink data to the terminal in consecutive N TTIs; or, the receiving unit is specifically configured to: when the scheduling authorization When the grant is scheduled for the uplink, the uplink data is received N times from the terminal in consecutive N TTIs.
  • the N downlink data is different downlink data, or the N uplink data is different uplink data.
  • the embodiment of the present invention further provides a terminal.
  • the terminal includes: a processor 601, a transmitter 602, a receiver 603, and a memory 604.
  • the receiver 603 is configured to receive a transmission parameter sent by the radio access network RAN device, where the transmission parameter is used to indicate a time or number of times that the scheduling authorization is used for data transmission.
  • the receiver 603 is further configured to receive a scheduling grant sent by the RAN device.
  • the transmitter 602 is further configured to send uplink data to the RAN device according to the transmission parameter
  • the receiving unit 401 is further configured to: according to the transmission parameter, Receiving downlink data sent by the RAN device on the resource authorized by the scheduling grant.
  • the transmission parameter is used to indicate a time when the scheduling authorization is used for data transmission, and the time is N transmission time intervals TTI, or the transmission parameter is used to indicate the number of times that the scheduling authorization is used for data transmission, and The number of times is N, where N is an integer greater than or equal to one.
  • the receiver 603 is configured to: when the scheduling grant is a downlink scheduling grant, receive N uplink data from the RAN device in consecutive N TTIs; or
  • the transmitter 602 is configured to send N downlink data to the RAN device in consecutive N TTIs when the scheduling grant is an uplink scheduling grant.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a readable storage medium. Based on such understanding, the technical solution of the present invention may contribute to the prior art or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium. A number of instructions are included to cause a device (which may be a microcontroller, chip, etc.) or a processor to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种数据传输方法及装置,涉及通信领域,用于减少控制信令的数量,节约控制信道的开销。包括:无线接入网RAN设备确定终端的传输参数,所述传输参数用于指示一次调度授权用于数据传输的时间或次数;向所述终端发送所述传输参数;向所述终端发送调度授权;根据所述传输参数在所述调度授权所授权的资源上向所述终端发送下行数据或接收所述终端发送的上行数据。

