WO2020220690A1 - 白色光源、灯条及灯具 - Google Patents

白色光源、灯条及灯具 Download PDF

Info

Publication number
WO2020220690A1
WO2020220690A1 PCT/CN2019/124922 CN2019124922W WO2020220690A1 WO 2020220690 A1 WO2020220690 A1 WO 2020220690A1 CN 2019124922 W CN2019124922 W CN 2019124922W WO 2020220690 A1 WO2020220690 A1 WO 2020220690A1
Authority
WO
WIPO (PCT)
Prior art keywords
peak
light source
white light
width
wavelength range
Prior art date
Application number
PCT/CN2019/124922
Other languages
English (en)
French (fr)
Inventor
袁毅凯
章金惠
高晓宇
李进
唐国劲
李程
Original Assignee
佛山市国星光电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 佛山市国星光电股份有限公司 filed Critical 佛山市国星光电股份有限公司
Publication of WO2020220690A1 publication Critical patent/WO2020220690A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • F21V9/38Combination of two or more photoluminescent elements of different materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials

Definitions

  • the present invention relates to the technical field of light emitting devices, in particular to a white light source capable of emitting a spectrum similar to sunlight, and a light bar and a lamp using the LED lamp beads.
  • the technical solution provides a white light source, the spectrum of the white light source can be separated into at least three symmetrical spectral peaks through decomposition peaks, and the spectrum of the white light source is continuous, similar to the solar spectrum, and reduces the blue light hazard.
  • a white light source whose color temperature is selected from 2700K-6500K, and its relative spectral power distribution is taken as ⁇ ( ⁇ ).
  • is in the wavelength range of 420nm-660nm
  • the ⁇ ( ⁇ ) is decomposed into at least three symmetrical spectral peaks, the symmetrical spectral peaks are respectively P1, P2, P3, and the corresponding features are:
  • P1 peak wavelength range 600nm-660nm, half-peak width 90nm-140nm;
  • P2 peak wavelength range 500nm-550nm, half-peak width 60nm-110nm;
  • P3 peak wavelength range 420nm-480nm, half-peak width 30nm-80nm;
  • the ratio relationship between the peak intensity of P3 and the peak intensity of P1 is 1: (0.5-10), and the ratio relationship between the peak intensity of P3 and the peak intensity of P2 is 1: (0.5-5).
  • the symmetrical spectral peaks P1, P2, P3 can be further defined as:
  • the peak wavelength range of P1 is: 610nm-650nm, the half-peak width is 100nm-130nm;
  • the peak wavelength range of P2 is: 510nm-540nm, the half-peak width is 70nm-100nm;
  • the peak wavelength range of P3 is 430nm-470nm, and the half-peak width is 40nm-70nm.
  • the white light source is excited by a purple chip to emit light from a phosphor, and the phosphor is composed of blue powder (the main emission peak is at 430nm-470nm, the half-peak width is 20nm-60nm), and the bimodal blue-green powder (one of the main emission peaks is at 430nm- 460nm, half-peak width 20nm-60nm, another main emission peak at 480nm-580nm, half-peak width 60nm-120nm) and red powder (emission main peak at 600nm-700nm, half-peak width 80nm-120nm).
  • the main emission peak is at 430nm-470nm, the half-peak width is 20nm-60nm
  • the bimodal blue-green powder one of the main emission peaks is at 430nm- 460nm, half-peak width 20nm-60nm, another main emission peak at 480nm-580nm, half-peak width 60nm-120nm
  • red powder emission main peak
  • the blue powder contains Eu 2+ doped chlorophosphate or silicate, specifically Sr 5 (PO 4 ) 3 Cl:Eu 2+ , Ba 5 (PO 4 ) 3 Cl:Eu 2+ , BaAl 12 O 9 : Eu 2+ , RbNa 3 (Li 3 SiO 4 ) 4 : Eu 2+ or MgSr 3 Si 2 O 8 : Eu 2+ ;
  • the red powder contains nitride, sulfide or fluoride, specifically CaAlSiN 3 :Eu 2+ , (Ca 1-x Sr x )AlSiN 3 :Eu 2+ or CaS:Eu 2+ .
  • a light bar includes at least one white light source as described above, and a substrate for mounting and fixing the white light source.
  • the white light source or light bar provided above can be installed in the housing of the lamp and connected with other necessary circuit components to form the lamp.
  • the technical solution provides a white light source, which can emit a spectrum with small fluctuation range and excellent continuity in the wavelength range of 420nm-660nm, which is closer to the sun, and can provide users with good lighting effects and make it indoor Activities can also be similar to the look and feel of being outdoors.
  • FIG. 1 is a spectrum diagram of a white light source with a color temperature of 2700K prepared in Example 1;
