WO2020220928A1 - 位移检测装置、位移控制系统及3d打印设备 - Google Patents

位移检测装置、位移控制系统及3d打印设备 Download PDF

Info

Publication number
WO2020220928A1
WO2020220928A1 PCT/CN2020/083149 CN2020083149W WO2020220928A1 WO 2020220928 A1 WO2020220928 A1 WO 2020220928A1 CN 2020083149 W CN2020083149 W CN 2020083149W WO 2020220928 A1 WO2020220928 A1 WO 2020220928A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
position value
detection
information
movement
Prior art date
Application number
PCT/CN2020/083149
Other languages
English (en)
French (fr)
Inventor
俞萍初
Original Assignee
珠海赛纳三维科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海赛纳三维科技有限公司 filed Critical 珠海赛纳三维科技有限公司
Publication of WO2020220928A1 publication Critical patent/WO2020220928A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/004Measuring arrangements characterised by the use of mechanical techniques for measuring coordinates of points
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/02Measuring arrangements characterised by the use of mechanical techniques for measuring length, width or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/004Measuring arrangements characterised by the use of electric or magnetic techniques for measuring coordinates of points
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback

Definitions

  • This application relates to the field of detection technology, and in particular to a displacement detection device, a displacement control system and a 3D printing device.
  • Existing 3D inkjet printers usually include a carriage and a support platform.
  • the carriage is equipped with a print head, curing source, leveling stick and other components.
  • the print head is used to selectively eject solid materials and/or onto the support platform.
  • Support materials to make three-dimensional objects.
  • the carriage and the supporting platform have relative motions in the X, Y, and Z directions respectively, and the displacement detection unit detects the displacement status of the relative motion in real time. In order to meet the manufacturing accuracy requirements of three-dimensional objects, it is necessary to ensure the real-time displacement detection accuracy of the displacement detection unit for the relative movement between the carriage and the supporting platform.
  • a high-precision displacement sensor is usually used as the detection unit.
  • the use of a high-precision displacement sensor results in a higher manufacturing cost for the 3D printer.
  • the high-precision displacement sensor has a high detection accuracy that makes assembly difficult, and errors are likely to occur during assembly.
  • This application provides a displacement detection device, a displacement control system, and a 3D printing device, which realizes high-precision current position value detection with a low-precision displacement detection unit, reduces the manufacturing cost of a 3D printer, and improves the accuracy and reliability of position detection Sex.
  • a displacement detection device including: a displacement detection unit, an acquisition unit, and a data processing unit;
  • the displacement detection unit is used to detect the movement of the moving unit and output detection information
  • the acquisition unit is respectively connected with the displacement detection unit and a drive control unit for driving the movement unit, and is used to collect the detection information, and obtain a first position value counted in a first counting unit according to the detection information , And collect driving information output by the driving control unit for driving the motion unit within the detection information collection period, and obtain a second position value counted in a second counting unit according to the driving information;
  • the data processing unit is connected to the acquisition unit to receive the first position value and the second position value, and obtain the movement unit according to the first position value and the second position value The current position value;
  • the first counting unit corresponds to the detection accuracy of the displacement detection unit
  • the second counting unit corresponds to the positioning accuracy of the movement unit
  • the detection accuracy of the displacement detection unit is smaller than that of the movement The positioning accuracy of the unit.
  • the collection unit includes: a first collection subunit and a second collection subunit;
  • the first collection subunit is connected to the displacement detection unit, and is used to collect the detection information, and obtain a first position value counted in a first counting unit according to the detection information;
  • the second collection subunit is connected to the displacement detection unit and a drive control unit for driving the movement unit, and is used to collect the detection information, and collect the drive control during the collection period of the detection information
  • the driving information output by the unit for driving the motion unit, and obtaining a second position value counted in a second counting unit according to the driving information;
  • the data processing unit is connected to the first collection subunit and the second collection subunit to receive the first position value from the first collection subunit and from the second collection subunit.
  • the collection subunit receives the second position value.
  • the first collection subunit is configured to determine the first position value according to the first counting unit and the count indicated by the detection information
  • the second collection subunit is configured to initialize the collected driving information when the detection information is collected, and according to the second counting unit and the driving information in the collection period of the detection information The indicated count to determine the second position value;
  • the data processing unit is configured to determine the current position value of the motion unit according to the first position value and the second position value.
  • the data processing unit is configured to determine that the second position value received from the second acquisition subunit is greater than a preset first acquisition threshold When it is determined that the sum of the first position value and the first acquisition threshold is the current position value of the motion unit; when it is determined that the second position value received from the second acquisition subunit is less than Or equal to a preset first acquisition threshold, determining the sum of the first position value and the second position value as the current position value of the motion unit;
  • the data processing unit is configured to: when it is determined that the second position value received from the second acquisition subunit is less than a preset second acquisition threshold, The sum of the first position value and the second acquisition threshold is determined as the current position value of the motion unit; when it is determined that the second position value received from the second acquisition subunit is greater than or equal to a preset When the second acquisition threshold is set, the sum of the first position value and the second position value is determined as the current position value of the motion unit.
  • the first collection subunit is configured to accumulate the count indicated by the detection information as a first cumulative count, and use the product of the first counting unit and the first cumulative count as the first cumulative position Value, and the sum of the preset first initial value and the first cumulative position value is used as the first position value;
  • the second collection subunit is configured to initialize the count indicated by the drive information accumulated by the second collection subunit when a count indicated by the detection information is collected, and perform the collection of the detection information In the cycle, the count indicated by the driving information is re-accumulated as the second cumulative count, and the product of the second counting unit and the second cumulative count is used as the second cumulative position value, and the preset second The sum of the initial value and the second accumulated position value is used as the second position value.
  • the first collection subunit is further configured to collect the movement direction information of the movement unit from the displacement detection unit, and when it is determined that the movement unit moves in the positive direction according to the movement direction information, The first accumulated count is obtained by accumulating the count indicated by the detection information in a positive counting manner; when it is determined that the movement unit moves in a negative direction according to the movement direction information, accumulating the count indicated by the detection information in a negative counting manner to obtain The first cumulative count;
  • the second collection subunit is also used to collect the movement direction information of the movement unit from the drive control unit, and when it is determined according to the movement direction information that the movement unit moves in the positive direction, accumulate in a positive counting manner
  • the count indicated by the driving information obtains the second cumulative count; when it is determined that the movement unit moves in a negative direction according to the movement direction information, the count indicated by the driving information is accumulated in a negative counting manner to obtain the second cumulative count. Cumulative count.
  • the data processing unit is further configured to, after the current position value of the motion unit is obtained according to the first position value and the second position value, perform processing on the Unit conversion is performed on the current position value, and the position value corresponding to the preset position unit is obtained.
  • the positioning accuracy of the motion unit is N times the detection accuracy of the displacement detection unit, where N is an integer greater than or equal to 2.
  • the detection information includes a detection pulse signal
  • the drive information includes a drive pulse signal
  • the collecting unit is used to collect the pulse number of the detection pulse signal, obtain a first position value counted in a first counting unit according to the pulse number of the detection pulse signal, and within the pulse period of the detection pulse signal , Collecting the pulse number of the driving pulse signal, and obtaining a second position value counted in a second counting unit according to the pulse number of the driving pulse signal.
  • it further includes: a controller
  • the controller is connected to the first collection subunit and the second collection subunit, and is configured to output the coordinate origin to the first collection subunit before the first collection subunit starts to collect the detection information Value as the first initial value, and, before or at the same time as the initialization of the count indicated by the drive information accumulated by the second acquisition subunit, output a positive initial value or a negative value to the second acquisition subunit
  • the initial value is taken as the second initial value.
  • it further includes: a controller and a selector
  • the controller is connected to the first collection subunit, and is configured to output a coordinate origin value to the first collection subunit as the first initial value before the first collection subunit starts to collect the detection information , And, the controller is connected to the input end of the selector for outputting a positive initial value and a negative initial value to the selector;
  • the input end of the selector is also connected to the drive control unit, and the output end of the selector is connected to the second acquisition subunit for receiving the positive initial value and the negative direction from the controller Initial value, receiving the movement direction information of the movement unit from the drive control unit and selecting the positive initial value or the negative initial value as the second initial value according to the movement direction information, and outputting it to The second collection subunit.
  • a displacement control system including: a motion unit, a drive control unit, and the displacement detection devices of the first and various possible designs of the first aspect of the present application.
  • the third aspect of the embodiments of the present application provides a 3D printing device including the displacement control system described in the second aspect of the present application.
  • the displacement detection device, displacement control system and 3D printing equipment provided by the present application are used to detect the movement of the motion unit through the displacement detection unit and output detection information;
  • the acquisition unit is respectively connected to the displacement detection unit and for driving
  • the drive control unit of the motion unit is connected to collect the detection information, obtain a first position value counted in a first counting unit according to the detection information, and collect the drive during the detection information collection period
  • the driving information output by the control unit for driving the motion unit obtains a second position value counted in a second counting unit according to the driving information;
  • the data processing unit is connected to the acquisition unit to receive the first The position value and the second position value, and according to the first position value and the second position value, the current position value of the motion unit is obtained; wherein the first counting unit corresponds to the detection accuracy of the displacement detection unit Correspondingly, the second counting unit corresponds to the positioning accuracy of the motion unit, and the detection accuracy of the displacement detection unit is less than the positioning accuracy of the motion unit, thereby realizing high-precision
  • FIG. 1 is a schematic diagram of an application scenario provided by an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a displacement detection device provided by an embodiment of the present application.
  • Figure 3 is a schematic structural diagram of another displacement detection device provided by an embodiment of the present application.
  • Figure 4 is a schematic diagram of another application scenario provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of still another displacement detection device provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of another displacement detection device provided by an embodiment of the present application.
  • Fig. 7 is a schematic structural diagram of a displacement control system provided by an embodiment of the present application.
  • B corresponding to A means that B is associated with A, and according to A Can confirm B. Determining B based on A does not mean that B is determined only based on A, and B can also be determined based on A and/or other information.
  • the match between A and B means that the similarity between A and B is greater than or equal to a preset threshold.
  • connection includes any direct and indirect electrical connection means. Therefore, if the text describes that the first element is connected to the second element, it can be understood that the first element can be directly electrically connected.
  • the second element may be electrically connected to the second element indirectly through other elements or connecting means.
  • the “counting unit” is the minimum change distance of the index value. Different counting units reflect different precisions. For example, 2cm uses 1cm as the counting unit, but 2.00cm uses 0.01cm as the counting unit. It can be seen that the accuracy of 2.00cm is obviously higher than 2cm, but the two values are equal.
  • positive direction and negative direction mean the opposite directions of the two moving directions of the motion unit.
  • positive direction the other is the negative direction;
  • negative direction the direction in which the scale scale gradually decreases.
  • a high-precision displacement sensor is usually used as the detection unit.
  • a high-precision displacement sensor is usually not only difficult to install, but also a high-precision displacement sensor is more expensive to purchase than a low-precision displacement sensor, resulting in 3D The problem of high manufacturing cost of printing equipment.
