WO2020220533A1 - 一种显示面板和显示装置 - Google Patents

一种显示面板和显示装置 Download PDF

Info

Publication number
WO2020220533A1
WO2020220533A1 PCT/CN2019/102504 CN2019102504W WO2020220533A1 WO 2020220533 A1 WO2020220533 A1 WO 2020220533A1 CN 2019102504 W CN2019102504 W CN 2019102504W WO 2020220533 A1 WO2020220533 A1 WO 2020220533A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
display panel
layer
electrode
sub
Prior art date
Application number
PCT/CN2019/102504
Other languages
English (en)
French (fr)
Inventor
邹建华
徐苗
陶洪
王磊
彭俊彪
Original Assignee
广州新视界光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州新视界光电科技有限公司 filed Critical 广州新视界光电科技有限公司
Publication of WO2020220533A1 publication Critical patent/WO2020220533A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/352Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels the areas of the RGB subpixels being different
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes

Definitions

  • the embodiments of the present application relate to the field of display technology, such as a display panel and a display device.
  • the under-screen fingerprint recognition technology mainly includes optical fingerprint recognition.
  • the optical fingerprint recognition detector is generally located under the screen of the display panel. The light from the display panel illuminates the fingerprint, and the light returned by the fingerprint passes through the display panel and illuminates to the optical fingerprint recognition detector.
  • the optical fingerprint recognition detector analyzes the light to realize fingerprint recognition.
  • the optical fingerprint recognition detector has a small area and cannot realize full-screen fingerprint recognition or palm detection.
  • the embodiment of the present application provides a display panel display device to improve the performance of the biometric identification unit and reduce the process accuracy and cost of the high-precision metal mask.
  • an embodiment of the present application provides a display panel including: a display area and a non-display area, the display panel further includes a substrate, a pixel unit, and a biometric identification unit, the pixel unit and the biometric feature
  • the identification unit is located in the display area;
  • the display area includes a plurality of pixel areas arranged in an array, each of the pixel areas includes a plurality of the pixel units and at least one of the biometric identification units, each A plurality of the pixel units in the pixel area are arranged around at least one biometric identification unit;
  • the pixel unit includes a plurality of sub-pixels, and the corresponding sub-pixels in any two adjacent pixel units are arranged symmetrically.
  • an embodiment of the present application also provides a display device, including the display panel provided by any embodiment of the present application.
  • FIG. 1 is a schematic diagram of a planar structure of a display panel provided by an embodiment of the application
  • FIG. 2 is a schematic diagram of a planar structure of another display panel provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of a planar structure of another display panel provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of a cross-sectional structure of a display panel provided by the related art
  • Fig. 5 is a schematic cross-sectional structure view taken along the AA' direction of Fig. 1;
  • FIG. 6 is a schematic cross-sectional structure diagram of another display panel provided by an embodiment of the application.
  • FIG. 7 is a schematic cross-sectional structure diagram of another display panel provided by an embodiment of the application.
  • FIG. 8 is a schematic cross-sectional structure diagram of another display panel provided by an embodiment of the application.
  • FIG. 9 is a schematic cross-sectional structure diagram of another display panel provided by an embodiment of the application.
  • FIG. 10 is a schematic structural diagram of a display device provided by an embodiment of the application.
  • An embodiment of the present application provides a display panel including a display area and a non-display area.
  • the display panel also includes a substrate, a pixel unit and a biometric identification unit, and the pixel unit and the biometric identification unit are located in the display area.
  • the display area includes a plurality of pixel areas arranged in an array, each pixel area includes a plurality of pixel units and at least one biometric identification unit, and a plurality of pixel units in each pixel area are arranged around at least one biometric identification unit.
  • the pixel unit includes a plurality of sub-pixels, and the corresponding sub-pixels in any two adjacent pixel units are symmetrically arranged.
  • the plurality of sub-pixels included in the pixel unit are sub-pixels with different light-emitting colors, and the corresponding sub-pixels in different pixel units are sub-pixels with the same light-emitting color.
  • a pixel unit includes a red sub-pixel, a green sub-pixel, and a blue sub-pixel.
  • the corresponding sub-pixel of the red sub-pixel in one pixel unit is the red sub-pixel in another pixel unit.
  • a corresponding sub-pixel of a green sub-pixel in one pixel unit is a green sub-pixel in another pixel unit
  • a corresponding sub-pixel of a blue sub-pixel in one pixel unit is a blue sub-pixel in another pixel unit.
  • FIG. 1 is a schematic diagram of a planar structure of a display panel provided by an embodiment of the application.
  • the display panel 100 includes a display area 140 and a non-display area 150.
  • the display panel 100 further includes a substrate 110, a pixel unit 120 and a biometric identification unit 130, and the pixel unit 120 and the biometric identification unit 130 are located in the display area 140.
  • the display area 140 includes a plurality of pixel areas 141 arranged in an array.
  • Each pixel area 141 includes four pixel units 120 and a biometric identification unit 130.
  • the pixel units 120 in the pixel area 141 are arranged around the biometric identification unit 130 .
  • the pixel unit 120 exemplarily includes a red sub-pixel 121A, a green sub-pixel 121B, and a blue sub-pixel 121C, and the corresponding red sub-pixel 121A, green sub-pixel 121B, and blue sub-pixel 121C in any two adjacent pixel units 120
  • the symmetrical arrangement allows the corresponding sub-pixels 121 in the adjacent pixel regions 141 to share the opening of the mask when preparing the sub-pixels 121, thereby reducing the process accuracy of the mask and further reducing the cost of mask processing.
  • the red sub-pixel 121A in the adjacent pixel unit 120 can share the opening of the same mask, thereby reducing the process accuracy requirements of the high-precision metal mask, thereby reducing the high-precision metal mask.
  • the cost of reticle processing can also share the same mask.
  • the corresponding blue sub-pixels 121C in adjacent pixel regions 141 may also share the same mask.
  • each pixel area 141 includes four sub-pixel areas, and each sub-pixel area includes a pixel unit 120 and a biometric identification unit 130.
  • each sub-pixel area includes one pixel unit 120, and adjacent sub-pixel areas correspond to adjacent pixel units 120.
  • the corresponding sub-pixels 121 in adjacent pixel units 120 are arranged symmetrically. That is, in the pixel area 141, the corresponding red sub-pixels 121A in the adjacent pixel unit 120 are arranged symmetrically, the corresponding green sub-pixels 121B in the adjacent pixel unit 120 are arranged symmetrically, and the corresponding blue sub-pixels in the adjacent pixel unit 120 are arranged symmetrically.
  • 121C is arranged symmetrically.
  • each pixel unit 120 multiple sub-pixels 121 in each pixel unit 120 are arranged in an L-shape, and different pixel units 120 are arranged symmetrically in an L-shape, so that the corresponding sub-pixels 121 in adjacent pixel units 120 are arranged symmetrically.
  • the biometric identification units 130 in any two adjacent sub-pixel regions are arranged symmetrically.
  • biometric recognition units 130 are arranged symmetrically, so that the biometric recognition units 130 in the same pixel area 141 can share the same mask opening, thereby reducing the process accuracy of the high-precision metal mask. Therefore, the cost of high-precision metal mask processing is reduced.
  • FIG. 2 is a schematic structural diagram of another display panel provided by an embodiment of the application.
  • each pixel unit 120 includes four sub-pixels, which may be red sub-pixels, green sub-pixels, blue sub-pixels, and white sub-pixels, respectively.
  • the area occupied by the green sub-pixels can be reduced for the arrangement of the white sub-pixels.
  • FIG. 3 is a schematic structural diagram of another display panel provided by an embodiment of the application. As shown in FIG. 3, each pixel area 141 includes four pixel units 120 and one biometric identification unit 130, and the biometric identification unit 130 is located in the middle of the area surrounded by the four pixel units 120.
  • the biometric identification unit 130 is located in the middle of the area surrounded by the four pixel units 120, which can not only realize the fingerprint identification of the display panel 100 pixels 141 by the biometric identification unit 130, but also reduce The arrangement density of the biometric identification units 130 reduces the number of biometric identification units 130. Moreover, the symmetrical arrangement of the corresponding sub-pixels in any adjacent pixel unit 120 can realize that the corresponding sub-pixels in the adjacent pixel unit 120 share the same mask opening, thereby reducing the process accuracy requirements of the high-precision metal mask, and further The cost of high-precision metal mask processing is reduced.
  • the pixel unit 120 exemplarily includes a red sub-pixel 121A, a green sub-pixel 121B, and a blue sub-pixel 121C.
  • the light-emitting area of the blue sub-pixel 121C is larger than the light-emitting area of the red sub-pixel 121A and the light-emitting area of the green sub-pixel 121B, respectively.
  • FIG. 3 only exemplarily illustrates that the pixel unit 120 includes three sub-pixels.
  • the pixel unit 120 may further include four sub-pixels, for example, a red sub-pixel 121A, a green sub-pixel 121B, a blue sub-pixel 121C, and a white sub-pixel.
  • the area of the blue sub-pixel 121C can be reduced to arrange the white sub-pixels.
  • FIG. 1 to FIG. 3 is only an example, not a limitation. In other embodiments, there may be multiple pixel arrangements.
  • FIG. 4 is a schematic diagram of the structure of a display panel provided by the related art.