  • Figure 2 is a diagram of the symmetrical spectral peaks of Figure 1;
  • Example 3 is a spectrum diagram of a white light source with a color temperature of 3000K prepared in Example 2;
  • Figure 4 is a diagram of the symmetrical spectral peaks of Figure 3;
  • Example 5 is a spectrum diagram of a white light source with a color temperature of 4000K prepared in Example 3;
  • Fig. 6 is a symmetrical spectral peak split diagram of Fig. 5;
  • FIG. 7 is a spectrum diagram of a white light source with a color temperature of 5000K prepared in Example 4.
  • FIG. 8 is a diagram of symmetrical spectral peaks of FIG. 7;
  • Example 9 is a white light source spectrum diagram of 6500K color temperature prepared in Example 5.
  • Fig. 10 is a diagram of the symmetrical spectral peaks of Fig. 9.
  • is in the wavelength range of 420nm-660nm
  • the ⁇ ( ⁇ ) is decomposed into at least three symmetrical spectral peaks,
  • the symmetrical spectral peaks are respectively P1, P2, P3, and the corresponding characteristics are:
  • the peak wavelength range of P1 is 600nm-660nm, and the half-peak width is 90nm-140nm;
  • the peak wavelength range of P2 is: 500nm-550nm, the half-peak width is 60nm-110nm;
  • the peak wavelength range of P3 is: 420nm-480nm, and the half-peak width is 30nm-80nm;
  • the abscissa of the coordinate system in the figure represents the wavelength
  • the vertical coordinate represents the relative intensity
  • the relative intensity of the vertical coordinate indicates the intensity corresponding to the peak wavelength of P1, P2, P3, that is, the peak intensity
  • the peak intensity of P3 is set as the reference intensity 1.
  • the ratio relationship between the peak intensity of P3 and the peak intensity of P1 It is 1: (0.5-10), and the ratio of the P3 peak intensity to the P2 peak intensity is 1: (0.5-5).
  • the symmetrical spectral peaks P1, P2, P3 can be further defined as:
  • the peak wavelength range of P1 is: 610nm-650nm, the half-peak width is 100nm-130nm;
  • the peak wavelength range of P2 is: 510nm-540nm, the half-peak width is 70nm-100nm;
  • the peak wavelength range of P3 is 430nm-470nm, and the half-peak width is 40nm-70nm.
  • the ⁇ ( ⁇ ) is decomposed into three symmetrical spectral peaks through the Gaussian function in the origin software.
  • the data corresponding to the spectrogram of the white light device or the spectrogram is imported into the origin software, and the spectrogram or the spectrogram synthesized from the imported data is passed through the Gaussian function and combined with the peak wavelength range (610nm- 650nm, 510nm-540nm, 430nm-470nm), in each peak wavelength range for multi-peak fitting, three Gaussian peaks (symmetrical spectral peaks) P1, P2, P3 can be separated, for example, at 610nm-650nm and 430nm Select the maximum peak point within -470nm, and select any point value from 525nm-535nm in the range of 510nm-540nm.
  • three Gaussian peaks (symmetrical spectral peaks) conforming to the characteristics of P1, P2 and P3 can be separated, for example, at
  • the white light source is excited by a 380nm-430nm chip to emit light from a phosphor powder composed of blue powder (the main emission peak is 430nm-470nm, the half-value width is 20nm-60nm), and the bimodal blue-green powder (one of the main emission peaks is At 430nm-460nm, half-value width 20nm-60nm, another main emission peak is 480nm-580nm, half-value width 60nm-120nm) and red powder (emission main peak is 600nm-700nm, half-value width 80nm-120nm).
  • the blue powder contains Eu 2+ doped chlorophosphate or silicate, specifically Sr 5 (PO 4 ) 3 Cl:Eu 2+ , Ba 5 (PO 4 ) 3 Cl:Eu 2+ , BaAl 12 O 9 : Eu 2+ , RbNa 3 (Li 3 SiO 4 ) 4 : Eu 2+ or MgSr 3 Si 2 O 8 : Eu 2+ ;
  • the red powder contains nitride, sulfide or fluoride, specifically CaAlSiN 3 :Eu 2+ , (Ca 1-x Sr x )AlSiN 3 :Eu 2+ or CaS:Eu 2+ .
  • the bimodal blue-green powder is modulated and provided by the phosphor manufacturer according to the required emission peak range and half-width data.
  • a light bar includes at least one white light source as described above, and a substrate for mounting and fixing the white light source.
  • the white light source or light bar provided above can be installed in the housing of the lamp and connected with other necessary circuit components to form the lamp.