  • an embodiment of the present application provides a displacement detection device.
  • the hardware structure and signal processing method are improved to make the movement unit current
  • the detection accuracy of the position value can reach or approximately reach the accuracy of the drive control unit, thereby realizing high-precision current position value detection with a low-precision displacement detection unit, and also improving the accuracy and reliability of position detection.
  • Fig. 1 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • the displacement detection unit 10 detects the current position value of the movement unit 40, and the movement unit 40 moves back and forth along the stroke shown in FIG. 1 under the control of the drive control unit 50.
  • the scale value indicated by the stop position of the movement unit 40 is the current position value of the movement unit 40.
  • the starting point of the stroke shown in Figure 1 is the position of scale value 0, and the end point is the position of scale value 6.
  • the displacement detection unit 10 detects the current position value of the movement unit 40, and the movement unit 40 moves back and forth along the stroke shown in FIG. 1 under the control of the drive control unit 50.
  • the scale value indicated by the stop position of the movement unit 40 is the current position value of the movement unit 40.
  • the starting point of the stroke shown in Figure 1 is the position of scale value 0, and the end point is the position of scale value 6.
  • the end point is the position of scale value 6.
  • the displacement detection unit 10 can only detect that the movement unit 40 has moved when the movement unit 40 passes through the positions marked with the values 1, 2, 3, 4, 5, and 6, but in the two values
  • the movement of the motion unit 40 cannot be detected.
  • the movement unit 40 moves in a distance that exceeds the scale value 1 but does not reach the scale value 2
  • the detection result of the displacement detection unit 10 is that the movement unit 40 stays at the position of the scale value 1.
  • this application introduces the acquisition unit 20 and the data processing unit 30 to detect the current position value of the motion unit 40 in combination with the drive signal output by the drive control unit 50.
  • FIG. 2 is a schematic structural diagram of a displacement detection device provided by an embodiment of the present application.
  • the displacement detection device shown in FIG. 2 mainly includes: a displacement detection unit 10, an acquisition unit 20, and a data processing unit 30.
  • the displacement detecting unit 10 is used to detect the movement of the moving unit 40 and output detection information.
  • the counting unit of the detection information is determined by the detection accuracy of the displacement detection unit 10. For example, if the detection accuracy of the displacement detection unit 10 is 0.01 cm, then the counting unit corresponding to the detection information is 0.01 cm, that is, the cumulative positive count or cumulative negative count is 0.01 cm .
  • the detection information may be based on signal characteristics such as the number of pulses of the electrical signal, the number of high levels of the electrical signal, the number of low levels of the electrical signal, the number of rising edges of the electrical signal, and the number of falling edges of the electrical signal. Instructions. For example, in an embodiment where the detection accuracy of the displacement detection unit 10 is 1 cm, the displacement detection unit 10 detects that the movement unit 40 moves by 1 cm, and outputs a pulse as the detection information.
  • the collection unit 20 is respectively connected to the displacement detection unit 10 and the drive control unit 50 for driving the movement unit 40, and is used to collect the detection information, and obtain the first counted in the first counting unit according to the detection information. Position value, and collect the driving information output by the driving control unit 50 for driving the movement unit 40 during the collection period of the detection information, and obtain the second position counted in the second count unit according to the driving information value.
  • the first input terminal of the collection unit 20 is connected to the output terminal of the displacement detection unit 10 to collect detection information; the second input terminal of the collection unit 20 is connected to the output terminal of the drive control unit 50 to collect and drive information.
  • the detection information is, for example, the number of pulses (for example, 1), and the first position value can be understood as the distance corresponding to the number of pulses (for example, 1 cm).
  • the collection unit 20 collects detection information and driving information, which may be collected by reading information or by receiving information, which is not limited here.
  • the collection period of the detection information can be understood as the interval time between the displacement detection unit 10 continuously outputting two detection information, or the interval time between the collection unit 20 continuously receiving two detection information.
  • the driving information is the number of pulses of the pulse signal.
  • the driving information output by the driving control unit 50 for driving the motion unit 40 is collected during the collection period of the detection information, which can be specifically understood as: When a detection information is detected, start collecting the driving information accumulation pulse number from 0, and continue to collect the driving information and accumulate the pulse number until the next detection information comes, until the next detection information arrives, start collecting the driving information accumulation again from 0 Number of pulses.
  • the driving information collected by the collecting unit 20 can be understood to be consistent with the driving information simultaneously output by the driving control unit 50 to the moving unit 40, wherein the moving unit 40 moves a distance indicated by the second counting unit in response to a driving information.
  • the driving information is the number of pulses of the pulse signal
  • the drive control unit 50 outputs a pulse
  • the motion unit 40 responds to this pulse and moves a distance of 0.1cm in the positive direction from the origin coordinate.
  • the acquisition unit 20 acquires the second position value 0.1cm.
  • the data processing unit 30 is connected to the acquisition unit 20 to receive the first position value and the second position value, and obtain the movement unit according to the first position value and the second position value The current position value of 40.
  • the first counting unit corresponds to the detection accuracy of the displacement detection unit 10
  • the second counting unit corresponds to the positioning accuracy of the motion unit 40
  • the detection accuracy of the displacement detection unit 10 is less than The positioning accuracy of the motion unit 40.
  • the data processing unit 30 may use the sum of the first position value and the second position value as the current position value of the motion unit 40. For example, if the first position value is 0 cm and the second position value is 0.1 cm, then the current position value of the movement unit 40 is 0.1 cm (see the example in FIG. 1). After the data processing unit 30 obtains the current position value, it can send the current position value to the driving control unit 50, and the driving control unit 50 compares the current position value with the target position to determine the output driving information.
  • the driving control unit 50 compares and finds that the current position value of the motion unit 40 has not reached the target position, it continues to send out driving information to drive the motion unit 40 to continue moving until the motion unit 40 reaches the target position, and then stops outputting driving information.
  • the movement unit 40 moves in response to the drive information of the drive control unit 50, each time the drive control unit 50 outputs drive information, the movement unit 40 moves for one step. It can be seen that the second counting unit of the second position value determined according to the driving information is the minimum moving distance of the motion unit 40, and the positioning accuracy of the motion unit 40 is also the driving accuracy of the motion unit 40 by the drive control unit 50.
  • the minimum movement distance that it can detect is usually greater than the minimum movement distance of the movement unit 40 (that is, the detection accuracy of the displacement detection unit 10 is less than the positioning accuracy of the movement unit 40), Therefore, if the detection accuracy is compensated with the second position value corresponding to the driving information during the period when the first position value corresponding to the detection information does not change, the detection accuracy of the current position value can be improved to that of the drive control unit 50. The accuracy is consistent.
  • the acquisition unit 20 collects driving information during the collection period of the detection information, and obtains the second position value counted in the second count unit according to the driving information, so that the collection of the second position value can be limited to one detection.
  • the acquisition unit 20 collects driving information during the collection period of the detection information, and obtains the second position value counted in the second count unit according to the driving information, so that the collection of the second position value can be limited to one detection.
  • the acquisition unit 20 collects driving information during the collection period of the detection information, and obtains the second position value counted in the second count unit according to the driving information, so that the collection of the second position value can be limited to one detection.
  • the displacement detection device provided by this embodiment is used to detect the movement of the movement unit 40 through the displacement detection unit and output detection information;
  • the acquisition unit is respectively connected to the displacement detection unit and the drive for driving the movement unit
  • the control unit is connected to collect the detection information, obtain the first position value counted in the first counting unit according to the detection information, and collect the data output by the drive control unit during the detection information collection period
  • the driving information for driving the motion unit obtains a second position value counted in a second counting unit according to the driving information;
  • a data processing unit is connected to the acquisition unit to receive the first position value and the first position value Two position values, and obtain the current position value of the motion unit according to the first position value and the second position value; wherein, the first counting unit corresponds to the detection accuracy of the displacement detection unit,
  • the second counting unit corresponds to the positioning accuracy of the motion unit, and the detection accuracy of the displacement detection unit is less than the positioning accuracy of the motion unit, thereby realizing a high-precision current position value with a low-
  • the acquisition unit 20 may include two independent parts.
  • FIG. 3 is a schematic structural diagram of another displacement detection device provided in an embodiment of the present application.
  • the collection unit 20 includes: a first collection subunit 21 and a second collection subunit 22.
  • the first collection subunit 21 is connected to the displacement detection unit 10 to collect the detection information and obtain the first position value counted in the first counting unit according to the detection information.
  • the input terminal of the first collection subunit 21 is connected to the output terminal of the displacement detection unit 10 to collect detection information; the output terminal of the first collection subunit 21 is connected to the first input terminal of the data processing unit 30 for The first position value is output to the data processing unit 30.
  • the second collection subunit 22 is connected to the displacement detection unit 10 and the drive control unit 50 for driving the movement unit 40, and is used to collect the detection information, and collect the detection information during the collection period of the detection information.
  • the driving information output by the driving control unit 50 for driving the motion unit 40 obtains a second position value counted in a second counting unit according to the driving information.
  • the initialization enable terminal of the second collection subunit 22 is connected to the output terminal of the displacement detection unit 10, and is used to collect detection information and initialize the driving information collected by the second collection subunit 22;
  • the input terminal of the unit 22 is connected with the output terminal of the drive control unit 50 to collect driving information;
  • the output terminal of the second collection sub-unit 22 is connected with the second input terminal of the data processing unit 30 to output to the data processing unit 30 The second position value.
  • the data processing unit 30 is connected to the first collection subunit 21 and the second collection subunit 22 to receive the first position value from the first collection subunit 21, and from The second collection subunit 22 receives the second position value.
  • the data processing unit 30 is connected to the first collection subunit 21 by a first input terminal, and is connected to the second collection subunit 22 by a second input terminal, for example.
  • the first collection subunit 21 and the second collection subunit 22 can be implemented in multiple ways.
  • the first collection subunit 21 is configured to determine the first position value according to the first counting unit and the count indicated by the detection information. For the determination of the first position value, a solution of the first initial value can also be introduced.
  • the first collection subunit 21 is configured to accumulate the count indicated by the detection information as the first accumulated count, and use the product of the first count unit and the first accumulated count as the first accumulated position value, and set The sum of the preset first initial value and the first cumulative position value is used as the first position value.
  • the first collection subunit 21 is also used to collect the movement direction information of the movement unit from the displacement detection unit 10.
  • the movement direction information When it is determined that the movement unit 40 moves in the positive direction according to the movement direction information, Accumulate the count indicated by the detection information in a positive counting manner to obtain the first accumulated count; when it is determined that the movement unit 40 moves in a negative direction according to the movement direction information, accumulate the count indicated by the detection information in a negative count manner. Counting obtains the first cumulative count. For example, when the movement unit 40 moves from the starting point in the positive direction to the position indicated by the scale value 1 in FIG.
  • the second collection subunit 22 is configured to initialize the collected driving information when the detection information is collected, and according to the second counting unit and the driving information within the collection period of the detection information The count indicated by the information determines the second position value. For the determination of the second position value, a second initial value solution can be introduced.
  • the second collecting subunit 22 is used to initialize the count indicated by the driving information accumulated by the second collecting subunit 22 when a count indicated by the detection information is collected, and to set the count indicated by the detection information.
  • the count indicated by the drive information is re-accumulated as the second cumulative count, and the product of the second counting unit and the second cumulative count is used as the second cumulative position value, and the preset first The sum of two initial values and the second accumulated position value is used as the second position value.