Description

一种数据传输方法及装置 技术领域
本发明涉及通信领域,尤其涉及一种数据传输方法及装置。
背景技术
无线通信系统中在物理层一般会设计数据信道和控制信道来实现数据传输。如:在上行传输中,基站通过物理下行控制信道(Physical Downlink Control Channel,PDCCH)向终端传输上行调度授权,终端通过物理上行共享信道(PUSCH,Physical Uplink Shared Channel)向基站传输上行数据。在下行传输中,基站通过PDCCH向终端传输下行调度授权,终端通过物理下行共享信道(PDSCH,Physical Downlink Shared Channel)接收基站传输的下行数据。
通常,数据信道和控制信道共享系统带宽。如在LTE(Long Term Evolution,长期演进)通信系统中,一个资源块对(RB pair)时域上包括14个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号,频域上包含12个子载波。PDCCH通常占用前3个OFDM符号;在某些情况可以占用前4个OFDM符号。即PDCCH可以占用14个OFDM符号中的前1-4个符号,大约占用系统带宽的7%-29%。
随着通信系统的演进,控制信道需要承载的控制信息越来越多,控制信道开销的问题日益加剧。
发明内容
本发明实施例提供一种数据传输方法及装置,以期减少控制信道的开销。
为达到上述目的,本发明的实施例采用如下技术方案:
第一方面,公开了一种数据传输方法,包括:
RAN(radio Access Network,无线接入网)设备确定终端的传 输参数,该传输参数用于指示一次调度授权用于数据传输的时间或次数,即RAN设备进行一次调度后可以进行几次传输,或RAN设备进行一次调度后可以用于传输的时间。
RAN设备向该终端发送所确定的传输参数。具体实现中,可以通过RRC消息发送该传输参数,也可以通过PDCCH向终端下发该传输参数。
RAN设备向该终端发送调度授权。该调度授权用于指示为本次调度授权的资源,RAN设备可以在这些资源上接收终端传输的上行数据,也可以在这些资源上向终端发送下行数据。当然,这里的终端指本次调度的终端。
RAN设备根据上述传输参数在调度授权所授权的资源上向该终端发送下行数据,或者,根据上述传输参数在调度授权所授权的资源上接收该终端发送的上行数据。
第二方面,公开了一种数据传输方法,包括:
终端接收RAN设备发送的传输参数,该传输参数用于指示一次调度授权用于数据传输的时间或次数。
终端接收该RAN设备发送的调度授权,终端可以根据该调度授权确定为本次调度授权的资源,进而可以在这些资源上接收下行数据或发送上行数据。
终端根据上述传输参数在所述调度授权所授权的资源上向该RAN设备发送上行数据;或者,根据上述传输参数在所述调度授权所授权的资源上接收所述RAN设备发送的下行数据。
第三方面,公开了一种RAN设备,包括:用于执行以上第一方面各个步骤的单元或手段(means),例如包括:
确定单元,用于确定终端的传输参数,所述传输参数用于指示一次调度授权用于数据传输的时间或次数;
发送单元,用于向所述终端发送所述传输参数;
所述发送单元还用于,向所述终端发送调度授权;
所述发送单元还用于,根据所述传输参数在所述调度授权所授 权的资源上向所述终端发送下行数据;或,接收单元,用于根据所述传输参数在所述调度授权所授权的资源上接收所述终端发送的上行数据。
第四方面,公开了一种终端,包括:用于执行以上第二方面各个步骤的单元或手段,例如包括:
接收单元,用于接收无线接入网RAN设备发送的传输参数,所述传输参数用于指示一次调度授权用于数据传输的时间或次数;
所述接收单元还用于,接收所述RAN设备发送的调度授权;
发送单元,用于根据所述传输参数在所述调度授权所授权的资源上向所述RAN设备发送上行数据;或者,所述接收单元还用于,根据所述传输参数在所述调度授权所授权的资源上接收所述RAN设备发送的下行数据。
第五方面,公开了一种RAN设备,包括:处理器、存储器、发射器以及接收器。存储器中存储一组程序代码,处理器调度存储器中的程序代码实现第三方面的确定单元的功能。第三方面公开的发送单元可以为发射器,第三方面公开的接收单元可以是接收器,发射器也可以与接收器集成在一起形成收发器。
第六方面,公开了一种终端,包括:处理器、存储器、发射器以及接收器。第四方面公开的发送单元可以为发射器;第四方面公开的接收单元可以是接收器,发射器也可以与接收器集成在一起形成收发器。
第七方面,本申请提供一种数据传输装置,包括处理器和存储器,存储器用于存储程序,处理器调用存储器存储的程序,以执行本申请第一方面或第二方面提供的方法。
第八方面,本申请提供一种数据传输装置,包括用于执行以上第一方面的方法的至少一个处理元件(或芯片)。
第九方面,本申请提供一种程序,该程序在被处理器执行时用于执行以上第一方面或第二方面的方法。
第十方面,提供一种程序产品,例如计算机可读存储介质,包 括第九方面的程序。
在以上各个方面中,RAN设备为终端配置传输参数,利用该传输参数指示一次调度授权用于数据传输的时间或次数,并将该传输参数下发给终端。这样,一次调度授权可以用于一定时间的数据传输或多次数据传输,减少调度授权的数量,进而可以减少控制信道的开销。
在以上各个方面中,RAN设备可以通过以下方式确定终端的传输参数:
RAN设备首先确定该终端的业务对时延的要求,进而可以根据该终端的业务对时延的要求,确定该终端的传输参数。
另外,RAN设备预先在本地设置有多个时延等级,不同的时延等级对应不同的传输参数。
进一步地,RAN设备可以通过以下方式确定所述终端的传输参数:
根据所述终端的业务对时延的要求,确定所述终端的时延等级;
选择所确定的时延等级对应的传输参数,作为所述终端的传输参数。
可见,本申请中可以根据终端的业务对时延的要求为终端确定不同的传输参数。若终端的业务对时延的要求较高,则为终端设置的传输参数越小,即一次调度周期内进行传输数据的次数越少,或一次调度周期内用于传输数据的时间越短。若终端的业务对时延的要求较高,则为终端设置的传输参数越大,即一次调度周期内进行传输数据的次数越多,或一次调度周期内用于传输数据的时间越长。如此,能够根据精确的满足终端业务时延要求的同时,从整体上减少控制信令的数量,节约控制信道的开销。
在以上各个方面中,RAN设备可以通过以下方式确定所述终端的业务对时延的要求:
RAN设备获取所述终端的服务质量分类识别码QCI,根据这个QCI确定出该终端的业务对时延的要求;或者,
RAN设备接收该终端上报的能力信息,解析这个能力信息就可确定出该终端的业务对时延的要求;或者,
RAN设备根据所述终端在预设时长内的数据包,确定所述终端的业务对时延的要求。
如此,RAN设备可以确定出终端的业务对时延的要求,以根据该终端对时延的要求为该终端确定传输参数。
以上各个方面中,传输参数用于指示一次调度授权用于数据传输的时间,且所述时间为N个TTI(Transmission Time Interval,传输时间间隔);