  • the white light source is excited by the chip with the main emission peak at 380nm-430nm, and the phosphor is blue powder with the main emission peak at 430nm-470nm and the half-peak width 20nm-60nm, and one of the main emission peaks at 430nm-460nm, half-peak A double-peak blue-green powder with a width of 20nm-60nm, another emission peak at 480nm-580nm and a half-peak width of 60nm-120nm, and a red powder with the emission peak at 600nm-700nm and a half-peak width of 80nm-120nm.
  • Table 1 Show:
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 5 Blue powder 20% 26% 34% 42%
  • Bimodal Blue Green Powder 75% 70% 63% 55.5% 44.5%
  • Red powder 5% 4% 3% 2.5% 1.5%
  • a white light source with a color temperature of 2700K is made according to the composition of Example 1
  • a white light source with a color temperature of 3000K is made according to the composition of Example 2
  • a white light source with a color temperature of 4000K is made according to the composition of Example 3.
  • a white light source with a color temperature of 5000K was prepared according to the composition ratio
  • a white light source with a color temperature of 6500K was prepared according to the composition ratio of Example 5.
  • the spectrum of the white light source prepared in Example 1 is shown in FIG. 1, and the spectral power distribution in the wavelength range of 430nm-660nm is relatively connected, and there is no obvious loss, so its lighting effect is better.
  • the Gaussian function multi-peak fitting function of the Origin software select the maximum peak point in the range of 610nm-650nm and 430nm-470nm respectively, and select any point value in the range of 510nm-540nm from 525nm-535nm.
  • the multi-peak fitting can be used The spectrum of Figure 1 is decomposed into three symmetrical peaks, the peak wavelength ranges of these three symmetrical peaks are located within (610nm-650nm), (510nm-540nm) and (430nm-470nm) respectively.
  • P1 has a peak wavelength of 637nm and a half-value width of 108nm
  • P2 has a peak wavelength of 535nm and a half-value width of 75nm
  • P3 has a peak wavelength of 450nm and a half-value width of 74nm.
  • the peak wavelength relationship of each symmetrical peak is 8.6:3.4:1 in order.
  • the spectrum of the white light source prepared in Example 2 is shown in FIG. 3, and the spectral power distribution in the wavelength range of 430nm-660nm is relatively connected, and there is no obvious loss, so its lighting effect is better.
  • Decomposing the spectrum of Figure 3 into three symmetrical peaks the results are shown in Figure 4, P1 peak wavelength is 635nm, half-width 112nm; P2 peak wavelength is 525nm, half-width 92nm; P3 peak wavelength is 442nm, half-width 52nm. Taking the P3 peak wavelength as the benchmark, the peak wavelength relationship of each symmetrical spectral peak is 5.3:2.6:1 in order.
  • the spectrum of the white light source prepared in Example 3 is shown in FIG. 5, and the spectral power distribution in the wavelength range of 430nm-660nm is relatively connected, and there is no obvious loss, so its lighting effect is better.
  • Decomposing the spectrum of Figure 5 into three symmetrical spectral peaks the results are shown in Figure 6, P1 peak wavelength is 630nm, half-width 122nm; P2 peak wavelength is 532nm, half-width 77nm; P3 peak wavelength is 453nm, half-width 61nm. Taking the P3 peak wavelength as the reference, the peak wavelength relationship of each symmetrical spectral peak is 2.0:1.2:1.
  • the spectrum of the white light source prepared in Example 4 is shown in FIG. 7, and the spectral power distribution in the wavelength range of 430nm-650nm is relatively connected, and there is no obvious loss, so its lighting effect is better.
  • the spectrum of the white light source prepared in Example 5 is shown in Fig. 9. Although there is an obvious trough in the wavelength range of 475nm-520nm, this is because the color temperature of the white light source is 6500K, and the overall color is biased towards a cool tone.
  • the spectral power distribution in the wavelength range of 520nm-660nm is relatively connected, and there is no obvious loss, so the lighting effect is better.
  • Decomposing the spectrum of Figure 9 into three symmetrical peaks the results are shown in Figure 10, P1 peak wavelength 618nm, half-width 135nm; P2 peak wavelength 516nm, half-width 103nm; P3 peak wavelength 449nm, half-width 40nm. Taking the P3 peak wavelength as the reference, the peak wavelength relationship of each symmetrical spectral peak is 0.8:0.9:1 in order.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Led Device Packages (AREA)
  • Luminescent Compositions (AREA)

