WO2020220948A1 - 仓储机器人 - Google Patents

仓储机器人 Download PDF

Info

Publication number
WO2020220948A1
WO2020220948A1 PCT/CN2020/083685 CN2020083685W WO2020220948A1 WO 2020220948 A1 WO2020220948 A1 WO 2020220948A1 CN 2020083685 W CN2020083685 W CN 2020083685W WO 2020220948 A1 WO2020220948 A1 WO 2020220948A1
Authority
WO
WIPO (PCT)
Prior art keywords
climbing
storage robot
screw
driving wheel
sliding part
Prior art date
Application number
PCT/CN2020/083685
Other languages
English (en)
French (fr)
Inventor
吴明福
Original Assignee
北京京东乾石科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京京东乾石科技有限公司 filed Critical 北京京东乾石科技有限公司
Priority to JP2021560227A priority Critical patent/JP7273990B2/ja
Priority to US17/606,330 priority patent/US20220212867A1/en
Priority to EP20798557.3A priority patent/EP3943417A4/en
Publication of WO2020220948A1 publication Critical patent/WO2020220948A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/0492Storage devices mechanical with cars adapted to travel in storage aisles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/0407Storage devices mechanical using stacker cranes
    • B65G1/0435Storage devices mechanical using stacker cranes with pulling or pushing means on either stacking crane or stacking area