  • the optical fingerprint module 10 in the optical fingerprint identification technology is arranged on the other side of the light emitting side of the display panel 20.
  • the finger 30 is at a certain position on the light-emitting side of the display panel 20, the light from the light-emitting side of the display panel 20 irradiates the finger 30 and is reflected to the optical fingerprint module 10.
  • the optical fingerprint module 10 analyzes the reflected light after receiving the reflected light. Realize fingerprint recognition.
  • the optical fingerprint module 10 is arranged on the back of the display panel 20.
  • the optical fingerprint module 10 increases the thickness of the display screen. Therefore, the thickness of the display screen is relatively large, which is not conducive to the ultra-thin and ultra-light design of the display screen.
  • FIG. 5 is a schematic cross-sectional structure view taken along the AA' direction of FIG. 1.
  • the sub-pixel 121 includes a light emitting device 1211.
  • the biometric identification unit 130 includes a photodiode 1311.
  • the light emitting device 1211 includes at least a first electrode 11, a light emitting layer 12, and a second electrode 13 which are sequentially stacked.
  • the photodiode 1311 includes at least a third electrode 21, an active layer 22, and a fourth electrode 23 that are sequentially stacked.
  • the display panel 100 further includes at least one semiconductor heterojunction layer 16, and the semiconductor heterojunction layer 16 is disposed on a side of the first electrode 11 and the third electrode 21 away from the substrate 110.
  • the semiconductor heterojunction layer 16 is multiplexed as the active layer 22.
  • the semiconductor heterojunction layer 16 has an efficient charge generation effect, so the semiconductor heterojunction layer 16 can be disposed on the side of the first electrode 11 away from the substrate 110, and can be used as a light emitting device.
  • the hole transport layer or electron transport layer of 1211 facilitates the injection of electrons or holes.
  • the semiconductor heterojunction layer 16 is an interface region formed by contacting multiple semiconductor layers.
  • Conductor heterojunction is accumulation type heterojunction or accumulation type bulk heterojunction.
  • the accumulation-type surface heterojunction is generally a heterojunction formed by layering a P-type semiconductor layer and an N-type semiconductor layer, and is represented by P/N.
  • the accumulation type bulk heterojunction is generally a blended heterojunction formed by a P-type semiconductor and an N-type semiconductor, which is represented by P:N.
  • P:N When the N-type semiconductor heterojunction is formed, the material of the P-type semiconductor and the material of the N-type semiconductor are blended to form a mixed layer.
  • the n-type semiconductor layer can be C60, TCNQ, PTCBI, C70, DCV3T, TiOPc or SubPc
  • the p-type semiconductor layer can be CuPc, ZnPc, TiOPc, SubPc.
  • the semiconductor heterojunction layer 16 is P:N
  • the mixing ratio of the P-type semiconductor layer and the N-type semiconductor layer is not limited.
  • the semiconductor heterojunction layer 16 is disposed on the side of the first electrode 11 and the third electrode 21 away from the substrate 110, and is multiplexed as the active layer 22.
  • the high-efficiency charge generation effect of the semiconductor heterojunction layer 16 makes it easy for the energy of the photon to generate electrons and holes in the semiconductor heterojunction layer 16 when a photon enters the semiconductor heterojunction layer 16 in the biometric identification unit 130. An electric current is formed, and the biometric recognition unit 130 converts the optical signal into an electrical signal.
  • the semiconductor heterojunction layer 16 is multiplexed as the active layer 22, so that in the process of preparing the display panel 100, the active layer 22 of the biometric identification unit 130 and the functional layer of the light-emitting device 1211 are arranged in the same layer, so that the number of biometric identification units can be reduced.
  • the additional precision mask at 130 o'clock can reduce the cost of preparing the display panel. At the same time, it is possible to avoid problems with the display panel due to the low precision of the precision mask when the precision mask is used, thereby improving the yield of the display panel.
  • the biometric recognition unit 130 may be a fingerprint recognition detector, an iris recognition detector, a face recognition detector, etc.
  • the embodiment of the present application takes an optical fingerprint recognition detector as an example for description.
  • N-type semiconductor and P-type semiconductor are organic materials
  • both N-type organic semiconductor and P-type organic semiconductor are anisotropic materials, which can realize the transmission of electrons or holes in the direction perpendicular to the plane where the display panel is located. This prevents electrons or holes from being transmitted in a direction parallel to the plane of the display panel when the semiconductor heterojunction layer 16 is formed in the entire display panel.
  • the semiconductor heterojunction layer 16 may also include both a P/N heterojunction and a P:N heterojunction. At this time, the structure of the semiconductor heterojunction layer 16 may be P/P:N/N. , Can increase the electron or hole transport rate of the semiconductor heterojunction 16.
  • the semiconductor heterojunction layer is provided on the side of the first electrode and the third electrode away from the substrate, and the semiconductor heterojunction layer is multiplexed as the active layer, which can reduce the use of additional additional materials during the preparation of the biometric unit.
  • the precision mask reduces the production cost of the display panel, reduces the production process of the display panel, and at the same time avoids the low precision of the precision mask when using the precision mask, which causes problems in the display panel, and improves the yield of the display panel .
  • FIG. 6 is a schematic cross-sectional structure diagram of another display panel provided by an embodiment of the application.
  • the semiconductor heterojunction layer 16 may include a P-type semiconductor layer 1611 and an N-type semiconductor layer 1612.
  • the P-type semiconductor layer 1611 facilitates the transport of holes
  • the N-type semiconductor layer 1612 facilitates the transport of electrons.
  • the semiconductor heterojunction layer 16 is provided in the light emitting device 1211 and the photodiode 1311
  • the P-type semiconductor layer 1611 may be arranged adjacent to the cathode
  • the N-type semiconductor layer 1612 may be arranged adjacent to the anode.
  • the first electrode 11 is an anode
  • the second electrode 13 is a cathode.
  • the N-type semiconductor layer 1612 is disposed on the side of the first electrode 11 away from the substrate 110
  • the P-type semiconductor layer 1611 is disposed on the side of the N-type semiconductor layer 1612 away from the substrate 110.
  • the first electrode 11 is a cathode and the second electrode 13 is an anode
  • the positions of the N-type semiconductor layer 1612 and the P-type semiconductor layer 1611 are interchanged, that is, the P-type semiconductor layer 1611 is provided on the first electrode. 11 on the side away from the substrate 110, and the N-type semiconductor layer 1611 is disposed on the side of the P-type semiconductor layer 1612 away from the substrate 110.
  • the material of the electrode is a conductive material.
  • the material of the anode may be ITO/Ag/ITO, Mo, ITO, etc.
  • the material of the cathode may be Ag, an alloy containing Ag, or Al, etc.
  • the display panel satisfies at least one of the following: a semiconductor heterojunction layer 16 is provided between the first electrode 11 and the light-emitting layer 12; a layer is provided between the second electrode 13 and the light-emitting layer 12 Semiconductor heterojunction layer 16.
  • the semiconductor heterojunction layer 16 can be used as a hole transport layer of the light emitting device 1211 or an electron transport layer of the light emitting device 1211.
  • the semiconductor heterojunction layer 16 is provided between the first electrode 11 and the light emitting layer 12. Set to increase the hole transmission rate.
  • the N-type semiconductor layer 1612 is in contact with the first electrode 11, and the P-type semiconductor layer 1611 is in contact with the light-emitting layer 12.
  • FIG. 7 is a schematic cross-sectional structure diagram of another display panel provided by an embodiment of the application. As shown in FIG.
  • the semiconductor heterojunction layer 16 is provided between the second electrode 13 and the light emitting layer 12. , Set to increase the transmission rate of electrons. At this time, the N-type semiconductor layer 1612 is in contact with the light emitting layer 12 and the P-type semiconductor layer 1611 is in contact with the second electrode 13.
  • the display panel 100 may also include two semiconductor heterojunction layers 16 located on both sides of the light-emitting layer 12, respectively serving as a hole transport layer and an electron transport layer of the light emitting device 1211, which can simultaneously increase the transport rate of holes and electrons.
  • the active layer 22 of the photodiode 1311 is composed of two semiconductor heterojunction layers 16, which can improve the efficient charge generation effect of the active layer 22 and improve the photoelectric conversion efficiency of the biometric identification unit 130.
  • the first electrode 11 and the third electrode 21 are arranged in the same layer, and the second electrode 13 and the fourth electrode 23 are arranged in the same layer.
  • the same process can be used in the manufacturing process of the display panel 100
  • the second electrode 13 and the fourth electrode 23 can also be prepared in the same process, thereby reducing the manufacturing process of the display panel 100.
  • the first electrode of the light-emitting device and the third electrode of the photodiode are arranged in the same layer, and the second electrode of the light-emitting device and the fourth electrode of the photodiode are on the same layer, so that the electrode of the photodiode and the electrode of the light-emitting device are on the same layer. Therefore, the process flow for preparing the display panel can be reduced, and the complexity of preparing the display panel can be reduced.
  • the sub-pixel 121 further includes a pixel driving circuit 1212 connected to the light emitting device 1211.
  • the biometric identification unit 130 also includes a switch circuit 1312 connected to the photodiode 1311.