Abstract

一种白色光源、灯条及灯具,白色光源的相对光谱功率分布为Ф(λ),当λ为420nm-660nm的波长范围内,对称光谱峰分别为P1、P2、P3,对应特征为:P1峰值波长:600nm-660nm,半峰宽90nm-140nm;P2峰值波长:500nm-550nm,半峰宽60nm-110nm;P3峰值波长:420nm-480nm,半峰宽30nm-80nm。该白色光源能够发出波动幅度小、连续性优异的光谱,更为贴近太阳光,能够为用户提供良好的光照效果,使之在室内活动也能获得近似于在室外的观感。该白色光源可以安装于基板上,进而形成能够发出类太阳光的灯条。白色光源及灯条均可应用于灯具之中。

Description

白色光源、灯条及灯具
本申请要求申请号为201910356861.6,申请日为2019年04月29日,发明创造名称为“白色光源、灯条及灯具”的中国专利申请的优先权。
技术领域
本发明涉及发光装置技术领域,特别涉及一种能够发出与太阳光类似光谱的白色光源,以及应用该LED灯珠的灯条及灯具。
背景技术
随着人们对光品质要求的提升,越来越多的应用场合会对发光器件的光色提出更高要求。但目前市面上对于类太阳光的照明产品并没有统一的评价标准。部分号称类太阳光的产品为使其光谱能够整体尽可能贴近太阳光光谱,在440nm-460nm波长处会输出高强度的光谱能量,甚至会超出蓝光危害辐射曲线的范围;同时还在460nm-480nm波长具有明显的缺失,使光谱不连续。这些现有产品只能在500nm-620nm波长范围内与太阳光有较好的拟合度,所以实际上并不能成为“类太阳光”产品。
发明内容
本技术方案提供了一种白色光源,所述白色光源的光谱通过分解峰可以分出至少三个对称光谱峰,所述白色光源的光谱连续,类似于太阳光谱,并降低了蓝光危害。
本发明是通过以下技术方案实现的:一种白色光源,其色温选自2700K-6500K,取其相对光谱功率分布为Ф(λ),当λ为420nm-660nm的波长范围内,所述Ф(λ)至少分解为三个对称光谱峰,所述对称光谱峰分别为P1、P2、P3,对应特征为:
P1峰值波长范围:600nm-660nm,半峰宽90nm-140nm;
P2峰值波长范围:500nm-550nm,半峰宽60nm-110nm;
P3峰值波长范围:420nm-480nm,半峰宽30nm-80nm;
所述P3的峰值强度与P1的峰值强度的比值关系为1:(0.5-10),所述P3的峰值强度与P2的峰值强度的比值关系为1:(0.5-5)。
所述对称光谱峰P1、P2、P3可进一步限定为:
P1峰值波长范围为:610nm-650nm,半峰宽100nm-130nm;
P2峰值波长范围为:510nm-540nm,半峰宽70nm-100nm;
P3峰值波长范围为:430nm-470nm,半峰宽40nm-70nm。
进一步,所述白色光源由紫光芯片激发荧光粉发光,所述荧光粉由蓝粉(发射主峰在430nm-470nm、半峰宽20nm-60nm)、双峰蓝绿粉(其中一个发射主峰在430nm-460nm、半峰宽20nm-60nm,另一个发射主峰在480nm-580nm、半峰宽60nm-120nm)和红粉(发射主峰在600nm-700nm、半峰宽80nm-120nm)组成。其中,所述蓝粉含有Eu 2+掺杂的氯磷酸盐或硅酸盐,具体为Sr 5(PO 4) 3Cl:Eu 2+、Ba 5(PO 4) 3Cl:Eu 2+、BaAl 12O 9:Eu 2+、RbNa 3(Li 3SiO 4) 4:Eu 2+或MgSr 3Si 2O 8:Eu 2+;所述红粉含有氮化物、硫化物或氟化物,具体为CaAlSiN 3:Eu 2+、(Ca 1-xSr x)AlSiN 3:Eu 2+或CaS:Eu 2+
一种灯条,包括至少一个上述的白色光源,以及供白色光源安装固定的基板。
上述提供的白色光源或灯条可以安装于灯具的壳体内,并与其他必要的电路原件联接,组成灯具。
本技术方案提供了一种白色光源,其在420nm-660nm的波长范围内能够发出波动幅度小、连续性优异的光谱,更为贴近太阳光,能够为用户提供良好的光照效果,使之在室内活动也能获得近似于在室外的观感。