Definitions

  • This application relates to the technical field of storage equipment, and more specifically, to a storage robot.
  • the storage robot includes a climbing mechanism that can telescope and dock with the track.
  • the storage robot is driven by the walking mechanism to move between the two equal rails, and the driving wheel at one end of the frame is matched with one climbing track through the telescopic mechanism, and the driving wheel at the other end of the frame is matched with the other climbing track, and the driving device drives The rotation of the two driving wheels can drive the entire storage robot to move along the height of the shelf.
  • the walking mechanism drives the storage robot to move between the two climbing tracks. It is difficult to ensure that the center of the car body is consistent with the center between the shelves on both sides, and it is difficult to ensure the consistency of the shelf spacing and the parallelism of the shelves on both sides.
  • the inability of the car body to adapt to it will affect its docking and climbing with the track, affect the service life of the car body, and even cause the car body to be unable to climb to achieve entry and exit operations.
  • the purpose of this application is to provide a storage robot that can adjust the position of the driving wheel on the climbing assembly by sliding the connection between the climbing assembly and the underframe, so that the drive wheel and the track are docked, and the climbing assembly will slide on the underframe. Will drag the bottom frame to move on the ground, avoid damaging the walking mechanism, and increase the service life.
  • the embodiment of the present application discloses a storage robot, including: a climbing assembly and an underframe; the climbing assembly is used for docking with a track on a shelf, and driving the storage robot to climb along the shelf after the docking is completed;
  • the climbing assembly is slidably connected to the underframe, so that the climbing assembly can slide in a predetermined direction relative to the underframe in a horizontal plane during the docking process of the climbing assembly and the track.
  • the climbing assembly is slidingly connected to the underframe.
  • the position of the driving wheel on the climbing assembly can be adjusted to make the driving wheel and The rails are docked, and the climbing components will slide on the underframe without dragging the underframe to move on the ground, avoiding damage to the walking mechanism and increasing the service life.
  • the climbing assembly includes a body and a climbing unit, the climbing unit is arranged on the body, and the body is slidably connected to the underframe.
  • the climbing unit has a telescopic mechanism and a first driving wheel and a second driving wheel arranged along a preset direction, and the first driving wheel and the second driving wheel are arranged on the telescopic mechanism The two ends are connected with the rail under the driving action of the telescopic mechanism.
  • the telescopic mechanism can adjust the distance between the first driving wheel and the second driving wheel to adapt to different shelves and improve the versatility of the storage robot .
  • the climbing unit includes a first sliding part and a second sliding part, the first driving wheel is arranged on the first sliding part, and the second driving wheel is arranged on the second sliding part.
  • the telescopic mechanism is connected with the first sliding part and the second sliding part to drive the first sliding part and the second sliding part to move in a preset direction.
  • both the first sliding part and the second sliding part move, which can increase the distance between the first driving wheel and the second driving wheel The adjustment range.
  • the telescopic mechanism includes a first screw, a second screw, and a driving device arranged on the body, the axis of the first screw is parallel to the preset direction, and the first screw
  • a sliding portion is provided with a first threaded hole that is matched with the first screw; the first screw is rotatably connected with the body; the axis of the second screw is parallel to the preset direction, so The second sliding portion is provided with a second threaded hole that is matched with the second screw; the second screw is rotatably connected with the body; the driving device is connected to the first screw and the The second screw drive connection.
  • the drive device includes a rotating device and a drive shaft, the axis of the drive shaft, the axis of the first screw and the axis of the second screw are arranged collinearly, and the drive shaft One end of the drive shaft is in transmission connection with the first screw, the other end of the drive shaft is in transmission connection with the second screw, and the rotation device is in transmission connection with the drive shaft.
  • the rotating device is provided on the body.
  • the climbing assembly includes two climbing units spaced apart along the vertical direction of the preset direction.
  • the two climbing units can jointly drive the storage robot to climb the shelves.
  • the first driving wheels of the two climbing units are connected by a universal coupling.
  • the second driving wheels of the two climbing units are connected by a universal coupling.
  • the storage robot further includes a sensor for detecting the pressure of the first driving wheel and the second driving wheel on the rail to control the expansion and contraction of the telescopic mechanism.
  • the telescopic mechanism is controlled to stop working, so as to prevent the track from overly resisting the first and second driving wheels.
  • the storage robot further includes a torque detection device for detecting the torque of the rotating device to control the expansion and contraction of the telescopic mechanism.
  • the torque detection device By setting the torque detection device, in the process of climbing the shelf, if the torque of the rotating device is detected to be less than the preset torque, the distance between the first driving wheel and the second driving wheel is appropriately increased by the telescopic mechanism to avoid the first driving wheel And the second drive wheel is separated from the corresponding track.
  • the telescopic mechanism is a non-self-locking mechanism.
  • a positioning member is provided at both ends of the telescopic mechanism for cooperating with the guide member on the shelf to realize the limitation of the position of the first driving wheel and the second driving wheel in a preset direction.
  • the limiter and the guide are matched.
  • the limiter When the storage robot climbs the shelf, if the distance between the rails is shortened, the limiter, the first driving wheel and the second driving wheel will be compressed. The distance between the rails is appropriately reduced; if the distance between the rails is increased, and then the limit member is pulled, the distance between the first drive wheel and the second drive wheel is appropriately increased, which can avoid the first drive wheel and the second drive The wheel is disengaged from the track or the squeezing force received by the first drive wheel and the second drive wheel is too large.
  • the limiting member includes a first guide wheel and a second guide wheel arranged at intervals along a preset direction, and the guide member is sandwiched between the first guide wheel and the second guide wheel. between.
  • the storage robot further includes an elastic member connected to the main body and the base frame, and the elastic member is configured to slide the main body relative to the base frame in a preset direction. Elastic deformation occurs.
  • the elastic element when the relative movement between the main body and the base frame occurs, the elastic element undergoes elastic deformation.
  • the storage machine climbs the shelf and disengages the base frame from the ground, under the action of the elastic force of the elastic element, the main body and the base The rack returns to its original position.
  • the elastic member includes a spring, and there are two springs; two spring connectors are arranged on the body at intervals along a preset direction, and one end of each spring is connected to one of the springs. The other end of each spring is connected with the bottom frame.
  • the climbing component is slidably connected to the underframe, and the climbing component is used to dock with the track on the shelf, and drive the storage robot to climb along the shelf after completion of the docking; and the climbing component and Compared with the fixed connection of the underframe, when the distance between the storage robot and the first climbing track and the second climbing track is not equal, the position of the driving wheel on the climbing assembly can be adjusted so that the driving wheel is docked with the track, and the climbing assembly will be Sliding on the bottom frame, will not drag the bottom frame to move on the ground, avoid damaging the walking mechanism, and increase the service life.
  • Figure 1 is a schematic structural diagram of a storage robot provided by an embodiment of the application.
  • FIG. 2 is a schematic structural diagram of a first climbing unit in a storage robot provided by an embodiment of the application;
  • Figure 3 is a partial enlarged view of B in Figure 2;
  • Figure 4 is a partial enlarged view of A in Figure 1;
  • FIG. 5 is a schematic diagram of the connection between the first climbing unit and the second climbing unit of the storage robot according to an embodiment of the application;
  • Figure 6 is a schematic diagram of the connection between the storage robot climbing assembly and the underframe provided by an embodiment of the application;
  • FIG. 7 is an exploded view of the storage robot provided by an embodiment of the application.
  • FIG. 8 is a schematic diagram of the cooperation between a storage robot and a track provided by an embodiment of the application.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be interpreted broadly. For example, it may be a fixed connection or a detachable connection. Or integrally formed, which can be mechanically connected, or electrically connected, or can communicate with each other; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components or the interaction between two components, unless There are other clear restrictions. For those of ordinary skill in the art, the specific meanings of the above terms in this application can be understood according to specific circumstances.
  • Figure 1 is a schematic structural diagram of a storage robot provided by an embodiment of this application
  • Figure 2 is a structural schematic diagram of a first climbing unit in a storage robot provided by an embodiment of this application
  • Figure 3 is a partial enlarged view at B in Figure 2
  • Figure 4 Figure 1 is a partial enlarged view at A
  • Figure 5 is a schematic diagram of the connection between the first climbing unit and the second climbing unit of the storage robot provided by an embodiment of the application
  • Figure 6 is the climbing assembly and the second climbing unit of the storage robot provided by an embodiment of the application
  • FIG. 7 is an exploded view of the storage robot provided by an embodiment of the application
  • FIG. 8 is a schematic diagram of the cooperation between the storage robot and the track provided by an embodiment of the application.
  • This embodiment provides a storage robot, a climbing component and an underframe 20; the climbing component is used to dock with the track on the shelf, and drive the storage robot to climb along the shelf after the docking is completed; the climbing component is slidably connected with the underframe 20 to During the docking process between the climbing assembly and the track, the climbing assembly can slide relative to the underframe 20 in a predetermined direction in a horizontal plane.
  • the climbing assembly in this embodiment is provided with a first drive wheel 101, a second drive wheel 102, a third drive wheel 601, and a fourth drive wheel 602.
  • the climbing assembly is docked with the track, and each drive wheel is connected to the shelf.
  • the first climbing track 1, the second climbing track 2, the third climbing track 3, and the fourth climbing track 4 are arranged on the shelf.
  • the first driving wheel 101 is matched with the first climbing track 1
  • the second driving wheel 102 is matched with the second climbing track 2
  • the third drive wheel 601 is matched with the third climbing track 3
  • the fourth drive wheel 602 is matched with the fourth climbing track 4.
  • the storage robot also includes a power device, which is in transmission connection with the first drive wheel 101, the second drive wheel 102, the third drive wheel 601, and the fourth drive wheel 602.
  • the power device drives The first driving wheel 101, the second driving wheel 102, the third driving wheel 601, and the fourth driving wheel 602 rotate to drive the entire storage robot to move in a vertical direction.
  • a walking mechanism is provided on the underframe 20, and the walking mechanism is used to drive the storage robot to move on the ground.
  • the climbing component is slidably connected to the underframe 20.
  • a sliding rail 201 with a center line parallel to the preset direction may be provided on the underframe 20, and the climbing component is slidably connected to the sliding rail 201;
  • a sliding column with a center line parallel to the preset direction is provided on the underframe 20, and a sliding hole is correspondingly provided on the climbing component.
  • the sliding post is inserted in the sliding hole, and a sliding connection between the underframe 20 and the climbing component can also be realized .
  • the climbing assembly includes a main body 103 and a climbing unit.
  • the climbing unit is arranged on the main body 103 and the main body 103 is slidably connected to the underframe 20.
  • the climbing unit has a telescopic mechanism and a first driving wheel 101 and a second driving wheel 102 arranged in a preset direction.
  • the first driving wheel 101 and the second driving wheel 102 are arranged at both ends of the telescopic mechanism to be driven by the telescopic mechanism Docking with the track.
  • the climbing assembly includes a first climbing unit 10, the first climbing unit 10 has a telescopic mechanism, and a first drive wheel 101 and a second drive wheel 102 arranged in a preset direction, the first drive wheel 101 and the second drive wheel
  • the wheel 102 is used for docking with the track; the first driving wheel 101 and the second driving wheel 102 are arranged at both ends of the telescopic mechanism to be driven by the telescopic mechanism to butt with the track.
  • the telescopic mechanism is used to adjust the distance between the first driving wheel 101 and the second driving wheel 102 in a preset direction, so that the first driving wheel 101 and the second driving wheel 102 are connected to the corresponding track.
  • the climbing assembly in this embodiment further includes a second climbing unit 60, the second climbing unit 60 and the first climbing unit 10 are arranged at intervals along the vertical direction of the preset direction, the first climbing unit 10 and the second climbing unit 60 is located in the same horizontal plane, and the second climbing unit 60 includes a third driving wheel 601 and a fourth driving wheel 602.
  • the first climbing unit 10 and the second climbing unit 60 jointly drive the storage robot to climb the shelves.
  • the second climbing unit 60 also includes a telescopic device, which is used to adjust the distance between the third drive wheel 601 and the fourth drive wheel 602.
  • the distance between the first driving wheel 101 and the second driving wheel 102 and the wrestling force between the third driving wheel 601 and the fourth driving wheel 602 can be adjusted by the telescopic mechanism, so that the first climbing unit 10 is suitable for the first climbing track 1 and the second climbing track 2 have different distances between the shelves, and the second climbing unit 60 is suitable for shelves with different distances between the third climbing track 3 and the fourth climbing track 4, which improves the versatility of the storage robot.
  • the preset direction is a direction in the plane where the center lines of the first climbing track 1 and the second climbing track 2 are located and perpendicular to the center line of the first climbing track 1.
  • the climbing unit includes: a first sliding part 104 and a second sliding part 105, the first driving wheel 101 is arranged on the first sliding part 104, the second driving wheel 102 is arranged on the second sliding part 105; the telescopic mechanism and the first sliding part
  • the part 104 and the second sliding part 105 are connected to drive the first sliding part 104 and the second sliding part 105 to move in a preset direction.
  • the first climbing unit 10 includes: a main body 103, a first sliding portion 104, and a second sliding portion 105.
  • the main body 103 is slidably connected to the chassis 20, the first driving wheel 101 is disposed on the first sliding portion 104, and the second The driving wheel 102 is arranged on the second sliding portion 105; the telescopic mechanism is connected to the main body 103, the first sliding portion 104 and the second sliding portion 105 to drive the first sliding portion 104 and the second sliding portion 105 to move in a preset direction .
  • the telescopic mechanism can drive the first sliding part 104 and the second sliding part 105 to move in opposite directions. Compared with the telescopic mechanism only driving the first sliding part 104 to move, it can quickly adjust the first driving wheel 101 and the second driving wheel 102. The distance between. In addition, based on the movement of the first sliding portion 104, the second sliding portion 105 also moves, which can increase the adjustment range of the distance between the first driving wheel 101 and the second driving wheel 102.
  • the first driving wheel 101 may be a sprocket.
  • a chain is provided on the first climbing track 1, and the sprocket cooperates with the chain to The sprocket rotates to drive the storage robot to move; or the first driving wheel 101 is a gear.
  • a rack may be provided on the first climbing track 1, and the gear cooperates with the rack to drive the storage robot to move when the gear rotates.
  • the structure of the second driving wheel 102 and the first driving wheel 101 may be the same. Refer to the description of the first driving wheel 101, which will not be repeated here.
  • the working process of the storage robot is as follows: the storage robot is driven to move by the walking mechanism on the underframe 20 until the first climbing unit 10 is located between the first climbing track 1 and the second climbing track 2, and the second climbing unit 60 is located between the third climbing track 3 and the fourth climbing track 4; after that, the first sliding part 104 and the second sliding part 105 are driven to move in a preset direction by a telescopic mechanism to adjust the first driving wheel 101 and the second driving wheel
  • the distance between 102 is such that the first driving wheel 101 is matched with the first climbing track 1, and the second driving wheel 102 is matched with the second climbing track 2; in the above process, it is adjusted by the telescopic mechanism on the second climbing unit 60