  • the pixel unit 120 includes three sub-pixels 121, and the pixel driving circuit 1212 in each sub-pixel 121 is configured to provide a driving signal for the light-emitting device 1211 to make the light-emitting device 1211 emit light.
  • the three sub-pixels 121 may be red sub-pixels, green sub-pixels, and blue sub-pixels, respectively, emitting red, green, and blue light.
  • the switch circuit 1312 in the biometric identification unit 130 is configured to control the photodiode 1311. After the light emitted by the light-emitting device 1211 is reflected by the finger to form reflected light, the photodiode 1311 receives the light reflected by the fingerprint and converts the light into electrical signals, and transmits the electrical signals to the control unit of the display panel 100 through the switch circuit 1312. Analysis of electrical signals to achieve fingerprint recognition.
  • the pixel drive circuit includes a pixel drive transistor
  • the switch circuit includes a switch transistor.
  • the film layer in the pixel drive transistor and the corresponding film layer in the switch transistor can be arranged in the same layer, thereby reducing the manufacturing process of the display panel.
  • the process steps, on the one hand, can reduce the additional masks used, on the other hand, reduce the process complexity of manufacturing the display panel.
  • FIG. 8 is a schematic cross-sectional structure diagram of another display panel provided by an embodiment of the application.
  • the photodiode 1311 further includes an electrode modification layer 26, and the electrode modification layer 26 is disposed on the side of the active layer 22 close to the third electrode 21.
  • the electrode modification layer 26 has better hole transport capability. By being disposed between the third electrode 21 and the active layer 22, the hole transport capability of the active layer 22 to the third electrode 21 can be improved.
  • the electrode modification layer 26 may be an inorganic interface modification material such as MoOx, CuI, LiF, or an organic/inorganic hybrid modification layer, such as BCP/LiF, TPBI/LiF.
  • the display panel includes a display area and a non-display area, the pixel unit is located in the display area, and the biometric identification unit is located in at least one of the display area and the non-display area.
  • the biometric identification unit may be located in at least one of the display area and the non-display area, which reduces the position limit of the biometric identification unit, thereby increasing the area occupied by the biometric identification unit of the display panel, so that the display panel The area for fingerprint recognition is increased, which reduces the position restriction on the fingerprint recognition in the display panel.
  • the biometric identification unit is at least partially located in the display area, full-screen fingerprint identification or palm identification of the display panel can be realized.
  • the display panel includes a display area and a non-display area, and the pixel unit and the biometric identification unit are located in the display area.
  • the display panel also includes a collimating structure.
  • the collimating structure is located on the side of the biometric identification unit away from the substrate, and is set to limit the angle at which the biometric identification unit can receive light.
  • the display panel includes a plurality of pixel units, each pixel unit includes a plurality of sub-pixels, and each sub-pixel can emit light reflected by a finger as the light source of the biometric identification unit.
  • each pixel unit includes a plurality of sub-pixels
  • each sub-pixel can emit light reflected by a finger as the light source of the biometric identification unit.
  • the accuracy of the biometric identification unit for identifying the position of the finger is relatively low.
  • the collimating structure can block the reflected light whose reflection angle reflected by the finger is greater than the first threshold, so that the angle at which the biometric identification unit can receive light can be limited.
  • the reflection angle of the light from the pixel unit reflected by the finger is greater than the first threshold, and the light emitted by the pixel unit is blocked by the collimating structure after being reflected by the finger. It is avoided that the light emitted by the pixel unit far away from the biometric identification unit affects the fingerprint identification of the biometric identification unit, thereby improving the identification accuracy of the biometric identification unit.
  • the first threshold of the blocking reflection angle of the collimating structure is determined according to the accuracy of fingerprint recognition.
  • the first threshold value is relatively small, so that the distance between the pixel units corresponding to the reflected light blocked by the collimating structure 160 is relatively small, and the recognition accuracy of the biometric recognition unit 130 is ensured.
  • the first threshold is relatively large, so that the distance between the pixel units corresponding to the reflected light blocked by the collimating structure 160 is relatively large.
  • FIG. 9 is a schematic cross-sectional structure diagram of another display panel provided by an embodiment of the application.
  • the display panel 100 includes a display area 140 and a non-display area 150, and the pixel unit 120 and the biometric identification unit 130 are located in the display area 140.
  • the display panel 100 also includes a collimating structure 160.
  • the vertical projection of the collimating structure 160 on the substrate 110 and the vertical projection of the light emitting device 1211 on the substrate 110 do not overlap.
  • the collimating structure 160 includes at least one of the microspheres 161 and the black matrix 162.
  • the microspheres 161 cover the photodiode 1311, and the black matrix 162 surrounds the photodiode 1311.
  • the vertical projection of the collimating structure 160 on the substrate 110 and the vertical projection of the light emitting device 1211 on the substrate 110 do not overlap, which can prevent the collimating structure 160 from blocking the light emitting device 1211 from emitting light.
  • a protective layer 170 may also be included to cover the pixel unit 120 and the biometric identification unit 130, which is configured to protect the light-emitting device 1211 and the photodiode 1311 from the external environment. Eroded.
  • the protective layer 170 may be an encapsulation layer, and the collimation structure 160 is located in the encapsulation layer 170.
  • the light emitted by the light emitting device 1211 is emitted to the finger through the encapsulation layer 170, and is reflected by the finger and then passes through the encapsulation layer 170 or the collimation structure 160 It is incident on the photodiode 1311.
  • the microspheres 161 may be hemispheres covering the photodiode 1311.
  • the hemispherical surface of the microsphere 161 is far away from the substrate 110, and the refractive index of the microsphere 161 is less than the refractive index of the encapsulation layer 170, so that when the light emitted by the light emitting device 1211 enters the microsphere 161 through the encapsulation layer 170, the light enters the microsphere 161 from the optically dense medium.
  • Light medium when the incident angle is greater than the critical angle of total reflection, total reflection occurs.
  • the reflected light whose incident angle is greater than the critical angle to the microsphere 161 can be blocked, so that the angle at which the biometric identification unit 130 can receive light can be limited.
  • the reflection angle of the light from the pixel unit 120 reflected by the finger is relatively large, and total reflection is likely to occur at the microsphere 161, so the microsphere 161 is totally reflected
  • the critical angle of may define the distance between the pixel unit 120 corresponding to the reflected light incident on the biometric recognition unit 130 and the biometric recognition unit 130.
  • the refractive index of the microsphere 161 is related to the accuracy of fingerprint recognition.
  • the difference between the refractive index of the microspheres 161 and the refractive index of the encapsulation layer 170 is relatively large, so that the critical angle at which total reflection occurs is relatively small.
  • the distance between the pixel unit 120 corresponding to the reflected light and the biometric recognition unit 130 is relatively small, so that the fingerprint recognition accuracy is high.
  • the refractive index of the microspheres 161 may be smaller than the refractive index of the encapsulation layer 170.
  • the collimating structure 160 may further include a black matrix 162 having a certain thickness, that is, in a direction perpendicular to the substrate 110, the black matrix 162 has a certain height. Therefore, the light on the side of the black matrix 162 away from the biometric identification unit 130 can be blocked. In the case where the black matrix 162 is disposed around the photodiode 1311, the black matrix 162 can block the reflected light of the biometric identification unit 130 outside the vertical projection of the display panel.
  • the thickness of the black matrix 162 is related to the accuracy of fingerprint recognition.
  • the thickness of the black matrix 162 is relatively large, so that the angle at which the biometric identification unit 130 can receive light is relatively small, corresponding to the pixel unit corresponding to the reflected light incident on the biometric identification unit 130
  • the distance between 120 and the biometric identification unit 130 is relatively small, and the accuracy of fingerprint identification is high.
  • the thickness of the black matrix 162 is relatively small.
  • the collimating structure 160 can define the angle at which the biometric identification unit 130 can receive light, thereby improving the accuracy of fingerprint recognition by the biometric identification unit 130.
  • FIG. 10 is a schematic structural diagram of a display device provided by an embodiment of the application. As shown in FIG. 10, the display device 810 includes a display panel 811 provided by any embodiment of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Human Computer Interaction (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Image Input (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请公开了一种显示面板和显示装置。该显示面板包括显示区和非显示区,还包括基板、像素单元和生物特征识别单元。像素单元和生物特征识别单元位于显示区。显示区包括多个呈阵列排布的像素区,每个像素区包括多个像素单元和至少一个生物特征识别单元,每个像素区内多个像素单元围绕至少一个生物特征识别单元排布。像素单元包括多个子像素,任意相邻两个像素单元内对应的子像素对称排列。