  • the second collection subunit 22 is also used to collect the movement direction information of the movement unit 40 from the drive control unit 50, when it is determined according to the movement direction information that the movement unit 40 moves in the positive direction , Accumulate the count indicated by the drive information in a positive counting manner to obtain the second accumulated count; when it is determined that the movement unit 40 moves in a negative direction according to the movement direction information, accumulate the drive information instruction in a negative count manner For example, when the movement unit 40 moves 0.1cm in the positive direction from the position indicated by the scale value 1 in Fig.
  • the second collection subunit 22 collects one detection information, and the second position value is initialized to a negative initial value of 0.9cm ;
  • the data processing unit 30 is configured to determine the current position value of the motion unit 40 according to the first position value and the second position value.
  • the first position value is the sum of the first initial value and the first cumulative position value
  • the second position value is the sum of the second initial value and the second cumulative position value
  • the current position value of the motion unit 40 is The sum of the first position value and the second position value.
  • the first collection subunit 21 and the second collection subunit 22 both collect detection information once, and the first initial value is 0 cm ,
  • the first cumulative position value is 1 cm
  • the first position value output by the first collection subunit 21 is 1 cm.
  • the second initial value of the second acquisition subunit 22 is initialized to 0 cm, that is, the second position value is 0 cm
  • the current position value of the moving unit 40 is 1.0 cm at this time.
  • the movement unit 40 When the movement unit 40 continues to move 0.1cm in the positive direction, no new detection information is generated for the displacement detection unit 10, and the first position value remains at 1cm, but the second collection subunit 20 collects the first count indicated by the drive information,
  • the second initial value is 0 cm
  • the second cumulative count is 1
  • the second cumulative position value is 0.1 cm, that is, the second position value is 0.1 cm
  • the current position value of the movement unit 40 is obtained as 1.1 cm.
  • the data processing unit 30 may further reduce the detection error by setting the acquisition threshold of the second position value.
  • the data processing unit 30 may be used to determine that the second position value received from the second collection subunit 22 is greater than the preset first collection threshold value, The sum of the first position value and the first acquisition threshold is determined as the current position value of the motion unit 40; when it is determined that the second position value received from the second acquisition subunit 22 is less than When it is equal to or equal to the preset first acquisition threshold, the sum of the first position value and the second position value is determined as the current position value of the motion unit 40.
  • the preset first collection threshold is 0.9cm, then, if in a detection information collection period, the second collection subunit 22 collects 10 driving information (the 10th driving information has not yet been collected when the 10th driving information is collected).
  • the output second position value is 1.0cm, which may be due to an error.
  • the movement unit 40 loses one drive information, resulting in one step less movement.
  • the data processing unit 30 directly replaces the second position value with the first acquisition threshold value 0.9 cm, and calculates the current position value by using 0.9 cm and the first position value.
  • the preset first collection threshold may be the negative initial value in the above embodiment, but this embodiment is not limited to this. In this way, it is possible to avoid the occurrence of obviously unreasonable detection results, and further improve the detection accuracy during the forward movement of the motion unit 40.
  • the data processing unit 30 may be configured to determine that the second position value received from the second acquisition subunit is less than a preset second acquisition threshold.
  • a preset second acquisition threshold is 0.0cm, then, if in a detection information acquisition cycle, the second acquisition subunit 22 has collected 10 driving information (the 10th driving information has not yet been collected when the 10th driving information is collected).
  • the output second position value is -1.0cm, which may be an error, for example, the motion unit 40 loses one drive information, which leads to one step less movement.
  • the data processing unit 30 directly replaces the second position value with the second acquisition threshold value 0.0cm, and calculates the current position value with 0.0cm and the first position value.
  • the preset first acquisition threshold may be the positive initial value in the foregoing embodiment, but this embodiment is not limited to this. As a result, it is possible to avoid the occurrence of obviously unreasonable detection results, and further improve the detection accuracy during the negative movement of the moving unit 40.
  • the data processing unit 30 may also have a unit conversion function.
  • the data processing unit 30 is configured to, after obtaining the current position value of the motion unit 40 according to the first position value and the second position value, perform a unit on the current position value according to a preset position unit By conversion, the position value corresponding to the preset position unit is obtained.
  • the acquisition unit 20 uses centimeters (cm) as the position unit to calculate the first position value and the second position value.
  • the current position value can also be obtained by using centimeters as the position unit to obtain a result of 2cm, but the user needs millimeters ( mm) is the output in the unit of distance, then the data processing unit 30 converts 2 cm into 20 mm and outputs it.
  • the positioning accuracy of the moving unit 40 is N times the detection accuracy of the displacement detecting unit 10, where N is an integer greater than or equal to 2.
  • N is an integer greater than or equal to 2.
  • the detection accuracy of the displacement detection unit 10 is 1 cm
  • the positioning accuracy of the motion unit 40 is 0.1 cm.
  • the positioning accuracy of the motion unit 40 is 10 times the detection accuracy of the displacement detection unit 10.
  • Fig. 4 is a schematic diagram of another application scenario provided by an embodiment of the present application. In the scene shown in FIG.
  • the detection accuracy of the displacement detection unit 10 is 1 cm, and the positioning accuracy of the motion unit 40 is 0.2 cm. Then, the positioning accuracy of the motion unit 40 is 5 times that of the displacement detection unit 10. It can be seen that through the combination of the detection accuracy of the displacement detection unit 10 and the positioning accuracy of the motion unit 40, the detection accuracy of the displacement detection unit 10 is increased by N times.
  • the detection information may be a detection pulse signal.
  • the driving information may also be a driving pulse signal.
  • the collection unit 20 is used to collect the number of pulses of the detection pulse signal, obtain the first position value counted in the first counting unit according to the number of pulses of the detection pulse signal, and set the value in the detection pulse signal During the pulse period of, the pulse number of the driving pulse signal is collected, and the second position value counted in the second counting unit is obtained according to the pulse number of the driving pulse signal.
  • the first collection subunit 21 and the second collection subunit 22 in the collection unit 20 can be understood as a unit including a counter, so as to realize the accumulation of the number of pulses.
  • the detection information and the driving information are not limited to the form of the pulse signal, but the principles and effects of their implementation are similar, and will not be repeated here.
  • FIG. 5 is a schematic structural diagram of still another displacement detection device provided by an embodiment of the present application.
  • the displacement detection device shown in FIG. 5 may further include a controller 60.
  • the controller 60 is connected to the first collection sub-unit 21 and the second collection sub-unit 22, and is used for reporting the detection information to the first collection sub-unit before the first collection sub-unit 21 starts to collect the detection information.
  • the unit 21 outputs the coordinate origin value as the first initial value, and, before or at the same time as the initialization of the count indicated by the driving information accumulated by the second acquisition subunit 22, sends it to the second acquisition subunit 22 Output a positive initial value or a negative initial value as the second initial value
  • the controller 60 in FIG. 5 may specifically be a device for overall control of the displacement detection device. For example, it may send a movement instruction to the drive control unit 50 so that the drive control unit 50 generates drive information according to the movement instruction.
  • the movement instruction may include information such as the movement speed of the movement unit 40, the acceleration/deceleration curve of the movement unit 40, the movement direction of the movement unit 40, and the target position of the movement unit 40.
  • the first initial value and the second initial value of the foregoing embodiment may also be input by the user and stored in the controller 60, and then sent by the controller 60 to the first collection subunit 21 and the second collection subunit 22.
  • the movement direction of the movement unit 40 may also be sent by the controller 60 to the first collection subunit 21 and the second collection subunit 22.
  • the controller 60 may also send a preset distance unit to the data processing unit 30, so that the data processing unit 30 performs unit conversion on the current position value according to the preset distance unit.
  • FIG. 6 is a schematic structural diagram of another displacement detection device provided by an embodiment of the present application.
  • the displacement detection device shown in FIG. 6 may include a controller 60 and a selector 70.
  • the controller 60 is connected to the first collection subunit 21, and is configured to output to the first collection subunit 21 before the first collection subunit 21 starts to collect the detection information.
  • the coordinate origin value is used as the first initial value, and the controller 60 is connected to the input terminal of the selector 70 to output a positive initial value and a negative initial value to the selector 70;
  • the input terminal of the selector 70 is also connected to the drive control unit 50, and the output terminal of the selector 70 is connected to the second collection subunit 22 to receive the positive initial value and the negative initial value. Value, receiving the movement direction information of the movement unit 40 from the drive control unit 50 according to the movement direction information, selecting the positive initial value or the negative initial value as the second initial value, and outputting To the second collection subunit 22.
  • both the positive initial value and the negative initial value are stored in the selector 70, and the selector 70 transfers to the second collection subunit according to the moving direction of the movement unit 40 22 configures the second initial value without the intervention of the controller 60, thereby reducing the operating burden of the controller 60 and avoiding the problem of incorrect configuration of the second initial value caused by the controller 60 error.
  • FIG. 7 is a schematic structural diagram of a displacement control system provided by an embodiment of the present application.
  • the displacement control system shown in FIG. 7 includes: a movement unit 40, a drive control unit 50, and the displacement detection device described in any of the foregoing various embodiments.
  • the moving unit 40 may be a single movable structure (see FIG. 2), or a structure including the moving part 41 and the servo drive unit 42 (see FIG. 3), which is not limited here. It should be understood that if the moving unit 40 includes the moving part 41 and the servo drive unit 42, the detection of the current position value of the moving unit 40 is actually the detection of the current position value of the moving part 41, the servo The driving unit 42 may be fixed, or may move together with the moving part 41.
  • the servo drive unit 42 may further include a driver and a motor (not shown in the figure). Specifically, the motor may be at least one of a servo motor and a stepping motor.
  • the moving unit 40 may also include a mechanical structure such as a moving rail, and the servo drive unit 42 drives the moving part 41 to move on the moving rail.
  • the movement unit 40 may include a mechanical transmission mechanism and a movement rail, and the servo drive unit 42 drives the mechanical transmission mechanism to drive the moving component 41 to move on the movement rail.
  • the displacement detection unit in the displacement detection device is used to detect the movement of the moving unit and output detection information;
  • the acquisition unit is respectively connected to the displacement detection unit and the driving unit
  • the drive control unit is connected to collect the detection information, obtain the first position value counted in the first counting unit according to the detection information, and collect the output value of the drive control unit during the detection information collection period
  • a second position value counted in a second counting unit is obtained according to the driving information
  • a data processing unit is connected to the acquisition unit to receive the first position value and the The second position value, and obtain the current position value of the motion unit according to the first position value and the second position value;
  • the first counting unit corresponds to the detection accuracy of the displacement detection unit
  • the second counting unit corresponds to the positioning accuracy of the motion unit
  • the detection accuracy of the displacement detection unit is less than the positioning accuracy of the motion unit, thereby realizing a high-precision current position with a low-precision displacement detection unit Value detection also improves
  • an embodiment of the present application also provides a 3D printing device, including the displacement control system shown in FIG. 7.
  • the 3D printing device uses the displacement detection unit 10 in the displacement control system to detect the movement of the movement unit and output detection information;
  • the acquisition unit is respectively connected to the displacement detection unit and is used to drive the movement unit
  • the drive control unit is connected to collect the detection information, obtain the first position value counted in the first counting unit according to the detection information, and collect the output of the drive control unit during the detection information collection period
  • the driving information for driving the motion unit obtains a second position value counted in a second counting unit according to the driving information;
  • a data processing unit is connected to the acquisition unit to receive the first position value and the The second position value, and the current position value of the motion unit is obtained according to the first position value and the second position value; wherein the first counting unit corresponds to the detection accuracy of the displacement detection unit Correspondingly, the second counting unit corresponds to the positioning accuracy of the motion unit, and the detection accuracy of the displacement detection unit is less than the positioning accuracy of the motion unit, so that a low-precision displacement detection unit can achieve high-precision current