  • the distance between the third driving wheel 601 and the fourth driving wheel 602 is such that the third driving wheel 601 is matched with the third climbing track 3, and the fourth driving wheel 602 is matched with the fourth climbing track 4;
  • the body 103 will climb towards the second The track 2 moves until the second driving wheel 102 contacts the second climbing track 2; on the contrary, if the distance between the storage robot and the first climbing track 1 is greater than the distance between the storage robot and the second climbing track 2, the second After the driving wheel contacts the second climbing track 2, the body 103 will move to the first climbing track 1 until the first driving wheel 101 contacts the first climbing track 1.
  • the climbing component is slidably connected to the underframe 20, and the climbing component is used to dock with the track on the shelf, and drive the storage robot to climb along the shelf after completion of the docking; it is fixed to the climbing component and the underframe 20 Compared with the connection, when the distance between the storage robot and the first climbing track 1 and the second climbing track 2 is not equal, the position of the driving wheel on the climbing assembly can be adjusted so that the driving wheel is docked with the track, and the climbing assembly will be at the bottom. Sliding on the frame 20 does not drag the bottom frame 20 to move on the ground, avoiding damage to the walking mechanism, and improving the service life.
  • first sliding part 104 and the second sliding part 105 are also slidingly connected to the sliding rail 201.
  • the first sliding part 104 and the second sliding part 105 may be further fixed to improve the smoothness of the movement of the first sliding part 104 and the second sliding part 105.
  • the telescopic mechanism may include a telescopic cylinder and/or a lead screw.
  • the telescopic mechanism may include a first telescopic cylinder, the piston rod of the first telescopic cylinder is connected to the first sliding portion 104, the cylinder body of the first telescopic cylinder is connected to the body 103, and the The center line is parallel to the preset direction; when the piston rod extends in the cylinder or contracts in the cylinder, the first sliding part 104 can be driven to move in the preset direction;
  • the telescopic mechanism may also include a second telescopic cylinder, The cylinder body of the second telescopic cylinder is connected to the body 103, the piston rod of the second telescopic cylinder is connected to the second sliding portion 105, and the center line of the second telescopic cylinder is parallel to the preset direction; the piston rod extends or retracts from the cylinder body When returning, the second sliding
  • the telescopic mechanism when the telescopic mechanism includes a screw, the telescopic mechanism may include a first screw 106 and a driving device provided on the body 103.
  • the axis of the first screw 106 is parallel to the preset direction, and the first sliding portion 104
  • a bearing hole 1031 is provided on the body 103.
  • the bearing hole 1031 includes a first hole section facing the first sliding portion 104 and a second hole section facing the second sliding portion 105.
  • the hole diameter is smaller than the hole diameter of the first hole section;
  • the first hole section is provided with a first rolling bearing 1032, and the second hole section is provided with a second rolling bearing 1033;
  • the end of the first screw 106 facing the body 103 has a journal, It is inserted in the inner rings of the first rolling bearing 1032 and the second rolling bearing 1033 to realize the rotatable connection between the first screw 106 and the body 103. Taking the orientation shown in FIG.
  • the left end of the second hole section can prevent the first rolling bearing 1032 from moving to the right, thereby preventing the first screw 106 from moving to the right
  • a stop ring 1034 is clamped on the inner wall of the first hole section, the stop ring 1034 is located on the left side of the first rolling bearing 1032, the stop ring 1034 can prevent the first rolling bearing 1032 Move to the left; the right end of the journal is provided with a stopper, and the stopper abuts on the inner ring of the second rolling bearing 1033.
  • a sleeve 1036 is provided between the first rolling bearing 1032 and the second rolling bearing 1033. 1036 abuts on the inner ring of the first rolling bearing 1032 and the inner ring of the second rolling bearing 1033, the stop part can be abutted on the stop ring 1034 through the second rolling bearing 1033, the sleeve 1036 and the first rolling bearing 1032 to prevent the first rolling bearing 1032 A lead screw 106 moves to the left.
  • the telescopic mechanism when the telescopic mechanism includes a screw, the telescopic mechanism also includes a second screw 107, the axis of the second screw 107 is parallel to the preset direction, and the second sliding portion 105 is provided with the second screw 107 Matching second threaded hole; the second screw 107 is rotatably connected with the body 103, and the driving device is in transmission connection with the second screw 107 to drive the second screw 107 to rotate.
  • connection between the second screw 107 and the main body 103 is substantially the same as the connection between the first screw 106 and the main body 103.
  • connection between the first screw 106 and the main body 103 I will not repeat them here.
  • the first sliding part 104 can be connected to the body 103 through a telescopic cylinder, and at the same time the second sliding part 105 is connected to the body 103 through a screw; of course, the first sliding part 104 is connected to the body 103 through a screw, At the same time, the second sliding portion 105 is connected to the main body 103 through a telescopic cylinder.
  • a first sliding hole whose center line is parallel to the preset direction may be provided on the first sliding portion 104, and correspondingly provided on the main body 103
  • the first sliding block is slidably arranged in the first sliding hole.
  • a second sliding hole with a center line parallel to the preset direction may be provided on the second sliding portion 105, a second sliding block is arranged on the main body 103, and the second sliding block is slidably arranged in the second sliding hole.
  • the driving device can be separately connected to the first screw 106 and the second screw 107 in transmission to achieve separate control of the first screw 106 and the second screw 107; for example: the driving device includes The first motor connected to the first lead screw 106 and the second motor connected to the second lead screw 107 during operation, the rotation direction and speed of the first lead screw 106 and the second lead screw 107 can be the same Or different, that is, the moving direction and moving speed of the first sliding part 104 and the second sliding part 105 may be the same or different.
  • the driving device includes: a rotating device and a drive shaft 108, the axis of the drive shaft 108, the axis of the first screw 106, and the axis of the second screw 107 are arranged collinearly, and one end of the drive shaft 108 and the first The screw 106 is in transmission connection, and the other end of the drive shaft 108 is in transmission connection with the second screw 107; the rotating device is arranged on the body 103, and the rotation device is in transmission connection with the drive shaft 108 to rotate the drive shaft 108.
  • the first lead screw 106 and the second lead screw 107 can be driven to rotate synchronously through the drive shaft 108, that is, the first sliding part 104 and the second sliding part can be driven to move to the main body 103 at the same time, or to move away from the main body 103 at the same time at a moving speed.
  • this arrangement can ensure that the distance between the first sliding portion 104 and the body 103 is equal to the distance between the second sliding portion 105 and the body 13, adjusting the distance between the first driving wheel 101 and the second driving wheel 102 Keep the center of gravity of the storage robot stable.
  • the driving shaft 108 may be connected with the first screw 106 and the second screw 107 through a coupling.
  • the telescopic mechanism is a non-self-locking mechanism, and the two ends of the telescopic mechanism are provided with position-limiting members, which are used to cooperate with the guides on the shelf to realize the first driving wheel 101 and the second driving wheel 102 along the presetting Set the limit of direction and position.
  • the limiter and the guide are matched.
  • the limiter When the storage robot climbs the shelf, if the distance between the first climbing track 1 and the second climbing track 2 is shortened, the limiter will be compressed, and the first driving wheel 101 The distance between the first drive wheel and the second drive wheel 102 is appropriately reduced; if the distance between the first climbing track 1 and the second climbing track 2 is increased, the stopper will be pulled, the first drive wheel 101 and the second drive wheel 102 Properly increasing the distance between them can prevent the first driving wheel 101 and the second driving wheel 102 from being separated from the track or the first driving wheel 101 and the second driving wheel 102 from being subjected to excessive pressing force.
  • the limiting member includes a first guide wheel 70 and a second guide wheel 80 arranged at intervals along a preset direction, and the guide member is sandwiched between the first guide wheel 70 and the second guide wheel 80.
  • the first guide wheel 70 and the second guide wheel 80 can rotate, so that the friction between the first guide wheel 70 and the second guide wheel 80 and the guide is small, and the resistance during climbing is reduced.
  • the first guide wheel 70 and the second guide wheel 80 are arranged on the first sliding part 104 at intervals, and correspondingly, the first guide wheel 70 and the second guide wheel 80 are also arranged on the second sliding part 105;
  • the part is a stop plate arranged on the track, and the first guide wheel 70 and the second wire wheel 80 are sandwiched on both sides of the stop plate.
  • the first lead screw 106 and the second lead screw 107 may be non-self-locking lead screws; when the first sliding portion 104 receives a force along a preset direction, the first lead screw 106 will rotate, and the first sliding part 104 will rotate. The part 104 moves in the direction of the force; similarly, when the second sliding part 105 receives a force in a preset direction, the second screw 107 will rotate, and the second sliding part 105 will move in the direction of the force.
  • the stoppers on the first sliding part 104 and the second sliding part 105 are squeezed.
  • the distance between the first sliding part 104 and the second sliding part 105 can be appropriately shortened by the rotation of the first screw 106 and the second screw 107 to avoid excessive pressing force; in the storage robot climbing the shelf
  • the stoppers on the first sliding portion 104 and the second sliding portion 105 are pulled and can pass through the first screw
  • the rotation of 106 and the second screw 107 appropriately increases the distance between the first sliding part 104 and the second sliding part 105 to prevent the first driving wheel 101 and the second driving wheel 102 from being separated from the corresponding climbing track.
  • the first screw 106 and the second screw 107 may be ball screws, or other screws with friction angles smaller than the helix angle.
  • the rotating device connected to the first screw 106 and the second screw 107 is also a non-self-locking device, that is, the first The lead screw 106 and the second lead screw 107 rotate freely.
  • the rotating device may include a rotating motor, and the main shaft of the rotating motor is drivingly connected to the drive shaft 108.
  • a first pulley is provided on the drive shaft 108
  • a second pulley is provided on the main shaft of the rotating motor
  • the transmission belt cooperates with the first pulley and the second pulley to realize the connection between the rotating motor and the drive shaft 108.
  • Transmission connection; in order to avoid slippage between the transmission belt and the first pulley and the second pulley, the transmission belt can be a timing belt, and the corresponding first pulley and second pulley are toothed pulleys.
  • the storage robot further includes a sensor for detecting the pressure of the first driving wheel 101 and the second driving wheel 102 on the rail to control the expansion and contraction of the telescopic mechanism.
  • the telescopic mechanism is controlled to stop working.
  • the telescopic mechanism is controlled to stop working to prevent the first climbing track 1 from abutting the first driving wheel 101 The force and the pushing force of the second climbing track 2 to the second driving wheel 102 are too large.
  • the preset value is the minimum pressure to ensure that the first driving wheel 101 is docked with the first climbing track 1 and the second driving wheel 102 is docked with the second climbing track 2 so that the first driving wheel 101 is docked.
  • the senor may be a pressure sensor provided on the first driving wheel 101 and/or the second driving wheel 102.
  • the storage robot further includes a torque detection device, which is used to detect the torque of the rotating device to control the expansion and contraction of the telescopic mechanism.
  • a torque detection device which is used to detect the torque of the rotating device to control the expansion and contraction of the telescopic mechanism.
  • the torque corresponding to the rotating device is the preset torque; therefore, when the torque of the rotating device reaches the preset torque, the rotating motor is controlled to stop rotating.
  • the distance between the first driving wheel 101 and the second driving wheel 102 is appropriately increased through the telescopic mechanism, so as to avoid the first driving wheel 101 and the second driving wheel 101.
  • the driving wheel 102 is disengaged from the corresponding climbing track.
  • the storage robot provided in this embodiment may include a controller, and the controller is connected to the sensor or the torque detection device to control the operation of the telescopic device according to the data provided by the sensor or the torque detection device.
  • the rotating device may be a rotating motor, and the corresponding torque detection device is used to detect the torque of the rotating motor.
  • the process of docking the storage robot with the climbing track is: the storage robot moves until the first climbing unit 10 is located between the first climbing track 1 and the second climbing track 2, and the second climbing unit 60 is located on the third climbing track. 3 and the fourth climbing track 4, and then the first screw 106 and the second screw 107 are driven to rotate by the rotating motor, which in turn drives the first sliding part 104 and the second sliding part 105 to move away from the main body 103, so that The first driving wheel 101 is in contact with the first climbing track 1, and the second driving wheel 102 is in contact with the second climbing track 2.
  • the rotating motor When it is detected that the torque of the rotating motor reaches a preset value, the rotating motor is controlled to stop working; at this time, the first The driving wheel 101 is connected to the first climbing track 1, and the second driving wheel 102 is connected to the second climbing track 2.
  • the distance between the third drive wheel 601 and the fourth drive wheel 602 is adjusted by the telescopic mechanism on the second climbing unit 60, so that the third drive wheel 601 is connected to the third climbing track 3, and the fourth drive The wheel 602 is docked with the fourth climbing track 4.
  • the storage robot further includes an elastic member, which is connected to the main body 103 and the chassis 20, and the elastic member undergoes elastic deformation when the main body 103 slides in a preset direction.
  • the elastic member undergoes elastic deformation.
  • the initial position is the relative position between the base frame 20 and the main body 103 when the elastic member is not elastically deformed.
  • the elastic member may include a rubber block connected with the main body 103 and the base frame 20, or the elastic member may include an elastic sheet connected with the main body 103 and the base frame 20.
  • the elastic member includes a spring 109, the center line of the spring 109 is parallel to the preset direction, one end of the spring 109 is connected to the body 103, and the other end of the spring 109 is connected to the base frame 20; compared with a rubber block, the spring 109 has a long service life.
  • each spring 109 there are two springs 109; two spring connectors are arranged on the body 103 at intervals along a preset direction, one end of each spring 109 is connected to one spring connector, and the other end of each spring 109 is connected to the chassis 20 .
  • the two springs 109 are elastically deformed. Compared with only one spring 109, the elastic force is increased and the time for the main body 103 and the base frame 20 to return to their original positions is shortened.
  • the spring connector includes a column 1035 whose center line is parallel to the preset direction, and part of the spring 109 is sleeved on the column 1035.
  • the cylinder 1035 can play a guiding role to prevent the spring 109 from tilting after being forced.
  • the climbing assembly includes two climbing units arranged at intervals along the vertical direction of the preset direction. Furthermore, the first driving wheels 101 of the two climbing units are connected by a universal coupling 30, and the second driving wheels 102 of the two climbing units are connected by a universal coupling 30.
  • the climbing assembly includes a first climbing unit 10 and a second climbing unit 60 arranged at intervals along the vertical direction of the preset direction.
  • the first climbing unit 10 is provided with a first driving wheel 101 and a second driving wheel 102.
  • the climbing unit 60 is provided with a third drive wheel 601 and a fourth drive wheel 602; the first drive wheel 101 and the third drive wheel 601 are connected by a universal coupling 30, and the second drive wheel 102 and the fourth drive wheel 602 pass The universal coupling 30 is connected.
  • This arrangement can prevent the third drive wheel 601 and the fourth drive wheel 602 of the second climbing unit 60 from being affected when the first climbing unit 10 adjusts the distance between the first drive wheel 101 and the second drive wheel 102 ; That is, the distance between the two driving wheels on different climbing units can be adjusted independently.
  • the power plant may include a first driving motor 40 that is drivingly connected to the first driving wheel 101 on the first climbing unit 10 and a second driving motor 50 that is drivingly connected to the second driving wheel 102 on the first climbing unit 10.
  • first climbing unit 10 and the second climbing unit 60 are substantially the same. Refer to the description of the first climbing unit 10, which will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)
  • Platform Screen Doors And Railroad Systems (AREA)
  • Warehouses Or Storage Devices (AREA)