Description

一种显示面板和显示装置
本申请要求在2019年4月28日提交中国专利局、申请号为201910351286.0的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及显示技术领域,例如一种显示面板和显示装置。
背景技术
随着智能手机全面屏的趋势到来,传统的指纹识别技术将逐渐被淘汰,屏下指纹识别技术逐步成为主流。
相关技术中,屏下指纹识别技术主要包括光学式指纹识别。在光学式指纹识别技术中,光学式指纹识别探测器一般位于显示面板的屏下。显示面板的光线照射指纹,指纹返回的光线穿过显示面板照射至光学式指纹识别探测器,光学式指纹识别探测器对光线进行分析,实现指纹识别。但是,光学式指纹识别探测器面积较小,无法实现全面屏全屏的指纹识别或者手掌探测。
发明内容
本申请实施例提供一种显示面板显示装置,以提高生物特征识别单元的性能,降低高精度金属掩模版的工艺精度及成本。
第一方面,本申请实施例提供了一种显示面板,包括:包括显示区和非显示区,所述显示面板还包括基板、像素单元和生物特征识别单元,所述像素单元和所述生物特征识别单元位于所述显示区;所述显示区包括多个呈阵列排布的像素区,每个所述像素区包括多个所述像素单元和至少一个所述生物特征识别单元,每个所述像素区内多个所述像素单元围绕至少一个所述生物特征识别单元排布;所述像素单元包括多个子像素,任意相邻两个所述像素单元内对应的所述子像素对称排列。
第二方面,本申请实施例还提供了一种显示装置,包括本申请任意实施例提供的显示面板。
附图说明
图1为本申请实施例提供的一种显示面板的平面结构示意图;
图2为本申请实施例提供的另一种显示面板的平面结构示意图;
图3为本申请实施例提供的又一种显示面板的平面结构示意图;
图4为相关技术提供的一种显示面板的剖面结构示意图;
图5为图1沿AA’方向得到的剖面结构示意图;
图6为本申请实施例提供的另一种显示面板的剖面结构示意图;
图7为本申请实施例提供的另一种显示面板的剖面结构示意图;
图8为本申请实施例提供的另一种显示面板的剖面结构示意图;
图9为本申请实施例提供的另一种显示面板的剖面结构示意图;
图10为本申请实施例提供的一种显示装置的结构示意图。
具体实施方式
本申请实施例提供一种显示面板,该显示面板包括显示区和非显示区。显示面板还包括基板、像素单元和生物特征识别单元,像素单元和生物特征识别单元位于显示区。显示区包括多个呈阵列排布的像素区,每个像素区包括多个像素单元和至少一个生物特征识别单元,每个像素区内多个像素单元围绕至少一个生物特征识别单元排布。像素单元包括多个子像素,任意相邻两个像素单元内对应的子像素对称排列。
在一些实施例中,像素单元包括的多个子像素为发光颜色不同的子像素,不同像素单元内对应的子像素为发光颜色相同的子像素。例如像素单元包括红色子像素、绿色子像素和蓝色子像素,在不同的像素单元内,一个像素单元内的红色子像素的对应子像素为另一像素单元内的红色子像素,同理,一个像素单元内的绿色子像素的对应子像素为另一像素单元内的绿色子像素,一个像素单元内的蓝色子像素的对应子像素为另一像素单元内的蓝色子像素。通过在每个像素区内设置生物特征识别单元,从而可以增大生物特征识别单元的感测面积,提高生物特征识别单元的性能。另外,通过设置任意相邻两个像素单元内对应的子像素对称排列,使得相邻两个像素单元内对应的子像素可以共用掩膜版的开口,因此可以降低高精度金属掩模版的工艺精度及成本。
示例性地,图1为本申请实施例提供的一种显示面板的平面结构示意图。如图1所示,该显示面板100包括显示区140和非显示区150。显示面板100还包括基板110、像素单元120和生物特征识别单元130,像素单元120和生物特 征识别单元130位于显示区140。显示区140包括多个呈阵列排布的像素区141,每个像素区141包括四个像素单元120和一个生物特征识别单元130,像素区141内的像素单元120围绕生物特征识别单元130排布。像素单元120示例性地包括了红色子像素121A、绿色子像素121B和蓝色子像素121C,任意相邻两个像素单元120内对应的红色子像素121A、绿色子像素121B和蓝色子像素121C对称排列,使得在制备子像素121时,相邻像素区141中对应的子像素121可共用掩膜版的开口,从而降低了掩膜版的工艺精度,进而降低了掩膜版加工的成本。例如,在相邻的像素区141内,相邻的像素单元120中红色子像素121A可以共用同一掩膜版的开口,从而降低高精度金属掩模版的工艺精度的要求,进而降低了高精度金属掩模版加工的成本。同理,相邻像素区141对应的绿色子像素121B也可以共用同一掩膜版。相邻像素区141中对应的蓝色子像素121C也可以共用同一掩膜版。
在上述技术方案的基础上,参考图1,每个像素区141包括四个子像素区,每个子像素区包括一个像素单元120和一个生物特征识别单元130。
在一些实施例中,每个子像素区包括一个像素单元120,相邻的子像素区对应相邻的像素单元120。相邻的像素单元120内对应的子像素121对称排列。即,像素区141内,相邻像素单元120内对应的红色子像素121A对称排列,相邻像素单元120内对应的绿色子像素121B对称排列,以及相邻像素单元120内对应的蓝色子像素121C对称排列。
参考图1,每个像素单元120中的多个子像素121呈L型排布,不同的像素单元120的L型对称排布,使得相邻像素单元120中对应的子像素121对称排列。
在一些实施例中,任意相邻两个子像素区中的生物特征识别单元130对称排列。
例如,在同一像素区141内,四个生物特征识别单元130对称排列,使得同一像素区141内的生物特征识别单元130可以共用同一掩膜版的开口,从而降低高精度金属掩模版的工艺精度的要求,进而降低了高精度金属掩模版加工的成本。
需要说明的是,图1中像素单元120中子像素121的个数仅是一种示例,像素单元120中还可以包括其他数量的子像素121,此处不做限定。示例性地,图2为本申请实施例提供的另一种显示面板的结构示意图。如图2所示,每个 像素单元120包括四个子像素,可以分别为红色子像素、绿色子像素、蓝色子像素和白色子像素。在像素排布时,在图1的基础上,可以减小绿色子像素占用的面积,用于排布白色子像素。
图3为本申请实施例提供的另一种显示面板的结构示意图。如图3所示,每个像素区141包括四个像素单元120和一个生物特征识别单元130,生物特征识别单元130位于四个像素单元120所围区域的中部。
在一些实施例中,如图3所示,生物特征识别单元130位于四个像素单元120所围区域的中部,既可以实现生物特征识别单元130对显示面板100像素141的指纹识别,还可以减少生物特征识别单元130的排布密度,即减少了生物特征识别单元130的数量。而且,任意相邻像素单元120内对应的子像素对称排列,可以实现相邻像素单元120内对应的子像素共用同一掩膜版的开口,从而降低高精度金属掩模版的工艺精度的要求,进而降低了高精度金属掩模版加工的成本。
一般情况下,如图3所示,像素单元120示例性地包括红色子像素121A、绿色子像素121B和蓝色子像素121C。蓝色子像素121C的发光面积分别大于红色子像素121A的发光面积和绿色子像素121B的发光面积。通过增加像素单元120中蓝色子像素121C的发光面积,可以提高蓝色子像素121C的寿命,进而提高像素单元120的寿命。