或者,传输参数用于指示一次调度授权用于数据传输的次数,且所述次数为N,其中N为大于或等于1的整数。
本申请中,根据终端的业务对时延的要求,为终端设置传输参数为N个TTI或N传输,通过设备不同的N值,可以满足不同时延要求的业务的需求,另外,从整体上减少控制信令的数量,节约控制信道的开销。
进一步地,当所述调度授权为下行调度授权时,所述RAN设备在连续N个TTI向所述终端发送N次下行数据;或者,
当所述调度授权为上行调度授权时,所述RAN设备在连续N个TTI从所述终端接收N次上行数据。
需要说明的是,所述N次下行数据为不同的下行数据,或者所述N次上行数据为不同的上行数据。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一种通信系统的框架图;
图2为一种通信系统中的子帧结构;
图3为现有的一种上行调度方式的示意图;
图4为本发明实施例提供的数据传输方法的流程示意图;
图5为现有的一种下行调度方式的示意图;
图6为本发明实施例提供的下行调度方式的示意图;
图7为本发明实施例提供的上行调度方式的示意图;
图8为本发明实施例提供的数据传输方法的另一流程示意图;
图9为本发明实施例提供的RAN设备的结构框图;
图10为本发明实施例提供的终端的结构框图;
图11为本发明实施例提供的RAN设备的另一结构框图;
图12为本发明实施例提供的终端的另一结构框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1为一种通信系统的框架图。如图1所示,该通信系统包括核心网(Core Network,CN)和无线接入网(Radio Access Network,RAN),且CN和RAN之间可以通过承载网(又称为传输网)进行通信。该承载网例如包括光纤、路由器等设备。终端通过RAN设备接入RAN,并通过CN设备实现与外网之间的通信。其中,终端与RAN设备之间的数据传输是通过调度的方式实现的。其中,将由RAN设备向终端的传输称为下行传输,将由终端向RAN设备的传输称为上行传输。在下行传输中,RAN设备通过PDCCH向终端发送下行调度授权,并在下行调度授权所授权的资源上向终端传输下行数据;在上行传输中,RAN设备通过PDCCH向终端发送上行调度授权,终端在上行调度授权所授权的资源上向RAN设备传输上行数据。
本申请的实施例中,终端又称为用户设备(User Equipment, UE),是一种向用户提供语音和/或数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。常见的终端例如包括:手机、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,例如智能手表、智能手环、计步器等。
RAN设备是一种将终端接入到无线网络的设备,又称之为基站,包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(Base Station Controller,BSC)、基站收发台(Base Transceiver Station,BTS)、家庭基站(例如,Home evolved NodeB,或Home Node B,HNB)、基带单元(BaseBand Unit,BBU)。此外,还可以包括Wifi接入点(Access Point,AP)等。
如图2所示,是LTE通信系统中的子帧结构。目前子帧长度为1ms,包括14个OFDM符号。LTE通信系统中数据信道和控制信道共享系统带宽,PDCCH通常占用一个子帧的前3个OFDM符号,即OFDM符号0~2;特定情况下可以占用前4个OFDM符号,大约占用系统带宽的7%-29%。
随着通信系统的发展,PDCCH需要承载的控制信息越来越多,控制信道的开销日益加剧,为了适应这种发展,目前提出了一种增强的物理下行控制信道(enhanced physical downlink control channel,EPDCCH)的方案:开辟部分数据信道的资源作为用于控制信道传输。
这种方式是以牺牲数据信道资源为代价的,且随着控制信道所需承载的信息的增加,一味为控制信道开辟新的资源的方式,并不是一种有效的缓解控制信道开销的方式。
本申请考虑到以上问题,从控制信道本身传输的信息着手,来减少控制信道的开销。
目前,无论上行传输还是下行传输,都需要PDCCH来承载调度授权,且每进行一次传输就需要承载一次调度授权。请参考图3, 为现有技术一种上行调度方式的示意图,其中的序号0~9代表传输时间间隔(transmission time interval,TTI)。如图3所示,RAN设备在TTI 0通过PDCCH向终端发送上行调度授权,终端在TTI 4在上行调度授权所授权的PUSCH资源上发送上行数据,RAN设备在TTI8对终端上行数据的接收情况进行反馈。例如,当RAN设备正确接收终端的上行数据时,反馈确认(ACK),当RAN设备未能正确接收终端的上行数据时,反馈否定确认(NACK)。可见,每次上行授权用于一次上行传输。下行传输与之类似,也需要通过PDCCH发送下行调度授权,例如,RAN设备在TTI 0通过PDCCH向终端发送下行调度授权,并同时通过PDSCH发送下行数据。且每次下行调度授权,用于一次下行传输。可见,调度授权对于控制信道的开销是巨大的。
有鉴于此,在以下实施例中,为终端配置传输参数,利用该传输参数指示一次调度授权用于数据传输的时间或次数,如此将一次调度授权用于一定时间或多次的数据传输,减少调度授权的数量,进而减少控制信道的开销。
较佳的,可以根据终端的业务对时延的要求来为终端设置传输参数。例如,根据时延要求不同,可将终端的业务分为时延敏感和非时延敏感业务。如:Full buffer类型的文件下载上传为非时延敏感业务;无人机实时控制为时延敏感业务。对于时延敏感业务可以设置传输参数,使得一次调度授权用于一个TTI或一次的数据传输;对于非时延敏感业务可以设置传输参数,使得一次调度授权用于多个TTI或多次的数据传输。如此,能够在满足终端业务时延要求的同时,减少控制信令的数量,节约控制信道的开销。
进一步的,可以根据终端的业务对时延的要求进一步细化时延敏感等级(以下简称时延等级),针对不同的时延等级,设置不同的传输参数,时延等级越高,代表对时延越敏感,则设置的传输参数越小,即一次调度授权用于数据传输的时间越短,或者一次调度用于数据传输的次数越少;反之,时延等级越低,代表对时延越不敏 感,则设置的传输参数越大,即一次调度授权用于数据传输的时间越长,或者用于数据传输的次数越多。如此,能够根据精确的满足终端业务时延要求的同时,从整体上减少控制信令的数量,节约控制信道的开销。
本发明实施例提供一种数据传输方法,如图4所示,所述方法包括以下步骤:
101、RAN设备确定终端的传输参数,所述传输参数用于指示一次调度授权用于数据传输的时间或次数。
具体实现中,RAN设备确定所述终端的业务对时延的要求,并根据所述终端的业务对时延的要求,确定所述终端的传输参数。