Abstract

一种仓储机器人,包括:爬升组件及底架(20);爬升组件用于与货架上的轨道对接,并在对接完成后带动仓储机器人沿货架爬升;爬升组件与底架滑动连接,以在爬升组件与轨道对接过程中能够使爬升组件相对底架在水平面内沿预设方向滑动;与爬升组件和底架固定连接相比,当仓储机器人两个轨道之间的距离不等时,可以调节爬升组件上驱动轮的位置,使驱动轮与轨道对接,并且爬升组件会在底架上滑动,不会拖动底架在地面上移动,避免损坏行走机构,提高了使用寿命。

Description

仓储机器人
本申请要求于2019年4月30日提交中国专利局、申请号为201910360794.5、申请名称为“仓储机器人”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及仓储设备技术领域,更为具体地,涉及一种仓储机器人。
背景技术
随着仓储技术的逐渐发展,目前常通过仓储机器人将货物由货架上取下、或者将货物放置在货架上,以此来减少工人的工作量。同时,为了提高厂房的利用空间,货架的高度一般设置的较大,因此如何使仓储机器人攀登货架已经成为研究的热点。
相关技术中,在货架上间隔的设置两个攀登轨道,攀登轨道的中心线垂直于水平面。仓储机器人包括能够伸缩并与轨道对接的攀登机构。使用时,通过行走机构带动仓储机器人移动至两平等轨道之间,通过伸缩机构使架体一端的驱动轮与一个攀登轨道配合,架体另一端的驱动轮与另一攀登轨道配合,驱动装置驱动两个驱动轮转动,即可带动整个仓储机器人沿货架的高度方向移动。
然而,行走机构带动仓储机器人移动至两攀登轨道之间,很难保证车体中心与两侧货架之间的中心一致,并且货架间距以及两侧货架的平行度的一致性也很难保证,造成车体无法适应,对其与轨道的对接和攀爬造成影响,影响车体使用寿命,甚至造成车体无法攀爬实现出入库操作。
发明内容
本申请的目的在于提供一种仓储机器人通过使爬升组件与底架之间滑动连接,可以调节爬升组件上驱动轮的位置,使驱动轮与轨道对接,并且爬升组件会在底架上滑动,不会拖动底架在地面上移动,避免损坏行走机构,提高了使用寿命。
本申请实施例公开了一种仓储机器人,包括:爬升组件及底架;所述爬升组件用于与货架上的轨道对接,并在对接完成后带动所述仓储机器人沿所述货架爬升;所述爬升组件与所述底架滑动连接,以在所述爬升组件与所述轨道对接过程中能够使所述爬升组件相对所述底架在水平面内沿预设方向滑动。
基于上述技术内容,爬升组件与底架之间滑动连接,当仓储机器人与第一攀登轨道和第二攀登轨道之间的距离不等时,可以调节爬升组件上驱动轮的位置,使驱动轮与轨道对接,并且爬升组件会在底架上滑动,不会拖动底架在地面上移动,避免损坏行走机构,提高了使用寿命。
在一个实现方式中,所述爬升组件包括本体及爬升单元,所述爬升单元设置在所述本体上,所述本体与所述底架滑动连接。
在一个实现方式中,所述爬升单元上具有伸缩机构及沿预设方向设置的第一驱动轮和第二驱动轮,所述第一驱动轮和所述第二驱动轮设置于所述伸缩机构两端,以在所 述伸缩机构驱动作用下与所述轨道对接。
通过将第一驱动轮和第二驱动轮设置在伸缩机构的两端,伸缩机构可以调节第一驱动轮和第二驱动轮之间的距离,以适用与不同的货架,提高仓储机器人的通用性。
在一个实现方式中,所述爬升单元包括:第一滑动部以及第二滑动部,所述第一驱动轮设置在所述第一滑动部上,所述第二驱动轮设置在所述第二滑动部上;所述伸缩机构与所述第一滑动部以及所述第二滑动部连接,以驱动所述第一滑动部和所述第二滑动部沿预设方向移动。
通过使伸缩机构与第一滑动部以及第二滑动部连接,在伸缩机构工作时,第一滑动部和第二滑动部均发生移动,可以增大第一驱动轮和第二驱动轮之间距离的调节范围。
在一个实现方式中,所述伸缩机构包括第一丝杠、第二丝杠以及设置在所述本体上的驱动装置,所述第一丝杠的轴线与所述预设方向平行,所述第一滑动部上设置有与所述第一丝杠配合的第一螺纹孔;所述第一丝杠可转动的与所述本体连接;所述第二丝杠的轴线与预设方向平行,所述第二滑动部上设置有与所述第二丝杠配合的第二螺纹孔;所述第二丝杠可转动的与所述本体连接;所述驱动装置与所述第一丝杠和所述第二丝杠传动连接。
在一个实现方式中,所述驱动装置包括:转动装置以及驱动轴,所述驱动轴的轴线、所述第一丝杠的轴线以及所述第二丝杠的轴线共线设置,所述驱动轴的一端与所述第一丝杠传动连接,所述驱动轴的另一端与所述第二丝杠传动连接,且所述转动装置与所述驱动轴传动连接。
在一个实现方式中,所述转动装置设置在所述本体上。
在一个实现方式中,所述爬升组件包括沿预设方向的垂直方向间隔设置的两个爬升单元。
通过设置两个爬升单元,两个爬升单元可以共同带动仓储机器人攀爬货架。
在一个实现方式中,两个所述爬升单元的所述第一驱动轮通过万向联轴器连接。
在一个实现方式中,两个所述爬升单元的所述第二驱动轮通过万向联轴器连接。
在一个实现方式中,所述仓储机器人还包括传感器,用于检测所述第一驱动轮和所述第二驱动轮受所述轨道的压力,以控制所述伸缩机构伸缩。
通过设置传感器,当第一驱动轮和轨道对接,并且第二驱动轮与轨道对接后,控制伸缩机构停止工作,以免轨道对第一驱动轮以及第二驱动轮的抵顶力过大。
在一个实现方式中,所述仓储机器人还包括力矩检测装置,所述力矩检测装置用于检测所述转动装置的力矩,以控制所述伸缩机构伸缩。
通过设置力矩检测装置,在攀登货架的过程中,若检测到转动装置的力矩小于预设力矩,通过伸缩机构适当增大第一驱动轮与第二驱动轮之间的距离,以免第一驱动轮和第二驱动轮与对应的轨道脱离。
在一个实现方式中,所述伸缩机构为非自锁机构。
在一个实现方式中,所述伸缩机构两端设置有限位件,用于与所述货架上的导向件配合实现所述第一驱动轮和第二驱动轮沿预设方向位置的限定。
通过设置限位件,限位件与导向件之间配合,在仓储机器人攀爬货架的过程中,若轨道之间的距离缩短,进而挤压限位件,第一驱动轮和第二驱动轮之间的距离适当缩小;若轨道之间的距离增大,进而拉拔限位件,第一驱动轮和第二驱动轮之间的距离适当增大,可以避免第一驱动轮和第二驱动轮与轨道脱离或者第一驱动轮和第二驱动轮受到的挤压力过大。
在一个实现方式中,所述限位件包括沿预设方向间隔设置的第一导向轮和第二导向 轮,所述导向件夹设在所述第一导向轮和所述第二导向轮之间。
在一个实现方式中,所述仓储机器人还包括弹性件,所述弹性件与所述本体和所述底架连接,所述弹性件在所述本体沿预设方向相对于所述底架滑动时发生弹性形变。
通过设置弹性件,当本体与底架之间发生相对移动时,弹性件发生弹性形变,当仓储机器攀爬货架而使底架与地面脱离时,在弹性件弹力的作用下,使本体与底架恢复至初始位置。
在一个实现方式中,所述弹性件包括弹簧,所述弹簧为两个;所述本体上沿预设方向间隔的设置两个弹簧连接件,每一所述弹簧的一端与一个所述弹簧连接件连接,每一所述弹簧的另一端与所述底架连接。
结合上述技术方案,本申请实施例的仓储机器人,爬升组件与底架之间滑动连接,爬升组件用于与货架上的轨道对接,并在完成对接后带动仓储机器人沿货架爬升;与爬升组件和底架固定连接相比,当仓储机器人与第一攀登轨道和第二攀登轨道之间的距离不等时,可以调节爬升组件上驱动轮的位置,使驱动轮与轨道对接,并且爬升组件会在底架上滑动,不会拖动底架在地面上移动,避免损坏行走机构,提高了使用寿命。
附图说明
图1为本申请实施例提供的仓储机器人的结构示意图;
图2为本申请实施例提供的仓储机器人中第一爬升单元的结构示意图;
图3为图2中B处的局部放大图;
图4为图1中A处的局部放大图;
图5为本申请实施例提供的仓储机器人第一爬升单元和第二爬升单元的连接示意图;
图6为本申请实施例提供的仓储机器人攀爬组件与底架之间的连接示意图;
图7为本申请实施例提供的仓储机器人的爆炸图;
图8为本申请实施例提供的仓储机器人与轨道配合的示意图。
附图标记说明:
1:第一攀登轨道;
2:第二攀登轨道;
3:第三攀登轨道;
4:第四攀登轨道;
10:第一爬升单元;
20:底架;
30:万向联轴器;
40:第一驱动电机;
50:第二驱动电机;
60:第二爬升单元;
70:第一导向轮;
80:第二导向轮;
101:第一驱动轮;
102:第二驱动轮;
103:本体;
104:第一滑动部;
105:第二滑动部;
106:第一丝杠;
107:第二丝杠;
108:驱动轴;
109:弹簧;
201:滑轨;
601:第三驱动轮;
602:第四驱动轮;
1031:轴承孔;
1032:第一滚动轴承;
1033:第二滚动轴承;
1034:止挡环;
1035:柱体;
1036:套管。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请中,除非另有明确的规定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸的连接,或一体成型,可以是机械连接,也可以是电连接或者彼此可通讯;可以是直接相连,也可以通过中间媒体间接连接,可以是两个元件内部的连通或者两个元件的互相作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
图1为本申请实施例提供的仓储机器人的结构示意图;图2为本申请实施例提供的仓储机器人中第一爬升单元的结构示意图;图3为图2中B处的局部放大图;图4为图1中A处的局部放大图;图5为本申请实施例提供的仓储机器人第一爬升单元和第二爬升单元的连接示意图;图6为本申请实施例提供的仓储机器人攀爬组件与底架之间的连接示意图;图7为本申请实施例提供的仓储机器人的爆炸图;图8为本申请实施例提供的仓储机器人与轨道配合的示意图。
请参照图1-图7。本实施例提供一种仓储机器人,爬升组件及底架20;爬升组件用于与货架上的轨道对接,并在对接完成后带动仓储机器人沿货架爬升;爬升组件与底架20滑动连接,以在爬升组件与轨道对接过程中能够使爬升组件相对底架20在水平面内沿预设方向滑动。