另外,图3仅是示例性地说明了像素单元120包括三个子像素。像素单元120还可以包括四个子像素,例如包括红色子像素121A、绿色子像素121B、蓝色子像素121C以及白色子像素。在像素排布时,在图3的基础上,可以减小蓝色子像素121C的面积,用于排布白色子像素。
需要说明的是,图1-图3的像素排布仅是一种示例,而不是限定。在其他实施例中,还可以有多种像素排布。
图4为相关技术提供的一种显示面板的结构示意图。如图4所示,光学式指纹识别技术中的光学指纹模组10设置于显示面板20出光侧的另一侧。当手指30在显示面板20出光侧的某一位置时,显示面板20出光侧的光照射到手指30并反射至光学指纹模组10,光学指纹模组10接收反射光后对反射光线进行分析,实现指纹识别。光学指纹模组10设置于显示面板20的背面,光学指纹模组10增加了显示屏的厚度,因此显示屏的厚度比较大,不利于显示屏的超薄、超轻的设计。
在上述技术方案的基础上,图5为图1沿AA’方向得到的剖面结构示意图。如图1和图5所示,子像素121包括发光器件1211。生物特征识别单元130包括光敏二极管1311。发光器件1211至少包括依次层叠设置的第一电极11、发光层12和第二电极13。光敏二极管1311至少包括依次层叠设置的第三电极21、活性层22和第四电极23。显示面板100还包括至少一层半导体异质结层16,半导体异质结层16设置于第一电极11和第三电极21远离基板110的一侧。半导体异质结层16复用为活性层22。
在一些实施例中,如图5所示,半导体异质结层16具有高效的电荷产生效应,因此半导体异质结层16可以设置于第一电极11远离基板110的一侧,可以作为发光器件1211的空穴传输层或电子传输层,有利于实现电子或空穴的注入。半导体异质结层16为多层半导体层相接触形成的界面区域。导体异质结为积累型面异质结或积累型体异质结。积累型面异质结一般为P型半导体层和N型半导体层分层形成的异质结,以P/N表示。P/N型半导体异质结形成时分别形成P型半导体层和N型半导体层。积累型体异质结一般为P型半导体和N型半导体形成的共混异质结,以P:N表示。P:N型半导体异质结形成时P型半导体的材料和N型半导体的材料共混形成混合层。P型半导体和N型半导体的材料有多种,示例性地,n型半导体层可以为C60、TCNQ、PTCBI、C70、DCV3T、TiOPc或SubPc,p型半导体层可以为CuPc、ZnPc、TiOPc、SubPc、PbPc、Pentanence、Rubrene、m-MTDATA或DMQA。在半导体异质结层16为P:N的情况下,P型半导体层与N型半导体层的混合比例不做限定。半导体异质结层16设置于第一电极11和第三电极21远离基板110的一侧,并且复用为活性层22。半导体异质结层16的高效电荷产生效应,使得在生物特征识别单元130中,光子进入半导体异质结层16时,光子上的能量容易使半导体异质结层16产生电子和空穴,从而形成电流,生物特征识别单元130将光信号转换为电信号。半导体异质结层16复用为活性层22,使得在制备显示面板100的过程中,生物特征识别单元130的活性层22与发光器件1211的功能层同层设置,因此可以减少制备生物识别单元130时额外增加的精密掩膜版,从而可以降低了制备显示面板的成本。同时可以避免使用精密掩膜版时精密掩膜版的精度较低导致显示面板出现问题,提高了显示面板的良率。而且,在制作显示面板100时,可以在同一道工艺中实现发光器件1211的空穴传输层或电子传输层与光敏二极管1311的活性层22的制作,减少了显示面板100的工艺流程步骤,降低了制作显示面板的工艺复 杂度。其中,生物特征识别单元130可以为指纹识别探测器、虹膜识别探测器或人脸识别探测器等,本申请实施例以光学式指纹识别探测器为例进行说明。
另外,N型半导体和P型半导体的材料为有机材料,N型有机半导体和P型有机半导体均为各向异性的材料,可以实现电子或空穴传输时沿垂直于显示面板所在平面的方向传输,避免半导体异质结层16在显示面板中整层形成时,电子或空穴沿平行于显示面板所在平面的方向传输。
需要说明的是,半导体异质结层16还可以既包括P/N异质结,还包括P:N异质结,此时半导体异质结层16的结构可以为P/P:N/N,可以提高半导体异质结16的传输电子或空穴的速率。
本申请实施例通过在第一电极和第三电极远离基板的一侧设置半导体异质结层,并且半导体异质结层复用为活性层,可以在制备生物识别单元过程中减少使用额外增加的精密掩膜版,降低显示面板的制备成本,减少显示面板的制作工艺流程,同时可以避免使用精密掩膜版时精密掩膜版的精度较低导致显示面板出现问题,提高了显示面板的良率。
在上述技术方案的基础上,图6为本申请实施例提供的另一种显示面板的剖面结构示意图。如图6所示,半导体异质结层16可以包括P型半导体层1611和N型半导体层1612。
在一些实施例中,P型半导体层1611有利于空穴的传输,N型半导体层1612有利于电子的传输。在发光器件1211和光敏二极管1311中设置半导体异质结层16时,可以设置P型半导体层1611与阴极相邻,N型半导体层1612与阳极相邻。示例性地,如图6所示,第一电极11为阳极,第二电极13为阴极。N型半导体层1612设置于第一电极11远离基板110的一侧,P型半导体层1611设置于N型半导体层1612远离基板110的一侧。
需要说明的是,在第一电极11为阴极,第二电极13为阳极的情况下,N型半导体层1612和P型半导体层1611的位置互换,即P型半导体层1611设置于第一电极11远离基板110的一侧,N型半导体层1611设置于P型半导体层1612远离基板110的一侧。一般情况下,电极的材料为导电材料。示例性的,阳极的材料可以为ITO/Ag/ITO、Mo或ITO等,阴极的材料可以为Ag、含Ag的合金或者Al等。
在上述技术方案的基础上,该显示面板满足以下至少之一:第一电极11和发光层12之间设置有一层半导体异质结层16;第二电极13和发光层12之间 设置有一层半导体异质结层16。
在一些实施例中,半导体异质结层16既可以作为发光器件1211的空穴传输层,也可以作为发光器件1211的电子传输层。在第一电极11为阳极,半导体异质结层16作为发光器件1211的空穴传输层的情况下,参考图6,半导体异质结层16设置于第一电极11和发光层12之间,设置为提高空穴的传输速率。此时N型半导体层1612与第一电极11接触,P型半导体层1611与发光层12接触。图7为本申请实施例提供的另一种显示面板的剖面结构示意图。如图7所示,在第一电极11为阳极,半导体异质结层16作为发光器件1211的电子传输层的情况下,半导体异质结层16设置于第二电极13和发光层12之间,设置为提高电子的传输速率。此时,N型半导体层1612与发光层12接触,P型半导体层1611与第二电极13接触。
另外,显示面板100还可以包括两层半导体异质结层16,位于发光层12的两侧,分别作为发光器件1211的空穴传输层和电子传输层,可以同时提高空穴和电子的传输速率。此时,光敏二极管1311的活性层22由两层半导体异质结层16构成,可以提高活性层22的高效电荷产生效应,提高生物特征识别单元130的光电转换效率。
在上述技术方案的基础上,参考图5至图7,第一电极11与第三电极21同层设置,第二电极13与第四电极23同层设置。
在一些实施例中,在第一电极11与第三电极21同层设置,第二电极13与第四电极23同层设置的情况下,在显示面板100的制作过程中,可以采用同一道工艺制备第一电极11和第三电极21,也可以采用同一道工艺制备第二电极13与第四电极23,从而减少了显示面板100的制备工艺流程。