另外,所述传输参数用于指示一次调度授权用于数据传输的时间,且所述时间为N个传输时间间隔TTI(在3GPP LTE与LTE-A的标准中,一般认为1TTI=1ms。即一个子帧);
或者,所述传输参数用于指示一次调度授权用于数据传输的次数,且所述次数为N,其中N为大于或等于1的整数。
102、所述RAN设备向所述终端发送所述传输参数。
具体实现中,RAN设备可以通过RRC消息向所述终端发送所述传输消息,例如通过RRC connection reconfiguration消息传输所述传输参数。
RAN设备也可以通过PDCCH向所述终端下发所述传输参数。示例的,可以扩展现有PDCCH的控制信令(例如,DCI),在PDCCH的控制信令新增字节指示所述传输参数。或者,新增控制信令用于发送传输参数。
当然,RAN设备向所述终端发送所述传输参数的方式并不限于以上所述,在此不做限制。
103、所述RAN设备向所述终端发送调度授权。
104、所述RAN设备根据所述传输参数在所述调度授权所授权的资源上向所述终端发送下行数据或接收所述终端发送的上行数据。
需要说明的是,在下行传输过程中,调度授权是在PDCCH上发送的,下行数据是在PDSCH上发送的,因此步骤103与步骤104(此时为所述RAN设备根据所述传输参数在所述调度授权所授权的资源上向所述终端发送下行数据)可以同时进行。
具体实现中,无线接入网设备可以通过以下几种方式确定终端的业务类型:
1)所述RAN设备从CN设备获取所述终端的QCI(QoS Class Identifier服务质量分类识别码),根据所述终端的QCI确定所述终端的业务对时延的要求。
对于有时延敏感特性的终端,核心网在为该终端开户时,会在该终端的开会信息中配置特殊QCI,QCI是可信网为终端建立承载时对业务类型的分类,知道了核心网为终端业务承载的QCI信息就可以知道终端的业务类型。无线接入网设备可以根据该QCI识别出终端的业务对时延要求较高,即时延敏感型;或者,终端的业务对时延要求较低,即非时延敏感型。
2)所述RAN设备接收所述终端上报的能力信息,根据所述能力信息确定所述终端的业务对时延的要求。
具体地,终端通过能力信息向无线接入网设备上报自己的业务能力,比如终端的业务需要低时延,无线接入网设备则可以根据终端上报的能力信息和自己的处理能力,确定终端的业务对时延要求特性。示例的,确定终端的业务对时延的要求为时延敏感型。
3)所述RAN设备根据所述终端在预设时长内的数据包,确定所述终端的业务对时延的要求。
具体地,在下行方向(无线接入网设备向终端传输数据),无线接入网设备可以统计RLC(Radio Link Control,无线链路控制)层缓冲数据量从首次非空到空的时间内的总数据量,对数据量进行进行滤波,获取终端下行平均连续数据包包长。若连续数据包长高于门限,则可识别终端的业务对时延的要求为非时延敏感型。
当无线接入网设备向终端传输数据时,RLC层数据量非空,当 没有数据传输时,RLC层数据量为空。因此,这里所述的“首次非空到空的时间内”指的是无线接入网设备向该终端传输下行数据的时间段。
在上行方向,统计终端上报的BSR,从首次非空到空的时间内的总数据量,对数据量进行进行滤波,获取终端上行平均连续数据包包长。若连续数据包长高于门限,则可识别为上行非时延敏感业务,则可识别终端的业务对时延的要求为非时延敏感型。反之,若终端下行平均连续数据包包长低于门限,则可识别终端的业务对时延的要求为时延敏感型。
通常,终端通过定期向无线接入网设备上报BSR向无线接入网设备请求链路资源用以发送数据。若终端不需要发送上行数据,那么上报的BSR为空,当终端需要发送上行数据,上报的BSR非空。因此,这里所述“从首次非空到空的时间”可以认为是该终端向无线接入网设备传输下行数据的时间段。
需要说明的是,连续数据包的获取方式不限于以上所述,无线接入网设备也可以通过其他方式获取终端预设时间内的连续数据包。
需要说明的是,RAN设备内设置有多个时延等级,所述多个时延等级对应多个传输参数。示例的,时延敏感等级由高到低依次是A、B、C、D、E、F,对应的传输参数为N1次传输(N1个TTI)、N2次传输(N2个TTI)、N3次传输(N3个TTI)、N4次传输(N4个TTI)、N5次传输(N5个TTI)、N6次传输(N6个TTI)。时延等级越高,代表对时延越敏感,对应的传输参数越小,即一次调度授权用于数据传输的时间越短,或者一次调度用于数据传输的次数越少;反之,时延等级越低,代表对时延越不敏感,对应的传输参数越大,即一次调度授权用于数据传输的时间越长,或者用于数据传输的次数越多。也即,上述传输参数按照数值由小到大的顺序依次N1、N2、N3、N4、N5、N6
进一步地,上述“根据所述终端的业务对时延的要求,确定所 述终端的传输参数”包括:
RAN设备根据所述终端的业务对时延的要求,确定所述终端的时延等级。
选择所确定的时延等级对应的传输参数,作为所述终端的传输参数。
在本实施例中,终端的时延等级越高,为其设置的传输参数越小;终端的时延等级越低,为其设置的传输参数越大。当然,对于时延敏感等级较高的业务,可以采用一次调度一次传输的调度方式,因此为该终端设置的传输参数为一次传输,或一个TTI。
具体实现中,上行调度可以如图3所示,RAN设备在TTI 0通过PDCCH向终端发送上行调度授权,终端在TTI 4在上行调度授权所授权的PUSCH资源上发送上行数据,RAN设备在TTI8对终端上行数据的接收情况进行反馈。终端仅在此进行一次上行数据传输(或进行一个TTI的上行传输),直至再次接收无线接入网设备发送的上行调度授权。
另外,参考图5,为现有的一种下行调度方式的示意图,其中,RAN设备在TTI 0通过PDCCH向终端发送下行调度授权,并在在TTI 0中发送所述下行调度授权之后的符号,向终端传输下行数据,无线接入网设备仅在此进行一次下行数据传输,直至再次向终端发送下行调度授权,才能再进行一次下行数据传输。
另外,对于时延敏感等级较低的业务,即非时延敏感的业务,可以采用一次调度多次传输的调度方式。具体实现中,需要根据所述终端的业务对时延的要求,确定所述终端的时延等级,选择所确定的时延等级对应的传输参数,作为所述终端的传输参数。示例的,承上所述,若终端的时延敏感等级为D,则该终端对应的持续调度周期为N4次传输。即无线接入网设备发送一次所述第二类控制信令,需要进行N4次数据传输。
在本发明的优选实施例中,所述RAN设备根据所述传输参数在所述调度授权所授权的资源上向所述终端发送下行数据或接收所述 终端发送的上行数据,包括:
当所述调度授权为下行调度授权时,所述RAN设备在连续N个TTI向所述终端发送N次下行数据。
或者,当所述调度授权为上行调度授权时,所述RAN设备在连续N个TTI从所述终端接收N次上行数据。
其中,所述N次下行数据为不同的下行数据,或者所述N次上行数据为不同的上行数据。
需要说明的是,N次下行数据中的每一次下行数据对应的调度信令是同一个,因此,所述N次下行数据中的每一次下行数据对应的空口资源和解码信息都相同。同样,所述N次上行数据中的每一次上行数据对应的空口资源和解码信息都相同。