附图说明
图1是实施例1制得的2700K色温的白色光源光谱图;
图2是图1的对称光谱峰分峰图;
图3是实施例2制得的3000K色温的白色光源光谱图;
图4是图3的对称光谱峰分峰图;
图5是实施例3制得的4000K色温的白色光源光谱图;
图6是图5的对称光谱峰分峰图;
图7是实施例4制得的5000K色温的白色光源光谱图;
图8是图7的对称光谱峰分峰图;
图9是实施例5制得的6500K色温的白色光源光谱图;
图10是图9的对称光谱峰分峰图。
具体实施方式
下面通过具体实施方式结合附图对本发明作进一步详细说明。但本领域技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限定本发明的范围。实施例中未注明具体技 术或条件者,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
一种白色光源,其色温为2700K-6500K,取其相对光谱功率分布为Ф(λ),当λ为420nm-660nm的波长范围内,所述Ф(λ)至少分解为三个对称光谱峰,所述对称光谱峰分别为P1、P2、P3,对应特征为:
P1峰值波长范围为:600nm-660nm,半峰宽90nm-140nm;
P2峰值波长范围为:500nm-550nm,半峰宽60nm-110nm;
P3峰值波长范围为:420nm-480nm,半峰宽30nm-80nm;
以实施例1中的图2为例,图中坐标系的横坐标表示波长,竖坐标表示相对强度。本发明中通过竖坐标相对强度表示P1、P2、P3的峰值波长相对应的强度即峰值强度,将P3的峰值强度设定为参照强度1,所述P3的峰值强度与P1峰值强度的比值关系为1:(0.5-10),所述P3峰值强度与P2峰值强度的比值关系为1:(0.5-5)。
所述对称光谱峰P1、P2、P3可进一步限定为:
P1峰值波长范围为:610nm-650nm,半峰宽100nm-130nm;
P2峰值波长范围为:510nm-540nm,半峰宽70nm-100nm;
P3峰值波长范围为:430nm-470nm,半峰宽40nm-70nm。
在本实施例中是通过origin软件中的高斯函数将所述Ф(λ)分解为三个对称光谱峰。具体地,是将白光器件的光谱图或光谱图相对应的数据导入到origin软件中,在origin软件中对光谱图或对导入数据合成的光谱图通过高斯函数并结合各峰值波长范围(610nm-650nm,510nm-540nm,430nm-470nm),在各峰值波长范围内取值进行多峰拟合可以分出P1、P2、P3三个高斯峰(对称光谱峰),例如,在610nm-650nm及430nm-470nm内分别选定最大峰值点,在510nm-540nm范围内选定525nm-535nm中的任一点值,通过多峰拟合可得出符合P1、P2、P3特征三个高斯峰(对称光谱峰)。
进一步,所述白色光源由380nm-430nm的芯片激发荧光粉发光,所述荧光粉由蓝粉(发射主峰在430nm-470nm、半峰宽20nm-60nm)、双峰蓝绿粉(其中一个发射主峰在430nm-460nm、半峰宽20nm-60nm,另一个发射主峰在480nm-580nm、半峰宽60nm-120nm)和红粉(发射主峰在600nm-700nm、半峰宽80nm-120nm)组成。其中,所述蓝粉含有Eu 2+掺杂的氯磷酸盐或硅酸盐,具体为Sr 5(PO 4) 3Cl:Eu 2+、Ba 5(PO 4) 3Cl:Eu 2+、BaAl 12O 9:Eu 2+、RbNa 3(Li 3SiO 4) 4:Eu 2+或MgSr 3Si 2O 8:Eu 2+;所述红粉含有氮化物、硫化物或氟化物,具体为CaAlSiN 3:Eu 2+、(Ca 1-xSr x)AlSiN 3:Eu 2+或CaS:Eu 2+。所述双峰蓝绿粉由荧光粉生产厂家根据所需的发射峰范围及半峰宽数据调制提供。
一种灯条,包括至少一个上述的白色光源,以及供白色光源安装固定的基板。
上述提供的白色光源或灯条可以安装于灯具的壳体内,并与其他必要的电路原件联接,组成灯具。