本申请实施例通过设置发光器件的第一电极与光敏二极管的第三电极同层,发光器件的第二电极与光敏二极管的第四电极同层,使得光敏二极管的电极与发光器件的电极在同一工艺中制备,因此可以减少制备显示面板的工艺流程,降低了制备显示面板的复杂度。
在上述技术方案的基础上,参考图5至图7,子像素121还包括与发光器件1211连接的像素驱动电路1212。生物特征识别单元130还包括与光敏二极管1311连接的开关电路1312。
在一些实施例中,像素单元120包括3个子像素121,每个子像素121中的像素驱动电路1212设置为为发光器件1211提供驱动信号,使发光器件1211发 光。3个子像素121可以分别为红色子像素、绿色子像素和蓝色子像素,分别发红色、绿色和蓝色的光。
生物特征识别单元130中的开关电路1312设置为控制光敏二极管1311。当发光器件1211发出的光经过手指反射形成反射光后,光敏二极管1311接收指纹反射的光线,并将光线转化为电信号,并将电信号通过开关电路1312传输至显示面板100的控制单元,实现对电信号的分析,从而实现指纹识别。
在上述技术方案的基础上,像素驱动电路包括像素驱动晶体管,开关电路包括开关晶体管,像素驱动晶体管中的膜层与开关晶体管中对应的膜层可以同层设置,从而可以减少制作显示面板的工艺流程步骤,一方面可以减少额外使用的掩膜版,另一方面降低了制作显示面板的工艺复杂度。
在上述技术方案的基础上,图8为本申请实施例提供的另一种显示面板的剖面结构示意图。如图8所示,光敏二极管1311还包括电极修饰层26,电极修饰层26设置于活性层22靠近第三电极21的一侧。
在一些实施例中,电极修饰层26具有较好的空穴传输能力,通过设置于第三电极21和活性层22之间,可以提高活性层22的空穴传输至第三电极21的能力。示例性地,电极修饰层26可以为无机界面修饰材料例如MoOx、CuI、LiF,或者有机/无机杂化修饰层,例如BCP/LiF,TPBI/LiF。
在上述技术方案的基础上,显示面板包括显示区和非显示区,像素单元位于显示区,生物特征识别单元位于显示区和非显示区中至少之一。
在一些实施例中,生物特征识别单元可以位于显示区和非显示区中至少之一,降低了对生物特征识别单元的位置限定,从而可以增加生物特征识别单元占据显示面板的面积,使得显示面板实现指纹识别的区域增加,减小了对指纹识别在显示面板中的位置限定。在生物特征识别单元至少部分位于显示区的情况下,可以实现显示面板的全面屏指纹识别或者手掌识别。
在上述技术方案的基础上,显示面板包括显示区和非显示区,像素单元和生物特征识别单元位于显示区。显示面板还包括准直结构。准直结构位于生物特征识别单元远离基板的一侧,设置为限定生物特征识别单元可接收光线的角度。
在一些实施例中,显示面板上包括多个像素单元,每个像素单元包括多个子像素,每个子像素均可以发出光经手指反射作为生物特征识别单元的光源。在一个生物特征识别单元接收与其距离较远的像素单元发出的光经手指反射后 的反射光的情况下,生物特征识别单元识别手指位置的精度比较低。准直结构可以阻挡经手指反射的反射角大于第一阈值的反射光,从而可以限定生物特征识别单元可接收光线的角度。因此,在像素单元与生物特征识别单元的距离比较远的情况下,像素单元发出的光经手指反射的反射角大于第一阈值,像素单元发出的光经手指反射后被准直结构阻挡,从而避免了与生物特征识别单元距离比较远的像素单元发出的光影响生物特征识别单元指纹识别,从而提高了生物特征识别单元的识别精度。
需要说明的是,准直结构阻挡反射角的第一阈值根据指纹识别的精度确定。在指纹识别的精度要求高的情况下,第一阈值比较小,使得准直结构160阻挡的反射光对应的像素单元之间的距离比较小,保证了生物特征识别单元130的识别精度。在指纹识别的精度要求低的情况下,第一阈值比较大,使得准直结构160阻挡的反射光对应的像素单元之间的距离比较大。
示例性地,图9为本申请实施例提供的另一种显示面板的剖面结构示意图。结合图8和图9,显示面板100包括显示区140和非显示区150,像素单元120和生物特征识别单元130位于显示区140。显示面板100还包括准直结构160。准直结构160在基板上110的垂直投影与发光器件1211在基板上110的垂直投影无交叠。准直结构160包括微球161和黑色矩阵162中至少之一。微球161覆盖光敏二极管1311,黑色矩阵162围绕光敏二极管1311。
在一些实施例中,如图9所示,准直结构160在基板上110的垂直投影与发光器件1211在基板上110的垂直投影无交叠,可以避免准直结构160阻挡发光器件1211出光。在发光器件1211和光敏二极管1311远离基板110的一侧,还可以包括保护层170,覆盖像素单元120和生物特征识别单元130,设置为保护发光器件1211和光敏二极管1311等器件免受外界环境的损蚀。示例性地,保护层170可以为封装层,准直结构160位于封装层170内,发光器件1211发出的光经封装层170射至手指,并经手指反射后经封装层170或准直结构160入射至光敏二极管1311。
在准直结构160包括微球161的情况下,微球161可以为半球,覆盖光敏二极管1311。微球161的半球面远离基板110,并且微球161的折射率小于封装层170的折射率,使得发光器件1211发出的光经封装层170入射至微球161时,光线由光密介质进入到光疏介质,在入射角大于全反射临界角时产生全反射。因此可以阻挡入射至微球161的入射角大于临界角的反射光,从而可以限 定生物特征识别单元130可接收光线的角度。在像素单元120与生物特征识别单元130的距离比较远的情况下,像素单元120发出的光经手指反射的反射角比较大,容易在微球161处发生全反射,因此微球161发生全反射的临界角可以限定入射至生物特征识别单元130的反射光对应的像素单元120与生物特征识别单元130的距离。微球161的折射率与指纹识别的精度相关。在指纹识别的精度要求比较高的情况下,微球161的折射率相比封装层170的折射率的差值比较大,使得发生全反射的临界角比较小,入射至生物特征识别单元130的反射光对应的像素单元120与生物特征识别单元130的距离比较小,因此实现指纹识别精度高。对应的,在指纹识别的精度要求比较低的情况下,微球161的折射率可以相比封装层170的折射率的差值比较小。
参考图9,准直结构160还可以包括黑色矩阵162,黑色矩阵162具有一定的厚度,即在垂直于基板110的方向上,黑色矩阵162具有一定的高度。因此可以阻挡黑色矩阵162远离生物特征识别单元130一侧的光线。在黑色矩阵162围绕光敏二极管1311设置的情况下,黑色矩阵162可以阻挡生物特征识别单元130在显示面板的垂直投影外部的反射光。黑色矩阵162的厚度与指纹识别的精度相关。在指纹识别的精度要求比较高的情况下,黑色矩阵162的厚度比较大,使得生物特征识别单元130可接收光线的角度比较小,对应的入射至生物特征识别单元130的反射光对应的像素单元120与生物特征识别单元130的距离比较小,指纹识别的精度高。对应的,在指纹识别的精度要求比较低的情况下,黑色矩阵162的厚度比较小。
在准直结构160既包括微球161又包括黑色矩阵162的情况下,准直结构160可以限定生物特征识别单元130可接收光线的角度,从而可以提高生物特征识别单元130识别指纹的精度。
本申请实施例还提供一种显示装置。图10为本申请实施例提供的一种显示装置的结构示意图。如图10所示,该显示装置810包括本申请任意实施例提供的显示面板811。