继续参照图8,本实施例中爬升组件上设置有第一驱动轮101、第二驱动轮102、第三驱动轮601以及第四驱动轮602,爬升组件与轨道对接,为各驱动轮与货架上不同的轨道配合;示例性的,货架上设置有第一攀登轨道1、第二攀登轨道2、第三攀登轨道3及第 四攀登轨道4,在仓储机器人攀爬货架时,第一驱动轮101与第一攀登轨道1配合,第二驱动轮102与第二攀登轨道2配合,第三驱动轮601与第三攀登轨道3配合,第四驱动轮602与第四攀登轨道4配合。
进一步地,仓储机器人还包括动力装置,动力装置与第一驱动轮101、第二驱动轮102、第三驱动轮601以及第四驱动轮602传动连接,在仓储机器人攀爬货架时,动力装置驱动第一驱动轮101、第二驱动轮102、第三驱动轮601以及第四驱动轮602转动,以带动整个仓储机器人沿垂直于竖直方向移动。
本实施例中,底架20上设置有行走机构,行走机构用于驱动仓储机器人在地面上移动。
本实施例中爬升组件与底架20之间滑动连接,具体地可以在底架20上设置有中心线平行于预设方向的滑轨201,爬升组件与滑轨201滑动连接;当然还可以在底架20上设置中心线与预设方向平行的滑柱,相应的在爬升组件上设置有滑孔,滑柱穿设在滑孔内,也可实现底架20与爬升组件之间的滑动连接。
本实施例中,爬升组件包括本体103及爬升单元,爬升单元设置在本体103上,本体103与底架20滑动连接。爬升单元上具有伸缩机构及沿预设方向设置的第一驱动轮101和第二驱动轮102,第一驱动轮101和第二驱动轮102设置于伸缩机构两端,以在伸缩机构驱动作用下与轨道对接。
具体地,爬升组件包括第一爬升单元10,第一爬升单元10上具有伸缩机构、以及沿预设方向设置的第一驱动轮101和第二驱动轮102,第一驱动轮101和第二驱动轮102用于与轨道对接;第一驱动轮101和第二驱动轮102设置于伸缩机构两端,以在伸缩机构驱动作用下与轨道对接。伸缩机构用于调节第一驱动轮101与第二驱动轮102沿预设方向的距离,以使第一驱动轮101和第二驱动轮102与对应的轨道对接。具体地,本实施例中的爬升组件还包括第二爬升单元60,第二爬升单元60和第一爬升单元10沿预设方向的垂直方向间隔的设置,第一爬升单元10和第二爬升单元60位于同一水平面内,第二爬升单元60包括第三驱动轮601和第四驱动轮602。第一爬升单元10和第二爬升单元60共同带动仓储机器人攀爬货架。进一步地,第二爬升单元60也包括伸缩装置,伸缩装置用于调节第三驱动轮601和第四驱动轮602间的距离。通过伸缩机构可以调节第一驱动轮101与第二驱动轮102之间的距离以及第三驱动轮601和第四驱动轮602之间的角力,以使第一爬升单元10适用于第一攀登轨道1和第二攀登轨道2之间距离不等的货架,同时第二爬升单元60适用第三攀登轨道3和第四攀登轨道4间距离不等的货架,提高了仓储机器人的通用性。
继续参照图8,本实施例中,预设方向为在第一攀登轨道1和第二攀登轨道2中心线所在的平面内、且与第一攀登轨道1的中心线垂直的方向。
爬升单元包括:第一滑动部104以及第二滑动部105,第一驱动轮101设置在第一滑动部104上,第二驱动轮102设置在第二滑动部105上;伸缩机构与第一滑动部104以及第二滑动部105连接,以驱动第一滑动部104和第二滑动部105沿预设方向移动。
具体地,第一爬升单元10包括:本体103、第一滑动部104以及第二滑动部105,本体103与底架20滑动连接,第一驱动轮101设置在第一滑动部104上,第二驱动轮102设置在第二滑动部105上;伸缩机构与本体103、第一滑动部104以及第二滑动部105连 接连接,以驱动第一滑动部104和第二滑动部105沿预设方向移动。
伸缩机构可以驱动第一滑动部104和第二滑动部105向相反的方向移动,与伸缩机构仅驱动第一滑动部104移动相比可以快速的调节第一驱动轮101和第二驱动轮102之间的距离。另外,在第一滑动部104移动的基础上,第二滑动部105也发生移动,可以增大第一驱动轮101与第二驱动轮102之间距离的调节范围。
具体地,为了保证在第一驱动轮101转动时可以带动仓储机器人移动,第一驱动轮101可以为链轮,相应的在第一攀登轨道1上设置有链条,链轮与链条配合,以在链轮转动时带动仓储机器人移动;或者第一驱动轮101为齿轮,此时可以在第一攀登轨道1上设置有齿条,齿轮与齿条配合,以在齿轮转动时带动仓储机器人移动。相似的,第二驱动轮102与第一驱动轮101的结构可以相同,参照第一驱动轮101的描述,在此不再赘述。
本实施例提供的仓储机器人的工作过程为:通过底架20上的行走机构带动仓储机器人移动至第一爬升单元10位于第一攀登轨道1和第二攀登轨道2之间,并且第二爬升单元60位于第三攀登轨道3和第四攀登轨道4之间;之后通过伸缩机构驱动第一滑动部104和第二滑动部105沿预设方向移动,以调节第一驱动轮101与第二驱动轮102之间的距离,使第一驱动轮101与第一攀登轨道1配合,并且第二驱动轮102与第二攀登轨道2配合;在上述过程中,通过第二爬升单元60上的伸缩机构调节第三驱动轮601和第四驱动轮602之间的距离,以使第三驱动轮601与第三攀登轨道3配合,第四驱动轮602与第四攀登轨道4配合;之后通过动力装置驱动第一驱动轮101、第二驱动轮102、第三驱动轮601以及第四驱动轮602转动,进而带动仓储机器人沿垂直于水平面的方向移动。如果仓储机器人与第一攀登轨道1之间的距离小于仓储机器人与第二攀登轨道2之间的距离,在第一驱动轮101与第一攀登轨道1接触后,会使本体103向第二攀登轨道2移动,直至第二驱动轮102与第二攀登轨道2接触;相反,如果仓储机器人与第一攀登轨道1之间的距离大于仓储机器人与第二攀登轨道2之间的距离,在第二驱动轮与第二攀登轨道2接触后,会使本体103向第一攀登轨道1移动,直至第一驱动轮101与第一攀登轨道1接触。
本实施例提供的仓储机器人,爬升组件与底架20之间滑动连接,爬升组件用于与货架上的轨道对接,并在完成对接后带动仓储机器人沿货架爬升;与爬升组件和底架20固定连接相比,当仓储机器人与第一攀登轨道1和第二攀登轨道2之间的距离不等时,可以调节爬升组件上驱动轮的位置,使驱动轮与轨道对接,并且爬升组件会在底架20上滑动,不会拖动底架20在地面上移动,避免损坏行走机构,提高了使用寿命。
继续参照图1-图4。本实施例中第一滑动部104和第二滑动部105也与滑轨201滑动连接。可以进一步固定第一滑动部104和第二滑动部105,以提高第一滑动部104和第二滑动部105移动的平稳性。
本实施例中,伸缩机构可以包括伸缩缸和/或丝杠。当伸缩机构包括伸缩缸时,伸缩机构可以包括第一伸缩缸,第一伸缩缸的活塞杆与第一滑动部104连接,第一伸缩缸的缸体与本体103连接,并且第一伸缩缸的中心线与预设方向平行;当活塞杆在缸体内伸出或者活塞杆向缸体内收缩时,可以带动第一滑动部104沿预设方向移动;伸缩机构还可以包括第二伸缩缸,第二伸缩缸的缸体与本体103连接,第二伸缩缸的活塞杆与第二滑动部105连接,第二伸缩缸的中心线与预设方向平行;活塞杆由缸体内伸出或者缩回时可以带动第二滑动部105移动;以调节第一驱动轮101与第二驱动轮102之间的距离。其中第一伸缩 缸和第二伸缩缸可以为液压缸或者气压缸。
本实施例中,当伸缩机构包括丝杠时,伸缩机构可以包括第一丝杠106以及设置在本体103上的驱动装置,第一丝杠106的轴线与预设方向平行,第一滑动部104上设置有与第一丝杠106配合的第一螺纹孔;第一丝杠106可转动的与本体103连接,且驱动装置与第一丝杠106传动连接,以驱动第一丝杠106转动。
继续参照图2和图3,在本体103上设置轴承孔1031,轴承孔1031包括朝向第一滑动部104的第一孔段和朝向第二滑动部105的第二孔段,第二孔段的孔径小于第一孔段的孔径;第一孔段内设置有第一滚动轴承1032,第二孔段内设置有第二滚动轴承1033;第一丝杠106的朝向本体103的一端具有轴颈,轴颈穿设在第一滚动轴承1032和第二滚动轴承1033的内圈内,以实现第一丝杠106与本体103之间的可转动连接。以图2所示方位为例,由于第二孔段的孔径小于第一孔段的孔径,第二孔段的左端可以阻止第一滚动轴承1032向右移动,进而阻止第一丝杠106向右移动;为了阻止第一丝杠106向左移动,在第一孔段的内壁卡设有止挡环1034,止挡环1034位于第一滚动轴承1032的左侧,止挡环1034可以阻止第一滚动轴承1032向左移动;轴颈的右端设置止挡部,止挡部抵顶在第二滚动轴承1033的内圈上,与此同时第一滚动轴承1032与第二滚动轴承1033之间设置有套管1036,套管1036抵顶在第一滚动轴承1032内圈和第二滚动轴承1033的内圈上,止挡部可以通过第二滚动轴承1033、套管1036及第一滚动轴承1032抵顶在止挡环1034上,以阻止第一丝杠106向左移动。
继续参照图2,当伸缩机构包括丝杠时,伸缩机构还包括第二丝杠107,第二丝杠107的轴线与预设方向平行,第二滑动部105上设置有与第二丝杠107配合的第二螺纹孔;第二丝杠107可转动的与本体103连接,且驱动装置与第二丝杠107传动连接,以驱动第二丝杠107转动。
本实施例中第二丝杠107与本体103之间的连接方式与第一丝杠106与本体103之间的连接方式大体相同,参照第一丝杠106与本体103之间连接方式的描述,在此不再赘述。
当然本实施中,第一滑动部104可以通过伸缩缸与本体103连接,与此同时第二滑动部105通过丝杠与本体103连接;当然,第一滑动部104通过丝杠与本体103连接,与此同时第二滑动部105通过伸缩缸与本体103连接。