实施例1~5
白色光源由发射主峰在380nm-430nm的芯片激发荧光粉发光,所述荧光粉为发射主峰在430nm-470nm、半峰宽20nm-60nm的蓝粉,以及其中一个发射主峰在430nm-460nm、半峰宽20nm-60nm,另一个发射主峰在480nm-580nm、半峰宽60nm-120nm的双峰蓝绿粉,和发射主峰在600nm-700nm、半峰宽80nm-120nm的红粉,具体配比如表1所示:
表1
荧光粉 实施例1 实施例2 实施例3 实施例4 实施例5
蓝粉 20% 26% 34% 42% 55%
双峰蓝绿粉 75% 70% 63% 55.5% 44.5%
红粉 5% 4% 3% 2.5% 1.5%
以实施例1的配比制成色温2700K的白色光源,以实施例2的配比制成色温3000K的白色光源,以实施例3的配比制成色温4000K的白色光源,以实施例4的配比制成色温5000K的白色光源,以实施例5的配比制成色温6500K的白色光源。分别测出各实施例(见图1、3、5、7、9)的光谱和对称光谱峰分峰图(见图2、4、6、8、10),且各实施例的对称光谱峰分峰参数如表2所示资料:
表2
Figure PCTCN2019124922-appb-000001
实施例1制得的白色光源光谱如图1所示,其430nm-660nm的波长范围内的光谱功率分布较为连接,没有出现明显的缺失,因此其光照效果较佳。通过origin软件的高斯函数多峰拟合功能在610nm-650nm及430nm-470nm内分别选定最大峰值点,在510nm-540nm范围内选定525nm-535nm中的任一点值,通过多峰拟合可将图1的光谱分解成3个对称峰,这3 个对称峰的峰值波长范围分别位于(610nm-650nm)、(510nm-540nm)和(430nm-470nm)之内。具体如图2所示,P1峰值波长637nm,半峰宽108nm;P2峰值波长535nm,半峰宽75nm;P3峰值波长450nm,半峰宽74nm。以P3峰值波长为基准,各个对称峰的峰值波长关系依次为8.6:3.4:1。
实施例2制得的白色光源光谱如图3所示,其430nm-660nm的波长范围内的光谱功率分布较为连接,没有出现明显的缺失,因此其光照效果较佳。将图3的光谱分解成3个对称光谱峰,结果如图4所示,P1峰值波长635nm,半峰宽112nm;P2峰值波长525nm,半峰宽92nm;P3峰值波长442nm,半峰宽52nm。以P3峰值波长为基准,各个对称光谱峰的峰值波长关系依次为5.3:2.6:1。
实施例3制得的白色光源光谱如图5所示,其430nm-660nm的波长范围内的光谱功率分布较为连接,没有出现明显的缺失,因此其光照效果较佳。将图5的光谱分解成3个对称光谱峰,结果如图6所示,P1峰值波长630nm,半峰宽122nm;P2峰值波长532nm,半峰宽77nm;P3峰值波长453nm,半峰宽61nm。以P3峰值波长为基准,各个对称光谱峰的峰值波长关系依次为2.0:1.2:1。
实施例4制得的白色光源光谱如图7所示,其430nm-650nm的波长范围内的光谱功率分布较为连接,没有出现明显的缺失,因此其光照效果较佳。将图7的光谱分解成3个对称光谱峰,结果如图8所示,P1峰值波长629nm,半峰宽118nm;P2峰值波长521nm,半峰宽94nm;P3峰值波长458nm,半峰宽74nm。以P3峰值波长为基准,各个对称光谱峰的峰值波长关系依次为1.3:1.1:1。
实施例5制得的白色光源光谱如图9所示,虽然其475nm-520nm的波长范围内出现了一个明显的波谷,但这是因为该白色光源的色温为6500K,整体偏向冷色调。而520nm-660nm的波长范围内的光谱功率分布较为连接,没有出现明显的缺失,因此其光照效果较佳。将图9的光谱分解成3个对称光谱峰,结果如图10所示,P1峰值波长618nm,半峰宽135nm;P2峰值波长516nm,半峰宽103nm;P3峰值波长449nm,半峰宽40nm。以P3峰值波长为基准,各个对称光谱峰的峰值波长关系依次为0.8:0.9:1。