Claims (13)

  1. 一种显示面板,包括显示区和非显示区,所述显示面板还包括基板、像素单元和生物特征识别单元,所述像素单元和所述生物特征识别单元位于所述显示区;
    所述显示区包括多个呈阵列排布的像素区,每个所述像素区包括多个所述像素单元和至少一个所述生物特征识别单元,每个所述像素区内多个所述像素单元围绕至少一个所述生物特征识别单元排布;
    所述像素单元包括多个子像素,任意相邻两个所述像素单元内对应的所述子像素对称排列。
  2. 根据权利要求1所述的显示面板,其中,每个所述像素区包括四个子像素区;每个所述子像素区包括一个所述像素单元和一个所述生物特征识别单元。
  3. 根据权利要求2所述的显示面板,其中,任意相邻两个所述子像素区中的生物特征识别单元对称排列。
  4. 根据权利要求1所述的显示面板,其中,每个所述像素区包括四个所述像素单元和一个所述生物特征识别单元,所述生物特征识别单元位于四个所述像素单元所围区域的中部。
  5. 根据权利要求2或4所述的显示面板,其中,每个所述像素单元中的多个子像素呈L型排布。
  6. 根据权利要求4所述的显示面板,其中,所述像素单元至少包括红色子像素、绿色子像素和蓝色子像素;所述蓝色子像素的发光面积分别大于所述红色子像素的发光面积和所述绿色子像素的发光面积。
  7. 根据权利要求1所述的显示面板,其中,所述子像素包括发光器件;所述生物特征识别单元包括光敏二极管;所述发光器件至少包括依次层叠设置的第一电极、发光层和第二电极;所述光敏二极管至少包括依次层叠设置的第三电极、活性层和第四电极;
    所述显示面板还包括至少一层半导体异质结层,所述半导体异质结层设置于所述第一电极和所述第三电极远离所述基板的一侧;所述半导体异质结层复用为所述活性层。
  8. 根据权利要求7所述的显示面板,其中,所述半导体异质结层包括以下至少之一:P型半导体层和N型半导体层;P型半导体和N型半导体形成的共混结构。
  9. 根据权利要求8所述的显示面板,其中,所述第一电极为阳极,所述第 二电极为阴极;所述N型半导体层设置于所述阳极远离所述基板的一侧,所述P型半导体层设置于所述N型半导体层远离所述基板的一侧。
  10. 根据权利要求7所述的显示面板,其中,所述第一电极和所述发光层之间设置有一层所述半导体异质结层。
  11. 根据权利要求7所述的显示面板,其中,所述第一电极与所述第三电极同层设置,所述第二电极与所述第四电极同层设置。
  12. 根据权利要求7或10所述的显示面板,其中,
    所述第二电极和所述发光层之间设置有一层所述半导体异质结层。
  13. 一种显示装置,包括权利要求1-12任一项所述的显示面板。
PCT/CN2019/102504 2019-04-28 2019-08-26 一种显示面板和显示装置 WO2020220533A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910351286.0A CN110061041B (zh) 2019-04-28 2019-04-28 一种显示面板和显示装置
CN201910351286.0 2019-04-28