本实施例优选地,为了提高第一滑动部104与本体103之间的连接强度可以在第一滑动部104上设置中心线与预设方向平行的第一滑孔,相应的在本体103上设置第一滑块,第一滑块滑设在第一滑孔内。相同的,可以在第二滑动部105上设置中心线与预设方向平行的第二滑孔,本体103上设置有第二滑块,第二滑块滑设在第二滑孔内。
在一个可实现的方式中,驱动装置可以单独与第一丝杠106和第二丝杠107传动连接,以实现对第一丝杠106和第二丝杠107的单独控制;例如:驱动装置包括与第一丝杠106传动连接的第一电机,以及与第二丝杠107传动连接的第二电机,在工作时,第一丝杠106和第二丝杠107的转动方向和转动速度可以相同或不同,即第一滑动部104和第二滑动部105的移动方向和移动速度可以相同或不同。
在其他实现方式中,驱动装置包括:转动装置以及驱动轴108,驱动轴108的轴线、第一丝杠106的轴线以及第二丝杠107的轴线共线设置,驱动轴108的一端与第一丝杠106传动连接,驱动轴108的另一端与第二丝杠107传动连接;转动装置设置在本体103上, 且转动装置与驱动轴108传动连接,以驱动轴108转动。通过驱动轴108可以驱动第一丝杠106和第二丝杠107同步转动,即驱动第一滑动部104和第二滑动同时向本体103移动,或者同时向远离本体103的方向移动、且移动速度相同;如此设置,可以保证第一滑动部104与本体103之间的距离等于第二滑动部105与本体13之间的距离,在调节第一驱动轮101和第二驱动轮102之间的距离时,保持仓储机器人的重心稳定。
具体地,驱动轴108可以通过联轴器与第一丝杠106和第二丝杠107连接。
继续参照图8,本实施例中,伸缩机构为非自锁机构,伸缩机构两端设置有限位件,用于与货架上的导向件配合实现第一驱动轮101和第二驱动轮102沿预设方向位置的限定。限位件与导向件之间配合,在仓储机器人攀爬货架的过程中,若第一攀登轨道1和第二攀登轨道2之间的距离缩短,进而挤压限位件,第一驱动轮101和第二驱动轮102之间的距离适当缩小;若第一攀登轨道1和第二攀登轨道2之间的距离增大,进而拉拔限位件,第一驱动轮101和第二驱动轮102之间的距离适当增大,可以避免第一驱动轮101和第二驱动轮102与轨道脱离或者第一驱动轮101和第二驱动轮102受到的挤压力过大。
具体地,限位件包括沿预设方向间隔设置的第一导向轮70和第二导向轮80,导向件夹设在第一导向轮70和第二导向轮80之间。第一导向轮70和第二导向轮80可以发生转动,使得第一导向轮70和第二导向轮80与导向件之间的摩擦力较小,减小了攀爬时的阻力。
优选地,第一导向轮70和第二导向轮80间隔的设置在第一滑动部104上,相应的在第二滑动部105上也设置有第一导向轮70和第二导向轮80;导向件为设置在轨道上的止挡板,第一导向轮70和第二导线轮80夹设在止挡板的两侧。
具体地,第一丝杠106和第二丝杠107可以为非自锁丝杠;在第一滑动部104受到沿预设方向的作用力时,第一丝杠106会发生转动,第一滑动部104沿作用力的方向移动;相同的,在第二滑动部105受到沿预设方向的作用力时,第二丝杠107会发生转动,第二滑动部105沿作用力的方向移动。如此设置,在仓储机器人攀爬货架的过程中,若第一攀登轨道1和第二攀登轨道2之间的距离缩短时,第一滑动部104和第二滑动部105上的限位件受到挤压,可通过第一丝杠106和第二丝杠107的转动,适当的缩短第一滑动部104和第二滑动部105之间的距离,以免挤压力过大;在仓储机器人攀爬货架的过程中,若第一攀登轨道1和第二攀登轨道2之间的距离增大时,第一滑动部104和第二滑动部105上的限位件受到拉拔,可通过第一丝杠106和第二丝杠107的转动,适当的增大第一滑动部104和第二滑动部105之间的距离,以免第一驱动轮101和第二驱动轮102与对应的攀登轨道脱离。示例性的,第一丝杠106和第二丝杠107可以为滚珠丝杠,或者其他的摩擦角小于螺旋角的丝杠。值得注意的是,在第一驱动轮101和第二驱动轮102与轨道对接后,与第一丝杠106和第二丝杠107传动连接的转动装置也为非自锁装置,即允许第一丝杠106和第二丝杠107自由转动。
本实施例对转动装置不做限制,只要转动装置能够驱动驱动轴108转动即可,例如:转动装置可以包括转动电机,转动电机的主轴与驱动轴108传动连接。具体地,驱动轴108上设置有第一带轮,转动电机的主轴上设置有第二带轮,传动带与第一带轮与第二带轮配合,以实现转动电机与驱动轴108之间的传动连接;为了避免传动带与第一带轮和第二带轮之间发生滑动,传动带可以为同步带,相应的第一带轮和第二带轮为齿形带轮。
在一个可实现的方式中,仓储机器人还包括传感器,用于检测第一驱动轮101和第二驱动轮102受轨道的压力,以控制伸缩机构伸缩。在第一驱动轮101和第二驱动轮102受轨道的压力达到预设值时,控制伸缩机构停止工作。当第一驱动轮101和第一攀登轨道1对接,并且第二驱动轮102与第二攀登轨道2对接后,控制伸缩机构停止工作,以免第一攀登轨道1对第一驱动轮101的抵顶力、以及第二攀登轨道2对第二驱动轮102的抵顶力过大。
值得注意的是,预设值为保证第一驱动轮101与第一攀登轨道1对接,并且第二驱动轮102与第二攀登轨道2对接,而使第一驱动轮101受到的最小压力。
具体地,传感器可以为设置在第一驱动轮101和/或第二驱动轮102上的压力传感器。
在其他实施例中,仓储机器人还包括力矩检测装置,力矩检测装置用于检测转动装置的力矩,以控制伸缩机构伸缩。示例性的,当第一驱动轮101受到的压力达到预设值时转动装置对应的力矩为预设力矩;因此在检测到转动装置的力矩达到预设力矩时,控制转动电机停止转动。在攀登货架的过程中,若检测到转动装置的力矩小于预设力矩,通过伸缩机构适当增大第一驱动轮101与第二驱动轮102之间的距离,以免第一驱动轮101和第二驱动轮102与对应的攀登轨道脱离。
本实施例提供的仓储机器人可以包括控制器,控制器与传感器或者力矩检测装置连接,以根据传感器或者力矩检测装置提供的数据,控制伸缩装置工作。
本实施例中,转动装置可以为转动电机,相应的力矩检测装置用于检测转动电机的力矩。
本实施例提供的仓储机器人与攀登轨道对接的过程为:仓储机器人移动至第一爬升单元10位于第一攀登轨道1和第二攀登轨道2之间,并且第二爬升单元60位于第三攀登轨道3和第四攀登轨道4之间,之后通过转动电机驱动第一丝杠106和第二丝杠107转动,进而带动第一滑动部104和第二滑动部105向背离本体103的方向移动,使第一驱动轮101与第一攀登轨道1接触,第二驱动轮102与第二攀登轨道2接触;当检测到转动电机的力矩达到预设值时,控制转动电机停止工作;此时,第一驱动轮101与第一攀登轨道1对接,第二驱动轮102与第二攀登轨道2对接。在上述过程中,通过第二爬升单元60上的伸缩机构调节第三驱动轮601和第四驱动轮602之间的距离,以使第三驱动轮601与第三攀登轨道3对接,第四驱动轮602与第四攀登轨道4对接。
本实施例中,仓储机器人还包括弹性件,弹性件与本体103和底架20连接,弹性件在本体103沿预设方向滑动时发生弹性形变。当本体103与底架20之间发生相对移动时,弹性件发生弹性形变,当仓储机器攀爬货架而使底架20与地面脱离时,在弹性件弹力的作用下,使本体103与底架20恢复至初始位置。其中,初始位置为弹性件未发生弹性形变时底架20与本体103之间的相对位置。
具体地,弹性件可以有多种,例如:弹性件可以包括与本体103和底架20连接的橡胶块,或者弹性件包括与本体103和底架20连接弹性片。本实施例优选地,弹性件包括弹簧109,弹簧109的中心线与预设方向平行,弹簧109的一端与本体103连接,弹簧109的另一端与底架20连接;与橡胶块相比,弹簧109的使用寿命较长。
进一步地,弹簧109为两个;本体103上沿预设方向间隔的设置两个弹簧连接件,每一弹簧109的一端与一个弹簧连接件连接,每一弹簧109的另一端与底架20连接。在本 体103相对于底架20发生移动时,两个弹簧109均发生弹性形变,与只设置一个弹簧109相比,增大了弹力,缩短了本体103与底架20恢复至初始位置的时间。
继续参照图4,本实施例中,弹簧连接件包括中心线与预设方向平行的柱体1035,部分弹簧109套设在柱体1035上。在弹簧109受到压缩时,柱体1035可以起到导向作用,以免弹簧109受力后发生倾斜。
继续参照图5-图8。本实施例中,爬升组件包括沿预设方向的垂直方向间隔设置的两个爬升单元。并且述两个爬升单元的第一驱动轮101通过万向联轴器30连接,两个爬升单元的第二驱动轮102通过万向联轴器30连接。
具体地,爬升组件包括沿预设方向的垂直方向间隔设置的第一爬升单元10和第二爬升单元60,第一爬升单元10上设置有第一驱动轮101和第二驱动轮102,第二爬升单元60上设置有第三驱动轮601和第四驱动轮602;第一驱动轮101与第三驱动轮601通过万向联轴器30连接,第二驱动轮102与第四驱动轮602通过万向联轴器30连接。如此设置,可以避免一个第一爬升单元10在调节第一驱动轮101和第二驱动轮102之间距离时,对第二爬升单元60上的第三驱动轮601和第四驱动轮602造成影响;即不同爬升单元上的两个驱动轮间的距离可以独立的调节。
继续参照图5和图8,货架上设置有四个攀登轨道,第一爬升单元10和第二爬升单元60上的每一驱动轮与一个攀登轨道对接。动力装置可以包括与第一爬升单元10上的第一驱动轮101传动连接的第一驱动电机40,以及与第一爬升单元10上的第二驱动轮102传动连接的第二驱动电机50。
本实施例中,第一爬升单元10与第二爬升单元60的结构大体相同,参照第一爬升单元10的描述,在此不再赘述。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (17)