具体实现中,在下行方向,RAN设备在连续N个TTI向所述终端发送N次下行数据后,还会接收所述终端发送的下行数据接收反馈信息;所述下行数据接收反馈信息指示所述N次下行数据传输的接收结果,如正确接收或错误接收。其中,所述第二类控制信令可以是PDCCH控制信道信息,所述下行数据接收反馈信息可以是ACK(Acknowledgement,确认字符)信息或NACK信息。
另外,在上行方向,RAN设备在连续N个TTI从所述终端接收N次上行数据后,向所述终端发送上行数据接收反馈信息;所述上行数据接收反馈信息指示所述N次传输的上行数据的接收结果。其中,所述第二类控制信令可以是PDCCH控制信道信息,所述上行数据接收反馈信息可以是HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)信息。
进一步,在本发明的优选实施例中,以传输参数为4次传输(4个TTI)为例,详细介绍本实施提供的数据传输方法中的“一次调度多次传输”(前提是RAN设备确定终端的业务类型为非时延敏感业务,为其确定的传输参数为4次传输)。
图6所示是本发明实施例提供的下行调度方式的示意图。具体地,参考图6,RAN设备在TTI0的一个符号向终端发送RRC消息 (携带终端的传输参数),向终端指示该终端的传输参数为4个TTI。接着,在TTI0中发送RRC消息之后,向终端发送一次PDCCH控制信道信息(下行调度授权)以及在连续4个TTI向所述终端发送4次PDSCH数据。终端首先解码PDCCH确定下行调度授权的资源,在这些资源上接收RAN设备在连续4个TTI发送的4次下行数据,即在4个连续子帧内接收PDSCH数据,如图6中的TTI0、TTI1、TTI2、TTI3。终端可以在子帧(TTI3+8)的空口上反馈一次下行ACK信息(下行数据接收反馈信息),即终端在TTI3之后的第8个TTI-TTI1上反馈该下行ACK信息。该ACK信息包含4次PDSCH数据传输的接收结果。通常,ACK信息指示接收端正确接收数据,NACK指示接收端接收数据出现错误。在此,仅当持续调度周期内每一次的传输均正确,终端才反馈ACK,只要存在一次PDSCH数据接收错误,终端则不反馈ACK,反馈NACK信息。
需要说明的是,RAN设备在TTI0、TTI1、TTI2、TTI3上为终端一次分配相同的空口资源,设置相同的PDSCH解调信息,如MCS等。
另外,RAN设备也可以在PDCCH中下发该终端的传输参数,即在本发明实施例步骤102、103以及步骤104(此时为:所述RAN设备根据所述传输参数在所述调度授权所授权的资源上向所述终端发送下行数据)可以同时进行。
图7所示,是本发明实施例提供的上行调度方式的示意图。参考图7,无线接入网设备在TTI0的一个符号向终端发送RRC消息(携带终端的传输参数),向终端指示该终端的传输参数为4个TTI。接着,在TTI0中发送RRC消息之后,向终端发送一次PDCCH控制信道信息(上行调度授权),终端在接收该控制PDCCH信息后,根据PDCCH控制信息,连续进行4次上行数据传输,即在4个连续TTI发送不同的PUSCH数据,如图7中的TTI4、TTI5、TTI6、TTI7。无线接入网设备可以在在TTI7+4的空口TTI上反馈上行HARQ信息(上行数据接收反馈信息),即终端在TTI7之后的第4个子 帧-TTI1上反馈该上行HARQ信息。该HARQ信息包含4次PUSCH数据的接收结果。
需要说明的是,RAN设备在TTI0、TTI1、TTI2、TTI3上为所述终端一次分配相同的空口资源,设置相同的PUSCH解调信息,如MCS等。
本发明实施例还提供一种数据传输方法,执行主体为终端,如图8所示,所述方法包括以下步骤:
201、终端接收无线接入网RAN设备发送的传输参数,所述传输参数用于指示一次调度授权用于数据传输的时间或次数。
所述传输参数用于指示一次调度授权用于数据传输的时间,且所述时间为N个传输时间间隔TTI,或者所述传输参数用于指示一次调度授权用于数据传输的次数,且所述次数为N,其中N为大于或等于1的整数。
202、所述终端接收所述RAN设备发送的调度授权。
203、所述终端根据所述传输参数在所述调度授权所授权的资源上向所述RAN设备发送上行数据或接收所述RAN设备发送的下行数据。
具体地,当所述调度授权为下行调度授权时,所述终端在连续N个TTI从所述RAN设备接收N次上行数据;或者,
当所述调度授权为上行调度授权时,所述终端在连续N个TTI向所述RAN设备发送N次下行数据。
本发明实施例提供的数据传输方法,RAN设备能够识别终端的业务的时延敏感特性,并根据业务的时延敏感特性为终端确定传输参数。对时延敏感业务采用一次控制信息一次数据传输的方式,对非时延敏感业务采用一次控制信息,多次数据传输的方式。现有技术为满足时延敏感业务的低时延要求,采用一次调度,一次传输的调度方式,需要大量的控制信令,大大地增加了控制信道的开销。相比而言,本发明能够在满足时延敏感业务的低时延要求的同时,减少控制信令的数量,节约控制信道的开销。
本发明实施例提供一种RAN设备,如图9所示,所述RAN设备包括:确定单元301、发送单元302以及接收单元303。
确定单元301,用于确定终端的传输参数,所述传输参数用于指示一次调度授权用于数据传输的时间或次数。
发送单元301,用于向所述终端发送所述传输参数。
所述发送单元302还用于,向所述终端发送调度授权。
所述发送单元302还用于,根据所述传输参数在所述调度授权所授权的资源上向所述终端发送下行数据;或,接收单元303,用于根据所述传输参数在所述调度授权所授权的资源上接收所述终端发送的上行数据。
所述确定单元301具体用于,确定所述终端的业务对时延的要求;根据所述终端的业务对时延的要求,确定所述终端的传输参数。
所述确定单元301具体用于,获取所述终端的服务质量分类识别码QCI,根据所述终端的QCI确定所述终端的业务对时延的要求;
或者,接收所述终端上报的能力信息,根据所述能力信息确定所述终端的业务对时延的要求;或者,
根据所述终端在预设时长内的数据包,确定所述终端的业务对时延的要求。
需要说明的是,所述RAN设备内设置有多个时延等级,所述多个时延等级对应多个传输参数。
所述确定单元301具体用于:根据所述终端的业务对时延的要求,确定所述终端的时延等级;选择所确定的时延等级对应的传输参数,作为所述终端的传输参数。
本实施例,所述传输参数用于指示一次调度授权用于数据传输的时间,且所述时间为N个传输时间间隔TTI,或者所述传输参数用于指示一次调度授权用于数据传输的次数,且所述次数为N,其中N为大于或等于1的整数。
所述发送单元302具体用于,当所述调度授权为下行调度授权时,在连续N个TTI向所述终端发送N次下行数据;或者,所述接 收单元具体用于,当所述调度授权为上行调度授权时,在连续N个TTI从所述终端接收N次上行数据。
需要说明的是,所述N次下行数据为不同的下行数据,或者所述N次上行数据为不同的上行数据。