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

本申请提供一种位移检测装置、位移控制系统及3D打印设备,通过位移探测单元输出检测信息;采集单元分别与位移探测单元和用于驱动运动单元的驱动控制单元连接,根据检测信息获得以第一计数单位计数的第一位置值,在检测信息的采集周期内采集驱动控制单元输出的驱动信息,根据驱动信息获得以第二计数单位计数的第二位置值;数据处理单元与采集单元连接,根据第一位置值和第二位置值,获得运动单元的当前位置值;其中,第一计数单位与位移探测单元的探测精度相对应,第二计数单位与运动单元的定位精度相对应,且位移探测单元的探测精度小于运动单元的定位精度,从而以低精度的位移探测单元实现高精度探测,提高了探测的准确性。

Description

位移检测装置、位移控制系统及3D打印设备
本申请要求于2019年4月29日提交中国专利局、申请号为201910356356.1、发明名称为“位移检测装置、位移控制系统及3D打印设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及检测技术领域,尤其涉及一种位移检测装置、位移控制系统及3D打印设备。
背景技术
现有的3D喷墨打印机通常包括字车和支撑平台,字车上安装有打印头、固化源、校平棍等部件,其中的打印头用于向支撑平台上选择性喷射实体材料和/或支撑材料以制造三维物体。在3D打印过程中,字车和支撑平台在X、Y和Z方向分别具有相对运动,并由位移检测单元实时检测该相对运动的位移状态。为了达到三维物体的制造精度要求,需要保证位移检测单元对字车与支撑平台之间相对运动的实时位移检测精度。
现有技术中为了提高检测单元对字车与支撑平台之间相对运动的检测精度,通常采用高精度的位移传感器作为检测单元。
然而,采用高精度的位移传感器导致了3D打印机的制造成本较高,同时,高精度的位移传感器由于检测精度高导致了装配难度较大,容易在装配时就产生误差。
发明内容
本申请提供一种位移检测装置、位移控制系统及3D打印设备,以低精度的位移探测单元实现高精度的当前位置值探测,降低了3D打印机的制造成本,提高了位置探测的准确性和可靠性。
本申请实施例的第一方面,提供一种位移检测装置,包括:位移探测单元、采集单元、数据处理单元;
所述位移探测单元用于对运动单元的移动进行探测,并输出检测信息;
所述采集单元分别与所述位移探测单元和用于驱动所述运动单元的驱动控制单元连接,用以采集所述检测信息,根据所述检测信息获得以第一计数单位计数的第一位置值,并在所述检测信息的采集周期内采集所述驱动控制单元输出的用于驱动所述运动单元的驱动信息,根据所述驱动信息获得以第二计数单位计数的第二位置值;
所述数据处理单元与所述采集单元连接,用以接收所述第一位置值和所述第二位置值,并根据所述第一位置值和所述第二位置值,获得所述运动单元的当前位置值;
其中,所述第一计数单位与所述位移探测单元的探测精度相对应,所述第二计数单位与所述运动单元的定位精度相对应,且所述位移探测单元的探测精度小于所述运动单元的定位精度。
可选地,所述采集单元包括:第一采集子单元、第二采集子单元;
所述第一采集子单元与所述位移探测单元连接,用以采集所述检测信息,并根据所述检测信息获得以第一计数单位计数的第一位置值;
所述第二采集子单元与所述位移探测单元和用于驱动所述运动单元的驱动控制单元连接,用以采集所述检测信息,并在所述检测信息的采集周期内采集所述驱动控制单元输出的用于驱动所述运动单元的驱动信息,根据所述驱动信息获得以第二计数单位计数的第二位置值;
相应地,所述数据处理单元与所述第一采集子单元和所述第二采集子单元连接,用以从所述第一采集子单元接收所述第一位置值,以及从所述第二采集子单元接收所述第二位置值。
可选地,所述第一采集子单元,用于根据所述第一计数单位和所述检测信息指示的计数,确定所述第一位置值;
所述第二采集子单元,用于在采集到所述检测信息时,初始化已采集的所述驱动信息,并在所述检测信息的采集周期内根据所述第二计数单位和所述驱动信息指示的计数,确定所述第二位置值;
所述数据处理单元,用于根据所述第一位置值和所述第二位置值,确定所述运动单元的当前位置值。
可选地,当所述运动单元朝正方向移动时,所述数据处理单元,用于在 确定从所述第二采集子单元接收到的所述第二位置值大于预设的第一采集阈值时,将所述第一位置值与所述第一采集阈值之和,确定为所述运动单元的当前位置值;在确定从所述第二采集子单元接收到的所述第二位置值小于或等于预设的第一采集阈值时,将所述第一位置值与所述第二位置值之和,确定为所述运动单元的当前位置值;
当所述运动单元朝负方向移动时,所述数据处理单元,用于在确定从所述第二采集子单元接收到的所述第二位置值小于预设的第二采集阈值时,将所述第一位置值与所述第二采集阈值之和,确定为所述运动单元的当前位置值;在确定从所述第二采集子单元接收到的所述第二位置值大于或等于预设的第二采集阈值时,将所述第一位置值与所述第二位置值之和,确定为所述运动单元的当前位置值。
可选地,所述第一采集子单元,用于累计所述检测信息指示的计数作为第一累计计数,并将所述第一计数单位和所述第一累计计数的乘积作为第一累计位置值,且将预设的第一初始值和所述第一累计位置值之和作为所述第一位置值;
所述第二采集子单元,用于在采集到所述检测信息指示的一个计数时,初始化所述第二采集子单元已累计的所述驱动信息指示的计数,并在所述检测信息的采集周期内,重新累计所述驱动信息指示的计数作为第二累计计数,且将所述第二计数单位和所述第二累计计数的乘积,作为第二累计位置值,并将预设的第二初始值和所述第二累计位置值之和作为所述第二位置值。
可选地,所述第一采集子单元,还用于从所述位移探测单元采集所述运动单元的运动方向信息,当根据所述运动方向信息确定所述运动单元朝正方向移动时,以正计数方式累计所述检测信息指示的计数得到所述第一累计计数;当根据所述运动方向信息确定所述运动单元朝负方向移动时,以负计数方式累计所述检测信息指示的计数得到所述第一累计计数;
所述第二采集子单元,还用于从所述驱动控制单元采集所述运动单元的运动方向信息,当根据所述运动方向信息确定所述运动单元朝正方向移动时,以正计数方式累计所述驱动信息指示的计数得到所述第二累计计数;当根据所述运动方向信息确定所述运动单元朝负方向移动时,以负计数方式累计所述驱动信息指示的计数得到所述第二累计计数。
可选地,所述数据处理单元,还用于在所述根据所述第一位置值和所述第二位置值,获得所述运动单元的当前位置值之后,根据预设位置单位对所述当前位置值进行单位换算,获取与所述预设位置单位对应的位置值。
可选地,所述运动单元的定位精度是所述位移探测单元的探测精度的N倍,其中,N为大于或等于2的整数。
可选地,所述检测信息包括检测脉冲信号,所述驱动信息包括驱动脉冲信号;
所述采集单元,用以采集所述检测脉冲信号的脉冲数,根据所述检测脉冲信号的脉冲数获得以第一计数单位计数的第一位置值,并在所述检测脉冲信号的脉冲周期内,采集所述驱动脉冲信号的脉冲数,根据所述驱动脉冲信号的脉冲数获得以第二计数单位计数的第二位置值。
可选地,还包括:控制器;
所述控制器与所述第一采集子单元和所述第二采集子单元连接,用以在所述第一采集子单元开始采集所述检测信息之前向所述第一采集子单元输出坐标原点值作为所述第一初始值,以及,在所述初始化所述第二采集子单元累计的所述驱动信息指示的计数之前或同时,向所述第二采集子单元输出正向初始值或负向初始值作为所述第二初始值。
可选地,还包括:控制器和选择器;
所述控制器与所述第一采集子单元连接,用以在所述第一采集子单元开始采集所述检测信息之前向所述第一采集子单元输出坐标原点值作为所述第一初始值,以及,所述控制器与所述选择器的输入端连接,用以向所述选择器输出正向初始值和负向初始值;
所述选择器的输入端还与所述驱动控制单元连接,所述选择器的输出端与所述第二采集子单元连接,用以从所述控制器接收所述正向初始值和负向初始值,从所述驱动控制单元接收所述运动单元的运动方向信息根据所述运动方向信息,选择将所述正向初始值或者所述负向初始值作为所述第二初始值,输出至所述第二采集子单元。
本申请实施例的第二方面,提供一种位移控制系统,包括:运动单元、驱动控制单元以及本申请第一方面及第一方面各种可能设计的所述位移检测装置。
本申请实施例的第三方面,提供一种3D打印设备,包括本申请第二方面所述的位移控制系统。
本申请提供的一种位移检测装置、位移控制系统及3D打印设备,通过位移探测单元用于对运动单元的移动进行探测,并输出检测信息;采集单元分别与所述位移探测单元和用于驱动所述运动单元的驱动控制单元连接,用以采集所述检测信息,根据所述检测信息获得以第一计数单位计数的第一位置值,并在所述检测信息的采集周期内采集所述驱动控制单元输出的用于驱动所述运动单元的驱动信息,根据所述驱动信息获得以第二计数单位计数的第二位置值;数据处理单元与所述采集单元连接,用以接收所述第一位置值和所述第二位置值,并根据所述第一位置值和所述第二位置值,获得所述运动单元的当前位置值;其中,第一计数单位与位移探测单元的探测精度相对应,第二计数单位与运动单元的定位精度相对应,且位移探测单元的探测精度小于运动单元的定位精度,从而以低精度的位移探测单元实现高精度的当前位置值探测,还提高了位置探测的准确性和可靠性。
附图说明
图1是本申请实施例提供的一种应用场景示意图;
图2是本申请实施例提供的一种位移检测装置结构示意图;
图3是本申请实施例提供的另一种位移检测装置结构示意图;
图4是本申请实施例提供的另一种应用场景示意图;
图5是本申请实施例提供的再一种位移检测装置结构示意图;
图6是本申请实施例提供的又一种位移检测装置结构示意图;
图7是本申请实施例提供的一种位移控制系统结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。
应当理解,在本申请中,“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
应当理解,在本申请中,“与A对应的B”、“与A相对应的B”、“A与B相对应”或者“B与A相对应”,表示B与A相关联,根据A可以确定B。根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其他信息确定B。A与B的匹配,是A与B的相似度大于或等于预设的阈值。
取决于语境,如在此所使用的“若”可以被解释成为“在……时”或“当……时”或“响应于确定”或“响应于检测”。
应当理解,在本申请中,“连接”一词在此包含任何直接及间接的电气连接手段,因此,若文中描述第一元件连接第二元件,则可以理解为该第一元件可直接电气连接该第二元件,或者透过其他元件或连接手段间接地电气连接该第二元件。
应当理解,在本申请中,“计数单位”是指数值的最小变化距离。不同计数单位体现了不同精度。例如2cm是以1cm为计数单位,但2.00cm则是以0.01cm为计数单位,可见,2.00cm的精度明显是高于2cm的,但两者的数值相等。
应当理解,在本申请中,“正方向”和“负方向”是表述运动单元的两个移动方向相反的反向,当将其中一个移动方向定义为正方向时,另一个就是负方向;为了便于简单清楚的描述本申请的技术方案,本申请实施例中将“正方向”定义为标尺刻度逐渐增大的方向,“负方向”定义为标尺刻度逐渐减小的方向。
下面以具体地实施例对本申请的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例 不再赘述。
为了提高3D打印设备的打印精准性,需要提高对字车与支撑平台之间相对运动的检测精度,可以理解为使用更小的计数单位进行当前位置值的计数测量。现有技术中通常是采用高精度的位移传感器作为检测单元,但是高精度的位移传感器通常不仅安装难度大,而且高精度的位移传感器相比低精度的位移传感器购买成本高,由此造成了3D打印设备的制造成本高的问题。