  1. 一种仓储机器人,其特征在于,包括:爬升组件及底架;所述爬升组件用于与货架上的轨道对接,并在对接完成后带动所述仓储机器人沿所述货架爬升;
    所述爬升组件与所述底架滑动连接,以在所述爬升组件与所述轨道对接过程中能够使所述爬升组件相对所述底架在水平面内沿预设方向滑动。
  2. 根据权利要求1所述的仓储机器人,其特征在于,所述爬升组件包括本体及爬升单元,所述爬升单元设置在所述本体上,所述本体与所述底架滑动连接。
  3. 根据权利要求2所述的仓储机器人,其特征在于,所述爬升单元上具有伸缩机构及沿预设方向设置的第一驱动轮和第二驱动轮,所述第一驱动轮和所述第二驱动轮设置于所述伸缩机构两端,以在所述伸缩机构驱动作用下与所述轨道对接。
  4. 根据权利要求3所述的仓储机器人,其特征在于,所述爬升单元包括:第一滑动部以及第二滑动部,所述第一驱动轮设置在所述第一滑动部上,所述第二驱动轮设置在所述第二滑动部上;所述伸缩机构与所述第一滑动部以及所述第二滑动部连接,以驱动所述第一滑动部和所述第二滑动部沿预设方向移动。
  5. 根据权利要求4所述的仓储机器人,其特征在于,所述伸缩机构包括第一丝杠、第二丝杠以及设置在所述本体上的驱动装置,所述第一丝杠的轴线与所述预设方向平行,所述第一滑动部上设置有与所述第一丝杠配合的第一螺纹孔;所述第一丝杠可转动的与所述本体连接;
    所述第二丝杠的轴线与预设方向平行,所述第二滑动部上设置有与所述第二丝杠配合的第二螺纹孔;所述第二丝杠可转动的与所述本体连接;
    所述驱动装置与所述第一丝杠和所述第二丝杠传动连接。
  6. 根据权利要求5所述的仓储机器人,其特征在于,所述驱动装置包括:转动装置以及驱动轴,所述驱动轴的轴线、所述第一丝杠的轴线以及所述第二丝杠的轴线共线设置,所述驱动轴的一端与所述第一丝杠传动连接,所述驱动轴的另一端与所述第二丝杠传动连接,且所述转动装置与所述驱动轴传动连接。
  7. 根据权利要求6所述的仓储机器人,其特征在于,所述转动装置设置在所述本体上。
  8. 根据权利要求3-7任一项所述的仓储机器人,其特征在于,所述爬升组件包括沿预设方向的垂直方向间隔设置的两个爬升单元。
  9. 根据权利要求8所述的仓储机器人,其特征在于,两个所述爬升单元的所述第一驱动轮通过万向联轴器连接。
  10. 根据权利要求9所述的仓储机器人,其特征在于,两个所述爬升单元的所述第二驱动轮通过万向联轴器连接。
  11. 根据权利要求3-10任一项所述的仓储机器人,其特征在于,所述仓储机器人还包括传感器,用于检测所述第一驱动轮和所述第二驱动轮受所述轨道的压力,以控制所述伸缩机构伸缩。
  12. 根据权利要求5-7任一项所述的仓储机器人,其特征在于,所述仓储机器人还包括力矩检测装置,所述力矩检测装置用于检测所述转动装置的力矩,以控制所述伸缩机构伸缩。
  13. 根据权利要求3-12任一项所述的仓储机器人,其特征在于,所述伸缩机构为非自锁机构。
  14. 根据权利要求13所述的仓储机器人,其特征在于,所述伸缩机构两端设置有限位件,用于与所述货架上的导向件配合实现所述第一驱动轮和第二驱动轮沿预设方 向位置的限定。
  15. 根据权利要求14所述的仓储机器人,其特征在于,所述限位件包括沿预设方向间隔设置的第一导向轮和第二导向轮,所述导向件夹设在所述第一导向轮和所述第二导向轮之间。
  16. 根据权利要求2-15任一项所述的仓储机器人,其特征在于,所述仓储机器人还包括弹性件,所述弹性件与所述本体和所述底架连接,所述弹性件在所述本体沿预设方向相对于所述底架滑动时发生弹性形变。
  17. 根据权利要求16所述的仓储机器人,其特征在于,所述弹性件包括弹簧,所述弹簧为两个;所述本体上沿预设方向间隔的设置两个弹簧连接件,每一所述弹簧的一端与一个所述弹簧连接件连接,每一所述弹簧的另一端与所述底架连接。
PCT/CN2020/083685 2019-04-30 2020-04-08 仓储机器人 WO2020220948A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021560227A JP7273990B2 (ja) 2019-04-30 2020-04-08 倉庫ロボット
US17/606,330 US20220212867A1 (en) 2019-04-30 2020-04-08 Warehousing robot
EP20798557.3A EP3943417A4 (en) 2019-04-30 2020-04-08 STORAGE ROBOT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910360794.5A CN111731727A (zh) 2019-04-30 2019-04-30 仓储机器人
CN201910360794.5 2019-04-30