Claims (8)

  1. 一种白色光源,其特征在于,包括:所述白色光源的相对光谱功率分布为Ф(λ),当λ为420nm-660nm的波长范围内,所述Ф(λ)至少分解为三个对称光谱峰,所述对称光谱峰分别为P1、P2、P3,对应特征为:
    P1峰值波长范围:600nm-660nm,半峰宽90nm-140nm;
    P2峰值波长范围:500nm-550nm,半峰宽60nm-110nm;
    P3峰值波长范围:420nm-480nm,半峰宽30nm-80nm;
    所述P3的峰值强度与P1的峰值强度的比值关系为1:(0.5-10),所述P3的峰值强度与P2的峰值强度的比值关系为1:(0.5-5);
    所述白色光源的色温选自2700K-6500K。
  2. 根据权利要求1所述的白色光源,其特征在于,所述对称光谱峰分别为P1、P2、P3,对应特征为:
    P1峰值波长范围:610nm-650nm,半峰宽100nm-130nm;
    P2峰值波长范围:510nm-540nm,半峰宽70nm-100nm;
    P3峰值波长范围:430nm-470nm,半峰宽40nm-70nm。
  3. 根据权利要求1或2所述的白色光源,其特征在于,所述白色光源由发射主峰在380nm-430nm的芯片激发荧光粉发光,所述荧光粉由发射主峰在430nm-470nm、半峰宽20nm-60nm的蓝粉,以及其中一个发射主峰在430nm-460nm、半峰宽20nm-60nm,另一个发射主峰在480nm-580nm、半峰宽60nm-120nm的双峰蓝绿粉,和发射主峰在600nm-700nm、半峰宽80nm-120nm的红粉组成。
  4. 根据权利要求3所述的白色光源,其特征在于,所述蓝粉含有Eu 2+掺杂的氯磷酸盐或硅酸盐;所述双峰蓝绿粉含有稀土磷铝酸盐或稀土磷硅酸盐;所述红粉为氮化物、硫化物或氟化物。
  5. 根据权利要求4所述的白色光源,其特征在于,所述蓝粉为Sr 5(PO 4) 3Cl:Eu 2+、Ba 5(PO 4) 3Cl:Eu 2+、BaAl 12O 9:Eu 2+、RbNa 3(Li 3SiO 4) 4:Eu 2+或MgSr 3Si 2O 8:Eu 2+
  6. 根据权利要求4所述的白色光源,其特征在于,所述红粉为CaAlSiN 3:Eu 2+、(Ca 1-xSr x)AlSiN 3:Eu 2+或CaS:Eu 2+
  7. 一种灯条,包括基板,其特征在于,所述基板上设有至少一个如权利要求1所述的白色光源。
  8. 一种灯具,包括壳体,其特征在于,所述壳体内安装有如权利要求1所述的白色光源或如权利要求7所述的灯条。
PCT/CN2019/124922 2019-04-29 2019-12-12 白色光源、灯条及灯具 WO2020220690A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910356861.6 2019-04-29
CN201910356861.6A CN110145724B (zh) 2019-04-29 2019-04-29 白色光源、灯条及灯具

Publications (1)

Publication Number Publication Date
WO2020220690A1 true WO2020220690A1 (zh) 2020-11-05

Family

ID=67593922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/124922 WO2020220690A1 (zh) 2019-04-29 2019-12-12 白色光源、灯条及灯具

Country Status (2)