为了解决现有技术中的上述问题,本申请实施例提供了一种位移检测装置,在采用低精度的位移探测单元的情况下,通过对硬件结构、信号处理方法的改进,使得对运动单元当前位置值的检测精度能达到或近似达到其驱动控制单元的精度,从而以低精度的位移探测单元实现高精度的当前位置值探测,还提高了位置探测的准确性和可靠性。
参见图1,是本申请实施例提供的一种应用场景示意图。如图1所示,位移探测单元10对运动单元40的当前位置值进行检测,而运动单元40在驱动控制单元50的控制下沿图1所示的行程来回移动。运动单元40停留位置指示的标尺数值即为该运动单元40的当前位置值。图1所示行程中起点为标尺数值0的位置,终点为标尺数值6的位置。在图1所示的标尺上,位移探测单元10只能在运动单元40经过标有数值1、2、3、4、5、6的位置上检测到运动单元40有移动,而在两个数值之间则受到其精度的限制而无法检测到运动单元40的移动。例如运动单元40在超过标尺数值1而未到达标尺数值2的距离中移动,位移探测单元10的检测结果是该运动单元40停留在标尺数值1的位置。为了提高位置检测精度,本申请引入采集单元20和数据处理单元30,结合驱动控制单元50输出的驱动信号对运动单元40的当前位置值进行检测。
参见图2,是本申请实施例提供的一种位移检测装置结构示意图。如图2所示的位移检测装置中,主要包括:位移探测单元10、采集单元20、数据处理单元30。
其中,位移探测单元10用于对运动单元40的移动进行探测,并输出检测信息。检测信息的计数单位由位移探测单元10的探测精度决定,例如,位移探测单元10的探测精度是0.01cm,那么检测信息对应的计数单位就是0.01cm,即以0.01cm累计正计数或累计负计数。在一些实施例中,检测信息 可以是以电信号的脉冲数、电信号的高电平数、电信号的低电平数、电信号的上升沿数、电信号的下降沿数等信号特征来指示。例如,在位移探测单元10的探测精度为1cm的实施例中,位移探测单元10检测到运动单元40移动1cm,则输出一个脉冲作为检测信息。
采集单元20分别与所述位移探测单元10和用于驱动所述运动单元40的驱动控制单元50连接,用以采集所述检测信息,根据所述检测信息获得以第一计数单位计数的第一位置值,并在所述检测信息的采集周期内采集所述驱动控制单元50输出的用于驱动所述运动单元40的驱动信息,根据所述驱动信息获得以第二计数单位计数的第二位置值。
例如,采集单元20的第一输入端连接至所述位移探测单元10的输出端,以采集检测信息;采集单元20的第二输入端连接至所述驱动控制单元50的输出端,以采集驱动信息。其中,检测信息例如为脉冲数(例如1),那么第一位置值可以理解为脉冲数对应的距离(例如1cm)。采集单元20对检测信息和驱动信息的采集,可以是以读取信息的方式采集,也可以是以接收信息的方式采集,在此不做限定。
检测信息的采集周期可以理解为位移探测单元10连续输出两次检测信息之间的间隔时长,或者理解为采集单元20连续接收到两次检测信息之间的间隔时长。例如驱动信息为脉冲信号的脉冲数,那么,在所述检测信息的采集周期内采集所述驱动控制单元50输出的用于驱动所述运动单元40的驱动信息,具体可以理解为,在采集到一个检测信息时从0开始采集驱动信息累计脉冲数,并且在下一个检测信息来临之前一直持续采集所述驱动信息并累计脉冲数,直到当下一个检测信息到达时,则重新从0开始采集驱动信息累计脉冲数。采集单元20采集的驱动信息可以理解为,与驱动控制单元50同时输出给运动单元40的驱动信息一致,其中,运动单元40响应一个驱动信息而移动一个第二计数单位指示的距离。例如驱动信息为脉冲信号的脉冲数,那么驱动控制单元50输出一个脉冲,运动单元40响应这个脉冲而从原点坐标开始正向移动0.1cm的距离,同时,采集单元20获取到第二位置值为0.1cm。
数据处理单元30与所述采集单元20连接,用以接收所述第一位置值和所述第二位置值,并根据所述第一位置值和所述第二位置值,获得所述运动单元40的当前位置值。其中,所述第一计数单位与所述位移探测单元10的 探测精度相对应,所述第二计数单位与所述运动单元40的定位精度相对应,且所述位移探测单元10的探测精度小于所述运动单元40的定位精度。
在一些实施例中,数据处理单元30可以将第一位置值和第二位置值之和作为运动单元40的当前位置值。例如,第一位置值为0cm,第二位置值为0.1cm,那么运动单元40的当前位置值为0.1cm(参见图1示例)。数据处理单元30获得当前位置值之后,可以将当前位置值发送给驱动控制单元50,由驱动控制单元50将当前位置值与目标位置进行比较,从而确定输出的驱动信息。例如当驱动控制单元50比较发现运动单元40的当前位置值还未达到目标位置,则继续发出驱动信息驱动该运动单元40继续移动,直至该运动单元40到达目标位置后,停止输出驱动信息。
由于运动单元40是响应驱动控制单元50的驱动信息而移动,驱动控制单元50每输出一次驱动信息,就对应运动单元40移动一歩。可见,根据驱动信息确定的第二位置值的第二计数单位,即是运动单元40的最小移动距离,运动单元40的定位精度也就是驱动控制单元50对运动单元40的驱动精度。而对精度较低的所述位移探测单元10而言,其能探测到的最小移动距离通常大于运动单元40的最小移动距离(即位移探测单元10的探测精度小于运动单元40的定位精度),因此,如果在以检测信息对应的第一位置值没有变化的期间,以驱动信息对应的第二位置值进行探测精度的补偿,可以将对当前位置值的检测精度提高到与驱动控制单元50的精度一致。
而且,通过采集单元20在所述检测信息的采集周期内采集驱动信息,并根据所述驱动信息获得以第二计数单位计数的第二位置值,可以将第二位置值的采集限制在一个检测信息的采集周期内,并在下一个检测信息的采集周期中重新采集驱动信息,降低了长时间连续信息采集可能引入的误差,提高了信息采集的精确性。
本实施例提供的一种位移检测装置,通过位移探测单元用于对运动单元40的移动进行探测,并输出检测信息;采集单元分别与所述位移探测单元和用于驱动所述运动单元的驱动控制单元连接,用以采集所述检测信息,根据所述检测信息获得以第一计数单位计数的第一位置值,并在所述检测信息的采集周期内采集所述驱动控制单元输出的用于驱动所述运动单元的驱动信息,根据所述驱动信息获得以第二计数单位计数的第二位置值;数据处理单 元与所述采集单元连接,用以接收所述第一位置值和所述第二位置值,并根据所述第一位置值和所述第二位置值,获得所述运动单元的当前位置值;其中,所述第一计数单位与所述位移探测单元的探测精度相对应,所述第二计数单位与所述运动单元的定位精度相对应,且所述位移探测单元的探测精度小于所述运动单元的定位精度,从而以低精度的位移探测单元实现高精度的当前位置值探测,还提高了位置探测的准确性和可靠性。
在一些实施例中,采集单元20可以是包括独立的两个部分,参见图3,是本申请实施例提供的另一种位移检测装置结构示意图。如图3所示的位移检测装置中,采集单元20包括:第一采集子单元21、第二采集子单元22。
其中,第一采集子单元21与所述位移探测单元10连接,用以采集所述检测信息,并根据所述检测信息获得以第一计数单位计数的第一位置值。例如,第一采集子单元21的输入端与位移探测单元10的输出端连接,用以采集检测信息;第一采集子单元21的输出端与数据处理单元30的第一输入端连接,用以向数据处理单元30输出第一位置值。
第二采集子单元22与所述位移探测单元10和用于驱动所述运动单元40的驱动控制单元50连接,用以采集所述检测信息,并在所述检测信息的采集周期内采集所述驱动控制单元50输出的用于驱动所述运动单元40的驱动信息,根据所述驱动信息获得以第二计数单位计数的第二位置值。例如,第二采集子单元22的初始化使能端与位移探测单元10的输出端连接,用以采集检测信息并初始化所述第二采集子单元22已采集的所述驱动信息;第二采集子单元22的输入端与驱动控制单元50的输出端连接,用以采集驱动信息;第二采集子单元22的输出端与数据处理单元30的第二输入端连接,用以向数据处理单元30输出第二位置值。
相应地,所述数据处理单元30与所述第一采集子单元21和所述第二采集子单元22连接,用以从所述第一采集子单元21接收所述第一位置值,以及从所述第二采集子单元22接收所述第二位置值。其中,数据处理单元30例如是以第一输入端与第一采集子单元21相连,以第二输入端与第二采集子单元22相连。
在图3所示实施例的基础上,第一采集子单元21和第二采集子单元22可以有多种实现方式。在一些实施例中,所述第一采集子单元21,用于根据 所述第一计数单位和所述检测信息指示的计数,确定所述第一位置值。而对第一位置值的确定,还可以引入第一初始值的方案。例如,第一采集子单元21用于累计所述检测信息指示的计数作为第一累计计数,并将所述第一计数单位和所述第一累计计数的乘积作为第一累计位置值,且将预设的第一初始值和所述第一累计位置值之和作为所述第一位置值。
其中,所述第一采集子单元21,还用于从所述位移探测单元10采集所述运动单元的运动方向信息,当根据所述运动方向信息确定所述运动单元40朝正方向移动时,以正计数方式累计所述检测信息指示的计数得到所述第一累计计数;当根据所述运动方向信息确定所述运动单元40朝负方向移动时,以负计数方式累计所述检测信息指示的计数得到所述第一累计计数。例如,运动单元40从起点朝正方向移动至图1中标尺数值1指示的位置时,第一采集子单元21接收到检测信息指示的第一个计数,那么,第一初始值为0,第一累计计数为1,第一累计位置值为1cm×1=1cm,第一位置值为0cm+1cm=1cm;继续朝正方向移动至图1中标尺数值2指示的位置时,第一采集子单元21接收到检测信息指示的第二个计数,那么,第一初始值为0cm,第一累计计数为1+1=2,第一累计位置值为1cm×2=2cm,第一位置值为0cm+2cm=2cm。又例如,运动单元40从终点返回的过程中,朝负方向移动至图1中标尺数值6指示的位置时,第一采集子单元21接收到检测信息指示的第七个计数,那么,第一初始值为0cm,第一累计计数为1+1+1+1+1+1-1=5,第一累计位置值为1cm×5=5cm,第一位置值为0cm+5cm=5cm;运动单元40继续朝负方向移动至图1中标尺数值5指示的位置时,第一采集子单元21接收到检测信息指示的第八个计数,第一初始值为0cm,第一累计计数为1+1+1+1+1+1-1-1=4,第一累计位置值为1cm×4=4cm,第一位置值为0cm+4cm=4cm。
所述第二采集子单元22,用于在采集到所述检测信息时,初始化已采集的所述驱动信息,并在所述检测信息的采集周期内根据所述第二计数单位和所述驱动信息指示的计数,确定所述第二位置值。对于第二位置值的确定,可以引入第二初始值的方案。例如,第二采集子单元22用于在采集到所述检测信息指示的一个计数时,初始化所述第二采集子单元22已累计的所述驱动信息指示的计数,并在所述检测信息的采集周期内,重新累计所述驱动信息 指示的计数作为第二累计计数,且将所述第二计数单位和所述第二累计计数的乘积,作为第二累计位置值,并将预设的第二初始值和所述第二累计位置值之和作为所述第二位置值。
其中,所述第二采集子单元22,还用于从所述驱动控制单元50采集所述运动单元40的运动方向信息,当根据所述运动方向信息确定所述运动单元40朝正方向移动时,以正计数方式累计所述驱动信息指示的计数得到所述第二累计计数;当根据所述运动方向信息确定所述运动单元40朝负方向移动时,以负计数方式累计所述驱动信息指示的计数得到所述第二累计计数;例如运动单元40从图1中标尺数值1指示的位置朝正方向移动了0.1cm时,第二采集子单元22采集到驱动信息指示的第一个计数,正向初始值为0cm,第二累计计数为1,第二累计位置值为0.1cm×1=0.1cm,第二位置值为0cm+0.1cm=0.1cm;继续朝正方向移动0.1cm时,第二采集子单元22采集到驱动信息指示的第二个计数,正向初始值为0cm,第二累计计数为2,第二累计位置值为0.1cm×2=0.2cm,则第二位置值为0cm+0.2cm=0.2cm。