以上所述,发送单元302可以为RAN设备的发射器;接收单元303可以是RAN设备的接收器,发射器也可以与接收器集成在一起形成收发器。另外。确定单元301可以为单独设立的处理器,也可以集成在RAN设备的某一个处理器中实现,此外,也可以程序代码的形式存储于RAN设备的存储器中,由RAN设备的某一个处理器调用并执行以上确定单元301的功能。
本发明实施例提供的RAN设备,能够识别终端的业务的时延敏感特性,并根据业务的时延敏感特性为终端确定传输参数。对时延敏感业务采用一次控制信息一次数据传输的方式,对非时延敏感业务采用一次控制信息,多次数据传输的方式。现有技术为满足时延敏感业务的低时延要求,采用一次调度,一次传输的调度方式,需要大量的控制信令,大大地增加了控制信道的开销。相比而言,本发明能够在满足时延敏感业务的低时延要求的同时,减少控制信令的数量,节约控制信道的开销。
本发明实施例还提供了一种终端,如图10所示,所述终端包括:接收单元401、发送单元402。
接收单元401,用于接收无线接入网RAN设备发送的传输参数,所述传输参数用于指示一次调度授权用于数据传输的时间或次数。
所述接收单元401还用于,接收所述RAN设备发送的调度授权。
所述发送单元402还用于,根据所述传输参数在所述调度授权所授权的资源上向所述RAN设备发送上行数据;或者,所述接收单元401还用于,根据所述传输参数在所述调度授权所授权的资源上接收所述RAN设备发送的下行数据。
其中,所述传输参数用于指示一次调度授权用于数据传输的时间,且所述时间为N个传输时间间隔TTI,或者所述传输参数用于 指示一次调度授权用于数据传输的次数,且所述次数为N,其中N为大于或等于1的整数。
具体地,所述接收单元401用于,当所述调度授权为下行调度授权时,在连续N个TTI从所述RAN设备接收N次上行数据;或者,
所述发送单元402用于,当所述调度授权为上行调度授权时,在连续N个TTI向所述RAN设备发送N次下行数据。
本发明实施例提供一种RAN设备,如图11所示,所述RAN设备包括:处理器501、发射器502、接收器503以及存储器504。
处理器501可以为中央处理器(英文:central processing unit,缩写:CPU)。
存储器504,用于存储程序代码,并将该程序代码传输给该处理器501根据程序代码执行下述指令。存储器504可以包括易失性存储器(英文:volatile memory),例如随机存取存储器(英文:random-access memory,缩写:RAM);存储器504也可以包括非易失性存储器(英文:non-volatile memory),例如只读存储器(英文:read-only memory,缩写:ROM),快闪存储器(英文:flash memory),硬盘(英文:hard disk drive,缩写:HDD)或固态硬盘(英文:solid-state drive,缩写:SSD)。存储器504还可以包括上述种类的存储器的组合。
发射器502可以由光发射器,电发射器,无线发射器或其任意组合实现。例如,光发射器可以是小封装可插拔(英文:small form-factor pluggable transceiver,缩写:SFP)发射器(英文:transceiver),增强小封装可插拔(英文:enhanced small form-factor pluggable,缩写:SFP+)发射器或10吉比特小封装可插拔(英文:10Gigabit small form-factor pluggable,缩写:XFP)发射器。电发射器可以是以太网(英文:Ethernet)网络接口控制器(英文:network interface controller,缩写:NIC)。无线发射器可以是无线网络接口控制器(英文:wireless network interface controller,缩写:WNIC)。
接收器503可以由光接收器,电接收器,无线接收器或其任意组合实现。例如,光接收器可以是小封装可插拔接收器,增强小封装可插拔接收器或10吉比特小封装可插拔接收器。电接收器可以是以太网网络接口控制器。无线接收器可以是无线网络接口控制器。
处理器501,用于确定终端的传输参数,所述传输参数用于指示一次调度授权用于数据传输的时间或次数。
发射器502,用于向所述终端发送所述传输参数。
所述发射器502还用于,向所述终端发送调度授权。
所述发射器502还用于,根据所述传输参数在所述调度授权所授权的资源上向所述终端发送下行数据;或,接收器503,用于根据所述传输参数在所述调度授权所授权的资源上接收所述终端发送的上行数据。
所述处理器501具体用于,确定所述终端的业务对时延的要求;根据所述终端的业务对时延的要求,确定所述终端的传输参数。
所述处理器501具体用于,获取所述终端的服务质量分类识别码QCI,根据所述终端的QCI确定所述终端的业务对时延的要求;
或者,接收所述终端上报的能力信息,根据所述能力信息确定所述终端的业务对时延的要求;或者,
根据所述终端在预设时长内的数据包,确定所述终端的业务对时延的要求。
需要说明的是,所述RAN设备内设置有多个时延等级,所述多个时延等级对应多个传输参数。
所述处理器501具体用于:根据所述终端的业务对时延的要求,确定所述终端的时延等级;选择所确定的时延等级对应的传输参数,作为所述终端的传输参数。
本实施例,所述传输参数用于指示一次调度授权用于数据传输的时间,且所述时间为N个传输时间间隔TTI,或者所述传输参数用于指示一次调度授权用于数据传输的次数,且所述次数为N,其中N为大于或等于1的整数。
所述发射器502具体用于,当所述调度授权为下行调度授权时,在连续N个TTI向所述终端发送N次下行数据;或者,所述接收单元具体用于,当所述调度授权为上行调度授权时,在连续N个TTI从所述终端接收N次上行数据。
需要说明的是,所述N次下行数据为不同的下行数据,或者所述N次上行数据为不同的上行数据。
本发明实施例还提供一种终端,如图12所示,所述终端包括:处理器601、发射器602、接收器603以及存储器604。
接收器603,用于接收无线接入网RAN设备发送的传输参数,所述传输参数用于指示一次调度授权用于数据传输的时间或次数。
所述接收器603还用于,接收所述RAN设备发送的调度授权。
所述发射器602还用于,根据所述传输参数在所述调度授权所授权的资源上向所述RAN设备发送上行数据;或者,所述接收单元401还用于,根据所述传输参数在所述调度授权所授权的资源上接收所述RAN设备发送的下行数据。
其中,所述传输参数用于指示一次调度授权用于数据传输的时间,且所述时间为N个传输时间间隔TTI,或者所述传输参数用于指示一次调度授权用于数据传输的次数,且所述次数为N,其中N为大于或等于1的整数。
具体地,所述接收器603用于,当所述调度授权为下行调度授权时,在连续N个TTI从所述RAN设备接收N次上行数据;或者,
所述发射器602用于,当所述调度授权为上行调度授权时,在连续N个TTI向所述RAN设备发送N次下行数据。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (20)