Publications (1)

Publication Number Publication Date
WO2020220533A1 true WO2020220533A1 (zh) 2020-11-05

Family

ID=67321412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/102504 WO2020220533A1 (zh) 2019-04-28 2019-08-26 一种显示面板和显示装置

Country Status (2)

Country Link
CN (1) CN110061041B (zh)
WO (1) WO2020220533A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112701224A (zh) * 2020-12-23 2021-04-23 武汉华星光电半导体显示技术有限公司 显示面板及其制作方法
CN114551619A (zh) * 2021-11-09 2022-05-27 武汉华星光电半导体显示技术有限公司 显示面板和移动终端
CN115132069A (zh) * 2021-03-26 2022-09-30 虹软科技股份有限公司 适用于屏下传感器的柔性显示器
EP4167706A3 (en) * 2021-10-14 2023-07-05 L3Harris Technologies, Inc. Multi-functional pixels designed for transmission matching in transparent displays

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110061041B (zh) * 2019-04-28 2021-04-30 广州新视界光电科技有限公司 一种显示面板和显示装置
CN111126210B (zh) * 2019-12-13 2023-08-25 武汉华星光电技术有限公司 显示面板
CN111312788B (zh) * 2020-02-28 2023-04-18 京东方科技集团股份有限公司 显示面板和显示装置
CN111597892B (zh) * 2020-04-14 2023-06-20 武汉天马微电子有限公司 一种显示面板及显示装置
CN111834423A (zh) * 2020-06-22 2020-10-27 合肥维信诺科技有限公司 显示面板和显示装置
CN112366217B (zh) * 2020-10-27 2023-05-12 京东方科技集团股份有限公司 一种显示面板及其制作方法、显示装置
CN117501854A (zh) * 2022-05-30 2024-02-02 京东方科技集团股份有限公司 显示基板及显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150331508A1 (en) * 2014-05-16 2015-11-19 Apple Inc. Integrated silicon-oled display and touch sensor panel
CN108121939A (zh) * 2016-11-28 2018-06-05 南昌欧菲生物识别技术有限公司 有机发光二极管显示屏指纹识别装置及电子设备
CN110047902A (zh) * 2019-04-28 2019-07-23 华南理工大学 一种有机电致发光器件、显示面板的制作方法和显示装置
CN110061041A (zh) * 2019-04-28 2019-07-26 广州新视界光电科技有限公司 一种显示面板和显示装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109521605B (zh) * 2018-12-24 2021-10-15 厦门天马微电子有限公司 背光模组和显示装置
CN109669575B (zh) * 2018-12-24 2021-09-28 厦门天马微电子有限公司 显示面板及其触控检测方法、显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150331508A1 (en) * 2014-05-16 2015-11-19 Apple Inc. Integrated silicon-oled display and touch sensor panel
CN108121939A (zh) * 2016-11-28 2018-06-05 南昌欧菲生物识别技术有限公司 有机发光二极管显示屏指纹识别装置及电子设备
CN110047902A (zh) * 2019-04-28 2019-07-23 华南理工大学 一种有机电致发光器件、显示面板的制作方法和显示装置
CN110061041A (zh) * 2019-04-28 2019-07-26 广州新视界光电科技有限公司 一种显示面板和显示装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112701224A (zh) * 2020-12-23 2021-04-23 武汉华星光电半导体显示技术有限公司 显示面板及其制作方法
CN112701224B (zh) * 2020-12-23 2023-05-02 武汉华星光电半导体显示技术有限公司 显示面板及其制作方法
CN115132069A (zh) * 2021-03-26 2022-09-30 虹软科技股份有限公司 适用于屏下传感器的柔性显示器
CN115132069B (zh) * 2021-03-26 2024-04-19 虹软科技股份有限公司 适用于屏下传感器的柔性显示器
EP4167706A3 (en) * 2021-10-14 2023-07-05 L3Harris Technologies, Inc. Multi-functional pixels designed for transmission matching in transparent displays
US11832500B2 (en) 2021-10-14 2023-11-28 L3Harris Technologies, Inc. Multi-functional pixels designed for transmission matching in transparent displays having transparent regions between the pixels
CN114551619A (zh) * 2021-11-09 2022-05-27 武汉华星光电半导体显示技术有限公司 显示面板和移动终端
CN114551619B (zh) * 2021-11-09 2023-12-05 武汉华星光电半导体显示技术有限公司 显示面板和移动终端

Also Published As

Publication number Publication date
CN110061041A (zh) 2019-07-26
CN110061041B (zh) 2021-04-30

Similar Documents

Publication Publication Date Title
WO2020220533A1 (zh) 一种显示面板和显示装置
CN112055893B (zh) 显示面板及其制作方法
US9305489B2 (en) Organic light emitting diode display
US10854850B2 (en) Organic light-emitting diode display device
KR20220095175A (ko) 유기 발광 표시 장치
CN111554701B (zh) 显示设备
WO2021218425A1 (zh) 显示基板及其制备方法、显示装置
CN110047902B (zh) 一种有机电致发光器件、显示面板的制作方法和显示装置
US11895866B2 (en) Light emitting element, projection type display device, and planar light emitting device
CN112366221A (zh) 显示面板及其制备方法、显示装置
WO2021100406A1 (ja) 発光素子、表示装置及び面発光装置
KR20220065139A (ko) 디스플레이 장치
CN113903769A (zh) 显示基板及显示装置
US11742377B2 (en) Light emitting diode chip, display device and method for manufacturing the same
KR102260673B1 (ko) 유기 발광 표시 장치
CN116326246A (zh) 显示基板以及显示装置
US20230363232A1 (en) Color conversion panel and display device including the same
US20240188334A1 (en) Display panel
US20230217692A1 (en) Display apparatus
US11672137B2 (en) Electroluminescent display apparatus
US11822169B2 (en) Display device
US20230026941A1 (en) Display panel and display device
US20240057429A1 (en) Display device
WO2023184090A1 (zh) 显示基板及其制备方法、显示面板、显示装置
US20230371339A1 (en) Display device and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19927012

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19927012

Country of ref document: EP

Kind code of ref document: A1