又例如,运动单元40从图1中标尺数值2指示的位置朝负方向移动了0.1cm时,第二采集子单元22采集到一次检测信息,第二位置值被初始化为负向初始值0.9cm;继续朝负方向移动了0.1cm时,第二采集子单元22在当前检测信息的采集周期中采集到驱动信息指示的第一个计数,第二累计计数为-1,负向初始值为0.9cm,第二累计位置值为0.1cm×(-1)=-0.1cm,则第二位置值为0.9cm-0.1cm=0.8cm。
在上述实施例中,所述数据处理单元30,用于根据所述第一位置值和所述第二位置值,确定所述运动单元40的当前位置值。
在一些实施例中,第一位置值是第一初始值与第一累计位置值之和,第二位置值是第二初始值与第二累计位置值之和,运动单元40的当前位置值是第一位置值与第二位置值之和。
例如,假设运动单元40从起点朝正方向移动至图1中标尺数值1指示的位置时,第一采集子单元21和第二采集子单元22均采集到一次检测信息,第一初始值为0cm,第一累计位置值为1cm,则第一采集子单元21输出的第一位置值为1cm。与此同时,第二采集子单元22的第二初始值被初始化为0cm,即第二位置值为0cm,此时运动单元40的当前位置值为1.0cm。运动 单元40继续朝正方向移动0.1cm时,位移探测单元10没有新的检测信息产生,第一位置值保持为1cm,但第二采集子单元20采集到驱动信息指示的第一个计数,第二初始值为0cm,第二累计计数为1,第二累计位置值为0.1cm,即第二位置值为0.1cm,由此得到运动单元40的当前位置值为1.1cm。
在一些实施例中,数据处理单元30还可以通过设置第二位置值的采集阈值,进一步降低检测误差。
例如,当所述运动单元朝正方向移动时,数据处理单元30可以用于在确定从所述第二采集子单元22接收到的所述第二位置值大于预设的第一采集阈值时,将所述第一位置值与所述第一采集阈值之和,确定为所述运动单元40的当前位置值;在确定从所述第二采集子单元22接收到的所述第二位置值小于或等于预设的第一采集阈值时,将所述第一位置值与所述第二位置值之和,确定为所述运动单元40的当前位置值。具体例如,预设的第一采集阈值是0.9cm,那么,假如在一个检测信息的采集周期中,第二采集子单元22采集到10次驱动信息(采集到第10次驱动信息时还未采集到新的检测信息),输出的第二位置值是1.0cm,可能是出现了误差,例如运动单元40丢失了一次驱动信息导致少移动了一步。此时,数据处理单元30将第二位置值直接替换为第一采集阈值0.9cm,并以0.9cm与第一位置值进行计算得到当前位置值。其中,预设的第一采集阈值可以是上述实施例中的负向初始值,但本实施例不限于此。由此,可以避免出现明显不合理的检测结果,进一步提高了运动单元40正向运动过程中检测的准确性。
又例如,当所述运动单元朝负方向移动时,所述数据处理单元30可以用于在确定从所述第二采集子单元接收到的所述第二位置值小于预设的第二采集阈值时,将所述第一位置值与所述第二采集阈值之和,确定为所述运动单元的当前位置值;在确定从所述第二采集子单元接收到的所述第二位置值大于或等于预设的第二采集阈值时,将所述第一位置值与所述第二位置值之和,确定为所述运动单元的当前位置值。具体例如,预设的第二采集阈值是0.0cm,那么,假如在一个检测信息的采集周期中,第二采集子单元22采集到10次驱动信息(采集到第10次驱动信息时还未采集到新的检测信息),输出的第二位置值是-1.0cm,可能是出现了误差,例如运动单元40丢失了一次驱动信息导致少移动了一步。此时,数据处理单元30将第二位置值直接替换为第二 采集阈值0.0cm,并以0.0cm与第一位置值进行计算得到当前位置值。其中,预设的第一采集阈值可以是上述实施例中的正向初始值,但本实施例不限于此。由此,可以避免出现明显不合理的检测结果,进一步提高了运动单元40负向运动过程中检测的准确性。
在上述实施例的基础上,数据处理单元30,还可以具有单位换算功能。例如数据处理单元30用于在所述根据所述第一位置值和所述第二位置值,获得所述运动单元40的当前位置值之后,根据预设位置单位对所述当前位置值进行单位换算,获取与所述预设位置单位对应的位置值。例如,采集单元20以厘米(cm)为位置单位进行第一位置值和第二位置值的计算,当前位置值也可以是以厘米为位置单位得到2cm的结果,但用户需要的是以毫米(mm)为距离单位的输出,那么数据处理单元30则将2cm换算为20mm后输出。
在上述实施例的基础上,运动单元40的定位精度是位移探测单元10的探测精度的N倍,其中,N为大于或等于2的整数。在精度的比较中,精度越高,其数值越小,因此在A的精度是B的精度的N倍时,应当理解为B/A=N。例如图1所示的示例中,位移探测单元10的探测精度是1cm,运动单元40的定位精度是0.1cm,那么,运动单元40的定位精度是位移探测单元10的探测精度的10倍。参见图4,是本申请实施例提供的另一种应用场景示意图。在图4所示的场景中,位移探测单元10的探测精度是1cm,运动单元40的定位精度是0.2cm,那么,运动单元40的定位精度是位移探测单元10的探测精度的5倍。可见,通过位移探测单元10的探测精度与运动单元40的定位精度的结合,将位移探测单元10的检测精度提高了N倍。
在上述实施例的基础上,在一些实施例中,所述检测信息可以是采用检测脉冲信号的方式,同样的,所述驱动信息也可以是驱动脉冲信号。那么,可以理解为,采集单元20用以采集所述检测脉冲信号的脉冲数,根据所述检测脉冲信号的脉冲数获得以第一计数单位计数的第一位置值,并在所述检测脉冲信号的脉冲周期内,采集所述驱动脉冲信号的脉冲数,根据所述驱动脉冲信号的脉冲数获得以第二计数单位计数的第二位置值。采集单元20中的第一采集子单元21、第二采集子单元22可以理解为包含有计数器的单元,从而实现对脉冲数的累计。如上述实施例中所述,检测信息和驱动信息不局限于脉冲信号的形式,但其实现的原理和效果类似,在此不再赘述。
在上述实施例的基础上,参见图5,是本申请实施例提供的再一种位移检测装置结构示意图。如图5所示的位移检测装置,还可以包括:控制器60。
所述控制器60与所述第一采集子单元21和所述第二采集子单元22连接,用以在所述第一采集子单元21开始采集所述检测信息之前向所述第一采集子单元21输出坐标原点值作为所述第一初始值,以及,在所述初始化所述第二采集子单元22累计的所述驱动信息指示的计数之前或同时,向所述第二采集子单元22输出正向初始值或负向初始值作为所述第二初始值
图5中的控制器60,具体可以是对位移检测装置进行整体控制的器件,例如可以向驱动控制单元50发送移动指令,以使得驱动控制单元50根据该移动指令生成驱动信息。具体地,移动指令可以包括运动单元40的移动速度、运动单元40的加减速曲线、运动单元40的运动方向和运动单元40的目标位置等信息。上述实施例的第一初始值和第二初始值也可以由用户输入并保存在控制器60中,然后由控制器60发送给第一采集子单元21、第二采集子单元22。可选地,运动单元40的运动方向也可以由控制器60发送给第一采集子单元21、第二采集子单元22。可选地,控制器60还可以向数据处理单元30发送预设的距离单位,以使得数据处理单元30根据预设的距离单位对当前位置值进行单位换算。
为了减轻控制器60的负担,参见图6,是本申请实施例提供的又一种位移检测装置结构示意图。如图6所示的位移检测装置,可以包括:控制器60和选择器70。
如图6所示,所述控制器60与所述第一采集子单元21连接,用以在所述第一采集子单元21开始采集所述检测信息之前向所述第一采集子单元21输出坐标原点值作为所述第一初始值,以及,所述控制器60与所述选择器70的输入端连接,用以向所述选择器70输出正向初始值和负向初始值;
所述选择器70的输入端还与所述驱动控制单元50连接,所述选择器70的输出端与所述第二采集子单元22连接,用以接收所述正向初始值和负向初始值,从所述驱动控制单元50接收所述运动单元40的运动方向信息根据所述运动方向信息,选择将所述正向初始值或者所述负向初始值作为所述第二初始值,输出至所述第二采集子单元22。
在图6所示的实施例中,可以理解为,将正向初始值和负向初始值都存 储在选择器70中,由选择器70根据运动单元40的移动方向而向第二采集子单元22配置第二初始值,无需控制器60的介入,从而减小了控制器60的运行负担,也避免了由控制器60出错而导致的第二初始值错误配置问题。
参见图7,是本申请实施例提供的一种位移控制系统结构示意图。如图7所示的位移控制系统包括:运动单元40、驱动控制单元50以及上述各种实施例中任一所述的位移检测装置。
在一些实施例中,运动单元40可以是单独的一个可移动的结构(参见图2),也可以是包含运动部件41和伺服驱动单元42的结构(参见图3),在此不做限定。应当理解地,如果是在运动单元40包含运动部件41和伺服驱动单元42的实施例中,对运动单元40的当前位置值的检测,实际上是对运动部件41的当前位置值的检测,伺服驱动单元42可以是固定不动的,也可以是跟随运动部件41一起移动的。其中,伺服驱动单元42可以进一步包括驱动器和电机(图中未示出)。具体的,电机可以是伺服电机和步进电机中的至少一种。运动单元40还可以包括运动导轨等机械结构,伺服驱动单元42驱动所述运动部件41在运动导轨上移动。或者,运动单元40可以包括机械传动机构和运动导轨,伺服驱动单元42驱动机械传动机构带动运动部件41在移动导轨上移动。
本实施例提供的位移控制系统,通过位移检测装置中位移探测单元用于对运动单元的移动进行探测,并输出检测信息;采集单元分别与所述位移探测单元和用于驱动所述运动单元的驱动控制单元连接,用以采集所述检测信息,根据所述检测信息获得以第一计数单位计数的第一位置值,并在所述检测信息的采集周期内采集所述驱动控制单元输出的用于驱动所述运动单元的驱动信息,根据所述驱动信息获得以第二计数单位计数的第二位置值;数据处理单元与所述采集单元连接,用以接收所述第一位置值和所述第二位置值,并根据所述第一位置值和所述第二位置值,获得所述运动单元的当前位置值;其中,所述第一计数单位与所述位移探测单元的探测精度相对应,所述第二计数单位与所述运动单元的定位精度相对应,且所述位移探测单元的探测精度小于所述运动单元的定位精度,从而以低精度的位移探测单元实现高精度的当前位置值探测,还提高了位置探测的准确性和可靠性。
在上述实施例的基础上,本申请实施例还提供了一种3D打印设备,包 括图7所示的位移控制系统。
本实施例提供的3D打印设备,通过位移控制系统中位移探测单元10用于对运动单元的移动进行探测,并输出检测信息;采集单元分别与所述位移探测单元和用于驱动所述运动单元的驱动控制单元连接,用以采集所述检测信息,根据所述检测信息获得以第一计数单位计数的第一位置值,并在所述检测信息的采集周期内采集所述驱动控制单元输出的用于驱动所述运动单元的驱动信息,根据所述驱动信息获得以第二计数单位计数的第二位置值;数据处理单元与所述采集单元连接,用以接收所述第一位置值和所述第二位置值,并根据所述第一位置值和所述第二位置值,获得所述运动单元的当前位置值;其中,所述第一计数单位与所述位移探测单元的探测精度相对应,所述第二计数单位与所述运动单元的定位精度相对应,且所述位移探测单元的探测精度小于所述运动单元的定位精度,从而以低精度的位移探测单元实现高精度的当前位置值探测,还提高了3D打印中位置探测的准确性和可靠性。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (13)