Country Link
CN (1) CN110145724B (zh)
WO (1) WO2020220690A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110145724B (zh) * 2019-04-29 2021-02-02 佛山市国星光电股份有限公司 白色光源、灯条及灯具
CN113241340B (zh) * 2021-05-08 2022-09-02 上海煜珑电子科技有限公司 光学器件及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1478855A (zh) * 2003-08-05 2004-03-03 北京大学 紫光激发的二组分三基色荧光粉及制备方法
CN1480511A (zh) * 2003-08-05 2004-03-10 北京大学 紫光激发的三组分白光荧光粉及其制备方法
CN1881629A (zh) * 2005-03-18 2006-12-20 株式会社藤仓 发光器件和照明装置
CN101216150A (zh) * 2007-01-02 2008-07-09 三星电机株式会社 白光发射装置及使用其的用于液晶显示器背光的光源模块
US20090026477A1 (en) * 2007-07-25 2009-01-29 National Chiao Tung University Of Taiwan, Novel phosphor and fabrication of the same
CN106960899A (zh) * 2017-03-24 2017-07-18 北京宇极芯光光电技术有限公司 一种白光led混光方式及制成的发光装置
CN110145724A (zh) * 2019-04-29 2019-08-20 佛山市国星光电股份有限公司 白色光源、灯条及灯具

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102790163A (zh) * 2012-01-16 2012-11-21 中山大学 一种基于紫光led芯片的白光led及其照明装置
CN104263359B (zh) * 2014-09-12 2016-10-05 江门市科恒实业股份有限公司 一种全光谱led荧光粉及其应用
CN207247110U (zh) * 2017-08-24 2018-04-17 欧普照明股份有限公司 一种光源模组及包括该光源模组的照明装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1478855A (zh) * 2003-08-05 2004-03-03 北京大学 紫光激发的二组分三基色荧光粉及制备方法
CN1480511A (zh) * 2003-08-05 2004-03-10 北京大学 紫光激发的三组分白光荧光粉及其制备方法
CN1881629A (zh) * 2005-03-18 2006-12-20 株式会社藤仓 发光器件和照明装置
CN101216150A (zh) * 2007-01-02 2008-07-09 三星电机株式会社 白光发射装置及使用其的用于液晶显示器背光的光源模块
US20090026477A1 (en) * 2007-07-25 2009-01-29 National Chiao Tung University Of Taiwan, Novel phosphor and fabrication of the same
CN106960899A (zh) * 2017-03-24 2017-07-18 北京宇极芯光光电技术有限公司 一种白光led混光方式及制成的发光装置
CN110145724A (zh) * 2019-04-29 2019-08-20 佛山市国星光电股份有限公司 白色光源、灯条及灯具

Also Published As

Publication number Publication date
CN110145724B (zh) 2021-02-02
CN110145724A (zh) 2019-08-20

Similar Documents

Publication Publication Date Title
US11050003B2 (en) Narrow-band red phosphors for LED lamps
US11480308B2 (en) Full spectrum white light emitting devices
CN113178514B (zh) 白色光源
US20180108816A1 (en) Light emitting devices having closely-spaced broad-spectrum and narrow-spectrum luminescent materials and related methods
US9115855B2 (en) White light source
RU2444813C2 (ru) Светодиодный модуль, светодиодный источник света и светодиодный светильник для энергоэффективного воспроизведения белого света
JP2013504876A (ja) 混合光を含む固体照明素子
CN106870976B (zh) 一种光源模组及包括该光源模组的照明装置
WO2020220690A1 (zh) 白色光源、灯条及灯具
CN112640582A (zh) 富含青色的白色光
WO2014133374A1 (en) Solid-state sources of light for preferential colour rendition
US10462870B2 (en) Light source circuit and illumination apparatus
WO2020220669A1 (zh) 一种新型发光灯珠与灯具
WO2020220688A1 (zh) 一种白光led灯珠和灯条及灯具
WO2020220689A1 (zh) 一种健康照明的发光系统、灯条和灯具
US9905735B1 (en) High brightness, low-cri semiconductor light emitting devices including narrow-spectrum luminescent materials
EP2650918A1 (en) Light emitting module
CN111129263A (zh) 一种光谱中增加红外波段的白光led光源
US11211530B2 (en) Light source and illumination device including the light source
CN118248686A (zh) 发光器件
Le Thi Thuy My et al. Yellow-green emitting CaGa2S4: Eu2+ phosphor: an application for enhancing the luminous flux of the white light emitting diodes
WO2018184575A1 (zh) 一种光源模组及包括该光源模组的照明装置
WO2019001294A1 (zh) 光源模组和照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19926918

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19926918

Country of ref document: EP

Kind code of ref document: A1