  1. 一种数据传输方法,其特征在于,包括:
    无线接入网RAN设备确定终端的传输参数,所述传输参数用于指示一次调度授权用于数据传输的时间或次数;
    所述RAN设备向所述终端发送所述传输参数;
    所述RAN设备向所述终端发送调度授权;
    所述RAN设备根据所述传输参数在所述调度授权所授权的资源上向所述终端发送下行数据或接收所述终端发送的上行数据。
  2. 根据权利要求1所述的方法,其特征在于,所述RAN设备确定终端的传输参数包括:
    所述RAN设备确定所述终端的业务对时延的要求;
    所述RAN设备根据所述终端的业务对时延的要求,确定所述终端的传输参数。
  3. 根据权利要求2所述的方法,其特征在于,所述RAN设备确定所述终端的业务对时延的要求,包括:
    所述RAN设备获取所述终端的服务质量分类识别码QCI,根据所述终端的QCI确定所述终端的业务对时延的要求;或者,
    所述RAN设备接收所述终端上报的能力信息,根据所述能力信息确定所述终端的业务对时延的要求;或者,
    所述RAN设备根据所述终端在预设时长内的数据包,确定所述终端的业务对时延的要求。
  4. 根据权利要求2或3所述的方法,其特征在于,所述RAN设备内设置有多个时延等级,所述多个时延等级对应多个传输参数,且根据所述终端的业务对时延的要求,确定所述终端的传输参数,包括:
    根据所述终端的业务对时延的要求,确定所述终端的时延等级;
    选择所确定的时延等级对应的传输参数,作为所述终端的传输参数。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,所述传输参数用于指示一次调度授权用于数据传输的时间,且所述时间为 N个传输时间间隔TTI,或者所述传输参数用于指示一次调度授权用于数据传输的次数,且所述次数为N,其中N为大于或等于1的整数。
  6. 根据权利要求5所述的方法,其特征在于,所述RAN设备根据所述传输参数在所述调度授权所授权的资源上向所述终端发送下行数据或接收所述终端发送的上行数据,包括:
    当所述调度授权为下行调度授权时,所述RAN设备在连续N个TTI向所述终端发送N次下行数据;或者,
    当所述调度授权为上行调度授权时,所述RAN设备在连续N个TTI从所述终端接收N次上行数据。
  7. 根据权利要求6所述的方法,其特征在于,所述N次下行数据为不同的下行数据,或者所述N次上行数据为不同的上行数据。
  8. 一种数据传输方法,其特征在,包括:
    终端接收无线接入网RAN设备发送的传输参数,所述传输参数用于指示一次调度授权用于数据传输的时间或次数;
    所述终端接收所述RAN设备发送的调度授权;
    所述终端根据所述传输参数在所述调度授权所授权的资源上向所述RAN设备发送上行数据或接收所述RAN设备发送的下行数据。
  9. 根据权利要求8所述的方法,其特征在于,所述传输参数用于指示一次调度授权用于数据传输的时间,且所述时间为N个传输时间间隔TTI,或者所述传输参数用于指示一次调度授权用于数据传输的次数,且所述次数为N,其中N为大于或等于1的整数。
  10. 根据权利要求9所述的方法,其特征在于,所述终端根据所述传输参数在所述调度授权所授权的资源上向所述RAN设备发送上行数据或接收所述RAN设备发送的下行数据,包括:
    当所述调度授权为下行调度授权时,所述终端在连续N个TTI从所述RAN设备接收N次上行数据;或者,
    当所述调度授权为上行调度授权时,所述终端在连续N个TTI向所述RAN设备发送N次下行数据。
  11. 一种无线接入网RAN设备,其特征在于,包括:
    确定单元,用于确定终端的传输参数,所述传输参数用于指示一次调度授权用于数据传输的时间或次数;
    发送单元,用于向所述终端发送所述传输参数;
    所述发送单元还用于,向所述终端发送调度授权;
    所述发送单元还用于,根据所述传输参数在所述调度授权所授权的资源上向所述终端发送下行数据;或,接收单元,用于根据所述传输参数在所述调度授权所授权的资源上接收所述终端发送的上行数据。
  12. 根据权利要求11所述的RAN设备,其特征在于,所述确定单元具体用于,确定所述终端的业务对时延的要求;根据所述终端的业务对时延的要求,确定所述终端的传输参数。
  13. 根据权利要求12所述的RAN设备,其特征在于,所述确定单元具体用于,获取所述终端的服务质量分类识别码QCI,根据所述终端的QCI确定所述终端的业务对时延的要求;或者,
    接收所述终端上报的能力信息,根据所述能力信息确定所述终端的业务对时延的要求;或者,
    根据所述终端在预设时长内的数据包,确定所述终端的业务对时延的要求。
  14. 根据权利要求12或13所述的RAN设备,其特征在于,所述RAN设备内设置有多个时延等级,所述多个时延等级对应多个传输参数,且所述确定单元具体用于:
    根据所述终端的业务对时延的要求,确定所述终端的时延等级;
    选择所确定的时延等级对应的传输参数,作为所述终端的传输参数。
  15. 根据权利要求11-14任一项所述的RAN设备,其特征在于,所述传输参数用于指示一次调度授权用于数据传输的时间,且所述时间为N个传输时间间隔TTI,或者所述传输参数用于指示一次调度授权用于数据传输的次数,且所述次数为N,其中N为大于或等于1的整数。
  16. 根据权利要求15所述的RAN设备,其特征在于,
    所述发送单元具体用于,当所述调度授权为下行调度授权时,在连续N个TTI向所述终端发送N次下行数据;或者,
    所述接收单元具体用于,当所述调度授权为上行调度授权时,在连续N个TTI从所述终端接收N次上行数据。
  17. 根据权利要求16所述的RAN设备,其特征在于,
    所述N次下行数据为不同的下行数据,或者所述N次上行数据为不同的上行数据。
  18. 一种终端,其特征在于,包括:
    接收单元,用于接收无线接入网RAN设备发送的传输参数,所述传输参数用于指示一次调度授权用于数据传输的时间或次数;
    所述接收单元还用于,接收所述RAN设备发送的调度授权;
    所述发送单元还用于,根据所述传输参数在所述调度授权所授权的资源上向所述RAN设备发送上行数据;或者,所述接收单元还用于,根据所述传输参数在所述调度授权所授权的资源上接收所述RAN设备发送的下行数据。
  19. 根据权利要求18所述的终端,其特征在于,所述传输参数用于指示一次调度授权用于数据传输的时间,且所述时间为N个传输时间间隔TTI,或者所述传输参数用于指示一次调度授权用于数据传输的次数,且所述次数为N,其中N为大于或等于1的整数。
  20. 根据权利要求19所述的终端,其特征在于,
    所述接收单元用于,当所述调度授权为下行调度授权时,在连续N个TTI从所述RAN设备接收N次上行数据;或者,
    所述发送单元用于,当所述调度授权为上行调度授权时,在连续N个TTI向所述RAN设备发送N次下行数据。
PCT/CN2016/087687 2016-06-29 2016-06-29 一种数据传输方法及装置 WO2018000247A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/087687 WO2018000247A1 (zh) 2016-06-29 2016-06-29 一种数据传输方法及装置
CN201680086718.4A CN109314976A (zh) 2016-06-29 2016-06-29 一种数据传输方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/087687 WO2018000247A1 (zh) 2016-06-29 2016-06-29 一种数据传输方法及装置