  1. 一种位移检测装置,其特征在于,包括:位移探测单元、采集单元、数据处理单元;
    所述位移探测单元用于对运动单元的移动进行探测,并输出检测信息;
    所述采集单元分别与所述位移探测单元和用于驱动所述运动单元的驱动控制单元连接,用以采集所述检测信息,根据所述检测信息获得以第一计数单位计数的第一位置值,并在所述检测信息的采集周期内采集所述驱动控制单元输出的用于驱动所述运动单元的驱动信息,根据所述驱动信息获得以第二计数单位计数的第二位置值;
    所述数据处理单元与所述采集单元连接,用以接收所述第一位置值和所述第二位置值,并根据所述第一位置值和所述第二位置值,获得所述运动单元的当前位置值;
    其中,所述第一计数单位与所述位移探测单元的探测精度相对应,所述第二计数单位与所述运动单元的定位精度相对应,且所述位移探测单元的探测精度小于所述运动单元的定位精度。
  2. 根据权利要求1所述的装置,其特征在于,所述采集单元包括:第一采集子单元、第二采集子单元;
    所述第一采集子单元与所述位移探测单元连接,用以采集所述检测信息,并根据所述检测信息获得以第一计数单位计数的第一位置值;
    所述第二采集子单元与所述位移探测单元和用于驱动所述运动单元的驱动控制单元连接,用以采集所述检测信息,并在所述检测信息的采集周期内采集所述驱动控制单元输出的用于驱动所述运动单元的驱动信息,根据所述驱动信息获得以第二计数单位计数的第二位置值;
    相应地,所述数据处理单元与所述第一采集子单元和所述第二采集子单元连接,用以从所述第一采集子单元接收所述第一位置值,以及从所述第二采集子单元接收所述第二位置值。
  3. 根据权利要求2所述的装置,其特征在于,
    所述第一采集子单元,用于根据所述第一计数单位和所述检测信息指示的计数,确定所述第一位置值;
    所述第二采集子单元,用于在采集到所述检测信息时,初始化已采集的所述驱动信息,并在所述检测信息的采集周期内根据所述第二计数单位和所述驱动信息指示的计数,确定所述第二位置值;
    所述数据处理单元,用于根据所述第一位置值和所述第二位置值,确定所述运动单元的当前位置值。
  4. 根据权利要求3所述的装置,其特征在于,
    当所述运动单元朝正方向移动时,所述数据处理单元,用于在确定从所述第二采集子单元接收到的所述第二位置值大于预设的第一采集阈值时,将所述第一位置值与所述第一采集阈值之和,确定为所述运动单元的当前位置值;在确定从所述第二采集子单元接收到的所述第二位置值小于或等于预设的第一采集阈值时,将所述第一位置值与所述第二位置值之和,确定为所述运动单元的当前位置值;
    当所述运动单元朝负方向移动时,所述数据处理单元,用于在确定从所述第二采集子单元接收到的所述第二位置值小于预设的第二采集阈值时,将所述第一位置值与所述第二采集阈值之和,确定为所述运动单元的当前位置值;在确定从所述第二采集子单元接收到的所述第二位置值大于或等于预设的第二采集阈值时,将所述第一位置值与所述第二位置值之和,确定为所述运动单元的当前位置值。
  5. 根据权利要求3所述的装置,其特征在于,
    所述第一采集子单元,用于累计所述检测信息指示的计数作为第一累计计数,并将所述第一计数单位和所述第一累计计数的乘积作为第一累计位置值,且将预设的第一初始值和所述第一累计位置值之和作为所述第一位置值;
    所述第二采集子单元,用于在采集到所述检测信息指示的一个计数时,初始化所述第二采集子单元已累计的所述驱动信息指示的计数,并在所述检测信息的采集周期内,重新累计所述驱动信息指示的计数作为第二累计计数,且将所述第二计数单位和所述第二累计计数的乘积,作为第二累计位置值,并将预设的第二初始值和所述第二累计位置值之和作为所述第二位置值。
  6. 根据权利要求5所述的装置,其特征在于,所述第一采集子单元,还用于从所述位移探测单元采集所述运动单元的运动方向信息,当根据所述运动方向信息确定所述运动单元朝正方向移动时,以正计数方式累计所述检测 信息指示的计数得到所述第一累计计数;当根据所述运动方向信息确定所述运动单元朝负方向移动时,以负计数方式累计所述检测信息指示的计数得到所述第一累计计数;
    所述第二采集子单元,还用于从所述驱动控制单元采集所述运动单元的运动方向信息,当根据所述运动方向信息确定所述运动单元朝正方向移动时,以正计数方式累计所述驱动信息指示的计数得到所述第二累计计数;当根据所述运动方向信息确定所述运动单元朝负方向移动时,以负计数方式累计所述驱动信息指示的计数得到所述第二累计计数。
  7. 根据权利要求1至6任一所述的装置,其特征在于,
    所述数据处理单元,还用于在所述根据所述第一位置值和所述第二位置值,获得所述运动单元的当前位置值之后,根据预设位置单位对所述当前位置值进行单位换算,获取与所述预设位置单位对应的位置值。
  8. 根据权利要求1至6任一所述的装置,其特征在于,所述运动单元的定位精度是所述位移探测单元的探测精度的N倍,其中,N为大于或等于2的整数。
  9. 根据权利要求1至6任一所述的装置,其特征在于,所述检测信息包括检测脉冲信号,所述驱动信息包括驱动脉冲信号;
    所述采集单元,用以采集所述检测脉冲信号的脉冲数,根据所述检测脉冲信号的脉冲数获得以第一计数单位计数的第一位置值,并在所述检测脉冲信号的脉冲周期内,采集所述驱动脉冲信号的脉冲数,根据所述驱动脉冲信号的脉冲数获得以第二计数单位计数的第二位置值。
  10. 根据权利要求5所述的装置,其特征在于,还包括:控制器;
    所述控制器与所述第一采集子单元和所述第二采集子单元连接,用以在所述第一采集子单元开始采集所述检测信息之前向所述第一采集子单元输出坐标原点值作为所述第一初始值,以及,在所述初始化所述第二采集子单元累计的所述驱动信息指示的计数之前或同时,向所述第二采集子单元输出正向初始值或负向初始值作为所述第二初始值。
  11. 根据权利要求5所述的装置,其特征在于,还包括:控制器和选择器;
    所述控制器与所述第一采集子单元连接,用以在所述第一采集子单元开 始采集所述检测信息之前向所述第一采集子单元输出坐标原点值作为所述第一初始值,以及,所述控制器与所述选择器的输入端连接,用以向所述选择器输出正向初始值和负向初始值;
    所述选择器的输入端还与所述驱动控制单元连接,所述选择器的输出端与所述第二采集子单元连接,用以从所述控制器接收所述正向初始值和负向初始值,从所述驱动控制单元接收所述运动单元的运动方向信息根据所述运动方向信息,选择将所述正向初始值或者所述负向初始值作为所述第二初始值,输出至所述第二采集子单元。
  12. 一种位移控制系统,其特征在于,包括:运动单元、驱动控制单元以及权利要求1至11任一所述的位移检测装置。
  13. 一种3D打印设备,其特征在于,包括权利要求12所述的位移控制系统。
PCT/CN2020/083149 2019-04-29 2020-04-03 位移检测装置、位移控制系统及3d打印设备 WO2020220928A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910356356.1 2019-04-29
CN201910356356.1A CN110308745B (zh) 2019-04-29 2019-04-29 位移检测装置、位移控制系统及3d打印设备