Publications (1)

Publication Number Publication Date
WO2020220948A1 true WO2020220948A1 (zh) 2020-11-05

Family

ID=72645799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/083685 WO2020220948A1 (zh) 2019-04-30 2020-04-08 仓储机器人

Country Status (5)

Country Link
US (1) US20220212867A1 (zh)
EP (1) EP3943417A4 (zh)
JP (1) JP7273990B2 (zh)
CN (1) CN111731727A (zh)
WO (1) WO2020220948A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112660679A (zh) * 2020-12-18 2021-04-16 北京京东乾石科技有限公司 仓储物流车的底盘、仓储物流车和仓储物流系统
EP4116233A1 (en) * 2021-07-09 2023-01-11 Intelligrated Headquarters, LLC Carriage lift assembly for materials handling and storage systems

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111731728A (zh) * 2019-04-30 2020-10-02 北京京东乾石科技有限公司 物品运送系统
CN112520294A (zh) * 2020-12-16 2021-03-19 合肥井松智能科技股份有限公司 一种无人运输自动导引车及仓储系统
AT525735B1 (de) 2022-10-06 2023-07-15 Knapp Ag Automatisiertes Lagersystem mit einem Shuttle zum Transport von Lagerhilfsmitteln

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108706266A (zh) * 2018-06-11 2018-10-26 江苏高科物流科技股份有限公司 一种穿梭车式自动化仓储及穿梭车系统
CN108706265A (zh) * 2018-06-11 2018-10-26 江苏高科物流科技股份有限公司 一种穿梭车式自动化仓储及穿梭车
US20190062051A1 (en) * 2017-08-31 2019-02-28 Alert Innovation Inc. Order fulfillment robot capable of horizontal and vertical motion
CN208790422U (zh) * 2018-08-02 2019-04-26 杭州慧盈智能科技有限公司 一种智能仓储机器人

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0642810U (ja) * 1992-11-16 1994-06-07 村田機械株式会社 自動倉庫
EP3609814B1 (fr) * 2017-04-12 2020-12-30 Exotec Solutions Système de préparation de commandes
CN207174610U (zh) 2017-08-10 2018-04-03 周口师范学院 一种立体仓库系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190062051A1 (en) * 2017-08-31 2019-02-28 Alert Innovation Inc. Order fulfillment robot capable of horizontal and vertical motion
CN108706266A (zh) * 2018-06-11 2018-10-26 江苏高科物流科技股份有限公司 一种穿梭车式自动化仓储及穿梭车系统
CN108706265A (zh) * 2018-06-11 2018-10-26 江苏高科物流科技股份有限公司 一种穿梭车式自动化仓储及穿梭车
CN208790422U (zh) * 2018-08-02 2019-04-26 杭州慧盈智能科技有限公司 一种智能仓储机器人

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3943417A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112660679A (zh) * 2020-12-18 2021-04-16 北京京东乾石科技有限公司 仓储物流车的底盘、仓储物流车和仓储物流系统
EP4116233A1 (en) * 2021-07-09 2023-01-11 Intelligrated Headquarters, LLC Carriage lift assembly for materials handling and storage systems
US11795000B2 (en) 2021-07-09 2023-10-24 Intelligrated Headquarters, Llc Carriage lift assembly for materials handling and storage systems

Also Published As

Publication number Publication date
CN111731727A (zh) 2020-10-02
JP2022528741A (ja) 2022-06-15
EP3943417A1 (en) 2022-01-26
EP3943417A4 (en) 2022-12-21
US20220212867A1 (en) 2022-07-07
JP7273990B2 (ja) 2023-05-15

Similar Documents

Publication Publication Date Title
WO2020220948A1 (zh) 仓储机器人
US20240025673A1 (en) Logistics palletizing system
US8240972B2 (en) Robot with linearly movable support member attaching to gripper
CN104674655A (zh) 一种缆索攀爬机器人
WO2022134893A1 (zh) 升降装置及搬运机器人
CN204530473U (zh) 缆索攀爬机器人
US20230391550A1 (en) A shuttle for propelling horizontally and vertically in a racking system
CN210437866U (zh) 仓储机器人
CN104674654A (zh) 一种缆索爬行机器人
CN109986545A (zh) 一种绳驱动机械臂的传动绳预紧装置
KR20210031370A (ko) 승강 기구
EP4371861A1 (en) Chassis assembly and automatic guided vehicle
JP2007247886A (ja) 摩擦駆動ユニット
CN112350215B (zh) 用于高压输电线路巡检机器人的自平衡压紧轮机构
CN204530472U (zh) 缆索爬行机器人
CN212838966U (zh) 一种滑动平台
CN209100580U (zh) 一种用于连接限位部件的调节丝杆
CN107314751B (zh) 一种摩擦杆传动装置
EP2620689B1 (en) Adjustable supporting stand
CN202321557U (zh) 气动式无冲击摩擦驱动装置
TWI468274B (zh) 平面關節型機器人
CN209774433U (zh) 一种定位机构
CN220289229U (zh) 一种转塔式电池底部焊接拉力检测装置
CN205166362U (zh) 齿形传动链拧紧装置
CN218950219U (zh) 号牌驳送平衡装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20798557

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021560227

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020798557

Country of ref document: EP

Effective date: 20211022

NENP Non-entry into the national phase

Ref country code: DE