Publications (1)

Publication Number Publication Date
WO2018000247A1 true WO2018000247A1 (zh) 2018-01-04

Family

ID=60785889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/087687 WO2018000247A1 (zh) 2016-06-29 2016-06-29 一种数据传输方法及装置

Country Status (2)

Country Link
CN (1) CN109314976A (zh)
WO (1) WO2018000247A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113852978A (zh) * 2021-09-24 2021-12-28 京信网络系统股份有限公司 基站数据处理方法、装置、设备和存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1921812A2 (en) * 2004-11-05 2008-05-14 Samsung Electronics Co., Ltd. Method and apparatus for scheduling data transmission in a mobile communication system supporting packet data service
CN101330372A (zh) * 2007-06-22 2008-12-24 中兴通讯股份有限公司 长期演进时分双工系统中调度授权资源的指示方法
CN105323838A (zh) * 2015-12-14 2016-02-10 魅族科技(中国)有限公司 用于超密集网络的数据传输方法及数据传输装置
CN105451358A (zh) * 2014-08-27 2016-03-30 中国移动通信集团公司 一种上行传输方法、基站及终端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1921812A2 (en) * 2004-11-05 2008-05-14 Samsung Electronics Co., Ltd. Method and apparatus for scheduling data transmission in a mobile communication system supporting packet data service
CN101330372A (zh) * 2007-06-22 2008-12-24 中兴通讯股份有限公司 长期演进时分双工系统中调度授权资源的指示方法
CN105451358A (zh) * 2014-08-27 2016-03-30 中国移动通信集团公司 一种上行传输方法、基站及终端
CN105323838A (zh) * 2015-12-14 2016-02-10 魅族科技(中国)有限公司 用于超密集网络的数据传输方法及数据传输装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113852978A (zh) * 2021-09-24 2021-12-28 京信网络系统股份有限公司 基站数据处理方法、装置、设备和存储介质
CN113852978B (zh) * 2021-09-24 2023-12-12 京信网络系统股份有限公司 基站数据处理方法、装置、设备和存储介质

Also Published As

Publication number Publication date
CN109314976A (zh) 2019-02-05

Similar Documents

Publication Publication Date Title
US12022517B2 (en) Non-scheduling resource based data sending method and apparatus thereof
EP3614776B1 (en) Uplink transmission resource scheduling method and device
EP3122103B1 (en) Terminal device, base station device, notification system, notification method, and integrated circuit
US9295040B2 (en) Packet scheduling in communications
US10638491B2 (en) Radio terminal
JP6783755B2 (ja) 無線端末、基地局、及びプロセッサ
US10098142B2 (en) Terminal apparatus, base station apparatus, communication system, resource management method, and integrated circuit
US10368343B2 (en) Systems and methods for downlink scheduling that mitigate PDCCH congestion
WO2016049890A1 (zh) 数据传输方法和设备
US11134507B2 (en) Method and apparatus for processing scheduling request
WO2017074437A1 (en) Procedures for reporting buffer status
CN110463119B (zh) 用于增强调度信息指示的扩展调度请求(sr)
JP6466613B2 (ja) 無線端末、基地局、及び無線通信方法
CN110582972B (zh) 多个短tti传输的信令
WO2018000247A1 (zh) 一种数据传输方法及装置
WO2021262071A1 (en) Enhanced hybrid arq (harq) for a wireless network
US20240080846A1 (en) Method for transmitting control information and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16906648

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16906648

Country of ref document: EP

Kind code of ref document: A1