Publications (1)

Publication Number Publication Date
WO2020220928A1 true WO2020220928A1 (zh) 2020-11-05

Family

ID=68074879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/083149 WO2020220928A1 (zh) 2019-04-29 2020-04-03 位移检测装置、位移控制系统及3d打印设备

Country Status (2)

Country Link
CN (1) CN110308745B (zh)
WO (1) WO2020220928A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110308745B (zh) * 2019-04-29 2021-02-26 珠海赛纳三维科技有限公司 位移检测装置、位移控制系统及3d打印设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100516339C (zh) * 2003-02-21 2009-07-22 日星特殊精密株式会社 刺绣框位置控制装置及其方法
CN102087482A (zh) * 2010-12-27 2011-06-08 中国科学院光电技术研究所 光刻机工件台同步运动误差校正控制系统
US20130141736A1 (en) * 2011-12-01 2013-06-06 Mingwu Bai Control method and apparatus for positioning a moving object
US20140183346A1 (en) * 2012-12-27 2014-07-03 Canon Kabushiki Kaisha Position detection apparatus, drive control apparatus, and lens apparatus
CN107992109A (zh) * 2017-12-06 2018-05-04 深圳易能电气技术股份有限公司 全闭环定位控制系统及方法
CN110308745A (zh) * 2019-04-29 2019-10-08 珠海赛纳打印科技股份有限公司 位移检测装置、位移控制系统及3d打印设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100516339C (zh) * 2003-02-21 2009-07-22 日星特殊精密株式会社 刺绣框位置控制装置及其方法
CN102087482A (zh) * 2010-12-27 2011-06-08 中国科学院光电技术研究所 光刻机工件台同步运动误差校正控制系统
US20130141736A1 (en) * 2011-12-01 2013-06-06 Mingwu Bai Control method and apparatus for positioning a moving object
US20140183346A1 (en) * 2012-12-27 2014-07-03 Canon Kabushiki Kaisha Position detection apparatus, drive control apparatus, and lens apparatus
CN107992109A (zh) * 2017-12-06 2018-05-04 深圳易能电气技术股份有限公司 全闭环定位控制系统及方法
CN110308745A (zh) * 2019-04-29 2019-10-08 珠海赛纳打印科技股份有限公司 位移检测装置、位移控制系统及3d打印设备

Also Published As

Publication number Publication date
CN110308745B (zh) 2021-02-26
CN110308745A (zh) 2019-10-08

Similar Documents

Publication Publication Date Title
US10946681B2 (en) Printing control method and printing device
US7119323B1 (en) Error corrected optical navigation system
US20060187562A1 (en) Optical zoom system
WO2020220928A1 (zh) 位移检测装置、位移控制系统及3d打印设备
CN1169551A (zh) 自动控制串行打印机双向打印位置的装置和方法
CN106953579B (zh) 一种音圈电机位置运动控制方法
EP2730421A1 (en) Inkjet printing positioning device and control method thereof
US9310226B2 (en) Position detection apparatus, drive control apparatus, and lens apparatus
JP2022062885A5 (zh)
CN113960890A (zh) 一种激光成像设备中的运动组件控制方法及相关设备
CN106887990B (zh) 一种音圈电机位置运动控制装置
CN112071183B (zh) 一种多功能运动检测教学实验系统及控制方法
US20200182664A1 (en) Calibration method and device for proximity sensor
CN114885085A (zh) 一种基于磁栅尺的寻零精确定位方法
CN112650014B (zh) 投影设备调焦马达回程误差的计算方法及投影控制系统
CN201858960U (zh) 用于三维重建的图像信息采集器
CN203550950U (zh) 机械传动系统高频碰撞的超高速光电摄影系统测试装置
CN205453452U (zh) 一种消除步进电机累计误差的系统
CN102991159A (zh) 一种电机与打印机集成控制系统
CN212633268U (zh) 一种非接触式高速高精度对刀系统
CN108254127B (zh) 一种大变倍比变焦传感器质心动态控制装置及方法
CN109976389A (zh) 一种纠偏执行器控制系统及纠偏方法
CN210336934U (zh) 3d打印机移动控制装置
JPH0738971Y2 (ja) 位置決め装置
CN105467885B (zh) 全自动人体安全检测仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20798667

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 28.02.2022.)

122 Ep: pct application non-entry in european phase

Ref document number: 20798667

Country of ref document: EP

Kind code of ref document: A1